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PREFACE

This final report summarizes the work completed under Contract Mo.
NAS§=12726 towards the development of models and associated computer codes
for the analysis of three-dimensional supersonic nozzle-exhaust flowfields.
The contract was monitorad by Mr. Manual Salas of NASA Langiey who pro-
vided comparison flowfield:results and constructive suggestions during the
course of this effort. The authors additionally acknowledge the benefit
of many fruitful discussions with the late Dr. Antonio Ferri and the pro-
gramming assistance provided by Mr. Paul Kalben in the development of com~
puter codes BIGMAC and CHAR3D.
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I. [INTRODUCTION

This report summarizes work accomplished under Contract No. NAS1-12726
towards the development of computational procedures and associated aumerical
codes for three-dimensional nozzle-exhaust flow fields. The flow fields con-
sidered are those associated with airbreathing hypersonic aircraft which re-
quire a high degree of engine/airframe integration in order to achieve opti-
mized performance. The exhaust flow, due to physical area limitations, is
generally underexpanded at the nozzle exit; the vehigle afterbody under-
surface is used to provide additional expansion to obtain maximum propulsive
efficiency. This results in a three-dimensionai nozzle flow, initialized at
the combustor exit, whose boundaries are internally defined by the under-
surface, cowling and walls separating individual modules, and externally, by
the undersurface and slipstream separating the exhaust flow and external
stream. A typical exhaust nozzle is depicted in Figure (1), characterized

by multiple rectangular nozzle modules.

The numerical models developed in this analysis address the following

characteristic features of these exhaust flows:

(1) The flow properties at the combustor exit are highly nonuniform.
Buirning and mixing in the combustor yield regions of highly varving
composition, temperature, and stagnation properties. In addition,
shock waves are produced in the vicinity of the injectors. Although
the strength of these waves decays rapidly as they propagate through
the burner, they are generally present at the burner exit and must

be accounted for.

(2) The exhaust gas mixture consists of hydrogen-air combustion products
and significiant burning may still occur in the initial regions of

nozzle expansion.

(3} The flow field geometry is quite complex. The engine modules con-
sist of muitiple <i.rfaces with sharp interior corners, and flow

fences, to contain the external exhaust flow, may be present.
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(4) The interior nozzle flow field is dominated by complex wave inter-
actions with waves generated and reflected off multiple surfaces.

In addition, sharp interior corner regions must be accounted for.

(5) The nozzle exhaust flow interacts with the nonuniform vehicle ex~
ternal flow field. This complex interaction for underexpanded ex-
haust flows results in an expansion system propagating toward the
vehicle undersurface from the cowl trailing edge and a spanwise
expansion generated by the sidewall interaction. An underexpansion
shock propagates outward into the nonuniform vehicle external flow,
and the exhaust and external flow are separated by a plume boundary.
In addition, pressure and flow deflection mismatch between adjacent

modules may occur, resulting in a spanwise multiple shock system.

To accommodate the varied,complex geometric configurations entailed in
this analysis, a reference plane approach has been utilized, with respect to
several coordinate systems. This approach involves the definition of a re-
ference plane system in which the three-dimensional volume under consideration
is spanned by an appropriately selected series of planes which intersect the
boundaries of the considered volume. The equations of motion within the re-
ference planes are expressed in a quasi-streamline coordinate system, where
quasi-streamlines are the projections of the actual stream surfaces onto these
reference planes. Such a system accommodates the calculation of highly rota-
tional, variable composition flow fields by minimizing streamline interpola-
tion procedures which can produce significant errors, as discussed by Sedney

in Reference (1).

Reference plane systems in cartesian, line source and cylindrical coordi-
nates are illustrated in Figures (2), (3) and (&) respectively. The configura-
tion of the reference planes is chosen to best accommodate the overall flow
field geometry by having primary flow variations occur within the -eference
ptanes. A more complex flow field situation is depicted in Figure {5) for
the flow downstream of the cowl exit. For this calculation, a combination of
several reference plane systems is employed and provisions are included in

the numerical codes for automatic switching from one system to another as the
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_character of the boundary surfaces changes. The reference plane system also
caters to the usage of reference plane characteristics at all boundary points.
This approach is generally recognized as the most accurate boundary caicula-
tional procedura (Reference 2). However, it proves cumbersome when employed
in conjunction with nonreference plane networks due to the complex inter-

polation procedures then required,

The reference plane characteristic technique has been widely used for
the calculation of three-dimensional supersonic flow fields, and the authors
had previously develnped a program employing this technique for the calecula-
tion of nozzle exhaust flow fields (References 3 and 4}, which is in current
usage at NASA Langley Research Center (References 5, 6 and 7). That program,
as well as most reference plane characteristic (refchar) codes in common
usage (References 8 and §), employs an inverse scheme wherein interpolations
are performed to obtain data at the intersection of the guasi-characteristics
with & noncharacteristic initial data surface. Comparisons of such refchar
codes with shock capturing finite difference codes (Reference 10} have led to
the general conclusion.that difference codes are better able to analyze com-
plex flow fields with multiple secondary shocks. From experience gained with
the authors® original refchar code, it was felt that the inability to success-
fully analyze such flow fields was primarily due to the inverse interpolation
procedures employed. Such procedures tend to ignore the presence of weak waves
by allowing the quasi-characteristic lines to arbitrarily cross each other.
The numerical diffusion associated with these interpoiations can become sig-
nificant, particularly when the Tocal Courant number {ratio of overall marching
step to local maximum allowable marching step) is much less than one. The
smearing of these weak waves is enhanced by resorting to higher order interpocla-

tions on the initial data line.

To treat complex multiwave flow fields and still retain the advantages that
reference pilane methods afford, two new numerical codes have been developed.
Program (HAR3D is based upon 2 quasi-characteristic calculational procedure
employing a novel wave preserving network, as compared to previous standard in-

verse networks. In addition, a nonisentropic pressure-density relation applied

e 1ot b e b e



- along streamlines, permits the estimation of shock entropy losses while,

the usage of conservation variables in the construction of cross-flow deriv-
atives has facilitated the analysis of flow fields containing cross stream
discontinuities. Program BIGMAC is a reference plane finite difference code
utilizing the described quasi-streamline grid within reference planes. Shock
capturing capabilities are provided via the usage of conservation vgriables

in conjunction with a one-sided difference algorithm.

While the numerical algorithms and logical procedures employed in CHAR3D
and BIGMAC differ, both codes employ a newly developed geometry package (Re-
ference 11) for a description of boundary contours, calculate boundary points
by reference piane characteristic procedures, and incorporate the same thermo-
dynamic fits for describing the hydrogen-air gas mixture in chemical equilib~
rium,

The governing flow field equations are presented in Section 11 while
computational procedures for CHAR3D ~nd BIGMAC are presented in Section |11,
Section IV contains a description of rumpie calculations performed with both
these codes. Conclusions drawn from thiis study and recommended procedures
in extending this analysis are presented in Section V. For completeness, a
summary of the equilibrium curve fits are presented in Appendix | while a

description of the geometry package is presented in Appendix I1,

ORIGINAL PAg
OF POOR QUAL vy

et e e et e e © . e e, A e Y i etk P 2 = ki 77 il e B St Bhm e kg e st 2t tdme T e atm en £ R - Nemimmen e d g e g e 1




li. GOVERNING EQUATIONS ©

A. Characteristic Analysis (CHAR3D) - The equations governing the steady
flow of an inviscid gas mixture in chemical equilibrium may be written:

Continuity .

Ve {oV)

il
(=]

Momentum
p{lev) V2P =0

Energy
Vevll = 0

‘Equivalence Ratio Constancy Along Streamlines
Veve = 0

This system is supplemented by the relation

expressing constancy of entropy along streamlines in continuous regions of the

fiow field. The equation of state may be written

N —— a

(551 P _ .2
ap § o

where curve fits for the isentropic exponent I, from Reference (4},
r= fh, P, 9)

are deseribed in Appendix |. The continuity equation, employing Equations (5)
and (6) may be written:

TeUP ¢ a2 p¥ell = 0

The scatar forms of the modified continuity equation (Equation 8) and the

momentum equations {Equation 2) in general orthogonal coordinates are:

10

(1)

(2)
(3)

(&)

(5)

(6}

(7

(8)



Hodified Continuity

-

u w o P ‘w P
I e 'S R DU oA S
h1 h3 h1 h3 h,‘h?_h3 13 a2 Ry )
(9}
h2 h3 pu + h1h2 pwl
x4 Momentum
2
u W 1 v \
U, to—u =P = ey + h (10)
hl Xq h3 x3 pht X1 h2 Xo h1h2 2){1I
xz Momentum
u W 1 v uv '
T~V =V Fe—P =-—y = h, = h (11)
h‘ X4 h3 x3 ph2 g h2 X, hlh2 Zx‘ h2h3 2x3 .
x3 Momen tum
2 _
u w 1 v v _
—W, +tr—w +——P = ey 4o h (12) -
h1 % h3 x3 ph3 x3 h2 xz h2h3 sz'

The identification of metric coefficients and coordinate directions for the
three coordinate systems under consideration is provided below.

| :
System X Xy X3 h1 hz h3
Cartesian % y 2 1 j 1 .
Cylindrical x 8 r 1 r 1 :‘_3
Line Source r 8 z 1 r 1 v

Note that h, is unity for the line source system and zero for other systems
b

while hz islunity for the cyliindrical system and zero for cther systems.

%3

1t
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* Thase terme will be replaced by the indices J1 and J2 where:'J1 = 1 for the -
line source system and J2 = 1 -for the cylindrical system. Both indices are
zero otherwlse.

In writing Equations (9) - (12}, the source terms and terms Involving
derivatives normal to the' reference planes Xy = constant have been put on
the right-hand side., Then, the left~hand side of these equations corresponds
to that of the two-dimensional system in the Xy x3 plane. Reference plane
characteristic relations are readily obtained by algebraic manipulation of
the modified continuity equation and the X and X3 momentum equations.

These relations are listed below, where the velocity vector

Veui, +vi, +w i (13)
% X, X3
is expressed in terms of its magnitude in the reference plane, q, quasi-
st.eaml ine angle, ¢, and cross flow angle, {, empioying the geometric rela-
tions

¥ X
q= (0 +w) (1ha)
$ = tan | (w/u) - (1h4b)
¢ = tan”! {v/q) | ' (14c)

as depicted in Figures (6), (7) and (8). Along the reference plane char-
acteristics

+ dx3 _ Mzcosésin¢i8
1 Meos“(¢-1)
the compatibility relation may be written:
d¢ = -%-d(ﬂ.n P} = F* d¥ (16)

TH

i2
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FIGURE 6.

