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SUMMARY 

A computer program has been developed to determine the subsonic 

pressure, force and moment coefficients based on slender body theory for 

bodies of a rb i t ra ry  cross section. The program is based on the integrsl  

repsesentation of the potential i n  which t!e flow i n  the crossflom plan% is 

considered to be induced sources  distributed about the cross sect iont i  

boundary. Analytical expressions are derived for u and its deriv>-tiwD 

and the integrals appearing in these a r e  evaluated by dividing each c r 2 s s  

sectional boundary into straight line segments approximating the inteCrp.?nds 

over these segments. 

have been obtained for circular cone and ogive bodies and compared IT?? 

analytical determinations from slender body theory. 

obtained for a typical ' ' s labsided" fuselage. 

Results for pressure force and moment cocfclicicn?s 

Results are ?..?sn 

In P a r t  I11 modifications have been developed which extend t k  

applicability of the program i n  Pa t I1 to crossections with corners  o r  local 

regions of high curvature. 
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INTRODUCTION 

Computerization of aerodynamic theory has progressed to a point 

where the flow field analysis of complete a i rcraf t  configurations by a 

single program is now an  attainable goal. Programs designed for Chis 

purpose do in  fact exist, but predictably they are extremely large and 

abound with subtleties often nct evident to the user.  Generally, each new 

application undergoes a "debugging" stage which may in i..Yelf constitute 

a major effort. 

to the level of precision of the underlying theory. 

sive, this precision is not always required. 

desig3, for  instance, it would be more desirable to sacrifice precision for 

simplicity. 

Much of the complexity of these programs is attributable 

Although often impres-  

In some stages of preliminary 

One approach in  this spiri t  is to replace the commonly 

employed exact superposition method which panels the entire a i rcraf t  s u r -  

face, placing appropriate singularities a t  each panel, with linearized 

theories involving only solutions of a local two-dimensional potentia! equa- 

tion. 

required to satisfy boundary conditions leads to the necessity oc inverting 

very large matrices.  

theories on the other hand considerably reduces the size of the matr ices  

encountered and consequently places far less demand upon computer capa- 

bilitie s. 

In the exact theories a determination of the singularity strensths 

The quasi-two-dimensional nature of linearized 

It is the purpose here to develop programs based OT slender body 

theory, utilizing two-dimer.siona1 singularities distributed along a C i - o S S  

sectioml contour to solve for the required potential function in the c r o s s  

flow plane. 

formulation of the interaction problems encountered i n  '.he analysis of 

complete aircraft  configurations. 

Such an approach is felt to be particularly adaptable to the 

- 
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SYMBOLS 

Coefficient of doublet term in expansion of complex Potential W. *1 

c (4 Cross sectional boundary at station x . 
- 

Lift and side force coefficients. cL’ =Y 

Pitchrirnd Yew moment -coefficients about noee of body. ‘N 

Cross sectional boundary at x = xn . n C 

C  re ssure coefficient (p - po) / ( p u 2  /2) 

Horizontal and Vertical Force components f u r  body of unit length. 

P 

F F  
Y’ = 

g(x) Function of x derived from outer solution to potential equation. 

h Radius of curvature of c ross  sectional boundary. 

i Index of points along cross  sectional boundary C. 

i, i t a t  Segment of C from i to i t l .  

iL Total number of segments into which C is divided. 

Ui, np Length of segment &it€ on Cn. 

M Mach number 

M M  Components of momerlts about nose far body cf unit length. 
Y’ = 

n(i, n) Inner unit normal to segment i, is 1. 

N Total number of stations xn 

3 



P Pres sure 

S 

U 

h e  Stream Pressure  

va 4- w2 

Displacement from pt P. to pt P.' on C,. 

Vector displacement from P. to P' . 
1, n J I "  

1, n j r n  

Distance along C,. 

Cross sectional area.  

Unit tangent to segment i, i f l .  

FI ee Stream Velocity. 

r Normalized Radial Polar Coordinate. 

V Normalized y component of velocity in wind azes. 

W Normalized z component of velocity in  wind axes. 

W Normalized Complex Potentizl Function. 

x Normalized Longitudinal Function. 

Ye 2 #ind hxeC,cootdiaates in transverse plane. 

2 y + iz 

Complex location of cross  sectional centroid. zLs 
a Angle of attack. 

4 



B 

-. 
8 

a 

U 

8 

cp 

bvO/ 

Gvlhx 

5 

c, 
Y 

Differential corresponding to displacement normal to C n’ 

Angle subtended by i, it h at pt. j at station Xn . (see Fig. 3) 

Angular Polar coordinate. 

2 Dimensional source density. 

Value of 8 at point P. . 
1, n 

Angle between tangent to C and y axis 

Normal displacement from mid point of i, i t 1  on C 

on ‘n+l* 

to  i, it1 n 

P e  Ambation po te ntial. 

Body slope in body axis f rame of reference. 

Body slcpe in wind axis frame of reference. 

Complex position on C in wind axes. 

Complex position on C in body axes. 

Yaw angle. 

5 



PART I 

THEORY AND DEVELOPMENT OF NUMERICAL PROCEDURES 

A. Syi-opsis of Subsonic Slender Body Theory  

According to s lender  bcdy theory  (ref.  11, the flow distbrbancckCd . - 

- - 

n e a r  

i n  the form: 

a sufficiently regular 3-D body may be r ep resen ted  by a potential  

W Y Z )  = UPo = U[Cp(XYZ) + g W 1  (1) 

cp(xyz) is a solution of the 2-D Laplace equation i n  the y,z cross flow plane 

satisfying the following botndarv  conditisns appropr ia te  to  wind axes  * 
m = o  at - (W 

c (XI e 

be w r  

drp av = - on C(x) n 

ne and ' 1  ?ding defined i n  Fig. (1). A genera l  solution for cp 

t ten as the r c a l  part of a complex potential  function W ( Z ;  wit 

Z = y t iz .  
al 

. CD = ReW = Re[A 0 (x) 1nZ t F A n (x)/Z"] 
n 

may 

1 

A useful al ternat ive representa t ion  of 'D and W is obtainable with thi aid 

of G-'s theorem. (ref. L) 

q = ReW = - 2Re 4 O ( 6 )  ln (Z-C)ds  

c (4 
(4) 

where O ( 6 )  is a "source '  densi ty  fo r  values  of 5 * yc t izc, (yc, mC) 

being coordinates  of a point on  the contour c(x). 

