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SPACE ECOSYNTHESIS:

AN APPROACH TO THE DESIGN OF CLOSED ECOSYSTEMS FOR USE IN SPACE

[

R. D. MacELROY and M. M. AVERNER*

Ames Research Center, NASA,

Moffett Field, Mountain View, California 94035, USA

i. Introduction

Support of man in space for extended periods of time will require that

food, atmosphere, and water be regenerated i__nsit__u. Either carrying most

or all of these materials at launch, or resupplying them during a mission,

will become prohibitively expensive as both the number of men and the

mission duration increase. Closed ecosystems intended for total human

support have only recently begun to be investigated experimentally (Gitrl'son

et ai., 1975) and theoretical considerations are sparse (Verhoff and Smith,

1971; Ulanowicz, i972). For a review of closed ecosystems, see Taub (i974).

With the identification of the requirements for human life support, and

of the overwhelming importance of ......

_u_erlpg capacity" in such an anthropo-

centric system, the long-term support of humans in space becomes a problem

removed from the concepts of classical ecology. A solution to the problem

appea_ to rely on a mixture of nechanical (or physico-chemical) and bjo

logic; "devices" treated as machines, which can be turned on or off at

will. Such a treatment of the biological components, other than man, is

much more related to traditional farming practices than it is to observations

Presently Research Scientist, Department of Mechanical Engineering,
University of California at Berkeley.
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of the bebavlor of self-regulating ec_ : _gical systems. Ye_, ecological

approaches will be essential to the understanding of the blo]ogical

systems that will be farmed, and such preliminary data must be amassed

oefore an ecosystem can be developed.

Paradoxically, considerations of such closed systems, and the con-

sequent forcing of naturally self-regulating ecological systems into

agricultural constraints, appears to offer the promise of even greater

understanding of natural ecosystems. To a large extent this understanding

will come through the quantitative estimat_ of buffering capacity, and

through better estimates of the significance of nonbiological energy trapping;

for example, the role of lightning in the atmosphere in "fixing" nitrogen

for biological purposes, or the role of atmospheric photochemistry in

eliminating organic toxins_

It is the intent of this paper to provid_ a preliminary outline of all

approach to supporting humans in space, and to discuss methods of treating

the problems involved. As a preliminary exposition, its intent must be con-

sidered as an incomplete catalogue of the complexities of the final system,

and as offering a flexible approach to modeling the system. The authors

feel that a working understanding of the full operation of any proposed

system can come about only through the use of models, and that mathematical

representation of the dynamics of the system, Flus specific model aspects,

can permit simulation of system operation. We do not consider that such

simulations can take the place of a physically simulated system, but rather

that the insights gained from mathematical simulation will be invaluable in

identifying areas of biological and physical science in which experimental

information must be actively sought.
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Life support in space

.

2.1 Shuttle sa__ab_ilities and promise

The space Shuttle will lift between 13,000 and 2'_,000 kg into near-

earth orbit with the mass of the payload dependent on the height and

inclination of the orbit. After its journey into space the craft is

designed to descend to earth and to land more or less as a conventional

aircraft. This feature of re-usability dramatically reduces the cost of

movement into and out of space. There is no doubt that such a craft will

promote a more thorough utilization of space in the very near future.

The immediate uses for the Shuttle are now being considered. Sched-

uled for payloads are scientific experiments and a number of exploratory

programs intended to identify ways in which space can be exploited for

manufacturing purposes. Many of the scientific experiments are intended

to examine the responses of animals and plants to the zero g force or to

artificially created forces. The major use of the Shuttle may be in the

emplacement, recovery, and repair of the various satellites on which

mankind has come to depend.

The dimensions of the Shuttle are such that a separable payload,

18.4 m long, 4.6 m in diameter, and weighing 6.5 metric tons can be put

in orbit. _nile structures of this size are limited compared to those

man usually inhabits, clustering of units to form increasingly larger

habitable spaces is envisioned. With the advent of the Shuttle program,

man is well on his way _o establishing modest space settlement._. Larger
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settlements arc predictable, and future generations of tile Shuttle will

accommodate larger payload thus permitting even more massive set, le_.,ents

to be built.

Whether the assembly of statiom as massive as those predicted by

O'Neill (1977) will be accomplished is a moot point, but the most crucial

element of the entire program, in fact the central point of the program,

will be the support of man in space. The Shuttle Program projects the

image of man, ordinary man, In space, supported in some comfort and with

safety, and allowed to practice his characteristic role as observer,

experimentor, and builder.

To the degree tlmt Shuttle promotes almost exclusively the role of

man in space, it is a biological mission, it is aimed, in its early

stages, at identifying sltuatiors that may be dangerous to human habita-

tion in space, and if such situations do exist, to overcome them. As a

biological program its future advances are to be seen in terms of man's

adaptability to new, quite different, but potentially useful, environ-

men ts.

