General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR.
 151723
 EQUIPMENT DEVELOPMENT FOR AUTOMATIC ANTHROPOMETRIC MEASUREMENTS

by
J. P. Cater
W. E. Oakey

FINAL REPORT
for
Contract NAS 9-15038
SwRI Project 16-4630

Prepared for
NASA Lyndon B. Johnson Space Center
Houston. Texas 77058
(NASA-CR-151723) EQUIPMENT DEVELOPMENT FOE aUtovatic anthroponetbic measurbments final Report (Southwest Research Inst.) 53 p
HC A04/MF A01 CSCL 06B
N78-25757

EQUIPMENT DEVELOPMENT FOR AUTOMATIC ANTHROPOMETRIC MEASUREMENTS

by
J. P. Cater
W. E. Oakey

FINAL REPORT
for
Contract NAS 9-15038
SwRI Project 16-4630

Prepared for NASA Lyndon B. Johnson Space Center
Houston, Texas 77058

31 March 1978

Approved:

TABLE OF CONTENTS

*

List of Illustrations iv
I. Introduction 1
A. Purpose of the Program 1
B. Anthropometric Measur ement 1

1. Conventional Anthropometric Measure Methods 1
2. The Video Anthropometric Method 2
II. Program Tasks 5
A. Microprocessor and Controller for Digital Video System 5
B. System Design and Fabrication 6
C. System Calibration and Test 6
III. Technical Discussion 8
A. General Theory of Video Anthropometric Measurements 8
B. Electronic System Implementation 11
3. Video Interface Module 11
4. CPU Module 14
5. Peripheral Components 16
6. Test Fixtures and Switchbox 19
C. q Software Implementation 23
7. Flow Chart of Operation 23
8. Software Design Philosophy 25
IV. System Operating Procedures 26

TABLE OF CONTENTS (CON'T)

Page
V. System Test and Demonstration 30
A. Subject Testing 30
B. Performance Testing 30
C. NASA On-Premises Demonstration 30
VI. Conclusions and Recommendations 35
A. Conclusions 35
B. Recommendations 35
Appendix 37

LIST OF ILLUSTRATIONS

Figure Page
1 Automatic Single Angle One Plane Video 3 Measurement System Configuration
2 Sample Data Sheet 4
3 SwRI Video Anthropometric Measuring System 7
4 Representation of Video X-Y Coordinate Grid 9
5 Graphical Illustration of Parallax Error 12
6 Video to Digital Interface Block Diagram 13
7 Video Interface Module 15
8 Processor Block Diagram 17
9 Central Processing Unit Module 18
10
Anthropometric Test Fixture Switchbox 20
11
Auxillary Anthropometric Test Fixtures 21
12 Anthropometric Test Fixture and Switchbox 22
13 Video Link Angle Computer Software Flow Chart 24
14 Instruction Sheet Printout 27
15 Top View of Video Link Angle Computer 29
16 Test Subject Evaluation Data 31
Table Page
1 Performance Data34

L. INTRODUCTION

A. Purpose of the Program*

The purpose of the program was to design, construct, and test experimentally a microcomputer-controlled video-based single angle, one-plane body segment anthropometric measurement system.

B. Anthropometric Measurement

1. Conventional Anthropometric Measure Methods

The efficiency, comfort, and physical well being of the astronaut is strongly influenced by the extend to which the astronaut's body fits its sur roundings. The study of this interface between man and his surroundings in relation to body dimensions and movements is a combined science of biomechanics and anthropometrics.

Quantative measurements in these sciences have, in the past, been rather primitive because of the difficulty of taking data on an unencumbered man. While static measurements such as body size, arm reach envelope, and leg reach envelope could be made using simple calipers and tape measures, no simple method existed for dynamic measurements with limb motion. In fact, to our knowledge no automated video anthropometric system had been successfully demonstrated prior to the development described herein.

Although the data from static measurements can certainly assist in design efforts for situations where people remain stationary (such as chairs), the data does not accurately describe the dynamic operational limitations of the subject. This difference is further amplified by a zero gravity environment where the neutral body posture changes and chairs are no longer useful.

Measurement of anthropometric data has in the past been performed manually by rather inefficient means. Typically, a subject is seated in a chair and required to traverse a body segment, such as an arm, incrementally through a very slow arc while a second person measures each position with a standard tape measure. The distance from each position to

[^0]a reference plane is then calculated and from the set of total movement data an angle of body segment freedom is determined. Not only is this static method of measurement subject to interpretation error, the subject under measurement must endure uncomfortable and often lengthy body positions, thus influencing accuracy of the data collection.

2. The Video Anthropometric Method

An automated procedure for measuring and recording the anthropometric active angles defined above was conceived by Dr. William Thronton, JSC, and designed and developed by SwRI under the subject contract. The small portable system delivered under this contract consists of a microprocessor controlled video data acquisition system which measures single plane active angles using television video techniques and provides the measured data on sponsor-specified preformatted data sheets. This system, using only a single video camera, observes the end limits of the movement of a pair of separated lamps and calculates the vector angle between the extreme positions.

A system sketch of the automatic single angle anthropometric measuring system with a typical test configuration is shown in Figure 1. The components shown which include the video camera, video processor, and electronic teletypewriter comprise the measuring system. The two small incandescent lamps which are affixed to the test subject using either a tape or strap mechanism obtain their power from the video processor to enable synchronization with the processor point-vector measurement technique.

To prepare a subject for the single angle data collection, two small lamps with attached flexible wires are affixed to the subject's lower arm at points A and B, elbow joint and wrist joint, respectively. The video camera viewing the subject's arm provides the microprocessor with a sequentially scanned "picture" of the lights on the test lamp. The viewed scene is divided into an approximate 256×256 grid as determined by the 256-line vertical line scan of the camera and a synchronized oscillator running at a frequency of 256 times the line scanning frequency of $15,750 \mathrm{~Hz}$.

