General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASATECHNICAL MEMORANDUM

```
(NASA-TM-78900) MEDIUM POWER VOLTAGE

\title{
MEDIUM POWER VOLTAGE MULTIPLIERS WITH A LARGE NUMBER OF STAGES
}

\author{
by W. T. Harrigill and I. T. Myers
}

Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAEER to be presented at the


Power Electronics Specialists Conference
sponsored ty the Institute of Electrical and Electronics Engineers
Syracuse, New York, June 13-15, 1978

\title{
MEDIUM POWER VOLTAGE MULTIPLIERS WITH A LARGE NUMBER OF STAGES
}

\author{
W. T. Harrigill and I. T. Myers
}

\author{
National Aeronautics and Space Administration \\ Lewis Research Center \\ Cleveland, Ohio 44135
}

\section*{ABSTRACT}

Voltage multiplier techniques were extended at medium power levels to larger multiplication ratios. A series of DC-DC converters were built, with from 20 to 45 stages and with power levels up to 100 watts. Maximum output voltages were about 10,000 volts.

\section*{INTRODUCTUION}

Previous work (1-5) has proven that capacitor diode voltage multiplier (CDVM) DC-DC conversion with efficiencies up to 96 percent and at power levels up to 1 kW is possible. The multiplication factor, or ratio of \(D C\) output to \(D C\) input voltage in this previous work was about 8 or 10 . This paper discusses the extension of this multiplication ratio for medium power multipliers, and explares large multiplication ratios in terms of efficiency, weight, and operating characteristics. Multipliers with twenty to forty-five stages were examined both analytically and experimentally. Emphasis was placed on high efficiency and light weight. Some large multiplication ratio work has already been reported in the literature ( \(6-11\) ). However, the converters were of low power and efficiency was not of primary concern.

\section*{EQUATIONS FOR LOAD VOLTAGE DROOP, OUTPUT RIPPLE, AND LOSSES}

The voltage multiplier used was of the type shown in figure 1. The multiplication ratio, at low power, is approximately equal to the number of stages. Each stage includes 2 capacitors and 2 diodes. Descriptions of the cransistor drive and control circuits have previously been reported ( \(1-4\) ) and will not be repeated here.

The output voltage was determined using techniques previously described by Harrigill and Myers ( \(1-4\) ), Brugler (12), and Borneman (13). The average value of the load voltage, \(\mathrm{V}_{\mathrm{L}}\), is :
\[
\begin{equation*}
V_{L}=s V_{i}-\frac{i_{L}(s)(s+1)(2 s / 3+1 / 12)}{f C} \tag{1}
\end{equation*}
\]

\section*{where}
s number of multiplier stages
\({ }^{i}\) L load current
f chopping frequency
C individual capacitor values
\(V_{i} \quad\) imput voltage
For large values of \(s\), the average output voltage, within a few percent, can be written as :
\[
\begin{equation*}
V_{L}=s V_{i}-\frac{2 i L^{s^{3}}}{3 f C} \tag{2}
\end{equation*}
\]

The first term, \(s V\), is the no load voitage and may be considered analogous to the internal voltage of a generator. The second term, \(21 \mathrm{~L}^{s^{3} / 3 \mathrm{fC}}\), is the load voltage droop due to capacitor charging losses in the voltage multiplier

This series voltage drop in the voltage multiplier gives rise to a power loss of \(2 s^{3} i \nmid / 3 \mathrm{fC}\). In addition to the DC output voltage \(V_{L}\), a ripple voltage \(V_{R}\) with a frequency of \(f\) is superimposed on the output. This ripple voltage has a peak to peak value of
\[
\begin{equation*}
V_{R}=\frac{i_{L}(s)(s+1)}{2 f C} \tag{3}
\end{equation*}
\]

For large multiplication ratios, the droop voltage, which is a function of \(\mathrm{s}^{3}\), is much larger than the ripple voltage, which is a function of \(\mathrm{s}^{2}\).

In addition to the capacitor charging loss, there are other losses. See reference (2) and tables I and II. Note that one loss is proportional to \(i_{\mathrm{L}}^{2}\), several are proportional to \(i_{L}\), and some are independent of \(i_{L}\). This suggests that a maximum efficiency exists at some load current. In order to determine this point of maximum efficiency, an expression for efficiency in terms of \({ }_{1}\) was formulated and its derviative with respect to load current set equal to zero. The efficiency \(\eta\) is equal to
\[
\begin{align*}
& \text { if }=\frac{V_{\text {input }}-P_{\text {loseses }}}{P_{\text {input }}}  \tag{4}\\
& P_{\text {input }}{ }^{a} I_{\text {input }} V_{\text {input }} \tag{5}
\end{align*}
\]

For a well designed voltage ontifplier, the input current is very nearly equal to the number of stages s times the load current.

