Report No. FAA-RD-78-3

https://ntrs.nasa.gov/search.jsp?R=19780019150 2020-03-22T03:02:54+00:00Z

47053118

(NASA-TM-79523)WIND SHEAR MODELING FORN78-27093AIRCRAFT HAZARD DEFINITIONFinal Report,Apr. 1976 - Feb. 1978 (NASA)256 pHC A12/MF A01CSCL 01CG3/0326151

WIND SHEAR MODELING FOR AIRCRAFT HAZARD DEFINITION

Walter Frost Dennis W. Camp S.T. Wang

February 1978 FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590

NOTICE

1

\$

8

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

с<u>і</u>,

Technical Report Documentation Page

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog N	No.
FAA-RD-78-3				· · ·
4. Title and Subtitle	.		5. Report Date	
Wind Shear Modeling for Air	craft Hazard D	ofinition	February 1978	
which one of the one o		crimiteron	6. Performing Organizati	ion Code
			8. Performing Organizati	on Report No.
^{7.} Author(s) Walter Frost, ⁽¹⁾ Dennis W. C	amp, S. T. Wan	g ⁽¹⁾		
9. Performing Organization Name and Addre National Aeronautics & Spac	e Adm. (1) _{EM}	G Assoc Inc	10. Work Unit No. (TRAI 154-451-014A	IS)
Atmospheric Sciences Divisi Space Sciences Laboratory	on Tu	11ahoma, TN	11. Contract or Grant No DOT-FA76-WA1-62	». 20
Marshall Space Flight Cente	r, AL		13. Type of Report and F	Period Covered
12. Sponsoring Agency Name and Address Department of Transportatio Federal Aviation Administra	n tion		Final Report fo through Februar	or April, 1976 ry, 1978
Systems Research & Deve	lopment Serv	vice/	14 5	
Washington, D.C. 20591	Airpor	t Division	FAA/ARD-450	-04
Prepared under FAA Inter-Ag Aviation Weather Branch, AR Inc., Tullahoma, Tennessee 16. Abstract Wind shear at low alti to aircraft operations. Ma	ency Agreement D-450. Contra 37388. tudes in the t thematical mod	No. DOT-FA76-1 cted by MSFC (1 erminal area ha els of wind pro	WA1-620, managed WAS8-32217) to FW as been identifie ofiles have been	by the NG Associates, ed as hazardous developed for
use in fast time and manned ing these wind shear hazard characteristics for stable winds potentially encounter shear is defined as signifi above the ground that may a aircraft.	flight simula s. A set of w and neutral bo able by aircra cant changes i dversely affec	tion studies a ind profiles an undary layers, ft in the term n wind speed an t the approach	imed at defining nd associated wir thunderstorms, a inal area are giv nd/or direction u , landing, or tak	and eliminat- nd shear and frontal ven. Wind up to 500 m keoff of an
Engineering models of mathematical formulae, grap data utilized to establish of observation and number o components of wind speed in vertical and horizontal coo Statistical data is pr	wind shear for hs, tables, an the models is f data points two-dimension rdinates. ovided, where	direct hazard d computer loo described as to up to 500 m. al vertical pla available, as	analysis are pre kup routines. The location, how of These models prov anes, i.e., as fu to the risk of ex	esented in the wind profile obtained, time vide the three unctions of the kceeding the
wind shear environment pred Recommendations, engin are given and the range of Results of the study a ing future efforts which sh data deficiency and the ass	icted by the m eering interpr applicability re summarized ould be pursue ociated weakne	odels. etations and g of the wind sh and conclusion d by Governmen sses and stren	uidelines for use ear models are de s and recommendat t and industry ar gths of the model	e of the data escribed. tions concern- re given. The Is are also
Aescribed. 17. Key Words Wind Shear Thunderstorm Gust Fronts Frontal Wind Shear	1	18. Distribution State Document is a through the N Service, Spri	wailable to the l ational Technical ngfield, VA 2215	J.S. public Information 51.
19. Security Classif, (of this report)	20. Security Clas	sif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassifie	d sta	257	
Form DOT F 1700.7 (8-72)	Reproduction of co	naleted again authority		

PREFACE

The work reported herein was supported by the Federal Aviation Administration, Wind Shear/Wake Vortex Avoidance System Branch, Approach and Landing Division, Systems Research and Development Service, under Interagency Agreement No. DOT-FA76-WAI-620. The authors are indebted to many people for their inputs to this effort. In particular, Guice Tinsley, Frank Coons, Joe Cox and Frank Melewicz, technical representative, from the FAA have been most supportive of the work. The authors have also worked closely with the Stanford Research Institute through Mike Keenan and Wade Foy. W. A. Stephens and Jack McDonald of Douglas Aircraft Company have been most gracious and helpful to the authors during the simulation tests at their facility. Dick Kurkowski and Dick Bray from NASA/Ames Research Center have provided many useful inputs and suggestions and George Fichtl from NASA/ Marshall Space Flight Center was instrumental in initiating the work early in its development. Finally, the authors acknowledge the dedicated efforts of Ms. Roxane Binkley and Mrs. Judy Wright in preparing the illustrations and typing the final draft.

£

	Symbol			∃.£	£,	P 1				in2 C	P E		•	· · · · ·	20	<u>9</u>				11 02	<u>а</u> т	÷ 8	ir f	۶p۸			5°	•		~
Measures	To Find			inches	feet	yards	salles			square inches	square yards square miles	acres			ounces	spunod	short tons			fluid ounces	pints	cutanto rallone	cubic feet	cubic yards			Cabrachaite	temperature		°F 212 160 200 1
ions from Metric	Muitiply by	LENGTH	ž	0.4	3.3	1.1	0 .0		AKEA	0.16	1.2	2.5		ASS (weight)	0.035	2.2		VOLUME	1000	0.03	2.1 • ^e	0.16	35	1.3		ERATURE (exact)	9/E Ithen	add 32)		98.6 BO 120
Approximate Convers	When You Know			centimeters	meters	meters	kilometers			square centimeters	square meters square kilometers	hectares (10,000 m ²)		W	qrams	kilograms	tonnes (1000 kg)			milliliters	liters	titers	cubic meters	cubic meters		TEMPI	Colorise Colorise	Censius temperature		32 140
	Symbol			C.	E	ε.	EX			cm² 2	ы 2 2 2 2 2 3	ęų			٥	kg	••			Ē			- ш3	°E			Ċ	ų ,		90 10 10
											1	1 6 1	- 15	1 D	13	111		01	6		8		4	9		S		7	16	
53	23 	rs	oz	61 		18 		21 	91 						1° 1° 18										• • •					
53	23 	CZ 8	50 	61		81			91	6	m ²	а 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										' ' 3 E -							° °	
Aeasures 6	Ta Find		oz	•	Continuatore CM	centimeters cm 2	meters a meters	kilometers Kin transmission 17	91 	6	square centimeters cm	square meters m ²	hectares ha	11111111111111111111111111111111111111		kiloarams g	t t tomes			milliliters ml	milliliters	milliliters ml E	liters I meret	liters		cubic meters m ³ to m ¹			Celsius °c • •	6 femperature
ersions to Metric Measures	Multink by Ta Find Symbol		LENGTH	61	•2.6 continuatore cm	30 centimeters cm 2	0.9 meters m		AREA		0.09 square centimeters cm	0.8 square meters m ²	0,4 hectares ha	4 (weight)		28 grams g	0.9 tonnes t			5 milliliters ml	15 milliliters ml	30 milliliters ml E	0.24 litters I	0.95 liters	3.8 liters	0.03 cubic meters m ³ to m ²	RATURE (exact)		5/9 lafter Celsius °C	subtracting temperature the subtracting a2)
Approximate Conversions to Metric Measures	When Yes Know Multiply by Ta Find Symbol		zo LENGTH	• • •	inchae • • • • • • • • • • • • • • • • • • •	Teach 30 Continuence 31 2 18 Teach 30 Continuence Cm 2 18	yards 0.9 meters m	miles kilometers kin	AREA		square inches b.o square centimeters cm	square yards 0.8 square meters m ²	aquare mines 2.0 aquare minerers nu en	MASS (weight)		ounces 28 grams g <u></u> pounds 0.45 kiloarams ka	short tons 0,9 tonnes t			teaspoons 5 milliliters ml	tablespoons 15 milliliters ml	fluid ounces 30 milliliters ml c	cups 0.24 Inters I Image: Comparison of the second	quarts 0.95 liters I	gallons 3,8 liters 1	cubic reat 0.03 cubic meters m ³ N			Fahrenheit 5/9 (after Celsius °c – –	temperature subtracting temperature 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ORIGINAL PAGE IS OF POOR QUALITY

TABLE OF CONTENTS

SECTI	ION .	PA	GE
TECHN	ICAL	REPORT DOCUMENTATION	i
PREFA	NCE .	· · · · · · · · · · · · · · · · · · ·	i i -
METRI	IC CON	VVERSION FACTORS	ii
LIST	OF IL	LUSTRATIONS	ii
LIST	OF TA	ABLES	i i
1.0	INTRO	DDUCTION	1
	1.1	Background	1
	1.2	General Description of Wind Shear Models]
	1.3	Organization	3
	1.4	References	4
2.0	THUNE	DERSTORM WIND SHEAR	5
	2.1	Data Source	5
	2.2	Data Processing	6
	2.3	Quasi-Steady Wind Speed Profile Grid System	8
		2.3.1 Tables of Wind Speed	9
		2.3.2 Illustrations	9
		2.3.3 Computer Program for Computing Thunderstorm Wind Speed Profiles	10
	2.4	Turbulence in Thunderstorms	10
	2.5	Statistical Model of Turbulence	18
	2.6	Application of the Thunderstorm Wind Shear Model	24
	2.7	References	36
3.0	NEUTI	RAL AND STABLE BOUNDARY LAYERS	39
	3.1	Data Source	40
	3.2	Presentation of Data	41

iv

5 I SECTION

,

SECTI	ON		PAGE
	3.3	Mean Wind Speeds	43
87. N 1		3.3.1 Tables of Wind Speed	43
		3.3.2 Illustrations	44
		3.3.3 Computer Program	44
• • • •	3.4	Turbulence Model	44
	3.5	Statistical Model Relative to Risk of Exceedance	68
	3.6	Application of Wind Shear Models for Neutral and Stable Boundary Layers	75
	3.7	References	78
4.0	FRONT	TAL WIND SHEAR	80
	4.1	Quasi-Steady Wind Speed Profile Grid System	83
		4.1.1 Tables of Wind Speed	83
		4.1.2 Illustrations	84
		4.1.3 Computer Program	84
	4.2	Turbulence Model	84
	4.3	Statistical Model	85
	4.4	Applications of Frontal Wind Shear Model	85
	4.5	References	87
5.0	SUMM	IARY	88
	5.1	References	91
APPEN	DICES	S	92
1A	LIST	T OF ABBREVIATIONS AND SYMBOLS	93
2A	TABL	BULATED THUNDERSTORM DATA	95
2B	GRAI	APHICAL ILLUSTRATION OF THUNDERSTORM WIND SPEED PROFILES	157
2C	COMI THUI	IPUTER PROGRAM FOR CALCULATION OF TURBULENT INDERSTORM WIND FIELDS	178

SECTI	ON CONTRACTOR	PAGE
ЗA	TABULATED STABLE AND NEUTRAL BOUNDARY LAYER DATA	194
3B	GRAPHICAL ILLUSTRATION OF STABLE AND NEUTRAL BOUNDARY LAYER WIND SPEED PROFILES	206
30	COMPUTER PROGRAM	215
4A	TABULATED FRONTAL DATA	224
4B	GRAPHICAL ILLUSTRATION OF FRONTAL WIND SPEED PROFILES	237

LIST OF ILLUSTRATIONS

FIGURE		PAGE
2-1.	Grid System Superimposed on Typical Thunderstorm Wind Speed Contour Maps	7
2-2.	Measured and Fitted Spectra for Thunderstorm [2-7]	11
2-3.	Typical Power Spectra of Vertical Component of Turbulence Measured in Clear Air, Cumulus Cloud, and Thunderstorm [2-7]	13
2-4.	Profile of the RMS Values of the Vertical and Headwind Velocity Fluctuations as Predicted by Lewellen, et al. [2-11]	16
2-5.	Integral Length Scale Description [2-10]	17
2-6.	Statistical Properties of Thunderstorms along Flight Paths at Constant Elevations of 200, 300 and 400 m	22
3-1.	Grid System Superimposed on the Data of Clarke and Hess [3-1] $\ .$	42
3-2.	Comparison of Measured Turbulence Data with Equation $3-5$ [$3-3$]	45
3-3.	Correlation of η_O with Richardson Number for Stable Boundary Layers	47
3-4.	Vertical Turbulence Intensity	49
3-5.	Longitudinal and Lateral Turbulence Intensity	51
3-6.	Influence of Stability on Turbulence Energy Spectrum	52
3-7.	Comparison of the Modified Dryden Spectrum with Kaimal's Empirical Curve Fit [3-3]	54
3-8.	Near Neutral Boundary Layer with Turbulence Superimposed, $\mu = 1$, $u_{\star} = 0.5 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots \dots \dots \dots$	55
3-9.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 25$, $u_* = 0.5 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots \dots$	56
3-10.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 50$, $u_* = 0.5 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots \dots$	57
3-11.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 75$, $u_* = 0.5 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots \dots$	58
3-12.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 100$, $u_* = 0.5 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots$	59

FIGURE

68

3-13.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 200$, $u_* = 0.5 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots $
3-14.	Near Neutral Boundary Layer with Turbulence Superimposed, $\mu = 1.0$, $u_* = 0.58 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots \dots 62$
3-15.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 12.5$, $u_* = 0.56 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m}$
3-16.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 25.0$, $u_* = 0.54 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots 64$
3-17.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 50$, $u_* = 0.50 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m}$
3-18.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 100$, $u_* = 0.42$ m s ⁻¹ , $z_0 = 0.01$ m
3-19.	Stable Boundary Layer with Turbulence Superimposed, $\mu = 200$, $u_* = 0.25 \text{ m s}^{-1}$, $z_0 = 0.01 \text{ m} \dots \dots \dots \dots \dots 67$
3-20(a).	Cumulative Percent Frequency of Occurrence of Ri at Given Wind Speeds, 0 to 6 m s ⁻¹ (0 to 14 mph) $\ldots \ldots \ldots \ldots 69$
3-20(b).	Cumulative Percent Frequency of Occurrence of Ri at Given Wind Speeds, 6 to 12 m s ⁻¹ (14 to 28 mph)
3-20(c).	Cumulative Percent Frequency of Occurrence of Ri at Given Wind Speeds, 12 to 15 m s ⁻¹ (28 to 32 mph)
3-21.	Variation of Ri with μ/u_{\star} at z = 6.1 m
3-22.	Variation of Wind Speed at z = 6.1 m with μ/u_{\star} (z ₀ = 0.01 m) . 74
4-1.	Wind Speed for Synoptic Front Cold Air Out-Flow, January 28, 1977
4-2.	Wind Speed for Synoptic Front Cold Air Out-Flow, December 10, 1976
2A-1.	Identification Format for All Tables in Appendix 2A 96
2B-1.	Typical Wind Profiles along a 3° Glide Slope: Case 1(A) Series No. 0446, 14 May 74, $W_X = 6.1 \text{ m s}^{-1}$, H = 4000 tan 3° (km)
2B-2.	Typical Wind Profiles along a 3° Glide Slope: Case 2(B) Series No. 1314, 2 Jul 72, $\overline{W}_X = 5.0 \text{ m s}^{-1}$, H = 3279 tan 3° (km)

viii

FIGURE

2B-3.	Typical Wind Profiles along a 3° Glide Slope: Case 3(C) Series No. 1731, 6 May 72, $W_X = 8.6 \text{ m s}^{-1}$, H = 5714 tan 3° (km)
2B-4.	Typical Wind Profiles along a 3° Glide Slope: Case 4(D) Series No. 1459, 27 May 72, \overline{W}_{X} = 11.6 m s ⁻¹ , H = 7692 tan 3° (km)
2B-5.	Typical Wind Profiles along a 3° Glide Slope: Case 5(E) Series No. 1924, 31 May 71, $W_{X} = 16.7 \text{ m s}^{-1}$, H = 11428 tan 3° (km)
2B-6.	Typical Wind Profiles along a 3° Glide Slope: Case 6(F) Series No. 1933, 27 Jun 72, $W_x = 11.0 \text{ m s}^{-1}$, H = 7273 tan 3° (km)
2B-7.	Typical Wind Profiles along a 3° Glide Slope: Case 7(G) Series No. 1942, 7 Jun 71, $W_X = 11.8 \text{ m s}^{-1}$, H = 7843 tan 3° (km)
2B-8.	Typical Wind Profiles along a 3° Glide Slope: Case 8(H) Series No. 1712, 23 May 74, $\overline{W}_X = 8.5 \text{ m s}^{-1}$, H = 5556 tan 3° (km)
2B-9.	Typical Wind Profiles along a 3° Glide Slope: Case 9(I) Series No. 1507, 16 Jun 73, $W_X = 11.5 \text{ m s}^{-1}$, H = 7408 tan 3° (km)
2B-10.	Typical Wind Profiles along a 3° Glide Slope: Case $10(J)$ Series No. 2206, 10 Jun 71, $W_X = 13.1 \text{ m s}^{-1}$, H = 8511 tan 3° (km)
2B-11.	Typical Wind Profiles along a 3° Glide Slope: Case 11(K) Series No. 2118, 2 Jun 71, $W_X = 12.4 \text{ m s}^{-1}$, H = 8163 tan 3° (km)
2B-12.	Typical Wind Profiles along a 3° Glide Slope: Case 12(L) Series No. 1759, 4 Jun 73, $W_X = 5.5 \text{ m s}^{-1}$, H = 3636 tan 3° (km)
2B-13.	Typical Wind Profiles along a 3° Glide Slope: Case 13(M) Series No. 0211, 14 Jun 72, $\overline{W}_X = 9.6 \text{ m s}^{-1}$, H = 6349 tan 3° (km)
2B-14.	Typical Wind Profiles along a 3° Glide Slope: Case 14(N) Series No. 0109, 12 Jun 71, $\overline{W}_X = 8.0 \text{ m s}^{-1}$, H = 5128 tan 3° (km)
2B-15.	Typical Wind Profiles along a 3° Glide Slope: Case 15(0) Series No. 0436, 23 May 72, $W_X = 11.4 \text{ m s}^{-1}$, H = 7408 tan 3° (km)

PAGE

FIGURE

2B-16.	Typical Wind Profiles along a 3° Glide Slope: Case 16(P) Series No. 0020, 12 May 72, $W_X = 6.9 \text{ m s}^{-1}$, H = 4444 tan 3° (km)
2B-17.	Typical Wind Profiles along a 3° Glide Slope: Case 17(Q) Series No. 1837, 23 May 74, $W_X = 17.5 \text{ m s}^{-1}$, H = 11428 tan 3° (km)
2B-18.	Typical Wind Profiles along a 3° Glide Slope: Case 18(R) Series No. 1651, 19 Apr 72, $W_x = 25.0 \text{ m s}^{-1}$, H = 16000 tan 3° (km)
2B-19.	Typical Wind Profiles along a 3° Glide Slope: Case 19(S) Series No. 1904, 26 May 71, $W_X = 11.0 \text{ m s}^{-1}$, H = 7143 tan 3° (km)
2B-20.	Typical Wind Profiles along a 3° Glide Slope: Case 20(T) Series No. 0029, 21 Apr 72, \overline{W}_{x} = 19.9 m s ⁻¹ , H = 13333 tan 3° (km)
2C-1.	Schematic of VELO Subroutine
2C-2.	Physical Interpretation of a Single Component of the Non-Gaussian Turbulence Model
2C-3.	Area-Weighting Technique
2C-4.	Grid System of Wind Field
3B-1.	Theoretical Wind Speed Profile for Comparison with Figures 3B-2 through 3B-8 Computed with Wind Shear Model
3B-2.	Stable Boundary Layer, No. 1
3B-3.	Stable Boundary Layer, No. 2
3B-4.	Stable Boundary Layer, No. 3
3B-5.	Stable Boundary Layer, No. 4
3B-6.	Stable Boundary Layer, No. 5
3B-7.	Stable Boundary Layer, No. 6
3B-8.	Stable Boundary Layer, No. 7
3C-1.	Grid System: K = 1 Corresponds to $\Delta \hat{W}_x = \hat{W}_x(\hat{z} - 0.15) - \hat{W}_x(\hat{z})$ and K = 2 Corresponds to $\hat{W}_y = \hat{W}_y(\hat{z}) - \hat{W}_y(\hat{z}) - \hat{W}_y(z = 0.15)$. 220

PAGE

x

FIGURE		PAGE
3C-2.	Area-Weighting Technique	221
4B-1.	Flight Paths through Streamline Pattern Moving with the Front	:
19	4B-3	238
4A-2.	Wind Speed Profiles along Four Different Flight Paths through Cold Front, Case 1	239
4A-3.	Wind Speed Profiles along Four Different Flight Paths through Cold Front, Case 2	240

LIST OF TABLES

1. 1. x.

ξ.

	n en	AGE
2-1.	Ensemble Averages, Standard Deviations and Correlations for W_x , W_y and W_z	19
2-2.	Horizontal Length of Each Storm Record	25
2-3.	Thunderstorm Wind Field, BlO, Similar to Philadelphia/ Allegheny Profile [2-17]; HX - Horizontal Station (ft.), Velocities Are Given in Knots and Height in Feet	27
2-4.	Thunderstorm Wind Field, Bll, Similar to Kennedy/Eastern Profile, [2-17]; HX - Horizontal Station (ft.), Velocities Are Given in Knots and Height in Feet	30
2-5.	Maximum and Minimum Vertical Velocities at 300 m Level in Data of Goff [2-1]	35
3-1.	Risk of Exceedance Associated with Wind Speed Profiles Shown in Figures 3-8 through 3-19	76
4-1.	Warm Front Wind Speed Profile [4-1]; $W_z = 0 \dots \dots \dots$	86
2A-1(a).	Wind Speed in Direction of Frontal Motion, W_{χ}	97
2A-1(b).	Wind Speed Perpendicular to Frontal Motion, W $_{y}$	98
2A-1(c).	Vertical Wind Speed, W _z	99
2A-2(a).	Wind Speed in Direction of Frontal Motion, W_{χ}	100
2A-2(b).	Wind Speed Perpendicular to Frontal Motion, W_y	101
2A-2(c).	Vertical Wind Speed, W _z	102
2A-3(a).	Wind Speed in Direction of Frontal Motion, W_{χ}	103
2A-3(b).	Wind Speed Perpendicular to Frontal Motion, W_y	104
2A-3(c).	Vertical Wind Speed, W _z	105
2A-4(a).	Wind Speed in Direction of Frontal Motion, W_{χ}	106
2A-4(b).	Wind Speed Perpendicular to Frontal Motion, W_y	107
2A-4(c).	Vertical Wind Speed, W _z	108
2A-5(a).	Wind Speed in Direction of Frontal Motion, W_X	109

2A-5(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-5(c).	Vertical Wind Speed, W _z
2A-6(a).	Wind Speed in Direction of Frontal Motion, W_{χ}
2A-6(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-6(c).	Vertical Wind Speed, W _z
2A-7(a).	Wind Speed in Direction of Frontal Motion, W_X
2A-7(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-7(c).	Vertical Wind Speed, W _z
2A-8(a).	Wind Speed in Direction of Frontal Motion, W_{χ}
2A-8(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-8(c).	Vertical Wind Speed, W_z
2A-9(a).	Wind Speed in Direction of Frontal Motion, W_X
2A-9(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-9(c).	Vertical Wind Speed, W _z
2A-10(a).	Wind Speed in Direction of Frontal Motion, W_{χ}
2A-10(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-10(c).	Vertical Wind Speed, W _z
2A-11(a).	Wind Speed in Direction of Frontal Motion, W_X
2A-11(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-11(c).	Vertical Wind Speed, W_z
2A-12(a).	Wind Speed in Direction of Frontal Motion, W_X
2A-12(b).	Wind Speed Perpendicular to Frontal Motion, W_y
2A-12(c).	Vertical Wind Speed, W_z
2A-13(a).	Wind Speed in Direction of Frontal Motion, W_X
2A-13(b).	Wind Speed Perpendicular to Frontal Motion, W_y

PAGE

xiii

Vertical Wind Speed, W _z
Wind Speed in Direction of Frontal Motion, W_{χ}
Wind Speed Perpendicular to Frontal Motion, W_y
Vertical Wind Speed, W_z
Wind Speed in Direction of Frontal Motion, W_X
Wind Speed Perpendicular to Frontal Motion, W_y
Vertical Wind Speed, W_z
Wind Speed in Direction of Frontal Motion, W_X
Wind Speed Perpendicular to Frontal Motion, W_y
Vertical Wind Speed, W _z
Wind Speed in Direction of Frontal Motion, W_X
Wind Speed Perpendicular to Frontal Motion, W_y
Vertical Wind Speed, W _z
Wind Speed in Direction of Frontal Motion, W_X
Wind Speed Perpendicular to Frontal Motion, W_y
Vertical Wind Speed, W_z
Wind Speed in Direction of Frontal Motion, W_{χ}
Wind Speed Perpendicular to Frontal Motion, W_y
Vertical Wind Speed, W _z
Wind Speed in Direction of Frontal Motion, W_{χ}
Wind Speed Perpendicular to Frontal Motion, W_y 155
Vertical Wind Speed, W_z
Transfer Functions of the Non-Gaussian Model
Longitudinal Wind Speed, \hat{W}_{x} , Ro = 10^7
Lateral Wind Speed, \hat{W}_y , Ro = 10^7

xiv

PAGE

3A-2(a).	Longitudinal Wind Speed, \hat{W}_{χ} , Ro = 10^6
3A-2(b).	Lateral Wind Speed, \hat{W}_y , Ro = 10^6
3A-3(a).	Longitudinal Wind Speed, \hat{W}_{χ} , Ro = 10^5
3A-3(b).	Lateral Wind Speed, \hat{W}_y , Ro = 10^5
3A-4(a).	Longitudinal Wind Speed, \hat{W}_{χ} , Ro = 10^4
3A-4(b).	Lateral Wind Speed, \hat{W}_y , Ro = 10^4
3A-5(a).	Longitudinal Wind Speed, \hat{W}_{χ} , Ro = 10^3
3A-5(b).	Lateral Wind Speed, \hat{W}_y , Ro = 10^3
4A-1(a).	Longitudinal Wind Speed, W_X , for Cold Front; Case 1, 0307, $W_X = 9.3 \text{ m s}^{-1}$, L = 17.4 km, $\Delta X = 153.7 \text{ m} \dots \dots \dots 225$
4A-1(b).	Lateral Wind Speed, W_y , for Cold Front; Case 1, 0307, $W_X = 9.3 \text{ m s}^{-1}$, L = 17.2 km, $\Delta X = 153.7 \text{ m} \dots \dots \dots \dots 227$
4A-1(c).	Vertical Wind Speed, W_z , for Cold Front; Case 1, 0307, $W_x = 9.3 \text{ m s}^{-1}$, L = 17.4 km, $\Delta X = 153.7 \text{ m} \dots \dots \dots \dots 229$
4A-2(a).	Longitudinal Wind Speed, W_X , for Cold Front; Case 2, 1050, $W_X = 7.1 \text{ m s}^{-1}$, L = 13.2 km, $\Delta X = 117.7 \text{ m} \dots \dots \dots \dots 231$
4A-2(b).	Lateral Wind Speed, Wy, for Cold Front; Case 1, 0307, $\overline{W}_{x} = 9.3 \text{ m s}^{-1}$, L = 17.2 km, $\Delta X = 153.7 \text{ m} \dots \dots \dots \dots 233$
4A-2(c).	Vertical Wind Speed, W_z , for Cold Front; Case 1, 0307, $W_x = 9.3 \text{ m s}^{-1}$, L = 17.4 km, $\Delta X = 153.7 \text{ m} \dots \dots \dots 235$

xv

PAGE

SECTION 1.0

INTRODUCTION

1.1 Background

Wind shear, particularly at the lower altitudes in the terminal area, has been identified as being hazardous to aircraft operations. Accurate and reliable wind profiles are required for use in fast time and manned flight simulation studies aimed at fully defining and understanding the wind shear hazard. This report describes wind speed profiles developed for the above simulation to improve the safety and reliability of operations in the terminal area. A comprehensive set of wind profiles and associated wind shear characteristics which encompass many of the wind shear environments potentially encounterable by aircraft in the terminal area have been modelled, subject to the data available. For the purpose of this effort, wind shear is defined as significant changes in wind speed and/or direction up to 500 m above the ground which may adversely affect the approach, landing, or takeoff of an aircraft. The wind shear is mathematically modelled and the mathematical scenarios (environment) are presented in a format for direct application to wind shear hazard/flight simulation studies.

1.2 General Description of Wind Shear Models

A survey of existing wind shear data and mathematical models which are comprehensive, of sufficient spatial extent, and detailed enough for the development of mathematical models of wind shear is reported in Reference [1-1]. This reference reviews the state of the art and describes the scale and duration of frontal wind shear, neutral and stable boundary layer wind shear, and thunderstorm wind shear. The physics of these atmospheric phenomena with which significant wind shear is associated is also outlined in this reference and is not described in the present report. Selected data sets reported in the literature and described in Reference [1-1] have been chosen for the three wind shear conditions considered, i.e., 1) thunderstorm wind shear, 2) neutral and stable boundary layer wind shear and 3) frontal wind shear. In all three cases, the most comprehensive set of wind shear data

reported in the literature have been discretized to a grid system and a computer program lookup with interpolation capabilities developed. The spatial variation of wind speed, both horizontally and vertically, is obtained from the programs when called by a main simulation program. The location of data measurement, how the data were obtained, the time of observation and the extent of the data up to 500 m are outlined for each of the wind shear conditions considered. From these data sets, a description of steady state wind which, in the thunderstorm and frontal cases, is effectively a quasisteady state wind having a 10 sec averaging period are described. For the stable and neutral boundary layer case, the wind speeds are mean values which are defined as a 10 min average or greater. For the neutral and stable boundary layer, spatial dependence of the wind only in the vertical direction, z, is considered and the wind field in these cases is assumed homogeneous in horizontal extent. For the thunderstorm and frontal wind fields, both vertical, z, and horizontal, x, spatial dependence is considered. The data available, however, represents wind fields in a vertical plane sliced through the storm and spatial variation in the direction lateral to the motion of the storm is not considered. All three velocity components, that is, longitudinal velocity, W_x , lateral velocity, W_v , and vertical velocity, $W_{_{2}}$, are defined at each point in the vertical spatial plane, however.

Since the high frequency component of the variation in the wind has been averaged out of the data sets used to define the mathematical form of the wind shear models, turbulence simulation techniques are provided from which a turbulent fluctuation can be generated and superimposed upon the quasi-steady state wind fields. For the thunderstorm and frontal models, the frequency content of the turbulent simulation must contain all fluctuations greater than 0.1 Hz. For the neutral and stable boundary layer the turbulence model must contain fluctuations of all frequencies.

Statistical models which will allow estimates of the probability of a given shear magnitude and the frequency of occurrence are developed to the extent current data permits. A statistical description of the wind fields are required to establish meaningful magnitudes of wind shear to assure that the values used in flight hazard studies are realistic and might actually be

encountered in the real world. Statistical data, however, is very limited in this regard and it was necessary in most cases to establish only crude estimates of the probability of wind shear and the risk of exceeding a prescribed value.

<u>1.3 Organization</u>

The mathematical models of wind speed developed for thunderstorms, stable and neutral boundary layers, and the synoptic frontal storms are reported individually in Sections 2, 3 and 4, respectively. Each section describes the nature of the data set used to develop the table lookup programs and the theoretical turbulent simulation models recommended for use with the quasi-steady winds. Statistical models are also described and estimates of probabilities and risk of exceedance given. In the appendix, tables of the wind fields for easy engineering application are given. Also, numerous illustrative plots of typical wind speed profiles encountered along conventional flight paths are provided for visualization of the type and magnitude of wind shear potentially encounterable in the atmospheric conditions considered. Finally, a careful listing of the computer code and the associated data set are described. The computer programs are given in the form of subroutines which can be immediately coupled with a fast time computer program for calculating flight through wind shear hazards or for direct application to flight simulation studies. This material has been placed in the appendices because of its bulkiness and because, although it directly pertains to the engineering application of this report, it is not immediately relevant to the text of each section. However, the appendices have been numbered corresponding to the section of the report to which they refer. Appendix 1 contains the nomenclature while Appendices 2, 3 and 4 contain the tables, illustrations and computer code for the respectively numbered sections. Finally, each section contains recommendations and guidelines for engineering applications. The range of applicability, engineering interpretation, and examples of how to use the data are given.

The report concludes with a summary section which summarizes the results of the effort, presents conclusions, and provides recommendations concerning future efforts. A discussion of data deficiencies and the associated weaknesses and strengths of the model are also described in the summary section.

1.4 References

1

1-1. Frost, Walter, and D. W. Camp. "Wind Shear Modeling for Aircraft Hazard Definition," Interim Report No. FAA-RD-77-36, March 1977.

SECTION 2.0

THUNDERSTORM WIND SHEAR

A model of wind shear associated with thunderstorms has been developed from the cata of Goff [2-1]. These data consist of measurements of longitudinal, lateral and vertical wind speeds at various levels of a 500 m tower. Although the data are measured along a vertical line in the atmosphere, they are projected horizontally to form a vertical plane using the concept of frozen turbulence or Taylor's hypothesis. Thus, the wind shear phenomena associated with thunderstorm models can be described as a twodimension, spatial wind field.

The data of Goff [2-1], after careful review (see Reference [2-2]), were selected as being the best data available to construct a quantitative model of thunderstorm wind shear that provides both vertical and horizontal wind shear values. As noted, the model is restricted to two-dimensional space. The extensive survey reported in Reference [2-2] indicates that there are no three-dimensional data sets available nor any theoretical models associated with thunderstorms which would allow a three-dimensional simulation to be carried out. Therefore, it was necessary to restrict the simulation of thunderstorm wind shear to two-dimensional wind fields. The data, however, do include all three velocity components of the wind vector in the plane swept out by the 500 m tower as the storm passes.

2.1 Data Source

Thunderstorm wind shear data are presented in the form of longitudinal (W_x) , lateral (W_y) and vertical (W_z) wind speed components in a vertical plane for 20 thunderstorm cases. Data for these 20 storms were measured during the months of May through June over the period of 1971 through 1973 with the WKY-TV/NSSL 481 m meteorological tower, Norman, Oklahoma. Time histories of the wind speed are converted to horizontal spatial distributions using Taylor's hypothesis (i.e., x = Wt). Ten second averaged values of wind speed components are provided in the form of isotach maps for W_x , W_y and W_z , respectively. These data were converted to a 41 x 11 point grid

system as illustrated in Figure 2-1. The data for the 20 thunderstorm cases having been discretized on the grid system were stored on magnetic tape and a computer lookup routine developed for interpolating the W_x , W_y and W_z wind speeds for any location within the x-z plane. Tabulated data for W_x , W_y and W_z on the 41 x 11 point grid system are given in Appendix 2A; a pictorial description of the wind speed profiles and streamline patterns are given in Appendix 2B, and a computer program which stores the data on disks and carries out the table lookup with the option of superimposing turbulence is described in Appendix 2C.

