NASA Contractor Report 145383

```
    SLENDER BODY THEORY PROGRAMMED FOR BODIES WITH ARBITRARY
    CROSS SECTION
    J. Werner and A. R. Krenkel
    POLYTECHNIC INSTITUTE OF NEW YORK
    Farmingdale, NY
(NASA-CR-145383) SLENDER EODY LHEORY N78-26102
pROGRAMMED FOR BODIES wITH ARBIIRARY CBOSS
SECTION (Polytechnic Inst. ci Nea York.)
77 HC AC5/MP AO1 CSCL O1A JaClas
                                    G3/C 2 23366
```

\leadsto
;

```

\section*{SLENDER BODY THEORY PROGRAMMED}

\section*{FOR BODIES WITH ARBITRARY CROSS SECTION}

\section*{by}

\author{
J. Werner and A. R. Krenkel
}

This research was sponsored by the National Aercnautics and Space Administration, Langley Research Center, Hampton, Va.. under Grant NSG-1300

\author{
POLYTECHNIC INSTITUTE OF NEW YORK \\ AERODYNAMICS LABORATORIES \\ February 1978
}

SLENDER BODY THEORY PROGRAMMED
FOR BODIES WITH ARBITRARY CROSS SECTION \(\dagger\)
by

\author{
J. Werner* and A. R. Krenkel* \\ Polytechnic Institute of New York Aerodynamics Laboratories Farmingdale, New York
}

\begin{abstract}
A computer program has been developed for determining the sulsonic pressure, force and moment coefficients for a fuselagetype body using slender body theory. The program is suitanle for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures have been developed which are capable of treating cross sections with corners or regions of large curvature.
\end{abstract}

This research was sponsored by the National Aeronautics and space Administration, Langley Research Center, Hampton, Va., under Grant NSG-1300.
*Associate Professors, Dept. of Mechanical and Aerospace Engineering

\section*{TABLE OF CONTENTS}
Page
Summary ..... 1
Introduction ..... 2
Symbols ..... \(3,4,5\)
Part I - Theory and Development of Numerical Procedures
A. Synopsis of Subsonic Slender Body Theory ..... 6
B. Summary ci Equations, Computational Procedures and ..... 9
Sample Calculations
1. 1 Processing of Surface Data ..... 3
2.) Source Density \(\sigma\) ..... 10
3.) Fotential :- ..... \(\because\)
4.) AKial Potential Derivative \(30 /\) © \(x\) ..... \(: 21\)
5.) Velocity components \(v\), \(w\) and \(q^{2}=v^{2}+w^{2}\) ..... : 3
5.) Pressure Coefficier.t \(C_{p}, g(x), g^{\prime}(x)\) ..... \(: 3\)
7.) Force and Moment coefficients ..... : 5
C. Application to Typical Fuselage ..... \(1 ?\)
Appendix A. Derivation of Equatinns ..... 1.3
References ..... 27
Part II - Fortran Frogram
A. Input ..... 28
1.) Comments ..... 28
2.) List of Fortran Symbols for Input Data ..... 28
3.) Preparation of Input Cards ..... 29
Table of Contents contimued Page
B. Outpat ..... 31
1.) Input parameters ..... 31
2.) \(\sigma, \varphi, y^{\prime}, z^{\prime}\) ..... 31
3.) \(\partial 0 / \partial x\) ..... 32
4.) \(\operatorname{AR}_{10}\left(x_{n}\right), \operatorname{AI}_{10}\left(x_{n}\right)\)
5.) Force and Moment Coefficients, \(g^{\prime}\left(x_{n}\right)\),
Pressure Coefficients-- ..... 32
C. S.mmary of Programmed Equations. ..... 33
1.) Computation of \(\sigma(i, n)\) ..... 33
2.) Computation of \(\varphi(j, n)\) ..... 36
3.) Computation of \((\partial \varphi / \partial x)_{j, n}\) ..... 37
4.) Computation of \(q^{2}(j, n)\) ..... 37
5.) Computation of Cross-sectional Prcperties ..... \(\dot{3}\)
6.) Computation of \(\mathrm{g}^{\prime}(\mathrm{x}), \mathrm{C}_{\mathrm{p}},\left(\mathrm{S}^{\prime}(0)\right.\) assumed \(\left.=0\right)\) ..... 39
7.) Computation of Force and Moment Coéfficients ..... 40
D. Program Listing ..... 8
Part III - Mrdificatinns for Crossections with Corners
A. Discussions ..... 53
B. Definitions ..... 54
1.) Strinyers \(S_{i}\) ..... 54
2.) Corner lines \(i=I C(K)\) ..... 54
3.) Submerged lines \(\operatorname{IBP}(K, n)\), \(\operatorname{IBM}(K, n)\) ..... 54
C. Modifications to the Computational Procedure ..... 55
1.) Collocation points ..... 55
2.) Computation of \(\partial_{v} / \partial x\) ..... 55
3.) Curvature ..... 55
4.) Computation of \(\delta \sigma / \delta x\) ..... 57
5.) \(\mathrm{d} \sigma / \mathrm{ds}\) ..... 57
6.) Matrix Inversion and Summation ..... 58
Figures ..... 59-75

\section*{SUMMARY}

A computer program has been developed to determine the subsonic pressure, force and moment coefficients based on slender body theory for bodies of arbitrary cross section. The program is based on the integral representation of the potential in which the flow in the crossflow plene io. considered to be induced sources distributed about the cross sectionni boundary. Analytical expressions are derived for 0 and its derivaives and the integrals appearing in the se are evaluated by dividing each cross sectional boundary into straight line segments approximating the integrands over these segments. Results for pressure force and moment cocfficicnts have been obtained for circular cone and ogive bodies and compared vith analytical determinations from slender body theory. Results are aiso obtained for a typical "slab-sided" fuselage.

In Part III modifications have been developed which extend the applicability of the program in Pa \(t\) II to crossections with corners or local regions of high curvature.

\section*{INTRODUCTION}

Computerization of ae rodynamic theory has progressed to a point where the flow field analysis of complete aircraft configurations by a single program is now an attainable goal. Programs designed for this purpose do in fact exist, but predictably they are extremely large and abound with subtleties often not evident to the user. Generally, each new application undergoes a "debugging" stage which may in iveelf constitute a major effort. Much of the complexity of these programs is attributable to the level of precision of the underlying theory. Although often impres sive, this precision is not always required. In some stages of preliminary design, for instance, it would be more desirable to sacrifice precision for simplicity. One approach in this spirit is to replace the commonly employed exact superposition method which panels the entire aircraft surface, placing appropriate singularities at each panel, with linearized theories involving only solutions of a local two-dimensional potentia? equation. In the exact theories a determination of the singularity strengahs required to satisfy boundary conditions leads to the necessity of inverting very large matrices. The quasi-two-dimensional nature of linearized theories on the other hand considerably reduces the size of the matrices encountered and consequently places far less demand upon computer capabilities.

It is the purpose here to develop programs based of slender body theory, utilizing two-dimersional singularities distributed along a cioss sectionil contour to solve for the required potential function in the cross flow plane. Such an approach is felt to be particularly adaptatle to the formulation of the interaction problems encountered in the analysis of complete aircraft configurations.

\section*{SYMBOLS}
\begin{tabular}{|c|c|}
\hline \(\mathbf{A}_{1}\) & Coefficient of doublet term in expansion of complex Potential W. \\
\hline C(x) & Cross sectional boundary at station x . \\
\hline \(C_{L}, C_{Y}\) & Lift and side force coefficients. \\
\hline \(C_{M}, C_{N}\) & Pitchrand Yaw moment coefficients about nose of body. \\
\hline \(C_{n}\) & Cross sectional boundary at \(x=x_{n}\). \\
\hline \(C_{p}\) & Pressure coefficient ( \(\mathrm{p}-\mathrm{p}_{0}\) )/(oU \(\left.\mathrm{U}^{2} / 2\right)\) \\
\hline \[
F_{y^{\prime}} F_{z}
\] & Horizontal and Vertical Force components for body of unit length. \\
\hline \(g(x)\) & Function of \(x\) derived from outer solution to potential equation. \\
\hline h & Radius of curvature of cross sectional boundary. \\
\hline i & Index of points along cross sectional boundary \(C\). \\
\hline i, i+4! & Segment of C from i to \(\mathrm{i}+1\). \\
\hline iL & Total number of segments into which C. is divided. \\
\hline \(1(\mathrm{i}, \mathrm{n}\) ) & Length of segment i, i+1 on \(C_{n}\). \\
\hline M & Mach number \\
\hline \(\mathrm{M}_{\mathbf{y}}, \mathrm{M}_{\mathbf{z}}\) & Components of moments about nose for body of unit length. \\
\hline \(\mathrm{n}(\mathrm{i}, \mathrm{n})\) & Inner unit normal to segment i, i+1.. \\
\hline N & Total number of stations \(\mathrm{x}_{\mathrm{n}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline P & Pressure \\
\hline \(p_{0}\) & Htree Streàm Pressure \\
\hline \(q^{2}\) & \(v^{3}+w^{2}\) \\
\hline \(R(i, j, n)\) & Displacement from pt \(P_{i, n}\) to pt \(P_{j, n}^{\prime}\) on \(C_{n}\). \\
\hline \(\overline{\mathbf{R}} \mathbf{( i . j . ~ n ) ~}\) & Vector displacement from \(P_{i, n}\) to \(P_{j, n}^{\prime}\). \\
\hline s & Distance along \(\mathrm{C}_{\mathrm{n}}{ }^{\text {- }}\) \\
\hline S & Cross sectiona: area. \\
\hline \(\bar{u}(i, n)\) & Unit tangent to segment \(\mathrm{i}, \mathrm{i}+1\). \\
\hline U & Fiee Stream Velocity. \\
\hline \(\mathbf{r}\) & Normalized Radial Polar Coordinate. \\
\hline v & Normalized y component of velocity in wind azes. \\
\hline w & Normalized \(z\) component of velocity in wind axes. \\
\hline W & Normalized Complex Potential Function. \\
\hline i & Normalized Longitudinal Function. \\
\hline \(y, z\) & Wind axescoordinates in transverse plane. \\
\hline Z & \(y+i z\) \\
\hline 28 & Complex location of cross sectional centroid. \\
\hline \(\alpha\) & Angle of attack. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\beta\) & \(\sqrt{1-M^{2}}\) \\
\hline 8 () & Differential corresponding to displacement normal to \(\mathrm{C}_{\mathrm{n}}\). \\
\hline \(8(i, j, n)\) & Angle subtended by \(\mathrm{i}_{\text {, }} \mathbf{i + h}\) at pt. j at station \(\mathrm{m}_{\mathrm{n}}\). (see Fig. 3) \\
\hline \(\varepsilon\) & Angular Polar coordinate. \\
\hline \(\sigma\) & 2 Dimensional source density. \\
\hline \(x\) & Value of \(\theta\) at point \(P_{i, n}\). \\
\hline \(\theta\) & Angle between tangent to \(C\) and \(y\) axis \\
\hline \(\eta\) & Normal displacement from mid point of \(i, i+1\) on \(C_{n}\) to \(i, i+1\) on \(C_{n+1}\). \\
\hline \(\varphi\) & Perturbation potential. \\
\hline \(\varphi_{0}\) & \(\varphi+g(x)\) \\
\hline \(\Phi\) & \(U \varphi_{0}\) \\
\hline \(\delta \nu_{0} / \delta x\) & Body slope in body axis frame of reference. \\
\hline \(8 v / 8 x\) & Body slcpe in wind axis frame of reference. \\
\hline \(\zeta\) & Complex position on C in wind axes. \\
\hline \(\delta_{0}\) & Complex position on C in body axes. \\
\hline \(\Psi\) & Yaw angle. \\
\hline
\end{tabular}

\section*{PART I}

\section*{THEORY AND DEVELOPMENT OF NUMERICAL PROCEDURES}

\section*{A. Syı.opsis of Subsonic Slender Body Theory}

According to slender bcdy theory (ref. 1), the flow disturbancè'. . near a sufficiently regular 3-D body may be represented by a potential in the form:
\[
\begin{equation*}
\Phi(x y z)=U \varphi_{0}=U[\varphi(x y z)+g(x)] \tag{1}
\end{equation*}
\]
\(\varphi(x y z)\) is a solution of the \(2-D\) Laplace equation in the \(y, z\) cross flow plane satisfying the following boundarv conditions appropriate to wind axes*
\[
\begin{align*}
& \nabla \varphi=0 \text { at } \infty  \tag{2a}\\
& \frac{\partial \varphi}{\partial n}=-\frac{\partial \nu}{\partial x} \text { on } C(x) \tag{2b}
\end{align*}
\]
\(C(x), n\), and "beíng defined in Fig. (1). A geṇeral solution for \(\varphi\) ray be written as the rial part of a complex potential function \(W(Z ;\) with \(Z=y+i z\).
\[
\begin{equation*}
\varphi=\operatorname{ReW}=\operatorname{Re}\left[A_{0}(x) \ln Z+\sum_{n}^{\infty} A_{n}(x) / Z^{n}\right] \tag{3}
\end{equation*}
\]

A useful alternative representation of \(s\) and \(W\) is obtainable with the zid of Gran's theorem. (ref. こ)
\[
\begin{equation*}
P=\operatorname{Re} W=-2 \operatorname{Re} \oint_{c(x)}^{\oint} \sigma(\zeta) \ln (Z-\zeta) d s \tag{4}
\end{equation*}
\]
where \(\sigma(\zeta)\) is a "suurce' density for values of \(\zeta=y_{c}+i z_{c}\) ( \(y_{c}, s_{c}\) )
being coordinates of a point on the contour \(c(x)\).

Although wind \(\begin{gathered}\text { xes } \\ \text { have been adopted as a reference, the computations }\end{gathered}\) have been formitaled in terms of input data obtained from a body axes frame of reference. This avoids the necessity of generating new input data for each change in bouy \(i: i\) itude.

The function \(g(x)\) is obtained by matching \(\Phi\) of \(E q\). (l) whirh is -alid in the neighborhood of the body with an appropriate "outer' solition. \(g(x)\) is then found to depend explicitly on the longitudinal variation of cros: sectional areas \(S(x)\), i.e.:
\[
\begin{align*}
g(x)= & \frac{1}{2 \pi}\left[S^{\prime}(x) \ln (\beta / 2)-\frac{1}{2} \int_{0}^{x} S^{\prime \prime}(t) \ln (x-t) d t+\frac{1}{2} \int_{x}^{1} S^{\prime \prime}(t) \ln (t-x) d t\right. \\
& \left.\quad \frac{S^{\prime}(\theta)}{2} \ln x-\frac{S(1)}{2} \ln (1-x)\right]  \tag{5}\\
\beta= & \sqrt{1 \cdot M^{2}}
\end{align*}
\]

The pressure coefficient, to an approximation consistent rith slendep body theory is given by the expression:
\[
\begin{equation*}
C_{p}=\frac{p-p_{0}}{p U^{2} / 2}=-2 \frac{\partial p_{0}}{\partial x}-\left(\frac{\partial m}{\partial y}\right)^{2}-\left(\frac{\partial m}{\partial z}\right)^{2} \tag{E}
\end{equation*}
\]

The force and moment about the origin on the portion of the body between the nose and station \(x\) are represented by the coefficients:
\[
\begin{align*}
& \frac{F_{y}+i F_{z}}{\partial U^{2}}=2 \pi A_{1}(x)+\frac{d}{d x}\left(S(x) Z_{g}(x)\right)  \tag{7}\\
& \frac{M_{y}+i M_{z}}{\rho U^{2}}=i\left\{x \cdot \frac{F_{y}+i F_{z}}{\rho T^{2}}-2 \pi \int_{0}^{x} A_{l}(t) d t-S(x) Z_{g}(x)\right\} \tag{8}
\end{align*}
\]
where \(Z_{g}(x)=\gamma_{g}+i z_{g}\) repeesents the complex location of the cross sectional centroid at station \(x_{\text {. }}\) and \(A_{1}(x)\) is the coefficient of th. \(1 / 2\) term of Eg. (3). In terms of these force and moment expressions the
more commonly used aerodynamic coefticiunts are written:
\[
\begin{aligned}
& C_{L}=2\left(\frac{F_{z}}{\rho U^{2}}\right) \frac{L^{2}}{S_{r e q}} \\
& C_{y}=2\left(\frac{F_{y}}{\rho U^{2}}\right) \frac{L^{2}}{S_{r e f}} \\
& C_{M}=2\left(\frac{M_{y}}{\rho U^{d}}\right) \frac{L^{3}}{L_{r e f} S_{\text {Yef }}} \\
& C_{N}=-2\left(\frac{M_{z}}{\rho U^{2}}\right) \frac{L^{3}}{L_{\text {ref }} S_{\text {ei }}}
\end{aligned}
\]
where \(=\) body length and \(L_{\text {ref }}, S_{\text {ref }}\) are convenient reference length and area respectively, usually, detemined by the overall configuration to be aralyzed. For this report \(L_{\text {ref }}\) has been chosen to be equal to \(L\) and \(s_{r e f}=L^{2}\).

The redu-tion of computitions of these expressions to a numerical procedure shall be based on the integral representation of given in Eq. (4). The point of departure sha'l be the discretization of ecross sectional boundary into a large numi,er of short linear segments over each of which the soufce \(\& 2 n s i f y\) shall bsumsd cor.itant at a value to be determined by boundapy comations.

\section*{B. Summary of Equations, Computational Procedures and Sample Calculations}

Derivations of the equations presented in this section are given in

\section*{Appendix A.}

Since analytical results for bodies of revolution are readily available computations have been carried out for the purpose of comparison in the cases of a circular cone;
\[
r(x)=x \tan 10^{\circ} \quad 0<x<1
\]
and an "ogive" of circular cross section;
\[
r(x)=x\left(1-\frac{x}{2}\right) \tan 10^{\circ} \quad 0<x<1
\]
both at angle of attack \(\alpha=.1\) and at zero Mach no.
1. Processing of Surface Data

The original data consists of the cross sectional boundaries \(C_{n}\) at each \(x_{n}\) presented in body axes coordinates as shown in Fig. 2. Starting at a convenient station \(x_{n}\) curves \(S_{i}\) are constructed orthogonal to the \(C_{n}\). The intersections of these curves with \(C_{n}\) define a set of points \(P_{i, n}\). The boundary \(C_{n}\) may now be approximated by the .traight line segments \(i\), \(i+1\) between the points \(P_{i, n}\) and \(P_{i+1, n}\). The coordinates ( \(y_{i, n}, z_{i, n}\) ) of the points \(P_{i, n}\) together with the corresponding \(\mathbf{x}_{\mathbf{n}}\) represent the basic input data which defines the surface geometry in the program. Denoting the number of segments in a cross section by iL and the number of stations \(x_{n}\) by \(N\) the computations of this repr have beer carried out for \(\mathrm{N}=10\) and \(\mathrm{iL}=20\).

From the points \(P_{i, n}\) a set of intermediate points \(P_{i, n}^{\prime \prime}\) between \(P_{i, n}\) and \(P_{i+1, n}\) on \(C_{n}\) are derived. It is assumed that the coordinates of \(P_{i, n}^{\prime}\) may be represented by a Taylor's series in terms of the distance from \(P_{i, n}\), i.e.;
\[
\begin{aligned}
y_{i, n}^{\prime} & =y_{i, n}+\left(\frac{d y}{d s}\right)_{i} \Delta_{s}+\left(\frac{d^{2} y}{d s^{9}}\right)_{i} \frac{(\Delta s)^{3}}{2}+\ldots \\
\Delta_{s} & =\bar{P}_{i, n}^{\prime}-P_{i, n}
\end{aligned}
\]

Reduction of this expression to one in terms of the discrete points \(P_{i, n}\) results in the following form (with a corresponding form for \(\mathbf{z}_{\mathrm{i}, \mathrm{n}} \mathrm{n}^{\prime}\) )
\[
y_{i, n}^{\prime}=y_{i, n}+D y_{i} \frac{1(i, n)}{2}+\frac{D D y_{i}}{2}\left(\frac{1(i, n)}{2}\right)^{2}+\ldots
\]
where \(\mathrm{Dy}_{\mathrm{i}}\) is obtained by first computing the divided difference \(\left(y_{i+i, n}-y_{i, n}\right) / 1(i, n)\) and taking this to represent \(d y / d s\) at the intermediate point \(P_{i, n}^{\prime} n^{\text {a distance }} 1(i, n) / 2\) from \(P_{i, n^{*}}\). Linear interpoiation of \(d y / d s\) between \(P_{i-1, n}^{\prime}\) and \(P_{i, n}^{\prime}\) yields approximately dy/ds at \(P_{i, n}\) and this is denoted by \(D y_{i} . D D y_{i}\) is the approximation to \(\left(d^{3} y / d s^{2}\right)_{i}\) determined by operating on \(D y_{i}\) in the same manner. In this report terms up to second order in \(l(i, n)\) have been employed. (Results obtained with \(P_{i, n}^{\prime}\) defined as above have been compared with those for \(P_{i, n}^{\prime}\) defined simply as the mid point of the secant \(i, i+1\) and it was found that the latter case required double the number iL of segments to obtain comparable accuracy).

\section*{2. Source density \(\sigma\)}
\(\sigma\) is determined by requiring that \(\rho\) of Eq. (4) satisfy the boundary condition Eq. (2b) at a point \(P^{\prime}\) of each segment \(i, i+1\) of the boundary. The result of this process is a set of simultaneous equations for the densities \(\sigma(i, n)\) at each segment \(i, i+1\) of \(C_{n}\). There densities may be

\[
\begin{equation*}
\left(\frac{\partial v}{\partial x}\right)_{j, n}=\sum_{i=1}^{i L} A(i, i) \sigma(i, n) \tag{9}
\end{equation*}
\]
where, referring to Fig. 3 for \(R(i, j, n)\) and \(\delta(i, j, n)\)
\[
\begin{aligned}
A(j, i)= & 2\{\sin [\theta(j, n)-\theta(i, n)]][R(i+1, j, n) / R(i, j, n)] \\
& +\delta(i, j, n) \cos [\theta(j, n)-\theta(i, n)]\}
\end{aligned}
\]

The slope \((\partial \nu / \partial x)_{j, n}\) may be written in terms of \(\left(\partial \nu_{0} / \partial x\right)_{j, n}\) referred to \(1 \sim\) body axes and the angles of attack \(\alpha\) and sideslip \(\beta\) (see Fig. (4) )
\[
\begin{equation*}
\left(\frac{\partial v}{\partial x}\right)_{j, n}=\left(\frac{\partial \nu_{0}}{\partial x}\right)_{j, n}+\alpha \cos \theta(j, n)-\Psi \sin \theta(j, n) \tag{10}
\end{equation*}
\]

Computation of \(\left(\partial \nu_{0} / \partial x\right)_{j, n}\) from the surface data is described in Appendix A.

Values of \(\sigma(\mathbf{i}, 10)\) obtained from Eq. (9) in the case of a circular cone at angle of attack are presented in Fig. (5). The analytical solution for \(\sigma\) in the case of bodies of revolution is:
\[
\sigma=-\frac{1}{2 \pi}\left[\frac{S^{\prime}(x) / 2 \pi r}{2}+a \cos \theta\right] .
\]

This result is also presented in Fig. (5) for comparison.

\section*{3. Potential \(\varphi\)}

Once the source density \(\sigma(i, n)\) is determined Eq. (4) yields an explicit representation of \(\varphi\). Integrating over the segments \(i, i+1\) of \(C_{n}\) :
\[
\begin{align*}
& \varphi(j, n)=2 \sum_{i=1}^{i L} \sigma(i, n)\{\bar{R}(i+1, j, n) \bullet \bar{u}(i, n) \ln R(i+1, j, n) \\
&-\bar{R}(i, j, n) \odot \bar{u}(i, n) \operatorname{nR}(i, j, n)-\bar{R}(i, j, n) \bullet \bar{n}(i, n) \delta(i, j, n)+1(i, n)\} \\
&=2 \sum_{i=1}^{i L} \sigma(i, n)\left\{\frac{\Delta p(i, j, n)}{\sigma(i, n)}\right\} \tag{11}
\end{align*}
\]

Although \(\mathrm{N}(\mathrm{j}, \mathrm{n})\) is not of direct interest the auxiliary functions \(\Delta_{\varphi}(\mathbf{i}, \mathbf{j}, \mathrm{n}) / \sigma(\mathrm{i}, \mathrm{n})\) appear in the results for \(\partial_{\varphi} / \partial \mathrm{x}\) and 80 must be computed.

\section*{4. Axial Potential Derivative \(\partial_{0} / \partial x\)}
 first obtain an exact expression which is then approximated by evaluating the result over the segmented boundary. This is felt to be preferable to the procedure of differentiating the approximation to \(\varphi\) given in Eq. (11), Homewers some care must be exercised when differentiating since the path of integration \(C(x)\) of the integral in Eq. (4) is itself a function of \(x\). The details of this process are supplied in Appendix A. The resulting expression for \(\partial \varphi / \partial x\) is found to be:
\[
\begin{align*}
& \frac{\partial \infty}{\partial x}=-2 \operatorname{Re}\left\{\begin{array}{l}
\dot{\oint} \\
\dot{C}(x)
\end{array}\left[\left(\frac{\delta \sigma}{\delta x}\right)_{0}+\frac{d \sigma}{\alpha s}(\alpha \sin \theta+\Psi \cos \theta)+\frac{\sigma}{h}\left(\frac{\delta v}{\delta x}\right)\right] \text { inn }(Z-\sigma) d s\right. \\
& \left.+i \oint_{C(x)} \sigma\left(\frac{\delta v}{\partial x}\right) \frac{d \zeta}{Z-\zeta}\right\} . \tag{12}
\end{align*}
\]
which after integration over the segmented boundary \(C_{n}\) yields:
\[
\begin{gather*}
\frac{\partial \varphi}{\partial x_{j, n}}=2 \sum_{1}^{i L}\left\{\left[\left(\frac{\delta \sigma}{\delta x}\right)_{0}+(\alpha \sin \theta+\beta \cos \theta) \frac{d \sigma}{d s}+\frac{\sigma}{h}\left(\frac{\delta v}{\delta x}\right)\right]_{i, n}\left\{\frac{\Delta \varphi(i, j, n)}{\sigma(i, n)}\right\}\right. \\
\left.-\sigma(i, n)\left(\frac{\delta v}{\delta x}\right)_{i, n} \delta(i, j, n)\right\} \tag{13}
\end{gather*}
\]

The radius of curvature \(h(i, n)\) and the derivatives \((\delta \sigma / \delta x)_{0}, d^{\partial} / d s\), \(\delta_{\mathrm{V}} / \delta x\) are evaluated at the mid points of the segments \(i, i+1\) by interpolation procedures described in Appendix A.

Calculations of \(\partial \varphi /\) ox for the circular cone at angle of attack are presented in Fig. (6). For comparison, the analytical result for bodies of revolution is:
\[
\begin{equation*}
\frac{\partial \varphi}{\partial x}=\frac{S^{\prime \prime}(x)}{2 \pi} \ln r-3 a \frac{S^{\prime}(x)}{2 \pi r} \cos \theta-a^{2} \frac{S(x)}{\pi r^{2}} \cos 2 \theta \tag{14}
\end{equation*}
\]

A plot of Eq. (14) for points on the cone surface is also provided in Fig. (6).

\section*{5. Velocity Components \(v, w\) and \(q^{2}=v^{2}+w^{2}\)}

I• Differentiation of Eq. (4) with respect to \(Z\) yields the complex velocity function
\[
\begin{equation*}
v-i w=-2 \dot{\oplus} \frac{\sigma(\zeta)}{Z-\zeta} d s \tag{15}
\end{equation*}
\]
which, upon integration over the segmented boundary yields:
\[
\begin{equation*}
v(j, n)-i w(j, n)=2 \sum_{i} \sigma(i, n) e^{-i \theta(i, n)}\left[\ln \frac{R(i+1, j, n)}{R(i, j, n)}+i \delta(i, j, n)\right] \tag{16}
\end{equation*}
\]
\(q^{3}\) is most conveniently found by noting that it is the sum of the squares of the normal and tangential velocity components. Thus, upon introducing the boundary condition Eq. (2b):
\[
\begin{equation*}
q^{2}=\left(\frac{\partial v}{\partial x}\right)^{2}+(v \cos \theta+w \sin \theta)^{2} \tag{17}
\end{equation*}
\]
on the segment \(j, j+1\) this becomes
\[
\begin{gather*}
q^{2}(j, n)=\left(\frac{\partial v}{\partial x}\right)_{j, n}^{a}+\left\{2 \sum _ { i } \sigma ( i , n ) \left\{\cos (\theta(j, n)-\theta(i, n)) \ln \frac{R(i+1, j, n)}{R(i, j, n)}\right.\right. \\
-\delta(i, j, n) \sin (\theta(j, n)-\theta(i, n))]\} \tag{18}
\end{gather*}
\]
6. Pressure Coefficient \(C_{p}\) and \(g^{\prime}(x)\)
\(C_{p} d c\) pends upon \(q^{2}\) and \(\partial_{n} / \partial x\) as determined above and the derivat \(g^{\prime}(x)\). Differentiation of \(g(x)\) must be carried out with due concern for the nature of the improper integrals appearing in Eq: (5). The result of the differentiation process as given in Appendix A, Sect. (5) is:
\[
\begin{align*}
g^{\prime}\left(y_{n}\right)= & \frac{1}{4 \pi}\left\{S^{\prime \prime}(x) \ln \left(\frac{1-M^{2}}{4}\right)+I_{n}\left(x_{n}\right)-J_{n}\left(x_{n}\right)\right. \\
& \left.-\frac{S^{\prime}(0)}{x_{n}}+\frac{S^{\prime}(1)}{1-x_{n}}-S^{\prime \prime}(0) \ln x_{n}-S^{\prime}(1) \ln \left(1-x_{n}\right)\right\} \tag{19}
