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Abstract

A viscous-inviscid interactive procedure for
subsonic flow is developed and applied to an axial
compresscr stage. Calculations are carried out on
a two-dimensional blade-to-blade region of constant
radius assumed to occupy a mid-span location. Hub
and tip effects are neglected. The Euler Equatious
are solved by MacCormack's method, a viscous march-
ing procedure is used in the boundary layers and
wake, and an iterative interaction scheme is con-
structed that matches them in a way that incorporates
information related to momentum and enthalpy thick-
nesses as well the displacement thickness. The
calculations are quasi-three-dimensional in the
sense that the boundary layer and wake solutions
allow for the presence of spanwise (radial) veloci-
ties.

Nomenclature

B(x) Lower boundary of the cascade :olution
region (Fig. 1)

c Speed of sound

c Blade chord length

c,¢c Specific heats

p’ v

e Total energy (Eq. 4)

fc Composite solution vector defined by Eq.
27

fb(O) Boundary layer solution vector (Fig. 4)

f,g Vectors defined in Eq. 23

3.4 Vectors defined in Eq. 22

F,G,H Vectors defined by Eq. 4

(gb(O))o Vector obtained by evaluating g_ using

values obtained from the boundary layer
solution, f (0), (Eq. 27)
G1,G2,G3, Components of vector G

Ga

41: »4 2, #3, Components of vector [/
{

h

Enthalpy
i,j Grid indices (Fig. 2)
Thermal conductivity
P Pressure
r,9,2 Cylindrical coordinates used in the vis-

cous solution (Fig. 3)

R Gas constant (Eq. 4)

t Time

T Temperature

U Vector defined by Eq. &4

ugsu Velocity components used in the inviscid

solution (Fig. 1)
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ux’uy Velocity components in the x and y
directions (Eqs. 2,3)

u‘,,,u‘1 Velocity components in the 4 and Y

L directions

u,v,w Velocity component- in the £,(, and
T directions (Fig 3)

Xy Cartesian coordirates used in the
inviscid solution (Fig. 1)

¥, Cartesian coordinates used in Sec-

: tion 4 (Fig. 4)

X,Y,Z Cartesian coordinates used in the
viscous solution (Fig. 3)

a,B Cascade coordinates (Fig. 1)

) Boundary layer thickness (Section
4)

GN Boundary layer thickness, nondimen-
sionalized with respect to C(Sec-

» tion 3)

& Displacement thickness

€ Small parameter that is 9(2)

0 angle between B(x) and the 'x-direc-
tion in the cascade sclution region
(Fig. 1)

TR\ Viscosities

.CM Curvilinear coordinates used in the
viscous solution (Fig. 3, Eqs. 11,
12,13)

p Density

] Angle between the §-coordinate line
and a cylindrical generator (Fig. 3)

Q Angular velocity of the blades (rad/
sec)

Subscripts

REF Denotes reference quantity
WALL Denotes evaluation at wall

o Denotes evaluation at y=0

& Denotes evaluation at y=6

© Denotes evaluation at infinity

(Section 3)

Superscripts

/

Denotes derivative (Eqs. 8,9)

I. Introduction

The flow in the blade passages of an axial
compressor is quite complicated. In general, the
flow is compressible, viscous, unsteady with re-
spect to the blades, turbulent, and highly three
dimensional. Furthermore, the flow may be either
entirely subsonic or at least partially supersonic.
Boundary layer separation may occur at several
locations in a compressor blade passage. In addi-
tion, any computational attempt to deal reu(.:i’i=-
cally with such a flow will encounter these d.ifi-
culties in a region which is geometrically complex.

For these reasons, it is unlikely that a com-
pletely realistic solution of the flow through an



entire axial compressor blade passage conid be un-
dertaken in the near future. However, a great deal
has already been accomplished by examining problems
of a simplified nature. The numerical compressor
calculations which have been undertaken have tended
to examine certain aspects of the flow in a blade
passage while ignoring other effects, even though
the effects which are omitted from the calculation
may be quite Important in practice. In this manner,
it has been possible to reduce the original problem
to one which is mathematically tractable, and to
gain ome insight into the nature of such a flow.

There have been several approaches to simplifi-
cation., One approach, prescnted in detail by wul,
consists of the specification of a stream surface
within the blade passage and the subsequent solution
of the Euler equations on that stream surface. The
surface can be specified either as an annular surface
(blade to blade) or a meridional surface (hub to
shroud), and by confining the calculation to a two-
dimensional region in this fashion, it is possible
to introduce the passage geometry into the calcu-
lation while retaining the numerical benefits of a
scalar stream function. This technique has been
used by Katsanis? and Katsanis and McNally3, among
others. The computer codes of references 2 and 3
are well established, and are currently used in
compressor design.