The 20 thunderstorm cases for the purpose of this report are assigned numbers 1 through 20 which correspond to Goff's identification symbols A through T. All tabulated and illustrated data in the appendix contain both the numerical and the alphabetical identification.

2.2 Data Processing

For each thunderstorm, a 10 min record was taken and the data were averaged over 10 sec intervals throughout the 10 mins. These data were then fitted to a regular array of a 60 x 10 grid by Goff. Although the actual measurements were not uniformly spaced, the data as presented for public distribution were uniformly spaced on the 60 x 10 grid. Each 10 min record consists of 60 10 sec averaged data sets representing a cross section through the storm. Streamline patterns as well as isotach maps of W_{χ} , W_{y} and W_{z} were also drawn from the data and are given in Reference [2-1].

The data presented in Reference [2-1] were evenly spaced over 10 50 m intervals in the z-direction. Values assigned to each interval were determined by linear interpolation from seven levels of measurements for the 1971, 1972 data and from only three levels of measurement for the 1973 and 1974 data. For the x-direction, 60 intervals were utilized where a Galilean transformation from time to space was utilized. The horizontal extent of each cross-section is therefore a variable and is equal to the frontal speed of the thunderstorm times the 10 min averaging period.

The coordinate system utilized in Reference [2-1] and also in this report defines the x-direction as being measured positively in the direction of frontal motion and the y-direction as being measured perpendicular to the

⁶

Horizontal Grid Points

Vertical Grid Points

frontal axis utilizing the right-hand rule, i.e., positive W_y is measured into the plane of the paper. The W_x components of the wind speed are positive in the direction of frontal motion, i.e., positive from left to right on the contour maps and the vertical wind speed, W_z , is positive in the upward direction.

The data presented by Goff [2-1] are the longitudinal wind speed, W_{χ} , relative to the motion of the storm. In this report, however, the data are generally presented relative to the fixed frame of reference attached to the ground.

In view of the 10 sec averaging period utilized to reduce the data, all fluctuations in wind speed of frequency higher than 0.1 Hz have been filtered out of the data. Thus, the data contain variations in wind speed having frequencies of 0.1 Hz or less. These low frequencies are expected to be those to which aircraft motion is most sensitive. However, to assure correct simulation where high frequency wind components are significant, it is recommended that a turbulent fluctuation be superimposed upon the quasisteady wind fields. Section 2.4 discusses and recommends a turbulence model for use with the thunderstorm gust front data.

The following section, Section 2.3, describes the quasi-steady wind speed profile grid system and presents working data for wind shear hazard/ flight simulation studies. The wind speed is referred to as quasi-steady in view of the fact that it is averaged over 10 sec time intervals and thus contains departures from the mean wind speed which is generally averaged over a 10 min period or greater.

2.3 Quasi-Steady Wind Speed Profile Grid System

The wind fields of Goff [2-1] were fit to a 41 x 11 point grid system. The grid system as illustrated in Figure 2-1 was superimposed on the contours and wind speeds at each grid point tabulated and punched onto computer cards. The data were later stored on magnetic tape.

The grid system is numbered from the left-hand bottom corner. The numbers increase from left to right in the positive x-direction of the original data and from bottom to top in the positive z-direction of the

original data. The wind speeds are given in units of meters per sec, m s⁻¹, with W_{χ} being positive in the direction of frontal motion, W_{χ} being positive upward and W_{ν} being positive into the plane of the paper.

The wind speed W_{χ} is stored on tape as the wind speed relative to the storm motion. The stored values of wind speed are therefore the values an observer would measure moving along with the storm. To convert to the earth frame of reference the mean motion of the storm must be added to the longitudinal wind speed. The next section describes tables and graphical illustrations of the wind speed profiles. In these cases the mean motion has been added.

2.3.1 Tables of Wind Speed

Tables of thunderstorm wind speed are given in Appendix 2A. The upper portion of the table covers grid stations 1 through 21 and the lower table covers grid stations 21 through 41. (Note column 21 is repeated for symmetry and clarity of presentation.)

The thunderstorm case numbers designation for this report are listed at the top of each table. The letters in parentheses and the following series number corresponds to the thunderstorm designation given by Goff [2-1].

Also listed at the top of the table is the frontal speed, \overline{W}_{χ} , and the horizontal length scales for the given wind record. The horizontal extent of each data set varies because of the data reduction procedure. Hence, the length of field, L, in kilometers and the horizontal grid spacing, Δx , are specified on each table. The vertical extent of each field is taken as 500 m with 50 m vertical grid spacing.

2.3.2 Illustrations

Illustrations of the longitudinal, lateral, and vertical wind speeds encountered along a 3° glide slope through each thunderstorm are provided in Appendix 2B. The glide slope is adjusted to terminate at the lower left-hand corner of each streamline plot as illustrated. The ordinate in the wind speed profiles is height, z, nondimensionalized with the length, H = L tan 3°, where L is the length of the wind field. Each profile is the wind seen by an

airplane traveling along the flight path line drawn across the streamlines as shown in the upper figures. The flight paths are drawn to terminate in the lower left-hand corner always. Note that the streamlines plotted are relative to the speed of the front which for reference purposes is indicated with the vertical dashed line on the horizontal wind speed profile. The wind speed profiles are relative to the fixed earth frame of reference.

2.3.3 Computer Program for Computing Thunderstorm Wind Speed Profiles

A computer program has been developed which for given input x, z computes the longitudinal, lateral, and vertical wind speeds at that position. The six velocity gradients $\partial W_x/\partial x$, $\partial W_z/\partial z$, $\partial W_z/\partial x$, $\partial W_z/\partial z$, $\partial W_y/\partial x$, and $\partial W_y/\partial z$ are also output by the program. A detailed description and user's instructions for the computer program are provided in Appendix 2C. The computer program also has the option of calling for turbulence which is superpositioned upon the thunderstorm wind field. A non-Gaussian turbulence model based on the technique of Reeves, et al. [2-3] is employed for turbulence simulation.

It is intended that this computer program can be used as a subroutine for direct application to fast time flight studies or for fast time computer simulation of aircraft flight through thunderstorms. As an example of the application of the computer program, the reader is referred to Reference [2-4] in which this computer program has been used to study aircraft dynamics in thunderstorms and Reference [2-5] where the data were used for manned flight simulator programming.

2.4 Turbulence in Thunderstorms

Measurements of the power spectral density function for turbulence in thunderstorms has been reported as early as 1962 by Steiner and Rhyne [2-6]. Their data was measured only over the approximate reduced spatial frequency range of 0.004 to 0.4 rad m⁻¹. The theoretical von Karman spectrum follows the data in this frequency range very well as demonstrated by Houbolt, et al. [2-7], in Figure 2-2a. The Dryden spectrum, on the other hand, does not compare as well with the data. However, with the properly chosen length scale a reasonable fit is obtained (see Figure 2-2b). All reported data,

Figure 2-2 Measured and Fitted Spectra for Thunderstorm.L∿Integral Length Scale [2-7]

however, were measured in the altitude range of 12 to 8 km and moreover they do not extend to low enough frequencies to illustrate at which point the knee of the turbulence spectrum curve occurs. The knee of the power spectral density function is important in many design applications (see Reference [2-8]) and particularly to the empirical value of length scale, L, used in the analytical models of the power spectral density function.

In Reference [2-7] a comparison of the power spectral density function of severe storms with that of cumulus clouds and clear air turbulence is given (see Figure 2-3). One can see from Figure 2-3 that the turbulent spectra for severe storms behaves very similar to that of cumulus clouds and clear air turbulence with the only major difference being higher values of $\phi(\Omega)$ which indicates higher turbulence intensity. Again, these data are measured at very high altitudes and probably do not include effects due to the presence of the ground.

Reference [2-7] computes two values of turbulence intensity. One is computed directly from the experimental data by integrating the power spectral density function over only the limits of the frequency range in which the data have been measured, i.e.,

$$\sigma_1^2 = \int_{\Omega_k}^{\Omega_u} \phi(\Omega) d\Omega$$

(2-1)

where u and ℓ designate upper and lower, respectively. Spatial frequency designated by Ω is related to cyclic frequency used in Section 3-4 by n = W $\Omega/2\pi$. An alternate method of measuring the turbulence intensity is to compute its value from the autocorrelation function evaluated at zero,

$$\sigma^{2} = R(o) = \int_{0}^{\infty} \phi(\Omega) d\Omega$$
 (2-2)

It is found that based on the Dryden model the two measures of turbulence

Reduced Frequency, Ω , Radians/m

Figure 2-3 Typical Power Spectra of Vertical Component of Turbulence Measured in Clear Air, Cumulus Cloud, and Thunderstorm [2-7]

intensity are related by

$$\sigma^2 = \frac{3}{\pi} \frac{\sigma}{L} \left(\frac{1}{\Omega} - \frac{1}{\Omega_g} \right)$$

where $\Omega_{\rm u}$ and $\Omega_{\rm l}$ represent the upper and lower limits, respectively, of the range of the turbulent spectrum measurements. Also appearing in this equation is the length scale, L, which is an extremely important parameter in fitting the analytical expressions for the turbulence spectra to the data (see Reference [2-9]).

Although the von Karman spectra tends to fit the data better as illustrated in Figure 2-2, the Dryden spectrum is conventionally used because of its rational form,

(2-4)

Evaluation of the Dryden spectrum in a turbulence simulation routine requires knowledge of the length scale, L, and of the turbulence intensity, σ . Houbolt, et al. [2-7] recommend values of L = 1036 m and gives σ_1 values for the vertical fluctuations in the range of 4.88 m s⁻¹ to 2.27 m s⁻¹ and for the lateral fluctuations of 4.69 m s⁻¹ to 2.69 m s⁻¹. Longitudinal values of σ were not measured. Adjusting σ_1 to σ from Equation 2-3 gives values of approximately 10.20 > σ_{W_7} > 4.75 m s⁻¹ and 9.82 > σ_{W_Y} > 5.63 m s⁻¹. These values cannot be used directly, however, because the ground is expected to have a strong effect on the turbulence length scale and intensity.

No actual data for L and σ nor for how they vary with height in a thunderstorm below 500 m appears to be available in the literature. Barr, et al. [2-10] postulate a decrease in length scale and intensity at low altitudes. Preliminary results from the analytical model of Lewellen, et al. [2-11] predict increasing values of σ_{W_X} and σ_{W_Z} near the ground (see Figure 2-4). In Section 3.4 it is recommended that near the ground the ratio of $\sigma_{W_X}/\sigma_{W_Z}$ and $\sigma_{W_V}/\sigma_{W_Z}$ be determined from Figure 3-5. The relationships are

$$\sigma_{w_{x}}/\sigma_{w_{z}} = [0.177 + 2.74 \times 10^{-3} z]^{-0.4}$$

and

$$\sigma_{w_y} / \sigma_{w_z} = [0.583 + 1.39 \times 10^{-3} z]^{-0.8}$$
 (2-5)

and for lack of a better model this relationship is recommended herein.

Also in Section 3.4, an equation (3-11) for evaluating σ_{W_Z} proposed by Barr, et al. [2-10] is given. Evaluation of σ_{W_Z} from this equation, however, is very dubious for thunderstorms and is not recommended. For example, a very large and uncommonly observed value of u_* is 2 m s⁻¹ or greater (see Section 3.4) which from Equation 3-11 gives a value of $\sigma_{W_Z} = 2.6 \text{ m s}^{-1}$. This value which would occur only infrequently in a normal boundary layer is a factor of 1.8 lower than the lowest value of σ_{W_Z} measured by Steiner and Rhyne [2-6] bearing in mind, of course, that their data were measured at altitudes between 12 and 8 km.

It is assumed, however, that Steiner and Rhyne's data will extend to lower altitudes and the procedure recommended for evaluating σ_{W_Z} is to select a value in the range of $10.20 > \sigma_{W_Z} < 4.75 \text{ m s}^{-1}$. To predict σ_{W_X} and σ_{W_Y} , Equation 2-5 should be used.

The length scale of the turbulence may be selected from Figure 2-5 taken from Reference [2-10] where

$$L_{w_{X}} = L_{w_{Y}} = \begin{cases} z, & z \le 300 \text{ m} \\ 300 \text{ m}, & z = 300 \text{ m} \end{cases}$$

$$L_{w_{z}} = \begin{cases} z[0.177 + 0.00274 \ z]^{-1.2}; \ z \le 300 \ m; \\ z > 300 \ m; \end{cases}$$

Table 2-1 provides values of cyclic frequencies for different velocities of w, and for spatial frequency of 0.4 and 0.004 radians/m, respectively. It is observed from this table that the tabulated values exceed 0.1 Hz only for the upper limit of Ω and at velocities greater than 10 m s^{-1} . The importance of this observation to the simulation model of wind shear being developed herein is that the wind data utilized in the math model has been integrated over 10 sec periods and, therefore, contains oscillations in the low frequency range of less than 0.1 Hz. Therefore, it is proposed that a turbulence simulation for the current thunderstorm model have all frequencies below 0.1 Hz filtered out using a high pass filter (see Reference [2-12]). In many ways this result is advantageous because the turbulence spectra are better known at high frequencies and can be simulated very well; whereas, low frequency turbulence spectra are not yet well defined. The high frequency range corresponds to the well established inertial subrange [2-13] for which $\phi(\Omega)$ obeys the -5/3 power law. A high pass digital filter program was used with the computer program given in Appendix 2C but is not included in the write-up because it is a standard program given in Reference [2-14] and is too long to be included in this report.

(2-5)

2.5 Statistical Model of Turbulence

In an attempt to make some estimate of the most extreme wind shear which could be encountered during the expected life cycle of a thunderstorm, the 20 thunderstorm cases were taken as a sample for statistical purposes. From this sample, wind speeds along the 20 flight paths illustrated in Appendix 2B were statistically analyzed. Table 2-1 shows the ensemble average of the wind speeds along the flight paths plus the one point standard deviation of each wind speed and the correlations between the wind speed components. These values are defined as shown below for the

TABLE 2-1

ENSEMBLE AVERAGES, STANDARD DEVIATIONS AND CORRELATIONS

FOR W_x , W_y AND W_z

zo	<₩ _× >	<₩ _y >	<₩ _z >
0	9.0700	-0.6850	0.0000
50	9,1895	-1.0350	-0.0519
100	9.7518	-1.2028	-0.1174
150	11.4401	-1.3898	-0.2904
200	12.3359	-1.2510	-0,2539
250	12.5787	-0.1779	-0.0397
300	11.8227	0.2164	-0.0670
350	8.8224	1.1370	0.6620
400	4.3032	2.1131	1.2981
450	1.4070	2.7131	0.8968
500	-0.1681	2.9205	0.4902
Zo	$\sigma_{i,i}$	σ _W	σ _w
U	w X	"y	"Z
0	4.0341	3,7439	0.0000
50	3.4693	3.4720	0.1404
100	3.7829	3.6212	0.2641
150	3.9754	3.7328	0.4325
200	4.0718	3.7115	0.6148
250	3.8818	4,9743	1.0989
300	3.8244	5.1184	0.8581
350	5.40VD	4.7080	0.9819
400	5 5734	0223 7 2723	1.2041
500	5.3830	8 2354	0.4774
	3.3030	0.2334	0.4//4
z _o	^p w _x w _y	[₽] w _x w _z	[₽] ₩y₩z
0	3.4760	0.0000	0.0000
50	1.9669	0.0184	-0.0567
100	1.5427	-0.1086	0.1101
150	0.3304	-0.7416	-0.0176
200	0.1972	-0.8220	1.2121
250	0.9971	-0.8448	3.8696
300	0.0995	-1.4322	2.1130
350	2.6395	-2.0172	1.2844
400	-4.8549	-2.5340	1.9091
450	-4.6407	-0.5253	-0.5719
500	-7.0084	-0.1117	-1 8076
longitudinal wind speed.

$$\langle W_{\mathbf{X}} \rangle = \frac{1}{N} \sum_{i=1}^{N} W_{\mathbf{X}_{i}}$$
$$\sigma_{W_{\mathbf{X}}} = \left(\frac{\sum_{i=1}^{N} (W_{\mathbf{X}_{i}} - \langle W_{\mathbf{X}} \rangle)^{2}}{\sum_{i=1}^{N} (W_{\mathbf{X}_{i}} - \langle W_{\mathbf{X}} \rangle)^{2}} \right)^{1/2}$$

and

$$\rho_{W_{X}W_{y}} = \frac{1}{N} \sum_{i=1}^{N} (W_{i} - \langle W_{x} \rangle) (W_{y} - \langle W_{y} \rangle)$$
(2-9)

The relationship for the lateral and vertical wind speed and other two correlations are similarly defined.

The results of Table 2-1 allow a trivariate probability density function for the wind components at each point along the flight path to be constructed. A trivariate distribution as described in Reference [2-15] is given by

$$p(W_x, W_y, W_z) = Ce^{-1/2\chi^2}$$
 (2-10)

where

$$C = 2\pi^{-3/2} |s_{ij}|^{1/2}$$
(2-11)

and

$$\chi^{2} = \Sigma s_{ij} z_{i}^{2} + 2\Sigma s_{ij} z_{i} z_{j}; \quad i = 1, 2, 3$$
(2-12)

The vertical bars designate the determinant of the matrix sij where

(2-7)

(2-8)

and z_i is the standardized variate

$$z_{i} = (W_{i} - \langle W_{i} \rangle)/s_{ii}; j = 1,2,3$$

From this function the probability of the wind vectors at each point can be estimated, however, the mathematics involved is too complicated to present in detail in this report and the reader is referred to Reference [2-15].

(2-13)

There is considerable encouragement that a probability model of thunderstorms could be constructed since the components of $[s_{ij}]$ and the ensemble averages for the 20 storms are reasonably consistent functions of the spatial coordinate x,z. This is demonstrated in Figure 2-6 which shows the variation of $\langle W_z \rangle$, σ_{W_x} and $\rho_{W_x W_y}$ along horizontal lines through the storm at equal increments of $\Delta t = 1 \text{ min or } \Delta x / \overline{W_x}$. The lines are at the 400, 300 and 200 m level. The data show well defined variation with time and consistent trends with altitude. Equally consistent results are obtained with the remaining statistical parameters.

These well behaved statistical parameters suggest that a study to develop a complete statistical model of a thunderstorm be carried out. The results of this study would allow simulation of thunderstorms, similar to turbulence simulations, to be performed. Thus, a simulator could be programmed to simulate approaches and landings through a random selection of thunderstorms. Moreover, the statistical model would allow an estimate of the most extreme wind shear associated with a thunderstorm and its frequency of occurrence.

Until such a model is available, the best estimate of the probability of an extreme value in the thunderstorm can be made from the tabulated values of standard deviation (Table 2-1) and the assumption of a Gaussian distribution. For example, one can estimate that at the point z = 250 m on

Figure 2-6 Statistical Properties of Thunderstorms along Flight Paths at Constant Elevations of 200, 300 and 400 m

ORIGINAL PAGE IS OF POOR QUALITY Ċ.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2-6 Continued

the 3° glide slope W_{χ} will on the average be 12.6 m s⁻¹, there is however a 32% chance that it will be ±3.88 m s⁻¹ of that value; a 5% chance that it will be ±7.76 m s⁻¹ of that value; etc. This approach assumes that the wind fluctuations at neighboring points are statistically independent which is obviously not the case in view of the significant value of the correlation coefficients also shown in Table 2-1.

Considerably more work is required to produce a satisfactory statistical model of a thunderstorm wind field, however, preliminary analyses conducted on the sample of 20 thunderstorms suggest a meaningful model is feasible and within reach.

2.6 Application of the Thunderstorm Wind Shear Model

The user of the thunderstorm wind shear model simply selects which thunderstorm case is of interest to his simulation problem and generates wind speed profiles for given values of x and z throughout the wind field. The selection of the thunderstorm case must consider two factors: one is the length of horizontal fetch over which the simulation is to be carried out and the other is the severity of the storm which it is desired to simulate.

All profiles have the same vertical extent which is 500 m. However, they have different lengths depending upon the mean motion of the thunderstorm. If a simulation is to be carried out over a significantly long distance in the horizontal direction, one must select the storm which will span the distance of the proposed simulation. Table 2-2 lists the length of each thunderstorm based on its case number. This table can be used to select which thunderstorm case to use in carrying out the simulation where the length of horizontal extent is critical.

The severity of the storms also differ for a number of reasons. One is that the maturity of the storms as they passed over the tower were in different stages of development, another is that the center of the thunderstorm may not have passed over the tower and only the fringes of the storm were recorded. In selecting a storm to have a severity appropriate for the simulation to be carried out, the user may either inspect the graphical illustrations shown in Appendix 2B and thus pick what would appear to be the

TABLE 2-2

1 4.00 11 2 3.28 12	8 16
2 3.28 12	0.10
	3.64
3 5./1 13	6.35
4 7.69 14	5.13
5 11.43 15	7.41
6 7.27 16	4.44
7 7.84 17	11.43
8 5.56 18	16.00
9 7.41 19	7.14
10 8.51 20	13.33

HORIZONTAL LENGTH OF EACH STORM RECORD

worst storm relative to the simulation he wishes to perform. Note, however, that the wind profiles shown are based on a specified flight path which terminates at the bottom left-hand corner of each data set and which has a constant 3° glide slope. Therefore, the flight path for which the winds are illustrated may not pass through the worst part of the storm. In this case, the user may examine the tables provided in Appendix 2A and by examining the overall wind fields select from the tables the thunderstorm case which gives either the largest longitudinal wind, largest vertical wind, or the largest lateral wind, which ever may be of interest.

Having chosen the thunderstorm of interest, one would normally wish to predict what the probability of encountering such a thunderstorm would be and with what frequency would such storms occur. Statistical models which would allow this type of risk of exceedance estimate to be made are not available and require further research for their development. The best procedure to achieve some estimate of the probability of encountering such a storm is to utilize the information provided in Section 2.5. Table 2-1 in this section gives the ensemble averaged wind speeds for all 20 thunderstorm cases and the standard deviations of these wind speeds about this mean.

Again, these results are compiled for only those flight paths as specified earlier. The user can, by comparing his selected storm with the ensemble averaged value, determine the number of standard deviations his storm departs from the mean and in this way estimate the probability of the wind field magnitude. The addition or subtraction of standard deviations about the mean at each point along the wind field provides only a crude estimate of the statistics of the thunderstorm wind fields, however. This point is well illustrated by inspection of the coherence between wind speed components provided in Table 2-1. There is a very strong coherence between wind speed components and therefore each point in the wind field does not behave independently. Therefore, it is incorrect to simply add standard deviation at each point but in lieu of a better approach this method can be followed.

The foregoing arguments clearly indicate that there is a need to carry out a more detailed analysis of thunderstorms such that a statistical model which would provide the extreme magnitudes of wind speed and of the wind shear expected to occur in a thunderstorm will be available. The frequency of occurrence of the extreme is also greatly needed.

The turbulence model developed in conjunction with the thunderstorm wind shear model should definitely be used in carrying out any simulation process. The reason for this is that the data utilized to develop the wind shear model predict at most downdrafts of 3 m s⁻¹. Values of downdrafts as high as 15.5 m s^{-1} , however, are reported in [2-16 and 2-17]. These values, however, are undoubtedly averaged over much shorter periods of time than 10 sec for which the data presented herein are averaged. Neither reference gives any information on the averaging time utilized in arriving at the quoted value of 15.5 m s^{-1} . Two models of thunderstorm wind fields that have been developed by Keenan [2-17] are tabulated in Tables 2-3 and 2-4. These wind fields were reconstructed from the flight data recorder of aircraft involved in accidents resulting from flight through severe thunderstorms. Inspection of these tabulated results illustrate that much more extreme downdrafts or downbursts as defined in Reference [2-16] occur in these data sets than in those tabulated in Appendix 2A.

There is at this time conflicting data and opinions as to the maximum magnitude of the downdraft that can occur in a thunderstorm. Although the

Table 2-3 Thunderstorm Wind Field, B10, Similar to Philadelphia/Allegheny Profile [2-17]; HX - Horizontal Station (ft.), Velocities Are Given in Knots and Height in Feet.

	_,		Z	Wx		Wy		Wz
	۲⊦	z	12200-00					
			0.00	12.50		.00	•	.00
			75.00	12.50		.00		.00
			100.00	12.50		.00		.00
			150.00	12.50		.00		.00
			200.00	12.50		.00		.00
a the star			300.00	12.50		.00		.00
			400.00	12.50		.00	•	.00
			500.00	12.50		•00		.00
•			600.00	12.50	1 N	.00		.00
			700.00	12.50				.00
			1500 00	12.50		- 00		.00
	нx	E	11600.00	12.00				
			0.00	-16.00		.00		.00
			75.00	-16.00		.00		.00
			100.00	-16.00		.00		.00
		1	150.00	-16.00		.00		.00
			200.00	-12.50		.00	1	.00
			306.00	-10.50		.00		.00
			400.00	-7.50	· · ·	.00		.00
			500.00	-5.50		.00		.00
			200.00	-2.50		.00		.00
			500.00	5.00		.00		.00
			1500 00	5.00		.00		.00
	нх	E	5000.00	5700				
			0.00	-27.00		.00		.00
			75.00	-27.00		.00		.00
			300.00	-27.00		.00		.00
			150.00	-27.00		.00		.00
			500.00	-27.00		.00		.00
			300.00	-24.00		.00		00.
			400.00	-20.00		-00		.00
			500.00	-10,50		-00		.00
			700.00	50		.00		.00
			500.00	5.00		.00		.00
			1500.00	5.00		.00		.00
	НΧ	=	4000.00					
			0.00	-24.00		.00		.00
			75.00	-24.00		.00		.00
			100.00	-24.00		.00		• 0.0
			150.00	-24.00		.00		.00
			200.00	-24.00		.00		.00
			40.00	-22.00		.00		.00
	-3		500.00	-13.50		.00		.00
			600 00	-9.00		.00		.00
			700.00	50		.00		.00
			800.00	5.00		.00		.00
			1500.00	 5.00		.00		.00
	<u>۲</u> ۰	Ŧ	3000.06					
			0.00	-27.50		.00		.00
			75.00	-27,50		.00		.00
			300.00	-27.50		.00		.00
			150.00	-25.00		.00		.00
			200.00	-22,50		.00		.00
			200.00 400.00	-18.50				.00
			500 00	-14.0U		.00		•00
			600.00	-4_00		.00		.00
			700.00	1.00		.00		.00
			Pnn . nn	5.00		.00		.00
			1500.00	5.00		.00		.00

ORIGINAL PAGE IS OF POOR QUALITY

Table 2-3 Continued

	Z	W _×		Wy		W
.≓X =	10.000			_		- 4
	1.00	-22.50		.00		.00
	75.00	-22.50		.00		. 00
	100.00	-22.50		.00		.00
	150.00	-19.50		.00		.00
	200.00	-16.50		.00		
	300.00	-12.50		.00		.00
	400 00	-6.00		.00		
	500.00	-2.00		.00		.00
	600 00	1.00		.00		.00
	700.00	4.00		.00		- 00
	800.00	7.50		- 00		.00
	1500.00	7.50		- 00		.00
нх 🛥	-400.00			• • •	<i>x</i>	
	0.00	-4.00		. 00		- 00
	75 00	-4.00		.00		-8.89
	100.00	-4-00				-12.50
	150 00	.00		.00		-17.80
	206 00	5 00		00	27	-17.80
	200.00	12 50		.00		-17 80
	201,00	12.50		.00		-17.80
	400.00	12.00		.00		-11.00
	201.00	12.50		.00		-17.00
	600.00	12.50		• 0,0		-17.80
	200.00	12.50		.00		-17.80
	600.00	12.50		.00		-17.80
	1500.00	12.50		.00		-17,80
HX =	-1000.00					
	0.00	-1.00		.00		.00
	75,00	-1.00		.00		-8.90
	100.00	-1.00		• 00		-13.40
	150.00	5.00		• 00		-17,80
	506.00	12.50		.00		-17.60
	300.00	12.50		.00		-17.80
	400.00	12.50	:	.00		-17.80
	500.00	 12.50		.00		-17.80
	601.00	12.50		.00		-17.60
	700.00	12.50		.00		-17.80
	800.00	12.50		.00		-17.80
	1500.00	12.50		.00		-17.80
нх =	-340r.00					
	0.00	25.00		.00		.00
	75.00	26.00		.00		-8.90
	100.00	25.00		.00		-13.46
	150.00	19.50		.00		-17.80
-	200.00	12.50		.00		-17.80
	300.00	12.50		.00		-17,60
	400.00	12.50		.00		-17.80
	500.00	12.50		.00		-17.80
	600.00	12.50		.00		-17.80
	7:0 00	12.50		.00		-17.50
	500 00	12.50		.00		-17.50
	1500 00	12.50		-00		-17.80
H) ≠						
		29.00		.00		.00
	75 55	29 00		-00		_F_90
· · · ·	100 66	20 00		- 0.0		-13.40
	100.00	25 00				-17.80
	150.00	23.00		•00		-17.80
	200.00	12 54		.00		=17.80
	507.00	12.50		• U U		-17 80
	400.00	12.20		.00		-17 86
	P00.00	12.50		.00		-17 80
	600.00	12.5(.00		-17.80
	100.00	12.50		.00		-11.00
	800.00	12.50		.00		-17.00
	1200.00	12.50		• 6.6		*1(*00

ORIGINAL PAGE IS OF POOR QUALITY

Table 2-3 Continued

	Z		W,		Wy		W,
~x =	-0107.00	-			-		ب
	0.00	2	45.00		.00		.00
	75.00		46.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00		.00
	100.00		45.00	~	.00		.00
	150.00		43.00		.00		.00
	500.00	-	49.00		.00		.00
	300.00		36,00		.00	2	.00
	400.00		29.50		.00		.00
	50r.0r	÷	5.20		.00		.00
	690.00		23.00		.00		.00
	70,00 800 00		20.00	1 A.	.00		.00
	1500.00		17.00		.00		- 00
H1 =			17.00		• • • •		
	0.00		52.50		. 00		.00
	75.00		52.50		.00		00
	100.00		52.50		.00		.00
	150.00	1.2	52.50		.00		00.00
	200.00	·	52.00		.00		.00
	300.00		47.50		.00		.00
	400.00		450		.00		.00
	500.00		36.00		.00		.00
	600.00		32.00		.00	1	.00
	700.00		25.50		.00	1	.00
	800.00		20.00		.00		.00
	1500.00		56.00		.00		.00
n, -	-2060.00		53 EA				
	75.00		52,50		.00		
	10.00		52 50		.00		.00
	150.00		52.50		.00		.00
	200.00		52.50		- 00		
	300.00		49.00		.00		.00
	400.00		47.50	•	.00		.00
	500.00		43.50		.00		.00
	600.00		34.00		.00		.00
	700.00	2	25.50		.00		.00
	60.00	1	50.06		.00		.00
	1500.00		50.00		•00		• 0 0
HX =	-12660.06						
	0.00°		52.50		.00		.00
	100 00		50.50		.00		.00
	150.00		52.50		• 00		.00
	200 00		52.50		.00		.00
	300.00		49.00		.00		.00
	400.00		47.50		.oč		.00
*	500.00		43.50		.00		.00
	600. nn		34.00		.00		.00
	700.00		25.50		.00		.00
	600.00		56.00		.00		.00
	1200.00		50.00	,	.00		.06
HX =	-15000.00						
	<u>.</u>		51.50		.00		.00
	75.00		51.50		• 0 0		.00
	100.00		51.50		.00		,00
	1-0.00	· · ·	95 • C *		.00		.00
	201,00		37 01		• • • •		• U Q
	400 00		34.00		.00		.00
	500 00		31.50		.00		.00
	60.00	50 	28.50		.00		.00
	705.00		25.50		.00		.00
	500.00	C .	20.00		.00		.00
	1500.00		20.00		.00		.00

Table 2-3 Continued

Table 2-4 Thunderstorm Wind Field, Bll, Similiar to Kennedy/Eastern Profile, [2-17]; HX - Horizontal Station (ft.), Velocities Are Given in Knots and Height in Feet.

mx =	3000.00			
	20.00	-16.90	3.00	.00
	150.00	-19.40	7.50	20
	250.00	-20-10	8.00	70
	350.00	-23.60	9.00	2.20
	450.00	-20.80	10.00	14.70
	550.00	-26.70	11.00	-9.70
	650.00	-13.50	15.00	-9.70
	800.00	-4.60	12.80	-6.50
	1200.00	-4.00	11.20	-3.30
	1500.00	-4.80	10.00	-3.40
HX =	00.000			
1	20.00	-15.50	3.00	.00
	150.00	-20.30	7.50	40
	250.00	-21.40	8.00	-2.50
	350.00	-23.80	9.00	-1.10
	450.00	-26.60	10.00	-2.50
	550.00	-26.00	31.00	-8.00
	650.00	-23-50	12.00	-12,90
	800.00	~5.60	12.80	-7.70
	1200.00	-3.10	11.20	-7.40
	1500.00	-2.30	10.00	-6.10

Table 2-4 Continued

	Z		W_		Wy		Wz
HX =	-1000.00		A		-		
	20.00		-13.20		3.00		.00
	1-0.07		-19.90		7.50		.00
*	250.00		-55.50		P.00		-3.60
• •	350.00		-20.80		9.00		-6.00
	450.00		-25.60		10.00		.00
	559.00		-28.40		11.00		.00
	650.00		-23.10	1 N. 1	12.00		-11.40
· · · · ·	P00.00		-9.10		15.80		-10.90
	1544.00		-2.70		11.50		-8.40
	1500.00		-2.40		10.00		-9.00
HX =	-3000.00						
	20.00		-5.50		3.00		.00
	150.00		-9.90		7.50		90
	250.00		-10.40		6.0U	· · · · ·	-6.10
	350.00		-10.40		9.00		-17.90
	450.00		-11.10]0.00		-27,70
	550.00		-7.00		11.00		-30.60
	650.00		-4.10		15.00		-27.00
	800.00		• 0 0		15.80		-16.60
	1500.00		• 0 0		11.20		-14.60
	1500.00		.00		30.00		-14.80
HX =	-5001.00						
	55.00		2.50		3.00		.00
	150.00		9.90		1.50		
	250.00		1,0+4.0		F.00		17.00
	220.00	× .	10.40		9.00		- 27 70
	M-0.00		31.0.10		10.00		-30 60
	220.00		4.10		11.00		-27 70
	500 00		* • 10		12.00		-16.60
	1200 00		.00		11.20		-14.80
	1500.00		.00		10.00		-14.80
hx s			•••		10110		
, , , <u>-</u>	20.00		11.90		3.00		.00
	150.00		17.50		7.50		70
	250.00		18.80		P . 60		-6.10
	350.00	1	20.80		9.00		-10.30
	450.00		15.80		10.00		-12.30
	550.00		17.40		11.00		-24.00
	650.00		5.20		12.00		-24.60
	800.00		5.60	1. No. 1	12.60		-13.40
	1200.00		2.40		11.50		-34.00
	1500.00		1.50		10.00		-12.30
нх =	-1000.00		4				
	20.00		13.20		3.00		.00
	159.00		19,90	,	7.50		.00
	250.00		22.20		B.00		-3.60
	250.00		20.80		9.00		00
	450.00		25.60		10.00		.00
	550.00		28.40		33.00		.00
	650.00		23.10		15.00		-11.40
	eec.or		9.10		12.80		~10.90
	1500-00		2.10		11.50		-6.40
	1200.00		2.46		10.00		-9.00
17 A -≇	-0000.00		14 50		3 00		6 .2
	160 00		23 23		3.00		• 0 0
	252 44		29.29		9.60		-7 60
	201.00		21.74		0.00U		-2.049
	3.74.4.0	1 - J	2.3 1.3				
	877 - AV		27.JJ		11 3.5		֥,
	451 an		25.40		12.00		11.50
- A	855.65		7.80		12 90	4	0 70
	1200 00		3.20		11.20		8.90
	1530.00		2,40		10.00		7.00

Table 2-4 Continued

		Z		Wx		Wy	9 	Wz
	HX #							
		20 00		15.50		3 00	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	. 0.0
		150 00		20.30		7.50		- 40
		250 05		21.40		8.00		-2.50
		350.07		23.80		9.00		-1.10
		450 00		26.60		10.00	2	2.50
		550 00		26.00		11.00		-8.00
		650 00		23.50		12.00		-12.90
		800.00		5.60		12.80		-7.70
		1200.00		3.10		11.20		-7.40
		1500.00		2.30		10.00		-6.10
	HX =	-16000.00						
		20.00		16.80		3,00		.00
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	150.00	1 A. A.	20.10		7.50		20
		250.00		20.86		8.00		90
		350.00		23.80		9.00		.00
		450.00		25.50		10.00		6.00
		550,00		25.30		11,00		-12,90
		650.00		20.80	1. J.	15.00		-12.90
		800.00		4.90		12.80		-8,10
		1200.00		3.30		11.20		-5,60
		1500.00		6.10		10.00		-4.40
	HX =	-11000.00						
		20.00		16.90		3.00		.00
		150.00		19.40		7.50		20
		250.00		20.10		8.00		-,70
		350.00		23.60		9.00		2.20
		450.00		50*80		10.00		14.70
		550.00		26.70		11.00		-9.70
		650.00		13.50		12.00		-9.70
		800.00		4.60		12.80		-0+00
		1500.00		4.00		11.20		-3,30
		1500.00		4.50		10.00		-3,40
	HX =	-13000.00	, h	17 10		2 00		0.0
		20.00		17.10		3.00		.00
		150.00		20 00		7.5U B 00		20
		250.00	÷	20,00		0 00		2.20
		350.00		26 60		10 00		-2.50
				17 90		11 00		-4.40
		250.00		15 60		12.00		-3.00
		900 00		6.60		12.80		-1.90
		1200.00		6.10		11.20		-1.50
		1500 00		5.80		10.00		90
	нх =	-31000.00					N	,
	1.4	20.00		9.60		3.00	1 - A 1	.00
		150.00		19.10		7.50		.00
		250.00	·	20.10		8.00	<i>i</i> .	.00
		350.00		22.90		9.00		.00
		450.00		26.70		10.00		.00
		550.00	1.1	19.00		11.00		.00
		651.00		15.80		15.00		.00
		800.00		7.00		12.80		.00
		1200.00	•	6.50		11.20		.00
		1500.00		6.00		10.00		*00
6	TURAUL	FNCL PARAME	TERS, WIND	PROFILES	811		1	
	20.00	3.40	2.70	2.34	105.70	49.70	10.40	
	100.00	4.05	3.46	3,53	216.70	134.20	.23.00	
	200.00	4.43	3,75	4.35	305.50	213.50	1.5.00	
	400.00	9.85	4.50	5.36	433,30	334.00	212.00	
	1500 00	5+11	4,80	- 05 	530.90 840 QA	665.00 67/ En	510.UL 745.30	
			· · · · · · · · · · · · · · · · · · ·	1	レマリップリ		1 4 3 4 3 0	

ORIGINAL PAGE IS OF POOR QUALITY 10 sec average data of Goff [2-1] will have lower values than the peak downdraft wind speeds reported by Fujita [2-16], the discrepancy in the values cannot be completely contributed to averaging time. A recent report by Alexander [2-18] gives a statistical summary of vertical wind speed data recorded at NASA's 150 m ground wind tower facility, Kennedy Space Center, Florida. One year of continuous around-the-clock vertical wind speed measurements were processed to determine the intensity, frequency, time of occurrence, etc., of the daily maximum vertical gust. Both updrafts and downdrafts were studied. These values represent 0.1 sec averages and the maximum vertical downdraft recorded is 9.3 m s⁻¹ although data recorded specifically during the hurricane Agnes indicated a downdraft in excess of 11.9 m s⁻¹.