\end{align*}
\]
where
\[
\begin{aligned}
& I_{n}= \int_{x_{n}}^{1} \ln \left(x_{n}-t\right) S^{\prime \prime \prime}(t, d t= \\
& \sum_{m=n}^{N-1}\left(s_{m+1}^{\prime \prime}-S_{m}^{\prime \prime} j \ln \left(x_{m}^{\prime}-x_{n}\right)\right. \\
& J_{n}=\int_{i}^{j} \ln n^{\prime}\left(x_{n}-t\right) S^{\prime \prime \prime}(t) d t=\sum_{m=0}^{n-1}\left(S_{m+1}^{\prime \prime}-S_{m}^{\prime \prime}\right) \ln \left(x_{n}-x_{m}^{\prime}\right) \\
& x_{m}^{\prime}=\left(x_{m+1}+x_{m}\right) / 2 .
\end{aligned}
\]

To compute the second derivatives of the cross sectional area required for \(g^{\prime}(x)\) the first derivatives at \(x_{m}^{\prime}\) are found by finite differences between \(\dot{x}_{m}\) and \(x_{m+1}\). Second derivatives \(S^{\prime \prime}\left(x_{m}^{\prime \prime}\right)\) at \(x^{\prime \prime}(m)=\left(\mathcal{X}_{\mathrm{m}+1}^{\prime}+k_{m}^{\prime}\right) / 2\) are then found by finite differences between \(S^{\prime}\) at \(x_{m}^{\prime}\) and \(x_{m+1}^{\prime}\). Finally \(S^{\prime \prime}\left(x_{m}\right)\) is determined by linear interpolation of \(S^{\prime \prime}\left(X_{m}^{\prime \prime}\right)\) between \(X_{m}^{\prime \prime}\) and \(x_{m+1}^{\prime \prime}\).

Because of the possible singularity at \(x=0\) the results are sensitive to the value of \(S^{\prime \prime}(0)\). Rather than compute this second derivative from discrete data it is assumed that the nose of the body may be specified analytically and that an analytically derived value is available for \(S^{\prime \prime}(0)\). The pressure coefficient
\[
\begin{equation*}
C_{p}=\frac{p-p_{0}}{\rho U^{2} / 2}=-2\left(\frac{\partial x}{\partial x}+g^{\prime}(x)\right)-q^{2} \tag{20}
\end{equation*}
\]
may now be computed. The computational precision may be evaluated by romparison with the analytical results for a conical body of revolutionar. In this special case we obtain for points on the surface of the body
\[
\begin{equation*}
g^{\prime}(x)=-\frac{S^{\prime \prime}(x)}{2 \pi} \ln (2 \sqrt{x(1-x)})+\frac{S^{\prime}(1)}{1-x} \cdot \frac{1}{4 \pi} \tag{21}
\end{equation*}
\]
and
\[
\begin{equation*}
q^{2}=\left(\frac{S^{\prime}(x)}{2 \pi r}\right)^{2}+2 \alpha \frac{S^{\prime}(x)}{2 \pi r} \cos \theta+a^{2} \tag{22}
\end{equation*}
\]
with \(\partial_{\varphi} / \partial_{x}\) as given by Eq. (14).

Compribed values of \(C_{p}\) for the conical body are presented in Fig. (7) together with the analytical results obtained from Eq. (20) and Eqs. (14, 21, 22).

\section*{7. Force and Moment Coefficients}

From Eqs. \((7,8)\) for the force and moment coefficients it is seen that a determination of the "doublet" strength \(A_{1}(x)\) is required. This term represents the coefficient of \(1 / Z\) in the expansion of the complex potential \(W(Z)\) about the origin (see Eq. (3) ). \(A_{1}(x)\) as derived in Appendix A,Sect. (3) is given by:
\[
\begin{equation*}
A_{1}\left(x_{n}\right)=A_{10}\left(x_{n}\right)+(\Psi+i \alpha) x_{n} \frac{S^{\prime}\left(x_{n}\right)}{2 \pi} \tag{23}
\end{equation*}
\]
where
\[
A_{10}\left(x_{n}\right)=2 \sum_{i} \sigma(i, n) 1(i, n)\left(y_{i, n}^{\prime}+i z_{i, n}^{\prime}\right)
\]

To obtain force and moment coefficients \(A_{1}(x)\) is substituted into Eqs. (7) Ind (8) which may now be written in a more convenient form by introducing. the centroid location \(\mathrm{Z}_{\mathrm{g}}\) in terms of body axes coordinates.
\[
\begin{equation*}
z_{g}=z_{g o}-(i a+\Psi) x \tag{24}
\end{equation*}
\]

The resulting force and moment equations are:
\[
\begin{align*}
& \frac{F_{y}+i F_{z}}{\rho U^{2}}=2 \pi A_{10}(x)-(\Psi+i \alpha) S+\left(Z_{g o} S\right)^{\prime}  \tag{25}\\
& \frac{M_{y}+i M_{z}}{\rho U^{0}}=i\left\{x \frac{F_{y}+i F_{z}}{\rho U^{2}}-\int_{0}^{x}\left[2 \pi A_{10}(x)-(\Psi+i \alpha) S\right] d x-Z_{g o} S\right\} . \tag{26}
\end{align*}
\]

Numerical evaluation of the integral in the expression for the moment coefficient is carried out by the trapezoidal rule using values of \(A_{10}\left(x_{n}\right)\) and \(S\left(x_{n}\right)\) obtained at each of the stations \(x_{n}\). Computation of \(Z_{g o}(x) S(x)\)
is described in Appendix \(A\). The derivative of \(Z_{p o} S\) at \(x_{n}\) is obtained by first computing the divided difference between stations \(x_{n}\), and \(x_{n+1}\), then letting this represent \(\left(Z_{g o} S\right)^{\prime}\) at \(x_{n}^{\prime}\). The derivative at \(x_{n}\) is determined by linear interpolation of \(\left[\mathrm{Z}_{\mathrm{g}} \mathrm{s}^{\prime}\left(\mathrm{x}_{\mathrm{n}}^{\prime}\right)\right]\) between \(\mathrm{x}_{\mathrm{n}}^{\prime}\) and \(\mathrm{x}_{\mathrm{n}+1}^{\prime}\).

Analytical results in the case of bodies of revolution at angie of attack a are particularly simple:
\[
\begin{align*}
& \frac{F_{z}}{\rho U^{2}}=\alpha S(x)  \tag{27}\\
& \frac{M_{y}}{\rho U^{2}}=-\alpha(x S(x)-V(x)) \tag{28}
\end{align*}
\]
where \(V(x)\) is the volume of the body up to the station \(x\).
Computational results for the cone and ogive bodies of revolution
at \(\alpha=-1\) are presented in Figs. 8 and 9, together with plots of Eqs. (27)
and (28) for comparison. There results are presented in terms of the coef-
ficients \(C_{L}(x)\), and \(C_{M}(x)\) defined at the end of Section \(A\).

\section*{C. Application to Typical Fuselage}

A typical "sl b-sided" fuselage together with 'retailst ofraiis of the geometry, is shown in Fig. 10. Cross-sections have been made of straight lines and circular arcs while the profile is composed of straight lines and parabolic arcs. Stations \(x_{n}\) have been taken closer together. toward the rear of the body to p: nmote a more accurate determination of total force and moment. Stations are situated farther apart over the center section since there is no change in cross -section for \(1 / 3<x<2 / 3\).

Processing of the surface data in accordance with paragraph 1 of section B is shown in Fig. 11.

Results of the computation of pressure coe.ficient, force coefficient and moment coefficient are given in Figs. 12 and 13.

\section*{APPENDIX A \\ DERIVATIONS}

\section*{1. Source Strength \(\sigma\)}

Computation of \(\sigma(i, n)\) over the segment \(i, i+1\) proceeds by applying the boundary condition Eq. (2b) at each segment of \(C_{n}\). If \(\nabla_{\varphi}=\bar{q}=\bar{j} v+\bar{k} w\) represents the velocity vector, the corresponding complex velocity in the crossflow plane is obtained by differentiation of \(W\) in Eq. (4) with respect to Z:
\[
\begin{equation*}
v-i w=-2 \oint \frac{\sigma(\zeta) d s}{Z-\zeta} \tag{Al}
\end{equation*}
\]

The contribution by the sources located on segment \(i, i+1\) to the velocity at \(P_{j, n}^{\prime}\) is first evaluated. Noting that \(i, i+1\) makes an angle \(\theta(i, n)\) with respect to the horizontal axis, we have
\[
d \zeta=d s e^{i \theta(i, n)}
\]
and the contribution to the integral in Eq. (Al) may be written:
\[
\begin{equation*}
\Delta[v(j, n)-i w(j, n)]=-2 \sigma(i, n) e^{-i \theta(i, n)} \int_{\zeta_{i, n}}^{\zeta_{i+1, n}} \frac{d \zeta}{Z_{j, n}-\zeta} \tag{A2}
\end{equation*}
\]

After integration of the last term and summation over all contributing segments, the result may be written:
\[
\begin{equation*}
v(j, n)-i w(j, n)=2 \sum_{i} \sigma(i, n) e^{-i \theta(i, n)}\left[\ln \frac{R(i+1, j, n)}{R(i, j, n)}+i \delta(i, j, n)\right] . \tag{A3}
\end{equation*}
\]
in which, referring to Fig. 3, the quantities \(R(i, j, n)\) and \(\delta(i, j, n)\) are defined by the relationships:
\[
\begin{aligned}
& R(i, j, n) e^{i \psi(i, j, n)}=Z_{j, n}^{\prime}-\zeta_{i, n} \\
& \delta(i, j, n)=\psi^{\prime}(i, j, n)-\psi(i, j, n)
\end{aligned}
\]

To insure uniqueness of the complex velocity, care must be
exercised in assigning values to the angles \(\psi(i, j, n)\) and \(\psi^{\prime}(i, j, n)\). Referring to Fig. 3, these are measured counter-clockwise from the positive \(y\) axis so that when facing from \(P_{i, n}\) to \(P_{i+1, n}\), a point \(P_{j, n}^{\prime}\) just to the left of \(i, i+1\) shall define an angle \(\psi(i, j, n)=\theta(i, n)\). As \(P_{j, n}^{\prime}\) traverses a path around \(P_{i, n}\) to a point just to the right of \(i, i+1, W(i, j, n)\) increases from \(\theta_{(i, n)}\) to \(\theta(i, n)+2 \pi\). The same holds true for \(\psi^{\prime}(i, j, n)\) as \(P_{j, n}^{\prime}\) traverses a path aroung \(P_{i+1, n} n^{\text {. }}\) In consequence of the se definitions \(\delta(i, j, n)\) becomes \(-\pi\) when approaching \(i, i+1\) from the right and \(\pi\) when approaching from the left. This discontinuity reflects that exhibited by the stream function upon traversing any closed path which encloses a distribution of finite sources.

From the boundary condition Eq. (2b)s we have:
\[
\begin{equation*}
\left(\frac{\partial v}{\partial x}\right)_{j, n}=v(j, n) \sin \theta(j, n)-w(j, n) \cos \theta(j, n) \tag{A4}
\end{equation*}
\]

After substitution of \(v\) and \(w\) from Eq. (A3), this last expression becomes
\[
\begin{equation*}
\left(\frac{\partial \nu}{\partial x}\right)_{j, n}=\sum_{i} a(j, i) \sigma(i, n) \tag{A5}
\end{equation*}
\]
where
\[
\begin{aligned}
a(j, i)= & 2\left\{\sin (\theta(j, n)-\theta(i, n)) \ln \frac{R(i+1, j, n)}{R(i, j, n)}\right. \\
& +\delta(i, j, n) \cos (\theta(j, n)-\theta(i, n))\}
\end{aligned}
\]

In addition, we see from Fig. 4 that the slope \(\partial \nu / \partial x\) may be expressed in terms of the body slope \(\partial \nu_{0} / \partial x\) referred to body axes:
\[
\begin{equation*}
\left(\frac{\partial v}{\partial x}\right)_{j, n}=\left(\frac{\partial \nu_{o}}{\partial x}\right)_{j, n}+\alpha \cos \theta(j, n)-\Psi \sin \theta(j, n) \tag{A6}
\end{equation*}
\]
thus eliminating the necessity of constructing a new set of projections similar to Fig, 2 for each set of \(\alpha\) and \(\Psi\). Satisfying Eq. (A5) at each of the
points \(P_{j, n}^{\prime}\) on a given cross-sectional boundary yields a set of equations for \(\sigma(i, n)\).
2. Determination of \(\omega, \partial \infty / \partial x\)

A knowledge of 0 (i, \(n\) ) allows the numerical integration of Eq. (4) for \(\infty\) in a manner similar to that for the complex velocity above:
\[
\begin{equation*}
\sigma(j, n)=-2 \operatorname{Re} \sum_{i} e^{-i \theta(i, n)} \sigma(i, n) \sum_{C_{i, n}}^{\zeta_{i+1, n}} \ln \left(z_{j, n}-\zeta\right) d \zeta \tag{A7}
\end{equation*}
\]

After integration, \(\infty(j, n)\) may be written concisely in the nomenclature of Fig. 3:
\[
\begin{align*}
m(j, n)= & \underset{i}{\sum_{i}} \sigma(i, n)\{\bar{R}(i+1, j, n) \cdot \vec{u}(i, n) \ln R(i+1, j, n) \\
& -\bar{R}(i, j, n) \cdot \vec{u}(i, n) \ln R(i, j, n)-\bar{R}(i, j, n) \cdot \bar{n}(i, n) \delta(i, j, n) \\
& +i(i, n)\}=2 \sum_{i} \sigma(i, n)\left\{\frac{\hat{B}(i, j, n)}{\sigma(i, n)}\right\} \tag{A8}
\end{align*}
\]
in which use has been made of the geometric relationship:
\[
\bar{R}(i, j, n) \cdot \bar{n}(i, n)=\bar{R}(i+1, j, n) \cdot \bar{n}(i, n) .
\]

The derivation of \(\partial_{\infty} / \partial x\) must take into account the fact that the path of integration in Eq. (4) is a function of \(x\). Referring to Fig. 1, we shall distinguish between increments of a dependent variable taken along \(C(x)\) and denoted by \(d()\) and increm•nts taken rormal to \(C\) and denoted by \(\delta(\) ). Differentiation of Eq. (4) then yields
\[
\begin{align*}
\frac{\partial n}{\partial x}=- & 2 \operatorname{Re}\left\{\oint \frac{\delta \sigma}{\delta x} \ln (Z-\zeta) d s-\oint \frac{\sigma(\zeta)}{Z-\zeta} \frac{\delta \zeta}{\delta x} d s\right. \\
& \left.+\oint \sigma(\zeta) \ln (Z-\zeta) \frac{\delta(d s)}{\delta x}\right\} \tag{A9}
\end{align*}
\]

From Fig, 1 it becomes evident that
\[
\begin{equation*}
\theta(\text { de })=0 v i d \theta=\delta M \frac{d s}{h(\delta)} \tag{A10}
\end{equation*}
\]
where \(h(\zeta)\) in the tadits of cupvature of \(C(x)\) at \(\zeta\). In addition, we have from Fig. \(\boldsymbol{l}_{2}\)
\[
\begin{equation*}
\frac{\partial \delta}{\partial x}=\frac{\partial v}{\partial x} e^{i(\theta-\pi / 2)} \tag{All}
\end{equation*}
\]

To evaluate of \(\delta \delta x\) we nate, reforring to Fig. 4,
\[
\begin{equation*}
\frac{\delta \theta}{\delta x}=\lim _{\delta x \rightarrow 0} \frac{\theta^{\prime \prime}-\sigma(i, n)}{\delta x} \tag{A12}
\end{equation*}
\]