Boundary layer calculations have been done on
compressor blades and on passage endwalls™™ Simi-
lar to boundary layer calculations are the viscous
marching procedures, which are gsed to solve para-
bolized Navier-Stokes equations -8, viscous march=
ing procedures are currently being applied to flow
in turbomachinery.

Another popular simplification of compressor
flow is its idealization as flow through a cascade
of airfoils. Many different numerical solutions
have been carried out in cascade geometries. Per-
haps the most studied set of equations with reference
to cascade geometries are the Euler equations, and
a popular approach to their numerical solution has
been through time marching tcchniquoslo' These
techniques, of which MacCormack's method 3 has been
the most widely used, owe their popularity to several
factors. They are computationally efficient, they
can be used for both subsonic and supersonic flow,
and they are not subject to some of the limitations
of simpler solution methods, such as irrotationality
and two-dimensicnality. And certain recently deve-
loped time marching algorithmsla' , which are
applicable (o the solution of the Evler equations
and Navier-Stokes equations, appear to be quite
promising for increased computational efficiency.

It is likely that these new algorithms, or variants
of them, will be used in the nrear future to carry
out compressor calculations of increasing sophisti-
cation,

While the preceding survey of numerical compres-
sor calculations is by no means complete, it serves
to demonstrate the diversity of approaches to the
overall problem, which is too difficult to be
attacked in a more straightforward manner. The
present investigation is primarily concerned with
the effect of viscosity on the flow in a blade-to-
blade surface of constant radius, which may be
assumed to occupy a miu-span location since the
effects of the hub and tip regions are neglected.
The investigation has been confined to subsonic
flows, but this limitation is not inherent in the

method developed here. For the present discussion
the solution surface can be considered to be the
flat, two-dimensional region of a rectilinear cas-
cade, with cambered blades of zero thickness. How-
ever it will eventually be necessary to imagine this
flat solution region as being wrapped onto the sur-
face of a rotating right circular cylinder. The
introduction of viscosity into the calculation is
accomplished by means of a viicous-inviscid inter-
active calculation procedure.

The inviscid calculation consists of a time-
marching solution of the Fuler equations by MacCor-
mack's Method. The viscous calculation proceeds in
boundary layer and wake regions, and it solves a
system of equations analzgous to the set obtained
by Horlock andWordsworth® for the incompressible
boundary layer on a helical blade. Although the
viscous calculation is carried out on a cylindrical
surface, the governing system of equations allows
for the presence of a radial velocity component
normal to that surface. The interaction between the
viscous and inviscid calculations is accomplished
by means of an iterative process. An iterative
approach to the subsonic interaction problem is not
uncommon; several researchers (e.g., Ref. 17-18)
have used this approach, in conjunction with the
displacement thickness concept to obtain higher
approximations to flows. However, the present in-
teractive method differs from thes: procedures in
two ways. First, the present method does not rely
solely on the mechanism of a physical displacement
of the outer flow streamlines by the viscous layer,
to achieve coupling of the viscous and inviscid
calculations. The interaction takes the form of an
injection at blade surfaces (suction in the wake),
but it is different from the usual source-sink dis-
tribution technique in that this i1njection hus a
momentum and enthalpy character. Second, the appli-
cation of boundary condi*ions to the viscous calcu-
lation, and the viscous calculation itself are
carried out in a manner suggested by the theory of
matched asymptotic expansions. The details of the
interactive procedure are discussed in Section IV.

The viscous-inviscid interactive calculation
procedure which is described in this paper was used
to calculite compressor flows for both rotor and
stator passages. Some results of these numerical
calculations are presented.