3- 
Although win e s  have been adopted a s  a r e fe rence ,  the computat ions 
have been fo x la ted i n  t e r m s  of inpa"  da t a  obtained f rom a body a x e s  
f r a m e  of re ference .  This  avoids the necessi ty  of generat ing new input 
data for each  change i n  bouy : ;: Itude. 

6 



c 

- 
The function g(xj is obtained by matching 4 of Eq. (1 )  which is  

*slid in the neighborhood of the body with an appropriate ''oufe r" solTition. 

g b )  is then f w n d  to depend explicitly on the longitudinal variation of 

c r o ~ s  sectional areas S(Y) , i. e .  : 

)E 1 
1 S'(u) ln(@/2)  - $(t) Xn(x-t).dt + S"(t )  l n ( t -x )d t  

c! X 

(5) 

BtX) = 

The pressure coefficient, to an approximation consistent .,r.ith 

slender body theory i o  given by the expression: 

The folce rrrd moment about the orfgin o n  the portion of the h a \ -  bctwecn 

the nose and station x are represented by the coefficients: 

vhste 2 (w) = y t iz reptesents the compIex locatifin of the L-I-O.;S 

oectioilal oentwid at station x. and A1(x) i s  the coefficient of th,. 1 / 2  

term of Eq. (3). 

g s f3 

In terms of these force and moment expressions the  



Q 

mare commonly uoed aerodynariiTcaftlcic: nte are written: 

CL = 2("j- L2 
p ~ a  'ref 

L3 M 

t-S P U ~  ref -el 

CN = - E(") 

-- 
*here 1 = uodylength and L S are convenient reference ,ength and 

atea respectively, usually, determined by the overall configuration tc be 

aralyzed. For this report  t 

ref' ref 

has been chosen t o  be equal to L and r e i  

Sref = La. 

The redu-tion of com.putiaions of these expressions to a numerical 

p~oczdu,-o shall be based on the integP.1 representation of 

The point of departuPe sha'i be the discretization of 

boundary into a large RUm'l.2t of short linear segments over each of which 

the sotawe dznsitp U shall br o s o u p 9 d  cor.,tant at a value to be determined 

by boucdary cotditiohs. 

given in  Eq. (4). 

~e c r o s s  sectional 



B, -ry of Equations, Gomputatiord Procedure6 and Sample 
a l d t i o n s  

Derivations of the equations presented in this section are given in  

Appendix A. 

Siace analytical results for bodies of revolution are readily available - 
cornpatations have been carr ied out for the purpose of comparison in the 

cases of a circular cone; 

and aa "ogiveI' of circular croes  section; 

both at angle of attack a = . 1 and at zero Mach no. 

1. Processing of Surface Data 

The original data consists of the cross  sectional boundaries C n 
at each xn presented in body axes coordinates as shown in  Fig .  2. 

Starting at a convenient station x 

to the Cn. 

p i n t s  P. The boundary Cn may now be approximated by t h e  

and 'i+l , n* .traight line segments i, i t 1  between the points P. 

coordinates (y e. ) of the poillts P. together with the corresponding 

x€ represent the basic input data which defines the surface geometry i n  

the program. 

curves S. are constructed orthogonal n 1 

The intersections of these curves with C define a set  of n 

1, n' 
- 

Tiut 
1, n 

i, n' 1, n 1, n 

n 
Denoting the number af segments i n  a cross section by iL 

and the number of stations Xn by N the computations of this r ev ,  . have 

been carried out for N=10 and iL=20. 

From the points P. a se t  of intermediate points P.' between 
1, n 1, * 

P. and en Cn a re  derived. It is assumed tkat the coordinates of 

P.' 
1, n 

=e n 
m a y  be represented by a Taylor's serieR in  terms of the distance from 

pi, ne i. e. ; 
9 



- P. i, n 1, n Aa = P' . 
Reduction of this expression to one in terms of the discrete points P. 

results in the following form (with a corresponding form for 2.' 

1, n 
) 

1, n 

where Dyi is obtained by first computing the divided difference 

(Yiti,n , 
point P.' 

- yi n)/l(ien) and taking this to represent dy/ds at the intermediate 

a distance l(i,n)/2 froin Pi,n. Linear interpolation of dy/ds 
1, n 

between ~f and P.' yields approximately dy/ds at P. and this 
1, n 1, n - 

is denoted by Dy,. 

by operating on Dy. in  the same manner. 

second order in  l(i, n) have been employed. 

defined as above have been compared with those for Pi, 

as the mid point of the secant i,itl and it was found that the la t ter  case 

DDyi is the approximation to (day/dsa)i determined 

In this report  terms up to 
1 

(Resu l t s  obtained with P.' 
1, n 

defined simply 

required double the number iL of segments to obtain comparable 

accuracy). 

2. Source density u 

0 is determined by requiring that CD of Eq. (4) satisfy the boundary 

condition Eq. (2b) at a point P ' of each segment i, i t 1  of the boundary. 

The result of this process is a se t  of simultaneous equations for the den- 

sities U(i,n) a t  each segment i ,itl  of Cn. 

assigned to the pts. P:,n, located a s  prescribed in Sect. 1. 

There densities may be 

iL  

10 
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where,referrirg to Fig. 3 for R(i, jsn) and 6(i, jsn) 

e(j, n) - e ( i ,  n)]ln[R(i+l, j, n)/R(i, j, n)] 

The slope (av/ax). 

body axes and the angles of attack a and sideslip @ (see Fig. (4) ) 

may be written in  terms of (avo/&). referred to L-?r. -. Jsn J s  n 

Computation of (*vo/&). 

Appendix A. 

f rom the surface data is described in  
Js n 

Values of U(i,  10) obtained from Eq. (9) i n  the caqe of a circular 

cone at angle of attack are presented i n  Fig. (5). 

for (J i n  the case of bodies of revolution is: 

The analytical solution 

This resul: is also presented in  Fig. (5) for comparison. 

3. Potential tp 

Once the source density U(i,n) is  determined Eq. (4) yields an 

explicit representation of cp. Integrating over the segments i,i+l of C - n’ 

iL 
w ( j ,  n) = 2 1 o(i, n) @.(itl, j,  n). ;(is n)lnR(i+l, j, n) 

i= 1 - - - R(i, j, n).u(i, n)lnR(i, j ,  n) - R(i, j, n).G(i, n)h(i, j, n) t l(i, n)} 

iL 

is 1 

Although F(j,n) is not of direct interest  the auxiliary functions 

b(i, j, n)/a(i, n) appear in  the results for %)/ax and so must  be computed. 