whese \(\theta^{\prime \prime}\) denotee the value of \(\theta\) at the point \(P^{\prime \prime}\). The relative displacement between \(P_{i, n}\) and \(P^{\prime \prime}\) is shown in Fig. 4. as it would appear in "wind" axct. However, the computation of has been carried out in a body axis frame refepence. To make use of the results of that computation we note that \(\sigma^{\prime \prime}\) in the wind axis frame corresponds to \(\sigma^{\prime}\) in the body ax's frame. From Fig. 4 thet, we have
\[
\begin{equation*}
\sigma^{\prime \prime} \in \sigma^{\prime}=\sigma(i, n+1)+\frac{d \sigma}{d s}(\alpha \sin \theta+\Psi \cos \theta) \delta x \tag{A<3}
\end{equation*}
\]
which, after substitution into Eq. (A12), leads to the requiped expression,
\[
\begin{equation*}
\frac{\delta \sigma}{\delta x}=\left(\frac{\delta \sigma}{\delta x}\right)_{0}+\frac{d \sigma}{d s} i \alpha \sin \theta+\Psi \cos \theta! \tag{A14}
\end{equation*}
\]
where \(\left(\frac{\delta w}{\delta x}\right)_{0}\) is the de rivative evaluated in the body axis frame. Finally, inteoducing Eqs. (A10). (A11), and (A14) into Eq. (A9).
\[
\begin{align*}
\frac{\partial \hat{O}}{\partial x}=-2 \operatorname{Re}\{\oint & \left\{\left(\frac{\delta \sigma}{\delta x}\right)+\frac{d \sigma}{d s}\left(a \sin \theta+\Psi \cos \theta+\frac{\theta}{\delta} \frac{\delta \nu}{\delta x}\right] \ln (Z-\zeta) d e\right. \\
& \left.+i \oint\left\lceil\sigma \frac{\delta \nu}{\delta x}\right] \frac{d \zeta}{Z-\zeta}\right\} \tag{A15}
\end{align*}
\]

Again, assuming that quantities in the brackets of the integrands are eonstant ovar \(i, 2+1\). the integrations proceed in a seraightforward manner:
\[
\begin{align*}
& \left.-(i, n)\left(\frac{8 v}{8 x}\right)_{i, n} \quad(i, j, n)\right\} \tag{A!6}
\end{align*}
\]
in which we note that \((\delta v / \delta x) \equiv \partial v / \partial x\) as defined in Eq. (A6).
Equations deqining (do/ds), \((\delta \sigma / \delta x)_{0}, \delta v_{0} / \delta x\) and \(l / h\) at the point \(P_{i, n}^{\prime}\) are provided in Sections C-1 and \(\mathbb{C - 3}\) in Part II of this report. Adescription of we comptational process is given here:
a) \(a \sigma / d s-\sigma\) at \(P_{i_{0}} n\) is first obtained by interpolation betwee.l the computed values of \(\sigma(i, n)\) at \(P_{i_{0}}^{\prime} n^{\prime} d \sigma / d s\) at \(P_{i, n}^{\prime}\) is then set equal to the divided diffetence between these interpolated values of \(\sigma\). (see Section C-3 of Part II).
b) \((\delta \subset / \delta x)_{0}\) - the derivative at the mid- poin: \(x_{n}^{\prime}\) of the interval \(x_{n} \cdot x_{n+1}\) is set equal to the divided difference between \(\sigma(i, n)\) and \(\sigma(i, n+1)\). Linear intef polation between these depivatives then yields (80/8x) at \(\lambda_{n}\). (see Fig. 14 and Section C-3 of Papt II).
c) \(\delta v_{0} / 8 x\) - Referfing to Fig. 15, the displacement \(8 r\) is determined by interpolation between \(\& \sum_{i, n}\) and \(x_{i+1, n}\). \(\delta r /\left(x_{n+1}-x_{n}\right)\) then represents \(\alpha_{v_{e}} / 8 x\) at \(x_{n}^{\prime}\). Interpolation between the stations \(x_{n}^{\prime}\) then yields \(8 \nu_{0} / f x\) al \(x_{n}\) (see Section \(C-1\) of Part II).
d) \(1 / h-\theta\) at \(P_{i, n}\) is determined by inverpolation between values of \(\theta(1, n)\) at \(P_{i, n}^{\prime}\). The curvature \(1 / h\) at \(P_{i, n}^{\prime}\) is then set equal to the divided difference between at \(P_{i t, n}\) and \(\theta\) at \(P_{i, n}\). (sec iection \(C-3\) of Papt 11).

\section*{3. "Doublet Strength" \(A_{1}(x)\)}
\(A_{1}(x)\) is the coefficient of the \(1 / 2\) term in theexpansion of the complex potential \(W(Z)\) about the origin (see Eq. (3) ). If the integral representation of \(W\) from Eq. (4) is expanded we find:
\[
\begin{align*}
W(Z)= & (-2 \oint \sigma(\zeta) d s) \ln 2+(2 \oint \zeta \sigma(\zeta) d s) \frac{1}{Z} \\
& +\left(2 \oint \zeta^{2} \sigma(\zeta) d s\right) \frac{1}{Z^{2}}+\ldots \tag{A17}
\end{align*}
\]

Thus, we have for the coefficient of the \(1 / 2\) term:
\[
A_{1}(x)=2 \oint \zeta \sigma(\zeta) d s
\]

Introducing body axes coordinates
\[
\zeta=\zeta_{0}-(i a+F) x
\]
we have
\[
A_{1}(x)=2 \oint_{0} \sigma\left(\zeta_{0}\right) d s-2(i \alpha+\psi) \times \oint_{\oint} \sigma\left(\zeta_{0}\right) d s
\]

The last integral on the right hand side is recognized as the coefficient of the "source" term in the above expansion of \(W(Z)\). According to slender body theory Ref. (1), this is related to the rate of change of cross-sectional area:
\[
2 \oint \sigma\left(\zeta_{0}\right) d s=-\frac{S^{\prime}(x)}{2 T}
\]
our final expression for the "doublet' term is therefore
\[
A_{1}(x)=2 \oint \zeta_{0} \sigma\left(\zeta_{0}\right) d s+(i \alpha+\beta) x \frac{S^{\prime}(x)}{2 \pi}
\]

Integrating over the segmented boundary \(C_{n}\).
\[
\zeta_{0} \sigma\left(\zeta_{0}\right) \mathrm{d} s=\sum_{i} \sigma(i, n) \zeta_{0}^{i+1} d s
\]
the lasi integral may be interpreted as the momer " fite, rc i,i+l about
the origin and may be approximated oy \(\left(y_{i, n}^{\prime} \div i z_{i, n}^{\prime}\right) 1(i, n)\) so that
\[
\begin{equation*}
A_{1}(x)=2 \sum \sigma(i, n) 1(i, n)\left(y_{i, n}^{\prime}+i z_{i, n}^{\prime}\right) \tag{A18}
\end{equation*}
\]
4. Cross-sectional Properties

Computation of \(S\left(x_{n}\right), Z_{g o} S\left(x_{n}\right)\) and their derivatives is accomplished with the aid of Stokes' theorem in the complex plane. Thus,
\[
\begin{align*}
S(x) & =\frac{1}{2 i} \oint \bar{\zeta}_{0} d \zeta_{0}  \tag{A19}\\
z_{g o} S(x) & =\frac{1}{2 i} \oint \zeta_{0} \zeta_{0} d \zeta_{0} \tag{A20}
\end{align*}
\]
which expressions, after integration around \(C_{n}\), yield
\[
\begin{equation*}
S\left(x_{n}\right)=\frac{1}{2} \sum\left(y_{i, n}^{\prime} d z_{i, n}-z_{i, n}^{\prime} d y_{i, n}\right) \tag{A21}
\end{equation*}
\]
and
\[
\begin{equation*}
z_{g o} S(x)=\frac{1}{2} \sum_{i}^{i} r_{i, n}^{2}\left(d z_{i, n}-i d y_{i, n}\right) \tag{A22}
\end{equation*}
\]
where
\[
\begin{aligned}
r_{i, n}^{2} & =\left(y_{i, n}^{\prime}\right)^{2}+\left(z_{i, n}^{\prime}\right)^{2} \\
d z_{i, n} & =z_{i+1, n}-z_{i, n} \\
d y_{i, n} & =y_{i+1, n}-y_{i, n}
\end{aligned}
\]
5. \(g^{\prime}(x)\)

The derivative of \(g(x)\) appears in the expression for the local pressure coefficient, Eq. (6). To avoid the occurrence of singular integrals, differentiation is accomplished by first integrating by parts the integrals appearing in Eq. (5) for \(g(x)\) and then differentiating the resulting expressions
\[
\int_{0}^{x} S^{\prime \prime}(t) \ln (x-t) d t=-S^{\prime \prime}(0)(x-x \ln x)-\int_{0}^{x} S^{\prime \prime \prime}(t)[(x-t)-(x-t) \ln (x-t)] d t
\]
then
\[
\frac{\partial}{\delta x} \int_{0}^{x} S^{\prime \prime}(t) \ln (x-t) d t=S^{\prime \prime}(0) \ln x+\int_{0}^{x} S^{\prime \prime \prime}(t) \ln (x-t) d t
\]
and similarly


Thus, differentiation of Eq. (5) for \(g(x)\) yields:
\[
\begin{aligned}
g^{\prime}(x)= & \frac{1}{2 \pi}\left\{S^{\prime \prime}(x) \ln \left(\frac{\beta}{2}\right)+\frac{1}{2} \int_{x}^{1} S^{\prime \prime \prime}(t) \ln (t-x) d t\right. \\
& -\frac{1}{2} \int_{0}^{x} S^{\prime \prime \prime}(t) \ln (x-t) d t-\frac{S^{\prime}(0)}{2} \cdot \frac{1}{x} \\
& \left.+\frac{S^{\prime}(1)}{2} \cdot \frac{1}{1-x}-\frac{S^{\prime \prime}(0)}{2} \ln x-\frac{S^{\prime \prime}(1)}{2} \ln (1-x)\right\}
\end{aligned}
\]

Expressing the integrals as Stieltjes integrals facilitates their computation.
\[
I_{n}=\int_{x_{n}}^{1} \ln \left(t-x_{n}\right) d S^{\prime \prime}(t)=\sum_{m=n}^{N-1}\left(S_{m+1}^{\prime \prime}-S_{m}^{\prime \prime}\right) \ln \left(x_{n}^{\prime}-x_{n}\right)
\]
and
\[
J_{n}=\int_{0}^{x_{n}} \ln \left(x_{n}-t\right) d S^{\prime \prime}(t)=\sum_{m=0}^{n-1}\left(S_{m+1}^{\prime \prime}-S_{m}^{\prime \prime}\right) \ln \left(x_{n}-x_{m}^{\prime}\right)
\]
where \(x_{m}^{\prime}=\left(x_{m}+x_{m+1}\right) / 2\)
we thus have
\[
\begin{align*}
g^{\prime}\left(x_{n}\right)=\frac{1}{4 \pi}\left\{S^{\prime \prime}\left(x_{n}\right) \ln \left(\frac{1-M^{2}}{4}\right)+I_{n}-J_{n}-\frac{S^{\prime}(0)}{x_{n}}+\frac{S^{\prime}(1)}{1-x_{n}}\right. \\
\left.-S^{\prime \prime}(0) \ln x_{n}-S^{\prime \prime}(1) \ln \left(1-x_{n}\right)\right\} \tag{A26}
\end{align*}
\]

The occurence of singularities in \(g(x)\) and \(g^{\prime}(x)\) at \(x=0,1\) signifies the
failure of slender body theory in these regions unless \(S\) is sufficiently well behaved there i.e:, first and second derivatives equal to 0 . For pointed bodies \(S^{\prime}(0)=0\) and the occurrence of \(S^{\prime}(1)=0\) is common.

\section*{REFERENCES}
1. Ward, G. N.: "Linearized Theory of Steady High Speed Flow." Cambridge University Press, 1955.
2. Hess, J. F. and Smith, A. M. O.: "Calculation of Pot \(n\) ntial Flow About Arbitrary Bodies." Prog. Aeru. J i., Pergamon Press, 1966.

\section*{PART II}

FORTRAN PROGRAM
A. Input
1. Comments

The body axes coordinates \(y_{i, n}, z_{i, n}\) at \(x_{n}\) may be read from cards or computed by a code supplied by the user; the indices IX and IR are set equal to 0 or 1 depending upon the choice made. After the source strength \(\sigma\) is computed the program computes \(\varnothing, \partial_{m} / \partial x, C_{p}\) at the locations \(P_{i, n}^{\prime}\) on the surface. The capability of computing these quantities at arbitrarily specified points on or off the body has also been included to facilitate induced flow studies. Thus \(\omega, \partial_{m} / \partial x, C_{p}\) are computed at \(P_{i, n}^{\prime}\) or at iocations supplied by the user as additional input, depending upon whether the index IYPP is set equal to 0 or 1
2. List of Fortran Symbols for Input Data
\begin{tabular}{ll} 
ALP & \begin{tabular}{l} 
Angle of attack \(\alpha\), positive for nose up attitude relative \\
to wind axes.
\end{tabular} \\
BET & \begin{tabular}{l} 
Angle of yaw \(\Psi\), positive for clockwise rotation \\
about z-axis.
\end{tabular} \\
ACH & Free Stream Mach No. \\
SPPO & \(S^{\prime \prime}(0)\) Second derivative of cross-section area evaluated \\
& at the nose. It is assumed that this is available from \\
aralytical considerations regarding the special geo- \\
SREF & \begin{tabular}{l} 
metry of the nose section.
\end{tabular} \\
ENG & \begin{tabular}{l} 
Dimensional reference area.
\end{tabular} \\
REFL & Dimensional body length.
\end{tabular}
\begin{tabular}{|c|c|}
\hline IYPP & \(=0\) if coordinates of \(P_{i, n}^{\prime}\) are computed by program, \(=1\) if \(P_{i, n}^{\prime}\) are to be read from ingut cards. \\
\hline II. & Number of segments into which a cross-sectional \\
\hline & boundary is divided . \\
\hline NL & Number of longitudinal stations at which cross-sections \\
\hline & are taken. \\
\hline IR & \(=1\) if \(y_{i, n} n^{z_{i, n}}\) are to be read from input cards. \\
\hline & \(=0\) if these cards are to be computed by a code \\
\hline & inserted after statement 111. \\
\hline IX & \(=1\) if \(X_{n}\) are to be read from input cards. \\
\hline & \(=0\) if these stations are to be computed by a codete - \\
\hline & inserted after statement 113. \\
\hline ISYMLR \(=0\) & if contour does not have lateral symmetry \\
\hline \(=1\) & if contour has lateral symmetry \\
\hline ISYMUD \(=0\) & if contour does not have vertical symmetry \\
\hline \(=1\) & if contour has vertical symmetry \\
\hline ISR & if \(\neq 0\) SREF will be defined \(=S(I S R)\) \\
\hline \(\mathbf{X}(\mathbf{N})\) & Dimensional longitudinal coordinates \(\mathrm{x}_{\mathbf{n}}\). \\
\hline \(\mathrm{Y}(\mathrm{I}, \mathrm{N})\) & Dimensional coordinate \(y_{i, n}\) \\
\hline \(\mathrm{Z}(\mathrm{I}, \mathrm{N})\) & Dimensional coordinate \(z_{i, n}\) \\
\hline YPP(1) & Dimensional coordinate of collocation pt. \(y_{i, n}^{\prime} \mathrm{n}^{\prime}\) \\
\hline ZPP(I) & Dimensional coordinate of collocation pt. \(\mathrm{z}_{\mathrm{i}, \mathrm{n}} \mathrm{n}^{\prime}\) \\
\hline 3. Prepar & of Input Cards \\
\hline Card \# & Format Variable \\
\hline 1 & 5E15.8 ALP \\
\hline & BET \\
\hline & ACH \\
\hline & SPPO PAGE IS \\
\hline & SREF OTICTNAL PAGE İ \\
\hline 2 & 5E15.8 \(\begin{aligned} & \text { ENG } \\ & \\ & \text { REFL }\end{aligned}\) \\
\hline
\end{tabular}

IYPP
IL.
NL
IR
IX
ISYMLAR
ISYMUD ISR

The following cards are prepared in the order presented, when the indices IX, IR, IYPP are as specified

If \(\mathrm{IX}=1 \quad\) 10F8.0
X(1)
X(2)
\(\dot{x}(N L)\)

If \(I R=1\)
10F8. 0
If \(\operatorname{ISMLR}=1\), ISYMUD \(=0\), or 1
I= 1 placed in 4th quadrant
\(I=I L\) placed in 3rd quadrant
If \(I S Y M L R=0 \quad\) ISYMUD \(=\mathbf{l}\)
\(I=1\) placed in 1 st quadrant
\(I=I L\) placed in 4th quadrant
If ISYMLR \(=\) ISYMUD \(=0\)