Sinclair [2-19] indicates that downdrafts at 1000 m for an Oklahoma thunderstorm may be considerably in excess of the 15.5 m s⁻¹ recorded in Reference [2-16]. Sinclair has experienced and measured downdrafts as high as 28 m s⁻¹ based on a 1/25 sec averaging period. Finally, the numerical model of Williams, et al. [2-20] does not predict wind speed downdrafts greater than 10 m s⁻¹.

Thus, it is evident that research is needed to bring together the data currently available and to resolve the magnitude of the maximum downdraft which can occur within a thunderstorm. This would allow the current simulation model to be updated by superimposing turbulence fluctuations of realistic magnitude on quasi-steady wind fields. For the time being, however, to provide an estimate of wind fields which would be consistent with the higher values of vertical wind speed reported in References [2-16 and 2-17] consider the following.

If the wind shear model based on the thunderstorm data from Goff [2-1] incorporates into the turbulence simulation fluctuations which are based on $4.75 \le \sigma_{W_Z} \le 10.2 \text{ m s}^{-1}$ recorded at 12 to 8 km as described earlier in Section 2.4, very high downdrafts will be computed. For example, taking the average value of $\sigma_{W_Z} = 7.5 \text{ m s}^{-1}$ and adding to that the 10 sec average wind speed of approximately 2.5 m s⁻¹, a value of 10 m s⁻¹ is obtained for one standard deviation and a value of 17.5 m s⁻¹ for two standard deviations. The reported value of 15.5 m s⁻¹ mentioned earlier is slightly less than two standard deviations about the 10 sec mean. Thus, statistically it is clear

that downdrafts of 15 m s⁻¹ or greater can readily occur in thunderstorms if the turbulence intensities at altitudes of 12 to 8 km extend to the ground. However, turbulence intensity is normally attenuated near the ground and it is not confirmed that such high values exist there. Until this is experimentally resolved, it is recommended that the model of thunderstorm wind shear based on the extensive data from Goff [2-1] should have turbulent fluctuations superimposed with a standard deviation of $\sigma_{W_Z} \approx 7.5$ m s⁻¹. The downdraft magnitudes reported in accident investigation will then be achieved in the simulation.

It is anticipated that the proposed turbulence simulation model based on the work of Reeves, et al. [2-3] will provide a realistic turbulence simulation to accompany the wind shear model proposed in this report. However, a better simulation of the large downdraft fluctuations that occur in a thunderstorm can be achieved by utilizing a model of turbulence which includes coherence between different levels of the atmosphere or between different positions in the storm. Such a model has been preliminarily developed by Perlmutter and Frost [2-21]; however, this model requires further perfection and the coherence function associated with thunderstorms must be developed to permit its use.

An alternative explanation of why the data of Goff does not contain downbursts of the intensity reported in [2-16 and 2-17] is that the 20 thunderstorms investigated may not contain a "spearhead echo" type storm [2-16] or the measured data may not encompass the downdraft portion of the storm. Fujita [2-16] defines a downburst as $W_7 = 3.6 \text{ m s}^{-1}$ at the 300 m level. The averaging time related to this wind speed is not specified, and it is not known whether this represents a peak gust or a value averaged over some interval of time which is undoubtedly less than 10 sec. The data of Goff [2-1] do not indicate any values of W_z that equal or exceed the 3.6 m s⁻¹ definition of a downburst. There are a few values, however, that do approach the 3.6 m s⁻¹ level; for example, thunderstorm cases 8 and 11 shown in Table 2-5 which lists the maximum and minimum values of W_{τ} recorded at the 300 m level in the data utilized to construct the thunderstorm wind shear model given in this report. The fact that no downbursts are recorded is not surprising, however, because obviously the chance of a downburst being directly over the tower the instant of maximum intensity is extremely small.

TABLE 2-5

Case	W _{z (m s} ⁻¹)	W _z (m s ⁻¹) ^z min	Case	W(m s ⁻¹) ^Z max	W _z (m s ⁻¹) ^z min
1	1.6	-2.5	11	1.8	-3.0
2	3.0	-1.2	12	2.0	-0.9
3	2.6	-1.1	13	3.2	-0.7
4	3.0	0.7	14	2.1	-1.0
5	3.0	-1.3	15	2.0	-0.5
6	3.7	-1.5	16	2.0	-1.0
7	1.2	-2.1	17	1.1	-0.5
8	4.0	-3.0	18	1.0	-1.0
9	4.1	-0.1	19	2.0	-2.0
10	3.0	-1.2	20	0.2	-1.1

MAXIMUM AND MINIMUM VERTICAL VELOCITIES AT 300 m LEVEL IN DATA OF GOFF [2-1]

Fujita [2-22] points out the probability of an airport being under the influence of a spearhead echo is very low and is probably less than 2 percent of the thunderstorm probability. Moreover, he notes that the location of aviation hazards for the extreme downburst is limited to only a fraction of the spearhead echo area. With this in mind it is relatively easy to believe that the data of Goff do contain a few storms of the magnitude approaching those types defined as spearhead echo by Fujita. Moreover, since several of the storms clearly record downdrafts approaching the magnitude of downbursts for 10 sec averaged wind speed, it is envisioned that significantly higher downward gust for a shorter, say, 3 sec average are contained in the original data.

The data set illustrated in Tables 2-3 and 2-4 is being punched on cards and will be included with thunderstorm data now stored on magnetic tape. It is believed, however, that the current data set utilizing the appropriate turbulent intensities will provide a valid simulation of thunderstorms for flight/hazard simulation studies. The larger selection of thunderstorms, 20 in number, enables a manned flight simulation study to provide the pilot with

several different thunderstorm situations that do not duplicate those that he has negotiated in previous tests. Thus, he cannot learn a given storm. By selecting the same sequence of thunderstorms, a second pilot involved in the same test program can be exposed to the identical test pattern utilized for the first pilot with neither pilot flying the same storm more than once.

Finally, it is called to the attention of the user, that in carrying out a simulation where avionics using ground wind speeds as inputs are being studied, the storm must be considered to be passing over the airport or anemometer from which the ground wind is being determined at the speed of the gust front, \overline{W}_{χ} . Therefore, the length of the thunderstorm record used in the simulation must be sufficiently long that the location of the assumed anemometer at the airport has not moved out of the range of data set during the time taken by the aircraft to complete its approach.

2.7 References

- 2-1. Goff, R. Craig. "Thunderstorm Outflow Kinematics and Dynamics," NOAA Tech Memo ERL NSSL-75, December 1975.
- 2-2. Frost, Walter, and D. W. Camp. "Wind Shear Modeling for Aircraft Hazard Definition," Report No. FAA-RD-77-36, March 1977.
- 2-3. Reeves, P. M., R. G. Joppa, and V. M. Ganzer. "A Non-Gaussian Model of Continuous Atmospheric Turbulence for Use in Aircraft Design," NASA CR-2639, January 1976.
- 2-4. Camp, D. W., and Walter Frost. "Flight through Thunderstorm Outflow," Paper submitted to the Eleventh Congress of the International Council of the Aeronautic Sciences (ICAS), September 1978, Lisbon, Portugal.
- 2-5. Gartner, W. P. "Simulation Tests," Plan for Phase III Testing of Ground Speed and Modified Flight Director Techniques in a D-727 Simulation, Engineering Service Support, DOT Contract FA75WA3650, Stanford Research Institute, Menlo Park, California.
- 2-6. Steiner, Roy, and R. H. Rhyne. "Some Measured Characteristics of Severe Storm Turbulence," National Severe Storms Project, Report No. 10, July 1962.
- 2-7. Houbolt, J. C., Roy Steiner, and K. G. Pratt. "Dynamic Response of Airplanes to Atmospheric Turbulence Including Flight Data on Input and Response," NASA TR R-199, June 1964.

- 2-8. Murrow, H. N., and R. H. Rhyne. "The MAT Project--Atmospheric Turbulence Measurements with Emphasis on Long Wave Lengths," Proceedings of the Sixth Conference on Aerospace and Aeronautical Meteorology of the American Meteorological Society, November 1974.
- 2-9. Houbolt, J. C. "Design Manual for Vertical Tests Based on Power Spectral Techniques," Tech Report AFFDL-DR-70-106, U. S. Air Force, December, 1970. (Available from DDC as AD879 736.)
- 2-10. Barr, N. M., Dagfinn Gangaas, and D. R. Schaeffer. "Wind Models for Flight Simulator Certification of Landing and Approach Guidance and Control Systems," Report No. FAA-RD-74-206, December 1974.
- 2-11. Lewellen, W. S., G. G. Williamson, and N. E. Teske. "Estimates of the Low Level Wind Shear and Turbulence in the Vicinity of Kennedy International Airport on June 24, 1975," NASA CR-2751, October 1976.
- 2-12. Bendat, J. S., and A. G. Piersol. <u>Random Data: Analysis and</u> Measurement Procedures. New York: International Science, 1971.
- 2-13. Hinze, J. O. Turbulence. New York: McGraw-Hill Book Co., 1959.
- 2-14. Rabiner, L. R., and Bernard Gold. <u>Theory and Application of Digital</u> Signal Processing. New Jersey: Prentice-Hall, Inc., 1975.
- 2-15. Crutcher, H. L., and L. W. Falls. "Multivariate Normality," NASA TN D-8226, May 1976.
- 2-16. Fujita, T. T., and Fernando Caracena. "An Analysis of Three Weather Related Aircraft Accidents," SMRP Research Paper 145, Department of the Geophysical Sciences, The University of Chicago, April 1977.
- 2-17. Keenan, M. G. Personal communications, Stanford Research Institute, Menlo Park, California, October 1977.
- 2-18. Alexander, M. B. "An Analysis of Maximum Vertical Gusts Recorded at NASA's 150 m Ground Winds Tower Facility at Kennedy Space Center, Florida," NASA TM 78139, September 1977.
- 2-19. Sinclair, Peter. Personal communications, December 20, 1977, Colorado State University, Colorado.
- 2-20. Williamson, G. G., W. S. Lewellen, and M. E. Teske. "Model Predictions of Wind and Turbines Profiles Associated with an Ensemble of Aircraft Accidents," NASA CR-2884, July 1977.

- 2-21. Perlmutter, Morris, and Walter Frost. "Three Velocity Component, Atmospheric Boundary Layer Turbulence Model," Contract No. NAS8-29584 Report, prepared for NASA, Marshall Space Flight Center by the Atmospheric Science Department, The University of Tennessee Space Institute, September 1976.
- 2-22. Fujita, T. T. "Spearhead Echo and Downburst near the Approach End of a John F. Kennedy Airport Runway, New York City," SMRP Research Paper 137, Department of the Geophysical Sciences, University of Chicago, September 1976.

SECTION 3.0

NEUTRAL AND STABLE BOUNDARY LAYERS

The data set utilized in formulating a mathematical model for wind shear or wind fields associated with neutral and stable boundary layers relies mainly on the work of Clarke and Hess [3-1]. Although numerous analytical models for boundary layers, both under neutral and stable conditions were available in the literature, these were in general based on the assumption of constant stress which is valid only to the first 50 or 100 m of the atmospheric boundary layer. Other analytical models which did not evoke this assumption and included the influence of turbulence of the atmospheric boundary layer were generally highly mathematical and required numerical solution with a computer. Therefore, the data set of [3-1], which are presented in the form of contour maps of constant longitudinal and lateral wind speeds as a function of height, z, and the stability of the atmosphere expressed by the stability parameter, μ , allowed tabulation of the wind fields on a grid system. These tabulated data were then coupled with a table lookup computer program to provide the fast time wind speed model for flight hazard simulation.

None of the data sets or mathematical models available in the literature for boundary layers (see Reference [3-2]) incorporate horizontal variation of wind speed. Hence, the wind shear models for neutral and stable boundary layers reported herein depend only on the vertical scale, z. It should be borne in mind, however, that terrain features indigenous to each landing site can influence the spatial gradient of the wind speed horizontally and also introduce a possible vertical wind speed component. Fortunately, most airport terrain is relatively flat and not surrounded by high mountains or sharp cliffs which create flow disturbances, both vertically and horizontally in the wind. Therefore, the wind shear model described in the following section is expected to present a valid simulation of wind shear in terminal areas of the typical airport. However, indiscriminate application of the model is cautioned against until further studies of wind fields over irregular terrain become available.

3.1 Data Source

Boundary layer data are presented in the form of horizontal and lateral wind vector components. The boundary layers are described over flat uniform homogeneous terrain and therefore have no vertical component of wind speed or dependence on the x-coordinate. Of course, when turbulence fluctuations are superimposed as described in Section 3.4, a vertical component can occur. The wind speed profile is thus dependent only on the height, z, and on the stability of the atmosphere characterized by the stability parameter, μ . The data set used in the boundary layer model is based on the results of the extensive wind speed measurements reported in Reference [3-1]. Also, the influence of baroclinicity is neglected and is justified for this data in Reference [3-1].

Wind speeds and temperatures were measured over a very flat, smooth surface having a mean surface roughness parameter, z_0 , of approximately 3.5 mm. Hourly double theodolite observations of pilot balloons were taken at five stations for 40 days. Micrometeorological observations were taken at two of the five stations. Wind profiles were measured at 0.5, 1, 2, 4, 8 and 16 m while temperature differences were measured at one station between 1 and 2 m, 2 and 4 m. Values of u_* were estimated by the drag coefficient method and values of surface heat flux by means of temperature and wind profiles. Surface pressures were measured at each of the five stations and radiosonde measurements were made every three hours at the central station. In addition, three hourly surface pressure and temperature data from 14 stations at distances up to 350 km away were used to augment the data obtained by the research expedition.

Geostrophic winds were determined from the data by using second order curve fitting procedures on the pressure data. Thermal winds were determined using temperatures from a surface network reported every three hours and from a temperature field measured each day at 1500 hours. Interpolation from the three-hour data set were primarily used in assessing baroclinicity which was shown to be small. A second set of thermal wind estimates based on twice daily radiosonde data from a network of five stations were also made. Reference [3-1] reports that surface geostrophic winds were well determined as evidenced by the high correlation (93 percent) with observed

winds; however, no claim of high accuracy in estimating thermal winds is made in the report.

These data thus reduced were reported by Clark and Hess [3-1] in the form of contour maps of winds as a function of dimensionless height, $\hat{z} = zf/u_{\star_0}$, and of the stability parameter, $\mu = \kappa u_{\star}/fL'$. The contours of the map are lines of constant $\Delta \hat{W}_{\chi} = \hat{W}_{\chi}(\hat{z} = 0.15) - \hat{W}_{\chi}(\hat{z})$ and $\Delta \hat{W}_{\chi} = \hat{W}_{\chi}(\hat{z}) - \hat{W}_{\chi}(\hat{z} = 0.15)$, respectively, where \hat{W} is the dimensionless wind speed W/u_{\star} . The symbol f is the Coriolis parameter (here, treated positive in both hemispheres with a right-hand coordinate system implied in the Northern hemisphere). For use in this report, the data were converted to a 34 x 11 grid as illustrated in Figure 3-1. The data were then stored on magnetic tape and a computer look-up routine developed for interpolating the values of \hat{W}_{χ} and \hat{W}_{χ} for given values of z and μ . The tabulated data are given in Appendix 3A, illustrative wind speed profiles are given in Appendix 3B, and a computer program for looking up and interpolating the data is given in Appendix 3C.

3.2 Presentation of Data

The data are presented in a right-hand coordinate system with \hat{W}_{χ} positive in the direction from left to right and \hat{W}_{y} positive into the plane of the paper.

The values of μ range from -333.34 to 216.67 in increments of $\Delta \mu$ = 16.67. This unusual increment size was chosen for convenience in extracting the data from the contour plots. Values of \hat{z} range from 0.001 to 0.15 in increments of $\Delta \hat{z}$ = 0.0149.

Because of the similarity and scaling laws used in reduction of the data, values of wind below $\hat{z} = 0.001$ are not given. To establish the profile from $\hat{z} = 0.001$ to zero the log-linear wind speed profile was used (for a description of the log-linear wind speed profile see Reference [3-2]). Values of $\hat{W}_{x}(\hat{z})$ below $\hat{z} = 0.001$ are determined from

$$\widehat{W}_{\chi}(\widehat{z}) = \frac{1}{\kappa} \{ \ln(\operatorname{Ro} \, \widehat{z} + 1) + 4.5 \, \widehat{z}_{\mu/\kappa} \}; \quad \mu \ge 0, \, 0 \le \widehat{z} \le 0.001 \quad (3-1)$$

where Ro is the Rossby number defined as Ro = u_*/fz_0 . The variable z_0 is the

(a)

(b)

empirically determined surface roughness. Typical values of z_0 are given in Reference [3-2]. The value of \hat{W}_y is zero for $0 \le \hat{z} \le 0.001$. Introducing $\hat{z} = 0.001$ into the equation gives the value of wind speed to which all the tabulated longitudinal wind speeds are referenced.

3.3 Mean Wind Speeds

This section considers values of the mean wind fields computed from the mathematical model of the neutral and the stable boundary layers. Although the data include the range of unstable condition, i.e., $-334.34 \le \mu < 0$, strong wind shear is not normally associated with unstable boundary layers and hence no values of winds for this range of μ are given.

The wind data are averaged over a 10 minute period or longer and thus represent mean values. A model of turbulence for the neutral and stable boundary layer is given in Section 3.4 which is superimposed to give the random instantaneous wind speed.

The grid system used in storing the data is numbered from the bottom left-hand corner. The numbers increase from left to right in the direction of increasing μ and from bottom to top in the direction of increasing \hat{z} . Thus column 1 corresponds to μ = -333.34 and column 34 corresponds to μ = 216.67 where row 1 corresponds to \hat{z} = 0.001 and row 11 corresponds to \hat{z} = 0.15.

3.3.1 Tables of Wind Speed

Tables of the longitudinal and lateral wind speeds $\hat{W}_{\chi}(\hat{z})$ and $\hat{W}_{y}(\hat{z})$ for neutral and stable boundary layers, i.e., $\mu \ge 0$, are given in Appendix 3A. These values are computed from the tabulated wind differences from the relationship

$$\hat{W}_{x}(\hat{z}) = \Delta \hat{W}_{x}(\hat{z} = 0.001) - \Delta \hat{W}_{x}(\hat{z}) + \hat{W}_{x}(\hat{z} = 0.001)$$
 (3-2)

and

$$\hat{W}_{y}(\hat{z}) = \Delta \hat{W}_{y}(\hat{z}) - \Delta \hat{W}_{y}(\hat{z}) = 0.001)$$

43

(3-3)

where from Equation 3-1 evaluated at $\hat{z} = 0.001$,

 $\hat{W}_{x}(\hat{z} = 0.001) = \kappa^{-1} [\ln(0.001 \text{ Ro} + 1) + 0.01125 \mu]$

3.3.2 Illustrations

The longitudinal and lateral wind speeds which would be encountered along a 3° glide slope are plotted for various stability conditions and Rossby numbers in Appendix 3B. Height is expressed in meters, m, on the vertical scale and wind speeds are expressed in meters per second, m s⁻¹, on the horizontal axis.

(3-4)

(3-5)

3.3.3 Computer Program

A computer program has been written which computes with inputs of height, z, and stability parameter, μ , the longitudinal, W_x , lateral, W_y , wind speeds and the wind gradients $\partial W_x/\partial z$ and $\partial W_y/\partial z$. The computer program also requires as input the friction velocity, u_x , the Coriolis parameter, f, and surface roughness, z_0 . All velocities are input and output in m s⁻¹ and lengths in meters, f, is introduced in s⁻¹.

This computer code can be used as a direct subroutine input to existing computer programs for flight simulators or computer programs of airplane motion in variable wind fields. The option of superimposing turbulence on the mean wind speed is available by appropriate specification of control variables. A complete description of the computer program is given in Appendix 3C.

3.4 Turbulence Model

A turbulence model has been developed for use with the neutral and stable boundary layer data which employs turbulence kinetic energy spectra developed by Kaimal [3-3], as shown in Figure 3-2. Kaimal gives the following functional form for the spectra.

$$\frac{n\phi_{\alpha}(n)}{\sigma_{\alpha}^{2}} = \frac{0.164 \, n/n_{o}}{1 + 0.164(n/n_{o})^{5/3}}$$

44

Figure 3-2 Comparison of Measured Turbulence Data with Equation 3-5 [3-3]

ORIGINAL PAGE IS OF POOR QUALITY

$\phi_{\alpha}(n)$	Power spectral density distribution in α direction, m ² s ⁻¹
n	Cyclic frequency, s ⁻¹
σα	Turbulence intensity or root-mean-square fluctuation in α direction, m s ⁻¹
ŋ	Reduced frequency nz/W _x (z)
Z	Height above ground, m
W _x (z)	Mean wind speed at the height z, m s ^{-1}
α	Designates component of velocity fluctuation (either w_x , w_y
	or w _z)

The influence of atmospheric stability enters through the variable n_0 which is a characteristic reduced frequency and is a function of Richardson's number as shown in Figure 3-3. These values of n_0 are for the range 0.04 < Ri \leq 0.20.

Values of n_0 for the neutral boundary layer where Ri = 0 are recommended in Reference [3-4] as

$$(n_0)_{w_x} = 0.01444; (n_0)_{w_y} = 0.0265; (n_0)_{w_z} = 0.0962$$
 (3-6)

Thus for the complete range of $0 \le Ri \le 0.2$ the approximate relationships are used in this report are

$$(\eta_{0})_{W_{X}} = \begin{cases} 0.0144 & 0 \le Ri < 0.029 \\ 0.5 Ri & 0.029 \le Ri \le 0.2 \end{cases}$$
(3-7)
$$(\eta_{0})_{W_{Y}} = \begin{cases} 0.0265 & 0 \le Ri < 0.018 \\ 1.5 Ri & 0.018 \le Ri < 0.2 \end{cases}$$
(3-8)
$$(\eta_{0})_{W_{Z}} = \begin{cases} 0.0962 & 0 \le Ri < 0.035 \\ 2.8 Ri & 0.035 \le Ri < 0.2 \end{cases}$$
(3-9)

The relationship between Ri and $\boldsymbol{\mu}$ is

$$Ri = (\hat{z}\mu/\kappa)[1 + 4.5 \, \hat{z}\mu/\kappa]^{-1}$$
(3-10)

Ri

Figure 3-3 Correlation of $\ensuremath{n_0}$ with Richardson Number for Stable Boundary Layers

The turbulence spectra data of Kaimal [3-3] given above appear to be the most comprehensive presentation of atmospheric spectra associated with the stable boundary layer and are taken herein to represent the state of the art.

To utilize Equation 3-5 a value of turbulence intensity must be determined. Figure 3-4, taken from Reference [3-5], gives the turbulence intensity of the vertical wind speed component, σ_{W_X} , nondimensionalized with u_* , plotted as a function of nondimensional altitude, $\hat{z}\mu/\kappa$. For neutral conditions, $\hat{z}\mu/\kappa = 0$ and the ratio of vertical turbulence intensity, σ_{W_Z} , to the friction velocity, u_* , becomes 1.3.

At $\hat{z}_{\mu/\kappa} = 1.22$, the turbulence intensity vanishes as the atmospheric boundary layer becomes so stable that essentially laminar flow is achieved. In general, $\sigma_{W_{7}}/u_{\star}$ decreases with increasing stability.

A curve fit of Figure 3-4 between $0 \le \hat{z}\mu/\kappa \le 1.22$ is

σ _{w_}	$(1.3 - 0.13(\hat{z}\mu/\kappa)^{0.5})$	$0 \leq \hat{z}\mu/\kappa \leq 1.0$	
$\frac{z}{u_{\star 0}} =$	(6.49 - 5.32(2 μ/κ)	1.0 < 2̂μ/κ ≤ 1.22	(3-11)

The value of σ_{W_Z} can thus be determined for given values of $u_{\star},~\mu$ and $\hat{z}.$

No satisfactory mathematical description of how σ_{W_X} and σ_{W_y} vary with large scale surface features nor how they vary with atmospheric stability is available. Barr, et al. [3-5] propose that the ratio $\sigma_{W_X}/\sigma_{W_Z}$ be treated as a function of altitude according to the following

$$\sigma_{W_{X}} \sigma_{W_{z}} = \begin{cases} [0.177 + 0.832 \ z/z_{i}]^{-0.4} & z < z_{i} \\ 1.0 & z > z_{i} \end{cases}$$
(3-12)

 $z_i = 300 \text{ m or } 1000 \text{ ft.}$ Reference [3-5] also proposes that $\sigma_{Wy}/\sigma_{Wz} = \sigma_{W_X}/\sigma_{W_Z}$. This relationship does not result in satisfactory agreement with Equation 3-5, however, and the relationship

$$\sigma_{w_{y}} / \sigma_{w_{z}} = \begin{cases} [0.583 + 0.417 \ z/z_{i}]^{-0.8} & z < z_{i} \\ 1_{\circ}0 & z > z_{i} \end{cases}$$

48

(3-13)

is proposed by Frost [3-4]. Equation 3-13 is developed identical to Equation 3-12 but assumes that σ_{W_y} is less than σ_{W_x} near the ground. The assumption is that for neutral conditions $\sigma_{W_x}/\sigma_{W_y}/\sigma_{W_z} = 2.6/2.0/1.3$ which is consistent with a number of reported results.

Values of $\sigma_{W_X}/\sigma_{W_Z}$ and $\sigma_{W_Y}/\sigma_{W_Z}$ are plotted in Figure 3-5 as a function of dimensionless height to facilitate computation of these values. Inspection of Equations 3-11, 3-12 and 3-13 show that for the neutral atmosphere

 $\sigma_{w_{\chi}} = 2.6 u_{\star}, \sigma_{w_{y}} = 2.0 u_{\star} \text{ and } \sigma_{w_{z}} = 1.3 u_{\star}$ (3-14)

Figure 3-6 shows longitudinal turbulence spectra for varying degrees of stability. Turbulence in the atmosphere is observed to decrease with increasing stability. This is most evident at the low frequency range and is to be expected since the thermal effects which create stable boundary layers depress large scale turbulent motion. These spectra, however, are reported to be influenced by surface terrain features, particularly in the longitudinal and lateral components. No mathematical models which account for terrain effects are available. The spectra having been measured for relatively homogeneous terrain which is characteristic of the majority of airports should give a valid representation of most terminal areas. For airports located near unusual terrain features such as mountains or cliffs, fluctuations in the longitudinal and lateral components of the wind may, however, be higher than simulated by the proposed turbulence model.

The spectra represented by Equation 3-5 do not have a rational form and, consequently, are difficult to use in turbulence simulation schemes [3-6]. To overcome this difficulty, the spectral data in Figure 3-2 were adjusted to fit a modified Dryden spectrum having the functional form

$$\frac{n\phi(n)}{\sigma^2} = \frac{c_1 n/n_o}{1 + c_2 (n/n_o)^2}$$
(3-15)

The constants C_1 and C_2 are adjusted such that the modified Dryden curve fits Kaimal's data [3-3]. Values of $C_1 = 0.1580$ and $C_2 = 0.0694$ were determined

Figure 3-5 Longitudinal and Lateral Turbulence Intensity

to give the best curve fit. Thus, the power spectral density function chosen for the turbulence simulation model

$$\frac{n\phi(n)}{\sigma_{\alpha}^{2}} = \frac{0.1580 \, \eta/\eta_{0}}{1 + 0.0694(\eta/\eta_{0})^{2}}$$
(3-16)

Figure 3-7 compares the modified Dryden spectra with Equation 3-16. Although this curve fit does not provide a good representation of the higher frequency spectra, it does fit the data quite well in the lower frequency range which is expected to have the most significant influence on the flight of aircraft.

This turbulence model utilizing the turbulence spectra given by Equation 3-16 and the z transformation technique (see Neuman and Foster [3-7]) has been developed and can be coupled with the mean wind fields for the stable and neutral boundary layers to give a random fluctuating field. The model, however, is linear and results in a Gaussian distribution of the wind speeds in the atmosphere which introduces a small error into the simulation (see Reeves, et al. [3-6]).

To illustrate the influence of turbulent fluctuations on the velocity profile experienced by an aircraft during landing in a stable boundary layer, Figures 3-8 through 3-13 have been prepared. These figures illustrate stable boundary layer wind speed profiles seen by an aircraft on a 3° glide slope with turbulence, computed by the simulation technique, superimposed. The inertial aircraft velocity is 64 m s⁻¹ which corresponds to a sink rate of 3.35 m s⁻¹. The time increment used in the turbulence simulation was taken as 0.15 sec which results in a turbulent fluctuation being superimposed at Δz increments of 0.35 m along the flight path. The figures show some interesting results relative to the stability of the boundary layer. In these figures, u_{\star} has been held constant and μ is increased in sequential order. The first velocity profile (Figure 3-8) corresponds to the neutrally stable layer where μ is essentially zero. One observes that the aircraft encounters turbulence from the 500 m level to the ground and that the turning of the boundary layer is reasonably small after 100 m. The second figure (Figure 3-9) illustrates a somewhat higher level of stability, $\mu = 25$. The longitudinal wind speed is larger because, as noted earlier, the computed

Figure 3-7 Comparison of the Modified Dryden Spectrum with Kaimal's Emperical Curve Fit [3-3]

Figure 3-8 Near Neutral Boundary Layer with Turbulence Superimposed

Figure 3-9 Stable Boundary Layer with Turbulence Superimposed

Figure 3-10 Stable Boundary Layer with Turbulence Superimposed

.....

Figure 3-12 Stable Boundary Layer with Turbulence Superimposed

.

profiles are based on the same friction velocity, u_{\star} , and surface roughness, z_{o} . The interesting feature of this figure is that at large values of z_{o} . i.e., where z/L' is large, the mechanical turbulence is damped out by buoyancy induced turbulence, however, as z/L' becomes small due to the aircraft approaching the ground, the situation is reached where the atmospheric boundary layer returns to a neutral condition and mechanical turbulence dominates the buoyancy induced turbulence. In Figure 3-9 this occurs at approximately 125 m. The airplane thus flies from a region of rather quiet flow to a sudden and rapidly increasing turbulent intensity. The turbulence intensity becomes larger as μ increases, however, this is not due to the effects of stability but due to higher mean velocities resulting from a constant u₊. For consecutive figures, as the stability of the boundary layer increases one observes that the transition from the essentially laminar flow to the highly turbulent region approaches lower and lower levels. It should also be noted from this sequence of figures that the strongest directional shear occurs at intermediate values of μ , whereas, the strongest linear shear occurs at the larger values of μ .