11 



4. kial Potential Derivative W a x  

b/mx is obtained by different ia t iond the i*g?*&i! Elp.Ef;P) @l L, 

f i r s t  obtain an exact expression which is then approximated by evaluating 

the result over the segmented boundary. This is felt to be preferable to 

the procedure of differentiating the approximation to cp given in  Eq. (11), 

Wumaewerm some care  must be exercised when differentiating since the path 

of integration C(x) of the integral i n  Eq. (4) is itself a function Qf x .  The 

details of this process are supplied in  Appendix A. The resulting expres- 

sion for bcplzbt is found to be: 

which after integration over the segmented boundary Cn yields: 

The radius of curvature h(i,n) and the derivatives (6~/6x) dd/de, 
0' 

b i / 6 x  a r e  evaluated at the mid points of the segments i,itl by interpola- 

tion procedures de 3c ribed i n  Appendix A. 

Calculations of %/ox for the circular cone at angle of attack a r e  

presented in  Fig. (6). For comparison, the analytical result for bodies 

of revolution is: 

A plot of Eq. (14) for points cn the cone surface is also provided in  Fig. (6). 

12 
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9. Velocity Components v,w and q’ = 9 t d 

Mfferentiation of Eq. (4) with respect to 2 yields the complex J 

velocity func tioa 

which, upon integration over the segmented boundary yields: 

R ( i t 1  m 

v(j,n)-iw(j,n) = 2 u ) o(i,n) e - i e ( i ’ n ) r l n , ~ , + i b ( i ,  L * J .  j,n)] (16) 
i 

$ is most conveniently found by noting that it is the s u m  of the squares of 

the normal and tangential velocity components. Thus, upon introducing the 

boundary condition Eq. (2b): 
a 

q2 = (2) + (vcos e t w sin 0)s 

on the segment j , j+l  this becomes 

6. Tressure  Coefficient C- and g ‘(x) 

C dcpends upon q2 and bcnldx as determined above and the 

derivat vc g ’(x). Differentiation of g(x) must be carr ied out with due 

concern for the nature of the improper integrals appearing i n  Eq. ( 5 ) .  

t e e d t  of the differentiation process as given i n  Appendix A, Sect. (5) is: 

P 

The 

where 

13 



n- 1 
Y 

?B n 

(s& - S ~ ) l a ( x  - Sk) Jn = r lL(xn-t)S'(t)dt = n 
@ m=O 

x' = (Xmtl + Xm)f2 . m 

To compute the second derivatives of the c ross  sectional area required for 

g '(x) the first derivativ28 at x; are found by finite differences between 

*m 
t and xm+l. Second derivatives S'(xL) at k"(m) = (gmtl t &;)/2 

are then found by finite differences between S' at X '  and &;+l. Finally 

Sm(xm) is determined by linear interpolation of S"(3tk) between X& and 
m 

X "  m+l 
Because of the possible singularity at x=O the results are sensitive 

to the value of S"(0). Rather than compute this second derivative from 

discrete data it is assumed that the nose of the body may be specified 

analytically and that an analytically derived value is available for S"(0 ) .  

The pressure coefficient 

m a y  now be computed. The computational precision may be evaluated by 

c ~ m p a r i s o n  with the analytical results for a conical body of revol&ni~. 

In this special case w e  obtain for points on the surface of the body 

and 

with &pf& as given by Eq. (14). 

14 



Cornpzbed values of C 

bogether with the analytical results obtained from Eq. (20) and Eqs. (14, 

for the conical body are presented in  Fig. (7 )  
P 

21, 22). 

7.  Force and Moment Coefficients 
~~ 

From Eqs. (7,8) for the force and moment coefficients it is seen 

that a determination of the "doublet" strength A1(x) is required. This 

term represents the coefficient of L/Z in the expansion of the complex 

potential W(2) about the origin (see Eq. (3) ). 

Appendix A,Sect. (3) is given by: 

A1(x) as derived in 

where 
T I 

10 n 9 '*n 
i 

A (x ) = 2 L O(i, n)ll(i, n)(yi + i 2.' 1 . 

To obtain force and moment coefhcients A1(x) is substituted into Eqs. (7) 

2nd (8) which may now bc w r i t t e n  in a more convenient form by introducing' 

the centroid loca+lon Z in terms of body axes coordinates. 
I 

z = z  - (iu t H)x . (24) 
g go 

The resulting force and moment equations are: 

F +iFZ X 

Ptre PU8 0 

Y - f [ZIT AIO(x) - (Y  + i&)S]dx - ZgoS}. (26) 
M t i M Z  

= i{x 

Numerical evaluation of the integral in the expression for the moment 

coefficient is carr ied out by the trapezoidal rule using values of n 

and S(xn) obtained at each of the stations xn. 
80 

(x ) 10 n 

(x) S (x) Computation of Z 

15 



is described in  Appendix A. 

by f i r s t  computing the divided difference between stations xn, and x 

then letting this represent (2 S)'at xi. The derivative at x 

mined by linear interpolation of [ Z S '(xi)] between x ' 

The derivative of Z S at xn is obtained 
RO 

n t l '  

is deter- 80 n 
and x ' go n n t l  

Analytical results i n  the cas8 of bodies of revolution at anZIe of 

attack tr are particularly simple: 

M 
2 = - a(x S(x)-V(x)) 
PU2 

where V(x) is the volume of the body up to the station x. 

Computational results for the cone and ogive bodies of revolution 

at Q = 1 a re  presented i n  F igs .  8 and 9, together with plots of Eqs. (27) 

and (28) for comparison. There results are presented in  te rms  of the coef- 

ficients C,(x), and C,(x) defined a t  the end of Section A. 

16 



C. Application to Typical Fuselaz 

A typical l ld  b-sided" fuselage together witkMetail&, ot:'aiis (3f 

the geometry, is shown in Fig. 10. 

straight l ines and circular arcs while the profile is composed of straight 

lines and parabolic arcs. 

toward the rear of the body to p: imote a more accurate determination of 

total force and moment. 

section since there is no change i n  c ross  -section for 1 / 3  

Cross-sections have been made of 

Stations x have been taken closer together . n 

Stations are situated farther apart  over the center 

x C 2/3 .  