..
Voeuid, +v iy L

@ =V cos ¢ Q = (uz*-wz);5
u = 0Q cos ¢ 5 = tan=t(w/u)
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FIGURE 7.  VELOCITY
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-

2 A ~
V = u i+ v ig + w i

Q =V cos ¥ 0
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v = Q tan ¢ 'l
w =0 sin ¢
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z
3
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_where

Hz = quaz, B =#* - 1 T

F¥ = {sing - Aicos¢) [(tamp)x + 3%?£-(zn P)x ]
. . - 2 . 2

. {17)
b S + 2
~ ¢, tany {cose + A7sing) + (J2 - A J2) tan“y
2
and
dxl
dx = Jz *+ J; d 2n X3
*3
The streamline projections onto the reference pianes
dx3
PsL T dx, Tt (18)
are also characteristic directions for this system. Alopg the quasi-stream
ASL’ the relation between cross flow angle, ¥, and pressure, P, may be written
d(tamy) =2 d(en P) + 6 dX | (19)
™ :
where (2n P)x
-1 2
g = 1 + tany(tany)
cos¢ PMZ Xg
(20)
+ tanp(1 + tan2¢) (J1c05¢ + stin¢)]
B. Finite Difference Analysis (BIGMAC) ~ The analogous inviscid flow
equations in conservation form may be written:
Continaity
ve(pV) =0
Momen tum
Ve{pVU¥) + WP = 0 (21)
16 ORKHNAlnPAGEIb
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. Energy

Ve{pVH) = 0

‘Equivaience Ratio Constancy Along Streamlines

ve(ole) =0

The scalar form of these equations in the Xis Xo» x3 reference plane system

may be written:

where for k = 1 to 6

pu
P+ pu2

- - puv
E(k) = h2h3

puw
puH
- ‘ pud
ow

puw

pVW

H(K) =

&(k) = h.h
12 P % pwz

pwH

pwd

~J1h3(P + pvz) .
(J1h3u + J2h1w)pv
= hy (P 4+ ov?)

0

0

In performing the numerical integration of this system of equations, a quasi-
streamiine grid network is employed wherein one follows the projections of

. streamlines on the reference planes and one to one correspondence is made be-
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A

tween "corresponding'' streamlines on adjacent reference planes. Then Equa-
tion (24) may be written

- = h1 Wz Ry -
E, +F +G tH- =3B - tanep—F =0 (25)

L n X x
X% 34 %3 3 %3

where a/ax1 denotes the partial derivative along the quasi-streamline, in the
. Vv . . . .

reference plane X, = constant while B/axz denotes the partial derivative along

the line connecting '"corresponding' streamline points on adjacent reference

planes at the marching station, X, = constant. Thus,

h

2 - (2 - 1w 8

L KX 3)(1 3 3 X, X
2’73 Xyl 1°73

and
h
3 2 .
) =) - e

2 .9x%, 3 3 4 x

0737 T %8 173

where tang is the slope made by the line connecting ''corresponding' grid points

in adjacent reference planes with respect to the Xy coordinate direction, at

Xl = constant.
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til. COMPUTATIONAL PROCEDURES

A. Reference Plane Grid Networks - Both.CHAR3D and BIGMAC employ refer-
ence plane grid networks following the trace of streamline projections onto
the reference planas as illustrated in Figure (9). Note that the arid network
utilized for CHAR3D (Figure 9a) differs from that of the author's previous
characteristic method (References 3 and 4) as well as from that of other
popular reference plane characteristic methods (References 2 and 10). Pre-
vicus methods employ a standard inverse scheme (i.e., Figure 9%} wherein
interpotations are performed along a non-characteristic ‘nitial data surface.
Such Interpolation procedures ignore the advantages affordable by a reference
plane characteristic method by failing to utilize information rontained along
already calculiated quasi-characteristic surfaces. By interpolating along such
surfaces, rather than along non-characteristic initial data surfaces, two

distinct advantages accrue:

(1) The wave nature of the flow field within tne reference planes is
preserved.

(2) Linear interpolation procedures along such surfaces is compatible

with a scheme of second order accuracy (see Reference 12, appendix).

The application of linear interpolation procedures along a non-characteristic
initial data surface does not produce results accurate to second order, while,
impiementation of higher order interpolative procedures tends to result in ex-

cessive numerical diffusion {see Reference 1).

While both CHAR3D and BIGMAC employ the same quasi-streamline reference
plane network, the computational sequence differs substantially. Let | desig-
nate é arid point in reference plane J; for the calculation of an internal
module such as that in Figure (2) each reference plane J contains IMAX grid
points where | = 1 represents the lower boundary surface (i.e., vehicle
undersurface) while | = IMAX represents the upper boundary (i.e., cowl}. In
this example J = 1 is a plane of symmetry while J = JW indicates the module

sidewaltl, In CHAR3D, the lower boundary point I = 1 is first calculated for

19




STREAMLINE
PROJECTION

r 4
0 WAVE GRID POINT
O STREAMLINE GRID POINT"
(a) Reference plane grid network for CHAR3D.
{(b) Standard reference plane {(c) Finite difference network.

characteristic network.
Figure 9. Reference plane networks.
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. all reference planes J = 1 to JW, then the grid points | = 2 for J = 1 to JW,
etc., proceeding to the upper-boundary point | = IMAX. This provides a quasi-
characteristic initial data surface comprised of the downrunning reference
plane characteristics passing through the points | for J = | to JW for the

calculation of the points | + 1 for J = 1 to JU.

Program BIGMAC proceeds in the opposite fashion. Predictor values are
calculated for all grid points | = 1 to IMAX in a particular reference plane
J starting with J = 1 and proceeding to J = JW. The process Is repeated for
corrector values.

Both programs employ internal disc storage to provide for tie usage of a
large number of grid points without exceeding the small core memory alloca-
tions of the CDC 7600. Thus, CHAR3D provides storage for all reference
plane locations J = 1 to JW (JW < 43) at 5 levels of | while BIGMAC provides
storage for all reference plane grid points 1 = 1 to IMAX (IMAX 5_40) for 10
reference p]aﬁes J. In both programs, reference planes are deleted or added
in the proximity of sidewalls according to the following criterion. Let A
represent the spacing between reference planes and Aw the spacing between the
last reference plane and the sidewall. Then, the reference plane adjacent to
the wall is deleted when Aw < .b while s plane is added between the last re-

ference plane and sidewall when Aw > 1.6.

B. Interior Point Calcuilational Procedure - Properties are desired at
the grid point (1,J,K) shown in Figure (10) for a cartesian system. The
allowable step size Ax is determined by satisfying the CFL condition. For
BIGMAC, this requires that the Intersection of the Mach cone from (T,J,K)
with the initial data surface fxlls within the numerical domain as depicted
(i.e., the quadrilateral (I, J+ 1}, (1 -1, J4), (1, 3-1), (1 +1, 1)).
Note that the effective numerical domain for the characteristic calculation
includes the points | + T and | - 1 on planes J - 1 and J + 1; hence, a

larger step may be taken with CHAR3D (Ax X V2 Ax

CHAR3D BIGMAC)'
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CHAR3D

. .- el

Referring to Figure (11), for a cartesian system, the grid point 1 is
located ajong the quasi-streamline through grid point | by the difference

approximation to Equation {18).

i}

z3 r-4

" + {a tgu'u{:!,J + b tan¢T’J) Ax (26)

), d

0 in the predictor step and a =-%, b = %-in the corrzctor

where a = 1, b
step. In this new wave preserving network, the calculation proceeds upward
from the lower boundary where points (1 - 1, J) are calculated for all re-
ference planes J to second order prior to caiculating points (1,d). In addi-
tion to the standard initial data array (the points {1,J}), an extra array
(?,J) is required. To calculate properties at (1,J), the standard initial
data grid in the reference plane (1 - 1, J), (1,J), and (f + 1, J§) is employed
to calculate the forcing function terms involving derivatives normal to the
reference plaﬁes. Properties are known at points H], G1, and T - 1 from the

calculation of point (1_- 1, J} to second order.

Point A is located between H1 and G, on the quasi-characteristic Ai(AT)
+
where A~ is defined in Equation {15). A1l properties (including forcing func-
tions) are obtained via linear interpolation between H  and G1. Then, H2 is

1
located between | and | + 1 such that the downrunning quasi-characteristic from

G, {or B) passes through (1,J). To first order, properties at (i1,J) are cal-
culated using points B and A, where PB and ¢B are determined using compatibility
relations (Equation 16) along IB and H,B.

.

Then PT and ¢T are calculated employing the compatibility relations

(¢T - ¢A) + a (-EEJ +b -2 fan D = (aFE + bF?) ﬂxi

2 P A
™ A TM i A
and (27)
(b= - 6.) - § a (B +b (B lon (D) = (aF=+ bFD) AX-
1 B FHZ ] PMZ : PB B i 1B
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Figure 1. CHAR3D interior point grid.
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‘Remaining properties are determined at T via the following streamiine rela-

tions:
. P..
(tanp); = (tam)y + | a (B30 + » (2204 | g0 (59
: ™ ™ = H
i |
(28)
"
+ (at?l + bG-l') Axl'l'
- - tany tany A
Hl HI a (cos¢ Hy)l +b (cos¢ Hy)T AxIl (29)
- - tany tany Vo
F d)l a (cos¢ Qy)l +b (cos¢ Qy)i A“l! (30

and in continuous regions of the flow

“r

(Pre")g = (P/oT)) = | & T2 (p/oT) ] .

tany T
o+ s -
[ b [cos¢ (P/p )Y}T Ax (31)
The following three parameter curve fits (based on data from Reference 13)
are incorporated into this code and are described in detail in the appendix

extracted from Reference {4).

h=h {P,o,T) (32a)
p*®p (Pa@sT) (32b)
T =T (P,0,T) (32¢)

The flow velocity is obtained via the relation
Vi = /2 [y - h (P, 27, 'i'f)]ir : (33)

where TT is obtained via an inversion of Equation (32b) (with Py PT» and o7
known) and hT is obtained employing Equation (32a). Then, 'y is obtaivned from

Equation (32¢) and a2 = PTPT/pT.
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This calculation is performed for points | in all reference planes to

first order. Then, cross derivatives 8/3y are evaluated at [ employing the
relation

afy  _ 3f,  _ .. of
(ay) = (37' tana (az {3%)
X,2 XN X,Y
where
By e (2 Ay‘) (=2
I,d+1 Ay l J Ay Ay l J-1 ‘ay.
e . s i
% %.n (ay, + dy,)
AYy = ¥7,0 7 YT, 01 Ay = YT 41 T VT,
tana = ( )
X,M
F O

( ) - zi'J _ zl-l,J
X,Y IsJ !'1,\]

Derivatives are made the same way at the initial station |, except here 3f/3z
is evaluated by

af IR
eh -

X,y  Ziet,d - 21,

CHAR3D, Tn addition to the centered difference algorithm described above,
has the option of evaluating cross derivatives via an aslternating one-sided
differencé algorithm. For this option, derivatives are evaluated as described
in the section for BIGMAC. Cross derivatives are required for the variables
P, ¢, v, H, @, and P/pp. In evaluating cross derivatives for P, ¢, and ¢,
conservation variables are employed as follows:




Py = F(3)Y - F(1) vy "V F(ﬂY

W cosd - u_ sin
Y ¢ Y ¢

by = q

qv. - (uu_ + ww ) tany
(tany) = —TmrX Y
Y q2

where

. E(3)Y - v Emy
Y E(1)

E - -
(2}y h2h3Py u E(!)y

Uy = E(1)

. E(h)y - w E(l)_Z
y | E{1)

The conservation variables E(k) and F(k) are given by Equation (24). The
use of conservation variables in the construction of these cross derivatives
has tended to suppress oscillations that occurred when employing physicatl

variables to difference across shock waves. However, the use of a one-sided

difference algorithm in conjuncticn with ChAR3D has tended to produce spurious

results in regions of large cross flow.