An alternate way of computing the profiles would be to assign the same wind speed at a certain level and adjust u_* accordingly. Physically this corresponds to conditions encountered at an airport where the wind speed measured with an anemometer at a fixed height, say, at the 10 m level would record identical values but the wind shear would be appreciably different due to the associated stability conditions. Figures 3-14 through 3-19 show computed profiles having a common value of 10 m s⁻¹ wind speed at the 10 m level. The value of u_* used in the computation is related to the stability parameter, μ , by

 $u_{\star} = 0.58 - 0.0016 \mu$

The same characteristics of the wind speed profiles are observed, however, the higher wind speeds now occur at intermediate values of μ rather than at the higher values as in the sequence of Figures 3-8 through 3-13. In turn, one observes that the directional shear is also largest at intermediate values of μ which is in correspondence with the former sequence of figures.

•

Figure 3-17 Stable Boundary Layer with Turbulence Superimposed

00

d S

3.5 Statistical Model Relative to Risk of Exceedance

The wind shear associated with the stable and neutral boundary layers are dependent upon the variables, μ and u_* , or the mean wind speed, W_{χ} , since they are directly related. A statistical description of these two parameters will enable the user of the wind shear model to provide an estimate of the probability and frequency of exceeding a prescribed value of wind shear.

In order to establish this statistical description some estimate of the probability of a given stability condition occurring simultaneously with a given value of u_* is needed. An approximate analysis to achieve this goal is proposed as follows. From statistical theory the probability of μ and u_* occurring simultaneously is equal to the probability of μ given u_* , $P(\mu \ge \mu_p/u_*)$, times the probability of u_* , $P(u_* \ge u_{*p})$, [3-8]. This is referred to as a conditional probability.

$$P(\mu \ge \mu_{p}; u_{\star} \ge u_{\star p}) = P(\mu \ge \mu_{p}/u_{\star}) P(u_{\star} \ge u_{\star p})$$
(3-17)

The probability of μ given a wind speed, W_{χ} , which can be directly related to u_{\star} , has been estimated by Barr, et al. [3-5]. They give the probability of Richardson number, Ri, for a given wind speed, W_{χ} , where both W_{χ} and Ri are evaluated at 6.1 m, shown in Figure 3-20. Note that these curves are highly interpolated and based on only two sets of data. The Richardson number, Ri, is related to μ by the relationship

$$Ri = \begin{cases} \frac{\mu/u_{\star}}{\kappa/zf + 4.5 \,\mu/u_{\star}} & 0 \le Ri \le 0.18 \\ 0.18 \, \frac{zf\mu}{\kappa u_{\star}} & Ri \ge 0.18 \end{cases}$$
(3-18)

and W, is related to u_{\star} and μ by

$$\frac{W_{x}}{u_{\star}} = \begin{pmatrix} \frac{1}{\kappa} \ln\left(\frac{z}{z_{0}} + 1\right) + 4.5 \frac{zf\mu}{\kappa^{2}} & 0 \le Ri \le 0.18 \\ \frac{1}{\kappa} \left\{ \ln\left(\frac{\kappa u_{\star}}{f\mu z_{0}} + 1\right) + 4.5 + 5.5 \ln\left(\frac{z}{z_{0}} + 1\right) / \frac{\kappa u_{\star}}{z_{0}\mu f} + 1\right) \right\} Ri \ge 0.18$$
(3-19)

Figure 3-20(b) Cumulative Percent Frequency of Occurrence of Ri at Given Wind Speeds. 6 to 12 m s⁻¹ (14 to 28 mph)

Assigning values of z = 6.1 m, $z_0 = 0.01$ m, $f = 10^{-4}$ s⁻¹, $\kappa = 0.4$, Equations 3-18 and 3-19 have been plotted in Figures 3-21 and 3-22 for convenient reference.

Using the above results the designer may select a value of μ and a value of u_* which gives a wind shear condition in which he is interested. The probability of μ given u_* is then obtained directly from the figure.

The probability of u_* can be determined from the distribution of mean wind speeds given by Frost [3-4] as interpreted from Justus, et al. [3-9]. This reference shows that the probability of a mean wind speed greater than a prescribed value W_p occurring during the year is described by a Rayleigh distribution, i.e.,

$$P(W \ge W_p) = e^{-(W_p/c)^2}$$
 (3-20)

Reference [3-4] shows that this equation is a general representation of wind speeds measured at 138 airport sites throughout the United States where an average value of the scale factor, c, is $4 \text{ m s}^{-1} \pm 0.9 \text{ m s}^{-1}$. Since u_{*} is related to mean wind speed by Equation 3-19, the probability of u_{*} is directly related to the probability of W_{*}.

With the information provided above, the user of the neutral and stable boundary layer wind shear model can estimate what the probability of a given wind shear occurring over an expected lifetime is by utilizing the probability of μ given u_{*} from Figure 3-20 and multiplying that by the probability of u_{*} given by Equation 3-19. To illustrate the use of the above model, consider the following example. A user wishes to determine the probability of μ being equal to 200 given that u_{*} is equal to 0.5 m s⁻¹. From Figure 3-21 find Ri = 0.164 corresponding to μ = 200 and u_{*} = 0.5 m s⁻¹, i.e., μ/u_* = 400. From Figure 3-22 determine W_x/u_{*} = 23 and therefore W_x = 11.5 m s⁻¹ for the given values of u_{*} and μ . From Figure 3-20 the probability of Ri ≥ to 0.16 at 11.5 m s⁻¹ is 1.0 - P(Ri ≥ 0.16; W_x = 11.5 m s⁻¹) = 0.12. From Equation 3-20 the probability of W_x ≥ 11.5 m s⁻¹ is P(W_x ≥ 11.5 m s⁻¹) = 0.0003. The probability of both $\mu \ge 200$ and W_x ≥ 11.5 occurring in a given year is from Equation 3-17 equal to 0.003%.

- 73

ORIGINAL PAGE IS OF POOR QUALITY

11 Ν

Figure 3-22 Variation of Wind Speed at

74

To establish the risk of exceeding a prescribed wind shear in a given period of time we proceed as follows. The probability, p, that μ will be exceeded in any one year is related to the return period T by the relationship Tp = 1. The probability that a value less than or equal to μ will occur in one year is q = 1 - p. In a period of N years the probability Q that a value less than or equal to μ will occur is

$$Q = q^{N}$$
 (3-21)

The probability or risk that a value greater than μ will occur at least once in a period of N years is

$$P = 1 - q^{N}$$

= 1 - (1 - p)^N (3-22)

Hence continuing the foregoing example, the probability that $\mu = 200$ and $u_* = 0.5 \text{ m s}^{-1}$ will occur at least once in a period of 25 years is from Equation 3-22 equal to 3.4%.

To give the reader some feel for the nature of the wind shear associated with a given probability of occurrence, Table 3-1 has been prepared. This table gives the risk of exceedance associated with each of the wind shear conditions depicted in Figures 3-8 through 3-18.

3.6 Application of Wind Shear Models for Neutral and Stable Boundary Layers

Application of the wind shear model for the neutral and stable boundary layer proceeds by first selecting stability conditions for which the simulation is to be carried out. The parameters required are the stability parameter, μ , the friction velocity, u_* , and the surface roughness, z_0 . The rule-of-thumb for the effect of these individual parameters is that high values of u_* , μ and z_0 all result in larger linear shear. On the other hand, intermediate values of μ , say, on the order of 50, give the largest directional shear within the lower 500 m of the atmospheric boundary layer. Inspection of Figures 3-8 and 3-9 clearly illustrate this.

TA	BL	E	3-	1	

u _*	μ	Ri	W _x	P(W _x)	P(Ri/W _x)	P(Ri & W _x)	Risk of Exceedance in 25 Yrs.
0.50	200	0.18	13.64	8.85x10 ⁻⁶	0.70	6.2x10 ⁻⁵	0.16%
0.50	150	0.17	12.24	8.61x10 ⁻⁵	0.74	6.4x10 ⁻⁵	0.16%
0.50	100	0.15	10.83	6.54x10 ⁻⁴	0.65	4.3×10^{-4}	1.07%
0.50	75	0.14	10.13	1.64×10^{-3}	0.64	1.0×10^{-3}	2.47%
0.50	50	0.12	9.43	3.88x10 ⁻³	0.58	2.3x10 ⁻³	5.59%
0.50	25	0.080	8.72	8.61x10 ⁻³	0.56	4.8×10^{-3}	11.33%
0.50	1	0.005	8.05	17.47x10 ⁻³	0.42	7.3x10 ⁻³	16.74%
0.25	200	0.35	6.32	8.96x10 ⁻⁷	0.72	6.5x10 ⁻⁷	0.002%
0.34	150	0.20	6.21	1.09x10 ⁻⁵	0.61	6.6x10 ⁻⁶	0.02%
0.42	100	0.16	12.11	1.04x10 ⁻⁴	0.68	7.1x10 ⁻⁵	0.18%
0.46	75	0.14	11.41	2.92×10^{-4}	0.64	1.9×10^{-4}	0.47%
0.50	50	0.12	10.71	7.72x10 ⁻⁴	0.62	4.8x10 ⁻⁴	1.19%
0.56	12.5	0.04	9.65	2.95x10 ⁻³	0.59	1.7x10 ⁻³	4.16%
0.58	1	0.0042	9.33	4.34x10 ⁻³	0.54	2.3x10 ⁻³	5.59%

RISK OF EXCEEDANCE ASSOCIATED WITH WIND SPEED PROFILES SHOWN IN FIGURES 3-8 THROUGH 3-19

Having selected the parameters of interest, one then determines the probability that these conditions will occur and what the risk is of exceeding the values that are planned for the simulation. If it is desired to simulate severe cases of wind shear, then values of μ and u_{\star} should be chosen to have large magnitudes which have correspondingly lower risk. Therefore, a low value of risk is acceptable. Simulating average daily conditions, however, allows a higher risk of exceeding the prescribed stability conditions to be accepted. The percent risk that the user of the wind shear model is willing to accept is subject to his own judgment based on the engineering application for which the simulation is being carried out and on the consequences associated with the test not being of sufficient severity.

One must also bear in mind that the risk of exceeding a prescribed value computed in Section 3.4 and tabulated in Table 3-1 are on a per airport per

year basis; consequently, although the probability of $u_* = 0.5$ and $\mu = 200$ occurring simultaneously is 6.2 x $10^{-1/5}$ (see Table 3-1), for 10,000 airports, this condition will occur at 0.62 of an airport or at least one airport per year. In view of the fact that stability conditions may endure for one or two hours at an airport having heavy traffic, several pilots will be exposed to these conditions every year.

Use of the turbulence simulation routine to be superimposed upon the steady state winds requires no additional specification of atmospheric parameters, however, the time step increment of the random signal, DT, in subroutine STB, must be specified. In general, its value is set equal to the time step used in the calling program carrying out the numerical integration of the equations of motion for the flight dynamics of the aircraft. On the other hand, it can be shown [3-7] that

 $T \le 4 \times 10^{-4} n_0 W_{\chi}/z$

but since this value varies with altitude an average value on the order of 0.01 sec or less is generally recommended for use with the turbulence simulation routine.

In carrying out a realistic simulation, it is recommended that the turbulence be used with the mean wind profile. It is evident from Figures 3-8 through 3-19 that simulation of high stability conditions, that is, large μ , is accompanied with a transition from a rather smooth wind aloft to extremely severe turbulence near the 200 to 100 m range, depending upon the stability. This sort of turbulence phenomenon is expected to be quite realistic judging from comments with commercial airline pilots and from experimental data available in the literature. Super-positioning turbulence on the wind fields, however, does require that a computer be available for carrying out the computations of the wind speeds. This does not impose a hardship because normally, a computer is involved whether the user is performing a manned flight simulation or programming a fast time computer solution.

Without turbulence, however, one can construct a wind speed profile for the neutral or stable boundary layer manually from the tables given in

Appendix 3A. As an example, determine the wind speed profile for $\mu = 50$, $u_* = 0.5$ and $z_0 = 0.05$. To establish the profile one first computes the Rossby number Ro = $u_*/z_0 f = 1 \times 10^7$. This value corresponds to Table 3A-1 in Appendix 3A. Selecting the column labeled $\mu = 50$ gives the wind speed profiles

^	^	^
Z	Wx	Wy
0.15	63.4	-32.0
0.10	63.4	-27.2
0.05	59.3	-17.0
0.005	29.5	-4.8
0.0001	24.1	0.0

Dimensional values are obtained from $z = u_* \hat{z}/f$, $W_x = \hat{W}_x u_*$ and $W_y = \hat{W}_y u_*$, hence

Z	Wx	Wy
m	m s ⁻¹	m s ⁻¹
750	31.7	-16.0
500	31.7	-13.6
250	29.6	-9.5
25	14.7	-2.4
5	12.1	0

Thus, wind speed profiles can be established very simply.

3.7 References

- 3-1. Clarke, R. H., and G. D. Hess. "Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory," <u>Boundary</u> Layer Meteorology, 7(1974), 267-287.
- 3-2. Frost, Walter, and D. W. Camp. "Wind Shear Modeling for Aircraft Hazard Definition," Report No. FAA-RD-77-36, March 1977.
- 3-3. Kaimal, J. C. "Turbulence Spectra, Length Scales and Structure Parameters in the Stable Surface Layer," <u>Boundary Layer Meteorology</u>, 4(1973), 289-309.

- 3-4. Frost, Walter. "Chapters 2 through 4 of Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development," Contract NAS8-32118 Report, prepared for George C. Marshall Space Flight Center, Atmospheric Science Division, by The University of Tennessee Space Institute, Tullahoma, Tennessee, November 1977.
- 3-5. Barr, N. M., Dagfinn Gangaas, and D. R. Schaeffer. "Wind Models for Flight Simulator Certification of Landing and Approach Guidance and Control Systems," Report No. FAA-RD-74-206, December 1974.
- 3-6. Reeves, P. M., R. G. Joppa, and V. M. Ganzer. "A Non-Gaussian Model of Continuous Atmospheric Turbulence for Use in Aircraft Design," NASA CR-2639, January 1976.
- 3-7. Neuman, Frank, and J. D. Foster. "Investigation of a Digital Automatic Aircraft Landing System in Turbulence," NASA TM D-6066, October 1970.
- 3-8. Guttman, Irwin, and S. S. Wilkes. <u>Introductory Engineering Statistics</u>. New York: John Wiley & Sons, Inc., 1965.
- 3-9. Justus, C. G., W. R. Hargraves, and Amir Mikhail. "Reference Wind Speed Distributions and Height Profiles for Wind Turbine Design and Performance Evaluation Applications," ORO/5108-76/4 UC 60, August 1976.

SECTION 4.0

FRONTAL WIND SHEAR

A model of frontal wind shear has been developed in exactly the same manner as the thunderstorm model. Unfortunately, the number of data sets available for processing are only two, which are shown in their original format in Figures 4-1 and 4-2. These data were provided courtesy of Ms. Judith Stokes and Mr. Jean Lee from the National Severe Storms Laboratory in Norman, Oklahoma. The data represent cold frontal passage in the vicinity of the 500 m tower and the reduction of these data sets is the same as used by Goff [4-1] for thunderstorm gust front cases (see Section 2.2). The data were measured on January 28, 1977, labeled Case 1 in this report, and on December 10, 1976, labeled Case 2.

No other data which would provide the necessary detailed wind speed profiles over at least a two-dimensional plane in space were found during this study. Additional data which is on magnetic tape at the National Severe Storms Laboratory have not yet been processed. No warm front wind shear data from which a model for flight/hazard simulation studies can be constructed appears to be available.

The simulation model developed from the limited data is constructed in the same manner as the thunderstorm models. That is, a grid system is superimposed on the contours of constant wind speed shown in Figures 4-1 and 4-2. In these two cases a 113 x 11 grid is used. The data were again punched on cards and stored on magnetic tape. The only difference between these data and those of the thunderstorm cases is the larger grid having 113 columns rather than 41 which represents a total horizontal distance of approximately 17.2 km in Case 1 and 13.2 km in Case 2. This represents approximately 30 minutes of recorded data.

The following section, Section 4.1, describes the quasi-steady wind speed profile working data developed for the large scale frontal wind shear. The wind speed is referred to as quasi-steady in view of the fact that, as with the thunderstorm data, it has been averaged over 10 sec time intervals and thus contains fluctuations in the wind speed of 0.1 Hz or smaller. It is

Figure 4-1 Wind Speed for Synoptic Front Cold Air Out-flow

Figure 4-2 Wind Speed for Synoptic Front Cold Air Out-flow

į

proposed that the same turbulence simulation model for thunderstorms be used for the frontal wind shear. Since absolutely no data was found which would give information pertaining to turbulence intensities and characteristic turbulent length scales in a major frontal flow, the lower values associated with thunderstorms are recommended as input to the model.

4.1 Quasi-Steady Wind Speed Profile Grid System

The wind fields shown in Figures 4-1 and 4-2 were fit to a 113 x 11 point grid system. Wind speeds at each grid point were tabulated and punched onto computer cards. The data were later stored on magnetic tape.

The grid system is numbered from the left-hand bottom corner. The numbers increase from left to right in the positive x-direction and from bottom to top in the positive z-direction of the original data. The wind speeds are given in units of meters per second, m s⁻¹, with W_x being positive in the direction of frontal motion, W_z being positive upward and W_y being positive into the plane of the paper. The frontal speeds of the two storms are 9.3 m s⁻¹ and 7.1 m s⁻¹, respectively.

The wind speeds, W_{χ} , shown in Figures 4-1 and 4-2 are the wind speeds relative to the storm motion which are the values punched on cards and stored on magnetic tape. To convert to wind speed relative to the ground the frontal motion must be added to W_{χ} . The next subsections describe tables and graphical illustrations of the wind speed profiles.

4.1.1 Tables of Wind Speed

Tables of synoptic cold frontal passage wind speeds are given in Appendix 4A. The tables have, due to their length, been split into six parts covering grid stations 1 through 20, 21 through 40, etc. The tabulated values of W_x are values relative to the storm motion. The frontal speed is given at the top of the table for converting W_x to its value relative to ground.

The frontal storm case numbers' designation as 1 and 2 in this report are listed in the upper left-hand corner. Also, listed at the top of the table is the horizontal length scales for the given wind record. The horizontal extent of each data set varies because of the data reduction procedure. Hence, the length of field, L, in kilometers and the horizontal grid spacing, Δx , are specified on each table. The vertical extent of each field is taken as 500 m with 50 m vertical grid spacing.

4.1.2 Illustrations

Illustrations of the longitudinal, lateral, and vertical wind speeds encountered along four 3° glide slope through each front are provided in Appendix 4B. The glide slopes are displaced in increments of 4.3 km for Case 1 and 3.3 km for Case 2. Each profile is the wind seen by a airplane traveling along the flight path drawn across the streamlines as illustrated in the first figure of the appendix. Note that the streamlines plotted are relative to the speed of the front which for reference purposes is indicated with the vertical dashed line on the horizontal wind speed profile. The wind speed profiles are relative to the fixed earth frame of reference.

4.1.3 Computer Program

The card deck or magnetic tape on which the frontal wind speeds are tabulated can be directly coupled with the program for thunderstorms given in Appendix 2C and requires and provides identical input/output statements. The only modification needed is to increase all dimension statements, do-loop statements and read-in control integers from 41 to 113.

The turbulence option can also be called for if desired. The turbulence intensities σ_{W_X} , σ_{W_y} and σ_{W_Z} and length scales L_{W_X} , L_{W_y} and L_{W_Z} used in the program all have values as estimated for thunderstorms, however, in lieu of better information on turbulence in major fronts, these values can be used.

4.2 Turbulence Model

No data on turbulence in large frontal flows were found in the literature. It is therefore suggested that the model proposed for the thunderstorm be employed along with the lower values of the input parameters. Recall that data on turbulence in thunderstorms is also very limited in the region near the ground, and the thunderstorm turbulence model is itself an approximation. Again, it is pointed out that only the high frequency components of the turbulence (i.e., frequencies greater than 0.1 Hz) have been lost in the data since the quasi-steady wind field given represent 10 sec averages. There is, however, a very great need to obtain turbulence data in thunderstorms and large fronts in the vicinity of the ground or terminal areas of an airport.

4.3 Statistical Model

Due to the paucity of detailed wind speed data for major fronts, no attempt is made to establish a statistical model of the wind fields.

4.4 Applications of Frontal Wind Shear Model

The frontal wind shear model is applied exactly the same as the thunderstorm models described in Section 2.6. The user, however, has only limited choice of wind fields to use in the simulation since only two fields are Keenan [4-2] has used thunderstorm case numbers 2 and 3 as fronts available. since these two thunderstorms behave in a manner similar to fronts. However, they are extremely short in length and are not long enough for a full length simulation based on an aircraft approaching from 500 m along a 3° glide slope. Such an approach requires a horizontal fetch of 9.5 km. Fortunately the frontal data that are available for the two cases of wind shear studied extend over a sufficiently long distance that a sequence of one or more landings or takeoffs, can be simulated using these data. Up to two landings assuming a 3 mile separation distance can be simulated. Moreover, the wind fields encountered along flight paths separated by small distances show quite dissimilar wind speed profiles as evidenced from the graphical display in Appendix 4B.

Again, it is recommended that turbulence models be used in conjunction with the quasi-steady state wind speeds utilized in developing the frontal wind shear model. It is anticipated that extreme wind speeds will be somewhat averaged out using 10 sec averages, just as described for the thunderstorm models, and therefore to achieve a correct simulation high gusts should be introduced in the form of turbulence. The turbulence intensities used in the model, however, are still open to question, and it is proposed that the lower

extremes of turbulent intensities quoted for the thunderstorm cases be utilized for frontal wind shear.

Much more data on fronts is needed before an adequate model of a synoptic front wind field is possible. Such data may be available at the National Severe Storms Laboratory in Norman, Oklahoma, but require further processing. Also, to utilize the 10 sec average wind speeds generated by the NSSL Program effectively, more must be determined about the turbulence levels in major fronts.

One additional set of data that the engineer interested in carrying out warm front simulation should be aware of is a one-dimensional profile compiled by Keenan [4-2]. This model was developed from data obtained in an accident which occurred in Tokyo in 1966. Table 4-1 illustrates the warm front one-dimensional model.

z (m)	W _x (m s ⁻¹)	W _y (m s ⁻¹)
6.1	-6.6	3.9
30.5	-3.6	-2.1
61.0	-4.4	-12.1
91.4	0	-20.6
121.9	5.4	-30.4
152.4	5.9	-33.5
182.9	5.8	-32.9
213.3	5.8	-32.9
243.8	5.7	-32.4
274.3	5.6	-31.9
304.8	5.6	-31.4
457.2	5.9	-31.4

TABLE 4-1

WARM FRONT WIND SPEED PROFILE [4-2]; W_ = 0

4.5 References

- 4-1. Goff, R. Craig. "Thunderstorm Outflow Kinematics and Dynamics," NOAA Tech Memo ERL NSSL-75, December 1975.
- 4-2. Keenan, M. G. Personal communications, Stanford Research Institute, Manlo Park, California, October 1977.

SECTION 5.0

SUMMARY

Mathematical models of wind fields associated with thunderstorms, neutral and stable boundary layers, and storm fronts have been developed based on reported experimental data. These data have been tabulated and presented in Appendices 2A, 3A and 4A, respectively. Computer programs have been developed which utilize table lookup and interpolation routines to compute wind speeds at spatial positions and under stability conditions as called for by the main calling computer program. These computer programs are presented in Appendices 2C and 3C.

Turbulence simulation techniques have been developed which permit the super-positioning of random fluctuations having the characteristics of turbulence associated with the atmospheric phenomena of interest.

The wind speed models for thunderstorms and major fronts represent the three components of wind velocity in a vertical plane 500 m in extent and of variable lengths in the horizontal direction. In simulating an approach, application of these models assumes that the flight path lies in the plane of the wind speeds with that plane being centered over the runway. These models, therefore, give realistic simulation of wind shear due to a thunderstorm moving parallel to the runway and allow the flight mechanics computation to have departures from the flight path in the vertical direction. Any departure of the aircraft out of the plane in the lateral direction is not accurately modelled. However, evidence is shown that the correlation between the wind components in the x- and z-direction is large and, therefore, it is anticipated that the same is true in the y-direction. Therefore the wind disturbances encountered by an aircraft displaced by the wind a reasonable distance out of the plane of the wind field will be nearly similar to the in-plane winds.

To simulate a flight path which is diagonal to the direction of the motion of the front, one must assume that the wind fields modelled are twodimensional over a very large lateral scale. This, however, is not likely

and to provide wind fields which permit this type of simulation will require considerably more research into the three-dimensional nature of thunderstorms and major fronts.

The turbulence model developed to accompany the mean wind field data are believed to be quite realistic with the exception that the value of the turbulence parameters in the frontal case are vertically unknown. The turbulence model for the neutral and stable boundary layers is based on extensive data sets and theoretical analysis and is believed to be very representative of what happens in the actual atmosphere. The thunderstorm turbulence model is based on advanced turbulence concepts and does include large-scale velocity fluctuations of a non-Gaussian nature, however, coherence matching between large gusts which are in the development stage [5-1] should possibly be added to the simulation technique. Finally, the parametric inputs to the model require better definition which can only be achieved with more experimental effort. Currently, it is proposed to use the values of turbulent intensity measured at elevations of several kilometers because these are the better defined values. Moreover, comparing the thunderstorm data measured by ground based towers to those backed out of on-flight data recorders shows that there is quite a large difference between 10 sec averaged data and much shorter averaging period data. This suggests the available thunderstorm data be reanalyzed using a smaller time increment.

There is considerable need to measure turbulence in the vicinity of the ground, particularly in the downdraft center of thunderstorms and also to measure the gust gradient which could occur in these severe storms phenomena. The same conclusion holds true for large-scale frontal motion where very limited, if any, wind velocity measurements as well as turbulence measurements have been made. The type of measurement which appears most needed would be from an array of towers, preferably 500 m in height, and distributed in a line at least over 1 km in extent. Such an array of towers is obviously very expensive and the data reduction associated with the vast amounts of data generated is, in turn, costly. A tower array is available at NASA Marshall Space Flight Center with the limitations that the towers are only 24 m in height [5-2].

As techniques for remote sensing of wind speed become available, typical examples being laser Doppler, acoustic Doppler or Doppler radar methods, more probing of thunderstorms and of major synoptic fronts will undoubtedly increase.

Aircraft are also being used to study thunderstorms and are providing meaningful data at great altitudes. It is not likely that much probing of thunderstorms or severe frontal weather will be carried out with aircraft below 500 m. However, data at this level is extremely critical in developing simulator wind field models for flight/hazard definition.

A possible technique for obtaining the needed data would be to couple aircraft measurements with those of the tower array currently in existence at the Atmospheric Sciences Division, NASA/Marshall Space Flight Center, Huntsville, Alabama. A coordinated program utilizing aircraft passes over the tower array with the towers in operation would map out a well defined two-dimensional wind field and could also provide three-dimensional wind fields when the angle of the approaching storm is oblique to the tower array.

Mathematical models currently being developed have promise for use in wind shear simulation applications, however, they are, in turn, dependent upon input parameters which must be experimentally measured before meaningful results can be calculated.

A statistical model for the stable and neutral boundary layer has been developed which allows the probability of a given wind speed and stability condition occurring simultaneously to be estimated. The model also predicts the frequency of the combined conditions occurring within a specified period of time. This model assumes a Rayleigh distribution of wind speeds for any given site in the mainland U.S.A. This is a justifiable assumption based on a study of 138 sites by Justus, et al. [5-3]. The probability distribution of Richardson numbers is not quite as well validated, being based on only two sets of data. It is believed, however, that this is a good estimate of the distribution of stability conditions with wind speeds.

The statistical model for the thunderstorm is rather weak and for the synoptic fronts nonexistent. The best estimate of the probability of a given magnitude of wind shear in a thunderstorm that is currently available is

based on the ensemble average of 20 thunderstorm cases along a prescribed flight path and the standard deviation from the averaged value. These computed standard deviations are added at each point along the flight path as if they were independent points. This is a questionable assumption and further work is needed to develop the statistical model of a thunderstorm.

Before a statistical model of fronts can be developed much more data is needed. Due to the lack of measurements of detailed wind speed profiles through large fronts and also, to an extent, through thunderstorms, reliable simulation flight/hazard wind speed models cannot be developed.

The conclusion of this report is that mathematical models of wind shear in thunderstorms, stable and neutral boundary layers and fronts for flight/ hazard simulation studies have been developed which, based on state of the art knowledge, allow realistic simulation of flight through hazardous atmospheric wind shear. These models, however, represent a very good beginning but they should be continuously updated as information becomes available and standardized to establish consistent criteria for pilot training, avionics development and aircraft design and certification.

1203207

5.1 References

- 5-1. Perlmutter, Morris and Walter Frost. "Three Velocity Component, Atmospheric Boundary Layer Turbulence Model," Contract No. NAS8-29584 Report, prepared for NASA, Marshall Space Flight Center by the Atmospheric Science Department, The University of Tennessee Space Institute, September 1976.
- 5-2. Frost, Walter and Alireza Shahabi. "A Field Study of Wind Over a Simulated Block Building," NASA CR-2804, March 1977.
- 5-3. Justus, C. G., W. R. Hargraves and Amir Mikhail. "Reference Wind Speed Distributions and Height Profiles for Wind Turbine Design and Performance Evaluation Applications," ORO/5108-76/4 UC 60, August 1976.
APPENDICES

The following appendices are numbered according to the section of the main body of the report to which they pertain. For example, Appendix 2 followed by an alphabetical symbol contains information relating to Section 2, Thunderstorm Wind Shear. Appendices 3 and 4 are referenced in the same format.

APPENDIX 1A

LIST OF ABBREVIATIONS AND SYMBOLS

u*	Friction velocity
μ	Stability parameter, ĸu _* /fL'
f	Coriolis parameter
L'	Monin-Obukhov stability length scale
L	Horizontal extent of thunderstorm data set
κ	von Karman's constant taken as 0.4
L _{W.}	Length scale of longitudinal velocity fluctuations
L _W	Length scale of lateral velocity fluctuations
y L W_	Length scale of vertical velocity fluctuations
W _x ^z	Mean speed of storm front
W _×	Longitudinal wind speed
Wy	Lateral wind speed
Wz	Vertical wind speed
WX	Fluctuating longitudinal wind speed
Wy	Fluctuating lateral wind speed
Wz	Fluctuating vertical wind speed
z _o	Surface roughness
Z	Dimensional height
ź	Dimensionless height $\hat{z} = zf/u_{\star}$
Ro	Rossby number u _* /fz _o
φ(n)	Power density spectrum function
n ~	Cyclic frequency
σ_{α}	Turbulence intensity of $\boldsymbol{\alpha}$ wind speed fluctuation

Statistical correlation between α and β wind speed components Ensemble average Denotes dimensionless parameter

ρ_{αβ} < >

^

APPENDIX 2A

TABULATED THUNDERSTORM DATA

Appendix 2A contains the tabulated data interpolated from the thunderstorm wind speed data presented and documented in Goff [2-1]. These data are the fundamental data sets upon which the wind shear model for thunderstorms is based. The user can compute wind speed profiles either by hand directly from the tables or by coupling the data with the lookup computer program provided in Appendix 2C.

The rows and columns of the table are numbered from the left-hand bottom corner. The numbers increase from left to right in the positive x-direction of the original data and from bottom to top in the positive z-direction of the original data. The wind speeds are given in units of meters per sec, m s⁻¹, with W_x being positive in the direction of frontal motion, W_z being positive upward and W_y being positive into the plane of the paper. The upper portion of the table covers columns 1 through 21 and the lower table covers columns 21 through 41. (Note column 21 is repeated for symmetry and clarity of presentation.)

The thunderstorm case numbers' designation for this report are listed at the top of the table. The letters in parentheses and the following series number correspond to the thunderstorm designation given by Goff [2-1].

Also listed at the top of the table are the frontal speed, \overline{W}_{χ} , and the horizontal length scales for the given wind record. The horizontal extent of each data set varies because of the data reduction procedure. Hence, the length of field, L, in meters and the horizontal grid spacing, Δx , (m) are specified on each table. The vertical extent of each field is taken as 500 m with 50 m vertical grid spacing. Figure 2A-1 illustrates the identification format used for all tables.

ILLUSTRATION OF TABLE DESIGNATING SYMBOLS

= 102 m 2.0 1.0 -2.0 -3.3 -5.0 -7.0 -8.0 -7.9 -843 -8.2 21 HORIZONTAL GRID SPACING 20 Horizontal Increment $\Delta \mathbf{x}$ مەم- 7 مۇسىدە مەسى مۇسى دە. 2 مەل- 2 مەل- 2 مەلىك قەلىك قەلىك قەم سەمەر مەلىك قەرلىك قەرىك لەركى قەرىكى قەرلىك 19 NUMBERS Figure 2A-1 Identification Format for All Tables in Appendix 2A 18 HORIZONTAL GRID 0.0 -2.0 -4.1 -5.8 17 Relative Wind Speed in Direction of Frontal Motion, $\mathbf{W}_{\mathbf{X}}$ 16 15 1.0 -1.0 HORIZONTAL LENGTH OF FIELD 14 2.4 0.6 1.6 2.1 2.0 13 ш 4080 1.7 2.5 12 2.0 ~ 11 REFERENCE [] ALPHABETICAL CASE DESIGNATION 11 = 6.1m s⁻¹ Length of Field L 1.7 9.0 0.2 -0.1 0.5 10 1.24 0.0 9.0 თ 0.3 0.8 VERTICAL GRID NUMBERS 0.3 0.8 REFERENCE [] SERIES NUMBER ω 0.7 2.0 -0.3 -0.8 -0.2 6.0 0.7 0.0 -1.0 0.7 2.0 -0.4 -1.1 -0.3 1.7 -0.3 -2.1 -0.4 1.9 1.5 1.1 1.9 0.4 0.3 SPEED 9 204 - 204 - 204 ഹ FRONTAL 1.9 2.0 THUNDERSTORM CASE NUMBER 4 [3[×] 0.1 1.2 1.1 -2.0 -2.0 2.0 2.1. 0.5- 0.1-0.2 ŝ able A-1 6°2 6.0 4.0 0.1 0.0 0 • 2 No. 0446 0.0 0.0 1.0 4.0 1.0 6.0 Ser。 10 1 (A) Case 96

Ì.