II. The Inviscid Solution

For the inviscid solution we consider the invis-
cid, rotational flow in a rectilinear cascade of
zero thickness airfoils. The (o,B) coordinate sv-
stem used for this calculation (Fig. 1) is related
to Cartesian coordinates by the relations,

2R 5 B'y'B(X) (1)
Also seen in Fig. 1 are the velocity components u
and u_, which are related to the Cartesian components
of ve?oclty in the following manner;

u =u cos 9 - u_ sin © (2)
X s n

u =u sin® + u_ cos © (3)
y s n

For this coordinate system the time dependent
Euler equations may be written in vector form as,
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;xpuﬁ + p) sec 8 (puu, +p cos®)T=
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5¥ + ;5 + Sg +H =0 (4)
where,
3 pu_
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U = PY : Fo=[PYY p cos © .
Dun' pu . - p sin ©
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G 0 = -
[pu sec l [-( 2 ? .
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with e chvT + 3 (ux L 4 uy)] and p = pRT.
A steady state solution of these equations in the
cascade is obtained by a numericallslme mar ching

solution using MacCormack's Method ~.

boundary Conditions

As is often the case with time marching solu-
tions of the Euler equations, the treatment of
boundary conditions here consumes a disproportion-
ately large part of the effort expended in the
numerical solution. A careful creatment of certain
boundary conditions in such problems seems to demand
approaches which are somewhat involved. The dis-
cussion of boundary conditions which appears in
this section deals entirely with conditions as they
exist for the first inviscid solution. Modifications
to these boundary conditions are required for sub-
sequent inviscid solutions within the viscous-
inviscid iteration scheme, and a discuseion of these
modifications is deferred until Section IV.

In a time marching solution of the Euler Equa-
tions for the flow through a cascade (Fig. 1),
essentially three different types of boundary regions
are encountered. First, boundaries at which period-
city conditions are the proper specification.

This is the case at those portions of the boundary
which connect the leading and trailing edges of the
blades to the upstream and downstream boundaries.
Second, the upstream and downstream boundaries which
in this investigation are subsonic and permeable.
It appears necessary that the specification of
boundary conditions at these locations be compati-
ble with the passage of wavelike disturbances
through the boundary20, Consequently, we treat the
boundary conditions at these locations using the

me thod of characteristics as suggested by MorettiZl,
The details of this treatment are found inReference
22, Finally, solid wall boundaries represent a
third type of situation. As the treatment of solid
wall boundary conditions is altered in subseguent
inviscid solutions within the interactive scheme,
we describe the situation during the first inviscid
soliuclon in some detai'!, so that the changes made
for later solutions will be more apparent.

Consider the numerica! grid network near a
blade surface which is depicted in Fig. 2. The
grid lines j=2 ard j=3 lie in the interior of the
solution region, and solution values at these lo-
cations are obtained from the MacCormack algovithm,
The j=1 grid line is a dummy point locaticr, and it
is at this location that the boundary concitions
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are applied. The impermeability of the wall gives
three relations, since three components of the
vector G (see Eq. (4)) are identically zero. The
effected components are Gi, G2, and G4, where the
numbers correspond to the position of the component
within the vector. These relations are,

o1, , = -6l , (5)
G, ,"®,, (6)
Ghy | ==Gh, %2

The remaiaing component, G3, reduces to (p sec 6).

A fourth relation is obtained by again appealing

’1 the method of characteristics. FollowingMoretti
, we seek to resolve those waves which propagate

in a direction normal to th. boundary, apart from

a translation tangent to the boundary due to the

gross motion of the fluia. Using this approach we

obtair (see Ref. 22) the compatibility relation,

p' - pcu; --pc\c g; (u. cos 9) - cu  cos 0 gg
de"

- uu

s x d=/ (8)
where ¢ is the speed of sound, and the primes Jeanote
differentiation in a direction defined by,

d=

& = u + ¢ sin 8, %% = sec B(un -¢) 9)

Equation (8) may be integrated along a bicharacte-
ristic line defined by Eq. (9) to obtain the wall
pressure. Having obtained the wall pressure in
this manner, a fourth relation is then available of
the form,

63 1 = 2Ry ) (sec ®)y - G3y

As a final note in this section, we mention
that the Kutta condition is applied at the trailing
edge of the blades by enforcing flow tangency.

(10)

Extension to the Annular Cascade

As a preliminary to the discussion of the vis-
cous solution, it is worth noting that the numeri-
cal solution for the inviscid flow in a rectil .;ar
cascade can be related to the flow in an annular
cascade in a fairly simple way. To extend the
results of the previous solution to the flow on a
surface of constant radius which is in a state of
radial equilibrium (i.e., zero radial velocity) and
rotates about its axis, it is merely necessary to
imagine that the flat solution ficld is wrapped onto
the surface of a rotating right circular cylinder.