no restriction on placement of \(I=1\)
\begin{tabular}{|c|c|c|}
\hline tion on place & - & \[
Z(2,1)
\] \\
\hline & & \\
\hline & & \[
\dot{Z}(2, N L)
\] \\
\hline & & - \\
\hline & & \[
\dot{Z}(I L, N L)
\] \\
\hline If \(1 Y P P=1\) & 5E15.8 & YPP(1) \\
\hline & & ZPP(1) \\
\hline & & \(1 \mathrm{PP}(2)\) \\
\hline & & ZPP(2) \\
\hline & & - \\
\hline & & YPP(IL) \\
\hline & & \[
\begin{aligned}
& \text { YPP(L) } \\
& \text { Z! (IL) }
\end{aligned}
\] \\
\hline
\end{tabular} 113.

\section*{B. Output}

\section*{1. Input parameters}

The first row of output presents the pertinent input parameters ALPHA, BETA, MACH NO., SPP(0), REF AREA, BODY LENGTH, REF LENGTH.
2. \(0, n_{2} y^{\prime}, z^{\prime}\)
\(\sigma(j, n)\) and \(\sigma(j, n)\) at the location \(y_{j, n}^{\prime} z_{j, n}^{\prime}\) are presented as
follows for \(1 \leq n \leq N\)
n
SIGMA
\[
\begin{aligned}
& \sigma(1, n) \ldots-\cdots(1 L, n) \\
& \sigma(8, n) \ldots-\cdots(7, n)
\end{aligned}
\]

PHI

Y PRIME
z PRIME
\[
\begin{aligned}
& y_{i n}^{\prime} \cdots \cdots \cdots \cdots \cdots \cdots y_{7, n}^{\prime} \\
& z_{i n}^{\prime} \cdots \cdots \cdots z_{7, n}^{\prime} \\
& y_{8, n}^{\prime} \cdots \cdots y_{I L, n}^{\prime} \\
& z_{8, n}^{\prime} \cdots z_{I L, n}^{\prime}
\end{aligned}
\]
3. \(\partial m / \partial x\)
\(\left(\partial \varphi / \partial_{x}\right)_{j, n}\) at the points \(P_{j, n}^{\prime}\) are presented as follows:
D PHI/D X

\((\partial \varphi / \partial x)_{1, N L} \cdots \cdots \cdot \cdots(\partial \varphi / \partial x)_{7, N L}\)
\((\partial \varphi / \partial x)_{8, N L} \cdots(\partial \varphi / \partial x)_{I L}, N L\)
4. \(\mathrm{AR}_{10}\left(\mathrm{x}_{7}\right), \mathrm{AI}_{10}\left(\mathrm{x}_{\mathrm{n}}\right)\)

Real and imaginary parts of the "doublet strength" \(A_{10}\left(x_{n}\right)\) are presented as follows:

\section*{AI AND AR}
\[
\begin{aligned}
& \mathrm{AI}_{10}\left(x_{1}\right), \mathrm{AR}_{10}\left(x_{1}\right), \mathrm{AI}_{10}\left(x_{2}\right), \mathrm{AR}_{10}\left(x_{2}\right) \ldots-\mathrm{AI}_{10}\left(x_{4}\right) \\
& \mathrm{AR}_{10}\left(x_{4}\right) \ldots-\cdots \mathrm{AI}_{10}\left(\mathrm{x}_{\mathrm{N}}\right), \mathrm{AR}_{10}\left(\mathrm{x}_{\mathrm{N}}\right)
\end{aligned}
\]
5. Force and Moment coefficients, \(g^{\prime}\left(x_{n}\right)\), Fressure Coefficient

Pressure coefficient \(C_{p}\) at \(P_{j, n}^{\prime}\) is computed for \(1 \leq n \leq N-1\).
Force and moment coefficients are presented as follows:
\[
\begin{aligned}
& N=n, C Y=C_{y}\left(x_{n}\right), C L=C_{L}\left(x_{n}\right), C N=C_{N}\left(x_{n}^{\prime}\right) \\
& C M=C_{M}\left(x_{n}\right), G P=g^{\prime}\left(x_{n}\right) \\
& c_{p}(1, n) \ldots c_{p}(7, n) \\
& C_{p}(8, n) \ldots C_{p}(I L, n)
\end{aligned}
\]

\section*{C. Summary of Programmed Equations}

These equations are presented in order of use. The Fortran sumbol at the left represents the quantity at the left hand side of each equation.
1) Computation of \(\sigma(i, n)\)

Y(ILP, N)
\[
y_{i L+1, n}=y_{i, n}
\]

Z(ILP, N)
\[
z_{i L+1, n}=x_{i, n}
\]

Y(IIP, N)
\(y_{i L+1}=y_{2, n}\)
Y(IL2, N)
\[
y_{i L+2}=y_{2, n}
\]

Y(IL3, N)
\[
y_{i L+3}=y_{3, n}
\]

Y(IIL, N)
\[
y_{i L+3}=y_{4, n}
\]

FI(ILP, N)
\[
1(i L+1)=1(1, n)
\]

F1(IL2,N)
\[
1(i L+2)=1(2, n)
\]

Fl(IL \(3, N \quad 1(\) iL +3\()=1(3, n)\)

DPY(I)
\[
D^{\prime} y_{i}=\left(y_{i+1, n}-y_{i, n} / 1(i, n) \quad \leq i \leq i L+3\right.
\]

DY(I)
\[
D y_{i}=\frac{D^{\prime} y_{i-1} l(i, n)+D^{\prime} y_{i} 1(i-1, n)}{l(i, n)+i(i-1, n)} \quad 2 \leq i \leq i L_{i+} 3
\]

DPY(I)
\[
D^{\prime \prime} y_{i}=\left(D y_{i+1}-D y_{i}\right) / l(i, n) \quad 2 \leq i: \leq i L+2
\]
\(\mathbf{Y P}(\mathrm{I})\)
\(D D y_{i}=\frac{D^{\prime \prime} y_{i-1} 1(i, n)+D^{\prime \prime} y_{i} 1(i-1, n)}{1(i, n)+1(i-1, n)} \quad 3 \leq i \leq i L+2\)

YP(I)
\[
y_{i}^{\prime}=y_{i, n}+D y_{i} \frac{1(i, n)}{2}+\frac{D D y_{i}}{2}\left(\frac{1(i, n)}{2}\right)^{2} \quad 3 \leq i \leq i L+2
\]
\(Y P(1)\)
\[
y_{1}^{\prime}=y_{i L+1}^{\prime}
\]
\(\mathbf{Y P ( 2 )}\)
\[
y_{2}^{\prime}=y_{i L+2}^{\prime}
\]

The above operations from \(\mathbf{Y}\) (ILP, \(N\) ) to \(Y P(2)\) are repeated for \(Z\) (IIP, N) to \(\mathbf{Z P}(2)\) to obtain \(\mathbf{z}_{i}^{\prime}\).
\(R(I, J)\)
\[
R(i, j, n)=\left[\left(y_{j, n}^{\prime}-y_{i, n}\right)^{2}+\left(z_{j, n}^{\prime}-\varepsilon_{i, n} p^{p}\right]^{\frac{i}{2}}\right.
\]

FL(I, N)
\[
1(i, n)=\left[\left(y_{i+1, n}-y_{i, n}\right)+\left(z_{i+1, n}-z_{i, n}\right)^{)^{\frac{1}{2}}}\right]^{\frac{1}{2}}
\]

ST (I)
\[
\sin \theta(i, n)=\left(z_{i+1, n}-z_{i, n}\right) / 1(i, n)
\]

CT(I)
\[
\cos \theta(i, n)=\left(y_{i+1, n}-y_{i, n}\right) / 1(i, n)
\]

For the computation of angles it is assumed that a computer will obey the following rules:
\[
\begin{aligned}
& 0<\sin ^{-1} \sin \theta<\pi / 2, \\
& \sin \theta(+) \\
&-\pi / 2<\sin ^{-1} \sin \theta<0, \\
& 0<\cos ^{-1} \cos \theta<\pi / 2, \\
& \pi / 2<\cos ^{-1} \cos \theta(-) \\
& \pi / 2 \cos \theta(-) .
\end{aligned}
\]
\(T(I, N) \quad \theta(i, n)=\left\{\begin{array}{l}\sin ^{-1} \sin \theta(i, n) \\ \pi-\sin ^{-1} \sin \theta(i, n) \\ -\sin ^{-1} \sin \theta(i, n) \\ 2 \pi-\sin ^{-1} \sin \theta(i, n)\end{array}\right.\)
AS \(\quad \sin v(i, j, n)=\left(z_{j, n}^{\prime}-z_{i, n}\right) / R(i, j, n)\)
22
\[
\Delta z=z_{j, n}^{\prime}-z_{i, n}
\]

YY
\[
\Delta y=y_{i, n}^{\prime}-y_{i, n}
\]
\(G \quad Y(i, j, n)=\left\{\begin{array}{r}\sin ^{-1} \sin \gamma(i, j, n) \\ \pi-\sin ^{-1} \sin \gamma(i, j, n) \\ \pi-\sin ^{-1} \sin \gamma(i, j, n \\ 2 \pi+\sin ^{-1} \sin \gamma(i, j, n)\end{array}\right.\)
\begin{tabular}{l|l}
\(\Delta z\) & \(\Delta y\) \\
\hline\(\geq 0\) & \(\geq 0\) \\
\(\geq 0\) & \(<0\) \\
\(<0\) & \(<0\) \\
\(<0\) & \(\geq 0\)
\end{tabular}
\(P(J, I) \quad \forall(i, j, n)= \begin{cases}\gamma(i, j, n) & , \quad \gamma(i, j, n)>\theta(i, n) \\ v(i, j, n)+2 & , \quad v(i, j, n) \leq \theta(i, n)\end{cases}\)
PHS \(\quad \forall^{\prime}(i, j, n)= \begin{cases}v(i+1, j, n) & v(i+1, j, n)>\theta(i, n) \\ v(i, j, n) & v(i+1, j, n)=\theta(i, n) \\ v(i+1, j, n)+2 \pi, & v(i+1, j, n)<\theta(i, n)\end{cases}\)
\(D(J, I, N) \quad \delta(i, j, n)=t^{\prime}(i, j n)-t(i, j, n), i \neq j\)
\(D(J, 1, N) \quad \delta(j, j, n)=-\pi\)
The following redefinitions of \(\theta(i, n)\) assure continuity of \(\theta(i, n)\) when passing directly between first and fourth quadrants:
\[
\begin{aligned}
& \theta(i L+1, n)=\theta(1, n) \\
& \Delta \theta=\theta(i+1, n)-\theta(i, n) \\
& \theta(i+1, n)= \begin{cases}\theta(i+1, n)+2 \pi, & \Delta \theta<-\left(\pi+10^{-5}\right) \\
\theta(i+1, n) & , \\
\theta(i+1, n)-2 \pi, & \Delta \theta<\pi\end{cases} \\
& \hline \pi+10^{-5}
\end{aligned} ~ ل
\]

FL(IL+1,N) \(1(\mathrm{iL}+1, n)=1(i, n)\)
\(B E\left(1, N ; \quad x(i+1, n)=\theta(i, n)+\frac{[\theta(i+1, n)-\theta(i, n)] 1(i, n)}{1(i+1, n)+1(i, n)}, 1 \leq i<i L\right.\)
\(\operatorname{BE}(1, \mathrm{~N}) \quad x(1, \mathrm{n})=x(\mathrm{iL}+1, \mathrm{n})-2 \pi\)

DR(I)
\[
\delta v_{0}(i, n)=\left(y_{i, n+1}-y_{i, n}\right) \sin x(i, n)
\]
\[
-\left(z_{i, n+1}-z_{i, n}\right) \cos x(i, n) \quad 1 \leq n \leq n-1
\]
\(\operatorname{DNX}(1) \quad\left(\frac{\delta \pi}{\delta x}\right)=\frac{\left[\delta v_{0}(i, n)+\delta \nu_{0}(i+1, n)\right] / 2}{x_{n+1}-x_{n}} \quad 2 \leq n \leq N-1\)

\[
\begin{aligned}
& 2 \leq n \leq N L
\end{aligned}
\]
\(\operatorname{ON}\left(1, N \quad \quad\left(\frac{\partial v_{0}}{-\frac{3}{2}}\right)_{i, 0}=\left(\frac{8 r_{i}}{8+}\right)_{i, N-1}\right.\)
\(\operatorname{DN}(1,1) \quad\left(\frac{\partial_{1}}{\partial x}\right)_{i_{0}}=\left(\frac{8+}{\partial}\right)_{i_{m}}\)
\(D N\left(I_{*} N\right) \quad\left(\frac{\partial v}{\partial x}\right)_{i, n}=\left(\frac{\partial v_{0}}{\partial y_{i}}\right)_{i_{4} n}+3 \cos \theta(i, n)-Y \sin \theta(i, n)\)
\(65 \mathrm{~T} \quad \sin \hat{(0}(j, n)-(i, n)]=\sin \theta(j, n) \cos \theta(i, n) \cdot \sin \theta(i, n) \cos \theta(j, n)\)
\(\operatorname{ctT} \quad \cos [\theta(i, n)-\theta(i, n)]=\cos \theta(i, n) \cos \theta(i, n)+\sin \theta(i, n) \sin \theta(i, n)\)

AJI 1
\[
\begin{aligned}
a(i, j, n) & =2\left\{\sin [\theta(j, n)-\theta(i, n)] \ln \frac{R(i+1, j, n)}{R(i, j, n)}\right. \\
& +\cos [\theta(j, n)-\theta(i, n)] \delta(i, j, n)
\end{aligned}
\]
\(5 \times 6\{1, M)\)
\[
\sigma\left(i, n=|a(j, i, n)|^{-1}\left|\left(\frac{\partial v}{\partial x}\right)\right|\right.
\]
2) Computation of \(o\left(j_{n} n\right)\)
\(\operatorname{at}\)
\[
\bar{R}(i, j, n) \cdot \bar{u}(i, n)=\left(y_{j, n}^{\prime}-y_{i, n}\right) \cos \theta(i, n)+\left(z_{j, n}^{\prime}-z_{i, n}\right) \sin \bar{\theta}(i, n)
\]
- Ru
\[
\begin{aligned}
\overline{\bar{p}}(i \neq 1, i, n) \cdot \bar{u}(i, n) & =\left(y_{i, n}^{\prime}-y_{i+\ldots, n}\right) \cos \theta(i, n) \\
& +\left(z_{i, n}^{\prime}-x_{i+1, n}\right) \sin (i, n)
\end{aligned}
\]
\(R N\)
\[
\begin{aligned}
\vec{R}\left(i, j_{0} n\right) \cdot \vec{n}\left(i_{4} n\right)= & -\left(y_{i_{4} n}^{\prime}-y_{i_{m} n}\right) \sin (i, n) \\
& *\left(E_{j_{,} n}^{\prime}-z_{i_{n}, n}\right) \cos (i, n)
\end{aligned}
\]
\(\operatorname{DT}(J, \delta, N) \quad\left\{\frac{-(i, j)}{\sigma(i)}\right\} \pm \vec{R}(i+1, j, n) \cdot \vec{u}(i, n) \ln R(i+1, i, n)\)
- \(\vec{P}(i, j, n) \cdot \vec{u}(i, n) \ln R(i, j, n)\)
- \(\vec{R}(i, j, n) \cdot \vec{n}(i, n) \&(i, j, m) \oplus\{(i, m)\)

PH(J)
\[
\sigma(j, n)=2 \sum_{i} \sigma(i, n)\left\{\frac{\Delta\left(\frac{\Delta(i, j, n)}{\sigma(i, n)}\right\}}{}\right.
\]

ORIGNAL PAGE IS OF POUR QLALITY
3) Computation of \(\left(\partial_{0 /} / 3 x\right)_{j_{2}}\) n
\(\operatorname{SIG}(1 L P, N) \sigma(i L+1, n)=\sigma(1, n)\)
SII
\[
\Gamma(i+1, n)=\frac{[\sigma(i+1, n)-c(i, n)] 1(i, n)}{1(i+1, n)+1(i, n)}+\sigma(i, n)
\]

SS \(\quad\left(\frac{d \sigma}{d s}\right)_{i, n}=\frac{\Gamma(i+1, n)-r(i, n)}{1(i, n)}\)
\(\operatorname{XIN}(I) \quad\left(\frac{\Delta \sigma}{\Delta x}\right)_{i, n}=\frac{\sigma(i, n+1)-\sigma(i, n)}{x_{n+1}-x_{n}}\)
\(2 \leq n \leq N-1\)

DSX \(\quad\left(\frac{\delta \sigma}{\delta x}\right)_{o i, n}=\left(\frac{\Delta \sigma}{\Delta x}\right)_{i, n-1}+\left[\left(\frac{\Delta \sigma}{\Delta x}\right)_{i, n}-\left(\frac{\Delta \sigma}{\Delta x}\right)_{i, n-1}\right] \frac{x_{n}-x_{n-1}}{x_{n+1}-x_{n-1}} 2 \leq n \leq N-1\)
D.ix \(\quad\left(\frac{\delta \sigma}{\delta x}\right)_{o i, n}=\left(\frac{\Delta \sigma}{\Delta x}\right)_{i, n-1}\)

RD \(\quad 1 / h(i, n)=\frac{r(i+1, n)-x(i, n)}{l(i, n)}\)
\(\operatorname{TX}(I N) \quad\left(\frac{\partial m}{\partial x}\right)_{i, n}=2 \sum_{i}^{i L} \left\lvert\,\left[\left(\frac{\delta \sigma}{\delta x}\right)_{o i, n}+\left(\alpha \sin \theta(i, n)+\Psi \cos \theta(i, n) j\left(\frac{d \sigma}{d s}\right)_{i, n}\right.\right.\right.\)
\[
\left.+\frac{\sigma(i, n)}{h(i, n)}\left(\frac{\delta v}{\delta x}\right)_{i, n}\right\}\left\{\frac{\Delta n(i, j, n)}{\sigma(i, n)},-\sigma(i, n)\left(\frac{\delta v}{\delta x}\right)_{i, n} \quad \delta(i, j, n)\right\}
\]
4) Computation of \(q^{6}(j, n)\)

Q2(J, N) \(\quad(j, n)=\left(\frac{\partial V}{\partial x}\right)_{j, n}^{2}+\left\{\begin{array}{c}2 \\ i \\ \sigma(i, n)\end{array} \cos (\theta(j, n)-\theta(i, n))\right.\)
\[
\left.\cdot \ln \frac{R(i+1, j, n)}{R(i, j, n)}-\delta(i, j, n) \sin (\theta(j, n)-\theta(i, n) j]\right\}^{2}
\]

\section*{5) Computation of Cross-sectional Properties}
\(\mathbf{Y Z P}\)
\[
r_{i, n}^{2}=\left\langle y_{i, n}^{\prime}\right)^{2}+\left(z_{i, n}^{\prime}\right)^{2}
\]

22
\[
d z_{i, n}=z_{i+1, n}-z_{i, n}
\]
\(Y Y\)
\(\mathbf{S}(\mathbf{N})\)
\[
d y_{i, n}=y_{i+1, n}-y_{i, n}
\]
\[
S\left(x_{n}\right)=\sum_{i}\left(y_{i, n}^{\cdot} d z_{i, n}-v_{i, n}^{\prime} d y_{i, n}\right) / 2
\]

SYG(N)
\[
y_{g o} S\left(x_{n}\right)=\frac{1}{2} \sum_{i} r_{i, n} d z_{i, n}
\]
\(\operatorname{SZA}(N)\)
\[
z_{g 0} S\left(x_{n}\right)=-\frac{1}{2} \sum_{i} r_{i, n}^{2} d y_{i, n}
\]

DSYG \(\quad\) DYS \(_{n}=\frac{y_{g o} S\left(x_{n+1}\right)-y_{g o} S\left(x_{n}\right)}{x_{n+1}-x_{n}} . \quad 1 \leq n \leq N-1\)
\(S Y P \quad\left(y_{g} S\left(x_{n}\right)\right)^{\prime}=D Y S_{n-1}+\left[D Y S_{n}-D Y S_{n-1}\right] \frac{\left(x_{n}-x_{n-1}\right)}{x_{n+1}-x_{n-1}}\)
\[
\mathbf{2} \leq \mathbf{n} \leq N-1
\]

SYP
\[
\left(y_{g} S\left(x_{1}\right)\right)^{\prime}=2 D Y S_{1}-\left(y_{g} S(2)\right)^{\prime}
\]

SYP
\[
\left(y_{g} S\left(x_{N}\right)\right)^{\prime}=2 D Y S_{N-1}-\left(y_{g} S(N-1)\right)^{\prime}
\]
\[
\text { repeat for }\left(z_{g} S\left(x_{n}\right)\right)