ORIGINAL PAGE IS OF POOR QUALITY

m, Horizontal Increment $\Delta x = 100$ meters 7.5 7.6 7.7 7.8 8.1 **8** . 4 8.6 9.5 10.1 -2.1 -1.8 8.0--0.3 0.2 1.9 2.1 3.1 9.1 9.3 1.4 4.1 1.1 51 44 -2-2 7.0 -2.0 7.3 7.4 8°2 8.7 8.8 9.4 1.9 2.5 3.1 3°6 7.1 1.7 8.1 8.2 -1-0 -0.3 1.4 5 . • 0.2 20 40 6.6 6°6 6.9 6.9 1.3 8.1 8.2 8.7 0.1 -0.9 -1.9 -2.0 -2.0 -1.8 -1.9 -2.2 -1.6 -1.1 2.3 4.1 4.9 7.8 6.1 -0 · 4 1.8 3.1 4.1 0.2 6 39 7.9 8.0 -1.1 5.3 6.5 6.8 6.9 7.6 7.8 9.7 3.6 4.4 4.6 6.1 6.2 1.7 -0°4 1.2 2.1 2.7 0.9 8 38 6.5 7.6 7.7 -0.7 5.1 6.0 e.0 1.2 2.1 5.7 6.0 6.2 6.7 7.3 4.1 7.5 7.5 2.6 3.1 4.1 4.8 11 37 2.3 -0.8 6.J 6.5 6.5 7.1 7.3 7.2 7.3 1.2 2.0 3.3 5.1 5.6 6.1 6.2 6.2 7.1 0.2 2.7 4.2 16 36 6.3 6.9 1.0 8.0-2.0 6.3 ÷.9 6 . **1** 9.0 6.9 6.9 7.0 6°9 1.1 ÷.5 6.3 0.1 2.8 3.6 4.1 6.1 15 32 **0**. 9 7.0 7.1 2.0 6.4 6.2 6.2 6.2 6.J **9**.9 6.6 **9°9** 7.2 6.0-0.2 1 . l 2.9 3.8 4.6 3.8 6 • 5 đ. S.5 **9°** 5.9 7.3 -0.4 1.6 6.8 0.3 5.7 6.1 6.4 6.8 6.9 7.2 7.4 2.1 ъ. 5 ***** • 1 5.1 6.1 6.7 2 33 5 ° 4 6.4 7.7 0.1 1.2 7.0 4.8 4.9 5.6 6.1 7.0 7.1 7.3 7.5 2.1 3.0 4.1 4.8 5.6 6.5 6.9 12 32 1.1 1.1 5.0 5.3 7.2 2.º 1.1 2.0 7.2 7.2 4.0 5°.¥ 6.1 **6.** 4 7.2 7.4 3.1 4.0 4.1 5.4 6.1 6.•8 1 E = 4000 7.4 7.9 2.1 7.5 4.9 5.0 5.3 ÷.5 6.1 6 ° 5 7.3 8.1 2.1 0°E 4.1 6.7 7.2 7.4 7.6 5.1 4.1 6.1 10 0 E 5.8 9°\$ 5.7 5.8 6.1 6•5 7.6 7.5 7.7 8.1 2.8 3.1 5.4 9 • 9 7.5 7.8 7.7 8.3 4.1 5.1 6.1 7.2 ch, 29 Length of Field L 7.1 4.1 7.0 1.1 7.3 8.3 3.4 5.1 6 • B 6.1 1.4 9**.**9 7.9 7.1 6°9 9.6 7.6 7.9 8 . 4 6.1 1.8 1.9 30 7.8 9.0 8.0 8.3 9" A 8.0 4.1 5.1 6.1 8.2 8.1 6. 1 8 6 e.1 7.08 8.1 6.1 7.5 6.1 8.2 S. 8 7.8 6 . Ì 7.1 27 ~ **6**° 8°.5 **8 . 4** 8.4 9.0 7.9 1.1 6.1 **6**.6 0.8 8.3 **8.4** 9.2 9.4 7.6 8.2 7.6 8.1 8.7 8.7 9.2 8.1 ھ 56 8.1 **8**.0 6°8 7.1 9.2 9**.**9 8.6 10.1 7.3 7.3 8.1 10.3 10.4 10.2 6.8 6.3 6.2 7.5 7.3 7.1 8.1 8.5 8.7 8.9 ŝ 25 9.5 10.1 10.2 10.3 н. 1 10.2 6.1 5° 6 4 ° 9 5.1 5.9 6.1 6.9 6.9 6.6 8.1 8.2 6.9 9**.**3 9.8 10.2 6.4 7.2 4.1 24 **د ا** ا 10.2 10.1 6.3 8.1 8°5 8.2 ۲**۰**,۲ 9.0 9°4 4.1 4.1 5.1 6.1 ₽.° 6 ° 5 6.8 6.5 6.5 1.0 9°° A ~ 53 6.1 m 4.1 ۍ ر د 6.3 ð. e **9**•9 6.7 , 1 0 0.2 6.1 5.4 0°8 **8**"1 d . 1 8.3 ा । १ 1°*8 9.0 4°6 6°6 4.1 10.1 10.2 2 55 5.0 1.0 6° 6 6°9 S. / j. ė 1.6 9.3 6. S 0.1 0.0 ₽.°.9 <u>ې ، ا</u> 5.6 8.1 0 ° 0 1.4 1.1 1.1 H 51 (3[×] 1 Ċ, 11 2

Wind Speed in Direction of Frontal Motion, $W_{\mathbf{X}}$

Table 2A-1(a)

Case 1 (A) Series No. 0446,

ORIGINAL PAGE IS OF POOR QUALITY

Table 2A-1(b) Wind Speed Perpendicular to Frontal Motion, W_y

Case 1(A) Series No. 0446,

= 100 metersm , Horizontal Increment $\Delta \mathbf{x}$ 4000 H -l Length of Field L 6.1 m Ħ |3[×]

2

-0.5 6°0--1-0 -1.3 -1.3 -1.2 =0 <u>.</u>6 -0.2 0.0 **1.1**° -1.0 -1.0 -1.2 -1.2 -1.0 -0.6 ~0°.e 0.0 -1.5 -1.5 4.1--0.2 -0.5 -1.5 -1.0 0.0 -0.5 -1.5 -2.4 -3.4 -3.0 -2.8 -2.5 -2.8 -3.0 -3.2 -3.4 -3.3 -3.1 -2.9 -2.7 -2.4 -2.2 -1.9 -1.5 -1,5 -1.6 -1.7 -1.0 -0.1 -0.2 -0°6 -1.8 -1.9 **~1**.6 0.0 -1.8 -1.1 -1°0 -0°8 -0.3 0.0 -2.0 -2.0 -2.0 -1.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.8 -1.7 -1.5 -1.3 -1.2 -1.0 -0.7 -0.3 -1.2 -1.0 -1.5 -1.5 -1.5 -1.4 -1.4 -1.4 -1.4 -1.3 -1.3 -1.3 -1.2 -1.2 -1.2 -1.1 -1.0 0.0 ~2.3 -2.2 -2.2 -1.7 -1.9 -2.0 -2.2 -2.1 -2.0 -1.9 -1.8 -1.6 -1.5 -1.4 -0.4 -2.3 -2.3 -2.2 -2.1 -2.0 -1.9 8.0- 9.0--0.3 -0.3 -0.4 -0.4 -0.4 -0.5 -0.5 -0.4 0.0 ***2.5** -2,3 -2.3 -2.5 0.0 -2.5 -2.8 -0.9 -0.8 -0.9 -1.1 -1.2 -1.1 -1.0 -0.9 -1.0 -1.1 -1.0 0.0 -3.2 -3.0 -2.8 -2.6 -2.9 -2.7 -2.6 0.0 0.0 -2.9 0.0 -3.1 -3.0 0°E--2.3 -2.4 -2.5 -2.4 -2.H 0.0 -2.8 -2.9 0.0 -2.7 -2.7 -2.7 0.0 -2.5 -2.5 -0.2 -2.5 0.0 -2.8 -2.1 -2.7 -0-5 -2.6 0.0 - 3°0 -2.9 -2.7 -0.1 -0.1 -2.0 -1.0 -2.0 -1.9 -1.8 0.0 -3,3 -3.1 -2.8 -2.3 -2.2 -2.4 -2,2 -2.0 0.0 0.0-0.9 0.0 -0.1 ŋ°0 -1 . A -1.4 -1.3 -1.1 e.0 °0°5 0.0 0.0 0.0 0.°S 0.0 -0.5 -0 • P 0.0 2 -

0.0 0.0 0.0 ••• 0.0 0.0 0.0 6. J 0.2 0.3 0.3 41 0.0 0.0 0.0 0.5 0.5 0.4 1 0.9 **6.**0 0.0 0.5 0.3 40 0.0 0.0 0°.J 0.2 0.7 **0**•0 0.6 **0**•6 0.8 9°0 0°8 39 0.2 0.5 0.0 1.0 1.0 1.0 6.0 0.8 6.0 9.0 8°0 38 e.0 0.7 0.0 £•3 1.3 1.1 1.2 6.0 **1**•2 1.1 1.1 37 1.0 9°0 0.0 1.7 1.1 1.4 1.4 1.0 1:0 1.2 1.5 36 2+0 0**،** ک 0.2 **D**•0 2 ° 0 9.0 1.6 1.0 1.1 1.7 ŝ 6°0 0.0 2.2 2.0 0.2 0.0 2,3 1.9 1.2 1.0 6*0 Ť 0.2 0.0 2.5 2.3 2.2 1.2 0°8 0.0 2.1 1.0 0.1 ŝ **.**0.5 0.0 6*0 0.5 2°8 2.5 2.1 2.0 1.1 6.0 9.0 32 0.2 3,0 2.7 2.0 1.8 1.0 9.0 8.0 0.5 0.2 0.0 31 0.0 0*0 0 • **•** 3.0 2.5 6. T 1.2 6.0 6.0 ••• 9.0 30 3°8 2.9 0.2 0.2 0.0 2.0 1.4 6 ° 0 1.0 4.2 0.7 53 4.0 0:3 0.0 1.1 6.0 4.0 э.о 2.5 1.6 1.5 6.9 28 3.0 0.5 0.0 2.0 1.7 1.0 1.2 1.0 9.0 2 • 5 1.3 53 0.2 0.0 2.1 1.3 1.1 1.0 1.0 9.0 2.0 6.0 0.7 26 0.0 0.0 1.2 1.0 0.7 0.6 0.5 0.1 0.0 0.0 0.5 25 0.6 0.0 -0.2 0.0 0.00 0.0 -0.2 -0.2 0.1 -0.1 -0.4 24 -0.4 -U.3 ••• -0-3 ÷.0= -1.1 -0.7 -0.3 -1.0 -1.0 -1.0 -0.1 -0.1 -1-0 -1.2 -1.1 -1.0 -0.4 -0.2 53 0.0 -0.7 -1.1 -1.2 22 -1.3 - U. S • n • 6 -0.2 0.0 -1.3 -1.0 17 Ξ 2

100 meters 9.0 10.5 10.01 6.0 0.0 -0.8 -1.4 -2.0 -2.0 -2.1 -2.1 10.5 10.2 10.1 10.2 8.2 2.9 6.5 6.1 3.2 2.4 9.1 41 21 10.7 7.6 6. J 5.7 5.5 2.6 -1.7 -2.1 -2-2 8.7 10.4 12.2 12.0 11.8 11.6 11.4 11.3 11.1 10.9 10.7 10.2 9.8 0.3 -0.2 •0° -5 °3 -2.3 9.1 8.1 3.6 1.1 20 3 7.3 5.3 1.4 0.3 -0.4 -1.1 -2.0 -2.3 -2°3 -2.4 10.9 10.3 10.0 9.7 6.2 5.0 -2.4 0.6 0.8 2.8 • 61 39 li 10.3 -2.4 1.1 6.9 **6.**0 4.5 0.2 -0° -1-3 -2.0 -2.4 -2.5 -2.5 °.5° 0°. 6.9 6.4 3.0 0.0 1.7 . 81 1.1 Increment $\Delta \mathbf{x}$ 38 0.1.0 -2.1. 11.3 10.3 10.1 5.9 4.5 ••• 2.0 **-0.8** -2.5 -2.6 -2.6 0.0 8.0 -1.5 -2.7 9.7 6.6 4.2 3.2 11 33 11.4 10.4 5.0 3.0 -2.7 -2.8 6°8 **9.0** 4.1 3.0 4 ° 0 1.8 0.1 -1.6 -2.1 -2.8 10.2 10.4 10.2 9.6 -1.0 -2.7 6.3 16 36 1.5 0.0 2.7 -2.8 10.0 -2.9 6°8 0.8 3.8 -1.8 -2.3 -2. N -2.9 11.6 10.1 10.3 10.4 6.0 4.1 3.1 2.0 -1.8 -1.6 -1.4 -1.2 5**1**2 32 m, Horizontal -0 -4 9.0 10.5 12.0 11.8 9-6 5.0 3.0 1.5 2.5 1.2 -2.0 -2.6 -3.0 -3.0 -3.0 **8.**4 7.0 1.3 -3.1 4.0 14 34 Series No. 0446, 10.0 -0.8 2.0 1.0 -2.8 -3.1 -3.1 9.1 .8.0 6.0 0.0 0.5 2.2 -2.3 -3.1 -3.2 4.0 4.1 ŝ Ē 2.0 0.5 -1.2 10.0 8 **4** -0.2 -2.7 -3.0 -3.2 -3,3 7.3 3.0 1,5 0.1 3.J 6.2 4.7 12 32 -0-1 1.3 0.3 2.5 0.0 -3.0 -3°5 6.7 1.0 4.6-8.0 5.6 4.4 3,43 -3.5 -3.4 2.0 -2.5 -2.0 -1.6 -2.1 -2.0 -3.5 -3.3 -3.5 -3.3 11 31 4000 0.6 0.5 -1.0 0.4 0.0 2.6 2.0 1.3 1.6 **4**.9 -3.6 7.5 6.0 5.1 3.8 -3,5 10 30 0.0 0°8 -2.0 -3.7 2.0 -0.2 -0.2 6.9 . 9 4.0 3.4 2.0 1.0 0°6 0.1 11 -3°.3 -3.7 -3.8 -3.6 -3.6 -3.7 Case 1(A) 5 29 Field L -0.2 -4.1 1.4 1.4 0.0 1.9 0.0 -1.0 ·3 •8· -3.7 . 6 . 5 -5.1 4.5 2.0 9°1 -0.1 -0.7 -0.5 -2.0 -2.9 -4.0 -4-0 7.6-3.8 0.0 -0.4 -0.5 3.0 1.5 0.0 -3.0 -3.2 8.6--3.9 -3.9 -3.9 0.44-3.4 3.0 1.5 1.3 0.7 0.7 -0-0 27 Ч О 3.0 6.0 -1-0 -4-0 1.6 5.1 1.0 6*0 0.1 0.0 -0.6 -0.8 -1.0 4.2 -2.1 -3.6 -4.0 4.0 -4.0 0.1 -0.9 -4.0 ø 26 Length 2.0 0.0 -0-1 9**°2** -1.8 -3°0 -4.0 -4.1 -4.0 -4.0 ÷4.0 1.8 1.7 0.5 0.4 -0.3 -0°-9 -1.0 -1.2 1.4.1 -0.2 -0.1 -1.1ŝ 25 -0-1 2.0 1.8 0.0 -0-6 -1.2 -1.5 1.0 -0°5 -2.5 -4.0 -4-0 -4.0 -4.0 -3.6 -0-3 -1.3 2.7 -4.1 -4.1 -1.4 24 7 0.0 -1.8 -0.2 6.0--1.5 -1.6 2.4 2.0 0.3 0.1 -1.7 2.0 -1.0 -2.4 -3.4 -4.0 -4.0 -4.0 -4.0 -3.2 -0.4 -4.0 Ø 53 m E -0**-**-1.5 0.2 -0.1 •0.6 -1.1 ·1.9 1.0 -2.2 -2.8 -3.3 5.5.5 L.L--3.4 2.2 0.6 ~1.J +2.0 -2.0 4.0. -2.7 2.H 6.1 24 55 0.0 -1.0 -2.0 -2.1 - 2 . 2 -2.6 -2-3 9°7-3.2 2.4 V. 4 0.0 8.0--1.4 -2.0 -2-0 -2.1 -2.1 .2.5 -2-8 -2.3 0.9 ĥ 17 13[×] 11 2 7 11 2

NZ M

Vertical Wind Speed,

Table 2A-1(c)

Table 2A-2(a) Wind Speed in Direction of Frontal Motion, W_x

Case 2(B) Series No. 1314,

= 81.97 meters. Horizontal Increment $\Delta \mathbf{x}$ н н = 3278.8 of Field L 5.0 m s⁻¹, Length H . I≫[×]

2.0 9.0 **6**°0 2.2 3.0 5.0 6.5 8.0 9.0 7.0 7.5 51 3.6 2.3 2.6 5.8 8°.3 7.8 6.9 11.0 11.3 11.5 11.3 11.2 11.0 11.5 12.0 11.7 11.3 11.0 11.1 11.3 11.4 10.9 10.5 10.0 11.5 11.7 11.8 11.0 10.5 10.0 10.3 10.7 11.0 11.2 11.3 11.5 11.4 11.3 11.1 11.0 10.0 7.0 9.0 10.0 10.5 11.0 11.0 11.0 11.0 11.3 11.6 11.5 11.4 11.2 11.1 11.0 11.1 11.2 11.0 10.0 50 6.5 2.7 3.0 0 ° 6 **6**.6 5**°**6 6.5 5.0 61 9**°**0 4.4 7.3 9.3 10.0 10.7 10.6 10.4 10.3 10.3 10.2 10.2 10.1 10.0 10.1 10.1 10.2 10.0 5.9 0°6 11.1 11.0 7.6 18 7.5 5.0 5.8 7.0 0°6 8.7 1 7.1 7.4 1.7 0.6 9.5 10.3 11.0 11.2 11.4 11.3 11.2 11.2 6.6 6.1 16 1.1 7.8 7.9 0°6 10.7 11.5 11.3 11.0 7.1 15 8.6 0°°6 8.2 8.2 8.3 14 0.0 8.8 **0°6** 8.8 6°3 13 **6°**6 9.2 10.1 11.0 10.5 10.0 9-6 10-1 10-5 11-0 10-0 9.4 **6** 8 12 9°2 9.5 10.0 9.1 10.3 11.0 **6** 8 II 9,3 **6**.0 10 **0°**6 9.4 9.1 σ 0°6 6°8 8.6 13.0 13.2 13.1 13.0 12.2 11.3 10.4 11.3 10.4 9.4 9.6 8°4 3° 8 0.0 8.6 9.5 10.0 8.2 **0°**6 12.0 12.3 12.5 11.9 8.3 8.0 6.3 9.2 9.5 ŝ 1.1 н.1 8.8 0°* 8.3 8.1 0.9 10.5 7.3 1.3 7.8 7.3 7.5 6. j 6. U 7.0 1.0 0.8 7.0 6.J **6**.0 6.1 11.0 ÷.5 4.0 4.7 4.8 0°9 5°.0 **6.**4 1.0 9 . . 4.7 11 2

-3°2 -3.5 -3.3 -3.0 -2.9 -3.7 -3.4 -3.4 -2.2 +2.4 -2.5 -3,5 **-3**.4 4.E-. -3.2 -2.9 -4.0 -3.7 -3°1 -2.7 -2.8 -3.4 -2.8 -3.4 -3,0 0.1 -0.2 -0.7 -1.1 -1.5 -1.9 -2.4 -2.8 -2.8 -2.9 -2.9 -3.0 -3.2 -3.4 -3,3 -3,3 -3.4 -3.4 -3.0 -3.1 -3.1 -2.B -3,2 -3.2 -3,2 0.0 -U.S -1.0 -1.4 -1.8 -2.2 -2.4 -2.6 -2.9 -3.1 -3.3 -3.4 -2.7 -2.7 -2.5 -2.3 -0.2 -1.0 -1.5 -2.0 -2.5 -3.0 -3.3 -3.5 -3.7 -0.5 -1.0. -1.7 -2.5 . E.E. -2.6 -2.2 -1.8 -0.4 -1.0 -1.6 -1.3 -3.1 -3.1 -3.2 -3.2 -0.5 -1.0 -1.5 -2.0 -2.3 -2.7 -0.6 -1.0 -1.7 -2.3 -3.0 -3.1 -3.1 -3.2 -2:4 -1.8 -1.3 =0°.8 -2.0 -2.2 -2.3 -0-0 0.0 -0-1 -0-5 **₽**°0= 0.5 0.2 -0.2 -0.9 -I.3 -1.8 -2.4 0.0 9.6 1.2 1.6 6.0-0.2 9°°0 1.3 2.0 3.0 9.3 0.0 9.0 1.3 2.0 1.1 0.2 0.7 1.0 1.9 2.8 4.6 **6.** -0.4 ÷. 6 6.3 -0.1 0.6 1.4 1.5 2.3 0.0 0.3 0°5 1.0 1.7 2.1 2.6 3.7 6.2 E.0 0.5 0.7 1.4 1.9 2.5 з.о 4.6 5.4 6.1 0 °.4 0.7 0.9 1.0 1.8 2.2 3.0 5.4 5.8 **9** 0 ÷.5 0.7 1.4 1.9 2.4 1,0 3.6 ó. J 6**.**5 4.5 0 6.7 1.0 1.4 1.9 2.5 0. 9 **6**.0 6°0 7.0 7.3 7.2 7.3 2.5 l.5 1.8 0°E 4.8 6.0 9.0 8.2 7.1 C.1 7.4 2.0 2.2 3.0 5.0 6.5 9.0 0.6 9.0 9.0) • O 7.5 11 01

	meters																				54 - 1 - 1 - 1								
				21	4.0	3.3	2.5	2.1	1.8	1.6	1.4	1.0	6.0	0.4	0.0		41	9.0	9.0	0.7	0.8	6.0	0.9	9.8	0.7	0.6	0.2	0*0	
	∎ 8]		•	50	3.4	3.0	2.3	2.0	1.6	1.5	1.3	1.0	6.0	0.4	0.0		4 0	1.3	1.3	1.1	1.2	1.2	1.1	1.0	1.1	0.8	0.4	0.0	
	Δx			19	2.8	2.4	2.0	1.8	1.5	1.4	1.2	1.0	0.9	0.4	0.0		39	2.0	2.0	1.5	1.6	1.6	1.4	1.3	1.1	1.0	0.4	0.0	
•	lent			18	2.1	1.9	1.7	1.5	1.3	0.9	1.1	1.0	0.9	0.4	0.0		38	2.3	2.3	2.0	2.0	1.8	1.4	1.5	1.1	1.0	4.0	0.0	
	crem		4	11	1.5	1.3	1.3	1.0	1.1	0.5	1.0	0.5	0.4	0.2	0.0		37	2.7	2.6	2.4	2.1	2.0	1.5	1.6	1.1	1.0	0.4	0.0	
	I In			16	1.3	1.0	1.0	0.5	0.4	0.0	0.0	-0.1	-0-1	0.0	0.0		36	3.0	2.8	2.5	2.2	2.1	1.5	1.8	1.1	1.0	0.4	0.0	
	nta.		1	2	1.0	0.7	0.2	-0-1	-0.1	-0.1	-0.1	-0.2	-0-2	-0.3	0.0	.*	35	3+2	3.0	2.6	2.3	2.2	1.6	2.0	1.0	1.0	0.4	0.0	
1314	rizo			14	0.8	4.0	0.1	0.0	-0.1	-0-1	-0.2	-0.3	-0.4	-0.5	0.0		34	3.3	3.1	2.7	2.4	2.3	1.6	2.0	1.0	1.0	0.4	0.0	
0	, Ho			51	1.0	9.0	0.0	0.1	0.0	-0-2	-0.3	-0-5	-0-6	9°0-	0.0		33	3.5	3.3	2.8	2.6	2.4	1.7	2.0	1.0	1.0	0.5	0.0	
es D	Ē			71	1.3	0.7	0.3	0.2	0.0	-0.1	-0.2	-0-4	4.0-	-0-1	0.0		32	3.7	3.5	2.9	2.7	2.5	1.7	2.0	1.0	1.0	0.5	0.0	
TIAC	278.8	•			0.6	6*0	0.6	0.1	0.2	-0-1	-0.1	-0-3	-0-3	-0-7	0.0		31	3.8	3.7	3.0	2.8	2.6	1.7	2.0	1.0	1.0	. 0.5	0.0	
(n)	с С			2	0*0	0.1	-0.2	-0.1	0.2	0.0	-0.1	-0.1	-0.1	-0-3	0.0		30		3.8	3.1	2.9	2	1.8	2.0	1.0	6.0	0.5	0.0	
e V	Ч Г			.	-0-2	-0-B	-1-0	0.0	0.3	-0-1	0.5	0.4	0.0	0.1	0.0		29	4.1	0 - 4 - 0	3.2	3.0	2.8	1.8	2.0	1.0	6.0	. 0.5	0.0	
Cas	riel		;	Ð	-0-5	-0-0	-0-5	0.1		-0-1	1.0	. 1.0	0.2	0.4	0.0		28	4.1	4.0	9.3	1 2.9	2.5	1.9	2.0	0 1.0	5°0	.0.5	0.0	
	of]			•		-0-0	0.0	0.1		-0-1	•••	0.0		3.0	0.0		27	5 4 5	4.0	3.3	1 2.6	3.2.6	1.5	1.5	1.0	5*0 0	0.5	•••	
	ıgth			D .	2 -1.(2 -1.(-1.0	-0-1	-0-0	-0-1	0.0	2 0.1	0°0	.0			26		0 4 -0	5 3.	5 2.	5 2.0	0 2.0		0 1.0	0.0		0.0	
	Lei			n	3 -1.	4 -1.		1 -1.		7 -0.	6 -0.	5 -0.	4	4 -0.	• 0		25	2 4.	0 4.	3.1	4 2.	3 2.	9 2.	6 1.	0	9 0.	•	0	
ī	o. ا			đ	5 -1 -		-1- z	2 -1.	0 -1-0	0-0	-0- 6	9 -0-	-0- 1	-0- 1	•••		24	2 4.	0 .4	0 3.	3 2.	2 2.	8	2	0	0.0	4 0.	0	
	ш / ш /			9 -	• -1.	7 -1.	4 -1.	4 -1.	2 -1-	J -1.	2 -0.	1 -0.	с <u>-</u> 0.	ч - 0.	0 0		23	14.	7 4.	а 3.	2 2.	0 2.	7 1.	5 1.	0 1.	9 0.	4 0.	• • •	
	ۍ ۳			•	-1- 8	8 -1.	6 - L.	5 -1.	-1- 5	5-1.	3 -1.	1 -1.	-1-	4 -0.	••		22	0 4.	ч. Э.	5 2.	1 2.	8 2.	6 1.	4 1.	0 1.	9 0.	4 0.	•0	
1	××		-	•	-1.				-1.					-0-			71	*	.	2.	2.		.1.	-		.0	•	•	
					-	-		30	-		-	ਤ ਹ		1.0				-	-	5				-		7	C 1		

Table 2A-2(b) Wind Speed Perpendicular to Frontal Motion, W_v

Case 2(B) Series No. 1314,

Table 2A-2(c) Vertical Wind Speed, W_z

Case 2(B) Series No. 1314,

81.97 meters m, Horizontal Increment $\Delta x =$ 3278.8 H of Field L s , Length 5.0 m H 13×

1.0 0.0 -0.2 -2.6 -4.9 .4.8 -2-8 2.0 2.4 -4.2 4-1-4 3.2 3.7 21 - --1.7 0.0 5°0 2.0 2.2 3.5 2.7 а. 5 3.1 3 -1.6 -0.5 0.3 1.8 2.0 2.0 2.1 о• С 2.5 2.7 19 2.0 2.0 0.0 2.4 0.1 0.7 1.7 1.8 1.9 1.9 16 0.2 •• 0.7 1.0 10 17 17 1.6 1.7 1.7 1.9 1.7 1.8 17 1..4 9°2 0.7 1.3 1 . 4 1.5 I.,3 1.7 1.7 1.6 1.5 16 1.7 1.8 1.9 1.7 **1**.6 0.7 1.1 1.8 1.7 1.7 15 2.0 2.0 1.6 2.0 2.0 2.0 1.7 0.3 9.0 1.9 1.9 * 2.1 2.1 1.9 2.0 2.0 0.0 9.0 1.4 1.5 1.6 1.9 2 2.1 2.0 2.2 0.00 0.3 1.1 6.0 1.2 1.8 2.1 2.2 25 2.2 2.2 2.1 0.0 0.0 6.0 1.5 2.0 2.0 2.1 2.2 77 2.0 0.0 2.1 2.1 0.6 1.5 2.0 2.0 2.1 2.2 2.1 10 2.0 1.3 2.0 2.0 2.1 2.0 1.2 2.0 1.6 1.5 0.3 6 6.0 0.0 1.0 0.1 0.7 -1.U -0.Y -0.7 -0.6 -0.4 -0.2 -0.1 1.0 **5**.0 1.0 1.7 2.0 2.0 1.0 -Coc -0.1 0.0 0.0 9.0 0.8 1.4 1.6 0.2 0.5 0.0 -1.0 -2.0 -1.0 -0.5 -1.0 -1.6 -2.2 -1.1 9.0 1.2 0.0 0.0 -0.5 -1.0 -1.5 -2.0 -1.0 9.0 1.0 0.2 ð 0.0 0.0 6.0 0.4 0.5 0.7 0.1 0.1 0.0 0.3 0°. 0.4 0.5 0.0 -0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 -2.1 -1.0 -2.1 -1.0 -1.0 -1.0 -1.0 -1.0 -2.0 -1.3 - 1.2-- 7.1 -1.1-0.0 0.0 -2.1 0.1 11 2

0.0 -1.3 -2.7 -4.0 -5.5 -7.1 -8.6-10.1-11.1-12.1-12.7-13.4-14.0-14.0-14.1-14.1-14.1-14.1-14.2-14.2 0.0 =2.0 =3.9 =5.4 =6.9 =8.5=10.0=10.9=11.9=12.6=13.3=14.0=14.0=14.1=14.1=14.1=14.2=14.2 0.6 -0.9 -2.3 -3.7 -5.1 -6.6 -8.0 -9.0-10.1-11.1-12.1-12.8-13.4-14.1-14.1-14.2-14.2 0.0 -1.4 -2.7 -4.1 -5.1 -6.1 -7.4 -8.7-10.0-11.0-12.0-12.4-12.8-13.3-13.7-14.1 0.0 -1.2 -2.4 -3.6 -4.8 -6.0 -6.7 -7.3 -8.0-10.0-10.7-11.3-12.0-12.1-12.1 0.7 0.0 -0.7 -1.3 -2.0 -3.3 -4.7 -6.0 -6.7 -7.3 -8.0 -8.5 -9.0 -9.5-10.0 0.3 0.0 -2.0 -4.0 -4.5 -5.1 -5.6 -6.1 -6.6 -7.2 -7.7 -8.2 0.7 1.7 1.3 1.0 1.3 1.4 2.7 2.1 6°0 2.0 2.8 1.9 4.0 4.0 2.0 2.8 1.0 4.0 ۍ**،** 5 4.1° 2.0 2.2 J. 8 4.0 4.2 4.1 1.0 2.0 2.4 -1.4 3.2 4.0 8.4. 3.7 4 ° 2 2 -

14

40

39

38

ŝ

36

35

46

Ē

32

31

90

29

38

57

26

25

24

23

22

71

	.		<u></u>				·····	• •			· · -		 جر کند ہے		•••••						· · · · · · ·		
	21	11.5	11.8	12.1	11.9	12.2	12.2	11.9	11.3	11.2	10.6	10.6	41	0.6	0.5	0.3	0.2	0.1	0.1	0.2	0.3	4.0	0.5
	30	2.5	2.6	2.3	2.4	2.8	2.6	1.8	1.3	1.4	0.5	9:01	40	0.7	0.6	0. 4	0.3	0.3	4.0	0.4		0.5	0.7
	19	2.7	2.8	2.5	2.8	2.7	2.4		1.3	1.2	0.5	0.6	39	0 . 8	0.7	0.5	0.3	0.5	0.6	0.7	0.6	0.5	0.8
	18	2.91	3.0 1	2.7 1	2.7 1	2.7 1	2.2 1	1.7.1	1.4.1	1.1	0.4 1	0.5 1	38	8.0	8.0	9.0	0.4	9.0	6.0	6.0	0.7	0.6	1.1.
	-		. 6 .	1 6 •	.7 1		• 0	.6		1 6.	.5 1	1°2 1	E	6.		6.		8.	.1		8.		+
		ET 0.	. 8 12	.7 12	.6 12	.3 12	·8- 12	.6 11	.4.11	.7 10	5 10	.4 10		.2	.1	• 5			4		<i>.</i>	• •	
	7	9 13	1 12	4 12	5 12	0 12	5 11	5 11	2 11	7 10	6 10	3 10	 ň		्रम् स्	S -	4		-		39	-	1 1
	15	9 12.	6 12.	2 12.	3 12.	6 12.	2 11.	2 11.	0 11.	7 10.	6 10.	6 10.	92	7 1.	5 1.	8	7. T.	9.1.		2	а 1.	6 2.	4
	14	12.	12.0	12.	12.	11.0	H.	11.	н.	10.	10.	10.1	34	-	-	1.	-	-	2.	2.	8	2.	. 2.
	13	12.8	12.6	11.9	12.0	11.3	10.9	10.9	10.8	10.6	10.7	10.8	EE	1.9	1.8	2.1	2.0	2.2	2.5	2.6	2.8	Э.1	3.0
	12	12.7	12.6	12.0	11.8	11.3	10.6	10.6	10.6	10.6	10.7	10.4	32	2.0	2.1	2 • 3	2.3	2.6	2.8	3.2	3°5	3.6	3.7
	, 11	12.8	12.6	12.2	1,5	11.4	8.01	10.6	E.º.01	10.2	10.0	6*6	31	2.2	2.3	2.4	2.6	2.9	3.3	3.7	Э,9	4.2	4.3
	10	2.8	2.6 1	2.3	1.8	1.4	6.0	9.0	0.1	9.7	6.9	8.1	30	2.3	2.4	2.6	3.0	3.4	3.9	4.5	4 °.	4.7	5.5
	5	2.9 1	2.7 1	2.4 1	2.1 1	1.4.1	1.1	0.6 1	9.8 1		9°9	1.4	59	2.4	5 • 2	3.1	9. 3	9.4	4.4	5.2	5.6	6.2	9 •9
	30	.1 6.		• •		. 8.	.2 1	.6 1	~	•			80	5	9	5	6.	4	4	0	9	-	
	~	.0 12	.9 12	.7 12	.6 12	.1 11	.7 11	.0 10	.5 10	ъ о.	2	. 6.			4.			т 5		<u>,</u>	<u>ه</u>	.1	
	_	9 13	9 12	9 12	7 12	5 12	1 11	4 11	9 10	3 10	8	9	2 2	8	3	4	- 4	, é S	9	1 1	7 8	4	6 8
	Ű	8 12.	8 12.	9 12.	9 12.	8 12.	6 12.	5 11.	0 10.	6 10.	 		5	6	4	4 4	8 2	.9 .9	8 5	6 9	6 8	5 10.	5 5
	ŝ	12.	12.	12.	12.	12.	5 12.	11.	11.	1 10.	2.	. 7.	25	۲. ۲.		••			-6 -	9 10.	9 10.	1 10.	5 10.
	4	12.7	12.6	12.9	12.6	12.6	12.6	11.5	Ú.1	10.	30	30	24	8.8	В	9.1	10.0	10.6	10.4	1.9	10.	10.	10.
•	~	12.7	12.7	12.9	12.9	12.7	12.6	11.6	11.2	10.1	о • р	P.1	23	4 °7	10.2	10.6	10.8	11.0	11.3	11.3	11.1	10.8	10.6
	~	12.4	2.51	12.0	12.7	12.7	12.3	11.6	0.11	9.4	н.1	7.0	57	10.5	11.0	11.4	11.5	11.6	11.7	11.0	11.2	11.0	10.0
	÷.	12.1	12.2	12.3	12.4	12.3	12.0	L.1	18	9 9	7.6	1.3	21	11.5	11. ⁸	12.1	11.9	12.2	14.2	11.9	11.3	11.2	10.6
		11	10	3	æ	~	•0	'n	4	7 1	2	-		11	10	Ť	30	-	¢	n	4	-	8
																		•					
																	•						