Processing of the surface data in  accordance with paragraph 1 of 

section B is shown in  Fig. 11. 

R e s u l t s  of the computation of pressure coe.ficient, force coefficient 

and moment coefficient a r e  given in  Figs. 12 and 13. 

17 



APPENDIX A 

DERIVATIONS 

1. Source Strength u 

Computation of a(i, n) over the segment i, it 1 proceeds by applying 
- -  

the boundary condition Eq. (2b) at each segment of Cn. If vcp = q = j v +Ew 
represents the velocity vector, the corresponding complex velocity i n  the 

crossflow plane is obtained by differentiation of W i n  Eq. (4) with respect 

to 2: 

The contribution by the sources located on segment i,i+l to the velocity 

at P.’ is first evaluated. Noting that i, i t 1  makes an angle e(i, n) with 
J,n 

respect to the horizontal axis, we have 

ie( i ,  n) dc = ds  e 

and the contribution to the integral in  Eq. (Al) may be written: 

‘i, n 

After integration of the las t  t e rm and summation over all contributing 

segments, the result may be written: 

i 

in which, referring to Fig. 3, the quantities R(i, j ,  n) and 6( i ,  j, n) are 

defined by the relationships: 

6 ( i ,  j ,n) = 15” (i , j ,n) - t ( i , j ,  n) 

To insure uniqueness of the complex velocity, care  must  be 

18 



exercised in  assigning values to the angles t(i, j, n) and Jr  '(i, j, n). 

ring to Fig. 3, these a r e  measured counter-clockwise from the positive 

y axis so that when facing from P. 

left of i, ii.1 shall define an angle C ( i ,  j ,n) = e(i, n). As P.' 

a path around P. 

from e(i, n) to e(i, n) t 2n. 

In consequence of these definitions 6(i ,  j, n) t raverses  a path aroung P 

becomes -n when approaching i, it1 from the right and n when approaching 

from the left. This discontinuity reflects that exhibited by the stream func- 

Refer- 

to Pi+l, n, a point P.' just  to the 

t raverses  
1, n 3,n 

J rn 

to a point just to the right of i ,itl ,  d r ( i ,  j, n) increases  
1, n 

The same holds true for rlr '(i, j ,  n) a s  P.' 
J Y  n 

i+l, n' 

tion upon traversing any closed path which encloses a distribution of finite 

sources. 

From the boundary condition Eq. (2b), we have: 

= v(j, n) sin Q(j, n) - w(j, n) cos  0(j, n) . aV (d . 
J*n 

After substitution of v and w from Eq. (A3), this las t  expression becomes 

where 

+ 6 ( i ,  j ,  n)cos(e(j, n) - e(i ,  n ) ) )  , 

In addition, we see from Fig .  4 that the slope av /Ex may be expressed in 

terms of the body slope avo/ax referred to body axes: 

thus eliminating the necessity of constructing a new set of projections 

similar to F ig ,  2 for each set  of U and l'. Satisfying Eq. (A5) a t  each of the 
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points P.’ 

for u(i, n). 

on a given cross-sectional boundary yields a set of equations 
1, * 

2. Determirratimof m, dcnlbx - 
A knowledge of oi;,n) allows the numerical integratim of Eq. (4) 

for a i n  a manner similar to that for the complex velocity above: 

i Ci, n 

After integration, m(j,n) may be wr i t ten  concisely in  the nomenclature of 

Fig. 3: 

-. - - K(i, j, n). u(i, n)lnR(i, j, n) - R(i ,  j, n)- K(i, n) 6 (i, j, n) 

i 

i n  which use has been  made of the geometric relationship: 

R(i, j, n)*ii(i, n) = R(i t I ,  j, n)*ii(i, n) . 
The derivation of a d a x  must take into account the fact that the 

path of integration in Eq. (4) i s  a function of x. Referring to Fig .  1, we 

shall distinguish between increments of a dependent variable taken along 

C(x) and denoted by d(  ) and increm-ants taken normal to C and denoted by 

6 (  ). Differentiation of Eq. (4) then yields 

Fr0.m Fig. 1 it becomes evident that 
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whenr h(6) ia $lo 8 9 d i U s  of cuwatuyr of C ( t )  at C. 

frornFig.  

In addition, we have 

'Eo evaluate 0 8 t h ~  we me&?, refarrihg to rip,. 4, 

whew 8" denote. the value of t9 a t  tk poirt Px. 

m a t  betweon Pi, ~ and P" is shown in Fig. 4, as f t  would appeot in ''wind" 

axab. 

frame d rdepence. 

&at on ia the wind axis frame corlesponda to 6' in the body ax:= frame. 

From Fig. 4 the& we ham 

The relative displac8- 

However, the tamputation of 6 has been carr ied out in a body axis 

T o  make use of the msul ts  of that computation we note 

(A 13) 
da 0" e o' = o(i,ntl) t - (asir.0 t Y cos 0)bx 
dS 

which, after substitution into Eq. (A12), h a d s  to the required expression, 

6 W  vyhete (=) 

inwoducing Eqs. (AlO), (Al!), and (A14) into Eq. (A9), 

.r: 
is the dertvative eveluated i n  th2 body axis frame. Finally, 

0 

Again, assurrriag that quantities io the bmckzts of the inkgrands are 

w n s t a n t  over i * W  1, the integrations proceed in a straightforward manner: 



in  which we note tha t  ( E \ I / & U )  e ?\/as aLs &dined i n  Eq. (Ab). 

Equations deiining (do/ds), ( b a / F x )  F.v /6x and l / h  a t  the 

'en 

0. 0 

point P.' 

Adssc r ip t ion  of b a l e  cnrnpatational p r o c e s s  is given here:  

are provided in  Sections C-1 and C-3  i n  P a r t  I1 of th i s  repor t .  

a) clO/ds - 6 a% P. is first obtained by interpolat ion tetwee.1 
1, 

du/ds  a t  P '  is then set equal  i, n the computed values  of O(i,  nf at P ' 
to the  divided diffeFence between Zhese interpolated values  of 6. 

