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A FINITE VOLUME METHOD FOR CALCULATING TRANSONIC POTENTIAL FLOW
AROUND WINGS FROM THE PRESSURE MINIMUM INTEGRAL

Albrecht Eberle
Messerschmitt-B8lkow-Blohm GmbH, Ottorbrunn near Munich,

West Germany

1, Introduction
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The development of a successful finite element method for

calculating transonic flow around a profile [1] provided the

precondition for programming this method.

In contrast to the usual difference methods, finite volume

methods do not require a rectangular mesh network so that they are

particularly suitable for treating complex aerodynamic configur-

ations. Even if this paper only covers airfoil wing calculations

in the case of transonic oncoming flow, naturally one has in the

back of one's mind the intention of expanding the computer

program in the above direction when the occasion arises.

The introduction of an extremely simply formulated concept

of plastic viscosity makes it possible to calculate shock-

effected supercritical pressure distributions on any wings.

If, moreover, the distant field solution for supersonic

flow is used, this offers the possibility of calculating pressure

distributions for oncoming flow mach numbers even greater than

one.

2. Fundamental Equations
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If we assume frictionless stationary flow of an ideal gas,

this can be described by the continuity equation

(gu) X + ( sv) Y + (sw) Z s 0	 (1)

* Numbers in the margin indicate pagination in the foreign text.

1
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and the condition of irrotationality

t

UZ = W 	 (2)

UY = vx	 (3)

Vz = 
WY	 (4)

With uniform oncoming flow the energy carried with the fluid

element is constant:

22' -2-	 2 _ 2x, Pox
S q - x-1 go

with	 q2 = U` + w2

The change of state is determined by the following isentrope:

0
8 ) o _,x(  	 d	 d	 (6)

with the Mach number M defined as follows

2

'^ s =

then by inserting this in Eq. (5) the squared speed becomes

q
2	 XPo M2

s

8o (1 
+4-1 M2)

3. Standardization

The irrelevant constants in Eqs. (5), (6) and ( 7) can be

(5)

(7)

eliminated by introducing a dimensionless velocity q: 	 1

2	 2X Po 2
q ^ go q

2



Then Eq. (5) becomes

2Poi + q = 1
(8)

and Eq. (7) becomes

—2
M2

q x, 2	 (9)

Eq. (6) in (8) gives us:

_ 1

g	 go (1 - q 2 )X,-1	 (10)

From Fq. (9) we read the standardized sound velocity as

2 X-1
q	 X+1

If the undeleted variables are now understood to be the

appropriately standardized variables, equations (1), (2),

(3) and (4) remain unchanged.

4. Distant Field Solution

4.1 Prandtl Transformation

The flow behavior far downstream from the wing can be

determined by the approximate solution of Eq. (1) for

x2 + y2 + z 2 ; m . In this regard, Eq. (1) is differentiated out

and in so doing the transverse velocity components with respect

to u are ignored.

Us X + J (U X + v  + W  ) = 0	

(11)

the term p x is determined by Eq. (10) with back differentiation:

3

-^	 ---T-----.^----^..,

_

e



2
u$x	 of q2 

q 2	 2 9a 	
(%?1) (I-q )

The squared velocity is replaced by Eq. (9):

ug x ., - M2 s u 

If we make the following approximate assumption that M = M . . then
Eq. (11) becomes:

(1 - M00) ux + vY + wz	 0	

(12)

As a secondary condition, Eqs. (2), (3) and ( 4) have to be

fulfilled. This a accomplished by introducing a potential

according to the following specification:

{
T

A

a

z

1•

i

4

U =^x' v =^ Y , w
z

(13)

as a result of which Eq. (12) assumes the following form:

(1 - h1 2̂„)  xx + ^YY + 2z = 0

If we transform the y and z axes with

M

M a2, Y,	 ^' 1 — M.2. z
(14)

then the Laplace equation becomes

^xx + $.qq + 	 0	 ( 15)

.w .. ^_	 M	 . n..r.. w	 1
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4.2 Intearal Potential Representation