Table 2A-3(a) Wind Speed in Direction of Frontal Motion, $W_{\rm X}$ $_{\rm Case}$ 3(C) Series No. 1731,

is×

Wind Speed Perpendicular to Frontal Motion, W_v Table 2A-3(b)

142.86 meters n m, Horizontal Increment $\Delta {\bf x}$ Series No. 1731, Field L = 5714.4Case 3(C) s-1 s , Length of E 8.6 H

13×

• 0--0.5 + · · · · ÷.... 0.0 -0.6 + 0 --0-5 -0.2 -0.3 -0-2 23 -0.5 0.0 8.0-9.0--0.5 -0.3 -0.1 •0.6 -0.2 -0.1 -0.1 50 -1.0 6.0--0-7 -0-2 -0.5 -0.2 -0.1 0.0 0.0 0.0 0.0 19 -1.1 -1.1 -1.2 -1.2 -1.2 -1.3 -1.4 -1.5 -1.7 -1.8 -1.9 -2.1 -2.2 -2.0 -1.8 -1.6 -1.2 -0.9 -1.7 -1.9 -2.0 -2.0 -2.1 -2.2 -2.0 -1.9 -1.4 =0°.9 -0.5 0.0 -0.2 -0.1 0.0 0.0 -0.1 18 0.0 0.0 0.0 -1.0 -1.1 -1.1 -1.0 -1.0 -1.0 -1.2 -1.4 -1.5 -1.7 -1.9 -1.7 -1.5 -1.0 -1.0 -0.8 -0.5 -0.3 -0.1 -0.1 1 0.0 -0.1 -0.1 ±0.4 -0.2 -0.2 -0.3 -0.2 -0.3 -0.4 -0.5 -0.6 -0.6 -0.5 -0.3 -0.2 1.6 0.0 -0-3 -0.2 -0.3 -0.4 -0.6 -0.4 -0.3 -0.6 -0.5 -0.4 -0.9 -0.9 -1.1 -1.2 -1.4 -1.3 -1.2 -1.1 -1.0 -0.8 15 0.0 -0.1 -0.2 -0.3 -0.4 -0.3 7 0.0 -0-9 -0.6 -0.6 -0.7 -0.9 -1.0 -1.0 -1.1 E 0.0 -0.8 -0.8 21 0.0 1 0.0 -0-1 -0.2 -0.6 à 0.0 -1.3 -1.4 -1.5 -0.8 -0.9 •0•9 -0.5 -0.1 -0.1 0.0 -0.1 0.0 -0-1 ÷.0--0.1 9°0-0.0 -1.0 -1.0 -1.0 -0.9 -0.5 -0.3 -0.2 -0.7 0.0 8.0-8.0--0.4 -0-2 -1.3 -1.3 -1.3 -0.6 0.0 -0-3 -0°8 -0-1 -0.4 -0.4 -0.4 -0.3 -0-6-0-0.0 -0.4 -0.3 -0-8 -0-5 -0.7 -1.3 -1-1-0.0 -0° -0.4 =0°0 -0.6 -0.4 0.0 -1.0 -1.1 -1.0 .8.°().... -0.6 -0.6 -0.9 -1.0 -0.6 -0.0 -U.5 -1.2 -1.2 -0.9 +0°-0.0 -1.0 1.0--0.6 -0.6 2 11

0.2 0.2 0.0 -0.1 -0-1 -0.1 0.3 0.2 0.1 0.0 Ę 0.0 0.2 0.0 0.0 0.1 0.3 **.**.0 °.0 ŝ 0.0 0.5 0.4 6 0.3 0.1 0.1 4.0 0.2 0.2 0.1 33 0.2 0.0 0.2 0.2 9.0 0.5 0.4 4.0 e.º E.0 e... 38 0.0 e.0 0.3 0.2 0.7 9.0 0.5 0.5 4.0 0.4 4.0 33 4.0 0°.3 0.0 0.7 0.7 0.6 9.0 ÷.0 0.5 0.5 0.5 36 9.0 0.5 0.5 0.7 9.0 9.0 0.0 8°0 9.8 0.7 0°. 35 9.0 0.5 0.0 6.0 6.0 0.8 0.8 0.7 0.7 0.6 0.6 34 0. 4 ••• 6.0 6.0 0.7 9.0 1,0 1.0 0.8 9."0 0.7 BB 1.1 0.4 0.0 1.3 6°0 1.0 6.0 0.8 0°8 0.7 6.0 32 1.5 6.9 0.0 1.3 0.8 1.7 1.1 6.0 1.0 6.0 **0**•9 E 1.1. 1.0 6.0 0.2 2.0 2.0 1.6 1.6 1.9 1.0 0.0 30 0.2 3°0 2.4 2.3 2.1 2.9 1.4 1.5 1.1 6.0 0.0 56 3.2 2.5 2.0 1.0 1.0 0:1 0.0 4.0 3.0 2.7 1.7 38 3.4 1.0 5.5 0.1 0.0 4.0 э.0 2.4 2.0 1.2 4.1 27 0.0 0.0 0.0 3.1 2°9 2.0 1.2 1.0 0.4 9.0 4.1 26 -0.2 -0.2 0.0 3.0 0.5 0.3 2.0 1.2 1.0 0.0 0.2 25 -0.1 -0-3 0.0 0.4 0.0 -0.1 -0.4 0.5 0.2 0.2 -0.2 24 0.0 0.0 -0.2 -0.2 -0.4 -0-6 -0.5 0.1 -0.0 -0.4 -0-5-0-3 53 0.0 -0.2 -0° -0.3 -0.4 -0°4 -10.1 -0.4 -U.6 -U.2 5.2 -0.4 ÷0.5 4.0-2.0--0-3 0.0 4.0-4.0--0-2 -0-5 17 -2

SIS														 			· ·								
mete		21	2.0	.2.0	-2.0	-2.0	.1.8	.1.1	•1°.9	-2.0	-2.0	2.0	-2.0	1	4.2	4.2	4. 3	4.3	4.3	4.3	4.2	4.1	4.1	а. 5	3.2
86.1		20	2.0 -	2.0	2.0 -	2.0	1.9	1. B	1.9	2.0	2.0	2.0	2.1	₽ ₽	4.2	4.2	4.3	4 •3	4.3	4.3	4.2	4.1	4.1	Э.Э	3.0
42.		5	•	• 0 •	- 0 -	2.1 -	- 0.2	- 6 - 1	- 8 - 1 - 8	. 8	2.0-	5.0	2.1 -	39	4.2	4.2	4.3	4.3	4.3		4.2	4 . 1	4.0	3.0	2.7
1	4	3	0		•		9 9	6.	9 6	i Q		а Со С	6	8	1.2	1.2	e.4	f. 3	£°3	5 .5		0.4	4.0	2.8	2.5
Δx	ж К.,		0 -2	1 -2	.1 -2	1, -2	1 -2	- 0	- 0.					-		2.	2		.2			•	30 10	50	• 3
lent	•	5	0 -2.	1 -2.	1 -2	2 - 2	1 -2	0 -2	0 - 2		1 - 9	1- 5				4	2.4	2	2	2			•		•
cren		10	-2-	2	-2.	2 -2.	2 - 2 -	1 -2.	0 -2.	02.		6 -1-	6 -1-	Эй Эй	. 4 .	9 1 1	2	ج م		ب	4	5	4	5	2
Inc		15	-2.0	-2.1	-2.1	-2.	-2-	-2.1	-2°(-2-	-2.		- 1 -	35	4	*	.4	. 4 .	5 4 •		4.	ë.	2.3.	5	
tal		14	-2.0	-2.1	-2.1	-2.1	-2.2	-2.2	-2.1	-2.0	-2.0	-1.8	-1.8	34	÷.	4	4	4	-	4	4	m		2.	-
izon		13	-2.0	-2.0	-2.1	-2.1	-2.2	-2.2	-2.1	-2.1	-2.0	-1.9	-1.9	33	4.1	4.1	4.2	4.2	4.2	4.1	* • 0	3.0	3.0	2.1	1.1
Hori		12	2.0	2.0	.2.0	-2.0	-2.1	-2.2.	-2.1	-2.1	-2.0	-2.0	-2.0	32	4.0	4.1	4.1	4.1	4.1	4.1	4 .	2.8	2.8	2.1	6.0
"		11	1.0	2.0 -	2.0	2.0	2.1	2.1	2.1	2.1	2.1	2.1	1.9	31	4.0	4.1	4.1	4.1	1 .4	4.0	4.0	2.6	2.5	2.0	0.6
4		0	- 0-0	4	5.0 -	- 6-1	2.0 -	2.1 -	2.1 -	2.1 -	2.1 -	2.0	1.8	30	4.0	4.1	4.1	4.1	4.1	4.0	3.1	2.3	2.3	1 °5	6 *0
714		-л -л	0	1 39		- 1 -		0	0.0	0		• • •	- 0 - 2	67	3°5	3.5	3.5	3.4	3.4	3.1	2.2	2.1	2.0	1.0	0.0
<u>د</u> ۱			0	~	- 6	5 -1		.0	.0.				Т.	30		•	30	29	1.1	- 5	.	0.	0.10	0.5	. 1.0
Т.		-	0	2 -0	0- 1	2 -1	6 + 1	8 =2	0 -2	0 -2	0 -2	.0 -2	8 -2	2	່ ຕີ. ເທ	С.	5		0.		4	•	•	•	۲. ۳
ielc		1)	6 -0.	0 -1-	4 -1.	- - -	6 -2 .	0 -2	0 -2	0 -2	5 -1.	'n	0	6	1 2	0	0	0 1	0 8	0	0 -1	0 -2	1- 0
EL LL		و .	0	5	-0-		7			3 =2.	-2-	0 -2.	0 -1.	26	0 2.	9 1.	1.	0	7 0.	0	0-0	-1-0	0 -2	0 -2	8 = 2
ch o		ŝ	-0.1	0.	0-	.0-	-1.2	7	1	-1-	7	-2.	-2-	25		•	• •	0	• 0• • 0		0 +2.	0 -2.	0 -2.	0 =2.	6 -1.
engt		4	-0.1	-0.2	÷0-	-1.0	-1.4	-1-3	-1.3	-1.5	-1.7	-2.0	-1-9	24	0.0	9 9	-0-	0-	5	- 2.	-2.	-2.	-2-		
਼ਾ ਜ		'n	-0.1	-0.2	-0.1	-1.2	-1.6	-1.5	-1.5	-1.7	-1.8	-1.9	-1.8	23	-1.0	-1-0	6.0-	-1.0	-1.6	-1-9	-7.0	-2.0	-2.0	-7.0	-1.4
່ທ		N	0.0	.0.2	6.0	-1.0	P.1-		· · ·	-1 · 8	-1.9	·1. y	-1.5	77	-2.0	-2.0	-1-0	-1.5	-1.7	-1.8	-2.0	-2.0	-2.0	-2.0	-2.0
.6 m		7	0.0	. 1 .	1.0	1.7 -	2.0.	۰ 0 · 7	2.0	0.7	2.0	н. н	, , , ,	51	.2.0	2.0	0.2.	-2.0	• 1 • 8	-1.7	-1.9	-2.0	-2.0	-2-0	-2.0
00 			-	-	י ד,	1 70	-	، م	י ה	3 .#	, ~	~	-		11	10	স	10	-	ō	ŝ	4	-	2	
13×																									

Table 2A-3(c) Vertical Wind Speed, M_z

Series No. 1731,

Case 3(C)

Table 2A-4(a) Wind Speed in Direction of Frontal Motion, W_x

1459, Series No. Case 4(D)

meters = 192.31 × m, Horizontal Increment 7692.4 = 11.6 m s⁻¹, Length of Field L = ×

8.6 14.5 14.0 7.5 14.6 14.1 13.6 14.1 15.0 15.3 15.0 14.7 15.0 15.3 15.6 15.4 15.5 15.5 15.6 15.4 15.2 15.0 15.4 15.7 15.0 14.2 13.5 11.9 15.8 12.1 12.7 13.2 13.8 14.0 14.1 14.8 15.4 14.5 13.6 13.6 13.6 13.6 13.6 14.1 14.5 13.6 12.6 11.1 11.3 14.5 14.2 14.7 14.5 14.1 14.6 15.1 15.6 15.6 15.6 15.6 15.1 15.6 15.5 15.4 15.3 15.1 15.0 14.9 14.8 14.7 14.5 14.4 14.3 14.2 7.6 7.3 14.5 13.8 14.2 14.5 14.9 15.2 15.6 15.2 14.8 15.2 15.6 15.5 15.4 15.3 15.1 15.0 14.9 14.8 14.6 14.5 14.3 14.1 14.1 14.6 15.0 15.4 15.3 15.1 15.0 15.2 15.4 15.6 15.5 15.4 15.2 15.1 15.3 15.4 15.2 15.0 14.7 14.7 8.5 7.6 11.7 14.3 14.9 15.5 15.5 15.5 15.4 15.2 15.1 15.3 15.4 15.6 15.4 15.3 15.1 15.4 15.6 15.3 15.0 15.1 8.6 9°6 15.6 13.0 14.4 15.0 15.6 15.4 15.6 15.5 15.4 15.2 15.1 15.3 15.4 15.6 15.4 15.1 15.4 15.7 15.6 15.1 11.0 11.0 11.6 11.6 11.6 11.6 11.6 13.6 13.6 11.6 10.6 9.5 9.6 11.6 11.8 11.9 9.6 15.5 11.6 12.2 12.8 13.4 13.5 13.6 13.9 14.1 12.9 11.6 11.7 11.7 11.8 11.9 12.0 10.8 14.8 15.6 15.3 15.0 15.3 15.6 15.5 15.3 15.4 15.5 15.5 15.6 15.4 15.1 15.5 15.8 14.0 01 1

3.6 1.9 0.1 -0.3 -0.7 -1.1 -1.5 4°0--2.6 -2.7 1.6 0.5 -0.6 -1.0 -1.5 -1.9 -2.4 -2.5 -2.5 -0.8 -1.3 -1.8 -2.3 -2.5 -2.7 -0.7 -1.1 -1.5 -1.9 -2.3 -2.7 0.3 -0.4 -0.7 -1.0 -1.3 -1.5 -1.8 -2.1 -2.4 -2.5 -2.5 -2.5 -2.6 -2.4 -2-5 -0.9 -1.3 -1.8 -2.3 -2.5 0.1 -2.4 9.0 0.3 -0.4 -0.7 -1.1 -1.4 -1.7 -2.1 0.2 -0.5 -0.8 -1.1 -1.4 -1.6 -1.9 -2.2 0.7 -0.3 -0.6 -0.9 -1.2 -1.5 -1.8 -2.1 0.0 -0.5 -1.1 -1.6 -1.9 -2.2 1.1 5.6 3.6 1.6 0.2 0.2 -0.4 -0.3 **6.**6 2.6 4.6 0.5 1.1 2.3 3.6 5.6 7.6 0°5 0.9 1.2 Ē 6.1 7.6 2.4 3.4 4.6 1.0 1.5 1.2 32 **6.**6 7.6 3.0 **5.**6 1.7 1.6 3.5 5.0 1.8 6.0 31 7.6 7.1 7.5 2.6 5.6 9**.**9 2.3 4.4 1.1 1.6 3.6 30 7.6 8.3 7.5 8•0 7.6 4.6 3.6 5.0 5.3 6.5 1.8 5.6 8.1 6.8 7.6 6.6 9.6 8.0 9°8 5.7 7.5 6.9 7.6 38 9.9 9.6 6.6 1.6 13.5 13.5 12.9 12.2 11.6 10.1 13.6 13.1 12.6 12.0 11.3 10.7 10.2 9.6 14.5 14.2 13.9 13.6 12.6 11.6 10.6 14.3 14.1 14.0 13.8 13.6 10.3 14.2 14.1 14.0 13.8 13.7 13.6 9.7 14.2 14.0 13.9 13.7 13.6 13.4 10.5 27 11.9 11.8 11.7 11.6 11.0 10.5 **0°6** 9.7 8.1 14.5 14.3 14.1 13.8 13.6 11.6 26 11.3 11.4 11.6 10.7 9.8 **6°**2 8.6 25 9.5 8.3 24 9.6 9.0 23 1.1 d.6 3.6 22 7.5 14.5 14.0 21 10 11

41

40

6

9E

37

36

35

3 Wind Speed Perpendicular to Frontal Motion, [able 2A-4(b)

1459, No. Series Case 4(D)

l≥×

meters = 192.31Δx Horizontal Increment п, 7692.4 JI. Ч Field of Length ll.6 m s⁻¹, 11

... 1.1 1.1 ••• 1.0 6.0 9.0 5 0.2 0.0 0.5 9.0 21 Ŧ . . . 1.3 I • 3 1.2 1.2 9.0 0.1 0*0 9.0 0.2 0.8 0.7 20 9 1.2 1.2 1.2 1.1 1.0 6.0 9.0 0.1 0.0 1.0 1.2 8.0 0.1 61 39 1.1 0.0 1.1 1.0 1.2 1.1 1.0 6.0 6.0 E.0 0.1 0.0 1.2 18 38 1.1 1.1 -0.1 0.0 1.1 1.1 6.9 0.8 8.0 ••• 1.5 . 11 57 1.0 0.0 1.0 1.0 1.0 6.0 9.0 9.0 ** 0.1 0.1 1.8 1.8 9 36 6.0 6.0 8.0 9.0 0.8 0.0 2.0 0.8 . 2.0 0.1 2.2 0.8 15 35 6.0 6.0 6.0 6.0 0.2 0.0 2.7 2.6 6.0 2.3 6.0 0.7 4.0 0.3 1 34 1.0 1.0 1.0 1.0 Э.0 2.9 6.0 **.**.5 0.2 0.0 0.7 .0 Ē 33 1.3 1.2 1.2 0.3 1.0 0.0 6.0 0.7 0.5 0.5 4.0 3.8 12 33 1.2 1.1 3.9 1.1 1.1 6°0 6.0 0.6 0.3 0.0 5.0 4.4 0.7 0.5 11 E 1.0 0.0 1.0 1.0 6.0 6.0 1.0 8.0 9.0 0.6 5.0 4.0 4.0 5.2 10 30 6.0 9.0 6.0 0.0 9.0 8.0 1.0 0.8 0.7 9.6 4.0 5.1 4.5 4.1 5 29 1.0 1.0 1.0 1.0 1.0 **8**.0 0.7 9.0 4.0 0.0 3.5 3.0 2.5 30 28 1.0 1.1 1.1 1.1 1.1 1.1 6.0 8.0 0°0 .0 0.0 1.9 1.5 1.3 -17 **S**•0 0.0 1.1 6.0 ... 1.2 1.2 1.1 1.0 6.0 9.0 1.0 6.0 . 26 0.0 1.1 1.0 1.2 ... 3 2 1.2 0.9 0.7 0°5 1.1 1.0 25 0.0 1.2 1.3 1.4 2 1.2 1.0 0.7 0.5 • 3 1.1 1.2 24 0.4 1,2 1.2 1.2 1.2 1.2 1.1 1.0 9.6 9.0 0.0 1.2 1.1 m 23 1.1 1 1.2 1.0 **c.**0 ***** • 0 0.0 1.0 ... 1.1 1.1 R.0 0.7 1.2 N 2 1.1 1.0 0.9 9.0 9.0 0.3 0.7 0.5 0.0 1.4 51 11 0 2

ORIGINAL PAGE IS OF POOR QUALITY

0.5

0.8 0.7 0.6

6.0

1.2 2 6.0 .0

1.5 1.0 0.9 1.3

1.8 1.7 1.4 1.3

9.4 3.1 2.6

0.0

9.0

6.0 8.0 0.7

5.0

2.5

3.3

3.5 2.8 2.3 1.7

2.8 2.6 2.0

2.0 1.8 1.5 1.0 6.0 0.2 0.6 0.0

1.5 1.0 1.1

6.0 8.0

... 1.1 0.9

1.2

1.0

2.0

3 1.0 1.0

1.0 1.0

6.0

6.0 8.0 0.6 0.5

2.2 2.0

3.0

0.5 9.4 0.2 ... 0.0

0.1

... 0.5 0.0

0.1

0.0

0.0 0.8

0..1

0.1 0.7

0.3

+.0

9.0 0.0

0.7

0.7

9.0

0.0

0.0

0.0

0.0

•••

0.0

0.0

0.0

9.3 0.0

0.3

0.2 0.0

0.2

0.0

0.0

..0 0.2

0.5 **.**. 0.2 0.2 0.0

6.0 0.5

1.1

1,5

1.7

1.9

2.0 1.3

1.3

1.0

6.0

0.8

9.0

0.8 6.0

6.0 0.7

1.6 1.8

> 2.3 2.1 1.5

2.5

..0 ...

9.0

0.9

1.0 0.0 0.6 0.0

1.2

1.2

1.0 0.2

6.0 0.3 0.5 0.0

8.0 0.3 0.5 0.0

· · · **0.4** 0.4

9.0

9.0 0.3

9.0

0.3

0.2

0.2

0.3 4

> 0.5 0.7 0.4 0.2 0.3 0.0

Table 2A-4(c) Vertical Wind Speed, W_z

meters m, Horizontal Increment $\Delta x = 192.31$ Series No. 1459, Field L = 7692.4Case 4(D) -1 Length of = 11.6 m

X IB

-0.2 0.0 -0.2 -0.1 -0.2 -0.2 -0.6 -0.6 -0.1 -0.4 0.0 5 -0-3 -0.7 -0.6 -0.4 -0.9 -0-B -0.4 ***** • • • -0 • P -0-8 -1.0. -4.1 -4.1 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.5 -1.0 -0.5 50 -1.0 -0.7 -0.7 -0.5 -0.8 -0.6 -0.7 -1.1 -1.7 -1.3 -1.6 -1.2 19 -1.3 6.0--1.0 -1. 4 8 -1.5 "2.9 "2.6 "2.3 "2.0 "2.0 "2.0 "2.0 "2.0 "2.0 "2.0 "2.1 "2.0 "1.8 "1.6 "1.4 "1.2 "1.0 -3.6 -3.4 -3.1 -2.9 -2.6 -2.4 -2.1 -2.1 -2.2 -2.2 -2.1 -2.0 -1.8 -1.6 -1.3 -1.1 -1.7 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.7 -3.4 -3.1 -2.9 -2.6 -2.3 -2.0 -4.0 -4.1 -4.1 -4.1 -4.1 -4.0 -4.0 -4.0 -3.7 -3.5 -3.3 -3.0 -2.8 -2.5 -2.3 -2.0 -1.2 1 -1.5 -1.8 -3.0 -2.7 -2.3 -2.0 16 -1.8 -2.0 15 -2.0 -2.3 4 -2.6 -3.2 -3.2 -3.2 -3.2 -3.0 -2.7 -2.5 -2.2 13 -3,3 -3.0 -4.0 -4.0 -4.0 -3.7 -3.3 12 11 -3°6 2 -3.8 -3.9 -3.5 -3.7 -3.9 -3.9 ÷3.4 e.e. -3.4 -3.2 -3.7 -3.9 -4.0 -4.1 -4.1 -3.6 -3.9 -4.0 -4.0 5.05--2.5 -J. 8 -4.0 0.7. -4.0 -4.0 - J. 4 -2.1 -3.0 -4.0 -4.0 -3.5 -4.0 0.4-0.4-0.4-°.2. 2 11

0.0 6.2 6 ° 2 0.0 <u>ي</u> 5.0 2 9.0 2.2 0.1 7 0.1 -0.3 6.1 6.1 5.7 3.7 2.8 2.2 4.3 5.1 4.8 40 6.1 5.9 2.7 2.1 0.1 -0.7 5.4 **4**.6 3.5 8.4 4.2 39 5.6 5.1 4.6 4 3**.**2 2.5 2.0 0.1 4.4 -2.0 -1.7 -1.3 -1.0 6.9 38 2.3 2.0 0.0 5.2 4.9 4.4 5.6 3.7 3.0 37 0.0 1.5 5.2 4.9 4.6 . С. С. 2.7 2.2 **7 1** 1.1 36 2.0 L.0 0.0 4.3 3°9 3.0 2.4 ÷.5 4.8 **3.**9 35 4.0 1.3 0.5 0.0 =0.4 =0.8 =1.2 =1.6 =2.0 =2.7 =3.3 =4.0 =3.0 =2.0 =1.0 -0.4 -0.8 -1.2 -1.6 -2.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.0 4.4 4.2 3.4 2.6 2.2 Э.7 34 3.2 2.3 1.9 0.7 0.0 4.0 3.8 3.6 **5**.7 E 1.4 0.0 -0.5 -1.0 -1.5 -2.0 -2.0 -2.0 -1.0 3.4 3.2 2.8 2.4 0.0 3.6 1.9 32 0.9 -0.2 -0.5 -0.7 -1.0 -0.5 2.7 2.3 3.2 2.9 1.3 1.9 ТE 2.8 2.5 2.3 1.8 9.0 6 **.** 4 1.1 30 2.4 2.1 1.9 1.5 6°0 0.0 0.0 -0.1 29 1.4 1..1 1.7 2.0 4.0 0.1 2.8 1.3 6.0 **0.**4 0.1 1.7 0.2 12 9.0 0.5 9.0 0.0 1.4 0.5 . 0 0.1 3.6 0.0 1.1 0.4 ••• С. О 0.2 0.2 0.2 25 6.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 \$2 0.0 0.0 -0-1 0.0 0°9 0.0 0.0 -0.1 0.0 =0.1 23 0.0 0.3 0.0 0.0 0.0 -0.9 0.0 -0-1 0.0 -0.3 -0.3 2.2 -0.2 0.0 0.0 •0.6 9.0--0.4 -0.2 -0-2 -0.2 -0.7 -0-1 31 2 1

2.5 2.6 2.4 22.5 21.4 20.2 18.7 18.6 18.5 18.5 18.5 18.6 18.6 18.6 18.6 19.7 20.8 21.2 21.7 22.1 22.5 21.7 20.8 19.3 17.7 18.1 18.4 17.3 16.7 15.8 9.0 0.7 1.5 1.7 2.3 2.5 2.4 2.4 22.9 23.0 21.3 21.6 22.3 22.6 22.9 23.0 23.2 23.3 23.4 23.1 22.8 21.0 19.1 18.7 19.7 18.5 19.1 51 meters 16.7 2.5 22.6 20.8 0.5 1.2 1.6 2.2 2.4 2.6 2°4 2.8 2.4 21.2 19.7 16.2 16.7 15.0 0.7 20 \$ 2.2 2.7 2.5 3.0 2.5 25.2 25.0 24.6 24.2 23.8 23.5 23.3 23.0 22.7 21.8 22.9 22.8 22.6 20.6 19.6 15.2 16.4 16.7 16.5 16.4 16.2 15.7 16.1 16.5 16.9 19.0 19.9 20.7 20.6 20.6 20.5 18.7 18.0 17.2 16.6 16.5 16.3 14.7 13.8 0.4 9.0 6.0 1.5 2.1 2.4 26.3 26.5 26.7 26.9 26.7 26.2 25.7 25.1 24.6 24.3 24.1 23.8 23.6 23.4 23.1 96 61 285.71 2.5 24.5 24.3 24.1 23.9 23.7 23.4 23.0 22.7 14.2 12.6 1.5 2.0 2.3 2.5 2.7 3.3 2.6 2.4 0.7 1.2 24.9 24.6 24.3 24.0 23.7 23.4 23.1 22.8 36 8 13.6 2.1 2.4 3.3 2.6 3.6 2.0 2.5 10.4 11.5 1.2 2.5 2.7 1.7 11 Ē N 1.7. 13.1 3.4 2 • 6 9.5 2.3 3.1 3.2 3.9 3.1 2.5 m, Horizontal Increment Δx 18.7 17.7 2..7 16 36 1.2.5 11.5 4.6 3.6 2.5 2.2 2.8 3**°**2 З.8 4.0 4.1 2.7 4.1 5 35 20.7 20.2 19.7 19.5 19.2 19.5 19.7 20.1 20.5 21.2 22.0 22.7 22.8 22.8 12.6 2.7 9°6 4.3 4.5 4.7 8.4 5.2 2.7 4.4 **4**.0 2.5 12.6 13.7 14.7 14.8 14.8 13.9 12.9 13.7 14.5 16.6 17.7 18.8 18.8 18.7 13.2 13.5 13.2 12.8 đ 1 12.7 4.7 4.9 5.2 5.4 5.5 8.5 **Å** 。 6 5.3 ¥.5 3. 8 5.1 2 Ē 12.9 5.4 6.7 7.0 6.4 6.5 6.2 5°°3 5.1 5.7 **6** • 0 6.4 12 32 12.9 6.0 : 6. S . 0°°.8 8.4 8.5 8.6 8.4 7.2 6.4 6.9 7.5 31 12.7 10.0 1.6 7.9 8°.8 10.5 10.6 10.7 8.5 22.7 22.4 22.0 22.1 23.8 24.0 24.2 24.3 6.7 8°.L 14.7 20.1 20.9 21.1 21.3 20.5 17.7 14.7 12.5 10.4 25.0 24.9 24.8 25.1 25.5 25.8 25.6 25.4 24.2 24.0 23.7 24.4 25.0 25.0 25.0 24.9 10.8 11.9 12.9 30 10 19.1 19.7 20.2 20.8 20.9 20.8 19.1 16.7 13.4 10.6 20.8 21.3 21.8 19.1 17.9 16.7 12.8 10.7 21.0 21.1 20.6 17.7 14.5 14.7 10.2 7.7 9.1 9.1 13.7 12.2 29 3 = 11428.411.0 16.7 15.7 14.5 8.9 1. J 22.7 22.9 22.0 21.0 17.7 13.7 10.4 15.8 16.9 16.8 14.5 12.2 28 30 1.1.7 9.5 22.6 21.8 21.0 18.7 14.7 20.7 18.8 16.8 23.0 23.0 22.9 22.1 20.7 16.7 12.7 23 20.8 20.9 18.9 17.9 20.7 20.8 20.8 12.6 12.5 12.7 10.7 ¢ 26 Field L 20°9 18.8 19.9 ŝ 25 18.5 12.7 18.4 18.7 19.1 20.1 17.8 18.4 19.7 12.7 25.4 25.6 25.8 26.1 24 -1
s _, Length of 21.4 18.0 16.6 12.0 10.7 11.3 17.8 23 22.0 25.1 25.0 22.0 10.7 11.4 10.4 17.6 16.5 24.7 24.5 24.7 23.7 22 20.2 17.3 22.55 2.1.4 16.7 1.1. 11.17 10.2 15.8 7 2 -2 7 7 =16.7 m

Table 2A-5(a) Wind Speed in Direction of Frontal Motion, W_x

Series No. 1924,

Case 5(E)

13×

ORIGINAL PAGE IS OF POOR QUALITY

Wind Speed Perpendicular to Frontal Motion, Wy Table 2A-5(b)

Series No. 1924, Case 5(E)

= 285.71 meters s⁻¹, Length of Field L = 11428.4 m, Horizontal Increment Δx = 16.7 m × N

••• -0.3 0.0 -0.1 -0.1 -0.2 -1.1 -0.2 -0.1 -0.1 -0.2 2 0.2 0.1 0.0 -0°5 -0.1 -0.1 -1.3 -0.3 -0.3 -0.1 ¥*0-0.0 20 -0.4 -0.5 2.0 -2.2 -2.0 -1.0 -0.8 -0.9 -1.1 -1.2 -0.9 -0.5 -0.6 -0.1 -1.2 0.0 0.0 -0.6 0.0 61 -0.4 -1.0 -1.0 6.0-••• -1.0 6.0--0.2 -0.3 -0.5 -0.6 -0.8 -1.1 -1.0 -1.1 -1.2 -1.1 -1.0 -1.1 -0.3 -0.4 -0.6 -0.8 -1.2 -1.2 -1.1 -1.1 -1.1 -1.0 -0.6 0.0 18 -1.0 -1.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.3 0.0 -1.1 -0.4 -0.9 -0.9 -0.8 -0.9 -1.1 -0.9 -1.0 -1.0 -1.1 -1.0 -0.3 -0.5 -0.6 -0.8 -1.1 -1.1 -1.1 -1.1 -1.1 -0.8 -0.5 -1.0 -0.9 -0.9 -1.0 -1.2 -0.9 -0.9 -1.0 -1.2 -1.1 1 1.1--1.2 0.0 -1.2 10 -1.0 -1.0 0.0 -2.0 -1.5 -0.9 -1.0 -1.1 12 0.0 -I.5 -0.9 -0.9 6.0- 9.0-4 0.0 13 0.0 0.0 -0.4 -1.0 -1.0 -0.9 -1.2 -1.3 12 -1.2 11 0.0 -0.4 -1.0 -1.3 -1.7 -I.1 -I.0 10 0.5 0.0 37 0.0 -1.0 -1.0 0.0 30 -0.1 -0.2 0.0 -0.4 0.5 0.1 0.0 0.0 0.2 0.1 0.1 0.1 ••• 0.1 -0.2 -0.1 -0.1 jo 1.0 ••0 0.6 0.2 E.0 0.2 0.2 0.0 0.0 ... ŝ 1.0 -0.1 0.5 0.5 4.0 0.1 0.5 0.2 0.0 0.0 4 8*0 -0.1 1.0 0.7 0"0 0.0 -0.2 0.0 0.5 0.2 -0.2 ,m -0.1 1-1 1.0 **6.4** 0.0 -0.1 -0.1 -0.1 0.0 9.0 -0-2 1.1 0.3 0.0 1.2 1.1 ••0 0.0 3 ••• 0.1 0.0 1 2