2.'2 Human needs

'1

.\

For tile immediate future tile needs of human beings in space for

food, water, and a breathable atmosphere will be met by resupply. Essen-

tlally, this involves carrying all food and water from earth, and collect-

ing w_stes for subsequent disposal. Atmosphere purification in spacecraft

has been utilized, althot.gh regeneration of materials has not. Reliable

and fast-acting water a:_d gas const, rvatlon devices wiI1 be employed as
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they are developed. Waste disposition, through techniques such as wet

oxidation, will permit partial reuse even of some elemeIlts of solid

wastes.

As space stations are enlarged, and as greater numbers of men must

be supported, the cost of transporting food, oxygen, and water to them

will become more significant. Similarly, for manned missions into deep

space the cost of including food as a very large fraction of the initial

payload will become prohibitive. Settlements on the moon or on other

planets will have to function with a maximum of regeneration because

resupply to such distant settlements would be a major expense.

Increasingly, physico-chemicai and mechanical devices capable of

regenerating oxygen from water, of capturing and possibly reutilizing the

oxygen in carbon dioxide, and of purifying water will be developed. Re-

moval of toxins and unpleasant gases from the atmosphere is becoming

simpler, but recycling of all wastes to allow chemical resynthesis of

food presents a problem without a foreseeable solution. To be sure, sig-

nificant advance_ have been made in producing carbohydrates from C02

(Lerman and Murashige, 1973) and the formation of amino acids from gases

such as CO, H2, HCN, C02, 02 , and N2, or some other easily generated form

of these compounds (see Gabel, 1977, for a recent review of abiogenlc

syntheses of amino acids), but in all cases, the products potentially use-

ful as food are extensively contaminated by toxic materials co-produced

in the same syntlleses. _iany substances required by man are exceedingly

complex organic entities which have only recently been synthesized in the

laboratory, and then only after great effort.

]
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2,3 Biore_eneration

Biological solutions to the regeneration problem have been investi-

gated for a number of years. In essence, these approaches have involved

the fermenter-style growth of organisms which could be eaten by man.

Two of the most extensively investigated potential food sources have

been algae, which grow on some nitrogenous human waste products, carbon

dioxide, and light (Benemann et el., 1977), and hydrogen bacteria, which

utilize hydrogen _i oxygen, and carbon dioxide (Calloway, 1975). Feed-

ing experiments have been conducted with the algal or bacterial prodt ts

harvested from such "fermentations" and these trials have been partially

successful. However, the organisms employed have sometimes been recog-

nizably deficient in some of the compounds required in human nutrition,

often containing endotoxins or nucleic acid concentrations too high for

direct human consumption (Waslein et el., 1969).

Techniques for fractionation of bacterial or a!gal cells, and manufac-

ture of nutritious food from parks of the ce!l m_, _r.al, although _n their

infancy, are promising solutions to some spccific problems, such as supply-

ing protein to humans, not only in space, but on earth as well (see Kihlberg,

1972, for review). It can be expected that such work will proceed with

reasonable dispatch since it is potentially profitable. However, if it is

to be used directly by man, microbial food will probably have to be supple-

mented with food from other sources. Indirect use of cheaply produced

single cell food, for example, through feeding algal or bacterial food to

animals which may then be used as human food, is also a promising approach.
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2.4 Nutritional requirements
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Human food requirements are imperfectly known. Certainly the major

dietary components have been identified, and the relative proportions of

protein, fat, and carbohydrate are well categorized. The "minimum daily

requirement" of many vitamins and minerals has been established, although

controversy still exists over the optimal intake of these substances.

Yet the balance of nutrients required for sustained human health is not

known nor is the relative importance of such things as fibre, collagen,

pectin, and other substances generally considered "indigestible." What

is known is that man has evolved over millions of years to subsist on

a diet consisting of both plant and animal material and that eating more

or less of one component among the many sustains health, but that exclu-

sive use of a single component results in problems, some of which are

minor, some major. The relationship of cancer and heart disease to diet,

for example, are hotly contested subjects. Some are the consequences

to humans of food additives-nitrite, coloring agents, and preservatives.

It will probably not be possible, in the immediate future, to

resolve the existing claims and counterclaims regarding human nutrition,

nor will the definitive human diet be completely described in terms of

specific organic molecules. For this reason the diet of humans who

remain in space for extended periods of time will probably consist of

"normal" biologically produced food. It is because of these uncertainties

hat man may want to produce food in space, a possibility reinforced by

the difficulty of the resupply problem. It should be restated, however,

f
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that growth ,,¢ ¢ ,

-..oo_ in space will become necessary and cost-effective

only for relatively large human settlements or for extended deep-space

journeys. Small human col " or short-term fli,',ts would seem now
oi1 kes

more easily supported via resupply c r by taking v l ng sufficient food

at launch.

"2.5 Biological recycling

An obvious advantage of growing food in space is that plants, in

particular, are also capable of atmosphere regeneration. Specifically,

autotrophs such as plants, take up the carbon dioxide expelled by hetero-

trophs, including man, and produce th_ o_ygen such organisms consume.