(35)

(36)

In the characteristic reference plane algorithm, cross flow variations are

o
expressed via the forcing function terms F~ appearing in the right side of the

compatibility relations (Equation 16). These terms are assumed to vary mildly

within an integration step. When a one-sided algorithm is employed to evaiuate

cross derlvatives in the vicinity of shocks, the values of the farcing function

terms may vary greatly between the predictor and corrector steps. In addition,

the numerical domain of dependence is somewhat vague for the characteristic
reference plane approach in conjunction with one-sided differences, so that
part of the problem encountered may be due fo stability., The recommended ap-
proach for evaluating cross derivatives in CHAR3D is to employ conservation

variables in conjunction with a centered difference algorithm, although this

e e e A i s e AT b P A SR e
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.matter requires further study.

- e -

In CHAR3D, secondary shocks are captured as rapid changes spread over ap-
proximately three grid points. The entropy change associated with these shocks
is evaluated employing a nonisentropic pressure-density relation (illustrated
here for aperfect gas).

Tv an (/") =T - B - (37)

v

For a shock of strength £ (pressure ratio across shock), this change is deter-

mined employing the relation {for perfect gas)

AS _ - (v + g+ &y - 1)
q—- &n £ Y &n [(Y - 1)5 T (Y T -l)] (38)

where AS is the entropy change along a streamline produced by the captured shock.
This relation involves only the pressure distribution in the vicinity of the

shock and is readily applied in regions of noninteracting shocks as follows. Let

{y + 1)g + (y - 1)

A N HEX ()

Assume a shock is spread over the marching interval K = 1 to 6 (Figure 12) for
a typical quasi-streamline. Then 1 represents free stream conditions for this

shock. The entropy change in the interval K - 1 to K is then expressed by

AS AS AS ik Frgr ]|
@S @By LBy g L »
Cy Cy Ly Erk-1 Fix
K-1,K 1K I, K-1 ’ »
where
81,k = PPy
Then
Yy - Yy - ramb vy 4% 45
(P/D )K - (P/D )K_-I COSE‘J (P/D )y AxK-I,K exP (cv) (39)
K=1,K
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Figure 12. Entropy calculational procedure. P; is initial pressure;
Py is final pressure.
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.Since the shock geometry does not appear in the entropy jump relation, the
antropy rise associated with extremely complex three-dimensional shocks can

be accurately obtained. Special provisions have been incorporated into the
program for the computation of singular points at the juncture of Intersecting
shock waves and/or shock reflection points. At such points the streamline
undergoes a discontinuous pressure rise corresponding to that through both
shock waves. If the shock intensities are different, an entropy discontinuity
occurs separating the different zones, and a vortex of infinite intensity re-
sults. Numerically, the entropy procedure described would predict an entropy
rise associated with this pressure jump. Theoretically, this occurs in the
l1imit of vanishing mass flow, while numerically the finite mass within this
reqgion would lead to unduly large entropy levels. Special coding has been

incorporated at such singular points to suppress these "'numerical'' peaks.
B 1GMAC

The MacCormack difference algorithm of Reference (14) is employed for the
calculation of interior grid points in BIGMAC. Referring to Figures (13),
(14) and (15) for grid index notation in the coordinate systems considered,

this two step predictor-corrector scheme as applied to Equation (25) yields

Predictor Step

h h
%- = E -2 A%, (F +6 - —l-H-E - —g-F tana + EJ
I,d I,d 1 X, X, h3 u Xy 3 X3 2 1,
where _ +1
3 3 4 by
tana = 2 { ’d o 1) (H"J (FrJ
1 2 2 2
+1
ﬁt BRI Ly &y
ay 1,d d1 + dZ d1
1
if_ = + (fli'1 ,J ) fI,J) (dB)
3z [, d3 + dh dh
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d, = x - X d, = x - Xn
Ve R e R I I I
do = x - x d, = x, X

330 31, BT, g

for any variable f and

Corrector Step

X

. fi n,

1 [ 1w
Er = = (E’- +E, ) -2 Ax [? + & ""*'"'("')?ll
PR R A 17 % %3 hg u" g

h
-—gg’ tan&' +-§1]? ]

h3 X3 i,
where L Y N
Xy . T Xy d *1 h
cand = T2 (Ll Tlady (22

m.
1 .d] 2
-l L O |
ﬁ = - ( I,\H" ?l,J) (fi_g_)
3y T,J dT + d2 'c\’.]
*1
of| _ = }II;T,J " ?I,J d
-a-_z'_ =+ ( d. + d ) (—_"
T, 37 % d
n 3
for any variable f
h
"y _ 1w
*3; , 7 %97 (E; A
’ I,J
hf W hlm
X37J=x1’d+5{(|—1;—) +(‘ﬁ"" ]ﬁx.l
’ l!J [’J

The physical variables are obtained by the'Foliowing iterative decoding
procedure. A value of u is assumed. Then,
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e

p = E(1)/(h,h,u) ' ' (kia)if
. Po= (E(2) - E(1) u;/}hzh ) o (hap)
v = E(3)/E(1) | (hic)
w = E{4)/E{1) | - , (41d)
H = E(5)/E(1) (hie)
@ = E(6)/E(1) ' (1)

h=H - l-(uz + v2

L + W) (41g)

The value of h obtained in Equation (41g) vields T via an inversion of Equa-
tion {32a). Equation (32b) yields an alternate value of the density compared
to that obtained in Equation (41a). The value of u is perturbed and the
procedure repeated until the two values of density agree to within a specified

tolerance. A linear error extrapolation is employed to speed convergence.

Note that both codes additionally provide For the calculation of a uni-
form composition, perfect gas mixture. For this option, the equilibrium
sound speed, a, of Equation (6) is replaced by the frozen sound speed

ax = {35 <o (42)
where the constant specific heat ratio of the frozen mixture v, replaces the
equilibrium isentropic exponent T' in all relations. The static enthalpy is
then expressed by

h (P,p) = ?%T P/p (43)

and the iterative decoding procedure of Equations {l4la~g) may be replaced by
the direct determination of the u velocity component via solution of the

quadratic (Reference 15}
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2 %
u= [- B+ (B ~ LAC) 1/2A

where T . T
A= (y+1)/2y

B= - £(2)/E(1)

2 _ 2

C = %%l {24 - v
C. Solid Surface Calculational Procedure - Surface geometry Is pre-~

scribed via discrete contour data for all continucus surfaces comprising the
nozzie/afterbody configuration. Thus, for rectangular modules, as depicted
in Figure (1}, contour data is provided for four surfaces, namely, the two
sidewalls, vehicle undersurface and cowl. These surfaces are fit via the
method of Reference (11) based on the use of partial cubic splines; a sum-
mary of this fitting technique is provided in Appendix Il. Surface fitting
is done external to programs CHAR3D and BIGMAC via program FIT3D, (Reference
11) which generates ordered surface coefficient arrays read in via tape to
CHAR3D and BIGMAC and employed in these codes in conjunction with surface

interpolation procedures also described in Appendix 11,

Both CHAR3D and BIGHMAC employ reference plane characteristic procedures
in the performance of all boundary calculations. The calculational procedure
for CHAR3D closely Fol]ows~the step by step procedures detailed in Reference
(4}. Referring to Figure (16), which depicts a lower boundary calculation in

cartesian coordinates, CD is the intersection of the reference plane y = Ye

(44)

with the lower surface z = f(x,y}). In CHAR3D, the following iterative procedure

is entailed:
(a) The cross flow angle Y, is assumed equal to that at point D.

(b} The boundary condition Ven = 0 applied at point ¢ yields the

relation

sing_ = (fx)c cosg_ + (Fy)c tany_
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z= f(x,y)

CHAR (X))

Figure 16 Solid boundary calculation.




(c) P is obtained employing the compatibility relation (Equation

27) along A _using the above value of ¢c.

{d) An alternate value of wc is obtained employing the normal mo-
mentum relation (Equation 28) along CD.

This new value of b is then employed and steps (b), {c) and (d) are re-
peated. This self convergent procedure generally requires only 2 or 3 itera-
tions, although more may be required In regions of strong cross flow. Upon
convergence, streamline relations yield remaining proberties at ¢ and the entire

process is repeated for second order accuracy.

In BIGHAE, this iterative procedure s eliminated by combining the normal
momentum equation with the quasi-streamline momentum equation yieliding the
following system of equations for P_, (w/u)c and (v/u)c in general coordinates

for the boundary X3 = f(xi’ xz):

(pu?'/BP)Bc | 0 //fw/u)c //('R1
-, )

c !
1 0 T &n PC = RZ (46)
2 v P
(w/a%) .y &= -1 (v/u) R3
pq cD
where
b 2
1 % - 4% v ou )y (W
R = " B R hR, [0 - w) A - 278l Bxge £ tn Py (G5) ()
3 8
R, = (f"l)
c
R, = " [E., - ~% (Bu + Cw)].. A%
37 "2 . ttsL T Tz WU T EWep Sy
pu h1h2h3 q IGINAL PA B I
0% PooE QUALITY
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and

vP e . B
A=hh (—-1-+ pv. ) + J E(1) + J Eil_
13 aZ v 1

hy 2 h,
. B = F(z)y -u F(1)y - Ji v §:1)
C=Fh) -wFr) -4, v ::;1)

B, = F(3)Y- - v E(D), + 4 Féf) ., Fé:)

Note that in the above relations, vy and Py are evaluated in accordance with
Equation (36).

An important consideration in the boundary procedure for BIGMAC is the de~
termination of the entropy at point C. The entropy change along the wall from
D* to C is set equal to that along the streamline one mesh interval away from
the wall. Thus, entropy changes associated with captured shocks as determined
for interior grid points, are reflected in the wall point calcuiation. To
accommodate this procedure, the lower wall point calculation must be deferred
until after the calculation of the grid point one mesh interval fram the wall
and, the Teft sidewall calculations must be deferred until after the calculation
of the adjacent reference plane. Then, predictor values are obtained at point C
for Pc’ (w/u)c and (v/u)c employing coefficients evaluated at the initial sta-
tion. Streamline relations yield H_ and ¢_ and the density P via Equation (39)
where the entropy change is evaluated as described above. The velocity magnitude
Vc is obtained via Equation {33) in conjunction with the equilibrium curve fits
of Equation (32). Corrector values are evaluated with averaged values of the
coefficients after predictér values have been obtained for the numerical! domain

under consideration.

The same general logic is applicable for the calculation of all solid
boundaries. |In particular, for the calculation of sidewalls,a local rotated

39
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reference plane system is established as indicated in Figures tz) - (k).
catculation is performed in the plane x3 = x3c for which geometric details
are deplcted in Figure {(17) for a line source or cartesian system and in
Figure (18) for a cylindrical system.
gystem are provided via the transformations

The metric

Characteristic directions in the rotated system take the form:

The compatibility rélation along the characteristics may be written:

where

4o.

e
A
o

<
"
1

£

|
B
=

-2
gP

2 «
1 -
1 .
(J1x1 ) & (1

coefficients h. then become

J + J )

BY 4 (x w/u) * denP =

pE

The

Appropriate refations in the retated

-1k7a)

(47b) A

(48)

(49)

[




iy

AL
-IS
1 *



b2

= b

FIGURE 18.