If we insert the equation

	

a %x +
	

y ^t^2	
+ kP

Wes }' + Va'^

(16)

for a turbulent parallel main flow into Eq. (15), then obviously

the following equation must be solved:

Y x x + tp.^ .q + 
Ip c c

= 0	
(17)

To this end, Eq. (17) is multiplied by an importance function

e and partially integrated over the region of flow, taking into

consideration the boundary shown in the sketch below:

r	
CO

E P

L	 n

0

x

	

C	
K

(B)

11- constant

IS S e (^Pxx + 9In + k%^ )dxdj)d^=
(B) -KLE

Aefn d0 - iss (exTx + e-qyl + eC(P^) dxd-qdC=0

CK»LE	 ( B)-KL E
(18)

L

s

5
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If we replace a with 0. we similarly obtain:

jjj qp(exx  
+ el

-q + egl dxd-ndc

(B)-KLE

= # tQ e nd0 jjj
 (exyx + e7j tPj + % l%) dxd'qdC

CK„ LE	 (B)-KLE

The volume integral on the right side is replaced by Eq. (18):
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rJ ( d e n	e Y n ) do - J JJ ^O ( e xx + e"^., + e ^ ) dxdjd
CK„LE	 (B)-KLE

According to the definition and taking into consideration Eq. (16)

the normal derivative On and the disturbance potential 0 disappear

at infinity.

On the corridor L the derivatives for outgoing flight and

return flight cancel each other out so that their contribution

disappears.

In the wake K. the normal derivatives of the disturbance

potential indeed cancel each other out, since there is a steady

velocity field, but a potential difference between the top and

bottom side should be allowed in order to simulate the departing

vortex layer. This thus leaves us with the following equation

from the integral equation:

Pe ndO = §ekPndO + § (e ^ n - tp en) dO - 11  lP endO
E	 E	 C	

K

+ 111 tP ( exx + eYY + e ZZ ) dxdjjd^

(B) -EK

6
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The left integral can be evaluated immediately if a represents

the surface of a small sphere and a is exclusively a function of 	 a

the radius. Then f tends towards the value t p , and 6/6n becomes

d/dr, with the integrand becoming a constant: :a
a

lP e ndO = Per	 d0 = tPper 4 TL r2

E	 E

If we now call for

er 4 TL r 2 = 1

it follows that

1
e = - TT —tr

If we insert this result into the integral equation and let

E shrink to 0, we finally obtain:

C+K	 C	 (19)

4.3 Displacement Term	 /7

We are looking for an approximate solution of the second

integral of Eq. (19) for a wing of moderate thickness. Then the

following simplifications are valid:

d0 = dxd11 dx 1 - %22 dy

^n	
a

1 - Ma 8 z	 (from ( 1 4))

>- p = -	 (z dxdy
..	 C

For small excess velocities the linearized limit condition

'^"^}*'^.^.^t.,^"{'—^__..	 _ ♦ 	
^	 .i	

.. _
	 ..mow	 .^^ s

.	 ..	

I	 III	 I

i	 . I
ii

i
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,
,	 i	 r

i	 `	 1

dz
^Oz - uoo dx

can be used, with which the partial integral can be integrated

as follows:

	

^PD

u0 r A? 1 rear	
dy 
	 1

-- 4 TL L r

	

	 - J z( r X dxdyJ
front

The first term does not apply in the case of closed profile

sections. Also, far downstream from the wing the effect of

singularities appears punctiform so that ultimately we arrive

at the following final result:

u00	

XP - xm
^D	 4TLf (x x )`+(1-M`) [(	 )`'+(z z ) 21 1 3/2

l P- m	 m	 YP-Ym	 P- m	 I
(20)

•	 zdx • dy

section

The integrations are performed numerically in section.