Thus
\[
\begin{equation*}
\pi_{1}=\frac{i_{L_{4}} B V-k_{1} B V-k_{2} s V L_{L_{1}}-k_{3} B V L_{L}^{2}}{i_{L_{1}} V_{V}} \tag{6}
\end{equation*}
\]
where \(k_{1}, k_{2}\) and \(k_{3}\) are constants dofined by:
\[
\begin{gather*}
k_{1}=2 C_{D R} V f+2 C_{T R} V f+41_{D R}+\frac{21_{T} \text { off }}{3}  \tag{7}\\
k_{2}=\frac{2 V_{D E}}{V}+\frac{2 V_{T F}}{V}+\frac{2 V_{d}}{V B}+\frac{2 \pi^{2}}{3}\left(\frac{T_{T}}{V_{I T}}\right)^{2}+\frac{4 T^{2}}{3}\left(\frac{T \mathrm{D}}{T I D}\right)^{2}  \tag{8}\\
k_{3}=\frac{(8+1)(2 G / 3+1 / 12)}{\mathrm{fCV}}-\frac{28^{2}}{3 \mathrm{FCV}} \tag{9}
\end{gather*}
\]
where the symbols have been previously defined.
The Losees given by \(s k_{1}\) are independent of lood cur*ent, the losses givent by the \(k_{2}\) term \(\left(s V k_{2} L_{L}\right)\) are proportional to load current, and the \(k_{3}\) term losges ( \(201_{1}^{2} / 3 \mathrm{EC}\) ) are proportional to the gquare of the load current. The effielency it can then be written in terms of \(k_{1}, k_{2}, k_{y}\) and \(f_{L}\) as
\[
\begin{equation*}
\eta=1-\frac{k_{1}}{i_{L}}-k_{2} \quad k_{3} L_{L} \tag{10}
\end{equation*}
\]

Setting \(\quad \mathrm{dm} / \mathrm{di}_{\mathrm{L}}=0\) gives
\[
\begin{equation*}
i_{L}(\text { thax efffefency })=\sqrt{\frac{k_{1}}{k_{3}}} \tag{11}
\end{equation*}
\]
and
\[
\begin{equation*}
\eta_{\max }=1-2 \sqrt{k_{1} k_{3}}-k_{2} \tag{12}
\end{equation*}
\]

The trend in the efficiency versus load current curve, and the variation in efficiency with the number of stages \(s\), is shown in the experimental results section.

OPTIMTZTNG THE NUMBER OF STAGES FOR A GIVEN OUTPUT VOLTAGE

It is desirable to select the minimum size (and weight) multiplier for a given application. The output voltage for a voltage mutliplier of the type shown in figure 1 was given in equation (1) as
\[
V_{L}=u V=\frac{\Delta(\Delta+1)(2 \Delta / 5+1 / 12) L_{L}}{1 C}
\]

The value of eapactitance \(C\) required for each position in tho malefiller is:
\[
\begin{equation*}
\mathrm{c} \cdot \frac{\mathrm{~s}(\mathrm{~s}+1)(2 s / 3+1 / 12) 1_{L}}{f\left(u V-V_{L}\right)} \tag{13}
\end{equation*}
\]

Norbaliy, \(i_{1}\) and \(V_{L}\) are fixed by the load. The frequency fis also ifxed or limited by atray inductances or losses. The number of atages \(B\), however, may be varied.

The total eapacitanee \(\mathrm{C}_{\mathrm{T}}\) is
\[
\begin{gather*}
C_{W}+2 B C, \text { or }  \tag{14}\\
C_{C r}=\frac{2 B^{2}(B+1)(2 s / 3+1 / 12) L_{L}}{E\left(S V-V_{L}\right)} \tag{15}
\end{gather*}
\]

One can now determine the optimum \(a\) by differentiation of \(C_{r}\) with respest to \(s\), and setting the resultant expreselion equal to zero. From a strict mathematical standpoint this is not possible, since \(s\) occurs in disercte, zetugral values. For tilis treatment, however, s will be considered continuous, and the nearest entegral value taken.