As the test subject moves his arm on command from the test operator, the video camera scans the lamp positions at the extreme arm movement positions and then calculates the interposing angle. The measured angle is then automatically printed out in a preformatted data sheet by the microprocessor controller on the teletypewriter operator console.

An example of the data sheet format is shown in Figure 2. The real time measured data is printed as the data is taken. The remaining text is stored in system memory and can be easily changed for other data sheet formats.

FIGURE 1
AUTOMATIC SINGLE ANGLE
ONE PLANE VIDEO MEASUREMENT SYSTEM CONFIGURATION

M11SCIILDEKELETAL EXIAMINATIDH FHTHEDFDMETFIC TEST IATH SHEET: HCTIVE ANGLES

NATME:

S.S.N.:

5. WRIST IEVIATIDHE

LILIHE:	F:	IEG		FEHIIEL	$\mathrm{P}:$	IEEG
ULIAE:	L:	IEE		RHIIIEL	L:	IEG
FLEX.	R:	DEG		EX'T.	$\mathrm{R}:$	DEG
FLEX.	L:	IJEG	(If)	EXT.	L:	IIEG

6. HIP
7. KNEE
8. ANKLE
sDOWH?

FLEX. FLEX.	$\begin{aligned} & \text { F: } \\ & L: \end{aligned}$	UEG IEG	EXIT.	P: L:	IIEG
FEDUETIDA	F:	IIEG	FEILICTIDN	L:	IIEG
FLEX.	R:	IIEG	EXT.	R:	DEG
FLEX.	L:	IIEG	EXT.	L:	IEG
PLANTAF:	R:	IIEG	IGR:S 1.	R:	DEG
Wi) FLANTHR	L:	DEG	(UP) HAFSI.	L:	DEG

FIGURE 2. SAMPLE DATA SHEET

II. PROGRAM TASKS

A. Microprocessor and Controller for Digital Video System

The video anthropometric system incorporates a high speed stored program microprocessor to provide the flexibility and intelligence required by the video mea surement calculations. The first major task of the subject program was to design and test the microprocessor control and computation functions required for the anthropometric measurements. The MOS Technology 6502 microprocessor employed in the NASA video anthropometric system was designed and integrated into the system to provide four primary functions during system operation:
(1) The microprocessor controls the illumination and timing of the subject lamps, thus ensuring synchronism with the measured video data. While alternating illumination between the reference and end-point lamps on the subject a total of eight times, the microprocessor assures the correct data by requiring a majority of the measured points to be within prespecified tolerance limits. Any data taken during a measurement cycle that falls outside of the tolerance limit is discarded and the remaining data tested for majority logic.

In the event that a majority position count is not obtained for a specific position, the entire data set is rejected and the operator is notified of incorrect data by an aural beep.
(2) A second function of the microprocessor controller is measuring the angle (with respect to horizontal) of the pair of lamps attached to the subject's limb. By alternating the illumination of the lamps on either end of the subject's limb, the angle of the lamp-to-lamp center line is measured with respect to horizontal and stored in a temporary memory location for a later calculation.
(3) The third microprocessor function is to mea sure the extreme angle of movement of the subject's limb and calculate the horizontally referenced angle as obtained in Part (2). The two horizontally referenced angles are then summed to obtain a total body segment angle.
(4) The fourth major function of the system microprocessor is to print on a pre-formatted data sheet the measured angle along with subject identification information. This allows the system operator to produce a number of complete single angle anthropometric data sheets without the need for complicated data logging and recording methods. The final data sheet format was shown previously in Figure 2.

B. System Design and Fabrication

The second major task in the program was the fabricating and packaging of the operating anthropometric test system in a transportable laboratory demonstration model. The completed single angle anthropometric measuring system is shown in Figure 3 to illustrate the major components of the integrated test system.

The four pieces of equipment shown in the figure are a Silent 700 series teletypewriter for data input and output, a standard closed circuit video camera for anthropometric data acquisition, a 5 -inch television monitor for subject and test set alignment, and the video link angle computer containing the microprocessor circuitry and video interface system.

C. System Calibration and Test

The third major program task was to provide calibration data on the video system accuracy and to provide sample single angle lower arm measurement data on five randomly selected subjects using the operable transportable system. Both the calibration data and the sample data on the five subjects are shown in Section V. A and B of this report.

FIGURE 3. SwRI VIDEO ANTHROPOMETRIC MEASURING SYSTEM

III. TECHNICAL DISCUSSION

A. General Theory of Video Anthropometric Measurements

The concept of a video based point source illumination tracker has been designed and demonstrated by SwRI to NASA in 23 September 1976.* The principle of operation of the system is based on the ability of a video camera to sequentially scan a test subject to which small bright lights are attached and provide a temporal referenced signal which is directly proportional to the positions of the light sources in the $X-Y$ viewing plane. Previous testing of this concept at SwRI indicates that sufficient contrast exists using small low-powered incandescent lamps in a normally lighted test chamber to provide usable data, thereby eliminating the need for a darkened or specially designed anthropometric test chamber. The use of this visual follower technique also allows the collection of anthropometric data in such environments as closed-in areas and underwater test and ergometer facilities.

An illustration of a single angle lower arm measurement problem encountered under this program is presented in Figure 4. To prepare a subject for the single angle data collection, two subminiature lamps with attached flexible wires were affixed to the subject's lower arm at points A and B, elbow joint and wrist joint, respectively. The video camera viewing the subject's arm provided the microprocessor a sequentially scanned "picture" of the lights on the test lamp. The viewed scene was divided into an approximate 256×256 grid as determined by the 256 -line vertical line scan of the camera and a synchronized oscillator running at a frequency of 256 times the line scanning frequency of $15,750 \mathrm{~Hz}$.

Under these conditions, the points A and B in Figure 4 were viewed by the video camera in a sequential manner by first illuminating the lamp at the reference point A and determining the matrix coordinates for this point $(X=128, Y=128)$. The illuminator at point $B 1$ was then energized and the light at point A extinguished, allowing measurement of the location coor dinates of point Bl in a similar manner (wrist coordinates of $X=114$, $\mathrm{Y}=100$). This alternating sequence was then continued for seven additional lamp pair illuminations and the resultant coordinate points were analyzed for a majority within pre-determined limits to minimize angular measurement error.