1.0 ••• 9.0 6.0 1.0 1.1 1.0 0.6 0.5 0.3 0.7 41 0.2 0.0 0.0 0.9 0.1 0.7 9.0 0°5 0.5 0.0 0.7 \$ ••• 0.0 0.0 0.0 0.0 -0.1 0.8 0.5 e.0 -0.1 0.0 39 1.0 -0.2 -0.2 Ų. Y **.**.0 ••• -0.1 -0.1 -0.2 -0.2 0.0 98 6.0 0.1 0.0 0.1 -0.1 -0.1 1.0 . . . 0.0 0.0 -0.1 37 0.2 0.1 0.0 0.9 1.1 0.3 0.2 0.0 0.0 0.6 36 0.1 1.1 8.0 E.0 0.3 0.1 0.1 0.1 1.0 4.0 0.0 35 0.0 0.0 0.0 0.0 1,5 1.2 1.0 **•** 0.0 **0**.6 0.5 **4** -0.1 2.0 1.6 1.3 0.6 0.2 0.0 0.8 0.7 0.3 -0.1 0.0 -0.1 ŝ 0.5 2.1 1.1 1.2 6.0 0.7 0.0 2.5 -0.2 32 1.4 1.1 .9 . 0 ••0 0.2 0.0 3.0 2.6 2.0 1.8 1.5 31 2.4 2.0 1.8 1.0 0.8 0.5 3.5 3.0 0.0 4.0 3.0 30 1.4 4.0 0.2 0.0 5.0 4.7 ... 3.8 **9 ° 0** 2.3 0.5 29 1.0 0.0 5.2 5.0 3.5 1.5 0.0 0.0 0.0 4.1 2.5 28 0.0 0.0 5.1 4.5 3,5 2°2 1.7 0.7 0.0 -0.1 0.0 27 2.0 1.0 3.0 2.5 1.5 0.0 -0.4 -0.2 -0.1 ••• -0.1 -0.1 -0.1 -0.1 50 0.0 1.0 **8**.0 0.5 1.0- 1.0-1 -0.2 8.0 0.0 25 0.0 -0.1 -0.6 1.0-0.0 0.0 0.2 -0.2 -0.1 0.0 24 -0.1 -0.1 -0.2 -0-2-0-1 -0.2 -0.2 -0.2 0.0 -0.2 -0.1 -0.2 -0.2 -0.9 -0.7 -0.2 53 -0.2 -0.2 -0.2 -0.2 -0.3 0.0 22 -0.3 0.0 -1.1 -0°1 -0.1 -0-1 -0.2 -0.2 -0.1 -0.2 0.0 51 2 1

Table 2A-5(c) Vertical Wind Speed, W_z

Case 5(E) Series No. 1924,

meters m, Horizontal Increment $\Delta x = 285.71$ 11428.4 = 16.7 m s^{-1} Length of Field L = |≥×

-1.1 -1.0 -2.0 -0.9 0.0 6. O 0.0 0.0 0.1 0.1 0.2 Ŧ -4,3 -4,1 -4,0 -3,7 -3,4 -3,1 -2,9 -2,6 -2,3 -2,0 -4.7 -4.6 -4.6 -4.5 -4.4 -4.4 -4.3 -4.2 -4.0 -3.7 -3.3 -3.0 -2.7 -2.3 -2.0 0.0 0.0 -5.5 -5.2 -4.9 -4.7 -4.4 -4.2 -3.9 -3.7 -3.4 -3.2 -3.0 -2.7 -2.5 -2.2 -4.7 -4.0 -4.1 -4.1 -4.2 -4.1 -4.0 -4.1 -4.1 -4.1 -4.2 -4.1 -4.0 -3.7 -3.3 -3.0 -2.6 -2.3 -1.9 -1.0 -0.6 -0.4 0.0 -0.2 **\$**0 0.0 -0.1 -6.U -4.9 -3.9 -3.9 -4.D -4.U -4.U -4.U -4.9 -3.9 -3.8 -3.9 -4.0 -4.0 -4.0 -3.7 -3.3 -3.0 -2.7 -2.3 -2.0 -5.0 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 -2.8 -2.9 -2.9 +3.0 -3.0 -3.1 -2.9 -2.7 -2.4 -2.2 -2.0 -1.3 -1.9 -1.9 -1.9 -1.8 -1.8 -1.9 -2.0 -2.1 -2.2 -2.3 -2.4 -2.5 -2.3 -2.2 -2.0 -1.3 -0.7 0.0 36 -0.1 0.0 0.0 38 -1.5 -1.6 -2.1 -1.5 -1.0 -1.2 -1.5 -1.8 -2.0 -2.1 -2.2 -2.1 -2.1 -2.0 -1.3 -0-7 0.0 37 -0.7 -1.3 36 0.0 -0.4 -0.8 -1.2 -1.6 -2.0 -2.0 -2.0 -2.0 -1.3 32 -2.0 34 -2.0 -2.0 Ē 32 -0.4 -0.8 -1.2 -1.6 31 4.4 30 -4.7 -4.5 29 28 -**4** . 8 0. 0 27 -0.1 -0.2 -0.4 -0.5 -0.2 0.0 -4.9 -6.1 -6.0 -5.7 26 0.0 -5.1 -4.8 -4.7 25 0.0 -5.2 54 0.*0 • **5** 6 -5.4 -0.5 -6.4 -6.2 23 ن د د د -6.0 - 5.0 4°.5°. ~ 7 . 0 -1.2 2 0.2-5.0-0. 0 0.0 -0.5 -9-2 -0.2 21 2 3

7.0 6.3 6.0

8.0

8.1

8.1

8.1

8 8 8 7 8 8 1 9 4 6 1 1 9

8.1

8.1 8.1 8.1 8.0

8.0 7.7 7.5 7.5

7.5

7.1

6.6

6.1 5.7 5.0 3.0

5.2

4.4 4.3

3.5

2.7

9. 1

0.0

-2.0 -1.0

1

1.3

6.8 6.7 6.5

6.4 6.0 4.0 4.0

5 2 4 9 4 6

3.5 3.4 2.9 2.1 2.1

2.6 2.3 2.2 2.2

1.8

8°0 6°0

-0.2

-1.1

2

4.1

1.8 1.8 1.8

0.0

-1.0 0.0

0.1

1.2

8°.0

8.0

8.0

6.7

8.1

1°8

w w & c & c ~ d & c ~ u w w & v & c ~ c ~ u v ~ v & v & v ~ c ~ u

7.1 7.0 5.9 5.4 .0°*5

5.9

6.0 5.1

6.0

6.1

6.0 4.5

5.0

3.1

2.1 1.9 1.5

1.9

2.0

2.0

1.5

1.0

6°.

0.1

1.ª1

1.2

0.7

0.7

0.0 0.9

5-0

2.0

5.2

5.3

4 4 5 0 4 4 F

6.4

4.8

5.9

6.4

7.4

7.5

8.0

6.0

6.4

7.0 6.5

6.5 6.1

5.3 4.1 3.3

3.1

3.5

0.4 4.4

4.4

4.9 4.0

4.3

4.0

4 °C

2.8

0.0

0.0 1.5 2.0

0.9 3.1 3.0

1.1

1.5 2.0

0.0

2.6

4.1

4.0

4.1

•

4.0 3.7

3.0

2.7

2.1

1.0

2.5

3.0 3.0

0°0

0.4

2.6

2.3

2.1

1.e

Table 2A-6(a) Wind Speed in Direction of Frontal Motion, W_X Case 6(F) Series No. 1933,

= 181.82 meters m, Horizontal Increment $\Delta \mathbf{x}$ s', Length of Field L = 7272.8= 11.0 m13×

12.9 12.5 13.1 10.9 5.8 10.3 10.6 11.0 11.7 12.3 13.0 14.0 14.1 14.2 14.3 14.4 14.6 14.7 14.8 14.9 15.0 15.1 14.8 14.5 14.2 14.5 12.5 13.2 13.4 13.4 13.4 13.4 13.3 13.5 13.7 13.8 14.0 14.0 14.0 14.1 14.1 14.1 14.3 14.0 9**°** 3 2.9 12.4 13.0 13.2 13.1 12.9 12.9 12.6 13.4 14.0 13.5 13.0 13.3 13.6 13.9 13.9 13.9 13.1 12.9 12.6 9. 2 e. 6 2.9 9.7 10.3 11.0 11.1 11.1 11.2 11.3 11.3 11.4 11.3 11.2 11.2 11.1 11.0 11.0 11.0 11.0 10.9 10.9 12.8 9.4 5.8 0. M 9.9 10.4 10.8 11.3 11.5 11.7 11.9 12.1 12.2 12.4 12.6 12.8 13.0 12.4 11.8 12.4 13.0 12.9 12.8 13.1 13.0 **6°2** 13.0 5°.3 3.7 9°¢ 5°9 4.3 13.0 13.2 12.6 13.2 9.7 6.2 **5**,0 6.4 5.0 10.2 10.6 11.0 11.4 11.9 12.4 12.8 12.8 12.9 12.9 12.9 13.1 13.3 13.0 12.8 10.0 10.4 10.8 11.1 11.3 11.6 11.9 12.1 12.4 12.7 12.9 13.2 13.1 12.9 12.1 9.8 6.7 9.7 10.0 10.3 10.7 11.0 11.0 11.1 11.1 11.1 10.4 **4**.9 7.0 4.9 7.8 5.0 8°.] 5.7 8.7 6.3 6.7 7.0 N.7 7.0 6.9 8.8 8°9 6.9 8.8 6.8 9**.**.9 8 ° 6 11.1 11.8 10.3 10.7 11.1 11.7 6.8 9.0 7.4 **9°9** 1.5 10.7 6.7 **9.** 9.0 1.0 10.3 9.0 6.7 0 1

6°.5° . Б. С. ÷.3.3 -3.3 -3.4 -3.0 -2.0 -3.4 4.6--1.7 -2.3 -3.0 -3.1 -3.3 -1.0 -1.7 -3.1 0.1 -1.3 -1.9 -2.4 -3.0 -3.1 -3.3 -1.2 -1.6 -2.1 -2.6 -3.1 -3.1 -3.1 -3.2 -2.1 -2.9 -3.1 -3.2 0.1 -0.5 -2.9 -3.°0 1.0 -1.0 -1.3 -1.7 -2.0 -2.4 -2.7 -2.9 0.9 -0.1 -1.0 -1.6 -2.3 -2.9 -3.1 0.0 -1.0 -1.3 -2.7 -2.9 9°0 -2.8 -2.7 -2-3 **~**2,2 -2.2 1.2 1.0 1.7 -1.6 -1.6 -1-0 0.1 0.0 -1.0 -1.4 -1.9 -0.1 -1.2 1.3 3.1 5.U 0.0 -0.6 -1.1 0.3 -0.4 -1.0 7.2 6.0 2.5 5°9 3.°8 0.0 7.0 1.7 9°0 6.9 5.0 6.9 1.0 0"8 3.0 5.0 6.0 4.0 S.5 7.0 8.0 8°2 9.1 8.7 7.5 5.0 9.0 9.0 5.0 7.0 0.8 9.2 9.8 7.0 14.0 14.0 14.0 13.7 13.3 13.0 12.5 12.0 11.5 11.0 13.1 13.2 13.1 13.1 13.0 12.0 11.0 11.0 11.1 11.1 9.6 9°°6 9.2 8.8 5.7 4.9 0°6 14.5 14.6 15.1 14.6 14.0 13.7 13.4 13.1 11.6 10.0 11.5 11.0 14.6 15.0 15.2 15.0 14.6 14.2 13.8 13.4 13.0 9.0 7.6 12.9 13.0 12.9 12.9 12.8 11.9 10.9 10.4 10.0 9°8 12.5 12.4 12.4 12.1 12.0 11.5 11.0 10.6 10.1 8.1 12.0 10.9 10.9 10.9 11.0 11.0 11.1 11.1 11.0 10.4 6.3 9.6 10.1 10.7 11.3 10.1 8.7 0.5 13.6 13.0 12.5 6.3 7.0 7.8 6.3 5°.6 ę. 1 14.3 14.6 14.8 14.2 9°C 5.7 9°0 9.1 5.7. 2.4 5.4 9.2 2.9 01 ÿ 10 3

4

40

39

38

37

90

35

4e

Ê

32

Ē

ŝ

29

28

27

26

25

24

23

22

																			÷.,	÷., -				2		-
ters	9	21	1.0	1.0	0.5	4 • 0	0.3	0.2	0.2	-0.1	0.2	0.2	0.0		41	9•0	0.7	0.7	0.6	0.6	0.5	0.5	0.5	••0	••0	0.0
met		20	1.2	1.1	1.0	0.8	0.7	0.3	0.3	0.0	0.4	0.2	0.0		40	1.0	0.9	0.8	0.7	0.1	0 •0	9.°0	0.6	0.5	0.5	0*0
.82	•. `>	19	1.1	1.0	6*0	0.8	8.0	0.5	0.5	0.2	0.5	0.3	0.0		36	E.1	1.0	6 ° 0	0*0	0.9	0.7	0.7	0.7	9.0	0.5	0.0
181		18	6*0	6.0	0.7	6.0	6.0	0.6	0.6	0.5	0.6	0.3	0.0		36	1.7	1.5	4.1	1.0	1.0	0.8	6*0	0.8	0.6	0.6	0.0
		17	0 •6	0.7	0.7	6.0	6.0	0.8	0.8	0.7	0.7	0.3	0.0		37	2.0	1.9	1.8	1.6	1.5	1.4	1.0	6.0	0.7	0.6	0.0
lt ∆		9		9.6		0.1	0.1	1.1	0.1	0.1	6.0	÷.0	0.0		36	3.0	3.0	5.8	2.4	2.0	1.9	1.5	1.0	0.8 0	0.7	0.0
emen		v.		С.		•		2	~	1.	0		0.0		5	0	0.	39		•	5	0.	5	6.		0.0
ncr		4	0	.2	4.	.6	- 6	8.	6.	. 8	. 8	4	0		. 4	. vo	• •	4.	С	8		r.	•	5		0
		-	5	1 0	0	о Е	.7 0	•	ŝ	9	9	٥ ٣	0		ñ	1 2	8	4		с С	С	• 0	5.2	0	. 0	.0 0
onta		13	4	0 - 0	2 0	0	4	。 。	2 0.	° F	9 0	30.	0		m		0	1	е Т	8	0	1 2	1	6	9	0,0
riz		12		•	-0-	-0-	•	0	••	••	•	••	•• •		32		°.	. 4.	Э.	2.	1 2.			.0.	0	
Ho		11	-0.	0-	-0-	-0-	0	0	0	0.0	0.1	••	••		31	Å. (м. С	2.	2	2.0	-	-	-	0	•	•
E		10	-0-1	9.0-	-0-5	-0.4	0.0	-0.2	-0.1	0.1	0.1	0.2	0*0		30	1.0	1.0	1.0	1.4	1.5	1.4	1.1	1.0	0.6	6.0	0.0
2.8		5	6.0-	8°0-	-0.1	-0.6	-0.2	-0.1	0.0	0.1	0.1	0 .1	0*0		29	0.8	0.6	0.9	1.0	1.0	1.1	1.1	0.8	0.5	0.2	0.0
727		39		-1.0	9.0-	•0 • 8	-0-5	-0.1	0.0	0.2	0.0	0.1	0.0		28	1 • 1	1.0	9.0	0.7	0 • C	0.6	0.5	0.4	0.2	0.1	0.0
= 		-	-2.0	·1.5	.1.0	•°••	0.7	-0 - F	0.0	0.1	0.0	0.0	0.0		27	1.1	1.0	6.0	0.5	0*0	0.0	0.0	0*0	0.0	0.0	0.0
eld		9	2.1	2.0.	1.5	1.1	1.0	0.7	0.3	0.0	0.0	0.0	0.0		20	1.0	9.0	0.4	0.2	0.2	0.2	.0.1	0.2	0.1	0.0	0.0
Fi		ŝ	2.2	2.1 -	2.0 -	1.4.	1.2 .	1.0	0.5 -	0.1	0.0	0.0	0.0		25	0.2	0.1	0.0	0°0		• • • •		0 . 3	0.0	0.1	0.0
ı of		4	2.3 -	2.2 -	2.1 -	1.7 -	1.5 -	1.1			0.1	0.0	0.0		24	1.0	0.9	6.4	0•6	0.5 -	0.3 -	. 4.0	0.2	0.1	0.1	0.0
ngtl		ĩ	5		0	5	. 2	•		.2 =			0	•	ġ		0	- 5*(- E•(.2 -		1.2 -	- 7.0	- 1.0	1.1	0.0
Le		~	- 4.	.0.	4.	.2 -1	0		- <u>-</u>		0- ~·	- T -	o.		~	· 7		5 	- 0 *	0.	0.)) *	1		~	0.
า๊			l - 0 '	7 - 6		8 - 1	.7 -1	0 -	4 -0	0- F	.2 -0	1 -0	0 0,		7 1	0 0	0 0.	S.	4		.2	.2 0	.1 -0	.2 0	.2	0.0
ш О		I	-1-	• •	• •	2.	0	0	-	-0-	0.	5-	°.		7	-		0	0		5	0	e e	5	°.	ò
			11	10	3	÷.	-	٥	ŝ	4	.	2	-			11	10	ኾ	Ð	-	9	ι,Ω	4		-	

.

Wind Speed Perpendicular to Frontal Motion, Wy Case 6(F) Series No. 1933,

Table 2A-6(b)

= |3 Table 2A-6(c) Vertical Wind Speed, W,

Case 6(F) Series No. 1933,

m, Horizontal Increment $\Delta x = 181.82$ meters Field L = 7272.8= 11.0 m s ' Length of 13×

2.0 3.0 2.2 5.0 5.2 3.2 3 ÷.0 5.3 0.0 5.5 ÷. ÷ 51 E.E 4.0 5°.0 2.0 0.0 2.1 2.8 5.3 4.7 2.4 4.7 **4**.8 40 50 2.6 Э.0 2.0 4.0 1.7 0.0 2,0 4.5 4.1 1.6 4.2 ... 39 19 2.0 E.E 1.9 4. T 1.9 3.5 ••• 3 ° 5 0.0 9.0 0°. 38 81 2.0 1.0 0.0 2.6 1.6 0.0 0.7 1.1 8°8 2.8 3.2 3.1 LE 11 0.0 0.4 2.0 0.7 0.0 2.8 **0**-0 9°6 2.2 1.3 0.4 0.0 36 16 ¢•0 9.0 2.0 1.0 6.0 0.00 3.1 0.0 **6.**0 **°**, 3.1 3°.9 35 12 1.5 0.0 1.0 2°0' 1.3 0.6 0.0 3°2 3.8 4.0 4.0 4.0 34 14 1.5 2.0 2.3 • 1.7 0°.3 0.4 **8.**0 ••• 3.9 ••• 0.7 33 13 2.0 2.0 2.5 4.0 2.0 0.0 ••• ••• 4.0 1.3 0.8 32 12 1.9 2.0 2.0 2.8 1.2 4.0 ••• 2.7 2.0 4.1 ••• 31 , in the second s 3.8 2.0 2.2 3.0 3.4 1.6 \$°0 4.0 1.1 ... f. 1 -30 10 2 . 4 9. J 5.7 2.2 **4** ° C 4.1 4.1 2.0 4.1 4.1 4.1 4.1 29 2.4 2.5 3°2 4.0 4.0 4.8 3.9 *****•0 4 · 1 2.2 **4.1** 4 · 1 5.8 3.7 4.0 4.0 4.0 2.6 2.7 2.4 **°**. ÷. 1 ***** 0 4.0 7 27 4.0 4°0 2.8 2.9 4.0 **å**.0 4.0 4.1 2.6 4.1 1.1 -26 2°3 3.1 4.0 ¢.° **0** • 0. * 4.1 4.3 0 ° 2.8 1.2 52 3.1 . В. В. 4.0 4.4 3.1 4.0 4.0 4.2 4.1 4.1 4.2 24 3.4 J. J 4.0 3.3 4.1 4.2 4 ° 2 4.2 4.2 4.1 4.2 4.2 23 4.0 4.0 3.6 4.3 4.J 4.3 J.5 4.1 4.1 4.2 4 ° 2 22 3.7 J. 8 4 °.0 **.**... . . 4 . 4 **6.**5 3.2 . 5.3 2.4 21 2

0.0 0.0 30 ••• 2.2 2.1 2.1 0.4 0.1 0.3 0.1 0.0 0.1 1.8 ۲.S 6.0 2.2 2.1 . e 1.6 E. 5 0.3 0.1 0.0 2.1 2.0 1.3 0.1 0.7 1.3 0.1 0.0 -0° 0.2 1.2 1.0 1.8 1.7 9°0 6.0 0.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.5 -0.9 1.0 0.8 0.2 ŝ ~ . 0.4 0.1 -1.0 -0.5 -0.5 1.0 0.7 0.6 0.5 0.1 1 • 2 0.2 -0.4 0.7 =0.3 =1.4 =2.1 =1.9 =1.6 =1.0 -1.1 -2.2 -1.9 -1.6 -1.3 A . 0 0.7 ¢°0 0.3 0,3 0.1 0.2 0.0 0.0 -0°2 -0° 3 0.5 E.0 0.0 -1,5 0.2 -0.2 -0°3 -1.1 1.1 -1.0 -0.5 -0.3 -0.5 -0.1 1.2 -0.7 0.0 -1.7 -0.2 -2.0 1.9 1.8 1.6 4.0 0.0 3.9 3.7 3°0. 3.2 2.0 1.1 1.04 0.0 3.5 0.1 6.0 .0°9 5.8 4.8 2.5 ۥ0 -1.7 5.2 4.5 **9**•0 1.6 0.5 -1.0 -2.6 -4.1 -2.0 5.1 5.1 3.7 1.9 -0.1 4.3 4.4 4.2 4.0 3.5 **~1.8** =3.5 4.2 3.0 J • 5 4 0 4.6 4°.5 ê. 4.8 4.7 з.0 0.0 5.0 5°5 5.3 5.1 4.1 4.7 4.7 3°0 1.3 4.8 5.4 5.6 **2***8 5.7 ŝ 4.7 2.7 2.0 5°0 **6.**0 6**°**9 6.0 4.2 5**.** X 3°*3 5.4 **6.**0 9.0 4.7 4.0 0.5 4.3 4.4 5.3 و• ن 6.0 5.3 3.0 5°3 ۍ د د 2.0 3.5 0 5.4 6°. 4.7

Table 2A-7(a) Wind Speed in Direction of Frontal Motion, $W_{\mathbf{X}}$

= 196.08 meters m, Horizontal Increment Δx Series No. 1942, = 7843.2 Case 7(G) Field L s] Length of ដ 11.8 ļ ×

2

20

61

81

17

9

ŝ

14

E

12

11

10

5

ż

¢

6

m

19,8 20.8 21.8 21.8 14.0 16.4 16.6 16.9 17.2 17.5 17.8 18.2 18.6 19.0 19.4 19.8 20.5 21.1 20.7 20.2 19.8 19.8 19.9 19.9 19.9 10.9 1/.1 17.2 17.4 17.5 17.6 17.8 18.8 19.8 20.2 20.7 21.1 21.6 22.0 21.7 21.3 21.0 21.5 21.9 21.9 21.8 14.6 15.1 15.5 15.8 16.1 16.3 16.6 16.9 17.2 17.4 17.7 18.7 19.8 20.4 19.8 18.6 17.4 16.2 15.0 13.8 13.9 10.8 10.3 10.6 10.6 17.1 17.3 17.6 17.8 14.5 19.4 19.8 20.3 20.8 21.3 21.8 21.6 21.3 21.1 20.8 20.6 20.3 20.1 15.8 15.8 15.8 8.7 20.7 21.4 22.0 14.4 14.1 14.5 14.6 15.1 15.5 15.4 16.2 16.6 17.0 17.4 17.8 19.1 20.3 18.1 16.0 13.8 13.1 12.3 11.6 17.6 17.8 17.7 17.7 17.6 17.6 18.3 19.1 19.8 20.3 20.9 21.4 22.0 22.5 22.3 22.0 21.8 22.3 22.8 22.3 8.8 14.3 18.2 18.1 17.9 17.8 18.8 19.8 20.5 21.1 21.8 22.2 22.6 23.1 23.5 23.9 24.3 23.4 22.5 21.6 22.0 22.2 8.8 22.4 22.6 15.8 15.1 15.5 15.8 17.1 17.5 17.8 18.2 18.6 19.0 19.4 19.8 20.3 20.8 19.8 18.8 17.8 15.8 13.5 13.8 14.1 14.4 14.7 14.9 15.2 15.8 15.8 17.8 18.8 19.8 19.4 15.8 10.8 23.2 22.6 22.8 22.8 23.1 23.5 24.8 21.8 22.0 22.2 22.4 22.5 22.5 22.1 20.8 21.8 17.8 17.8 18.5 19.1 19.8 20.8 19.8 18.5 19.1 17.9 17.6 17.2 17.8 17.8 13.1 17.9 14.0 17.9 14.5. 12.8 2 3 ~ 1

-9.4 -8.2 -6.4 -4.2 -3.2 -2.2 .0-.0-0.8 -9.7 -1.2 -5.4 14 4°*E= -2.0 -1.5 -9.2 -8.8 1.1. 0.1 ų. L -5.8 -4.3 -4.9 -0°. 40 6.0--2.1 4.0 1.8 **-8** -8.2 -5.2 -0.2 -0.9 -0.5 -6.7 -7.2 39 -1.9 . 0 -0-2 -8.1 2.8 -3.3 -3.8 0.8 -7.5 -4.0 -4.6 38 1.5 2.1 -1.5 -1.2 0.5 1.3 -0.9 -0.2 -1.4 -2.6 -3.8 -5.0 -6.2 3.8 33 1.1 -0.4 2.6 2.8 -6.9 -6.3 -0.7 -2.2 -2.8 -3.4 -2.7 Ú., ¥..8 36 4.3 6.J 3°8 1.8 4.0 5. U -0.9 -2.3 -3.7 -5.0 -6.4 -2.8 -3.9 -5.1 -0.7 -2.2 35 1.1 5.0 5**.**8 3.5 S.8 **6**.8 34 1.8 0.8 6.1 5.1 7.3 7.1 7.8 33 2.3 4.0 9.0 7.3 6.8 8,3 8.8 8.8 -1.6 32 1.1 2.3 6.2 8°.2 8.5 10.3 9°6 4.0-Э.8 9°.6 31 2.5 15.8 15.8 15.4 16.5 17.2 17.9 15.9 13.8 11.8 10.1 3.6 5.3 8.4 9.6 13.9 14.0 14.0 14.1 16.0 17.8 10.3 14.8 13.3 11.8 9.8 13.8 15.8 15.8 15.8 13.8 11.8 10.8 0.4 0.8 42.5 10.6 30 19.9 19.0 18.1 17.2 16.3 17.7 15.4 13.1 10.8 20.1 19.8 18.8 17.5 15.8 15.5 14.1 12.8 10.6 1.8 3**.**8 3°8 6°.8 6.8 29 4.8 6...8 6°, 8 9.8 21.8 18.8 15.8 16.1 16.5 15.7 14.9 10.9 12.1 12.4 15.2 17.6 15.9 14.2 38 1.9 8°6 **8°6** 21.8 18.8 15.8 16.3 15.1 14.0 12.8 27 19.6 17.6 15.8 14.9 13.9 10.9 20.8 19.2 1/.5 15.9 14.4 12.8 21.8 20.1 18.5 16.9 14.8 12.8 26 25 24 23 11.5 1.8 27 10.8 21 10 ን ~ ھ s. 1

ORIGINAL PAGE 12 OF POOR QUALITY Table 2A-7(b) Wind Speed Perpendicular to Frontal Motion, W_v

Case 7(G) Series No. 1942,

= 196.08 meters Δx m, Horizontal Increment s⁻¹, Length of Field L = 7843.2 = 11.8 m 13

-2.0 -2.2 -2.0 -2.1 0.0 -2.1 -2.1 -1.5 -2.0 -0.6 -1.0 -2.0 -2.0 -2.1 -1.5 -0.9 -1.1 -1.3 -1.5 -1.0 -1.0 ... 51 -2.0 0.0 0.0 -1.0 -1.0 -1.1 -1.1 -1.2 -1.3 -1.5 -1.6 -1.7 -1.8 -2.0 -2.1 -1.7 -0,1 -0,3'-0,4 -0,6 -0,7 -0,9 -1,0 -1,1 -1,3 -1,4 -1,5 -1,7 -1,8 -2,0 -0.1 -0.3 -0.4 -0.6 -0.7 -0.9 -1.0 -1.3 -1.7 -2.0 -1.5 -0.9 -1.3 -1.7 0.3 0.0 50 -0.1 0.0 "U.2 "O.5 "U.7 "I.0 "I.1 "I.2 "I.4 "I.5 "I.6 "I.8 "I.9 "2.0 -0.3 =0.4 =0.6 =0.7 =1.0 =1.4 =1.7 =2.0 =1.6 =1.2 =0.8 =1.2 -1.4 -0.9 -0.9 U.1 -0.2 -0.5 -0.7 -1.0 -1.2 -1.5 -1.4 -1.2 -1.0 19 •0°e 0.0 18 ••• -1.0 1 0.0 -0.2 -0.2 -0.2 -0.2 -0.5 -0.7 -1.0 -1.3 -1.6 -1.9 -1.0 -1.0 -1.0 -1.0 16 0.0 15 0.0 ÷. 0.0 ۲<u>.</u> -0-B 0.0 12 0.0 -0.2 -0.3 -0.5 -0.7 0.0 -0.2 -0.3 0.0 10 0.0 3 0.1 0.0 0.0 œ 0.1 0.0 0.0 0.0 -0.1 0."0 0°0 0*0 ÷0. 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 -1.0 -1.0 -0.5 -1,1 -0.2 -0.3 -0.3 -0.3 s -0-1 -0-3 0.0 °°0 -1.0 -1.0 -0.5 -1.0 0.0 -0.9 -0.4 0.0 0.0 -0.8 -0.4 -0.5 4.0--0.2 0.0 -0.2 -0.6 0.0 0.0 0.0 -0.2 -0-1 0.0 -0.2 **0**.5 **ç.**0 0.5 ¢°0 <u>ر، ک</u> 0.4 0.0 0.0 -0.1 0.0 ن. 5 **.** 0°1 ••• °. 0 1.0 0.0 0°0 •• 0.0 2

0.5 0.5 0.5 0.5 0.2 0.0 0.0 0.0 0.3 0.1 ... 7 9.0 9.0 9.0 0.0 0.0 0.0 0.6 0.4 0.2 0.1 0.2 \$ 0.7 0.6 9.0 9.0 0.5 0.2 0.1 0.2 0.1 0.0 0.0 96 0.7 0.6 0.2 0.2 0.2 0.1 0.1 0.0 0.7 0.7 0.6 38 0°.3 0.2 0.2 0.2 0.1 0.0 0°8 0.7 0.B 0.7 0.7 5 0.2 0.2 0.1 0.0 5.0 0,3 0.2 0.1 6°0 9.0 0.8 36 0.2 0.0 0.4 0.1 0.0 1.0 9°0 6°0 6.0 6.0 0.1 35 0.4 1.0-1.5 0.0 0.0 1.2 1.0 0.9 1.0 0.2 0.0 34 0.0 2.0 1.6 0.1 -0.9 1.0 0.5 -0.2 0.0 1.1 ŝ 2.0 6.0 0.5 0.1 0.0 -0-6 2°2 1.7 1.2 -0.3 0.0 32 9°0 2.0 0.7 0.6 0.1 0.0 -0.8 -1.1 -1.4 -1.7 -2.0 -1.7 -1.4 -1.1 -0.9 0.0 2.3 1.5 -0.6 -0.4 Т, 0.0 0.0 2.7 1.8 **0°**0 0.0 3.6 2.3 0.ª 4 30 0.0 0.0 -0.7 0.3 0.0 4.1 3.1 2.0 2.7 0.2 29 . Э.°0 0.0 3.5 1.0 0.0 -1.6 -1.2 -0.8 -1.2 -1.6 -2.0 -1.0 -1.2 -1.6 -2.0 -1.3 -0.7 0.0 4.1 8.0- 9.0-38 6.0--1.7 -1.3 -0.9 -1.5 -2.0 -1.0 0.0 4.0 1.8 1.5 0.0 27 0.0 -1.9 -1.7 -1.4 -1.2 -1.0 0.0 0.0 -1.9 -1.6 -0.8 -1.0 0.0 26 -0.4 0.0 -1.2 -1.0 -0.8 -0.4 25 -1.9 -0.6 ••• -1.8 -1.3 -0.9 24 9.0--0.3 0.0 -2.0 -1.6 -1.2 -2.0 -1.8 -1.5 -2.0 -2.0 23 1.1--0° -0.1 0.0 2.7 -2.0 -1.5 -2.1 -2.1 -1.0 -2:2 -2-1 **7**-0 0.0 77 à

-3.6		-4.1	4.2	-4.6	-4.9	-4.2	-4.0	-3.5	-2.8	-2.8		41	6.0	5.6	5.0	4.6	4.0	3.6	3.1	2.6	2.3	2.3	2.2	
-3.0	- 3. 4	-3.5	-4-0	4.4	4 .6	4.2		0.4-	4.6-	-3.2		40	6.1	6.0	5.2	4.7	4.1	4.0	3.2	2.5	2.3	2.2	2.1	
2.5	2.7	3.0	0.4	4.2	4.4	4.1	4.1	0.1	4.0	3.6		30	6.1	6.0	5,3	4.8	4.1	4.0	3.3	2.4	2.2	2.0	2.0	
2.0 -	2.1 -	2.5	4.0	4.0		4.1 -	4.1	0.4	•••	• •	•	38	6.2	6.0	5.5	4.9	4.2	4.0	3.3	2.3	2.2	2.0	1.9	
- 0.0	1.0 -	1.9 -	2.0 -	2.3 -	3.0 -	4.0.	4.1 -	4.0 -	4.0 -	4.0 -		37	6.1	6.0	5.2	4.7	4.2	•••	3.4	2.3	2.1	2.0	1.1	
0.0	- 0.0	- 8.0	1.8 -	2.1 -	2.0	2.2.	3.8 -	4.0 -	4.0 -	÷.1.+		36	6.1	5.3	4.8	4.4	4.1	4.0	3.5	2.2	2.0	2.0	1.6	
• • •		1.2 -	• 6 • 1	- 6-1	- 	5.2	3.3	.0.	4.0 -	+·1 -		35	6.0	4.7	4.5	4.2	4.0	3.4	3.0	2.1	2.0	1.9	1.4	
)- E.	. 9.	- 01	- 0.1		- T	. 8.1	3.5	.0.6	.0.		34	5.1		4.1	4.0	3.3	2.7	2.4	5.0	1.7	1.8	1.3	
s.	-							•	7			ē		9.0			2.7	2.1	6.1	9.1	4.		1.1	
- 0.	• • •		.9 -2	• 0	- 0	-0		• 2 • J	.1 -2	• 0 • 3		8		. .		ŝ	•	9	s	~		5	•	
0	0 -1	8 -1	1 - 1	8 -2	9 =2	0 -2	2 -2	0 -2	1	- 0		e U		6	E 6.	.8	9		0.	.8	8.	4	ີຫຼ	
-	°	-0-	4	Ţ	7	-2-	-2-	-2.	7	0		m	e.	2	8	-	-	-	-	0	0	-		
2.0	0.0	-1.4	-1.9	-1.9	-1.9	-2.0	-2.2	-2.0	-0.8	0.0		30	2.8	2.6	2.5	1.5	1.2	0.7	0.6	0.4	0.5	1.3	2.0	
2.0	0.0	-2.0	-2.1	-1.9	-2.0	-2.1	-2.1	-2.1	-1.0	0.0		29	2.4	2.2	2.0	1.1	0.8	0.2	0.1	0.0	0.2	1.2	2.0	
2.0	0.0	-0.6	-2.0	-2.0	-2.0	-2.0	-2.1	-2.2	-1.3	0.0		82	2.0	0.1	0.0	-0.4	-1.5	-1.9	-2.0	-2.0	6-0-	0.6	2.1	
2.0	1.1	0.1	0.0	0.0	-1-0	-2.0	-2.0	-2.2	-1.5	-1.7		27	0.0	-1-9	-2.0	-1.9	÷3,9	-4.0	-4.0	-3.3	-2.0	0.0	2.1	
2.7	2.2	2.1	2.0	2.0	0.0	-1.0	-2.0	-2.1	-1.6	-1.5		56	-2.0	-4.0	-4.1	-3.3	-4.7	-5.0	-5.0	-4.6	-3.0	-1.0	1.4	
3.4	3.1	2.6	2.0	2.0	0.2	0.0	-1.6	-2.0	-2.0	-1.3		25	-4.0	-4.0	-4.3	4.8	-5.4	-6.0	-6.0	-5.9	-4.0	-2.0	0.7	
4.1	4.0	3.1	2.0	2.0	0.5	0.0	.1.3	1.6	-1.6	1.1		24	-4.0	4.0	-4.3	-4.6	-5.2	-5.7	-5.2	-5.4	-4.1	-3.9	0.0	
3.0	3.0	2.6	2.1	2.0	0.7	0.0	6.0.		1.2	6.0.		57	4.1	4.0	4.2	4.5	-5.0	-5.5	6.4-	-4.9	-4.1	-3.5	-2.0	
1.9	2.0	2.1	2.1	2.0	6.0	0.0	. 9.0	. 1 . 0	. 6 . 0.	.0.1		22	4.1	4.0	-4.2	4.5	4.4	5.2	-4.3	-4.5	-3. ď	-3.2	-2.4	
9.9	6.9	1.0	1.0	U.2	0.0	0.0	0.2	0.3	0.5 -	. 5.0.		12	· 9. 6	4.0	4.1	4.2	· 4 • 6	4.9	4.2	4.0	.3.5	-2.8	8 . 7 . - 7	
,	0	5	.00	-	ø	ŝ	4	•	~					10	• ກຼ	- 70	r	9	.0		÷,	2	-	