4.4 Vortex Term

	

The first integral from Eq. (19) can be evaluated as	 ip

follows using appropriate linearizations:

r	 , n	 x^r_ 1	 tQ (r) d0

C+K

qTL J I ( ^o - l^ u ) (r)^ P dxdjj
C+K

(continued on next page)
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Z P	 ! lQ dxdy =

= 4 TT:	
r 3

-bo

z P 
bf 

ao	 OtQ d ( xp-x ) dy
=	 J J

4TL -b o {
(xp-x)2+(1-M22)[(zp -z)2+(yp-y)2] 13/ 2 '

zP
b 

o ^tPL
f0

J J 	

ra 2 +(xp-x) 2 -(xp-x) 2 ] d(xp-x)dy
in	 [a2 + (xp-x)2 ] 3/2

-b o

z p	 0 kp ( xp - x )	 oc
=-4nJ

Va 2
dy

a 2 	 + ( xr-x)
M

In these equations, because of the constancy of the velocities

on the top and underside of the wake, the potential jump was

assumed constant. We thus obtain:

T
	 zP b
	 0 ^

12r	 4TE J z 2 + (	 )2-b P	 YP- Y

1 xp - xm+	 1 dy
(xp-xm) 2 +(1-Mm) [(yp-y)2+(zp-zm)2] Jr	 (21)

where the m line can be assumed to be at about 25% of the local

chord length.

	5. Continuity Equation Modification for Transonic Flow 	 19

5.1 Directional Dependen'c'e in the Case of Supersonic Flow

Without a provision to take into consideration the change

in the type of flow at transonic velocities, a numerical algorithm

I M

9
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for solving continuity equation (1) would fail. Moreover, shock

waves could not develop automatically in the course of the

calculation. If we now want to determine the velocity potential

at a special point P of the supersonic region, it must be borne

in mind that the chebk point is influenced exclusively by physical

data from the accompanying forward Mach cone.

It therefore suggests itself to coordinate the values pu, pv

and pw from Eq. (1) at a point H, which lies a small distance

upstream from P, to the check point itself. This ensures that

signals picked up downstream cannot reach the check point. In

the case of subsonic flow, on the other hand, there is not

directional dependency. Here the physical variables at the check

point itself are used in the calculation. Accordingly, in the

case of transonic flow, a numerical case distinction must be

performed which depends on whether local supersonic or subsonic

velocity is present.

5.2 Artificial Viscosity

The suggested assignment of physical quantities to check

point P in the case of supersonic flow can be formulated

mathematically by the linear upstream development of the variables

pu, pv and pw from Eq. (1).	 This should first of all be done for

pu:

(su)H = (su)p + (SU)p S ( SH - Sp)

where S is at least approximately the run length along the flow

line through P. The derivation (pu) S is formed as follows:

5 (b$) ^ + S( n )b s = S( 
b 

nb) - S(nS)
b

Since H is only a small distance from P. the flow line can be

/10
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approximated as a straight line so that (u/q) S disappears.

(su) H = g u + 4 (sq) S A S

Since the local density must be computed in the computer pro-

gram anyway, it is advisable to change over from S to p as the

independent variable:

(sq )SAS = ( 3q) 9 A 3

Differentiation with the help of Eqs. (10) and (9) gives us

(p) S AS = q (1 - --L )  Og .

For distinguishing the type of flow we can here comfortably

introduce the switching function "maxi:

(gu) H = u [s + max (0, 1 - M2 ) ( q H g),

For the terms pv, pw it is only necessary to repla.:e u with v.

A transonic computing process thus works if the following

expression is merely placed in the check point for the density:

s--^ g+ max (0, 1 - M )fig

5.3 Viscosity Parame ter 	 /11

Since the vector length between auxiliary point H and check

point P can be chosen more or less arbitrarily, the artificial

viscosity is generalized by a parameter c which is constant in the

entire flow field:

p —►  g + E max (0, 1 -M2 ) dg

11



Thus, on the one hand, the accuracy of the method can be

increased (small c,), and on the other hand iterative convergence

from case to case can be guaranteed (large e).

6. The Variation Principle

6.1 The Euler Minimum Principle

Here we will try to put the continuity equation (1) in a

form appropriate for the computer which does not allow the

introduction of a nonperpendicular calculating mesh network.