* The video position detection circuits described in this report were initially developed in-house by SwRI in 1976 and demonstrated to NASA representatives in 23 September 1976.

FIGURE 4
REPRESENTATION OF VIDEO X-Y COORDINATE GRID

ORIGINAL PAGE IS OF POOR QUALITY

After the grid coordinates of the two lamps at the elbow and the wrist had been measured and a majority of coordinates confirmed, the microprocessor subtracted the valid coordinates point Bl from point A and performed the division of $\Delta Y / \Delta X$, yielding the slope of the body segment with respect to the horizontal axis $(S=28 / 14=2)$. An arc tangent calculation was then performed on this slope to yield a true body segment angle in relation to the horizontal video camera plane ($\theta_{1}=\operatorname{ATAN}(2)=63.4^{\circ}$).

The test subject then moved his lower arm to the opposite extreme of free travel and the test operator activated the data retrieval key on the input terminal to start the second phase of the data collection cycle.

Points A and B 2 were sequentially activated again for eight cycles as previously described to obtain a new ser majority reference and relative extreme movement coordinates. Once these were obtained, the microprocessor computed the slope of the imaginary line connecting the extreme angle light sources together as well as the arc tangent of this slope, producing a horizontally referenced body limb extreme angle. The data collected allowed the microprocessor to calculate the total body segment arc by subtracting the lesser of the two angles from the greater angle and then normalizing this angle to less than or equal to 180°. The result of this calculation, as shown in the following equations, eliminated the effects of the reference point (A) movement in the $X-Y$ plane and the effect of camera tilt by providing a horizontally referenced angle for each extreme of lower arm movement:

$$
\begin{aligned}
& \theta_{1}=\operatorname{ATN} \frac{A(Y)-B_{1}(Y)}{A(X)-B_{1}(X)} \\
& \theta_{2}=\operatorname{ATN} \frac{A(Y)-B_{2}(Y)}{A(X)-B_{2}(X)} \\
& \alpha=\theta_{1}+\theta_{2} \\
& \alpha=\operatorname{ATN} \frac{A(Y)-B_{1}(Y)}{A(X)-B_{1}(X)}+\operatorname{ATN} \frac{A(Y)-B_{2}(Y)}{A(X)-B_{2}(X)}
\end{aligned}
$$

The limitation of the measurement technique currently employed is that the active angles which are measured by the automated link angle computer must lie in a plane perpendicular to the camera lens. Departures from the prealigned measurement plane will produce errors proportional to the amount of movement of the subject's body segment in the Z plane (viewed as depth from the camera's point of view). The effect of the Z plane movement is a variable which is dependent on the distance from the test subject to the camera lens, and additionally on the offset distance of the test illumination lamp from the exact center of the $\mathrm{X}-\mathrm{Y}$ viewing plane. The problem to be described is best under stood by examining the graphical representation of a typical test configuration shown in Figure 5. If the upper arm of the test subject is assumed to be fixed in place using a strap mechanism, then point A should be assumed to be fixed in space with point B moveable in the X, Y, and Z planes. The X and Y movernents are the desired planes of movement while the Z plane movements are undesired and will be minimized. If the test subject inadvertently moves his wrist (point B_{1}) away from the test fixture board to point P_{1} during data collection, as shown in Figure 5, the error introduced by this movement is an elliptical function with the minor axis radius being proportional to the distance of point B in the Y direction from the exact center of the scanning field. This effect, which is produced by parallax from the camera lens, is the equivalent to the projection of a line from the center of the camera lens through point P_{1} of the subject's wrist on to the perpendicular test fixture board. For the types of body measurements described herein, the error introduced by this Z plane movement will be essentially negligible if movements away from the test plane can be restricted to approximately one inch total travel over the full body segment length angle.

B. Electronic System Implementation

1. Video Interface Module

The circuitry which was used to interface the video camera to the digital microprocessor was tested in breadboard form to verify the video interface design. A block diagram of the video-to-digital interface is shown in Figure 6. The purpose of this interface is to generate an ELA standard video sync signal to control the camera scanning synchronization and providethe various control signals for the X and Y coordinate counters.

The standard horizontal scanning frequency for television signals is $15,750 \mathrm{~Hz}$ which provides a period per line of $63.5 \mu \mathrm{sec}$. The horizontal sync/blanking interval is approximately $10 \mu \mathrm{sec}$ in length leaving $53 \mu \mathrm{sec}$ of available data acquisition time per horizontal scan line. In order to obtain a resolution of 256 elements per scan line, the counter must be driven by an oscillator running at a frequency of approximately 4.9 MHz .

FIGURE 5
GR PHICAL ILLUSTRATION OF PARALLAX ERROR

FIGURE 6
VIDEO TO DIGITAL INTERFACE BLOCK DIAGRAM

When the video signal crosses the preset adjustable threshold, the count that exists within the X and Y counter is latched into the associated 8 -bit data latches. This provides a 16 -bit $\mathrm{X}-\mathrm{Y}$ coordinate pair for each illumination point. The 16 -bit latched coordinate pair is in turn compared with the real time sequential count coming from the X and Y counters to produce a crosshair-type cursor which may be projected on the monitor television for verification of proper video tracking. The effect of this cursor during real time measurements is a double set of crosshairs superimposed over the test subject with the origins of each set of crosshairs coincident with the illuminating subminiature lamps.

The peripheral interface adapter shown in Figure 6 is the microcomputer bus interface device, an integrated circuit of the MOS Technology 6502 microcomputer family. There are 16 bi-directional input/output ports available for use on this integrated circuit and four additional signal lines for hand shaking. Two of the se signal lines are used to control the lamp illumination on the test subject's arm, providing synchronization for the computing cycle, the remaining 16 lines are used to input the X and Y coordinates to the microprocessor controller.