Section & 3  ot  Pait 11). 

i. n' 
(see 

b) (EFIdr) - the depivalive a t  the mid-?oir;z s' of the interval  
0 n 

I x 

Linear  inteepolation between these  de t iva t ives  then yields ( ~ C / ? X ) ~  at x 

(see Fig. 14 and Section C - 3  of Pafi 11). 

is set  equal to 4he divided difference between v(i, n) and a( i ,  n+1). 
n' n + l  

?' 

c )  6v0/Cx - Referping to  Fig. 15, the d isp lacement  ?r is dc te r -  

- s ) then b r / ( X n + ~  n mimed by inteppolation between F C. 

r e p r e s e n t s  Av /f.x a t  x i .  

yields Fv /fix at xn ( s e e  Section C-1  of P a r t  11). 

and Fj C i + l ,  ,,. -1* n 

Interpolation b t w r c n  the s ta t ions s; then 
c, 

0 

c!) T / h  - 8 at Pi ,n  is  de te rmined  by i*rpolation between values  

of Q(1,  n) at 

divided di$fe*nce between d at Pi, 

of Part 3:). 

The cu tva tu re  I / h  at P.' i s  then s e t  equal  to the 
1, n 

and 8 a t  Pi,n. (see Lection C - 3  
r n  



3. "Doublet Strength?' AI(x) 

A1(x) is the coefficient of the 1/2 term in thzexpansion of the com- 

plex potential W(Z1 about the origin (see Eq. (3) ). If the integral repre- 

sentation of W from Eq. (4) is expanded we find: 

Thus, we haw for the coefficient of the 112 term: 

Introducing body axes coordinates 

C = c0 - (ia + y)x 

we have 

The las t  integral on the right hand side is recognized as the coefficient of 

the "source" term in the above expansion of W(Z).  

body theory Ref. ( l ) ,  this is related to the rate of change of cross-sectional 

According to slender 

area: 

our final expression for the ''doublet'' term is therefore 

Integrating over the segmented boundary Cn. 

i 1 

the last integral may be interpreted as the marnev tl.a r c  i , i t l  about 
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c 

4. Cross-sectional Properties 

Computation of S(xn), Z Sfx ) and their derivatives is accomplished 
go 11 

with the aid of Stokes' theorem in  the complex plane. Thus, 

1 
zgoSb) = 5 Coro dCo 

which expressions, after integration around Cn, yield 

1 S(xn) = z x(yi,  ndzi, - 2- 1; n dyi, n 
1 

and 

- i dYi* n) 
1Y 

go i,n it n 
i 

Z S(x) = r? (de. 

where 

dz. = J .  - 2. i , n  i + l , n  i , n  

- 
dyi, n - Yit1, n - Y i ,  n 

. 5. g'(x) 

The derivative of g(x) appears i n  the expression for the local pres-  

sure coefficient, Eq. (6). To avoid the occurrence of singular integrals, 

differentiation is accomplished by f i rs t  integrating by parts the integrals 

appearing in Eq. ( 5 )  for g(x) and then differentiating the resulting expree- 

sions 
X X 

1% 

S'(t) In (x-t)dt = - S' (0 )  (x-x lnx) - I S"'(t)[(x-t) - (x-t) In (x-t)]dt .1 
0 0 
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then 
X X 

S'(t) In(%-t)dt = S'(0) In x t r S"(t) In (x-t)dt 
c 

0 

a 
0 

and similarly - 
I 1 

a [ S'(t) In (t-x)dt = - S'( 1) l n  ( 1 -x) $. f S"(t) In (t-x)dt zi 
X X 

Thus, differentiation of Eq. (5) for g(x) yields: 

1 
g I (x) = 5 1 {S8(x) In($ $ 1  + z [ S"*(t) In (t-x)dt 

X 

X 

S'(0) 1 - 1 S"(t) In (x-t)dt - -7 x 
0 

Expressing the integrals as Stieltjes integrals facilitates their computation. 

1 N- 1 
= 1 ln(t-xn)d S"(t) = 1 (Sk+l  - Sk)1n (xn I - xn) 

In 
X m=n n 

and 

n- 1 X n 

Jn = ln(xn-t)d S"(t) = (S"m+l - S k ) l n ( x n  - xk) 
0 m=O 

where x '  = (xm + x 

we thus have 

) / 2  m m t l  

The occurence of singularities in  g(x) and g '(x) a t  x=O, 1 signifies the 
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failure of slender body theory in these regions unless S is sufficiently 

well  behaved there i. e;', first and second derivatives equal to 0. For p o k b d  

bodies S'(0) = 0 and the occurrence of S'(1) = 0 is common. 
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PART II 
FORTRAN PROGRAM 

A. Input 

1. Comments 

The body axes coordinates 2. at x may be read from 

cards  o r  computed by a code supplied by the user; the indices IX and 

IR are set equal to 0 o r  1 depending upon the choice made. After the 

source strength o is computed the program computes 0, &/ax, C a t  

the locations P.’ 

quantities at arbitrari ly specified points on o r  off the body has also been 

included to facilitate induced flow studies. Thus m, dmldx, C a r e  

computed a t  P.’ 

depending upon whether the index IYPP is set  equal to 0 o r  1 

1, n n 

P 
on the surface. The capability of computing these 

1, n 

P 
o r  at locations supplied by the user  as additional input, 

1, n 

2. List  of For t ran  Symbols for Input Data 

ALP Angle of attack a, positive for nose up attitude relative 

to wind axes. 

BET 

ACH 

SPPO 

SREF 

ENG 

REFL 

Angle of yaw y ,  positive for clockwise rotation 

about z - axi s . 
Free  Stream Mach No. 

S x ( 0 )  Second derivative of cross-section a rea  evaluated 

at the nose. It is assumed that this is available from 

analytical considerations regarding the special geo- 

metry of the nose section. 

Dimensional reference area. 

Dimensional body length. 

Dimensional reference length. 



IYPP 

IL 

ML 

IR 

Ix 

=O i f  eoordinater of P.' 

=I  if P ' ~ , ~  are to be read from itapt cards. 

Number of segments into which a cross-sectional 

are computed by program, 
1, * 

boundary is divided . 
Number of longitudinal stations at which cross-sections 

are taken. 

= I  if yi n, e. 

=O i f  these cards  are to be cornputed%y a code 

inskrted after statement 11 1. 

are to be read from input cards. 
# 1, n 

=1 if  x 

=O if these stations a r e  to be computed by a coddtt- - 
are to be read from input cards. n 

inserted after statement 11 3. 