In this regard, in reference [1] a variation principle was

derived from the weighted remainder and in reference [2] from

the least square. An especially illuminating procedure is based
on the Euler principle according to which the equilibrium of

forces is formed on the fluid particle.

This should be done here first of all for the x-direction:

P 1 - B - P r = 0

or

pdydz - mu - (p + pxdx) dydz = 0

px + su = 0

In the case of stationary flow, the acceleration u can be

written as follows independent of time:

u - uxx + uyy + U zi - uu x + VU  + wuz

12

/12
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With Eqs. (2)-(4), it follows that

Px + %(uu x + vv x + wwx ) = 0

The Euler mininum principle is based on elimination of the /13

local derivation by using the chain rule

h = Tx a
r p^ + S(uu ^ + vv^ + ww^) = 0	 (22)

This same equation is obtained if the equiblibrium of forces

is formed in the y direction or z direction.

6.2 The Pressure Minimum Integral

That Eq. (22) satisfies the continuity equation can be seen

if, similar to what we did in section 4.2, we partially integrate

over the region of flow and in so doing Eq. (13) is taken into

account:

III po dxdydz + J11 o (u ^ X ^ + v ^w 44 • dxdydz = 0

Thus the second integral obviously becomes

0 ^ U dydz - jff^^(qu))'  dxdydz

+ 0 ^ ^v dxdz - S JJ^0Sv) y dxdydz

dxdy - JS (^ (t(Sw) z dxdydz

^^ g q n d0 -^f f ^,},^(Su)x + (gv) y + (gw)z I dxdydz

Now we can obviously see that

^E4=1.

,

13
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The second integral disappears because of Eq. (1), likewise

the first integral, since first of all the kinematic flow

conditions on the boundary of the body has to be satisfied and,

secondly, the mass flow through the distant boundary must

disappear. Thus the following simple result holds:

dxdydz = 0

or because of Eq. (22):

JJf S(uu ^ + vv^ + ww^) dxdydz = 0

(23)

7. Numerical Evaluation
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7.1 The Eight-Node Element Cube

To evaluate Eq. (23) we make use of the finite element

method. In so doing, the potential is represented in a stepwise

manner but continuously and without gaps in a three-dimensional

mesh network.

A useful approximation for this is the trilinear element

cube with the corner point coordinates in the Cartesian auxiliary

coordinate system E, q, C according to the following table

1 1 -1 -1

2

3

4 1 1 -1

5 1 -1 1

6

7 -1 1 1

8 1 1 1

14
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-OIL=
r 	 -,M Jk°* ^ .•

	
t^^' raj	 _ ^,

A function f is then approximated in the cube including the sides
by the following equation

= .1 
8

f
8	 f i C, + 91 9	 + q i -q

8

	

	
(24)

f i Gi

as one can easily convince oneself by trying it out or by
coefficient determination from the general equation.

7.2 The General Eight-Node Volume Element 	 /15

The transition to a volume element with straight edges and
eight corners is made by successively replacing the function f
in Eq. (24) by x, y, z and ^, where now the coordinates E,
and C function as parameters:

8
x => x, Gi

1

8
y	 yj Gi

Z => Z i Gi
I

8
Gi

To evaluate Eq. (23) we need the following derivations

U	 ^X - ^ X 41 }1x  4^ ^ X

V	 Y . ty 4-q -qy 4C by
W	 Oz 4t tz 411 *q z +Oc Cz

15



In this connection, the local derivations Ex,y,z
$ nx,y,z and

Cx2y.'z pose difficulties, since the approximation for x,y and z
is not invertable. The problem can be solved, however, if first

of all we write down the differentials of all the coordinates.

d _ t x dx + t y dy + t z dz

d^ _ -q x dx + 'q y dy + 'I z dz

d b = ^X dx + C y dy + b z dz

dx = xt 
d 
	 + x i, d-q + % d^

dy = yt dE + y-9 djj	 + yC dC

dz - zg dt + z-q di + % do

	