Figure 7 shows one of the two main component boards in the video anthr opometric system computer. This wire wrapped board contains the video interface electronics, video combiner, and drive circuitry, and the teletypewriter interface electronics.

Also contained on the video interface module board are the video calibration and set up trimpots, and the cassette interface adjustment controls. In summary, the video interface module board contains all of the processor-to-external interfaces, including the latches and decoder drivers for the front panel LED angle display.

2. CPU Module

Once the digital coordinates of the reference point lamps have been produced by the video-to-digital interface, the microcomputer is used to calculate the vector coordinates of each angular line segment and the arc tangent of that line segment slope. The microprocessor controller also provides synchronization for the point illumination lamps which are affixed to the test subject.

A third function of the microprocessor controller is the automatic preformatted data sheet printout. By storing a preformatted data sheet similar to that shown in Figure 2 of Section I, the system allows the test operator to enter variable data such as names and social security numbers related to test subjects and then prints in assigned spaces the

FIGURE 7. VIDEO INTERFACE MODULE
mea sured angles for the test subject. Spacing is also provided by the microprocessor interface timing to print a row of hyphens for each 11 inches of rolled paper output, thus providing a cut line for the individual data sheets.

A block diagram of the microprocessor controller is shown in Figure 8. The 6502 microprocessor system used in the development includes 30728 -bit bytes of random access (RAM) and 5 K bytes of read only memory (ROM). Pragram storage for both the data sheet printout format and the video contiolling and calculating sequence are stored in programmable ROM providing a power on firmware capability for the anthropometric measurement operating system.

The CPU module is shown in Figure 9 to illustrate the placement components and circuitry associated with the central processing unit and the video link angle computer. This wire wrapped board contains 3 K $(3,072) 8$-bit bytes of RAM and provision for 10 K bytes of ultraviolet erasable programmable read only memory (EPROM) integrated circuits. Implementation of the data sheets, instruction sheet, and operating system required only 50% of the available ROM space, leaving approximately 5,000 bytes of system expansion memory.

The remaining integrated circuits and components on the central processing module are the central processing unit (MCS 6502A), the teletype monitor and timer integrated circuit (MCS6530-004), and the associated bus buffering and address decoding circuitry.

The multiposition rotary switch mounted on the upper left corner of the circuit board allows for diagnostic resetting capability of the power on restart vectors to other than the video link angle computer operating system. Rotation of this switch to positions other than the supplied position will provide access directly to the terminal interface monitor (TIM) program, giving teletype access to direct memory search and modify commands. This feature is useful primarily in system development and debugging and should be used only by experienced $6502 \mathrm{micro-}$ processor programmers.

3. Peripheral Components

In addition to the SwRI video link angle computer, three other peripheral equipments are required for automatic single angle anthropometric measurements:
(1) A closed-circuit television camera.
(2) A five-inch video monitor television.
(3) The operator input/output device such as a Silent 700 teletypewriter model 743.

FIGURE 8. PROCESSOR BLOCK DIAGRAM

RESET VECTOR

The video camera is used to input visual link angle data from the illuminating lamps on the test subject to the video link angle computer. The camera supplied with the systemis a standard RCA video camera model TC-1000. Because it is unmodified for use with the video link angle system, any standard EIA output television camera may be used with this system. The RCA camera does, however, provide adequate resolution and linearity for use with the automatic anthropometric data system, Additionally, it has been fitted with a variable iris 12 mm wide angle television closed-circuit lens to allow close-in data acquisition. The lens may be substituted with other standard angle and telephoto lenses if needed to change the camera depth of view and field of focus.

The second peripheral equipment is the five-inch GBC television monitor used for operator feedback to insure proper setting of video threshold adjustment and proper camera-to-subject optical alignment. The video monitor output from the video link angle computer is a standard EIA television interface signal and may be used with any size monitor desired. The output impedance at the video monitor connector for the video link angle computer is 75 ohms and external monitors should be adjusted to this impedance value when used with the SwRI system.

The third required ancillary equipment is the operator $1 / 0$ device which is required to be a serial 300 baud RS-232 interface teletypewriter. While the teletypewriter used with the development system was the Texas Instrument Model 743 (Silent 700 version) any other standard teletypewriter with the above capabilities (such as the Teletype Model KSR-43) may be used with the existing video link angle computer system.

Since the model 743 teletypewriter used with the development system was obtained on a short-term leased basis, it was not supplied with the system.

4. Test Fixtures and Switchbox

Six test fixtures were supplied with the video anthropometric measur ement system to facilitate rapid link switching during tests. The small switchbox shown in Figure 10 is used to manually select the proper fixture. The remaining test fixtures and cables are shown in Figure 11 and 12.

Each test fixture has the required pair of lamps attached, and is wired to plug into either the switchbox or the video link angle computer lamp plug. Care should be taken when using the test fixtures because the subminiature lamp envelopes and filaments are very delicate and can be easily broken in a fall to a hard floor.

FLXTURE
SELECTOR SWITCHES

ORIGINAL PAGE IS

FIGURE 10. ANTHROPOMETRIC TEST FIXTURE SWITCHBOX

FIGURE 11. AUXILLARY ANTHROPOMETRIC TEST FIXTURES

FIGURE 12. ANTHROPOMETRIC TEST FIXTURE AND SWITCHBOX

C. Software Implementation

1. Flow Chart of Operation

The software which is resident within the video link angle computer consists of machine code programming for the MCS-6502 and requires approximately 5000 bytes of PROM. Any changes to the operating system may be made only through erasure and reprogramming of the ultraviolet EPROMs located on the main CPU board.

Figure 13 shows the flow chart of software operation which illustrates the manner in which the video link angle computer operates. At "Power-On" the computer awaits the depression of any teletypewriter key before starting to print the instruction sheet for the video data acquisition system. After the instruction sheet is completed, the data sheet for the anthropometric test subject begins and halts at the subject's name space for operator input. After the operator has completed the subject's name and typed the "Escape" key, the system moves to the social security number and awaits this entry (again followed by the "Escape" key to exit). After the above personnel data has been entered, the printing system moves to the first anthropometric test for head angles and awaits the operator command to acquire video data.