SURFACE r=CONSTANT

STDEWALL CALCULATION, CYLINBRICAL SYSTEM

, PAGE 18
RIGINAL PAGE 18
‘OF POOR QUALI™

S L P T R :‘-o- .

T S

e a4 e it an e e e Akt

i ik i sk ke

Py

B T S




I

e - - - o
e - A= B+
h]h2h3 . - -
o .
A= [h1h3 ¢ 5 P;(z +p v 2) + thzpu thlpv] i
B = [(h1h3 puv);2 - u(hlhspV)§2 thzpw ] :a
.

oA

= [(hlhspvw);{ - w(hlthv);< + J,pwuh, - sz&\'}E]]

2 2

The combined momentum eguation takes the form:

| d{¥) - ("\-',";J-) d(-y}-) - 2—-P—. d{znP) = A E.. - v (8% - ",
y 27 T = Bu + Cw)] dx
@ 9 G Ged o’ St st (
where.
- - 1 ..~ = -2 - . ) i ‘
LTI [(R,fy (P + oV ));2 - V(RiFgeW)_ + 4, (P pi?)] 3
1273 X, ;!

The statement of the boundary condition Ven=0 on the sidewall g = g(xi, X.,) ??
= g(;c1 5 ﬁz) may be written: . 3 5

E1[E
u
b=
w
—
o
x
4
et
[l
X1
S
o~
(%]

The system of Equations (49) - (51) is solved directly for the variables
w/3, v/u and P. The analogous boundary relations in rotated coordinates for
CHAR3D are detailed in Reference (4) for the three coordinate systems in-

corporated in this analysis.

D. Corner Point Calculations Procedure - Interior corners occur in the
internal modules and are discretely analyzed in both numerical codes by a
redundant "weighted' characteristic procedure. For a cartesian system the

corner results from the intersection of the surfaces z = f{x,y) and y = g{x,2).
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Referring to Figure {19), the boundary condition Ven = 0 applied to both
intersecting surfaces at C (the point to be calculated) yields explicit

expressions for the flow deflection angles in the reference plane y = Ye$

fx + 9, f

(XX Y | (52)

1 = q, fY

W
(E)c = tan¢

’

gx + fx gZ

('E‘)c = tany = (cosqwc -T-:*fte;*g—z {53)
Then, a redundant procedure is employed wherein reference plane calculations
for the pressure at € are performed in the reference planes z = e and vy = Yeo

This yields two values of pressure Pg, and Pg, which a¢i ffer due to evaluating
the cross derivative forcing function terms in the compatibility relations via
backward differences. A weighting of these pressures is performed by account-

_ing for the relative wave strengths in each of these reference planes. This
gives the stronger weighting to the calculation performed in the reference

ptane containing the deminant waves via the relation

“"’A1c MAZC )
. — b p (5
c Mac ¥ Mae ©1 Mac” MAZC Cy

P

In the line source system, the upper or lower walls are specified by re-
lations of the form z = f(r,0) while the sidewall by vy = g{x,2), as indicated
in Figure (20). Application of the boundary condition ¥.n at both walls in

conjunction with the transformation

¢ -

coso -5ing 0 u
= sind cosb 0 v {55)

<128

0 0 1 w

0

from line source velocity comporents, u,v,w to cartesian components u,v,w

yields

£6
f (1 + g  tang) + — (g_ - tane) .
tang, = (%J = L X r x (56)

¢ (1 + g, tand - g, %?
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in the reference plane § = 8. and the relation

9, + [cos@ fr - sing {?q g,
= o (57)
1 = [sing fr + cosb —FJ 9,

2

with respect to a cartesian system (y = yc).

For a cylindrical system, the upper or lower wall is specified by ankequa;

tion of the form r = f(x,8) while the sidewall by & = g(x,r). Expression of the

0

bounda<y condi ton Ven = 0 on both surfaces at point C resuits in

w fx * 9, '%g
tang, = (EJ = e - (58)
¢ - S T
and
g, +f g
u 1 - fg-g

In all systems, the pressure PC is determined via the weighted character-
istic technique, while streamline relations, applied along the corner stream-

line €D, are employed to generate remaining flow variables.

E. Calculation of Three-Dimensional Surfaces of Discontinuity - The nu-
merical models described treat the plume interface {separating the nozzle ex-
haust flow from the vehicle external flow) and plume generated external shock
wave as discrete surfaces of discontinuity. 'The overall approach closely fol-

lows that of Reference (4) and thus is summarized briefly in this report.

The orientation of a surface of discontinuity with respect to the Xq» Xy
X3 coordinate system is depicted in Figure {21). The local surface orientation
is specified by an ortho-normal triad of vectors consisting of the normal to the
surface and two surface tangent vectors. With respect to the reference plane
X, = constant, a tangenf direction E with cosine director B i§ defined by the
shock and reference plane intersection. The surface tangent £ with cosine
director a is normal to ; and thus the normal to the shock ; is given by the

A A

cross product n = t x £, which in terms of c¢ and B may be written

L7
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tan (@)= cos (B) ton (a’)

FIGURE 21. ORIENTATION OF DISCONTINUITY SURFACES
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n = - cosa sing i - sina | + cosa cosB i
X X x
1 2 3
The cross cast angle «”, made vy the cut of the discontinuity surface with the
plane Xy = constant and the Xy coordinate direction, is related to the angles
e and B by the relation

.

tana” = tana/cospB
Shock Point

For the caiculation of a shock point, the local velocity vector expressed
in the shock oriented system may be written

-~ mh
t 4+ v 2

"t a,
Ve 3

V¥ =un +

and the Rankine-~Hugoniot jump relations in this shock normal system are:

Continuity

=34

Normal Momentum
n2
P1 o, U= P

Momentum

rr

w2
=
(]
3
]
3
Ix3
c
3

Energy

H = constant = h+3 Vz

k9

'(62)

(60)

61)

R T W AP

(63)

(64)

{65)

(66) i
i
|

(67)



State

p =p (P,h,o)

where points 1 and 2 are respectively upstream and downstream of the shock.
Combining and rewriting Equation (63) and Equation (64) in terms of the angles

a and B and velocity, expréssed by q, ¢ and {, one obtains

-~

Continuity and n Momentum
LT "
Py Uy (uI - uz) =P, - P

where

U = qltanysing +cosasin(f-¢)]

rt

Momentum

q-i COS(B"‘I"I) = q2 COS(B-¢2)

©

Momentum

qi(-sinmsin(ﬁ-¢1) + cosa tan¢1) = qz(—sinasin(B-¢2) + coso tanwz)

Energy

2 _
HZ = h2 + 3 (qzlcoswz) = constant

State

Py = p(Pz. ha» )

Referring to Figure (22), iliustrating the local finite-difference network

in the line source system, shock point C is calculated as follows:

{1) In each reference plane J, point € is located by the relation

h dx3
e ('a—x-;) = tanBi
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FIGURE 22. TYPICAL SHOCK WAVE CALCULATION
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(2)

(3)

Y

(5)

{8)

(7)

where B; is the shock angle in the reference plane at the preceding
step., Having located\ggjnts Xq in adjacent reference planes J - 1

and J + 1, the cross cut éﬁéﬁé'ca‘ is calculated by the relation

(x “x, )
3 3
L ST €J-1
tanmc = h, 2 Ax
2 2

for reference planes equally spaced at intervais of sz.
Properties at 01 are evaluated by a standard reference plane char-
acteristic procedure. MNote that the position of C remains invariant
ir this calculation procedure and thus properties may be evaluated
at both the predictor and corrector level. Points A1 and B1 (Figure
22} are the intersections of the reference plane characteristics
passing through C1 with the initial data surface.

A value of the shock angie in the reference plane, Bc, is assumed,
yielding @, via Equation (61).

The Rankine-Hugoniot relations (Equations 69 - 73) yield properties
q, ¢, ¢, Pand p at Cz.
The compatibility relation applied along the uprunning characteristic
Azcz with ¢ = ¢52 and coefficients averaged yields an alternate value

of pressure B .
€2

The angle B is perturbed and steps (3) and (5) are repeated until the

pressures Pc2

Linear error extrapolations are employed to speed convergence.

Having converged in each reference plane J, the foilewing global
Iterative procedure may be employed although the additional ac-

curacy provided by these additional steps has not been ascertained.

ORIGINAL PAGE 16
OE POOR QUALITY

and Bcz are in agreement to within a specified tolerance.

(75)




(2) Evaluate cross derivatives 3/3x2 at hoints C, and incorporate

2
their values into the forcing function terms of the compatibility

~ relations along AZCZ' Although coefficients were averaged in
this relation, forcing function terms were evaluated based on

cross derivative values at Az.

(b} Relocate the points X3 replacing tanB, of Equation (74) with
%[tansi + taﬂBc], in Sach reference plaﬁe J. Then, the cross

cut angles o” must also be reevaluated via Equation (75).

{c) Repeat steps (2} through {6) in each reference plane J with
the initial estimate of Bc heing the converged value from the

first global iteration.
fontact Point

The contact pofnt calculational procedure is substantially more complex
than its two-~dimensional counterpart since the streamlines passing through a
point on either side of the contact discontinuity not only differ in the values
of composition and stagnation properties, but also may be highly skewed with
respect to each other. Thus, as for a solid boundary, the angle made by the
cut of the contact surface with the reference plane differs from the stream-
line projection onto the reference plane. Referring to Figure (23) illustrating
the local surface geometry, the streamline passing through point C on the upper
side (side 2) of the contact surfice is the line D: C, while that through the
lower side (side 1) is the line D; Ci. The angle 8 is the angle made by the
contact surface intersection with the reference plane Xy = constant while a”
is the cross cut angle. Geometric relations are those presented above. A
local iterative procedure in each reference plane, analogous to that for the

shock point calculation is performed to satisfy the boundary conditions:

(Ven) = (fen)_ =0 (76a)
C.l ncz

P =P (76b)
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The computational procedure may be summarized as follows:

(1)

(2)

(3)

(%)

(5)

F.

viscid interaction between the nozzle exhaust flow and external stream is dis-
cretely analyzed establishing the initial geometry of the contact surface
separating these streams. For underexpanded flows, this {nteraction results

in an expansion fan propagating towards the vehicle undersurface and a plume
generated bow shock as schematized in Figure (24). The calculation of this
interaction is simplified by recognizing that the flow phenomena is locally
two-dimensional in planes normal to the cowl trailing edge. Figure (25) de-
picts the coordinate system associated with this local normal plane. By
transforming data to this coordinate system, standard two-dimensional procedures

are employed in determining the contact angle B which yields a' pressure balance .

Points x3 are located in each reference plane J via Equation (74)

while cross cut angles a” are obtained via Equation (75). 3]

A value of B is assumed yielding o via Equation (671) and an ex-
pression of the boundary condition Ven = 0 (Equation 76a) in the
form ' .

sin{B_ - ¢ ) + tano_tany
c ¢y .2 c €12

It
(=

(77} .