E Y M L R  = 0 if  contour does not have lateral  symmetry 

= I  if  contour has lateral symmetry 

ISYMUD = 0 if contour does not have vertical symmetry 

= I  i f  contour has vertical symmetry 

i f  # 0 SREF will be defined = S(ISR) ISR 

X(N) Dimensional longitudinal coordinates xn. 

Dimensional coordinate y. 

Dimensional coordinate z. 

Dimensional coordinate of collocation pt. y;, n. 

Dimensional coordinate of collocation pt. z;, n. 

1, n 

1, n 

Y(1, N) 

m, N) 
YPP(I) 

ZPP(1) 

3. Preparation of Input Cards 

Card # 

1 

2 

Format 

5E15.8 

5E15.8 

29  

Variable 

ALP 
BET 
ACH 

\ I .  

REFL 



3 1015 IYPP 
XL 
NL 
IR 
Ix 
ISYMLAR 
ISYMUD 
ISR 

The following cards  are preprred in  the order presented, when the indices 

IX, IR, IYPP a r e  as specified 

If Ix=l 10F8.0 

If IR=l lOF8.0 

If ISMLR = 1, ISYMUD = 0 ,  or I 
I=l placed in  4th quadrant 
I = IL placed i n  3rd quadrant 

If ISYMLR= 0 ISYMUD= I 

I = 1 placed in l e t  quadrant 
I = IL placed i n  4th quadrant 

If ISYMLR = ISYMUD = 0 
no restriction on placement of 1=1 

If IYPP = 1 5E15.8 

i(2, NL) 

i(IL, NL) 

Y PP( 1) 
ZPP( 1) 
YPP(2)  
ZPP(2) 

z must be inserted after A code to compute yi,n, 

statement 11 1. 
i ,n  If IR=O 

Lt IX=O A’. code to compute xn muat be inserted after statement 

113. 
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B. Output 

1. Input parameters 

The first row of output presents the pertinent input parameters 

ALPHA, BETA, MACH NO., SPP(O), REF AREA, BODY LENGTH, REF 

LENGTH. 
t t  2. a, cn, y , e 

a(j,n) and fn(j,n) at the location y.' 2. I are presented as 
.J,n 3 , "  

follows for 1 < n N - -  

n 

SIGMA 

Y PRIME 
2 PRIME 
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3 .  an/* - 
(a/&). at the points P.’ are presented as follows: 

.Is n Jsn 

D PHI/D X 

5, Force and Moment coefficients, g ‘(xn), F- reFsure Coefficient 

Pressure coefficient C at P.’ is computed for 1 < n < N-I. 

Force and moment coefficients are presented as Zollows: 

- -  P J s  n 

N = n, CY = C (x  ), CL = C,(x,), CN = CN(x;;) 
Y n  

CM = CM(xn), GP = g’(xn) 

Cp(l,n) - - - - - - - - - - - - - Cp(7,n)  

cp (L, 4 CP(8,n) - - .  - - - 
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ORIGINAL PAGE IS 
OF POOR QUUm 

C. Summary of Programmed Equatfom 

These equation8 are presented in order of use. The Fortran svmbol 

at the left represents the quantity at the left hand side of each equation. 

1) Computation of o(i, n) 

Y(=p, N) YiL+1, n Yi,  n 

D"yi-ll(i, n) t D"yil(i-l, n) 
Y P W  DDyi = 3 c i c i L 4 - 2  - -  

l(i,n) t l(i-1,n) 



The above operdtions from Y(ILP, N) to  YP(2) are repeated for Z(ILP, N) 

to ZP(2) to obtain 2:. 

R(I, J) 

F W ,  N) 

R l i ,  j ,n)  =[(y;, - yi, Ja + (e.' J r n  - e. 1 , n  P]i 

s i n  e(i, n) 

> O  

> O  

< O  

< O  

- 1  
s in  s i n  8(i, n) - 

n-s in  s i n  O ( i ,  n) - 
-1  

-1 

- 1  

- s in  s i n  e(i, n) 

2n- sin s i n  8(i, n) 

O ( i ,  n) = 

s ine ( i , n )  = ( z ~ + ~ , ~  - 2. ) / l ( i , n )  
1, n =(I) 

CT(I) cos e(i, n) = (yi+ 1, - Y i, n) / 1 (i, n) 

For the computation ob angles it is assumed that a computer W i l l  obey the 

following rules: 
-1 o c sin sin8 e ,r/2 , s i n 8  (+) 

-n/2 < sin- '  s i n  e c o , s i n 8  (-) 

o <cos- lcose  en/2 , case (+I 

4 2  c c O s  case , case (-1 . - 1  

cos e(;, n) 

> *  - 
e 0  

< O  

> @  - 

sin- s in  Y ( i ,  j ,  n) I rr-sin s i n y ( i ,  j ,  n) - 1  

y ( i ,  j ,  4 = 

- 1  2vts in  s in  v( i ,  j ,  n) 

34 
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The folAowing redefinitions of e(i, n) assure continuity of 6(i, n) when 

paasing directly between first and fourth quadrants: 

FL(IL+I, N) l( it+l,  n) s I(i, n) 

N) ~ ( 1 , n )  = x( iLt1 ,n)  - 2-7 

) s i n  x(i ,  n) 

- 2 .  ) cos R(i,n) 

(Yi,  n i l  - Y i ,  n 

- (= i ,n+l  i , n  

D W )  Evo(i, n) = 
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IlT 

RU 

RN 

DTU. r, N) 



SIG(lLP,N) o(iL t 1,n) = o(1,n) 
C .  