Normal operation dictates that the operator take first the reference vector by pressing the " R " key and waiting for the lamps to completely extinguish. The subject is then asked to move the link under observation to the extreme of movement (in the requested direction as specified on the data sheet) and the operator types the " E " key to command the end vector be calculated. At this point the system again awaits the operator command while displaying the calculated included angle on the front panel "Angle" display of the video link angle computer. If the angle appears to be in error the operator may elect to reacquire angle data. If the angle should be greater than 180° and is indicated less than the correct angle on the front panel ANGLE display, the operator may complement the angle by pressing the " C " key.

After the operator is satisfied that the angle displayed on the front panel of the video link angle computer is correct, he may then print the angle in the designated data space by typing the "P" key and waiting for the printout to stop at the next data point. If, at any time during system operation, the operator wishes to abort a data sheet or test subject data session, he may press the large button located on the front of the computer marked RESET which will immediately begin a new data sheet.

FIGURE 13. VIDEO LINK ANGLE COMPUTER SOFTWARE FLOWCHART

2. Software Design Philosophy

The 6502 video link angle computer operating software has been designed in modular form to allow ease of modification for future changes and system additions. This design philosophy was exccuted by the use of multiple subroutine calls from a main line program which is de signed to control the major sequence of operation of the system. Not only does this type of design allow for ease of program modification at a later time, it also provides for multiple operator assistance in the initial programming of the operating software.

The data sheet formatted PROM is stored in the system as a separate memory group and is located in memory from 0 C 00 to 1000 H . The major program operation software begins at memory location 2800_{H} and extends through memory to $2 \mathrm{C}_{6} \mathrm{~F}_{\mathrm{H}}$. The machine code of the described software may be found in the operating system software listing in the Appendix.

IV. SYSTEM OPERATING PROCEDURES

The video link angle computer system is operated by first turning on the teletypewriter and then activating the POWER pushbutton on the front panel of the video link angle computer. In a similar manner the closed-circuit television camera and monitor should be turned on by switching their appropriate power switch to on. The teletypewriter should be set to full duplex, upper case, 300 baud operation.

The system is now ready to begin the printout of the instruction sheet which is obtained by depressing any key on the teletypewriter keyboard. A copy of the brief instruction sheet printed by the system is shown in Figure 14. At the end of the instruction sheet printout, the system will halt and await the depression of the "S" key to start data sheet printout. During the data sheet printout, the teletypewriter will halt several times awaiting operator input for the test subject's name and social security number. After the operator has entered cach of these required pieces of data, he may exit to the operating system for continuation of the data sheet by depression of the "Escape" key on the teletypewriter keyboard. After the name and social security number has been entered by the operator, the computer will proceed to type the heading for the first data point and stop at the first awaiting data space. The following procedures shouldbe observed while taking data thr oughout the remainder of the data sheet:
(1) When the printout first stops at a new data space, the operator should position the test subject's link in the reference position and type "R". During the time the lamps are illuminated the test subject should remain stationary.
(2) After the lamps have extinguished, the test subject should move the link to the extreme angle position and the operator should type " E " for the extreme angle position data.
(3) If the typewriter emits a beep or bell after typing either of the above keys, the computer is indicating that excessive subject movement or ambient reflection has occurred during the data acquisition period. The operator should adjust the VIDEO THRESHOLD control for proper data acquisition by watching the crosshairs on the video monitor track the flashing lamps. The same measurement may be repeated until the proper conditions have been achieved and the ANGLE display on the front of the video link angle computer shows the proper computed interior angle of the link movement.

MFSH UIDED LIHK ArHLE EDHPUTEF SYSTEM E \because S IUTHUEST EESEAFLH IHSTITUTE: SHH HHTOHID, TY

IHSTRUETIDHS:

1. IIATA SHEET WILL FUITDNATICALL'G FFIHT GUT
2. TD EHI HFME FHI S.S.H EHTEY' PFESS ESCHFE KEY DH KEYEDAFII
3. WHEM UIDED IATA IHFUT IS FEQUIFED, FRIATEE WILL STOF
4. HLIEH LIGHT EHF: WITH REFEFEHCE LIHK FחSITIDH FHD TYFE "FE". (IIC HOT MOUE LIGHT EHF WHILE LIGHTE AFE FIGTUE)
5. MOWE LIHE TO EXTREME FHGLE FDSITIDH HLTEH LIGHT EAF: AHII TYFE "E".
E. IF EEEF DCEURS HFTEF TYFITG "E" DF "E", EITHEF THE EAMEFA IFIS DF: UIDED THFESHULH GDHTFOL SHOLLI EE ADIUSTEI UHTIL THE YIIED EEDSSHFIFS FAITHFILL' TEAEK THE LIGHTS. THEH FEFEAT SHME MEAGIFEMEHT.
6. WHEH MEHSLIEEMEHT IS EQMFLETE, THE LIHH FHGLE WILL AFFEAR IH THE "AHGLE" WIMDDW. TU FEIMT THIS FHGLE IH THE FWAITIHE IHTH SFHCE, THFE "F". IF IEESEEI THE AHGLE MA'G EE FEEDHFUTEI EEFOPE FRIHTIHG EV EEFEFTING STEFS 4 AHI 5.
 EIITTIU DH FFEDHT FHIVEL.

KE' FEFEREHEE:

```
ESCHPE= ENIS ENTET OF HAME DFE S.S.H.
```

$\mathrm{F} \quad=\mathrm{FEFEFEH}$ OE FHILE FUSITIDH
$\mathrm{E}=$ E\%TEEME AHELE FOSITIUH
$F \quad=$ FRINT AHGLE IH IIHTA SFHEE

TEAF DFF THIS SHEET FDR FEFEFENIE: THEH TYPE "S" TD STAFT IAATA SHEET FEIHTOUT
(4) When the link angle measurement is complete, the link angle will appear in the ANGLE window. To print this angle in the awaiting data space, the operator should type "P". If the angle does not appear to be consistant with that observed by the operator, he may repeat steps (1) and (2) above until the desired data is shown in the ANGLE window. The "P" key may then be depressed to print the correct angle.