It is tempting to envision a space station in which htunan wastes are

used by photosynthetic organisms, which are in turn used as food by man.

The creation of such a system will be very difficult for many reasons,

but it is apparently possible provided that careful preparations are

made.

A human habitat in space, on the moon, or on another planet, will

be a closed system. To a significant extent, although not total ly, mate-

rials entering and leaving the system will be controlled. The uncontrolled

entrance and exit of mass will be of major concern: for example, the

transport of unwanted or dangerous microorganisms will be difficult to

control, as will the leakage of gases into space or into a planetary atmo-

sphere. Except for such considerations, an isolated system capable of

supporting ht,man life is a "closed, regenerative, ecological system"
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and as such bears a resemblance to the whole terrestrial ecosystem.

What requirements must be met to establish an isolated ecosystem in

space?

Since man will be the central component of a space colony, all

functional requirements must be established, b_sically, by human needs.

Thus, man needs a continuous supply of oxygen at partial pressures that

can vary between 1.6 x 10 5 and 2.0 x i0 5 dynes/cm 2. He needs food,

composed of protein, fats, carbohydrates, a variety of minerals, and

vitamins. He needs water for both internal and external use. The list

of conditions that man cannot tolerate is even more extensive. The limits

imposed would include water with a minimum of mineral and bacteriological

contamination; air with well controlled and very low levels of volitile

contaminants, but with reasonably controlled water vapor concentration;

food composed of a proper balance of protein, fats, and carLohydratcs and

uncontaminated by either toxic chemicals or harmful bacteria. In design-

ing optimal conditions for man, tile requirenlents for human life supporL

are defined. It is then necessary to define the functions that must be

met by the life support system and to implement them.

With the assumption that physico-chemical techniques will be able to

supply many, but not all, of the required functions, the establishment of

biological food sources requires special consideration. A biological food

producing and recycling system in space will be isolated, and to the

greatest extent possible, "closed."
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2.6 Ec___stem closure and buffers
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The simple closure of a biological system, even if it is exposed to

the _ame amount of light and heat as an open system, results in the

eventual death of the system. The reasons that the system dies are com-

plex, and not fully known, but e_en a cursory examination suggests many

causes.

A fundamental reason concerns "buffering capacity," which is partially

provided by the sheer size of the terrestrial ecosystem. For comparison,

consider the buffering capacity available to one square meter of land

on earth. In addition to the contents and the dynamics of the soil to

a depth of aDout 1 m, there exists 2.42 m 2 of ocean surface. The averaBe

depth of the ocean is roughly 3400 m, so that the volume of ocean water

corresponding to i m 2 of land is about 8300 m 3. The atmosphere above

3.42 m ? of land and ocean extends to 60 km or more, but if the atmospheric

gases were compressed to standard pressure, they would occupy about 1260 m 3.

Figure 1 provides some indication of dimensions involved, and Figs. 2a and

2b suggest the relative sizes of the volume of ocean and atmosphere that

can act as buffers to i m 2 of land, Considering for the moment only

oxygen and carbon dioxide utilization and production, the photosynthetic

autotrophs in any ecological system utilize ligh_ only when it is avail-

able, during the day. Consequently, oxygen is produced by plants cyclically.

Hete_otrophs, or oxygen _°ers similarly undergo cyclic uses of that gas.

As a result, C02 is produced by each organism in a cyclic fashion depend-

ing o_i its state of maturity, its momentary rate of metabolism, or its

supply of food. In a small closed system these cycles, which are not
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[inked, do not necess._rilv correspond. ._k, st important lx, the atmo._pheric

volume enclosed in a stuall system _-'ould not be sufficient ,',\. large t,_

n_aintain .-_ steady-state concentration cf oxygen, or to .:bsorb CO._ _t ,_

rate fast enough to _'a,_intain a steady-state concentr._tion of that gas.

Tile volume of the terrestrial atmosphere alone api;e._r s sufficient to

dampen the cyclic consumption and production of o::ygen and nitrogen.

In addition to large volume buffering the _hole earth ecosystem

utilizes the ph.vsical solubility of CO., and O, in the oceans as well as

chemical equilibria to maintain average concentrations of CO_ and O,

all over the Earth. The chemical equilibria governing the cap,_citv of

the oceans to absorb CO, are complex. Physic'ally dissolved ,'_), is in

equilibrium witt- bi:arbonate and carbonate ions. These soluble ions

are, in turn, in equilibrium _,'ith insoluble Ca or ._tg carbonates, and all

eq,lilibria arc gre,itI> i_lfluenccd by, and affect, pl{.