T Ly S P I S ¥

The standard solid surface calculational procedure {Section I1}C)
in conjunction with Equation (77) yields values of P, ¢ and ¥ at points

<, and Cy for the assumed value of Bc' ;j

The angle B, is perturbed and steps (2) and (3) are repeated until
the pressures Pc1 and PC2 agree to within a specified tolerance.
Linear error extrapolations are again employed to speed convergence.

Upon convergence in each reference plane J, the global iterative
procedure employed for the shock may be employed with cross deriva-
tives 3/3x2 now evaluated along grid points <4 and Cye

Cowl Lip Exhaust/External Flow Interaction - At the cowl 1lip, the in-

P P PR
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.between the exhaust flow and external stream.

+

For a non-swept cowl trailing edge, the local unit vectors are obtained

via the transformation

.

>
?

n ix sing -cosfsina cosfcosa
1
[} A i A = 0 . cosa sing
X
2 ,
”~ Lad - - -
t ix cosB -sinBsina sinfRcosa
: 3

where, referring to Figure (26), % is the unit vector tangent to the cow!
trailing edge and n is normal to the discontinuity surface at the trailing
edge. The angle o is the cross cut angle made by the cowl trailing edge with

the Xy coordinate direction, while B is an angle made by the cut of the dis-

continuity surface with the reference plane x, = constant. Tha angie E is the -

. 2
cut of this discontinuity surface with the local normal plane and is related

to ¢ and B by the expression

tanE = cosctanf

o,

The iterative process is initiate

a by transforming the velocity components
n

to cowl oriented coordinates where is identified as the unit normal to the
inner cowl surface at the trailing edge.* The initial velocity of the exhaust
flow in this system is expressed by

- ~

n, n " n~
V = un + vi + wt

Y] u u . . .
where the components u, v and w are obtained via the transformation

*For a cowl surface specified by the relation z = f(x,y), B is given by
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]
h=3

The Mach number projection onto the local normal plane, used to initiate
the Prandtl-Meyer integration, is expressed by
2

He = (%% 5+ w2y/a

2

Then, the interface angle B is incremented in smali steps of AE, where foreachsitep

I the following procedure is followed:

(1) The pressure on the interface is determined via the relatfon

M2 -
n Pi = &n Pi-1 -l T — A8 (B1)
_ meer J. .
i,i-1

where Ei = éi.+ (i-1) AB and subsequent projected Mach numbers are

obtained by a standard isentropic relation.

(2} The pressure jump across the bow shock wave is determined in cor~
respondence with the change in flow deflection angle in the local

normal plane as expressed by
= cos (nw e n) (82)

where nw is the unit normal to the outer cowl surface while nc is the

_normal to the contact suriace as expressed by Equation (78) with

B = B,

(3) The shock angle Es is determined via the relation (for a perfect gas)

_ (y+1) ?ii (83)
cotd = tanp -1 3
sh s Z(Misinzss-l) )
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where Né is the external stream Mach number projected onto the lccal

normal reference plane as given by

W= @2+ 02 /a2 (84) |

where the velocity components EE and ﬁE are obtained via the transfor-
mation of Equation (B0O) identifying B in matrix A with expressions of

the normal to the outer cow! surface.

(k) The pressure on the external side of the interface associated with

- 4
the change in flow deflection angle Gsh and shock angle BS is given by A

ZTHE:sinZES - (y-1) %
F’Si = PE + Ty 1) (85) ..

(5) The process is repeated until Po <Py then properties are obtained

by linearly interpolating betweeh values at the last two iterations.

(6) Resultant velocities in the local normal system are transformed back

to standard reference plane components via the inverse transformation

N
u u

v = If\-1 v 1

Y 1

w w §

‘ )

G. External Corner - End Moduie Calculational Procedures ~ For an end 1

module, the local exhaust/external élow interaction processes at the trailing

edge occur in mutally perpendicular%p!anes. To best accommodate the plume

flowfield: calculations in this vici%ity, a combination of reference plane

systems is employed. For the rectanﬁular end module schematized in Figure (27),
vertical reference planes (y=constant) are employed in the central region while
horizontal reference planes (z=constant) are used in the vicinity of the module
sidewall. A cylindrical "wraparound" reference plane system is employed in the

region of the corner to provide for the transition between these two systems. ]
implementation of this hybrid grid system provides reference plane alignment ' |
essentially perpendicular to predominant wave and discontinuity surfaces 3s waell

as to the vehicle undersurface.
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The details of the interaction process in the corner region are deplcted
in Figure (28). For the simple corner comprised of the intersection of the
surfaces z = constant (cowl) and y = constant (sidewall) with uniform interral
and external Tlowfields, the following two-dimensional regions may be identi-
fied, for an underexpanded exhaust:

(1) A cowl interaction region resulting in an interface deflection angle

61, a bow shock angle 2 and uniform pressure PZD (cowl) extending
from the bow {external) shock to the terminating ray of the Prandti-

Meyer expansion fan emanating from the cowl.

(2) A sidewall interaction region having corresponding interface an

shock angles 62 and Ty respectively and region of uniform pressure
Pap (sW).

Both these two-dimensinal regions occur outside the domain encompassed
by the Mach cone enamating .from the juncture of the cowl and sidewalls at
the trailing edge. The region outside the intersection of the two Prandtl-

Meyer fans emanating from the cowl and sidewalls remains undisturbed while the

region within the intersection of these expansion fans is highly three-dimensional.

NMumerical solutions for internal and external corners have been performed ex-
ploiting the conical invariance of such flowfields (Reference 16). A compari-
son of such internal corner solutions with those obtained by BIGMAC and CHAR3D,
employing standard boundary calculational procedures, have been demonstrated in
Reference {12) and are described in more detail in the next section. Similar
comparisons for the substantially more complex underexpanded exhaust/external
flow interaction problem pend the availability of solutions by techniques ex-

ploiting the ocnical invariance of this flowfield.

Details of the localized grid network in the corner region, for a quiescent
external stream, are provided in Figure (29). Each of the three reference
plane systems are discreteiy analyzed employing overlap planes at the boundaries
of each system to provide a mechanism for the evaluation of cross derivatives.
The grid point located at the origin of the cylindrical wraparound network is
calculated in both the vertical and horizontal reference plane systems and the

results, averaged. Evaluation of the allowable marching step via the CFL sta-
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bility criterion does not consider transversal spacing in the cylindrical

system, since this would be overly restrictive in the proximity of the origin.

Rather, the numerical domain utilized for the evaluation of such cross deriva-

tives is '"extended" to encompass grid points outside the intersection of the

' ‘

S T P T Oy Pt Y. B

Mach four cone from the grid point being calculated with the initial data

plane, thus ensuring stability.

Rather |imited expefienca in performing such corner calculations has
failed to lead to an optimized approach for grid corientation in this region.
However, the location of the origin of the cylindrical "‘wraparound'' reference
plane system cannot be fixed apriori in a generalized manner catered to a
wlde class of exhaust/external flow conditions. Rather, the origin must be a

""floating' one, which adjusts to the Tocal growth rate of the plume interface

bhoth vertically and horizontally such as to best approximate the local radius
of curvature in the ''wraparound' region. The logic to perform the above has
neen developed for Program BIGMAC, which of course includes a complete revision

of the local corner grid network everytime the origin is revised.

H. Multiple Module Interactions ~ The numerical models developed analyze

__,. }.
T ST ST T T T TP T

the plume interactions associated with exhausts emanating from multiple nozzles

separated by common walls, as illustrated in Figure (1). The internal! (nhozzie)
flowfield calculations are performed for each individual module and the re-
sultant exit plane data stored on local files are combined to generate a complete

exit plane map of the exhaust flowfield.

The resultant exit plane properties may differ in pressure and stagnation
properties from module to module and, a discontinuity in cross flow angle may
exist, produced by the finite trailing edge wedge angle in the common walls
separating the individual modules. Thus, in addition to the primary interac-
tion between the exhaust flow and external stream {(as depicted in Figure 24) a

module to moduie interaction process occurs at the trailing sdge of the walls

separating adjacent modules, resulting in a wave system propagating predominantly
in the spanwise direction. This process is schematized in Figure (30} wherein
the wedge induced cross flow shocks interaction with the downrunning Prandti- -

Meyer expansion fan and plume induced bow shock in the domain included within
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the Mach cone emanating from the juncture of the wedge and cowl trailing
edges.

-

Preliminary results from calculations made in these regions indicate the
requirement for maintaining proper grid control and calculating these local-
Tzed flowfields initially employing a highly refined grid network. In parti-
cular, the calculation of these complex interaction regions requires a finite
number of integration steps to converge to the conically invariant solution
whose boundary conditions are those associated with the flowfield in the immed-
iate vicinity of the wedge/cow!l trailing edge juncture. In corporating the
calculation of such regions into the numerical codes on a grid scale commensur-
ate with the overall flow domain may result in numerical difficulties attributed
to the influx of waves (resulting from nonuniform flowfield properties at the
module exit planes) into these regions before convergence has been achieved.
Since the convergence process should take place on a length scale which is
small in comparison to global inviscid length scales (i.e., module dimensions),
the calculation of such interaction regimes seems most readily performed via
the performance of a separate, localized calculation. The locally converged
results can then be incorporated into the overall grid network as initial
conditions made in the same manner that a Prandtl-Meyer expansion solution

would be incorporated into a two-dimensional grid network.
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1V. SAMPLE CALCULATIONS

A systematic proceduré has been followed in assessing the capabilities
and limitations of programs BIGMAC and CHAR3D. First, the ability of these
co&es to capfure shock waves and trace their propagation in the reference
pianes has been evaluated via the performance of a series of two-dimensional
calculations in convergent and divergent ducts. Three-dimensional capabilities
were then evaluated via the performance of a series of corner calculations for
which experimental results and/or conically invariant solutions were available
for comparison. The favorable results obtained in these calculations supported

useage of these codes in generalized three-dimensional situations.

Results have been obtained with BIGMAC for the flowfield in a rectangular
nozzle, demonstrating its ability to caleulate the interactions associated with
shocks emanating from mutually perpendicular surfaces. Applications to multiple
module exhaust flows have indicated the requirement for 1) a refined network
in the vicinity of the intersection of the intermodule walls and cowl trailing
edge and 2) a floating origin for the wraparound region associated with the end
module exhaust flow. A'déscripton of the calculations performed is provided

below.

A. Single Wedge Inlet ~ Calculations were performed for a 10° wedge intet

having the following uniform entrance conditions:

M, = 2.94

P, = BA45.5

Tl = 2328°K

vy = 1.4 = const

(A11 pressures are nondimensionalized with reipect to 47.88 N/m2.)

Results obtained for the upper and lower wall pressure distributions with CHAR3D
are displayed in Figure (31) for 11 and 21 noint grid networks. In performing
these calculations, the grid point on the wedge surface was initialized by con-
ditions behind the wedge shock. Hence, the results were shifted slightly to

reflect the uncertainty in shock location between the first and second grid
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points. The agreerent with the exact solution is quite satisfactory. Shock
‘locatlions are accurately predicted with a sgread over 3 to 5 axial stations

at the reflection points and hé overshoots are encountered at the shock waves.
The results obtained with the 21 point grid provide a somewhat sharper defini-
tion of the shock jumps although the 11 point grid is felt to be adequate.