If the link angle taken is likely to be greater than 180°, such as in shoulder flexion and abduction, the angle displayed in the ANGLE display window may be the 360° complement of the true measured angle. The "C" key is provided for operator complementation of this angle for printout in the awaiting data space. By repeatedly depressing the complement key, the angle may be switched between the computed angle and its complement for the appropriate angle printout.
(6) The operator may, at any time during the operation of the video link angle computer, abort the current operation and begin a new data sheet by depression of the front panel reset pushbutton.

The use of each anthropometric test fixture supplied with the system is determined by the measurement being made. A total of six fixtures have been supplied with the system and are designed for such link angle measurements as head, arm, hand, and foot movement. The use of the test fixture switchbox in conjunction with the video link angle computer allows rapid operator switching between the various ancillary test fixtures.

Figure 15 shows an internal top view of the video link angle computer. Indicators point to the various fuseholders and input/output connectors. Since the lamp fuse is inside the cabinet, it gives no visible indication of being blown, except that the lamp fixtures do not light during a test cycle.

FIGURE 15. TOP VIEW OF VIDEO LINK ANGLE COMPUTER

V. SYSTEM TEST AND DEMONSTRATION

A. Subject Testing

The required testing for system demonstration involved lower arm link angle measurement for five subjects. The data taken during this performance testing is shown in Figure 16, indicating satisfactory system operation meeting all design goals.

The tests were made using a large plywood board against which the test subject placed his lower right arm. The subject was then requested to put his lower arm in the horizontal reference position for the initial reference angle measurement and then to move his lower arm to the extreme flexion angle at which point the data was automatically printed onto the data sheets.
B. Performance Testing

Additional tests were made with the system to determine absolute accuracy using the upper arm light bar test fixture attached to a Bruning drafting machine for angle reference calibration. The drafting machine was then rotated in 15° increments and the measured angle in the ANGLE window was recorded. Measurement errors found during the performance testing are shown in Table 1. Since the angle calculation mathematics of the system repeat for each 90° quadrant, errors appearing between 0° to $\pm 90^{\circ}$ will be mirrored from $\pm 90^{\circ}$ to 180°.

As anticipated, the total errors achieved during the testing did not exceed $\pm 4^{\circ}$ at a distance of eight feet from the camera lens. Proportionally lower errors will occur with closer camera lens-to-subject spacing because of the increased video system resolution.

C. NASA On-Premises Demonstration

The completed anthropometric video link angle computer system was delivered to JSC, Houston and demonstrated to NASA as specified in the original statement of work. Attending the NASA demonstration were three representatives from NASA-JSC and two representatives from Southwest Research Institute. The demonstration consisted of a thorough explanation of the system operation and then acquisition of anthropometric data on several volunteer subjects to illustrate the simplicity of system operation.

MUSCLLDEKELETHL EXHWIHFTIDH FINTHRDFDMETEIG TEST LIATA SHEET: HCTIVE FIHGLES

MFME: EILL DHKE' S.S.M.:

4. FOFEFF:M
PFEDH. F:

MUELILDEKELETAL ENBMIHATIDH GHTHEQFIMETEIC TEST IHTH SHEET: HETIUE HHISES

HAIAE: JOHH EATEF: S.S. H.:

4. FDREAFM

PRDN. R:

FIGURE 16. TEST SUBJECT EVALUATION DATA

MUSCLILDSKELETHL EXHMIMAT IDM FITHF:OPDIETRIE TEST IHTH SHEET: FIGTIYE FNGLES

HRME: IfGLE WINHIE S.S.H.:

MISEULDSKELETEL EXAMIHFTIDH HITHFIFDMETFIE TEST IARTA SHEET: HETIVE AHGLES

FIGURE 16. TEST SUBJECT EVALUATION DATA (CON'T)

muscilaskeletal eximimintidit filtheqfameteic test lath sheet, fotive aldgles

FLGURE 16. TEST SUBJECT EVALUATION DATA (CON'T)

TABLE 1

PERFORMANCE DATA

Angle Measured On Bruning	Angle Measured On VLAC	Error
On Degrees	0 Degrees	0 Degrees
-15	16	+1
-30	28	+2
-45	43	+2
-60	58	+2
-75	74	+1
-90	88	+2
0	0	0
+15	32	+4
+30	48	+2
+45	63	+3
+60	76	+3
+75	92	+1
+90		+2

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The demonstration of an operable anthropometric data acquisition system using video collection techniques was successful beyond the original expectations of the program. The SwRI system was demonstrated with multiple link data acquisition errors of less than ± 4 degrees at subject distances of eight to ten feet. In view of the fact that the original demonstration was to encompass only link angle data on the lower arm of a test subject, the resultant system which incorporated link angle data on all major movable limbs on the body provided system capabilities in excess of those originally anticipated.

B. Recommendations

A further expansion of the original program consisted of the large memory capability of the video link angle computer for further programming and capability expansion. Since only approximately one-half of the available memory is being used in the existing system, provision for considerable system programming expansion exists. The expansion may be accomplished by removing the resident operating software which is stored in five read-only memories and replacing them with operating software compatible with future anticipated needs.

The expansion capabilities of the existing video link angle computer range from use as a small general purpose high levei language computer to complex video data acquisition using the existing peripheral equipments. Development of expansion software can be accomplished at SwRI using the software development system upon which the video link angle computer is designed.

Future developments in the video anthropometric field should include the evolutionary trend toward three-dimensional video anthropometrics, thus eliminating the single-angle single-plane problem. The use of multiple video cameras surrounding a test subject can provide three-dimensional data on anthropometric movements for design of efficient work space and cockpit areas. In addition to improving the ease of data acquisition, a new system design should be capable of being flown in space with cameras mounted permanently around a test area for observation of three-dimensional anthropometric movements.