Both the oceans and the .tt,nosphere perform an additional function

:hat o/ distributim:. Sonic .tre,,s of tilt, earth (the deserts and polar

regions) prod,ice little 0,, while tropical rain forests produce large

amounts, The atmosphere, ,tot ing as a transport medium, homogenizes the

noncondensing gases so that only very slight variations in 0,, N,, and

CO_ conce_tratio_.s exist , Condcn:<tble gases, h as water, _or I d_'ide, sac

vapor, are les:; honlogetleouslv distributed; nevertheless, water distribu-

tion Is vital for the surviv,_l of the tet'rostrial ecosystem.

l_q_ile sheer si::t,, phv,_i,.,_ I -_olubilitv, and chemic,_l equilibrin are

ma.}or t.lctor.,; in t}lc butft, i'inf..l,tion ,_\'._il,lblc to the terrcstt-ial ccosv:.-

tet_1, ,|11o[ ]lCl- I ,|c[ oi i s 53s[ t'R / t':lCl};t,[ {,,q . ,LTllel'g3' is lequ[lCd to opt'rat t,

the "distribution dcvict,," tht, ,ltmosphere. Solar energy, in the form of
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heat, creates the winds that distribute the gases, and moves the water

that dilutes volatile toxins and removes toxic gases. Solar energy is

responsible for the destruction of many toxins, even the natural, toxfc,

organic compounds produced by plants. Ultimately, solar energy is also

responsible for the formation of some nutrients, such as the nitrates

formed by lightning discharge, as well as for the distribution of some

materials, for example, in flowing water.

Thus, while not intuitively obvious, the energy requirements o5 a

plant are not, and cannot be, totally met only by the light energy used

by its leaves. Similarly, the enersy used by heterotrophs depends on

the "unseen" energy inputs which maintain some semblance of a steady-state

system. Thus far, these energy requirements have been difficult or even

impossible to measure. Isolating a portion of a terrestrial ecosystem

deprives it of a sil_nificant fraction of the energy it requires to exist.

The consequence is its eventual death.

2.7 Establishing closed ecosxstems : ecosynthesis

It is a moot point whether an artificial ecosystem, totally closed

to entry or exit of mass, fully recycling, and completely regulated by

its biological components can be constructed. Theoretically, one could,

through careful selection of ecosystem components, construct such a system,

but to do so would require firstly, complete knowledge of the behavior

of all the component organisms under all possible conditions, and secomdly,

matchfng them as to species and numbers of individuals in a volume large

enough to provide sufficient buffering capacity. The creation of ecosystems
i

i
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for practical use in space cannot wait until all of tile required informa-

tion is accumulated. Furthermore, any biologically balanced artificial

ecosystem which included nmn could not be controlled sufficiently well

to prevent tile accidental introduction of unwanted species. Such ,,rgan-

isms, even though innocuous to man, could have devastating consequences

for the balance of a designed naturally controlled ecosystem.

In brief, extraterrestrial ecosynthesis (Averner and MacElroy, 1976)

will require a closed system capable of supporting man by supplying food,

and will function in a manner that it will recycle wastes, including C02,

and generate oxygen. It is extremely doubtful that it could be self--

regulating because of its relatively small size. Size will also tightly

limit the amount of buffering capacity available. It will be essential

that artificial barfers be created, and that regulation of the system be

done through human intervention. In many ways such a system would resemble

a typical farm, in that crops must be selected, noncrop plants eliminated,

water and nutrients supplied when needed, and food harvested when mature.

Atmospheric buffering capacity for a particular gas will have to be

supplied by mechanical means. Such mechanical mechanisms must be capable

of removing certain atmospheric constituents and supplying others. The

energy necessary for operating both tile mechanical and biological systems

presumably will come from sunlight, but could also be supplied by other

means, such as nuclear reactors. Control of the system would no longer

be dependent on natural self-regulatory mechanisms, but rather on con-

stant monitoring by sensing devices and periodic analyses. The behavior

of tile system wouid have to confo_ to an established but v,,riable model

of the function of the system.

!,
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3. Ecosynt hesis

i;

I

3. I P__sical descriptio, !

Although not essential in this very early phase of modeling a

closed ecosystem for space, a physical description of a possible ecosystem

enclosure has been found helpful both in developing a mathematical model

of the system and in postulating essential experimental verifications.

The description of the "standard" system that follows is quite general,

and is recognizably deficient in detail. It is also completely open to

modification since the subsequent mathematical description can be altered

at will. Thus, the physical description should not be considered as the

center of design, but rather as an aid in conceptualizing the maahematical

model.

The physical dimensions of the space habitat are set essentially by

human food requirements. In this model it is assumed that man can be

sustained on a daily diet of 120 g of protein, 50 g of fat, and 400 g of

carbohydrate per 70 kg body weight, and that these nutrients can be

supplied by selected combinations of corn, wheat, and soybeans. Food

for one 70-kg man for i day would require an amount of these grains that

would be produced by crops occupying 2.2 m 2 with light of intensity and

quality identical to sunlight at the earth's surface. Assuming three crops

per year rather than daily harvest of grain, and crop production equal to

n_aximum reported yields, the area required for these crops can be roughly

calcu]ated to be 820 m 2.



it must be stressed that the area values calculated in this manner

are subject to very large variation and could be affected by such factors

as the use of genetically engineered high-yield crops, error margins

derived from estimates of crop failure, tile inclusion of animals other

i

/.