\(\frac{\mathrm{d}_{\mathrm{CI}}}{\mathrm{d}_{5}}=\)
\[
\begin{align*}
& =1_{L}\left(s V-V_{L}\right) \frac{(s+1)\left(\frac{2 s}{3}+\frac{1}{12}\right)+s\left(\frac{2 s}{3}+\frac{1}{12}\right)+s(s+1)\left(\frac{2}{3}\right)}{E\left(5 V-V_{L}\right)^{2}} \\
& -\frac{1_{L} B(s+1)\left(\frac{2 s}{3}+\frac{1}{12}\right) V}{E\left(S V-V_{L}\right)}=0 \tag{16}
\end{align*}
\]

If we take the case with large s
\[
\begin{equation*}
\left(s V-V_{L}\right) 2 s^{2} u \frac{2 s^{3}}{3} V, \text { or } \quad s=\frac{3}{2} \frac{V}{V} \tag{17}
\end{equation*}
\]

Substituting into the expression for \(C_{T}\), again for the case of large 8 , gives:
\[
\begin{equation*}
C_{T}=\frac{27 V_{L^{\frac{i}{2}}} L}{2 f V^{4}} \tag{18}
\end{equation*}
\]
and the capacitance per unit stage is
\[
\begin{equation*}
C=\frac{C_{T}}{2 s}=\frac{9}{2} \frac{V_{L_{L}}^{2}}{\mathrm{EV}^{3}} \tag{19}
\end{equation*}
\]

Since the efficiency of the converter is \(1_{L} V_{L} / \mathcal{L}_{\text {in }} V\), and the input current is very closely equal to sif for the minimum total capacitance case the efficiency MM is
\[
\begin{equation*}
{ }_{4 i} M=\frac{V_{L}}{Q V}=\frac{2}{3} \tag{20}
\end{equation*}
\]

\section*{EXPERIMENEAL RPSULTS}

A berfes of large matipileation ratio voltage malciphiors were buile using 10 materofarad polyvi* nyLidone Eluoride capactiors and fast switehing diodes. The input was 255 V de. Swltehting was provided by min transistors drlven by small pulse trameformers. the operational parameters of the multipliter are given in table III.

Alternate efreait approaches could havo been taken For example, a bridge circuit could have been used for the uwitching transistora, providing doubice the voitage outpute with the sane wamer of seages. However, thif would require 4 trambiators Lnsted of two. No regulator was used, alchough one could have been incorporated. (See ref. 3). The purpose of this work was to develop the technology of large maltiplication ratio voltage multiplicer power sumples for high power rit tubes; regulation, ripple, dynamies responsa and othar requirements will depend upon the particular appiication involved.

Figure 2 gives the voitage change with load for different multiplications. ( 25 atages moans 25 times maltiplication) Calculated lad voltages are given by the solid lines. Agrement between calculated and experimental resulta are seen to be reasonably good. Figure 3 shows the afficiency as a function of load with the number of mulefalier stages as a parameter. As expected, the affelency decreases with increasing number of stages, but still remalins fin the middie and high 80 percent range for reasonable capacitor sizes. As can be seen from figure 3, 100 wattes was near the peak fin the wfiefency curve. For applleationa where somewhat lower efficiencies could be tolarated, it would be possible to operate the nultipher at higher power with the same capacitors. In general, the ripple was small, of the order of one pereent, due to the self Elitering action of the multiplier capacitors.

\section*{CONCLUSIONS}

Medium power, high multiplication ratio voltage multipler DC-DC convertars ware Investigated. The following results and conclusions were oftalined.
1. A series of capacitor diode voltaga multipliers with 20 to 45 stages were built and evaluated. A multiplier with 45 stages and 10,000 volts output demonstrated 83 pereent effielency at 100 watts output power.

\section*{2. Experimental meaburements plus analysis} indieates tho efficiency of a given configuration of voltage multipifer increases with power output, goos through a maximum, and decreases at titgher power.
3. Athe prower hevel correaponding to the polint of maximara atfeloney may bo varied by varylag tho amount of capheftance fin the nulitphier.
4. "the oftietency decrease with increas ing number of matipher stages.
5. No fundamental limits to higher maltiphtatlons were found.
G. Large power high milliplication ratio voltage miltiplifers can be built, within component limitations.
7. Theoretical predietions of efficteney and voltage output agree rensonably well with measured valves.

\section*{Rlqererences}
(1) W. T. Harifgll, Jr. and I. T. Myars, "iligh Parformanes DC - DC Conversion with Voltage Nultipliers, " Nasa tM X-71566, presented at IEEE Power Electronics Speadilists Conference, Junc \(10-12,1974\).
(2) W. T. Harrigili, Jr. and I. T. Myers, "Efthefency and waight of Valtage Multiplier Type Ultra Lightweight DC-DC Convertura," NASA TM X-71735, presented at Letil lower Electronies Spectaliste Conforence, June 9-11, 1975.