If we now substitue the 	differentials d V , dn , d, of the	 /16
three last equations by the right sides of the three first

equations and in each case perform the coefficient comparison

for dx, dy and dz, we obtain nine equations for the nine unknowns

Ex,y,z' nx,y,z and Cx,y,z . The time consuming but trivial

solution leads to the following result:

( Y-n zC - YC z' )

	

x	 D

( Y^ z	 Y9 zC )

	

Ix	 0

C= 
(Y9 

Z^	
Y-n 

zt )

	

x	 D

cXC z^ - X-q z 

	

ty	 D

	

ly	 cz^ xg — z E x^

D

(XII z9 - Z-q X  )

Cy D
(continued on next page) f 	

i

16



(x-n y	 y-q x^ )
z a --	 D

(y x	 - y^ xt )
^z =	

1' 

D

z= (xty11-x-ny

	

D	 )

with	
D = xt (y, % - z-q y C ) + y t (z-n xc-x,n zC )

+ 
z  (XI 

yC - y1 xC )

7.3 The Element Pressure Minimum Integral
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With the above operations we can now approximately evaluate

integral (23) for one element. To do this we use simple point

integration by forming the integrand at point

t='I=^= 0

and the volume element is distorted with the image determinant

D derived in the y `previous section:	 ► =

dxdydz x D • At AIAC= 8 D	
t

With the exception of an unimportant constant factor, Eq. (23)
wa.ti

is then expressed as follows if, for example, we differentiate 	 '.

according to the potential for corner 1:

J JJ J 
(uu§^ + vv^, + ww^j ) dxdydz oo

E

C	 (	 +	 +s^	 gx	 4-n-nx	 ^	 X ) G	 +(	 1g	 x G 11 -nx + G 1C y X)
1

+	 ($gty +(tJ 71 y +OC ^ y ) (G 1 g E y + G 1-n 11 y + G
1y 

^y)

t9z	 11z	 ^^^z) (G1g g 	 + G1n 1, + G IC ^z), D

for 0

17
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5°

By rearrangement we obtain a term of the following form for the

integral:

Vo X + 4V 4 z)

Finally, if we explicitly differentiate *, we obtain

w  320
i (X Ggi + Y 

1311 
+ Z 

b
Gr i )

^ 

1

7.4 The Global Pressure Minimum Integral 	 /18

Now after Lhe pressure minimum integral for an element with

the pivot point marked 111" is evaluated, the construction of the

entire volume integral no longer presents any difficulties.

All that is necessary is for the contributions of all of the

elements which contain the corner 111" to be counted Together.

So in the free field the contributions of eight elements, which

have one and the same corner in common, are to be counted

together, as one can easily imagine. Boundaries present no

problems. Here, of course, in most cases less than eight elements

are involved in the integrand. In general, four elements are

involved.

7.5 Relaxation Method

So far we have treated Eq. (23) for the case of potential

derivation at a selected mesh corner point. In order to solve

Eq. (23) in a global association of elements, we start with the

idea that the pressure minimum integral must disappear for

each intersection of the mesh. Thus, from Eq. (23) we obtain just

as many equations as unknown potential given values.

From this we can derive in a classical manner a relaxation

method:

18



i
Up to a certain distance the flow field is completely

covered with volume elements. The distant field solution of

the potential as per Eqs. (16), (20) and (21) is specified on

the distant field border. The tridiagonal matrix for the

unknown potential values is set up along reasonably selected

lines.

All contributions not stemming from this line are put on the

right side. The resulting system of equations is solved directly.

If we now move from line to line, we obtain an iterative

algorithm with which the rewest ^ and p values are always used. 	 /19

In so doing, the flow field is repeatedly traversed until the

potential values no longer change significantly.

Caution is necessary in determining the potential values

on the top and bottom of the vortex layer. In this computer

program, numerical stability was achieved as follows:

We define a mean potential as follows:

_ ( ^o + ^U)
m -	 2

and determine the potential values on

trailing edge of the wing foHK' fuHK'
potential jump d $ _ foHK fuHK along
assumed to be known. Now in order to

values on both sides of the vortex la;

for fm and then form

the top and bottom of the

Thus the constant

sections y - constant are

calculate the potential

yer, we first of all solve

^u 
	

m '^
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8. Results
	

/20

NACA-0012 Wing

For the first test sample we used as a basis for the

calculation a simple swept back wing with linear warping and

a constant profile.