In addition to the measurement of positional data for the construction of sweep envelopes, consideration should be given to measuring forces and velocities of body links. A machine such as the CYBEX force generator, coupled to the test subject through a gimballed pulley mechanism, could provide the basic force data. This data, digitized in real time and stored on tape with the positional data, would allow direct correlation with derived velocity and acceleration information. The end result would be a system capable of generating complete sets of anthropometric information useful in the design of man-operated controls and equipment in both earth and zero-g environments.
－ F ECHE Eg EE EF GE Eg －SE06 1000000100 FF － 5 IHFUT START GIIRESS：EBOO

EE00－		08		LIE	\％as
E日ne－	$\mathrm{H9}$	34		LIIf	－ 34
E804－	8 II	01	80	STH	96091
2807－	E0	69	28	ISE	meese
ESOH－	FII	010	80	LIf	\＄8000
EeOI－	9 II	FF	0	STH	SOTFF．
2810－	Fid	0 O	80	LIIF	xenoe
2813－	91	$0 \cdot$	ne	STH	f0s07
Ee16－	H9	04		Lift	0904
Es18－	EL	01	E0	STA	SE001
E81E－	H9	24		LIIF	0 mb
ce1D－	EI	0	E0	STA	menos
2ecol－	$E 0$	96	2e	ISE	meese
Eses－	HII	010	80	LIf	TE000
E8e6－	91	日F	08	STH	tusuF．
2es9－	HII	狍	80	LIf	wenoe
Eecc－	91	17	Qe	STH	mos17．
Eesf－	H9	04		LIIF	0904
ese1－	EII	03	80	STA	2000s

2971－	FI	01	EED	\＄2974
2973－	610		F：TS	
2974	18		CLL	
E9F5－	96	0.4	ELC	Se97E
297\％	FS	E1	LIIH	4 Sc 1
2979	30	CL	EMI	92947
ごアE－	H51	E0	LIIH	W000
E971－	85		SEC	
EGTE－	E5	E1	SEC	W1
E9E0－	85	EE	STA	Wご
EsEe－	60		FTS	
E98\％－	10		EFEK	
E984－	H01	00	LD＇\％	
こgse－	HC^{2}	10	LIIF	
E9E8－	E0	010	EF¢	
E9G－	FO	OH	EED	90996
E9E\％－	FE		SEII	
E9EI－	18		CLE	
E9EE	65	01	HIII：	
E990－	90	01	ECO：	50993
を99E－	$0 \cdot$		IH\％	
2993－	CH		IEX	
E994－	In	F 7	EHE	TE98L
2956－	15		ELII	
2957－	60		FTS	
こ998－	010		EFE	
29\％9－	H^{H}	00	LITH	W00
ごきE－	85	E1	STH	AL 1
ご9I－	HE	02	Lİ：	ホTロシ
EgGF－	H5	EL	LIIT	FEL
EGH1－	15		CLE	
EGHE－	$E 5$	E1：	HIIE：	WEL
E9H4－	90	0E	EIC：	SESHE
EGHE－	EG	C1	IHE	SE1
E9HS	CH		IEE	
E9H9－	III	F6	EHE	ゆごこF1
EGHE－	8	E0	STH	和臬
E9HI－	46	C1	LSE	玉 5
EGHF－	$E 6$		Cre	
こЭEロ－	E0	H5	EFG	OHF5
E9EE－	C1	FO	EMF	QFO． O
EFE4－	10	46	HSL	946
こGEE－	E： 1	06	EMF	GESOM
ごE6－	10	46	EFY	－
EGEF－	EII	HS EO	LIIA	क1045：
E9EIT－	85	EC：	STH	TEC：
29EF－	EA		HOF	
2900－	EA		NOF	
E9E1－	85	01	STA	AE：11
E9LG	HS	EII	LIM	EEII
E905－	85	E1	STA	E1
EGET	E0	39 E9	18 F	4293
2904－	H5	ES	LIIH	505
EOEC－	85	CE	STA	06
E9EE	F5	Cz	LIA	WE
2910－	10	06	EHE	おごロ
E9ne－	H	FF	LIA	\＃FFF
$2904-$	85	CE	STH	WCE
E9L6－	30	49	EMI	TEAE1
2918－	Hg	010	LIIH	＊出年

EH45－	Es	07	SEC	907
E゙A47－	85	07	STH	W07
EH49－	H． 5	07	LIf	W07
EH4E－	Hif		TH\％	
EH40－	20	E4 29	JSE	Te984
EH4F－	84	ce	STV	mes
2451－	Es	c9	STH	46
EASS－	60		FETS	
EH54－	00		EFE	
En55－	00		EPRK	
EnSe－	0.4		7 T	
ER57－	09	0 I	DF：	0 OL
En59－	09	16	DEA	\＄16
EASE－	1E		？	
EASC－	$1 F$		7%	
EnSI－	24	29	EIT	See
EASF－	EII	32 85	FHIT	93685
EHES－	S		TT	
Efes－	40		FTI	
EAE4－	44		\％	
ERES－	49	4 E	EDF：	W4E
EHET－	53		77	
Efes－	56		CHS	
EHE9－	5 I	6267	Eap	T6T6e． 8
EHEC－	E	7177	M／F	（G7T1）
EHEF－	＇70		T\％	
EAFO－	Ee		Tr	
EAR1．－1	EE		IE＇	
EAPE－	EL	9499	STH	19994
EAPE－	$9 F$		\％	
EARE－	FG	AC	LIS	TAC
EATS－	Es		T\％	
EHP9－	E9	C0 E\％	LIIf	WCTCo． 7
EATC－	EE	IE TE	IEEC	STEDE
EAPF－	EG	EE	IHC	SEE
ERE1－	FG	FF	INO	TFF， X
EHes－	010		EEK	
ERE4－	FO	50	LITi＇	\％ 50
enes－	H9	5 F	LIA	45F
EHES－	E0	CE 72	ISE	mbece
EHEE－	Es		IE＇${ }^{\prime}$	
Efec－	III）	Fs	EHE	TERES
Ehee－	84	E0	STY	PEO
ER90－	E0，	94 EH	ISR	42H94
2月99－	60		FTS	
EH94－	E0	EA 72	15 E	172en
EH97－	E0	8月 TE	ISE	mpera
ERYH－	20	8A 7E	ISe	47e8\％
ER9I－	E0	Ef 72	JRE	\＄TEEA
EHFIO－	20	84 re	JRE	STESA
EAhs－	60		ETS	
EHA4－	H9	00	LIIH	F904
EAGE－	85	EE	STA	TEE
EARE－	Hin		TH：	
EHH9－	H9	16	LINH	－818
EHAE－	85	EF	STH	SEF
EAMI－	H1	EE	LDA	GEE．$\%$
EARF－		FF	CMP	TSFF
EAE1－	10.	01	EHE	SEHE4
EABS－	60		ETS	