III. The Viscous Solution

In this section, we develop the viscous equa-
tions appropriate to the flow past cambered, yet
strictly radial, blades. These blades and the co-
ordinate system used in this development are seen
in Fig. 3. The (§,(,N) coordinate system used in
this section is shown in relation to a Cartesian
coordinate system (X,Y, 2), and a cylindrical co-
ordinate system (r,»,2). The £ and { coordinate
lines are shown on a cylindrical surface (N=r=
const.). The angle §(§), which is measured on that
surface, is the angle between the § coordinate line



and a generator of the surface. If we describe the
$ coordinate line as a helix-like curve of angle y
then the [ coordinate line will be a helix-1like .
curve of angle (270° 4+ §y)., The T coordinate lines
are straight lines normal to the surface of the
cy}lnder. Finally, the velocity components in the
£.0 and M directions are denoted by u,v and w
respectively, . :

The curvilinear coordinates are related to Car-

tesian coordinates in the following way;
L

a®
Z = Jo cos y df + ( sin y (1)
X*=Ncos 9 ; Y=Ngeing (12,13
where,

;i sin ydf - [ cos ¥

-

Following Horlock and wordsvortha, we confine
our attention to the blade boundary layers which
develop in a system that rotates about the Z axis
with an angular velocity i, and make some specifi-
cation and assumptions.

(i) Radial equilibrium is specified for the
external flow (W = 0). The @ subscript indicates
a location where [ is large.

(ii) The boundary layer thickness is smail
compared to the blade chord;

g-. " =<
& f(bN) where 6N << 1.

(iii) The chordwise curvature of the blade is
of order ((1:). This implies that

c a~ oy,

and that { gi ~ ﬂ(ﬁﬂ).

(iv) The chord is small compared to the radius,
1
2 (;) where € << 1 .,
(v) The blade speed and u_ are of like order;

an
o~ A

For a turbomachine it is expected that 6N << €,

With the ordering procedure established here,
it is possible to reduce the equations of motion
for the helical coordinate system to the appropriate
boundary layer equations. The details of this re-
duction may be found in Ref. 22. The boundary lay-
er equations, correct to f#te), which result are as
follows:

Sa! (pu) + gat (pv) = 0 (14)
du
© )
pu§§‘+pvg-":.p°u¢¥+ﬂ(“ g—E) (15)
- = (o’ - 9,,“,2) sin’y
pu 3w + pv 5t = T (16)

+ 7"-'2(9 = Pe) + Zising (pv - pu) + 69"0’ ?")

3h
sh e 3 o ou d oT
pu S! + pv 5! u(pw 3!-) 4‘-(5‘:) + SZ (k ST)

(17)

The radial momentum equation (16) is uncoupled from
the other three equations in the sense that the
radial velocity (w) and the radial coordinate (7))
do not appear in Eqs. (14,15 0or 17). Consequently,
if we confine our attention to a surface of constant
radius (M=const.), it is possible to solve this
system of equations with the appropriate bogndary
conditions by numerical marching techniques 3, To
complete this system of equations, we take as the
equation of state,

P = PRT (18)
and take the enthalpy, viscosity, and thermal con-
ductivity to be governed by the relations;

h = cpT (193

oo .76 .

b hREF(T/TREF) (20)
= .84 o

k kREF(T/TREF) 21

Eqs. (14-21) are also the governing equations for
the viscous wake.

It should be noted that, while the inviscid and
viscous calculations are both carried out on the
same cylindrical surface, the coordinate systems
used in these two calculations are different and the
numerical grid systems would not in general coincide
nor have the same orientation.

IV. The Interactive Procedure

The interactive procedure takes the form of an
iteration between viscous and inviscid solutions.
In general terms, this iterative procedure is as
follows:

(i) An inviscid solution for the entire flow=-
field is performed, with the appropriate boundary
conditions.

(ii) Using boundary conditions, obtained from
the inviscid solution along blade surfaces and the
wake centerline, the viscous calculation is carried
out, With the viscous calculation completed, certain
adjustments are made in the inviscid solution's
boundary conditions, to reflect the presence of
viscous layers.

(1ii) Steps (i) and (ii) are repeated until an
acceptable degree of convergence is obtained.
We now attend to the actual form of this interaction,

The Euler equations for steady flow may be
written, in Cartesian coordinates, in the vector

form v
a3 oM
=t j’-;'- 0 (22)
where ot *
924 P u"
pu, + p u_u
' = ' M - p’z ."
Puyl o pu.,+ P

u7,(e+p)

o+ P)
u, e+ p



Also, the steady Navier-Stokes equations may be
written in the vector form

of . d
5_ + f = () (23)
where; 4 ,
r‘ 5 Py , du 9 du
LPUL* P A \'5‘»' +3"i'l - 2% %-ﬁ
,du ou | :
e onun (T e -
4 ,aq’ 3u du
| . \
LR RRAS At RS
.ou Ou" a7
»
» “’“(.3_1.* 3-!-’1 + k 53!
& puy, "
du du
Du’u" o H(}'; + /v
du Bq' duy,
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|
- du, du, du,,
| -
Lufe+p- A(’if'*'ngi % %3