:i

{

:/

than man in the ecosystem to serve as secondary food sources, or the

choice of single-cell organisms as a parti_l food source. It should also

be noted that growth of such crops at less than I g force may have profound

effects on crop yield as well as growth rate. This particular point is

stressed because of our implicit assumption that a force of 0.5 g or

more may be required for the habitat.

This concept of a space station with a synthetic ecosystem then

envisions a total volume of 8000 m 3, a crop area of 6400 m 2, a human

living and working area of !200 m 2, and a support system area of 500 m 2.

The structure is conceived as supporting Lip to seven people, and consisting

of many shuttle packages, assembled and llnked in two locations, both rotat-

ing around a common center to allow a force of about 0.5 g. It is further

zi

assumed that the light energy necessary to sustain crops is provided by

electricity which is generated separately by a large assemblage of solar

panels. Throughout, it is assumed that power requirements will not be

limiting for any portion of tile operation of the system.

3.2 Model systems

Since the space station will be a closed system, and since it will

be necessary to monitor all portions of the system, the technique of

mass balance appears best to descrioe the functional aspects of the
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station. For the purposes of describing such a model, eight compartments

will be considered initially: man cr heterotrophs, plants or autotrophs,

food, waste material, atmosphere, water, storage or buffer, and a chemical-

physical (mechanical) orocessing center.

Initially the flows of tile following elements, all common to bio-

logical systems, will be monitored: carbon (C), hydrogen (H), oxygen _0),

nitrogen (N), sulfur (S), and phosphorous (P). For the most part, method_

of rapid and accurate analysis of these elements are available, and flows

among the compartments can b_ followed rt latively easily. Fhe dynam__cs

of element flow will be derived from models of metabolic activity and

growth that employ previously obtained experimental data to identify not

only steady-state levels of elements, but future requirements as well.

Much information about the growth development and chemical composition

of organisms ix already available; models of this kind will identify

mal,y otis,- organisms from which such information must be gathered in the

future.

Through the use of such models of individual metabolic and develop-

mental needs, instantaneous requirements for the elements CHOPNS can be

calculated ant, the movement of the elements in and out of a compartment

can be predicted. The three biological compartments of heterotrophs,

autotrophs, and waste will thus be described in terms of existing models

of such activity. Similar but more accurate models can be derived for

the nonbiological compartments: atmosphere, water, stor_,ge buffer, and

processing system.

1
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3.3 E_cos_ s t e m Conce_p t_s

Before discussing the specifics of a closed system model, it would

be advantageous first to consider the concept of ecosystems and the

methods that have been developed to study them. The term ecosystem

generally refers to some specific volume of space occupied by organisms

as well as their physical and chemical environment. However, a catalog

of the kinds and numbers of organisms, of the geological, meteorological,

climatological, and other inanimate parameters of a volume of space is

not a sufficient description of an ecosystem, because it does not include

the dynamic behaviour of the components, particularly the living com-

ponents. The interactions of organisms with one another must also be

described and related to the physical reality of other system components

in order to obtain the physical and functional description of an ecosystem.

Observational ecology has resulted in the collection of data, such

as numbers or types of organisms. Time-dependent data collection has

allowed assessment of perturbations arising during the time interval, and

mathematical expressions have related the observed changes. The result

is a model which can often relate the extent of the change to the extent

of the perturbation.

With the aid of computers to simulate the events--the magnitude of

the perturbation and the change in numbers or types of organisms-one can

numerically mimic observed changes as well as predict future changes.

_lile computer models and event simulations do not identify causes, they

are often useful in suggesting the reasons for the observed results and

permit further experimental testing. It ks precisely this aspect of

• t
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computer modeling of ecosvstetns that £s ot interL:s: it: exan_ining the

behavior of closed ecosystems through tile us. of c,mlputer nlodt, l ing.

i7

J

3._4 Hat b.ema t ica 1 descriptions

A model , an ecosystem can be considered as representation of a

system of living and nonliving components occupying a defined space,

through which energy, mass, and information flows. Since a space ecosys-

tem _ilI be a closed one, a mass-balance technique appears be::t suited

to describe it (Qulnlml, 1975; Quinlan and Paynter, 1975). At a gross

level, such a model might be illustrated as in Fig. 3.

'the photosynthetic properties of autotrophs, such as plants, allow

them to use the radiant energy of sunlight to synthesize complex polymers,

carbohydrates, lipids, p._oteins, and nucleic acids-from CO.,. NO3, PO,

and other minerals and gases. As these nutrients become lens available

the growth rate of the autotroph will be curtailed. If the autotrophs

continue to act as a sink to such minerals, the environment would even-

tually be depleted. Itowever, heterotrophs, such ;is animals incapable

of using solar energy directly, feed upon the carbon compounds formed by

t:lants. They are able to oxidize the compounds, and in so doing extract

and trap energy; they are also able to use the compounds either directly

or by rearranging them, for their own growth purposes. The oxidation

reactions of heterotrophs ultimately release CO_ and the other minerals

required by autotroptls.