＊

2E41－	H5	74	LIf	174
EE43－	09	FF	CHF	\％ FF
EE45－	FO	91	EEG	fende
Ex47－	HF^{9}	114	LIA	$4 \mathrm{ta4}$
EE49－	EII	0580	STA	$4 \mathrm{SOO5}$
EF40－	20	14 EF	JEF	TEELI4
EE4F－	H9	FF	LDA	taFF
EES	95	74	STA	974
EESE－	85	75	STH	475
ESES－	20	E4 EF	15F	TEEE4
EES－	60		CTS	
Es59－	H5	70	LIH	970
EESE－	85	72	STH	9ッこ
EESI－	H_{5}	71	LIf	Tr1
EESF－	85	73	Sta	173
EEG1－	60		ETS	
E®es－	Fs		SED	
EEES－	36		SEC	
EE64－	H9	60	LIA	
EEES－	E5	75	SEC	W75
EES－	85	75	STA	975
ERER－	H9	05	LIIF	Wios
EEGC－	Es	74	SEC	474
ERGE－	85	74	STA	574
ERTO－	118		CLI	
EET1－	60		ETS	
E®Te－	AS	70	LIA	970
EET4－	05	72	CMF	Fre
EETS－	90	13	ECO	SEES0
Emre－	10	0 O	EME	TEES0
EETH－	H5	71	LIA	9\％1
EETC－	05	73	CMP	975
EETE－	90	10	ECC：	SEEOU
2E¢0－	He	70	LIE	970
2Ese－	H 4	72	LIY	9re
EES4－	86	72	ST：	9\％
EbEs－	84	70	STY	970
ExGs－	He	71	LD\％	PT1
ESEH－	H4	73	LTM	Trs
EESC－	85	73	ST\％	975
emee	84	71	ST＇	971
Emga－	Fs		SED	
EEG1－	69		SEC	
EESE－	A5	73	LIA	973
EF94－	E5	71	SEC	571
E®9s－	85	75	STH	975
E®9s－	H5	72	LIA	mp
E®9	E5	70	SEC	570
Emg：	65	74	STA	974
EEGE－	0 9		ASL	
EEGF－	85	78	STH	9 se
EEA1－	H5	75	LIA	45
EEAS	29	80	FriI	480
EEA5－	EH		FEL	
EEAS－	2H		FOL	
EEAT－	05	78	DFA	978
ことH9－	C9	03	OMP	46
EEAE－	EiO	0 c	ECS	feemf
EEAIL	90	Us	ECC	feeme
EEAF－	20	62 eb	JEF	Nemee

EC1E-	8571	STA	171
ECII-	H980	LIAF	4ins
ecif-	E5 C8	SEC	ace
ECe1-	8570	STA	970
eces-	09 09	DMF	\%t09
E0:5-	[iO EL	Erte	Sect 4
Ever	H571	LIIH	S 71
ECes-	6960	CMP	\#360
eces-	not ET	EHE	SEC14
ECEIT	H980	LIIT	\%x00
ESEF-	8570	STH	470
E0:1-	8571	STA	\$71
Ecs:	FO IF	EEE	SEC14
2085-	HS ES	LIIH	WES
E08-	FO 10	EEQ	SEC49
E039-	18	CLE	
EO8-	0589	LIH	50
Ecsc-	6980	FDC	\#\$80
Ecse-	8571	STH	6 51
EC40-	F9 01	LIN	\%101
EC4E-	65 [8	HITC:	40.
E044-	8570	STH	\$70
2046-	19	CLC	
Ec47-	90 CE	ECL	5 Sc 4
EC49-	83	SEC	
EC4H-	H980	LIIH	\%s0
EC40-	E5 09	SEC	50
EC4E-	8571	STH	571
Ec50-	H9 01	LDH	- \%10
Ecse-	E5 58	SEC	mbe
2054-	8570	STH	570
2056-	13	CLC	
Ecsi-	90 EF	ECL	SECl4
E65-	FS HE	LIH	WHE
205E-	45	PHH	
E0SO-	$29 \mathrm{F0}$	FHI	\#F9
ECSE-	09 FO	EMF	WFO
E0e0-	1008	Erte	Weces
ecee-	69	FLA	
E06:	85	SEC	
Ece4-	60	ETS	
Eces	69	FLA	
Eces-	29 OF	Fir ${ }^{\text {I }}$	\% 0 F
Eces-	C9 OF	CMP	029
ECen-	19	CLE	
Eces-	In F?	ENE	SECE4
ECeI-	F0 F4	EED	9 TCO
ECGF-	FF	TT	
Ec70-	FF	\%	
E671-	FF	T?	
EC72-	FF	T?	
E073-	FF	Tr	
E074-	FF	TT	
2075-	FF	T	
e07e-	FF	Tr	
E077-	FF	T?	
Ec7s-	FF	77	
8079-	FF	TTT	
ECTH-	FF	TT	
ECTE-	FF	TT	

[^0]: * The original scope of the program was to review ergometer data from previous programs in an effort to obtain functional anthropometric information. This effort was terminated at NASA's option by Contract Amendment No. 5S, dated 15 November 1977, which changed the scope to that described herein.