\]

SPXP
\[
S^{\prime}\left(x_{m}^{\prime}\right)=\frac{S\left(x_{m+1}\right)-S\left(x_{m}\right)}{x_{m+1}-x_{m}}
\]
\[
1 \leq m \leq N-1
\]
\(X P(J)\)
\[
x_{m}^{\prime}=\left(x_{m+1}+x_{m}\right) / 2
\]
\[
1 \leq m \leq N-1
\]
\(\operatorname{SPPXPP}(J) \quad S^{\prime \prime}\left(x_{1}^{\prime \prime}\right)=\frac{S^{\prime}\left(x_{1}^{\prime}\right)-S\left(x_{1}\right) / x_{1}}{x_{1}^{\prime}-x_{1} / 2}\)
\(\operatorname{SPP} \quad S^{\prime \prime}\left(x_{m}^{\prime \prime}\right)=\frac{S^{\prime}\left(x_{m}^{\prime}\right)-S^{\prime}\left(x_{m-1}^{\prime}\right)}{x_{m}^{\prime}-x_{m-1}^{\prime}}, \quad 2<m<N-1\)

XPP(J)
\[
x_{m}^{\prime \prime}=\left(x_{m-1}^{\prime}+x_{m}^{\prime}:\right.
\]

XPP(1)
\[
x_{1}^{\prime \prime}=\left(x_{1}+x_{2} / 2\right) / 2
\]

SPPX(J)
\[
S_{m}^{\prime \prime}=S^{\prime \prime}\left(x_{m}^{\prime \prime}\right)+\left[S^{\prime \prime}\left(x_{m+1}^{\prime \prime}\right)-S^{\prime \prime}\left(x_{m}^{\prime \prime}\right)\right] \frac{\left(x_{m}-x_{m}^{\prime \prime}\right)}{x_{m+1}^{\prime \prime}-x_{m}^{\prime \prime}}
\]
\[
1 \leq m<N-2
\]

SPPX(NM)
\[
S_{N-1}^{\prime \prime}=S^{\prime \prime}\left(x_{N-1}^{\prime \prime}\right)+\left[S^{\prime \prime}\left(x_{N-1}^{\prime \prime}\right)-S^{\prime \prime}\left(x_{N-2}^{\prime \prime}\right)\right]_{N-1}^{\left(x_{N-1}-x_{N-1}^{\prime \prime}\right)}{x_{N-1}^{\prime \prime}-x_{N-2}^{\prime \prime}}_{\text {( }}^{N}
\]

SPPX(NL)
\[
S_{N}^{*}=S_{N-1}^{\prime \prime}+\left[S_{N-1}^{\prime \prime}-S_{N-2}^{\prime}\right] \frac{\left(x_{N}-x_{N-1}\right)}{x_{N-1}-x_{N-2}}
\]

SPX
\[
S^{\prime}(1)=S^{\prime}\left(x_{N-1}^{\prime}\right)+\left[S^{\prime}\left(x_{N-1}^{\prime}\right)-S^{\prime}\left(x_{N-2}^{\prime}\right)\right] \frac{\left(x_{N}-x_{N-1}^{\prime}\right)}{x_{N-1}^{\prime}-x_{N-2}^{\prime}}
\]
6) Computation of \(g^{\prime}(x), C_{p^{\prime}},\left(S^{\prime}(0)\right.\) assumed \(\left.=0\right)\)

RIN
\[
\begin{aligned}
& I_{n}=\sum_{m=n}^{N-1}\left(S_{m+1}^{\prime \prime}-S_{m}^{\prime \prime}\right) \ln \left(x_{m}^{\prime}-x_{n}\right) \\
& J_{n}=\vdots_{m=0}^{n-1}\left(S_{m+1}^{\prime \prime}-S_{m}^{\prime \prime}\right) \ln \left(x_{n}-x_{m}^{\prime}\right)
\end{aligned}
\]

RJN

GP
\[
\begin{gathered}
g^{\prime}\left(x_{n}\right)=\frac{1}{4 \pi}\left\{S^{\prime \prime}\left(x_{n}\right) \ln \frac{\left(1-M^{2}\right)}{4}+I_{n}-J_{n}+\frac{S^{\prime}(1)}{1-x_{n}}\right. \\
\left.-S^{\prime \prime}(0) \ln x_{n}-S^{\prime \prime}(1) \ln \left(1-x_{n}\right)\right\}
\end{gathered}
\]
\[
1 \leq n \leq N-1
\]

W1(J)
\[
C_{p}(j, n)=-2\left(\frac{\partial \varphi}{\partial x}\right)_{i, n}-q^{2}(j, n)-2 g^{\prime}\left(x_{n}\right)
\]

\section*{7) Computation of Force and Moment Coefficients}

AR(N)
\[
\operatorname{AR}_{10}\left(x_{n}\right)=2 \sum_{i} \sigma(i, n) 1(i, n) y_{i, n}^{\prime}
\]

AI(N)
\[
A I_{10}\left(x_{n}\right)=2 \sum_{i} \sigma(i, n) 1(i, n) z_{i, n}^{\prime}
\]
w3
\[
F_{y} / \rho U^{8}=2 \pi A R_{10}\left(x_{n}\right)-Y S\left(x_{n}\right)+\left(y_{g o} S\left(x_{n}\right)^{\prime}\right.
\]
we
\[
F_{z} / O U^{P}=2 \pi A I_{10}\left(x_{n}\right)-\alpha S\left(x_{n}\right)+\left(z_{g o} S\left(x_{n}\right)\right)^{\prime}
\]
w2
\[
C_{L}=2\left(F_{z} / \rho U^{2}\right)\left(L^{2} / S_{r e f}\right)
\]
w3
\[
C_{y}=2\left(F_{y} / \rho U^{2}\right)\left(L^{2} / S_{r e f}\right)
\]

SUM
\[
\begin{aligned}
& \int_{0}^{x}\left[2 \pi A R_{10}(x)-Y S(x)\right] d x=2 \pi A R_{10}\left(x_{1}\right) x_{1} / 2 \\
& +2 \pi \sum_{m=1}^{n-1}\left\{\left[A R_{10}\left(x_{m+1}\right)-\Psi S\left(x_{m+1}\right) / 2 \pi\right]\right. \\
& \left.+\left[A R_{10}\left(x_{m}\right)-Y S\left(x_{m}\right) / 2 \pi\right]\right\} \frac{\left(x_{m+1}-x_{n}\right)}{2}
\end{aligned}
\]

SUM1
\[
\begin{aligned}
& \int_{0}^{x}\left[2 \pi A I_{10}(x)-\alpha S(x)\right] d x=\left[2 \pi A I_{10}\left(x_{1}\right) x_{1} / 2-x_{1} \alpha S\left(x_{1}\right) / 2\right] \\
& +2 \pi \sum_{m=1}^{n-1}\left\{\left[A I_{10}\left(x_{m+1}\right)-a S\left(x_{m+1}\right) / 2 \pi\right]\right. \\
& \left.+\left[A I_{10}\left(x_{m}\right)-\alpha S\left(x_{m}\right) / 2 \pi\right]\right\} \frac{\left(x_{m+1}-x_{m}\right)}{2}
\end{aligned}
\]

W5

W4

W5

W4
\(M_{y} / \rho U^{2}=-x\left(F_{z} / \rho U^{2}\right)+\int_{0}^{x}\left[2 \pi A I_{10}(x)-a S(x)\right] d x+z_{g o} S\left(x_{n}\right)\)
\[
M_{z} / \rho U^{2}=x\left(F_{y} / \rho U^{2}-\int_{0}^{x}\left[2 \pi A R_{10}(x)-\beta S(x)\right] d x-y_{g o} S\left(x_{n}\right)\right.
\]
\[
C_{M}=2\left(M_{y} / \rho U^{8}\right)\left(L^{3} / L_{r e f} S_{r e f}\right)
\]
\[
C_{N}=-2\left(M_{z} / \rho U^{2}\right)\left(L^{3} / L_{r_{e f}} S_{\mathrm{ref}}\right)^{\prime}
\]

\section*{D．Program Listing}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{0001} & &  & 00000000 \\
\hline & &  & 00001010 \\
\hline & &  & 00000020 \\
\hline & &  & onoijuojo \\
\hline & &  & 00000084 \\
\hline & &  & \[
00000050
\] \\
\hline 0007 & &  & augroiso \\
\hline 000.3 & &  & 000001370 \\
\hline 0004 & &  & 00100080 \\
\hline 0009 & & Fimmencion o．jtil） & OOnOUUY0 \\
\hline Donn & & Fulivalirncesaul out） & 00000100 \\
\hline \multirow[t]{18}{*}{0007} & &  & 00000110 \\
\hline & &  & 00000l20 \\
\hline & &  & v0000150 \\
\hline & &  & 0nnunlau \\
\hline & c－0＊ &  & 000000150 \\
\hline & C 000 & If IYRP＝i Tinen Yph ant＜ad Yuct me indul & 00000160 \\
\hline & C 000 &  & 00000170 \\
\hline & C．\(+\infty\) & STATE．FNT 111 & 00000180 \\
\hline & \(c \cdot \infty\) &  & 000）（140 \\
\hline & C 000 &  & 00700こ40 \\
\hline & C 000 & －7ctruant 11． & 00000－10 \\
\hline & c 00 & If Ia \(=1\) racn a mitit me livaut & \(00000 \div 0\) \\
\hline & C 000 &  & \(00030>30\) \\
\hline & C 0xa &  & annanimu \\
\hline & C oos &  & onvoustu \\
\hline & coos &  & oonorebu \\
\hline & Cmas &  & vennouriv \\
\hline & \(\therefore 00\) &  & 0nconoreo \\
\hline 00004 & &  & nonous－a \\
\hline 0009 & &  & のロロロリ110 \\
\hline \multirow[t]{3}{*}{0019} & SO4 &  & 00030310 \\
\hline & &  & oncented \\
\hline & &  & voctios．90 \\
\hline 9011 & &  & nonnos40 \\
\hline 0017 & &  & （100） 050 \\
\hline 0017 & & \(\cdots 1 \leq=r . \cdots 1\) & vacua mo \\
\hline 0014 & &  & nomotilo \\
\hline 0015 & & \(1 \mathrm{~L}=1 \mathrm{~L}+1\) & anocoseo \\
\hline 0014 & & M \(0=4-1\) & onnoujue \\
\hline 0017 & & \(-1 \sim=ゃ .0 \mu \mathrm{l}\) & （0）n90．010 \\
\hline 001－ & &  &  \\
\hline \(001 \sim\) & &  & 0n？，10．6ct \\
\hline 0020 & &  & amantas \\
\hline 011 & &  & 407＂O4－0 \\
\hline 00\％ & &  & 0anunaso \\
\hline 002？ & &  & \(06000 \rightarrow+0\) \\
\hline no24 & & ．r．TU 11＊ & 0n0nu＊ 10 \\
\hline \multirow[t]{3}{*}{00.26} & 113 & 3 gum redur & り！atranい \\
\hline & C \(0 \times 0\) &  & 07090.40 \\
\hline & C． 00 &  & nnncoudo \\
\hline norm & 116 &  & ！n？urivil \\
\hline no？\({ }^{1}\) & & （10） \(1 \cdots \cdots n_{0}=1 . N(\). & noouncre \\
\hline 10\％r & 119 &  & 0uncoitu \\
\hline nore & & （a） 1 ir \(r=\) l lovi． & ancoureu \\
\hline 10.10 & 1.16 &  &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 0085 & &  & \(000011<0\) \\
\hline 008n & & Y（ILC口N）\(=Y(2, N)\) & 00001130 \\
\hline 0067 & & \(Y(I L 3 \cdot N)=Y(3 \cdot N)\) & 00001140 \\
\hline OOHA & & \(Y(I L C O P T) \neq Y( \pm+N)\) & 00001150 \\
\hline 0049 & & ＜（ILCON）＝（1く．N） & 00001100 \\
\hline 0090 & & \(\boldsymbol{P}(1430 N)=2(30 N)\) & 00001150 \\
\hline 0091 & & \(2(1 L 40 N)=\left(\begin{array}{lll}\text { a }\end{array}\right.\) & nnnollau \\
\hline 0042 & & HLY［LF＊N）＝FLI！＊N） & 00001190 \\
\hline 0093. & & \(F \mathrm{~L},(1 L P, M)=F L(E, N)\) & 00001200 \\
\hline 0084 & & \(F L(1 L 3 \cdot N)=F L(3 \cdot N)\) & 00001210 \\
\hline 0045 & & T \(\mathrm{HI}=1\) & 000012co \\
\hline 0096 & & \(1 H 2=2\) & 00001230 \\
\hline 0097 & & \(1-3=3\) & covolem0 \\
\hline 0098 & & JFYILL．EO．IL）GO TO 4MO & 09091250 \\
\hline 0099 & &  & \(00001<00\) \\
\hline 0100 & & \(I L A=1 L\) & 00001270 \\
\hline 0101 & & \(1 \sim 1=1 L L-2\) & 08001280 \\
\hline \(010 \%\) & & 1 m 2＝1LL－1 & 00001290 \\
\hline 0103 & & 143＝1LL & 00001300 \\
\hline 0104 & AHO & DN H \｛ximioti．3 & 0.2701310 \\
\hline 0104 & &  & 00001320 \\
\hline 010 cm & H &  & 0000：330 \\
\hline 0107 & &  & 00001340 \\
\hline 0104 & &  & nnool3s0 \\
\hline 0109 & 9 &  & 00001360 \\
\hline 0110 & & In 14 I＝I－c．llec & 00001370 \\
\hline 0111 & &  & リ）0013n0 \\
\hline 0112 & 13 &  & 9n001300 \\
\hline 0113 & &  & andol400 \\
\hline 0114 & &  & 00c01410 \\
\hline 0114 & 16 &  & 000014 CO \\
\hline 0110 & &  & 00100140 \\
\hline 0117 & 1H &  & 000914.4 \\
\hline 0112 & &  & 00001450 \\
\hline 0114 & & 11．LY＝ILL－1 & nonol4no \\
\hline 0170 & & 1＋（I゙VALR．だい．1）GO TO 446 & nnoulat 10 \\
\hline 0171 & &  & 00001sm0 \\
\hline \(012 \%\) & & JU（1L）\(=0.0\) & \(000014+0\) \\
\hline 0123 & & On \(\rightarrow\)－ \(4=1\) ，ILLM & annulbuo \\
\hline 0176 & & \(1 \sim(1)=-2 \omega(1)-1)\) & nouvisio \\
\hline 0105 & \(6{ }^{4} 4\) & Vロ（I）\(=\) Vr（IL－I） & no0）1me0 \\
\hline 0124 & &  & 00001590 \\
\hline 0187 & 4 HE &  & 00001540 \\
\hline 0125 & & \(r: 1 \mathrm{l})=0.0\) & OUNGISto \\
\hline 0124 & & い＂．am \(1=1.11\) LM & 00いいInto \\
\hline 0170 & &  & 00ヶ01s70 \\
\hline 9131 & 4 Hm & irll） & nonolano \\
\hline 0172 & & （i） 10 －\({ }^{\text {a }}\) & 0noulsuo \\
\hline 0133 & 4.2 & CSMTINHT & （1）（1）laud \\
\hline 0134 & & roll）＝r＋（IL＋） & 090010）0 \\
\hline 0136 & & \(r \sim(P)=r(1 / L)\) & 9．joultaz \\
\hline \(013 \%\) & & ／L（1）\(=1\)（IL） & nounloixu \\
\hline D1 77 & &  & OリOOIn＊ \\
\hline 0137 & 444 & rocilanit & nondioso \\
\hline 0176 & & 100 du \(1=1 \cdot 1 \mathrm{~L}\) & Wunolama \\
\hline 0140 & & \(r Y=r(1 \cdot 1 \cdot N)-r(I \cdot v)\) & nooulato \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline 0141
014 \\
\hline 0143 \\
\hline 1144 \\
\hline 0145 \\
\hline 0141 \\
\hline \(01+7\) \\
\hline O14m \\
\hline 0144 \\
\hline 0150 \\
\hline 0151 \\
\hline 0142 \\
\hline 0153 \\
\hline 0144 \\
\hline 0159 \\
\hline 0156 \\
\hline 0157 \\
\hline D15\％ \\
\hline 01ヶ4 \\
\hline \(01 \times 1\) \\
\hline \(01 \times 1\) \\
\hline 01a？ \\
\hline 0163 \\
\hline 01 al \\
\hline 0164 \\
\hline O1the \\
\hline 01 A 7 \\
\hline 01 ¢\％ \\
\hline \(01 \times 4\) \\
\hline 0170 \\
\hline 0171 \\
\hline 0172 \\
\hline 0173 \\
\hline 0176 \\
\hline 0174 \\
\hline 0176 \\
\hline 0177 \\
\hline 117\％ \\
\hline \(017 \%\) \\
\hline \(01 \% n\) \\
\hline 01 ml \\
\hline 介1 1 C \\
\hline 0147 \\
\hline \(0 \mid \mathrm{H}_{4}\) \\
\hline O1mb \\
\hline －1mm \\
\hline \(01+7\) \\
\hline \(01 \sim N\) \\
\hline 0140 \\
\hline 01＂n \\
\hline 0141 \\
\hline n142 \\
\hline 0） 07 \\
\hline 1） 14. \\
\hline O14h \\
\hline \(014 \times\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline  & 00001 ¢世0 \\
\hline STIT：\(=12+6 \mathrm{LT}\)（1） & \(000016 y 0\) \\
\hline CTII）＝YYMLIIQN & 00001700 \\
\hline  & 60001710 \\
\hline  & \(00001 / \mathrm{Cu}\) \\
\hline  & 00001780 \\
\hline \(S / H_{0}\left(a_{1}\right)=\backslash\langle G(N)+Y / D \subset Y Y\) & \(1100017 \rightarrow 0\) \\
\hline AS＝AuSIACST（1） & \(000017-0\) \\
\hline IF（CTII）． \(6 E .0 .0160\) TO 7 & 6n0017to \\
\hline （II＊N）\(=\) PI－A＞ & 100001710 \\
\hline （0）1n 11 & 00001780 \\
\hline  & 00001740 \\
\hline  & 00001mu0 \\
\hline COMIINUE & 00001 AlO \\
\hline \(Y+(1 L-)=Y 0^{\circ} 111\) & 00001 scu \\
\hline 2＊（IL） & \(00001 n 50\) \\
\hline \(T(1 L-0 N)=1\)（l）N & 00001 AcO \\
\hline （0）\(\quad 1=1 \cdot 14\) & 00001450 \\
\hline \(1 r=1+1\) & OOCOImod \\
\hline  & 00001 ¢ 70 \\
\hline  & u00014yd \\
\hline  & \(00001 m y 3\) \\
\hline  & 110001400 \\
\hline  & 00001410 \\
\hline （W）\(\subset\) I＝1．IL & 00001200 \\
\hline  & \(10001+30\) \\
\hline \(\zeta(N)=.4 * S(N)\) & 00001940 \\
\hline Sr：：\％！－つ＋らサイ：（M） & ה0n017 \\
\hline  & u000140u \\
\hline （14（11．2）＝174） & 0n00：470 \\
\hline  & 彻的1980 \\
\hline  & 00001940 \\
\hline  & 00008000 \\
\hline ） 0 くり \(1=1.11\). & 00002010 \\
\hline  & 0000＜0＜0 \\
\hline It（N．f．jent）inn 10 l & －unorusu \\
\hline na．as＝ink（1） & 000リ）U40 \\
\hline  & 0.00030 \\
\hline  & 960020nd \\
\hline  &  \\
\hline \(1,0 \mathrm{l} \cap \mathrm{l}\) & U6n0romu \\
\hline  & （1000 \(0^{2}\) ）\(>0\) \\
\hline  & 0000 el100 \\
\hline  & \(0 \cdot 000110\) \\
\hline （1）20 \(1=1 \cdot 10\). & 勿いいてlくu \\
\hline  &  \\
\hline （f）／－ & \(0100 \times 140\) \\
\hline  &  \\
\hline  & （1） 017100 \\
\hline  & ＂nnor 110 \\
\hline T＝6－1－4S & W6n021mb \\
\hline （－1） 1011 & 00．102160 \\
\hline 1020 ； & noworiuv \\
\hline  & Hnotrelo \\
\hline \(\cdots(j\)－ \(\boldsymbol{\prime})=6\) & nonurera \\
\hline  & 0リणी\％ \\
\hline
\end{tabular}