This cycle of mineral fixation alld release is the aspect of all

ecosystem that can be simulated using modt, ls, because the rates of flow
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of each mineral constituent in and out of the living organisms can be math-

ematically described. For example, Fig. 4 is a more general description

of the reservoirs and flows suggested in Fig. 3, but also includes a more

sophisticated view of the controls that can be exerted on the flows. This

approach to the construction of mathematical models of ecosystems follows

the technique of Quinlan (1975) and Quinlan and Paynter (1975).

3.5 Mathematical model

Figure 4 describes the transport of element X between three storage

compartments, an inorganic nutrient storage (XI) , an autotrophic storage

(X2), and a heterotrophic storage (X3). The autotrophs take up and

incorporate the inorganic nutrient into their biomass at a characteristic

rate (TXI2), which is ingested by the heterotrophs (TX23) and remineralized

back into inorganic nutrients (TX31). Thus, in this simple closed-loop,

the laws of mass conservation dictate that the rate of change of mass in

each compartment is a function of the rate of flow of mass into the

compartment minus the rate of flow of mass out of the compartment, or:

X 1 = TX31 - TXI 2

X 2 = TXI 2 - TX2 3

X 3 = TX2 3 - TX3 I.

The sum of the rates of change of mass in each compartment must equal

zero:

_X 1 = O

and since mass is neither gained nor lost, it is a constant:

X I + X 2 + X 3 = M _ constant.
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The rates of elemental _ss flow between the comF=L_ments are a function

of the state of the compartments. This is indicated in Fig. 4 by the

rates modulation signal flow. Thus, for this closed ele_ntal cycle,

the _ollowing functional dependencies can be writen:

hi2" +xfx=

which descries the observation t_t the nutrient uptake _tter flows go

_° zer° Lf eit_r _he nutrlent pool (_)o_ the autotroph _pulatlon (X2)

goes to zero and saturates in X, as X incr_ses to some value. Similarly,

TX23 = _23 + X2 X3 •

Since the rate of predatory _tter flow, (_23) will fall to zero

if either the predator (X3) or prey (X2) population goes to zero, and

becomes saturated in X2 as X2 increases to some level. Finally, the rate

of mineralization can be descrlbed by

Tx31 = _31 (X3)

since the rate of mineralization (Tx31) will fall to zero when the hetero-

troph _opulation (X3) goes to zero, and _s independent of the size of

the nutrient pool (Xl) and does not saturate as X 3 increases

The parameters _12' _23' kx31 (rate constants), and al, a2 ' a3

(saturation constants) are determined by a number of variables, for

example, variations in temperature, pressure, biological species, spatial

distribution of elements, and light intensity.

These equations then define the behavior in time of a simple cloged

elemen_ cycle model. The major elements in an ecosystem (C, }I, N, O, S, P)



are all model,,d separc_tely, however, and a realistic representation of

the flow of elements in any ecosystem must allow for functional couplings

such that all the Individual element cycles are integrated into a single

dynamic system. This can be done by cross-coupling individual element

cycles by single-flow linkages. These linkages transmit information from

one cycle to another such that the behavior of the latter is modulated

by the behavior of the former. For exmaple, Fig. 5 depicts the manner

in whtch the flow of one element (e.g., carbon) might modulate the flow

of another (e.g., phosphorus) and vice versa in our _imple three-

compartment closed ecosystem.

This model depicts the functional coupling of _ho C and P element

cycles through Intercycle rate modulations directed at nutrient uptake

flows. Thus the state of autotropbic storage of carbon (C,_) regulates

the nutriet_t flow of phosphorus into the autotrophic compartment (t' 2 ) by

means of the cross-coupling parameter KPC12, and the state of the auto-

trophic storage of phophorus (P>) regulates the flow of inorganic carbon

into the autotroph compartment (C2) through the cross-coupling parameter

KPCI2. Thus the rate of change of carbon storage in the autotroph com-

partment would modulate the rate of phosphorus uptake into the same com-

partment and vice versa. This is but one example of how elemental cycles

can be linked so that perturbations in the behavior of one cycle can be

t

@

transmitted to other cycles and thereby modulate their behavior. :_

Real eco.qystems are of course vastly more complex than the simple .j
_2

three-compartmeut, two-element cycle model depicted il_ Fig. 5. Neverthe- !_

less, this simple model does represent a number of features of many closed .!
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such represents a strategy of modeling that will shed light on the

behavior of such systems.