Results obtained witﬁ BIGMAC utilizing a 21 point grid are depicted in
Figure (32). The three sets of results depicted were obtained employing the
predictor/connector algorithm in variant modes. With IFLIP=1, predictive de-
rivatives are made with forward differences while connector derivatives are
made with backward differences; with IFLIP= 0 the opposite procedure is fol-
towed; while with the FLIP~FLOP procedure the sequence is alternated at suc-
cessive intergration steps (i.e., IF.IP=1 at odd steps and IFLIP=0 at even
steps).

Clear benefits accrue from implementation of the FLIP-FLOP procedure in
terms of accurately locating the shock reflection points. The overall
accuracy (with the FLIP-FLOP option) is quite comparable to that of CHAR3D.
Shock waves appear more sharply defined by BIGMAC although overshoots are en-
countered at the reflection points. These overshoots are of minimal axial

duration and should have a2 negligible effect on forces and moments.

Subsequent studies, outside of the scope of this effort (i.e, Reference
17, Supersonic Compressor Studies) have indicated that such overshoots are
partially attributable to the convergence of streamlines in the reference
planes, in regions of large compressions. This convergence also feads to a
rather restrictive forward marching step with grid points outside this com=-
pressed region baing advanced with local Courant numbers substantially less
than one. This is reflected in numerically diffusive effects whose buildup
can bgcomé rathe substantial in ducted convergent flows. Elimination of this
behavior has been affected by incorporating grid controls in the reference
planes; in particular, it was found tkat grid points in the reference planes
should be dropped when they restrict the allowable marching step in comparison
to the average allowable step by more than about sixty percent. Implementa-

tion of this criterion has substantially improved the performance of these
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codes although the results presented herein were performed without this modiflca~-
+*ion. ' e . .

B. Double YWedge Inlet - Calculations with CHAR3D were performed for the
double wedge inlet depicted in Figure (33), having the same uniform entrance
conditions as the single wedge inlet case just described. Pressure profiles at
x = .84, 1,16 and 2.14 are depicted In Figures (34), (35) and (36}, respectively,
for both 21 and 41 point grids. The entropy distribution at x = .64 with a 21
point grid is depicted in Figure (37). These calculations further demonstrate
the predictive capabilities of CHAR3D for a complex two-dimensional situation

invoelving multiple wall and shock interactions.
C. Two-Dimensional Corivergent Duct - Calculations were performed for the
duct geometry depcited in Figure (38) and tabulated below, for the same entrance

conditions as in the previous calculations.

+ Lower Surface:

0 < x < .5; z=0 )
.5 <x<1.5 z=.1(x-.5)%2
1.5 <x<2.0; z= .1+.2(x-1.5)

2.0 < x < 3.0; z = .2+.2(x-2) - .1(x-2.)2
3.0 < x < 2; z = .3

Upper Surface:

x < 0, z=1.0

Results obtained with program BIGMAC employing an !1 point grid are depicted in
Figures (38) to (41). Results are compared with those of program SEAGULL* employ-

ing a 21 point grid and thought to accurately represent the exact solution.

The calculated shock propagation pattern is depicted in Figure (38) for
five wall reflections. The upper and lower wall pressure distributions are

shown in Figures (39) and (40) respectively, while the upper and lower wall

%Discrete shock code developed by M. Salas at NASA Langley for two-dimensional
and axisymmetric internal flows (Reference 18).
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_entropy variations are depicted in Figures (41A) and (41B). These results
demonstrate ability of program BIGMAC to numerically ''capture’ a shock formed
via the enveloping of compression waves and carry it with minimal diffusion
over multiple wall reflections. The favorable comparisons obtained with this

relatively coarse 11 point grid are quite promising.

Upper and lower wall pressure distributions as obtained with CHAR3D empioy-
ing an 11 point ygrid are depicted in Figures {42) and (43). These comparison
indicate that BIBMAC and CHAR3D provide results of comparable accuracy for tha
same grid definition. it is felt that the diffusive behavior exhibited after
L or 5 wall reflections would be largely eliminated by the grid control tech~

nique previously described.

D. Two-Dimensional Divergent Duct - <Calculations with BIGMAC were per-
formed for the nozzle geometry depicted in Figure (44). The results are again
compared with those of SEAGULL. The solid lines in Figure (44) depict the
polynomial approximation of the nozzle surfaces utilized in the SEAGULL calcula-
tion, while the discreFe points are those obtained with the spiine fit geo-
metry package described in Appendix i1 and employed in the BIiGHMAC calculation.
It is noted that a rather poar fit for the upper wall contour was obtained in
the vicinity of x = 7 with the spline fit approximation, which might have been
avoided by utilizing more contour data points in generating the spline fits in

this region of rapidly changing curvature (see Reference 11).

Initial conditions for this calculation were again the same as in previous
cases. Resultant wall pressure distributions obtained with BIGMAC are compared
with those of SEAGULL for the lower and upper nozzle walls in Figures (&5) and
(46) respectively. The poor geometric fit for the upper wall in the vicinity
of x = 7 is clearly reflected in the oscillation depicted in Figure (46) in
this area. The deviations in upper wall pressures downstream of x = 12 are
not readily accounted for although the spurious waves emanating from the upper
wall around x = 7 may have a dispersing effect on the expansion waves emana-
ting from the lower surface, contributing to this beha ior. Radial pressure

profiles are compared at the axial locations x ~ 2.3, x v 5.1, x ~ 9 and

®x ~ 13.5 in Figures (47A,8,C and D) respectively, indicating favorable agreement.
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€. Internal Cormper Calcualtions - Carper flowfields associated with

Interacting waves formed from mutually perpendicular surfaces represent ideal

cazas with which to test the developed codes. Experimental data and calcula-

tions exploiting the conical invariance of the reported cases is avallable for

comparison. In all cases reported, flow at the initial station was uniform

and‘the interaction flowfield was generated by an abrupt change inwall angie

at the initial station for two mutuaily perpendicular surfaces.

Results for a 5° double expansion corner are deﬁicted in Figures (48) and
{b9). These results were obtained with CHAR3D starting from the conditions
P, = 945.5 and M, = 2.94 for an 11 x 11 grid in cartesian coordinates. Re-

suits are depicted after nine axial marching steps as required to establish a

converged solution. This is indicated by the axial variation or corner pressure

which originally overexpands and then recompresses to the converged value.

The finlte convergence length required to achieve invariance has important
impiications in the generalized application of corner boundary procedures in
reglons of discontinuity. In particular, one must achieve convergence in a
distance which is small cbmpared to the overall inviscid length scale of the
problem - this sets the grid network size for the localized corner calculation.

in addition, one must isolate the computation of this region so that extraneous

waves doe not interfere with the convergence process.

Results for an expansion-compression corner generated by an abrupt 5° ex-
nansion and 74° compression of a uniform Mach 2 flow are depicted in Figure
An 11 x 1% cartesian grid was employed and the

(50) as caiculated by BIGHAC.
These results )

converged resuits are depicted after 10 axial marching steps.
are compared with the detailed conically invariant numerical solution of Shankar

(Reference 19) and the experimental results of Nangia (Reference 20).

Results for a 12.2° double compression corner are presented in Figure (51)

as calculated with BIGMAC. A line source reference plane network was employed

in this caleculation in view of the larger turning angles than in the previous

two corner flows. The initial flow was at a Mach number of 3.17. Converged

results are depicted after 35 axial marching steps indicating an increase in
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-convergence length with the severity of the discontinuity as would generally

be expected. Comparisons are made with the humerical solution of Shankar

(Reference 19) and the experimental results of Charwat and Redekeopp {Refer-
ence 21).

F. Square Nozzle - The three~dimensional flowfield within the square “j
nozzle depicted in Figure (52) has been calculated by BIGMAC. This flowfield
is characterized by the initial interactions of expansion waves emanating from

mutually perpendicular surfzces «nd the subsequent interaction of enveloping }ﬁ

shock systems generated by reccmpression on the upper wall and sidewall. The -
initial Mach number was 2.9% and the initial nondimensional pressure was 845.5. A e

perfect gas calculation with v = 1.4 was pérformed. The calculation employed
21 grid points in each reference plane with 11 reference planes initially
(reference plane number 1 was the plane of symmetry). A cartesian network
was utilized and additional reference planes were inserted as the module side-
wail opened. At the straight section, the network contained 18 reference
planes. Pressure contours on the symmetry plane y = 0 are depicted in Figure

(53). 1t is of interest fo note that the contours on the symmetry plane z = 0

are virtually identical to those of Figure (53) thus providing a check on the

overall symmetry of the combutational system. Similar checks with CHAR3D have
- not provided the required symmetry in cases where strong wave systems were i

propagating normal to the reference planes, Of particular interest in Figure ;

(53) is the intersection of four three-dimensional shock surfaces at x = 17 and

and y = z = 0. This results from the reflection of the envelope shock produced S
by the sidewall and the reflection of the envelope shock produced by the upper

wall, resulting in an approximate 15/1 pressure ratio at this location. The
axial pressure variation along the corner is depicted in Figure (54) while pres- ?
sure variations along several streamlines in the symmetry plane are depicted in "
Figure (55). | ]

G. Single Module Nozzle-Exhaust Flowfield - The internal nozzle and ex-
haust plume flowfield associated with the single module depicted in Figure (56)

has been calculated by BIGMAC. The gas mixture was assumed to be perfect and fﬁ

- the calculation was initiated by the following urs: form conditions at the com- 11

bustor exit:
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Tiw externa] flow was quiescent with y_= 1.4,

et v m— o ——n ———— A— et ey ST

The internal flowfield was two-dimensional and calculated employing an 11

polnt grid up to the cowl exit station (x = 2,98). Note that x is measured
along the veéhicle undersurface and y normal to it. The resultant flowfield at
the cowl exit station is underexpanded along the cowl trailing edge and mixed
{partially overexpanded and partially underexpanded) along the end wall traii-
ing edge. The reference plane networks employed are sketched in Figure {57).
Fifteen vertical reference planes, fifteen cylindrical reference planes in the
corner wiaparound system and four horizontal refefence planes are employed in
this caleulation. Resultant interface locations are depicted in Figure (58).
The last marching station calculated was at x/Ht = 6.43. The requirement for
relocating the cylindrical origin {floating origin option) is clearly necessary
to continue the calculations beyond this point. All cases with some degree of
overexpansion will require this modificiation to account for the nonuniform °
coliapse .in plane size. The growth of the plume interface in the plane ylHt-B
is depicted in Figure (59), while isobsrs at the stations let=3.0k, 3.75, k.99
and 6.43 are depicted in Figures (60) - (63) respectively.

" H. Double Module Nozzle-Exhaust Flowfield - For this case, the side
view is the same as that depicted in Figure (56}, while the top view is iliu-
strated In Figure (64). Initial conditions at the combustor exit are the same
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as for the single module case except for the pressure ratio PE/PG)
which is now 10.5.__Resultant plume shapes are de-_

picted in Figure {65). While the ability to calculate such complex flowfields
is demonstrated, the results indicate the raquirement for major ‘modifications

~ in grid control procedures.