,bu‘ au‘ AT !
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Now, we consider the flow in the immediate
vicinity of the wall, where the viscosity and ther-
mal conductivity are important. We suppose that
this viscous strip is sufficiently thin (compared
to the radius of curvature of the wall), and that
the chordwise extent of the region under considera-
tion is for the present sufficiently small, so that
we are justified in covering this region with a
Cartesian coordinate system (see Fig. 4). An
exact representation of the flow in this region is
given by a solution of the Mavier-Stokes equations.
Let f and g be the vectors constructed from this
solution. Also, we suppose that some solution of
the Euler equations will provide a close approxima-
tion of the exact solution when y » &, and let &
and 4 be the vectors constructed from this inviscid
solution. Having identified the vectors f, g, J,
and lvtth these two solutions, Eqs. (22) and (23)
may be integrated from y=0 to y=§, to give;

[

#5 - ‘50 - . Sa-i J g d'.r (ZA)
(8]
a '6

By - 8, = . 5 Jo f d? (25)

Since the two solutions are taken to coincide for
> b, we may specify 4, = 85+ Eqs. (24) and (25)
y be combined then to give,

)
d
‘-'°+5J°(3-f)d7 (26)
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Eq. (26), which relates the two hypothetical solu-
tions, will serve as a starting point for our dis-
cussion of the solution technique in the viscous
layer.

It is not our intention to solve the Navier-
Stokes equations, therefore, we seek a suitable
approximation of f and g on the interval 0 - ' & 6,
We represent the exact solution by a composite
function, ‘c' where

fc =3 + fb(O) - 30 (27)

These functions are shown in Fig. 4; f _(0) corres-
ponds to a boundary layer solution cnr?led out using
inviscid values at #4= 0 as boundary conditions.
The composite function f 1s constructed in the
spirit of a matched n-ymStotlc expansion. The
function f_ was chosen as an approximation of the
exact solufion for two reasons, First, we expect
that this approach will have greater accuracy than
the usual boundary layer solution. Second, we
employ fc because it has distinct computational
advantages within the context of the iterative pro-
cedure.

Applying Eq. (27) to Eq. (26) gives,
¥
A, = (g0, + [ @ -0 e o

Eq. (28) can be used as the basis for an iterative
solution technique in the following way:

(1) (ﬁl)o, (H2), and (A4) are initially
set equal to zero, and an 1nvlsc18 solution is
carried out.

(ii) Using inviscid values at 7’0, a boundary
layer solution is performed.

(1ii) Using values obtained from the inviscid
and boundary layer solutions, Eq. (28) {s solved
for new values of (A1) , (A2) and (/%) . The
vector component (/ 3)°°wh1ch contains the surface
pressure is evaluated using the method of characte-
ristics. Since Eq. (28) requires only surface
values from the inviscid solutica, a minimum of
interpolation is required between the viscous and
inviscid grid systems.

The interaction model which has been described
here can be conveniently used with those inviscid
solution procedures, which are currently employed
to solve the Euler equations in primitive variable
form. There is an alternative method for dealing
with the numerical viscous-inviscid interaction
when the inviscid flow is rotational, that being
the displacement thickness approach, but it is not
conveniently used in a problem involving complica-
ted geometries. In such an approach, bodies are
physically thickened, and it would be necessary to
recompute the geometry of the problem at each step
in the iteration. In the present method, the
geometry of the solid surface must be dealt with
only once, and remains unchanged throughout the
iterative process.

The form which the interaction takes in the
blade wake is similar to the case of a wall boun-
dary layer, which has been described. The details
of the wake calculation are not reproduced here;



tor these the reader is referred to Reference 22.
Ve Numerical Results

In this section we present some result: obtain-
ed by applying this interactive calculation proce-
dure to the flow in a cascade of zero-thickness
airfoils, whose shape is that of a NACA, a = .4 mean
line, with CL( = .1 (see Ref. 24). The stagger
angle of the cascade is 159, the chordlength of the
blades is .3 ft., and the blade spacing is .2 ft.
We consider a subsonic flow of air through this
cascade, The calculation takes place on a cylindri-
cal surface of radius 2.5 ft., and we consider both
a rotor passage (angular velocity, 200 rad/sec),
and a stator passage (zero angular velocity)., Due
to the nature of the equations which we are solving
these two cases will differ only in the radial
velocities in the boundary layers and wake which
result,