3.6 Using. a model: an example

One of the mathematical models of tlle flow of carbon within a closed

system has been used to suggest the magnitude of the problem of buffering

capacity. The closed syste_ consists of an atmosphere large enough to

support about 50 men and their supporting crops (about 62,000 m3). How-

ever, only one man is functxonlng in the system, together with support

crops of soybean, corn, and wheat. The model, with eight compartments

(Fig. 3), was perturbed by replanting only 91% of the crop that is har-

vested daily. Therefore, the mass of the crop is continually decreasing

and, because the system is closed, this mass must appear in another com-

partment. In this model, the mas_ of the atmosphere compartment increases

due to metabolic oxidation of food and oxidation of nonedible plant mate-

rials. Figure 6 is a plot of carbon in the atmosphere (CO 2) versus time.

Case D represents a mechanically buffered situation in which the initial

concentration of atmospheric CO 2 is maintained at C O3Z; other cases are

unbuffered and include Case A, with a food crop large enough to support one

man 'indefinitely'; case B, a food crop 50% greater than case A; and

case C, a crop size that has been reduced to 852 of that in case A, and

that can be assumed to be fully exhausted in some finite time. As can be

seen, the relatively minor perturbation of slowly decreasin_ crop size

markedly increases the atmospheric CO2 concentration, even in a very large

volt,me,

The brief description of the _athematical _del above includes several

assumptions that are open to alteration in the future. The most fundamental

+
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of these is that the best method of modeling a closed ecosystem is through

a mass-balance technique, employing individual elements, such as carbon

or phosphorous. There is no doubt that the complexity of this approach

may be initially tlme-consuming, and that the methods of coupling

the flows of different elements will involve the invocation of molecular,

rather than atomic, representations. However, we feel that these dis-

advantages are out-weighed by the potential advantage, namely, that

following individual element flows _I11 permit more sophisticated probing

of ecosystem behavior. In f_ct, the potential contributions to terrestrial

ecological sciences will be magnified specifically because element flow

can be evaluated in studies of closed ecological systems.

4. Scientific Utility of Studying Closed Biological Systems

4.1 Ecological Concepts and Experiments in S_ace

Both the physical concept of closed ecosystems in space and the method

of modeling can be uti]ized in designing some of the specific experiments

that will be necessary before physical construction of such a system. As

presented here, an in-space ecosystem would consist of a closed volume

containing plants and animals sufficient to support man, and also contain-

\

ing physlco-chemlcal devices operating to overcome certain inefficiencies

_._ _._l_o_Ole_]_ components. . The system would be operated as a farm to pro-

duce a variety of products, among them food, oxygen, carbon dioxide, water,

nitrogen and other materials as may be necessary. Operation of the

ecosystem as a farm implies control of all significant organisms and of

their requirements and products. Thus, control through timely and precise

'4

l
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allocation of materials, becomes a predominant function of a state model

of the farm ecosystem.

In preparation for a control model, experimental investigation of

individual biological and physical components becomes of interest. In

this regard, interspecies interaction and its effect on the behavior of

biological components looms to major importance, and it is in this area

that experimental research must be conducted if believable models of

ecosystems are to be developed.

Present knowledge of ecosystem behavior is primarily at the gross

level of large animal or plant interactions. The most fruitful past

approaches to the study of interspecific interaction have been descriptions

of predator-prey relationships, or of competition for a mutual requirement,

such as food. Numerous examples exist of evolved characteristics which

alter direct predator-prey relationship, for example, the chemical com-

ponent of certain butterflies that make them distasteful to birds, or the

more sophisticated selection of mimicry, described by Bateson, that

allows some sp_=ies of butterflles to pretend that they are distasteful.

Examples of evolved competitive advantages exist as well.

i

I
J

However, at the microbial level, interspeclfic relatlonships are much

less well understood, yet microbial metabolism comprises a significant

fraction of the total metabolic activity of the earth, and will doubtless

function similarly in space. Knowledge of the role of microorganisms in

processes such as nitrification and denltrlflcation will be essential to

the design of closed ecosystems, as will knowledge of the interactions

among certain groups of microbes.

Among plants, competitive relationships must be described in

sufficient detail to prevent disruption of food-growing. Similarly,
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plant production of volatile organics which have been observed to be

toxic to other organisms (Gite1'son et al., 1975) must be t,valuated.

Other aspects of plant growth, such as metabolic or struc t°_ra! changes

at less than l-g force, must be investigated.

The introduction of Shuttle launches may include opportunities to

fly sizeable closed system experiments in space. It can be anticipated

that, in addition to investigating the growth and metabolic characteristics

of various organisms at various g forces, flight opportunities could be

utilized to test small farm ecosystems. Such an experiment might be

envisioned as containing plant, microbial or animal components, or all of

these, in a co,tainer in which sensing and monitoring functions have been

included. _\_tempts might be made to maintain water, atmospheric, and

light energy homeostasis by t ference to a small computer model of the

system, which would, as needed, perform certain control functions. Such

functions might be the introduction or removal of oxygen or CO 2 as required,

or the physico-chemical recycling of certain wastes; for example, wet

oxidation of selected organics, or of the maintenance of an appropriate

reduced versus oxidized state of nitrogen.