+ It should be noted that this flowfield was calculated on a one-shot basis.
Program BIGHAC calculated the internal fiowfields for each of these modules
employlng a iine source reference plane system up to the cowi tralling edge
station (xfzt = 3.7) and automatically interpolated the exit pilane results
for the two modules in a Carteslan framework and proceeded with the caleula-
tion of the exhaust plume flowfield. The initial angle of the contact sur-
face separating the exhaust flow from the quiescent stream Is explicitly
caleutated as described in Section 1l1IF. The intermediate interaction prc?
cezs is also explicitly calculated. The locally two-dimensionail interaction
pressure and flow deflection are computed on either side of the module
Juncture. In“addition, at the module juncture-cowl intersection solution

" computed above. Thus, in this test case the cowl plume at the module junc-

ture experiences a diminished level of overexpansion and possibly a slight
underexpansion as a result.of the modulé interaction. At present, in ileu
of an exact conical solution, at the cowl module juncture, the procedure
dascribed above appears acceptable. However, detailed asymptotical conlcal
soiutions for this problem should be obtained.

An Interesting comparison is made in Figure (66) employing a2 discrete
floating shock fechnique as reported in Reference {22}. The calculations are
for the impingement region of two initially uniform rectangular jets ex-
panding to background conditions. The comparison, which Is meant to be
qualitative , shows strikingly similar plume shapes, including the plume
kink and sharp peak. The results of Reference (22}, while preliminary, do
lend credibility to the intermodule interaction flowfield as computed herein.

' Pressure contnurs at the cowl trailing edge station {xIZt = 3,7} as well

as the axial staticns xizt = 4,77, 6.14 and 9.99 are presented in Figures
(67} - {70}, respactively.
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V. CONCLUDING REMARKS

Programs BIGHAC.aﬁd.ﬁQAREd have been developed to provide predictive
computational tcols for the analysis of supersonic three-dimensicnal nozzle-
exhaust Flowflelids. Preliminary applications of these codes to a variety of
two and three-dimensionail situations indicates that the performance level is
quite satisfactary for this purpose. Both codes have demonstrated the ability
to capture shock waves in the reference plane and to predict the shocks propa-
gation pattern even after muitiple wall and shock interactions. Program BIGMAC
has demonstrated this ability in complex three-dimensional situations whereln '

" the interaction of shock waves from mutually perpendicular boundaries has been

calculated.

A comparlson of these twc codes indicates that BIGMAC provides non-
preferential treatment of general three-dimensional flows while CHAR3D is
better catered to flows with wave systems propagating predominantly In the ref-
erence planes.” Difficulties have been encountered with CHAR3D in attempts to
analyze flows with strong shock systems travelling normal to the reference
planes. This is attributable to the basic reference plane characteristic ap-
proach wherein cross flow derivatives are treated as forcing functions in the
integration step. |If these forcing function terms are large and changing
rapidly along the stréamlines {as is the case for cross flow shacks), the
approach tends to breakdown. For such flows, BIGMAC is clearly the prefer-
able code :

The effectiveness of these codes is largely attributed to the treatment
of the boundaries. All boundary points are analyzed by a characteristic pro-
cedure In reference planes which attempts to include the local boundary normal.
For corner flows, a redundant approach employing two perpendicular sets of

reference planes has proven quite effective.

Initial attempts at analyzing the flowfields downstream of the cowl exit
plane has led to the requirement for several modi flcations to the current
approach. In particular, complex conical interactions occur at the juncture
of mutually perpendicular trailing edges. It is suggested that these Jocalized

g
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. Interaction flowfields be irdividually solwed by sebroutimess bwllt imto

these codes. The coaverged solutions may them be lncorporassd kato the ower-
all numerical grid system, thus elimimating the requivement for an owerly
raeflned grid network in these interaction regions. In addition, a “osting®
eylindrical origin appears necessary for the wraparound network im the vwicin-
ity of the end module exhaust, and additional! grid control techmiques are
required In the region downstream of the intermudule wedge trailimg edites.

The success obtained In the prelliminery calculaéloﬁs pe%fowmad %o date
clear!y.supports useage of these codes in future studies. The models developad
are by no means limited to the calculation of moazle-exhsust flows. Program
SUPFAK (Reference 17) is a revised edition of Program stﬂktlwh!ch caleulates
the three-dimensiorsl flowfield equations in a supersonic fan stage., Skmilar
modificatlions can extend the'appiicability of these models to more gemaralized
three-dimensional situations.
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APPENDIX A
‘CURVE FITS FORT', h and o

The variafion of T {the equilibrium value of v} as a function of temperas-
ture (T), pressure (P) and equivalence ratio (%) Is presented graphically in
Figuras (Al, A2, & A3), from values tabulated in Reference {h). In Figure (At)
1t can be seen that T is a strong function of T over the temperature range of

Interest, while the effect of varying composition is small by comparison. More-

over, Figure {AT) indicates that T is moderately sensitive to pressure and the
degree of sensitivity Increases substantially as the temperature level increases

and dissociation effects become important.

As a result of these observations, temperature is the primary independent
variable, while pressure is the secondary independent variable and composition
acts as a perturbatidn variabie. Thus, we can fit the function T (T,P,2) with a
polynomiail in T and add on a temperature dependent correction term for the ef-
fect of pressure and a temperature independent correction tern for the effect
of &.

An examination of Figuée (K1) suggest that the function T (T} can best be
curve fit by breaking up the temperature range into three intervals such that
the function can be represented by a paraboia in each range. Choosing p = 105
pascal and ¢ = 1 as our base we, therefore, find three fuhctioﬂs

r1(1,1o5,1) = = 1.833x.077 T2 + 7.5x107° T + 1,367

h

1,(7,10°,1) = 2.0x1070 T2 - 1.38x107" T + 1.423 : ‘
rg(T,10%,1) = 7.27x107% 12 - b.57x107% T + 1.8
and define the basic temperature function as
BENCRTIRY T < 500°K
T(1,10°,1) = (r,(r,10°,1)} for {500 < T < 2000%
|rgtmaet,n T > 2000%
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Figure (A”Si indicates that 2 35 |s constant in the two ranges & < 1 and ¢ > 1,
but s a function of T, Fu;ting the functuon-i— in each of the ranges of ¢

- ad
we obtalin

. . " fag RERE N

| Tadl | fr | ~ - (5)

‘= n,(T) | - e3> 1

: vhere _ ' :
ny(T) = 5x1072 12 - 2x10™ T - 0.019 R | ' (6) l
n, (7) = 3.39x10°2 705 - 3.91x10™" T - 0.681 -

This now defines T as a function of both temperature and ¢ by means of the

equation

I‘(T,los,rb) = T(7,10°,1) + (& - 1) % _ €:))

—————

.

Finally, the effect of pressure must be included. From Figure (18) we observe

that T may be approximated.as

r(T,p,8) = I(7,10%,6) + m [log,,(px10°) - 5] ®»

where m is a function of T. Deriving m, we find

0 T < 1000°K o
m= . for {10) X
-8 .2 -k o
-2.15x107° T + 0.91x10"° T - 0.0695 .1 T > 1000°K
_ Summarizing, the final function obtained is
- r(T,p,0) = r{T,10°,1) + m(&u 5) + 2L (@ - 1) (11)

where the functions r(T, 105 1), and m are given by Equations (&), (5) and
(10) respectively.

T v
O L

The curve fit for enthalpy is derived in a similar way. Figures (Ab) & {A5) -
present the variatfon of h with temperature, pressure and equivalence ratio. As
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' was the case for T, the function h(T,d,p)} s fit by a quadratic function of T,
the coefficients of which are functions of ¢'and an additive terms for the ef-
fects of pressure. The resulting curve fit is summarized below.

1 (T,4,10°) T < 2000% .
h{T,4,p) = for _ (12)
h(T,,p) . T > 2000°K
| \ : :
where W{T,d,p) = h(T,¢,!05) T+
. 2‘ . {13)
{1+ ¢) (T - 2000) n 2 2,
[ 5500 .125 (z% - 5)° -~ .275 ('i':-g' - 5)
i
The basic function h(T,¢,105) is defined as ) i
K ) .
h(1,0,10%) = 10%(2,72 + b,T + ¢,) | gy 7
with the coeffiuieﬁég ays b] and < defined below:
for T < 2000%K and ¢ < 1
-7 2
a; = 10 “{-.1042¢" + .82424 + .987)
-3 2 '
by ® 10 °(.01167%° + .1503¢ + .938) . {15)
¢, = -.0284° + 67319 + .4293
for T < 2000%K and ¢ > 1 .
-7 2
aq = 107/(1.7876° - 5.48¢ + 5.4)
by = 107 3{-.18674°
i™ L1867%° + 1,119 + ,176) | {16)

e, = -.0933¢% + 3.975¢ - 2.808
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i
k
9
!
it
°© v | i |
© for T > 2000°K and ¢ < 1 -
¥
. -6 ,. X . e |
ay » 10 (1.792¢" + .3983¢ + .310) - ;
] - i
by = 1073(-3.05 - .07917¢ + .245) on |
i
¢, = 10.860° - .1183p + .970 H
for T > 2000°K and ¢ > i g - i
-6 2
a, = 107 (k816" ~ 13.9 + 11.59)
-3 .2 ;
by = 10 (-23.08p° + 66.82¢p - 52.61) , (18} j
. 3
! ¢y = 27.05¢" - 73.73¢ + 58.39
When the Inverse function T(h,d,p) is required, it is obtained by an iterative
solution of Equations (12} through (18).
The density is found by obtaining a curve fit for the mixture molecular
welight and using the equation of state
o = B0 (19} |
RT :
where R is the universal gas constant and m is the molecular weight. !
. ' %-r:
The Lehavior of m with T, p and ¢ is illustrated in Figures.(A6) & (A7). -
We see that for temperatures less than 2000°K, m is essentially independent of !
- temperature. The discontinuity in slope of m(¢) shown in Figure (A7) requires
that the éﬁuiva]ence ratio range be split in two. Thus, ;
for T < 2000°K
|
1.53¢2 - 5.895¢ + 28.955 st
: m(p) = for _ (20)5,
e 1.606% - 10.65 + 33.6 $ > 1 '
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For the higher temperature range, it is convenient to employ the Form

where

' ahd

for

and, for

130

n = m(e) - 8(p.6,T)

W e

. n, (%)
5= dylp,0) (e

2n p .5 L p
dy = 2, {557+ b, (337 + e

a, = -2.3¢% + h.01¢ + 1,736
2
b, = B.616% - 15.42¢ - 6.66
¢, = -16.88¢% + 33.21¢ + 14.58

437562 + .0625¢ + 2.08

-
1

= -.8226% + 2.3634 + 1.905

2.766% - 7.560 - 8.68

o
U

1<¢<2
3.6@2 + 7.36p + 27.15

2]
H

4762 + 1.825¢ + .350

=]
[}

T R R MR W e+ et
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APPENDIX B

THREE DIMENSIOMAL SURFACE REPRESENTATION AND INTERPOLATION PROCEDURES

Consider the three-dimensional continuously differentiable surface
z = f(x,y) depicted in Figure (B1}, prescribed by contour data in the form
(yj,zj)I at discrete valuds of X;- Prescription of the data in this form

is generally obtainable for most aerodynamic bhodies and greatly simplifies

3 an WA g

the chore of numerically fitting the surface by reducing the probiem to 5
the determination of one-dimensional partial cubic splines in two coordinate E
directions.