In Figs. 5-8, values of the streomwise velocity
(1) and density (p) are plotted along several § =
const, grid lines, where the location of the suction
surface corresponds to @ = 0 ft,, and the location
of the pressure surface corresponds to @ = .2 ft.
The viscous=-inviscid iterative scheme was run for
four global iterations, and values from the first
and last inviscid solutions are seen in these figu-
res. The leading edge is denoted as L.E., and the
trailing edge by T.E. A noteworthy feature of these
plots may be seen by comparing the first and last
inviscid solution values. Once the injection-
suction boundary conditions are applied, an effec-
tive bluntness is introduced at the iecading edge.
Also, an effective displacement body surrounds the
trailing edge. The new situation is numerically
less severe, and it may be seen that a small wavi-
ness in the solution, which is apparent upstream
and downstream of the blades, now disappears. The
final solution values at the leading edge bchave
as though a stagnation point had developed in the
vicinity.

An important advantage of an interactive calcu-
lation over a single inviscid calcuiation with a
boundary layer added can be seen by comparing the
flow in the immediate vicinity of the trailing edge
in Figs. 5 and 6. At this location the interaction
between the viscous flow and the inviscid flow is
strong, and the shape of the velocity profile
changes significantly between the first and last
inviscid solutions., In Fig. 6, a rapid deceleration
of the fluid is indicated slightly downstream of
the trailing edge. A single inviscid solutionwith
a boundary layer added would not resolve this
behavior.

In Figs. 9 and 10, we plot rotor and stator
radial velocity profiles for pressure surface
boundary layer and wake locations. The plots in
Figs. 9 and 10 are taken from the final (fourth)
viscous solution at locations about one third of a
chord length behind the leading and trailing edges
respectively. 1t may be seen that there is a large
difference between the profiles obtained for a
rotor passage and a stator passage, at both wake
and boundary layer locations. For a rotor passage
the velocities are radially outward, and for a
stator passage the velocities are radially inward.
Also, it may be noted that generally larger values
of the radial velocity are obtained in the wake
than in the blade boundary layers.

4 Sy~ - wa

As an illustration of the computer program's
successful operation, values of the displacement
thickness (&) are plotted over a portion of the
suction surface, for each of the four viscous solu=-
tions (Fig. 11). We have limited the chordwise
extent of the region undci cons ideration in order
to expand the vertical (L) scale, so that the
convergence characteristics of the global iterative
scheme would be c¢learly visible., The abscissa in
Fig. 11 corresponds to distance along the blade
surface, measured from the leading edge. The be-
havior of successive solutions in Fig. 11 indicates
convergence. Also, it appears that this conver-
gence takes place quite rapidly, sincn the third
and fourth solutions are virtually indistinguish-
able even at this expanded scale.

VI. Discussion

The numerical results of the preceding section
were taken from two solutions (rotor and stator)
which were carried out on an inviscid grid with
90 x 20 dimensious. The two calculations, which
cach required about 22 minutes (C.P.U, time) on a
UNIVAC 1110, were run for four global iterations.
The inviscid calculation procedure accounted for
most of the run tine.

The computer program which has been developed
in the course of this study is currently limited
in its ability to simulate real compressor flows
by the idealizations which have been made. Ideali-
zations such as blades of zero-thickness and
strictly laminar flow have been introdu.ed to
simplify the computational problem, but it is
important to note that these idealizations are not
inherent in our general approach to the viscous-
inviscid interaction. The interactive calculation
procedure which is presented here does not rely
for its successful operation on the geometrical
simplifications which have been made, and even
depends very little on the precise form of the
viscous and inviscid solutions. For example, an
integral boundary laver calculation cauld be sub=-
stituted for the present viscous marching procedure,
or an implicit time marching algorithm used to
solve the inviscid equations, and the overall nature
of the interactive calculation would not be much
affected. This interactive scheme is novel in that
it does not rely solely on the boundary layer dis~
placement thickness, but incorporates information
related to momentum and enthalpy thicknesses as
well., The form of the interactive calculation
procedure conveniently accomodates inviscid solu-
tion procedures which are currently used to solve
the Euler equations in primitive variable form,
and appears to have certain computational advantages
for dealing with the viscous-inviscid interaction
when the inviscid flow is rotational,
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