```

 (.) ur I=1.IL
 1900%mし0
 (v=0)(N, | & l & Fi)
 IF(',01,1.1(I-N); 心以心=1;
    ```



```

100 FO 1<0 J-I.[t.
*(J.lli+)-K(J.|)
Om(J)=U.01
*F=
\J|*FL{J.N)
AK(N)=AN(N)*YP(J)\bullet\F
A|(v)=A|(N:\bullet|V(J)\bullet\F
TM(.).",) = (1,4
w0 110 l=1.1t
1\omega=1*1
YY=Y-N(, I)=Y(I,N)
27=|N.)(J)-l(I:N)

```





```

120 mm(J)=,.N+M(J)
*-1T.(M.710)

```

```

 n+1T:(0..7cb)
 I= I
 i"口 |ri iE=i*I|
 1=1+1
 (||(|):= | (||| 4FN(%
 l=1
 122)UT(|)=<ん(I|!+t|
 ILI=00|L-1
 k!=1
 1-2=1,
 12.3 L<=LJ.1
 L+=1.Y*1
    ```


```

 **l\6 (m.t.4H)
 L1=L.1.14
 1-F=1.* | *
    ```

```

 It(ivolr.icy) in\ l., 1.1
 L"=IL?
 W!1! Ir.3
    ```


```

 \thereforen'10... 11/1
    ```

```

 411,1:<.NAl(N)
    ```


```

 !"!N!!".0.4
 !ul:| fu=| -v|
 Nor=:101
    ```

19000 OCO
－000うत10
sunいな～世い いいい心よ4」0
0000－440
0000 cos
onourañ
0000 लATO
00007 Am
000 u － \(\mathrm{d} \boldsymbol{0} \mathrm{O}\)
0000.2400

00002910

\(0000<410\)
\(0000-1+0\)
000 ひぐち 0
00NいながO
0000 －2．270

000USTッO （1）nv．taい0 0060.1010 \(0090.10 \times 0\) 01000.14 .50
 oncuss－u 1000．7von uび010 0 Cllasione 9！）O．10 0 anno 11．0 71019110 anno：1ra 900usly い（い）て！い 900いくlプ ひのヘローへの （a）い1］ 0 nunのileu

 ののロロッ1も

 がいい \(1, \rightarrow 0\)
 110いい．．＂0
 oncirirmu 100い，1．＂0
 けいけすねす。
 いいつい！日 いいCuldev Anッll．
\begin{tabular}{|c|c|c|c|}
\hline 0334 & & NM 5 N－1 & 00003300 \\
\hline 0310 & & IF（M：．fO．1）（1）TO 1al & 00003310 \\
\hline 0311 & & If（1s．fo．NL）GO TU 1t？ & 000033 nc \\
\hline 0312 & &  & 00003360 \\
\hline 0313 & 141 & \(\times A N=1 . /\left(x\left(N^{\prime}\right)-x(v)\right)\) & 00003400 \\
\hline 0314 & & It（N．FQ．1）GO TO） 143 & \(0000.8+10\) \\
\hline 0315 & 142 &  & \(0000.1+<0\) \\
\hline 0316 & 143 &  & 20003－30 \\
\hline 0317 & & 00 lyt \(I=1.11\) ． & 00003440 \\
\hline 0314 & & \(10=1 \cdot 1\) & 0700.1450 \\
\hline 0310 & &  & 00007460 \\
\hline 0.320 & &  & 07003470 \\
\hline 0.321 & & Ir t．v．Fid．al）（io ro lat & \(1000.44 \times 0\) \\
\hline 0322 & & aln．）＝x In ll & \(0000.14>0\) \\
\hline 032.3 & & TMT＝T（İND）－T（IAN） & On00．3－60 \\
\hline 0324 & &  & 00003510 \\
\hline 0324 & &  & 000035 ¢ 0 \\
\hline 0324 & &  & ruoussso \\
\hline 0327 & &  & conotbuo \\
\hline \(032^{\circ}\) & &  & のクロロアちらす \\
\hline & & ／ras & DOnlitho \\
\hline 0336 & & 1．0 to \(1 \mu \mathrm{~A}\) & 00003570 \\
\hline 0.330 & 1 man & covrintue & 000015\％0 \\
\hline 0331 & &  & 11000 ¢6บ0 \\
\hline 1335 & & （a）TO lima & 0000 3n＂0 \\
\hline 0333 & 187 &  & anoosnlu \\
\hline 03.74 & &  & 00no3aco \\
\hline \(033^{4}\) & 1nM &  & 20．03930 \\
\hline 03.34 & &  & 00005040 \\
\hline 0337 & & S11＝415 & 01000 anso \\
\hline 033\％ & &  & 1000．ano \\
\hline 0374 & &  & anvosolo \\
\hline 0341 & & \([101 \rightarrow \cdots, j=1.11\) & \(00003 \cos 0\) \\
\hline 0.341 & 100 &  &  \\
\hline \(034 \%\) & &  & noousivo \\
\hline 0.34 .3 & & nolltr（m．716） & unnust10 \\
\hline 0344 & &  & nnogiteo \\
\hline 0345 & 264 &  & unootlsu \\
\hline 0304 & 411 & flumat（fflb．m） & 回00．140 \\
\hline 107＊ 7 & & －nlpratrev） & 0000a7no \\
\hline 034\％ & &  &  \\
\hline い3ッ & &  & ronu1770 \\
\hline 0350 & & \(N^{\prime \prime}={ }^{\prime} \mathrm{L}-1\) & nimotina \\
\hline n3il & & carors． &  \\
\hline nute & &  &  \\
\hline  & & （10）1．19 J＝10．v＊ & （10）『リ10 \\
\hline O3ヶ4 & & Jr＝al & UnCusace \\
\hline 17354 & & \(\mathrm{V}_{4}=1-1\) & 101003ma \\
\hline 6194 & &  & indoratu \\
\hline П3ヶ7 & & \(x-1,1)=\)－－Ax & conosanu \\
\hline 03nt & &  & ＂OCn，4to \\
\hline 0 がし & &  & m060．4／u \\
\hline －2．al & &  &  \\
\hline 03nl & &  &  \\
\hline O3n＋ & &  & 10nnotato \\
\hline 1）ins 4 & & M 10 all， & ＂OいO．3．10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& 300 \\
& 303
\end{aligned}
\] &  & 000034.0
000034.3 \\
\hline & DO 3ich jalimme & \(00003 \sim 40\) \\
\hline & 102． 1 & \(00003 \sim 50\) \\
\hline 3 ns &  & unno．3yno \\
\hline & 1イLゆ（J） & 01300．s410 \\
\hline &  & v09034n6 \\
\hline &  & \(000034 \times 0\) \\
\hline &  & 00604000 \\
\hline &  & 00004010 \\
\hline &  & 000040＜0 \\
\hline & 135 Vija 0 ． 0 & 00004030 \\
\hline & n＜ \(20 \times 6.0\) & 0090440 \\
\hline & 10 ODA NEI．M & 00004050 \\
\hline & IFIN．ME，ML E EO TO 310 & 00004040 \\
\hline & SYD＝R．0LSYG－SYP & 00004070 \\
\hline & S20＝2．0DS2：-520 & 9000．0＊0 \\
\hline & （n） 10330 & 000060ッ0 \\
\hline 310 & Nixy－ 1 & 6000．：\(\because=\) \\
\hline & NMan－I & 00004110 \\
\hline &  & 00000410 \\
\hline & Scrijabsyg & 000041.30 \\
\hline & SSLG＝0¢76 & 00004140 \\
\hline &  & 00004150 \\
\hline &  & 03n04100． \\
\hline & ［F（v．vi．l）wot To t＜0 & 0000410 \\
\hline & \(x \times A=x(3)-x(1)\) & 00 nomag 0 \\
\hline & axderif（x（3）－A（1）） & 8，3004150 \\
\hline &  & 20004200 \\
\hline &  & 0.3004215 \\
\hline & 1if．IC 3，40 & anouareo \\
\hline 320 &  & 1000a＜30 \\
\hline &  & 09904240 \\
\hline & S．？－＊ & OOnOAS50 \\
\hline 3.10 &  & 0000430．3 \\
\hline &  & \(00004>10\) \\
\hline &  & 0n0U42nu \\
\hline &  &  \\
\hline &  & nnnoustuo \\
\hline &  & nometasilu \\
\hline &  & 009．343ce \\
\hline &  & unnus3ato \\
\hline & \(\cdots 1101\)－－ & Whotocitu \\
\hline 3.15 &  & 101104506 \\
\hline 147 &  &  \\
\hline &  & 小000ヶ3／v \\
\hline &  & Wratombu \\
\hline &  & Oncostion \\
\hline &  & リnnoumatu \\
\hline & \(a t=v-1\) & 0nctosalu \\
\hline &  &  \\
\hline &  &  \\
\hline &  & nnnowsun \\
\hline & ＊いこの＊•1 & 1110104594 \\
\hline &  & 11nnomand \\
\hline &  & nonuay 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 0480 & \(* 0\) &  & 1100044m0 \\
\hline －417 & & \(\square A m=-A N-S u m\) & P10104490 \\
\hline 0.10 & & HAI＝HAI SU． 4 ！ & novomauo \\
\hline 041 & 300 &  & 0nnoublo \\
\hline －420 & &  & nnousheo \\
\hline 0428 & &  & 00004535 \\
\hline nez？ & &  &  \\
\hline \(0+25\) & & －2＝Flor \(\mathrm{CG}_{\text {／mekL }}\) &  \\
\hline 64？ & & －5EFIom3 & 0000050 \\
\hline 0424 & & －4こ－F20．4 & 07004570 \\
\hline 0424 & &  & 0vollasal \\
\hline \(0+27\) & & －r」a 1 いとく & 00n04590 \\
\hline ¢－2p & &  & 60106000 \\
\hline 0020 & &  & nonounio \\
\hline 003.7 & & （1） 3 n （ \(\mathrm{J}=1.1 \mathrm{l}\) & 00004n20 \\
\hline 0631 & 3 So &  & 00004030 \\
\hline OuB2 & & w＋1ft（ + －750） & 00004640 \\
\hline 0437 & － 00 &  & 00004050 \\
\hline 0436 & \(\pm 10\) & Fum．erilolbl & 0000．4000 \\
\hline 0495 & 301 & Fum i．．T（hr 15．＊） & noduatio \\
\hline 0.30 & 27\％ & F（tr a．．T（7t1E．n） & annlomoto \\
\hline 06.37 & 100 &  & innousimu \\
\hline 0690 & Pr．5 &  & UnOU4700 \\
\hline \(0 \pm 30\) & P17 & （0matif（ixatandif） & 10000．710 \\
\hline \(040 \%\) & P1． & FOw： & 00004120 \\
\hline \(0 \bullet 61\) & 770 &  & 1.00047 .0 \\
\hline \(000 \%\) & T4n &  & （10nt）4740 \\
\hline & &  & 0）， 34750 \\
\hline 000.3 & P60 &  & 0nnoules \\
\hline 0464 & hus &  & 0.0004170 \\
\hline －0et & & （mi） & 00004700 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline  & &  \\
\hline 0008 & &  \\
\hline 0083 & & \(D=1.4\) \\
\hline \(0 \cdot 84\) & & N（x） \\
\hline 0805 & & j0 no \(k=1.0\) \\
\hline O806 & & OHIN＝NK \(+N\) \\
\hline 9097 & & （ \(1 \times 1=\mathrm{K}\) \\
\hline Deef & & \(4(\mathrm{R})=\mathrm{K}\) \\
\hline t．89． & & \(\cdots K=a n * K\) \\
\hline 0010 & & ＋\｜6．t \(=\) A（K内） \\
\hline 0011 & &  \\
\hline 0012 & & ie－ \(40 . j-11\) \\
\hline 0013 & & no＜ \(20 \mathrm{I}=0 \times \mathrm{d}\) \\
\hline 0914 & & \(!\cdot J=12+I\) \\
\hline 0015 & &  \\
\hline gela & & \(h \| t a=4 \mid I \cdot 0\) \\
\hline 0017 & & \(L(K)=?\) \\
\hline 091\％ & & \(\boldsymbol{M}(\mathbb{\prime})=9\) \\
\hline 0010 & 20 & CUAEIMUE \\
\hline 4820 & & J＝L（K） \\
\hline 0021 & & IF（J－K．Le U） 60 T0 35 \\
\hline 0022 & & N1 \(\times\) K -4 \\
\hline 4023 & & （10） \(30 \quad I=1-N\) \\
\hline 0026 & & WIEnI＊\({ }^{\circ}\) \\
\hline 0924 & & MMLD \(=-\dot{A}(K I)\) \\
\hline 0026 & &  \\
\hline 0007 & & A（MI）＝A（JI） \\
\hline 002m & 30 & alviz＝inúu \\
\hline 0025 & 35 & \(I=\sim(\mathrm{S})\) \\
\hline 0030 & & IFI【－W－LE．U）s 0 10 45 \\
\hline 0031 & & \(J N=10(1-1)\) \\
\hline 0037 & & 1） \(49 \mathrm{~J}=10 \mathrm{~d}\) \\
\hline 0033 & － & \[
J 5=N K+J
\] \\
\hline 0034 & & － \(11=3\)－ 1 \\
\hline 0034 & & \(4 n_{(i)}=-4(.56)\) \\
\hline 00 1R & & ＊（JN］＝A（JI） \\
\hline 00．7？ & 40 & K（J！）＝mOL） \\
\hline 00.14 & \(4 \%\) &  \\
\hline no34 & & H2＝U．U \\
\hline \(004 n\) & & WF TURC \\
\hline 0041 & 40 &  \\
\hline 0042 & & IF（1－m．Fideu）ro ro hs \\
\hline 004. & & Im \(=\mathrm{N} \times+1\) \\
\hline 0044 & &  \\
\hline O04．5 & 56 & Cumitiout． \\
\hline no4n & & llo \(0^{m}:=1\) on \\
\hline CO47 & & IK \(=\) NuR－I \\
\hline 004\％ & &  \\
\hline \(004 \%\) & & \(1,1=\) ！\(-a\) \\
\hline 00ヶ0 & & 隹 \(54 . j=1 * *\) \\
\hline 0041 & & \(!J=!J+M\) \\
\hline 0092 & & IF（I－N．cidev）（ol）in on \\
\hline ． 0 a & &  \\
\hline 0054 & & \(\kappa J=I J-I+n\) \\
\hline 0044 & &  \\
\hline nosh & 65 &  \\
\hline
\end{tabular}
\(000047 \times 0\) 0000aH： \(00004 H 10\) 00004 ARO C0006 10 00904 H 40
 100004100 00004370 \(00004 \mu M 7\) 00004 HYO 00004400 00304910 00004420 00004936 00004740 \(00004 y>0\) 0いいO4960 00004970 \(00004+104\) 000.4440 00005000 0nの04010 nonosuco 000050.50 00085440 0n00SU50 c2c0ヶ5：5t pono～U70 0nnosum0 001205040 0nooslvo \(0000^{2} 110\) \(0060-120\) nonosisu 0n） \(0 \leq 1\) कU Bovoulsu nonositu 3000－1（1） nonociso 0のnがっ1：0 nonos？ 10 \(10004>16\) 0nnos2co ontoustio onn0ボァム0 0nnubeno nooorino nonime11 いonourno nnous \(2+0\) 0ヶOいと 21.0 000いこ 110 30のいと300
 nuous \(3 \times 0\)