Fig. 1 shows the outer boundary belonging to each y section

on which the distant field potential according to Eqs. (16),

(20) and (21) is specified. The influences of the other half of
4

the wing on the computation fields shown are also taken into

consideration.

The wing is centered on an impenetrable wall so that even

flows with small slideslip angles can be calculated with a very

'	 simplified fuselage effect. Beyond the wingtip the calculating

network is expanded by another three sections which contain no
^.

solid contours. The vortex layer leaves the trailing edge in

the direction of the local bisecting lines.

Figs. 2-16 show the pressure distributions. The points
	

l
above the profile indicate the elements in which supersonic

velocity prevails. The mark on the C  axis represents the

critical pressure coefficient for the total oncoming flow Mach
1+

number.

Fig. 18 requires more detailed explanation. The top side

pressure distribution acts somewhat unevenly, since the shock

front jumps along the wingspan a few times between the mesh

coordinates.

In this as in all other shock capturing methods, the shock

front can coincide only with network coordinates so that, in

general, the Rankine-Hugoniot shock equation and the angle

correlations in front of and behind the shock cannot be satisfied.
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If one wanted to improve this, the method would be very com-

plicated and would use an enormous amount of computer time.	 We	 /21

can manage with this method by approximately anticipating all

possible shock formations by means of a mesh construction per-
r

pendicular to the body. 	 Even this is very difficult.	 It is

simpler to concentrate the network in such a way that shocks can

be geometrically approximated in steps. Because of a lack of

computer time, no studies on this could be carried out.

The problem is most easily coped with by intensifying the

artificial viscosity via the specifiable viscosity parameters.

Then the result becomes almost independent of the "false" local

network geometry in the vicinity of the shock.

Figs. 20-22 are auxiliary diagrams showing the coefficient

distributions with respect to the local chord length. In these

diagrams the pitching moment is formed around the forward most

point of the wing. Using this, together with the lift distribution

and position of the pressure point, we can convert the moment to

any point of impact.

The iterative convergence is considerably accelerated through

euccessive network divisions with subsequent potential inter-

polation. So for this example the result was obtained after eight

minutes of computer time on the cnetral unit of an IBM 370/166.

This required only 12 iterations per network (three altogether).

The computer time could be reduced even more considerably if

greater access storage were available. In the absence of storage

capacity, the network geometry and the transformation matrix for

each element must now be calculated anew for each iteration.

However, this is still cheaper than reading off this once deter-

mined data from an external and thus slow storage. 	 i
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This is a design study for the wing of a modern transport

plane. Again the same data are supplied as in the previous 	 *;^

examp le.

- TT''t T*	 t^	 '	 i	 I

l	 .	 1.

B10X / NLR Model

In particular, Fig. 36 shows that obviously a well balanced

upper wing surface has been achieved, for the shock intensities

on the outer wing are very small. At about two-thirds of the

chord length (y - 11.75, Fig. 31) the pressure distribution of
	

I

the basic profile is satisfactorily represented.

This example with 12 wing sections for each 32 profile

points required the solution of 4,320 unknown potential values.

The computer time was five minutes on the central computer of the

IBM 370/168.

9. Summary

This paper demonstrates the operability of a new finite

volume method for calculating shock-affected flow around a wing.

Because of the chronic lack of computer time no calculations could

be carried out on the dense mesh network provided by the program

which would certainly have produced more accurate results.

Nevertheless, on the basic of earlier experiments, it is worth-

while to extend the program to wing-fuselage combinations in w

which, because of the complicated boundary geometry, the

advantages of the finite volume technique actually first come to

bear. For this taks, the usual difference methods are suitable

only to a limited extent, since they all require a strictly

perpendicular network which leads to a considerable amount of

interpolation on solid surfaces. For this reason and because of

the quicker iterative convergence, methods such as this one

should take on considerable importance in the future.
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