Experiment_ such as these could be designed to explore simultaneously

organism physiology, the effect of varying gravitational forces, the

accuracy of the models which had been developed to describe the system,

the control model, _ind the sensing, monitoring, and control devices.

.
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4.2 Ecological Analysis

In addition to the practical applications to which ;tudies on closed

ecological systems may be put, other benefits may accrue, particularly in

the field of basic ecological sciences. A system closed to mass exit or

entry, but open to energy input and with controlled energy loss, mimics a

"test tube environment" and [for the first time] will permit study of all

parameters of ecological systems. To be sure the enclosed system will

not be a "natural" one, but it is this very aspect that will allow new

ways of evaluating interactions between species, of studying the true

metabolic and energy requirements of groups of organisms, of investigating

environmental triggers of metabolic and behavioral changes, and of re-

examining classical predator-prey and competition interactions. The

advantages of closed system studies lie primarily in the realm of easily

established control experiments, and of permitting specific and regulated

variables to affect the system. It is anticipaL d that such approaches

will add important insights to and new interpretations of the voluminous

data already collected on ecological system behavior.

Among the parameters of ecology which have not been well evaluated

are the roles of buffers and the quantitation of buffering capacity. In

closed systems, buffers would be specifically defined, either as "naturally"

occurring absorbers or storage depots, or as mechanical or physico-chemical

devices. In exploring buffers, the true energy requirements of species

would become apparent, thus enlightening the relationsilip between organisms

and the inanimate world, as well as identifying what are now obscure

energetic relationships among organisms. An example of the last-mentloned

O ¸

/
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relationship is the _nergetic role of nitrogen fixers in relationship to

fixed-nitrogen users, and to denitrifiers. Examples of anlmate-inanimate

interactions have been mentioned previously.

The true value of the study of closed, controlled ecological systems

may be as much in its effect on terrestrial ecological science, as in its

ultimate use to support man in space. The controlled closed system we

have defined here differs significantly from the usually described "clo-

sure" experiments. Rather than observing a system as it declines in its

produc,:ivity and species diversity, the controlled system allows specifi-

cation of what keeps the system alive, and in doing so, quantitates the

factors necessary to do so. In addition, the technique allows an

evaluation of the real costs and advantages of ecosynthesis, and could

have a major impact effect on improving agricultural productivity on earth.

5. Conclusions

Support of men in space for signlfieant periods of time will benefit

by an ability to recycle wastes into food and to regenerate the atmosphere

and water. In the absence of physlco-chemical methods of food manufacture,

living sources of food must become a central part of any long-term missions

once resupply becomes impractical. Abundant light energy favors the growth

of plants or other photo-synthetic organisms. These organisms also have

the advantage of consuming CO 2 and generating oxygen, two functions advan-

tageous to man in a closed habitat in space.

The temptation to develop a closed ecosystem mimicking man's terrestrial

_nvironment becomes very strong. However some generally unappreciated
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aspects of the real world become obvious when closure is attempted:

because of lack of sufficient buffering capacity and the absence of cer-

tain energy requiring functions, such as atmospheric circulation and rain-

fall, closed systems over long or short time periods become sterile.

Recognition of this fact strongly suggests that mechanical or physico-

chemical methods must be used to maintain an ecological system in a desired

state.

Since a specific function--support of man--is desired of a closed eco-

system in space, an isolated man-supporting ecological system would be

run as a farm, and would be controlled as such. The limited size of the

enclosure, the susceptibility of biological systems to environmental

perturbation, and the need for control and predictability all suggest that

monitoring, sensing and control within an in-space ecosystem be directed

througPL the use of a computerized mathematical model of the system. Such

a model, while operating a farm consisting of the entire environment of

the space station could, through simulation, perform a predictive function.

Moreover, such a model developed even before a physic_i system was con-

structed, would serve the function of simulating the behavior of a system

and could aid in identifying parameters that must be evaluated before a

physical system is constructed.

The technique of modeling a closed ecological system through

mathematical repcesentation of mass flow appears to offer many advantages

for understanding closed ecological systems. Such models, i.lcorporating

presently available information on biological behavior, capable of altera-

tion as new information becomes available, and containing information on

the characteristics of the mechanical devices necessary in the system,

l
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will significantly aid the development of physical design, as well as

serving to extend the body of information on terrestrial ecological systems.

Ultimately, these predictive models, and _ubsequently derived state models,

will permit the development of reliable, man-supporting ecosystems in

space.

\
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The effect of crop-size perturbation on the concentration of atmospheric

CO 2 in a large volume (62,000 m 3) closed system supporting one man. The initial

crop size was varied: case A, crop size just sufficient to sustain one man

"indefinitely" when complete replacement is made of all harvested plants; case B,

crop size 150% of that in case A; case C, crop size 85% of that in A; case D, a

mechanically buffered case in which initial CO 2 concentration is maintained at

0.03%. in each case, the perturbation consisted of replanting only 91% of the

crop that was harvested each day.
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