\section*{MODIFICATIONS FOR CROSSECTIONS WITH CORNERS}

\section*{A. Discussion}

Parts I and II describe a program to compate force coefficients and pressure distribntions over arbitrarily but smoothly shaped crossections in the absence of corners. Although solutions based on slender body theory are invalid over regions of high surface curvature they are still capable of yielding good results away from such irregularities provided additonal care is exercised in the computation of geometric surface properties as a corner is approached. Analytically, a corner represents an arbitrary break in the structure of local surface properties. Any scheme of specifying corner properties by a finite number of discrete parameters must involve implicit assumptions regarding the behavior of such corners between points at which data is given. For this reason it is desireable to have a procedure which allows the user some discretion regarding these assumptions without requiring an excessive amount of data to define surfaces. In the following procedure this discretion is excersized in the choice of the distribution of orthogonal lines \(S_{i}\) introduced in Fig. 2.

In a finite computational scheme the difficulties inherent at a corner first become manifest when the local radius of curvature on \(C_{n}\) becomes small compared to the distance in the \(y, z\) plane to the neighboring crossection \(C_{n+1}\). Such points are illustrated in Fig. 16 at \((i, n)=(15,5),(15,6)\), \((15,7)\). For practical computations such points are equivalent to the sharp corners of \((4,2),(4,3)\) and must be treated in the same way. In contrast to the procedure of Part II which "rounds off" regions of higher curvature it is more appropriate now to adapt the opposite procedure namely: a region of finite but large curvature is to be replaced by a sharp corner. If this
approximation should prove too crude it would then be necessary to include an additional contour between \(C_{n}\) and \(C_{n+1}\) so that the distance between contours is less than the local rarine of curvature, a procedure which is equivalent to supplying more detailed data to fill in the objectionable gaps.

\section*{B. Definitions}
1. Stringers \(\mathrm{S}_{\mathrm{i}}\)

The lines orthogonal to the crossectional contours \(C(n)\) and for which \(i=\) constant shall be called stringers. These are the family of lines \(S_{i}\) first illustrated in Fig. 2.
2. Corner lines \(i=I C(K)\)

These are lines passing thru corner points. They are to be considered as part of the family of stringers \(S_{i}\). As such they are continued over the entire length of the body even though previous or subsequent crossections do not have corners. An example of one such line is shown for \(\mathbf{i}=\mathbf{4} \mathbf{i n}\) Fig. 16. Corner lines are distinguished by the index IC(K) = i signifying that the index of the \(K^{\text {th }}\) corner, counting counter clockwise, is i. Thus in Fig. 16 \(\mathrm{IC}(2)=4\). (For programming convemience it is expedient to designate the first stringer \(i=1\) as a corner line ie \((C(1)=1\) even though there may be no corners along this line.)
3. Submerged lines \(\operatorname{IBP}(K, n)\), \(\operatorname{IBM}(K, n)\)

A stringer \(S_{i}\) from the contour \(C_{n}\) may intersect a corner line before it intersects the next contour \(C_{n+1}\) as illustrated in Fig. 16 at \((10,6),(16,4)\), \((14,5)\) and \((17,6)\). Subsequently such stringers are considered to follow the corner line and are regarded as submerged. At the \(K^{\text {th }}\) corner on \(C_{n}\) the highest submerged line index is denoted by \(\operatorname{IBP}(K, n)\) and the lowest by \(\operatorname{IBM}(K, n)\). Thus from Fig. 16 we find \(\operatorname{IBI}(5,7)=17, \operatorname{IBM}(5,7)=14\). A
corner line may also be counted as a submerged line ie: \(\operatorname{IBM}(15,5)=15\), \(\operatorname{IBM}(15,4)=15\). We note then, that every intersection of a corner line IC(K) with a contour \(C_{n}\) has associated with it the indices IBM(K, n), IBP(K, n). For purposes of illustration a cc...plete table of IBP(K, \(n\) ) is provided in Fig. 16. Finally, we note that in the absence of any corners along \(i=1\) we net \(\operatorname{IBM}(1, n)=I I+1\). In Fig. 16 this means that \(\operatorname{IBM}(1, n)=19\).
C. Modifications to the computational procedure

\section*{1. Collocation Points}

Points \(P^{\prime}(i, n)\) at which \(\partial v / \partial x, \sigma\) etc. are to be evaluated were previourly found by smooth interpolation between \(\mathbf{P}(i-2, n)\) and \(\mathbf{P}(i+2, n)\). To avoid the requiring of an excessive number of data locations \(\mathbf{P}(i, n)\) between corners this has been modified so that \(P^{\prime}(i, n)\) is read directly from supplied data or by simple interpolation between neighboring locations \(\mathbf{P ( i , n ) , ~} \mathbf{P ( i + 1 , n )}\). In many practical applications the contour curvature between two corners is small and the later procedure should be adequate.

\section*{2. Computation of \(\partial v / \partial x\)}

Values of \(\delta v / \delta x\) are to be found at \(P(i, n), P(i+1, n)\) and interpolated to obtain a value of \(P^{\prime}(i, n)\) between \(i\) and \(i+1\). (This represents a minor but necessary change from the procedure of Part II which determines \(\delta v\) at \(P^{\prime}(i, n-1) \& P^{\prime}(i, n)\) and interpolales the associated derivatives along the \(x\) direction). The increments \(\delta v\) are taken along the stringers and as long as these do not intersect the corner lines the determination of \(\delta \mathrm{v} / \delta \mathrm{x}\) at the data points \(P(i, n)\) is carried out as the ogh no corners were present.

When a stringer \(S_{i}\) inter sects a corner line the local corner geometry is assumed as shown in Fig. 17 which represents an enlargement of the local configuration as it appears in Fig. 16 at \(P(4,2)\) and \(P(4,3)\). While \(\delta v\) as
indicated in Fig. 17 may be calculated directly from the data presented in the plots of \(C_{n}\) and \(S_{i}\), the value of \(8 x\) must be inferred from the assumption that the corner line shown in Fig. 17 is closely approximated by a straight line. Thus with \(6 v_{1}, \delta v_{2}\), as indicated in Fig. 17:
\[
\delta x=[x(n+1)-x(n)] \frac{\delta v_{1}}{\delta v_{1}+\delta v_{2}}
\]

This is to be compared with the calculation away from a corner where \(\delta(x)\) is simply \(x(n+1)-x(n)\).

To devise a program which is applicable to all possible instances of corner geometry it is necessary to have tests which indicate when a stringer emerges from corner as between \(P(4,2)\) and \(P(4,3)\) in Fig. 16, and when it converges toward a corner to become subsequently submerges as is the case between \(P(11,6)\) and \(P(11,7)\). Such a test is readily constructed with the aid of the indices IBP and IBM. Thus for example:
\[
\begin{array}{ll}
\operatorname{IBP}(K, n+1)<\operatorname{IBP}(K, n) & \begin{array}{l}
\text { at least one stringer } \\
\text { has emerged between }
\end{array} \\
& \operatorname{P(IC}(K), n) \& P(\operatorname{IC}(K), n+1)
\end{array}
\]
and
\(\operatorname{IBP}(K, n)-\operatorname{IBP}(K, n+1)=\) no. of emerged stringers.
In this manner IBP and IBM provide complete information regarding the emergence or convergence of stringers on either side of a corner line. This information together with implied geometry of Fig. 17 enables the computation of \(\delta \mathrm{v} / \delta \mathrm{x}\) at the center of contour segments which are adjacunt to corner lines.

\section*{3. Curvature}

The fact that curvature is divergent near corner-like points leads to errors in the computation of \(\partial \varphi / \partial x\) when using the program of Part II. This program in effect rounds off corners whereas as pointed out in the discussion
above a more appropriate procedure is to treat regions of high curvature as sharp corners ie as though high curvature regions were concentrated at a corner point. With this procedure the curvatire of segments adjacent to a corner is small and may be obtained by extrapolation from a neighboring segment. Thas, referring to Fig. 16 we would have:
\[
\begin{aligned}
& h(3,3)=h(2,3) \\
& h(4,3)=h(5,3)
\end{aligned}
\]
4. Computation of \(\delta \sigma / \sigma x\)

In Part II \(\mathbf{6 0 / 6 x}\) was approximated by central divided differences involving \(\sigma(i, n-1), \sigma(i, n), \sigma(i, n+1)\). This procedure breaks down at a corner. The rules to be followed near corners will now be that \((\delta \sigma / \delta x)_{i, n}\) will be computed by:

Forward divided difference when \(S_{i}\) and/or \(S_{i+1}\) emerge from
a corner.
Backward divided differences when \(\mathbf{S}_{\mathbf{i}}\) and/or \(\mathbf{S}_{\mathbf{i}+1}\) converge to a corner.

Central divided differences away from ca: ner.
As an illustration corresponding to Fig. 16
\[
\begin{aligned}
& (\partial \sigma / \partial x)_{4,3}=\frac{\sigma(4,4)-\sigma(4,3)}{x(4)-x(3)} \\
& (\partial \sigma / \partial x)_{10,6}=\frac{\sigma(10,5)-\sigma(10,6)}{x(6)-x(5)}
\end{aligned}
\]

In the event of a stringer emerging just behind a segment and again converging just ahead of it \(\partial \sigma / \partial x\) shall be assumed to be zero.
5. \(\mathrm{d} \sigma / \mathrm{ds}\)

To compute do/ds we just find \(O\) at all the data points \(P(i, n)\) (except at a corner pt.) by interpolation between neighboring collocation points \(P^{\prime}(i-1, n), P^{\prime}(i, n)\). At corner points \(d \sigma / d s\) is then found by forward
differences leaving a corner along \(C_{n}\) and by beckward differences when approaching a corner.

\section*{6. Matrix Inversion and Summation}

For the natrix inversion process encountered in the evaluation of \(\sigma(i, n)\) it is convenient to reorder the indices 80 that the actual finite segments of a contour \(C_{n}\) are indexed consecutively. This involves shipping over subsnerged segments in the counting process. Such a reordering may be accomplished through the introduction of a new index IR(m) for which the \(m\) are consecutive indices and:
\[
\operatorname{IR}(m j=i
\]
for values of \(i\) corresponding to unsubmerged segments. Thus we would have. for example
\[
\sum^{m L} \sigma(\operatorname{IR}(m), n) a(\operatorname{IR}(m), j n)=\sum \sigma(i ; n) a(i, j, n)
\]
where the latter summation is taken only over those values of \(i\) corresponding to segments which are not submerged.

The remaining computational procedures from Part II are not affected by the presence of corners and do not require modification.
ondinil Page is UF PUUR QUALITY


FIG. 1 BODY SLOPE AND CROSSECTIONAL VARIABLES


FIG. 2 CROSSECTION BOUNDARY SEGMENTING SCHEME IN BODY AXES COORDINATES ( \(\left.z_{0}, y_{d}\right)\)


FIG. 3 DETAILS OF VARIABLES PERTAINING TO SEGMENT \(i, i+1\) OF BOUNDARY \(C_{n}\)


Fig. 4 RELATIVE POSITIONS OF \(C_{n}\) aND \(C_{n+1}\)
IN BODY AXIS AND WIND AXIS REFERENCE FRAMES


FIG. 5 SOURGE STRENGTH \(\sigma\) ON CIRCULAR CONE AT ANGLE OF ATTACK, \(a=0.1\)


FIG. 6 d \(/ \partial x\) AT \(X=1\) ON CIRCULAR CONE AT ANGLE OF ATTACK, \(a=0.1\)

OPTCNAT I.:
OF POCR \&iALIIY


FIG. 7 PRESSURE COEFFICIENT AT \(x=1 / 2\) ON CIREGLAR CONE at aNGLE OF ATTACK, \(a=0.1\) AND MACH
NO. 0


FIG. 8 LIFT COEFFICIENT FOR CIRCULAR CONE AND OGIVE AT ANGLE OF ATTACK, \(a=0.1\)
ur min ulabiry


FII. 9 MOMENT COEFFICIENT FOR CIRCULAR CONE AND OGIVE AT ANGLE OF ATTACK, \(a=0.1\)


FIG. 10 SAMPLE FUSELAGE

OAn":
OR PONL 4


FIG.II GENERATION OF INPUT DATA FOR SAMPLE FUSELAGE


FIG. I2 \(C_{p}\) ALONG UPPER AND LOWER MERIDAN OF SAMPLE FUSELAGE at angle of attack, \(a=10^{\circ}\) AND MACH NO. \(=0\)
ger ROOR qUALIIY


FIG. \(13 C_{L}\) AND \(C_{M}\) FOR SAMPLE FUSELAGE


FIG. 14 INTERPOLATION PROCEDURE FOR DETERMINATION OF \((8 \sigma / 8 x)_{\text {in }}\)


FIG. 15 INTERPOLATION PROCEDURE FOR DETERMINATION OF \(\left(8 v_{0} / 8 x\right)_{i, n}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{IBP( \(k, n)\)} \\
\hline & \(n=1\) & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \(k=1\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 5 & 5 & 4 & 4 & 5 & 5 & 5 \\
\hline 3 & 8 & 8 & 8 & 8 & 8 & 8 & 9 \\
\hline 4 & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
\hline 5 & 16 & 16 & 15 & 15 & 16 & 16 & 16 \\
\hline
\end{tabular}
fig. 16 illustration of segmenting scheme FOR CONTOURS WITH CORNERS```