(3) W. T. HarrigLli, Jr. and I. T. Myers, "Regulation of a Lightwoight ligh Efficiency capacItor DLode Voltage Nulefiplier be-bC Converter," NASA IM X-73427, presented at the TEEE Powar Electronies Specialists Conferenee, June 8-10, 1976.
(4) J. J. Kisch and R. M. Martinelil, "tigh Frem quency Capacitor Dfode Voltage Nultiplier DC-DC Converter Developianc," NASA CR-135309, Sep. 1977.
(5) R. M. Marthelil, "Extended Performance Solar Electric propulsion Thrust syatem study, Vol. une \(V\) : Capacitor Diode Voltage Muitipller, Technology Evaluation," NASA CR-135281, Sep. 1977.
(6) B. Greimacher, Húber ehne Mothode, Wechselstrom Mittels Elektrischen Ventlite und Kondensatorem in llochgespannten Gleiehstron Uwawandelen," z. Phys. vol. 4, pp. 195-205, 1921.
(7) P. Lorrain, "On the Design of a Radiofrequency CocherofteWalton Aecherator," Rev. Sel. Instrum. vol. 20, pp. 216-217, 1949.
(8) E. Everhart and P. Lorrain, "The CockeroftWalton Voltage Multiplying olreuit," Rev. Sed. Ingtrum. vol. 24, pp. 221-226, 1953.
(9) R. p, Nowalk and G. D. Hajek, 'lligh Voltage Solar Array Seguent," Air Force Aero propsulsion Lab. TR-68-1, 1968.
(10) M. Spector, "Diode Technology is Key To Battlefield Intensifier," EDN Feb, 1, pp. 55\(56,1969\).
(11) J. F. Sutton and J. E. Stern, "Spacecraft High Voltage Power Supply Construction," NASA TN D-7948, 1975.
(12) J, S. Brugler, "Theoretical Performance of Voltage Multiplier Circuits," IEEE J. Solid* State Circuits, vol. 6, pp. 132-135, 1971.
(13) E. H. Borneman, "Boost High-Voltage DC Outputs," Electronic Design, vol. 26, no. 7, pp. 72-74, 19/8.

TABLE I. - DEFINITION OF SYMBOLS
\begin{tabular}{|c|c|}
\hline \(\mathrm{C}_{\mathrm{DR}}\) & reverse junction capacitance of diode, F \\
\hline \(C_{\text {TR }}\) & transistor "off" junction capacitance, F \\
\hline c & unit CDVM capacitance, F \\
\hline f & frequency, Hz \\
\hline \(i_{\text {DR }}\) & reverse leakage curren: of diodes, A \\
\hline \(i_{L}\) & load current, A \\
\hline \({ }^{\text {i }}\) T, off & transistor "off" de leakage current, A \\
\hline s & number of stages \\
\hline \(\mathrm{V}_{\mathrm{DF}}\) & diode conduction drop, \(V\) \\
\hline \(\mathrm{v}_{\mathrm{d}}\) & transistor drive voltage, \(V\) \\
\hline \(v_{i}\) & input voltage, V \\
\hline \(\mathrm{V}_{\text {TF }}\) & transistor average forward conduction drop, V \\
\hline \(\beta\) & chopper transistor current gain \\
\hline \({ }^{\top}\) D & diode switching time, sec \\
\hline \({ }^{\text {T}}\) ID & period of diode current, sec \\
\hline \({ }^{\top}\) IT & period of transistor input current, sec \\
\hline \({ }^{T} T\) & transistor turn on time, sec \\
\hline
\end{tabular}

Less type
Capacitor charging lass
Diode reverse junction chargang loss

Transistor reverse junction charging loss

Diode forward conduction losses

Transistor forward conduction losses

Diode reverse bias dc leakage losses

Transistor "off" de le k . age losses

Transistor base drive loss Transistor switching losses \(\quad\left(2 \pi^{2} V_{i}{ }^{i} L^{s / 3}\right)\left(T_{T} / T_{T T}\right)^{2}\)
Diode switching losses

TABLE III. - EXPERIMENTAL PARAMETERS
Input voltage \(\quad 255 \mathrm{~V}\) de
Output voltages
\(5000-11,000 \mathrm{~V} \mathrm{de}\)
Output power
30-120 W
Switching frequency
50 kHz


Figure 1. - Capacitor diode voltage multiplier.


Figure 2. - Open loop voltage regulation of high multiplication voltage multipliers.


Figure 3. - Efficiency of high multiplication voltage multipliers.```