SII 

a(i, n+l) - u(i,n) 
n+l n - x  X 

XIN(1) 
1, n 

ORIGNAL' PAGE IS 
OF YWii QUXLIrY 

DSX 

RD v.(i+l, n) - x(i, n) 
1 (i, n) l/h(i, n) = 

4) Computation of @(j, n) 
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5)  Computation at Crosr-sectional Properties 

Y 2P 

d t .  f 2 - 2. i , n  i t 1 , n  i , n  Z Z  

Y Fa 2 go S(Y,) = - Z L  
i, n dyi, n 

SZA(N) 
i 

DSYG 

SYP 

SYP 

SYP 

SPXP 

Ye*S(Xn*1? - Ygo Sbn) 
1 C n e N - 1  X - x  c -  

n+l n 
DYS, = 

s’(x;) - S(Xl) /X1 

SPPXPW J) s”(x;) = I 
x 1 - x p  

S’(Q - S‘(Xm-,) I 

SPPXPP S’(XL) = x 1 - x  I ? 

m m-1 
2 < m  <N-1 
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XPP( 1) x; = (XI +x2/2)/2 

SP PX( J) S8 = SZ(X8 ) + [s’(xd+l) - S8(X8 )] 8 
XB - x  m m m 

m t l  m 

s P PX ( ML ) 

SPX 

RIN 

6) Computation of g’(x), C , gSO(0) assumed = 0) 

n- 1 
- - S’ )In(xn - x;) RJN Jn - 2 m 

m=O 

CP 
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7 )  Computation of Force and Moment Coefficients 

w3 

we 

w2 

w3 

SUM 

SUM1 

1,n 
AIIO(xn) = 2 T a(i, n)l  (i, n) z.' 

i 
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D. Program Listing 

- . .. - . .. - 
0001 

0 0 0 )  
0 0 0 3  
0000 
000% 
OdOh 
0 0 0 7  

0 0 0 A  
0004 
O U l C J  , 
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... .. ~ 

0031 
0032 
0033 

0034 
0035 
003h 
0037 . 
0034 
l 0 3 Q  
0040 
O O J l  
0042 
0047 
0046 
0045 
O O 6 h  
0017 

000U 
OOSO 
0051 

0057 
005- 
0054 
0056 
0057 
Od5* 
03S.i 
0030 
000 1 
OOOC 
00b-i 
O O h c .  
OOn‘ 
006- 
OOh7 

n o w  

nos? 

nu-e 
no54  
no70 
on71 
0017 
0 0 7 3  
O U  IS 
0 0 7 5  
007c 
0 0 7 7  
0 0 t h  
90 7- 
n o m i ’  
O O . ‘ l  
nOdr 
0 0 r  1 
(IO+& 
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0085 
008h 
OOH7 
004a 
0099 
0090 
0001 
OUU? 
0093 
0004 
0094 
0096 
0097 
009p 
0099 

0101 
OlOP 
0103 
0104 

010- 

OlOh 
0100 
0110 
011.1 
0 1 1 2  
n 1 1 3  

01 1 L  
O l l C  
0117 
011c 
01 l i  
0121, 
0121 
0lC"P 
0123 
O l ? C  
0 L#' 
0 126 
0187 
Ol2* 
i ) l % O  

41 3 1  
9 1 3 0  
0133 
n i  34 
013';. 
0 1  3c 
n i  37 
0 1  3b. 
0 134 
o i i n  

o i o a  

o i n 4  

01n7 

0114 

o i w  

. 44 



t 

10 

b 

e? 

12 
1 9  

1s 

17 
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20 

J O  

.46 



47 



48 
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.. . .-. . 

so 
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15 

ao 

le8 

110 
120 

134 

M ro IBO 
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MODIFICATIONS FOR CROsSECTfOMS WITH CORNERS 

k Dlscttlssion 

Parts I and II describe a program k, compute force coefficients a d  

preslsure disQiBPrtioae Over arbitrarily bat emoothly shaped crossections in  

atme absreace of corners. Although solatioas based on slender body theory 

-. . 

are irnralid aver regions of high surface carvatare they are st i l l  capable of 

yielding good results away from such irregularities provfded additooaal care 

is exercised in the computation of geometric surface properties as a corner 

is approached. Analytically, a corner represents an arbitrary break in  the 

structure of local surface properties. Any echeme of specifying corner 

properties by a finite nomber of discrete parameters must involve implicit 

assumptions regarding the behavior of such corners between points at which 

data is given. For this reason it is desireable to have a procedure which 

allows the user some discretion regarding these assumptions without re- 

quiring an excessive amount o€ data to define surfaces. In the following 

procedure this discretion is excersieed in  the choice of the distribution of 

orthogonal l ime Si introduced in Fig. 2. 

In a finite computational scheme the difficulties inherent at a corner 

first become manifest when the local radius of curvature on Cn becomes 

smal l  compared to the distance in the y, E plane to the neighboring cros- 

aection Cn+l. Such points are illustrated in Fig. 16 at (i, n) = (15,5), (15,6), 

(lS,7). For practical computations such points are equivalent to fhe sharp 

corners of (4,2), (4.3) and must be treated in  the same way. In contrast 

to the procedure.of Part 11 which ltrounds off1 regions of higher curvature 

it is more appropriate now to adapt the opposite procedure namely: a region 

of finite but large curvature is to be replaced by a rPharp corner. If thie 
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i = coastant sball be called stringers, These are the fnmily of lines Si first 

illustrated in FQ. 2, 

2. Cormer lime i = I C 0  

Tbase are lines passing thrp corner puiints. They are to be considered 

as part of the family of stringers Si. As sach they are conaimed Over tbe 

entire length of the b e  even though previous or .subsequent crossections do 

not have cornsrs. An example of one such line is shown for i = 4 in Fig. 16. 

Corner lines are distinguished by the index IC(Ec) = i signifying that the index 

of the lrth cormr, counting counkr clockwise, is i. Thus in  Fig. 16 

IC(2) = 4. (For programming convenience it is expedient to designate the 

first  stringer i = 1 as a corner line ie (C(1) = 1 even though there may be no 

corners along this line. ) 

3. Submerged lines SBP(K, n), IBM(K, n) 

A stringer Si from the contour Cn may intersect a corner line before 

it intarsects the next contour CnS1 as illustrated in Fig. 16 at (10,6), (16,4), 

(14,5) and (17,6). Subsequently such stringers are considered to follow the 

corner line and &e regarded as submerged. At  the K 

highest submerged line index is denoted by IBP(K, n) and the lowest by 

IBM(K, n), Thus from Fig. 16 we find IBl(5,7) t 17, IBM(5,7) = 14. A 

th corner on Cn the 
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I. 

corner Una may also be coaabsd as a submerged line ie: IBM(15,5) = 15, 

IBM(15,4) = 15. W e  xmb then, that every iaberimcaion of a corner line IC(K) 

with a c o w  Cn has aesadabd with it th9 indicee IBM(K, 4, IBP(K, a). 

For perpoees of illustration a cci-,.plebe table of IBP(K,n) is provided i n  

Fig. 16. 

mt IBM(1,n) t IL + 1. 
Fid ly ,  w ands tbt in the absence of any corners dong i t 1 tlpe 

la Fig. 16 this means that IBM(1,n) = 19. 