Assume that there are J(i)} cortour data pairs (yj,zj)i, (1 <] <J(i))
at | contour stations Xy (1 < i < 1). The number of contour pairs used to
determine the surface and their relative spacing is arbitrary, as is the
spacing between contour stations. We seek to determine a surface fit

-z = F(x,y) that will yield accurate values of the unit surface normal

5 iz—(Fx)y b - (Fy)x-iy 1)

U+(r2 + (F )27

In addition to prescribing the discrete contour data, and conditions

must be specified at the bounding surface curves, A, B, C and D. AT bound-

aries A § B, one would generally stipulate:

3z ¢ . . e :
(5;; 5 3t ] 1 or J(i) for i = 1,2, . ! (2)5

or partial secend derivative ratios

(ﬁ_) (ﬁ_) (.a‘i_) (gi_) &)
5 Z % 5 2 % ' X -
AG) -1

3 2 % ay2
Y1, )=1 Yi,j=2 Yi,i (1) i
At boundaries C & D, one would generally stipulate: . "
y (%i—)y at i=1orl for j =1, 2, —=3(i) (5) b
131
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or partial second derivative ratios

29, (3,3, (%) 5)
‘ ¥ Y »
LTS % 2, ay i Y 01,5

¢t is advantagéous to map the surface onto one having rectangular
boundaries when projected onto a plane of constant z. This Is accomplished

by the transformation

b 4
- A(x) (6)

Then, In {x,n,z)} coordinates, the surface is bounded by n=o {p), n=1 (B),
x = Xy (c) and S (). The analysis may be extended to sweptback
surfaces as depicted in Figure (H2) whichare mapped onto rectangular boundaries

when projected onto a plane of constant Z by the transformation

X=X
- c(y)
X7 =X
p{y) "c(y)

(7)
_YYa(x)

Ya(x) YA (x)

i =2

Such a surface fit requires specification of contour data on sweptback
contours £ = constant as shown in Figure(az) {(or alternately on n = constant

if this proves more practicable as would be the case for the wing surface

of Figure {(B3).
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For simplicity, we will assume that Canour data is prescribed at
statlons X = constant and we are working In the x,n,z coordinate system
given by Equation (6). We require an ordered array of coefficients
(which will consist of partial second derivatives) to fit the surface
z = F(x,y}, analagous to the coefficients Mj of Section 1} used to fit
the curve y(x).

The numerical procedures entalled in obtaining these coefficients

are as follows:

(2) Wo require spline fits for the boundary curves A & B in the
form y&(x) and YB(x) using discrete data pairs (xify(l,l)) for A and
(x;,v(‘ J“)) for B and a stipulations of end conditlons. We obtain -
these fits employing the procedure outlined in Section !I, obtaining
coefficients MA and MB where

i i

Mo, = YAtk 2 M T Va(x)) | (8)

(b) Ye obtain fits of z{(n) at all contour stations x; for (i=1,2,===,1)
using the contour pairs (yi oo j). This is done as follows for a

? »
given station X,

(1) Obtain the contour pairs in the transformed system,
namely ("i,j' zi,j) employing the transformation given
by Equation (6).
(2) Transform the end conditons at A & B. If first derjvatives

were stipulated,then we would require (Bz/an)x which is

simply
9z 9z
(ﬁl,j " (3? i (VB(xi) - yA(xi)) ‘9.)
(i=1 or 1)
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1f a ratio of second dérivatives was stipulated at the end points,

this ratio remains unchanged In the transformed system.

(3) W¥e obtain the coefficients Mn. . employing the one~dimensional

' 'r.;
mathod of Section !I where

. "2 N : (32)

{c} Ye now wish to obtain values of the coefficients Mn on a new grid spac-
ing sush that the spacing in the variable is the same for every contour
(independéni of i) as shown in Figure(B4) although not necessarily evenly
spaced. Let U denote the specified n grid for k=1,2—K. Then, values

of the dependent variable z are obtained using the relation

- 3 - 3
— (“i,j “k,l() . {n,, “i,j—l)
L PR ZUN i 6an; |
An2 L5 Tk
(Zi j 1 - Mn . .sj) (—";‘L__)
? i,j-1 6 A“i,j
N =N (33)
oz g M An g,y (el
I’J-1 Ani’j
. d - ==
Mhere M jer f M M S0 AN T Ny T Mg
The coefficients M on the i,n grid are given by
N, . =N n=fe . '
" Y Lty e Ll (34)
MLk ML i-1 An, %S L P
ORIGINAL PAGE I
OF POOR QUALITY
136




\\ .
J
~
<
S/

L LA
S ) S LN \/ S
7 AN

<

/- /
é’:‘i——- - ai\” y . : © .
{ | /{/ // / \ / \L h:
775 |

FIGURE B4. ORDERLY GRID ARRAY . B

137



(d)
(k= 1,2 = ——,K) using the contour pairs (xi, zi k)
this: Is done as follows: :

{3} Transform the.end conditions at € and D.
were specified, then the derivative (zx)
: obtained emploving the relation:

He ncw obtaln fits of Z(x) along the lines n = constant for
For n, - constant

If firsf derivatives
a ts..required under which

sz, om0V 6 + MV (i3)
@ggéﬁ = ( ) + ( ) .
ik 1.k Tk Yo(x) - 'A(x)
oz . 9z
where Gg;-y Is specified at 1 = 1or | and (iﬁ'x is obtained from
the previous spline fit z(n) at x = const. using the relation
R v P D S
I F k™
n'x Tk @ An Yk Mkt O
ik ? k
vhere Ank ﬂk ™ Mg

1f a ratio of second derivatives was stipulated at the end points, it

Is assumed not to change in the transformation.

(2) ¥e obtain the coefficients M

Section tl where ok
2
: 3z
M = (=)
”i,k axz n
i'k

The techniques outlined for obtaining the coeffliclients My
ordered i,k array are readily extended to surface fits in
nates where it is desired to approximate the surface

r = G(x,8)
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% employing the methods outlined in’

(is)

and M
o,

cylindric%! coordi-

ocn an

(16)
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Assuming that contour data is given in cartesian coordinates as data paics ;L
s of the form (yj, zj)i at discrete statfons x, as depictad  in Figure (BS).
We or course assume that the axis of the cylindrical system Is paraliel to 3
> the x axls of the cartesian system (the axis of the cylindrical system Is 8
‘ given by y = y%*, x = 2%}, Then, the input contour data Is converted to
’ eylindrical ccordinates by the transformations
X ® X
Lo 2 k)21 ¥
| re {(y-y%)" + (2-2%)7) (17)
e = gan ((z=2%)/ (y=y*)) ’ i
Then, we parform the transformation
:
; X=X _ 5
- ; 1
(18) ;
n= o BA(x)?/(GB(x) Btk 3
. . © 3
N r r %
, -
L
i
:
:
:
N { 2
:
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EIGURE B5. SURFACE REPRESENTATION IN CYLINDRICAL COORDINATES
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Referring to F}gufé-(gf; the surface z = F{x,y) is numericaily repre-

s - — E

sented by the arrays zi,k’ M“i . Mxi,k’ Xis M for i 1,2 » 1 and |
k= 1,2, —=,K as well as the arrays YAI’ YBi, MA;’ MBi for 1 = 1,2 e =, 1,

T v

The arrays are determined by the procedure outlined in Section {11, How we
are given arrays and values of the independent variablies x and y and seek to
determine the independent variable z as well as the partial first derivatives-
(zk)y and (zy)x, which suffice in determining the surface unit normal. The
details of this procedure are as follows: '

{a) Determine YA(x}’ YB(x)’ YA(x)’ YB(x) employing the relations

v 3 - 3
P U i MR PUR G o
g™ gi~? bax g bax,

+ o, M x> XXy-1 | (19)
; 'a, - A, —4) —4)
! g! 4 Ax ' .
N
’)

2 ;

Ax, K.-% A

+ (YAi_-' MAi_.-l 1 ) ( 1 } : ;

. 8 B 6 Ax; i
. l:§

o
' X, =X X=X, .
YA()R_MAi] (Ci7) +MAi ( 1)

g\* B 28 x, ' 2ax, (20) .

PN CAR 7 T TR . N B ;
Bl B i=1 AX. B' Bl-l 6 _?1
=
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where Riwy SX L% and Axp = x

BN B

(b) Evaluate n{x,y) employing Equation (6).

(e} Ascertain the local grid in which the point x,n falls

< <
Frep 2RI

M=y SN E T
. @8 depleted in Figure {B6)..

(d) Determine 2, (znn).x N (z“n)b,c :

z, (z““)cﬁ-= 24 (zxx)dn

employling the relations:

(xi"x)B (x-x!_l)s
b ’ E-._ i I,ﬁ-l i
Ax?_ (x'-x)
"'(Zt-t,.k-r-n r) &%
. x'_] -1 i
k '
. " Ax? (x-x, Y
z -
( L, k=1 Xy 1 5") &x,
\ (nk-n)’ ) (n-nk_,)a
2 =
€ My, keq OBy M1, K OAm
d {

(21)
(22)
(23)

:
R Lt T TETY e, L

o Al = I - . P T T e T L7 T T S S S T L P
el e s Rt e i Lk A et . L .

" v o . Lo
R P P - I PR s




&

'

T
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FIGURE B6. LOCAL GRID FOR INTERPOLATION
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(z_) M b, %) (x-x, ) (28
m‘! a ﬂr-‘l' k_t Ax' - nl, §-] Ax!
b k
X=COoAst
(n, -n) (n=n,_,)
k k-1
e [ x"‘] » k=1 Ank x[_] . k f\'ﬂk
4 l
n=const

where Axi =X T X

fn, = n, -3 5-(-1'

(e) Determine z(x,y)

i {n, - n)3 (n=n_y)
(k) = 3 {znna RE * znnb An,

Ani (nk' n)
+ (za -z z )
- AN ﬂnk

a o, ( )
an” n-n
. k | k-1 ] "
* (g zrmb & " Tan, (26)
+ 1 z (xi B x)3 (x - xi)3
2] T —"n}'ﬁcl__' ¥ z:-cxd Eﬁxi
AX% (xi - x)
+ (zc -z, z ) e
c
Ax?‘ (x - xi_1) :
+ (zcI - zm(d =) .

ORIGINAL pagy 1
OF POOR quaLITy

144

L]

b ol 4 i et . e Aok - .

e . . Lot
Ry v marinert Sy T e Ay T+ B o v~

L = g caen)
o ek e ke



(f)

(9)

{h)

(1)

Determine (z“}

z 2
{n,_=-n) (n = npy)
(2) =-2z stz T
n'x m, Zm\k Mg, zdnk
(z. -'z.) An
b~ %a . k
+ -T':‘-k—_. {Znnb Zrma) 4
Determine (zx)rl
) (x; - x? (x = x;_¢)
2z = - 7 C —— B T
x'n XX, 2Ax; xRy o 28x,
(z, -2 )
d c Ax .
P — (z -2 ) §

Determine (zy)x

(Zy)x = (Zn)x /(YB(X) - yA(x))

Datermine (zx)y

(zx)y - (zx)n ) {zv)x [(I-n)YA(X) +11yé(xi1

{27)

(28)

(29)

(30)
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