C. Modificatiom to ttrS coxnputational procedure 

1. Collocation Points 

Pointa P8(i,II) at which h l b r ,  0 etc. are to be evaluated wre  pre- 

v i a 4 y  found by smooth interpolation bekreen P(i-2, n) and P(it2, n). To 

avoid the requiring of a n  excessive number of data locations P(i,n) between 

coraers tMs has been modified so that P '(5, n) is read directly from supplied 

data or by simple interpolation between neighboring locations P(i, n), P(it1, a). 

In many practical applications the contour curvature betareen taro corners is 

smal l  and the later procedure should be adequate. 

2. computation of &/&E 

Values  of 6v/6x are to be found at P(i,n), P(it1,n) and interpolated to 

obtain a value of P '(i, n) between i and i .I. 1. (This represents a minor but 

necessary change from the procedure of Part II which determines 6v at 

P'(i,n-1) & P8(i,n) and interpolales the associated derivatives along the x 

direction). 

these do not intersect the corner lines the determination of Bv/6x at the data 

points P(i,n) is carr ied out as thc,gh no corners were present. 

The increments 8v are taken along the stringers and as long as 

When a stringer S intersects a corner line the local corner geometry i 
is assumed as shown in Fig. 17 which represents a n  enlargement of the local 

configuration as it appears in Fig. 16 at P(4,2) and P(4,3). While 6 v  as 
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idcatad in Fig. 17 may be calculabd directly from tha data presented in 

tha plots of Co a d  Si. the d w  of QE muet be inferred from the assump- 

tion tSat tlme cormer l i m e  shewn in Fig. 17 is closely apprardmated by a 

straight line. Thus with 6 9 .  6vzs as indicated in Fig. 17: 

This is to be compared with the calculation away from a cormr where S(x) 

is simply x(ai.1) - x(n). 

To devise a program which is applicable bo all possible instances of 

corner geometry it is necessary bo )lave tests which indicate when a stringer 

emerges fram corner as between P(4,Z) and P(4,3) in Fig. 16, and when it 

converges toward a corner to become subsequently submerges as is the case 

between P(11,6) and P(11.7). Such a tes t  is readily constructed with the aid 

of the indices IBP and IBM. Thus for example: 

at least one stringer 

P(fC(K),n) & P(IC(K), ntl) 
IBP(K, ntl) IBP(K, n) has emerged between 

and 

fBP(K,n) - fBP(K,n+l) = no. of emerged stringers. 

In this manner IBP and IBM provide complete information regarding the 

emergence or convergence of stringers on either side of a corner line. 

Thie information together with implied geometry of Fig. 17 enables th: 

computation of 6v/bx a t  the center of contour segments which are adjacLnt 

to corner lines. 

3. Curvature 

The fact that curvature is divergent near corner-like points leads to 

errors in  the computation of %/ax when using the program of Part  IL 

program i n  effect rounds off corners whereas as pointed out in the discussion 

This 
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above a mom appropriabe procedure is to treat regions of high curvature as 

sharp corners is as though Mgh curvature regions were concentrated at a 

corner point, With this procedure the curvatwe of segments adjacent to a 

ccuuer is small  and xnay be obtained by extrapolation f rom a neighboring 

segment. Thus, referring to Fig. 16 we would have: 

h(3,3) = 
h(4.3) = h(5,3) 

4. Computationof 60/m 

In Part U 60/6x was approximated by central divided differences 

involving o(i, n-1), o(i, a), u(i, n+l). This procedure breaks down at a cor- 

ner. The rules to be followed near corners wil l  now be that (6~/6x). will 
1, 

be campabed b~ 

Forward divided difference when Si and/or Sitl emerge from 
a corner. 

Backward dividPd differences when Si and/or Sitl converge 
to a corner. 

Central divided differences away from CL .mer. 

Ae an illustration corresponding to Fig. 16 

In the 

converging just ahead of it &Y/bx shall be assumed to be zero. 

evcnt of a stringer einerging just behind a segment and again 

5. do/ds - 
To compute dU/ds we just  find U a t  all  the data points P(i,n) (except 

at a corner pt. ) by interpolation between neighboring collocation points 

P ' (i-l,n), P'(i,n). At corner points dO/ds is then found by forward 
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differences leaving a cormr along Cn and by backward $ifferencee when 

approaching a corner. 

6. BQatrix Inversion and !%munation 

??or the nustrirr inversion process encountered in the evalnation of 

e&=) it i s  convenient to reorder the indices so that ths actaarl finite segments 

of a contour Cn are indexed consecutively. This involves shipping over sub- 

merged segments in the counting process. Such a reordering may be accom- 

plished through the introduction of a new index IR(m) for which tha m are 

conaecutiws indices and: 

=(mi = i 

for values of i corresponding to unsubmgrged segments. Thus we w d d  &am. 

for example 
mL 

m= 1 

where the latter summation is taken only over those values of i corresponding 

to segments which are not submerged. 

The remaining computat3onal procedure8 from Part LI are not affected 

by the presence of corners and do not require modification. 
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FIG.1 BODV SWPE AND CROSSECTMAL 
VARIABLES 
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FIG. 2 CROSSECTION BOUNDARY SEGMENTING 
SCHEME IN BODY AXES COORDINATES 

6 0  



FIG.3 OETAILS OF VARIABLES PERTAINING TO 
SEGMENT i, i+ I OF 60UNOARY Cn 
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FIG.4 RELATIVE POSlflONS OF Cn AND Cn+l 
IN BODY AXIS AND WINO AXIS 
REFERENCE FRAMES 
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FIG.5 SOURCE STRENGM 6 ON CIRCULAR 
CONE AT ANGLE OF A " W K ,  omO.1 
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FIG.81 GENERATION OF INPUT DATA FOR 
SAMPLE FUSELAGE 



0 0.2 0.4 0.6 0.8 1.0 
li 
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FIG. 14 INTERPOLATION PROCEDURE FDR 
DETERMINATION OF ( 8~ / 8 x ) 
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FIG. IS INTERPOUTION PROCEDURE FOR 
DETERMINATION OF ( 8 ~ 0 /  8 ~ ) i , n  
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FIG. 16 ILLUSTRATION OF SEGMENTING SCHEME 
fOR CONTOURS WITH CORNERS 
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