Table 2A-7(c) Vertical Wind Speed, W_z Case 7(G) Series No. 1942,

= 11.8 m s⁻¹ Length of Field L = 7843.2 m, Horizontal Increment Δx =196.08 meters |x×

Ξ

Wind Speed in Direction of Frontal Motion, W_X Table 2A-8(a)

Series No. 1712, Case 8(H)

m, Horizontal Increment Δx = 138.89 meters 5555.6 11 Field L οĘ 8.5 m s⁻¹, Length H |₃×

a

8.7 10.6 12.6 12.6 12.6 12.7 12.7 12.7 12.1 11.6 11.0 11.4 11.5 10.5 10.5 9.3 10.1 11.0 11.8 12.6 12.3 11.9 11.6 11.2 10.9 9.6 9.4 9.8 9.9 11.2 12.5 12.2 12.3 12.3 12.4 11.8 11.1 10.5 10.6 31 10.5 8.5 10.5 10.8 11.0 11.3 11.5 11.1 10.7 10.3 10.5 8.5 10.5 12.5 12.5 11.6 10.6 10.6 10.6 9.6 10.6 10.6 10.6 10.6 10.1 8.5 9.4 10.4 10.4 10.5 10.6 10.6 10.0 9.4 10.2 11.1 11.9 12.8 12.5 12.3 12.0 11.7 9.3 10.2 11.0 11.9 12.7 12.5 12.2 12.0 11.7 20 11.6 11.1 9.6 10.6 11.7 12.7 12.2 11.6 11.1 19 8 9.5 10.5 11.5 12.5 12.7 12.2 17 16 S 8.5 1 7.5 13 8.1 8.5 7.5 6.**4** 12 7.4 7.6 8.6 5,3 8°2 8**.**5 8°5 0.8 7.3 6.5 11 6.3 6°2 6.7 7.0 8.0 6.J 6°2 6.0 5,5 4 ° 3 7.2 10 8°3 8°0 7.8 1.5 6.1 1.7 6.3 5.⁸ **§ •** § 0°0 å.5 9.4 9.2 7.8 8.4 6.1 З.З 7.8 9.1 6.3 5°5 3.7 9.6 10.6 9.6 10.5 9°.5 6.0 6.4 4 °5 2.1 2.0 **3**.5 8.5 10.2 9.5 10.5 8°.2 0.6 8°.9 6.4 5°3 4.1 9°9 8.1 8.1 8.5 8.5 8.7 8°.5 8.5 6.4 5.6 5.5 4.5 9.0 9.0 8.2 8°. 8.1 6.4 5,6 7.6 1...7 6 • 5 **4** 8 9°0 7.5 1.7 1.1 ç. 9 5.8 9°9 7.2 1.2 7.5 6 ° 4 5.4 6.9 7.2 7.5 7.2 6.5 6.4 6.7 6.8 6.4 5.5 **6**.9 6.7 1.5 0.0 4.0 6.8 ¢.5 ŝ . 4 4.0 -

-4.5 -4.0 ÷0,*5 ÷5. -4.7 Ξ°°2 -2.5 -1.2 -5.7 -5.7 -1.5 4 •.3°.8 -1-0 -0-6 -0.5 -1.5 -1.8 -2.1 -2.5 -2.8 -3.2 -3.5 -3.9 -4.3 -4.6 -5.0 -5.3 2.1 1.7 -1.6 -1.6 -1.6 -1.7 -1.7 -1.7 -2.4 -3.2 -3.9 -3,2 -3.0 -1.7 -5.1 -5.5 -5.6 -5.0 0.0 40 -4.5 -2°3 -2.5 6.0-5°0 9°.0 1.3 =0.5 =0.7 =0.9 =1.1 =1.2 =1.4 =1.6 =2.3 =3.1 1.0- 2.0 5 1.2 -0.2 -1.6 -1.9 -2.1 -2.4 -2.7 -3.0 -3.2 -3.5 -4.0 -1.5 -2.0 -0.2 0.0 1.2 38 -1.5 0.5 1.2 2°0 0.9 -1.6 -2.0 -2.4 -2.7 -3.1 -3.5 -3.6 -3.6 -3.7 -4.1 -4.6 -0.7 -1.0 -1.2 0.6 37 1.9 •1.0 1.1 1.0 2.7 36 2.7 -0°2 1.7 1.5 3.4 35 4.2 2.2 **₽.**€ 2.0 -0.5 0.0 34 -0.2 4.1 4°6 0°5 2.7 2.5 ŝ 0.0 3.5 4.9 1.0 з, З 5.7 32 e.0 1.6 3.8 4.5 5.6 6.4 E 1.9 2.1 5.5 6.3 7.1 **4.**3 30 2.6 3.1 3.6 7.1 7.9 2.6 4.9 6°2 5.6 Э•О 4.9 5.2 **6.** 7.8 8.6 5.4 7.5 28 2.6 0.5 3.5 8.5 8°2 1.6 6.7 6.9 6.7 7.1 27 2.6 4.6 6.0 9.6 9.6 8°2 8.5 8.7 8.8 9.2 26 3°4 9*9 8.4 9.0 9.4 10.6 10.6 10.6 10.6 10.1 5.2 **9**•6 6.6 10.5 10.5 10.6 10.6 11.5 11.2 11.0 10.7 10.5 25 6°9 9.4 6°0 7.5 8.6 10.5 10.4 10.4 10.6 10.5 10.0 10.6 10.6 24 9.4 6°6 8.1 0.*6 ÷.5 11.4 11.2 10.9 23 9.4 8.7 10.5 10.0 11.0 10.4 0.6 22 4.4 9.8 10.9 4.6 77

×> Wind Speed Perpendicular to Frontal Motion. Series No. 1712, Case 8(H) Table 2A-8(b)

meters 196.08 11 Increment $\Delta \mathbf{x}$ Horizontal , u 5555.6 31 Field L s⁻¹, Length of E =8.5 13×

0.0 0.0 -0.1 -0.2 -0.2 -0.2 -0-1 0.0 -0-1 -0.1 4.0 21 0.4 -0.2 -0-0.0 0.0 0.0 0.0 -0.2 -0-1 6.0 0.0 50 0.3 -0.2 -0.4 -0.1 0.0 0.0 0.0 -0.1 6.0 **.** • 1.3 51 -0.2 1.3 0.6 0.2 0.0 -0-1 .0-0.°0 -0.1 1.8 0.7 18 -0.5 1.7 6.0 0.0 -0-3 -0°1 2.2 0.0 1.1 0.5 0.1 17 0.0 -0-3 -0.5 1.3 1.0 **9**•0 1.0-0.0 0.2 0.1 9 • **1** 10 5.0 -0.4 -0 • P 9.0--0.1 1.4 <u>۰</u>، ۷ 0.5 0.0 -0.3 0.0 15 0.0 -0.1 -0.5 .0.8 =0.6 1.0-0.0 6.0 -0.7 -0.7 14 -0.3 ***** • 0 **-**-1.0 0.0 -1.1 -0.1 0.0 0.5 -1.0 -1.1 -0-2 Ē -1.0 -0.7 -0.6 -0.1 -0.6 -0.9 0.1 -0.8 -0.2 0.0 -0.8 22 -1.4 -0.9 -1.9 -1:0 -1.0 -1.4 -1-9 -1.2 -0.2 0.0 -2.0 11 -2.0 -2.1 -2.2 -3.0 -3.1 -3.0 -1.6 -1.5 -1-0 -0.2 0.00 10 -2.0 =1.5 -1.0 -1.1 +0.2 0.0 -0.3 -1.7 -1.9 -2.5 -1.2 -1-0 37 -1.0 0.0 -1.0 8.0-0.0 0.1 -0.6 -1.0 -0.6 -0-1 30 1.1 ***** • 0 -0.3 =0.2 1.2 1.0 9°0 9°2 0.0 0.0 1.2 -0.3 0.0 0.1 0.0 -0.2 -0.2 0.3 0.1 0.0 0.2 0.1 م -1.0 -1.0 -1.0 -1.0 6.0--1.0 6.0-=0 ° R -0.1 0.0 -1.1 un, +1+0 -2.1 -2.0 -1.7 -1.5 -1.1 -0,9 -2.1 -2.1 -0.2 0.0 -1.0 -1.0 -1.0 -1-0 -1.0 -1.0 -1.0 -1-0 -1.0 -0.1 0.0 m **ئ.**0 0.1 1.0 1.2 1.5 1.5 1.4 1.0 0.0 0.0 0.0 3.5 0.4 3.0 4.1 9.0 2.0 1.5 1.0 0.2 0.00 3.8 11 2

5.0 0.0 1:0 0.0 0.0 0.3 0.3 0.2 0.2 0.2 0.2 41 0°5 4.0 6. J 0.3 9.0 0.0 0.0 e. 9 0.2 ... 0.0 3 0.0 0.0 9.0 0.6 0.0 0.3 **0.**4 0.0 0.3 E.0 0.4 33 0.0 0.3 0.0 0.0 0.8 0.7 0.5 4.0 0.1 0.1 4.0 36 1.0 .0 0.0 9°0 0.6 **c**.0 0.5 0.2 0.2 0.2 0.1 37 1.1 1.0 0.0 0.6 0.6 0.4 0.3 0.3 0.2 0.1 0.6 36 0.0 1.3 1.1 9°0 9°0 **9°** 0.4 0.4 0.3 0.1 0.7 32 9.0 0.6 0.7 0.0 1.4 1.1 0.8 0.7 0.5 4.0 0.1 34 0.5 1.6 1.0 6*0 8.0 9.0 0.8 0.7 0.7 0.1 0.0 Ē 1..7 1.0 0.9 6.0 9.0 1,2 0.8 6°°0 9.0 0.1 0.0 33 1.9 1.0 0.1 1.5 1.6 1.1 0.9 1.5 6.0 0.6 0.0 ΞE 2.0 2.0 2.3 2.0 1.6 1.8 1.0 1.2 0.7 0.1 0.0 30 2.8 2.6 3°.0 3.0 2.3 2.2 1.5 1.4 9.0 0.0 0.0 2.9 Э.,З 3.0 3.0 2*5 2.0 1.5 6.0 0.0 0.0 3**.**6 3.5 38 0.7 0.0 4.4 9**°**6 3.1 2.0 1.8 1.0 0.1 0.0 4.1 53 0.0 5.2 **3 .** 5 Э.0 2.1 1.0 1.0 0.0 0.0 0.0 0.0 26 . 2°0 0.0 0.0 3.1 2.0 . . 0.0 0.7 0.0 0.0 0.0 52 Э.°Э 1.0 0.0 0.0 **6.** 4 1.6 -0.1 -0.1 1-0-0.0 0.0 54 0.0 -0.1 0.2 -0-1 -0.1 -0.1 0.0 0.0 1.7 0.2 0.1 53 -0.1 o '' -0.1 -0.1 0.1 -0-1 -0-S 1.0--0 • S 0.0 0.1 22 -0.1 -0.2 0.0 0.0 7.0--0.1 -0.1 -0.2 0.0 4.0 - ...1 21 2

ORIGINAL PAGE IS OF POOR QUALITY Table 2A-8(c) Vertical Wind Speed, W_z

Case 8(H) Series No. 1712,

= 138.89 meters Increment $\Delta \mathbf{x}$ m, Horizontal 5555.6 -11 Ч Field , Length of 8.5 m s , 13×

0.0 0.0 0.0 0.0 0.0 0.5 . . 1.0 2.0 5 8.0 51 Ŧ ••• 0.0 0.3 0.5 0.2 0.2 0.6 0.5 **.** 1.2 2.0 20 0.5 0.3 . С. О 1.0 0.8 0.5 0.7 8.0 0.3 0.7 1.5 19 6.0 6°0 0.1 0.0 -0.1 0.0 0.0 0.2 1.0 1.4 4.0 18 0.9 0.0 -0.2 4.0-0.2 e'0.° -0.5 -0° 0.0 0°2 1.7 17 2.0 1.0 0.0 -0.1 0.0 -0.2 •0• -1.0 -1.0 -0,9 16 1.5 ۰,5 -1.9 2.7 -0.1 -1.4 -0.6 -1.5 -1.5 -1.0 -1.5 5 2.0 1.0 . Е е -0.8 -2.0 -2.4 0.0 -0.1 -2.1 -2.0 -2.3 -2.0 -2.4 -2.1 -1.4 14 Э°,0 1.5 -1.0 -3°0 -2.0 4.0 -1.7 2 Ē 4.0 -2.2 2.0 6.0 -0-5 -2.0 -2.0 -2.7 -3.5 6,0 -2.5 27 **4.8** 2.7 1.9 0.0 -1.0 6.0 -3.4 -3.0 -2.0 -0.5 -1.0 -1.5 -2.0 -2.1 -2.3 -2.4 -4.0 -4.0 -3.3 2.2 4.6 1.0 0.0 -1.3 6 ***** 0 10 - 4.0 2.5 4.4 4.0 2.0 0°4 -0.7 6 ° 0 -2.1 -2.2 -4.0 -3.7 s, 0.8 -4.0 2.0 0.0 3.8 2.8 5.3 4.2 2.6 1.2 4.0 3.5 2.0 0.0 -2.0 -4.0 -3.1 -3.4 -3.7 4.7 3.7 3**.** 3 2.5 2.1 1.6 0.1 0.0 -4.0 -1.9 4 ° 0 3.1 2 . 3 -0.1 - 4.0 Э**.**4 2.1 2+0 0.1 -1.8 3.7 3.2 2.9 2.2 2.0 -0.1 -2.9 -3.6 1.8 0.1 -1.8 3.3 2.9 2.7 2.0 2.0 1.5 -3,3 Э.О 0.1 0.3 -0.2 -0.2 -1.0 -1.7 -2.3 -2.6 23 2.1 2.6 2.5 2.4 2.0 1.2 0.2 -2.9 22 .1.5 ر. ۲ 2.2 1.0 0.2 -2.5 2.3 2.2 0.2 51

. . 1.2 .. 3.5 ы. С 2 7 3.8 9. F 3 7 3.4 3°9 5.5 ы. М 4.2 4 4.1 9.9 3.8 7 1.1 40 3.5 3.6 m m 4.1 • 4.0 1 °. 3.8 39 3.6 • 3.9 3.7 э**.** е 4.1 ••• 3.7 3.8 4.1 4.1 38 3.7 3°2 4.0 3.9 3.8 3.6 3.7 4.1 **0.**** 3.7 3.8 33 4.0 4.0 3.7 3.7 4.0 3.6 3.8 3.4 3.8 3.7 3.7 36 **4** • 0 4.0 3°9 3.7 3°0 3.4 3.6 3.8 3.8 . С. 3.7 ŝ 4.0 4.0 **3°** 3.7 3°2 . С. С. 3.2 3.7 3°.9 3.9 3.9 34 4.0 4.0 4.0 3.6 3.3 **3**•9 3.7 3.8 3.1 3.1 3.7 3°4 3.5 3.2 3.0 3.0 4.0 4.1 4.0 4.1 3.7 3.8 32 3.7 4.1 4.0 3.1 3 • 4 3.2 2.9 2.8 3**.**6 2.8 3.4 E 3.4 3°0 4.0 2.7 2.9 2.7 3.2 2.6 2.6 3.7 3.1 30 0°E 2.5 2.4 2.9 л**.** Ч 2.4 3.7 2.7 2.3 2.4 2.7 56 2.6 J., J 2.1 2.3 2.2 2.2 2.5 2.8 2.1 2.2 2.4 38 1.9 2.3 3.0 1.8 6 • T 1.9 2.1 2.1 2 e 🗄 1.9 2,0 27 1.9 2°0 2.3 .5.0 6.0 6.0 0.9 0.0 1.0 1.4 1.8 50 0.0 0.0 0.0 0.0 1.8 2.0 0.0 0.0 1.4 1.5 0.7 25 1.6 1.4 2.0 0.7 0.0 0.0 -0.1 0.0 0.0 ..0 0.7 24 1.5 1.4 2.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.2 0.7 1.5 2.0 0.0 0.1 0.0 0.0 1.0-0.0 6.0 1.3 0.3 0 ° 4 0.3 1.6 2°0 0.0 0.0 0.0 0.0 **5**.0 8.0

× Wind Speed in Direction of Frontal Motion. Series No. 1507, Case 9(I)[able 2A-9(a)

= 185.19 meters = 7407.6 m, Horizontal Increment Δx -1 Length of Field L E 11.5 11 13×

18.5 17.6 13.6 16.7 12.5 12.4 12.3 12.1 12.0 11.9 11.8 11.6 11.5 11.8 12.1 12.4 12.7 13.0 13.3 13.6 13.8 14.0 14.1 14.5 11.4 11.5 11.6 11.6 11.7 11.6 11.4 10.9 10.3 10.7 11.1 11.5 11.7 12.3 12.9 13.5 13.6 13.7 13.8 13.9 13.5 19.6 14.5 13.1 12.6 12.8 13.1 13.3 13.5 13.5 13.5 13.6 13.6 13.6 13.5 14.4 15.4 15.5 15.6 15.6 15.7 15.4 9.9 10.2 10.5 10.8 11.2 11.5 12.5 13.5 13.4 13.2 13.4 13.7 19.5 18.2 15,1 15,3 15,5 15,8 16,0 16,3 16,5 16,8 17,0 17,3 17,5 13.6 13.1 13.4 13.6 13.8 13.8 13.8 13.7 13.7 13.7 13.7 13.6 13.6 13.6 14.7 15.8 16.0 16.2 16.4 16.5 12.8 13.2 10.1 10.8 11.4 11.8 11.6 11.5 12.5 18.0 15.5 16.5 17.5 17.8 18.0 18.3 18.5 18.7 19.0 19.3 12.3 17.2 17.5 17.7 9.9 10.4 11.0 11.5 11.9 16.5 16.8 16.2 9°2 9.4 **0°**6 15.5 15.8 6°8 8.5 6.4 15,3 9°0 6.0 9.5 7.4 13.8 14.0 14.2 14.4 14.6 14.7 14.9 15.1 15.3 13.9 14.1 14.3 14.5 14.7 14.9 15.0 15.1 9.2 7.5 7.4 9.3 14.8 6°6 7.°5 9.7 14.6 11.7 11.5 11.3 11.4 11.4 10.7 **6°** 11.6 11.2 10.8 10.4 10.1 6.6 14.2 14.4 10.3 14.1 13.7 14.5 13.7 11.1 10.7 13.9 13.7 11.5 3 11 2

-2.6 -2.6 =2.5 -2.6 -2.5 -2.5 -2.5 -2.6 -2.6 -2.6 -2.7 7 =2.6 -2.6 -2.5 -2.6 -2.6 -2.5 -2.6 1.5 -0.6 -0.9 -1.1 -1.4 -1.7 -2.0 -2.2 -2.5 -2.6 -2.4 -2.5 -2.6 -2.7 Ş, -2.5 -2.5 -2-6 -2.6 0.2 -2.4 -2.4 -2.5 -2.5 -2.6 -2.6 39 -2-5 ***2**,6 •2•5 -0.5 -1.1 -1.8 -2.4 -2.4 -1.5 -2.0 -2.5 -2.5 0.7 -1.5 -2.0 -2.5 -2.5 -1.9 -2.6 -2.6 -2.6 -2.6 0.1 -2.5 -2.5 -2.5 36 -2.5 -0.5 -1.0 -1.5 -2.0 -2.2 -2.5 -2.5 37 -1.9 -2.5 36 -1.2 1.1 -1.3 -1.3 35 .**S***0 1.1 2.7 1.6 2.9 1.8 94 3.5 2.5 э.0 3.4 3.6 5,3 5.5 1.8 4 °5 5.7 Ē 5°2 6.2 7.5 7.0 7.3 6.2 6.3 8.4 9.6 8.6 6.9 32 9**°**2 17.6 17.6 17.5 16.2 14.8 13.5 13.1 12.7 12.3 11.9 11.5 lo.7 16.4 16.1 15.4 14.3 13.2 12.4 12.5 12.2 11.8 11.5 15.4 15.1 14.6 14.5 13.4 13.1 12.8 12.4 12.1 11.8 11.5 0.6 9.1 9.4 13.5 12.9 12.3 11.7 11.1 10.5 10.8 11.1 11.3 11.6 11.5 18.5 18.7 17.6 16.6 15.5 14.3 13.0 12.4 11.8 11.1 10.5 13.7 13.0 12.2 11.5 11.3 11.0 11.2 11.3 11.5 11.7 11.6 11.2 11.0 10.8 11.0 11.2 11.4 11.6 11.6 E 19.0 19.7 19.5 18.1 16.8 15.4 13.5 12.5 11.5 10.5 15.1 15.4 14.4 13.5 12.6 11.7 11.7 11.8 11.8 11.8 14.5 13.9 13.3 12.6 12.0 11.4 11.5 11.6 11.7 11.8 12.1 11.5 11.2 11.4 11.5 11.6 11.8 30 53 82 27 26 52 42 13.6 12.5 11.4 13.3 12.7 3 2.2 13.9 21 2 1 σ

ORIGINAL PAGE IS OF POOR QUALITY

Table 2A--9(b) Wind Speed Perpendicular to Frontal Motion , W_y

Case 9(I) Series No. 1507,

= 185**.**19 meters ∆× m, Horizontal Increment = 7407**。**6 s] Length of Field L 11**。**5 m 11 × I≩

Э.5 2,5 2.0 9-0 0.0 4.0 0.1 1 3.8 4.2 3.8 51 3.7 **1.**8 0.9 0.0 3.7 4 ° 0 9°8 ÷. Ð. 4 2.9 3. A 50 1.5 6.0 0.0 3.3 Э**°**2 3°2 2.9 3.5 3.3 3.0 2°2 1.9 3.2 2.7 2.5 2.0 1 . 4 0.7 0.1 0.0 3°0 2°9 2.2 18 0.0 0.0 2.5 2.6 1.0 2.3 5.0 2.0 1.8 1°0 0.0 1 0.0 2.0 2.0 1.0 ۰° 0.0 1.6 1.5 2 0.7 0.0 2 0°0 1.6 6.0 0.7 0°.5 0.0 -0.1 1.5 1.0 1.1 0.1 ŝ 0.0 1.1 1.0 0.7 0.6 9.0 0.5 0.2 -0.1 -0°5 -0.2 -0.1 14 0.0 0.7 0.8 9°0 0.6 0.0 -0.2 E.0-0.7 6°0 1 0.0 0.9 0°.9 0.8 0.1 **0.**8 1.0 **6°0** -0.1 -0.2 -0.1 12 6°0 1.0 1.1 0.7 0.1 -0.1 -0.1 0.0 1.0-1.1 1.1 11 0.2 0 " 0 0.0 1.2 6.0 **9°**0 0.0 0.0 1.1 1.2 1.0 3 0.*0 1.2 1.1 1.0 Ó . 4 0.3 0.1 0.0 θ.0 0.7 0.1 5 1.0 1.0 0.7 0.6 0.4 0°.3 0.3 0°2 0.2 0.1 0.0 30 6..0 6.0 0.2 0.4 0.1 0.1 0.1 0.0 o.5 0.3 0.2 ~ 0.0 0.0 0.0 0.2 0.0 0.0 9.0 0.2 0.1 0.0 0.7 œ 0.0 0.0 0.7 ••• -0.1 -0.2 -0.1 -0.1 -0°1 1.0-9.0 ŝ 0.0 -0.2 9.0 0.1 -0.1 0.0 **9 °** 0.0 -0.2 -0.2 -0.1 0.5 0.2 0.1 0.1 0.0 -0.1 -0.1 -0.1 0.0 -0.1 0.3 m 0 . 4 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 2 0.3 0.0 0.0 0.0 ٤.0 **د.** ۲ U.°.3 0.2 **U.2** ... 0.1 1

0.00 0.0 0.1 0.0 0.0 0.3 0.2 0.2 0.2 0.1 0.1 Ę. 0.0 0.5 0.1 0.0 0.4 0.2 0.3 0 . 4 0.3 0.3 0.2 60 0.7 0.5 0.J 0.6 0.4 0.4 0.1 0.1 0.0 °.° 0°,5° 39 0.1 0.6 0.2 6.0 0.7 0.7 0.6 **0.4** 0.8 0.6 0. 0 38 0.2 0.1 1.2 8.0 0.0 0.6 ... 8°0 0.8 6.0 0.1 37 1.6 E.0 .1.0 0.0 1.0 1.0 1.0 ••• 0.9 1.2 0.7 36 0.2 1.9 1.5 0.7 .0 0.0 1.2 1.5 1.1 1.0 8.0 35 3.0 0.4 0.2 2.8 0.0 2.5 2.0 1.7 1.3 0.5 1.6 ¥. 0.1 **4.**2 6.0 .ç.*0 0.0 4°.2 3°9 Э.О 2.4 1.9 0.2 33 **3.**0 2.6 2.3 1.8 1.2 1.0 0.5 0.0 E.0 0.0 0.0 32 0.0 -0.1 1.9 1.0 **0**.6 0.3 -0.1 0.0 0.8 0.0 0.5 31 0.4 0.0 -0.2 -0.1 0.0 -0.2 0.0 0.2 e.º0 0.2 -0.1 30 -0.2 -0-1-0-1 0.0 -0.1 -0.2 -0.2 0.0 -0.2 -0.3 0:0 -0.2 0.0 -0.1 -0-1 -0.1 29 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 -0.1 28 0.1 0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.0 27 ٩. 0 0.6 0.6 0.5 0.5 **0 "**5 0.5 **6.**0 0.5 0.5 0.0 26 1.0 0.7 1.0 1.0 1.1 1.0 6°0 1.0 0.0 1.0 •• 25 0.0 1.2 0.7 2.1 2.0 1.5 1.9 1.5 5.1 1 . 4 1.4 24 1.5 2.3 0°8 0.0 3.0 2.2 3.2 2.8 2.9 1.9 1.0 23 3.0 £.*0 0.0 4. 3 4°.3 3.6 5.8 2.1 8 **.** 1 ÷., 3.0 22 0.0 **0.** 1 4.0 2.0 F. O 3.5 3 e d 2 .5 ÷.4 8 3 51 1 2

8.0

.0.8

7.9

7.9

7.9

7.9

9°° L

7.8

6°6

20.0 20.3 20.2 20.1 20.0 16.0 12.0 12.0 11.9 11.9 11.9

19.8

12.0 14.0 16.0 17.9 19.8 9.3 9.3 9.5 9**.** 3 **6** 8.2 8.2 8.1 17.4 9.4 8.5 4.5 6.1 7.4 8.8 8.0 10.0 14 5 7.0 9.4 11.5 13.6 9°0 8.2 8.1 2.0 • 5.2 13.2 15.3 11.4 13.6 15.7 9.6 9°8 9.7 9.5 0.0 8.3 11.6 14.0 16.9 5.7 20. 40 З.0 5.3 **0**•9 6.9 0.6 11.2 9°8 10.0 10.0 10.1 10.1 10.0 9.5 9.4 8.3 N.1. 1.6 2.0 19 66 10.3 10.4 10.3 8.3 8.1 11.1 9.4 11.9 12.0 12.0 12.1 12.1 12.0 13.0 12.3 11.7 11.0 10.8 10.6 10.4 10.2 10.0 10.3 9.°6 8.5 3.5 **4**.0 **6.4** 6.5 8.8 10.1 1.2 1.7 2.4 3.8 98 **0°6** 6.9 10.5 8.0 0.4 **6***6 10.6 10.8 12.0 13.1 14.3 14.3 14.2 14.2 14.2 14.2 14.2 14.1 14.1 13.0 12.0 10.9 10.7 10.6 10.4 12.0 12.4 13.7 14.6 15.4 16.3 15.8 15.3 14.7 14.2 13.2 12.3 11.3 10.3 10.2 10.2 10.1 8°2 1.8 2.0 Э**°** 6 6.4 **6.**1 0.8 1.4 1.8 8.7 1 E 7.1 10.8 1.0 1.2 2.0 3**.**5 6.9 7.5 10.9 9.6 8.1 .8.0 **•**•0 1.2 3.7 12.2 11.8 11.5 11.1 8.8 9 36 1.1.0 0.*8 11.1 0.8 0.0 0.7 0.6 9.0 2.0 3.2 Э., **6.**5 8.¥ 5.0 5.7 9.9 6°8 35 15 11.4 10.0 9**.**9 0°8 -2.0 6.6 11.3 **0°**6 8.0-0.0 0.0 2.0 2.8 3.7 5.0 5.9 7.8 2 1 34 8.8 11.5 11.7 14.0 14.9 15.9 15.9 17.8 16.5 15.3 14.0 14.0 14.0 14.0 12.7 11.3 9.8 11.4 17.9 18.4 19.8 19.3 17.5 15.6 13.8 12.0 12.0 12.0 10.7 -4.0 5°2 6.9 6.°9 10.0 -2.4 -2.0 -0.2 1.3 2.4 4.0 Ē ŝ 20.0 20.0 20.0 20.0 20.0 17.3 14.7 12.0 11.2 10.4 9.6 16.0 16.5 17.1 17.6 14.2 16.9 15.6 14.4 13.1 12.3 11.5 10.6 11.8 12.5 8.0 9.9 • 3 • 9 -2.0 -0.5 0.7 2.0 3.5 10.0 10.0 -4.0 -4.0 -3.9 -3.9 -3.9 -3.9 -4.0 -4.0 -4.0 -4.0 0°•9 14.0 12.0 12 32 13.3 12.7 13.3 14.0 12.9 9.1 7.0 -3.6 -2.0 -0.1 0.0 1.5 з.0 5.0 11 31 -1.0 0.0 -3.3 -2.0 6.0 8°3 -0.2 1.0 2.5 13.6 14.0 14.0 14.1 14.1 • • 30 10 1.6--2.0 4.0-2.0 5.3 7.6 8.0 -1.5 -1.2 ÷.0 3.6 29 σ 14.1 -2.8 -2.3 3.2 6°\$ 9.0-0.0 1.8 4.7 7.5 38 ъ 12.0 13.3 14.1 6.0 -2.7 -1.8 8.0= -3.5 -3.3 -3.0 -0.1 •• 7.0 1. S 2.8 27 12.9 -3.0 -2.0 5.6 é. 5 10.2 12.2 12.1 12.1 14.0 14.0 -1.3 -1.0 E.0-1.2 2.4 ... ø 26 ÷3,4 -2.1 5.1 12.5 4.0-1.0 2.0 • 6.0 25 ŝ -2.3 -1.6 12.2 14.0 -3.8 5.3 6.1 -3.7 ÷0. 2.0 4.0 0.7 5 12.3 -3,5 -2.4 -1.9 5.6 6.2 -4.0 -0.1 0**.**5 2.0 4.0 9.0 11.8 23 6.9 1 - A 10.5 -4.0 -J.6 -3.2 -2.6 -2.2 -0-Y 2.0 4.0 5.8 6.2 0.2 2.2 10.0 ۰.0 4.5 6.1 17.9 -2.5 4.1 -3.0 -2.1 -1.0 0.0 8°9 2.0 **4**.0 6.3 -3.7 -3.2 51

Table 2A-9(c) Vertical Wind Speed, W₇

Case 9(I) Series No. 1507,

185.19 meters 11 Δx Increment m., Horizontal = 7407.6 Field L Length of . -1 ស E 11.5 11 13×

11

Table 2A-10(a) Wind Speed in Direction of Frontal Motion, $W_{\rm X}$ Series No. 2206, Case 10(J)

212.77 meters m., Horizontal Increment $\Delta x =$ = 13.1 m s⁻¹, Length of Field L = 8510.8 13×

15.4 16.3 16.1 15.7 15.4 15.0 14.3 13.5 12.8 12.9 13.0 13.1 13.2 13.6 14.0 14.3 14.7 15.1 15.2 15.4 15.5 9.7 14.1 14.4 14.8 15.1 14.4 13.8 13.1 12.6 12.1 12.3 12.5 12.7 12.9 13.1 13.5 13.9 14.5 15.1 15.1 15.2 15.2 15.7 15.7 15.8 16.0 16.2 16.2 15.7 15.2 14.5 13.8 13.1 13.4 13.7 14.0 14.2 14.5 14.8 15.1 15.3 15.5 15.7 15.9 16.1 14.1 12.4 12.7 12.5 12.4 12.2 12.0 11.8 11.6 11.9 12.1 12.4 12.7 12.9 13.2 13.8 14.5 15.1 15.1 15.1 15.1 16.0 16.1 9.1 9.4 9.6 9.9 10.1 10.4 10.6 10.9 11.1 12.1 13.1 11.3 10.8 10.2 16.1 16.0 21.3 20.4 19.5 19.6 17.7 16.8 16.5 16.2 16.0 15.7 15.4 15.1 16.1 17.1 17.2 17.2 17.1 16.8 16.4 16.3 15.7 16.6 18.0 17.3 16.6 16.1 15.6 15.1 14.7 14.3 13.9 14.1 14.4 14.6 14.9 15.1 15.3 15.5 15.7 15.8 15.8 21.2 20.2 19.2 19.1 17.1 16.8 16.5 15.2 15.9 15.6 15.3 15.0 15.5 16.1 16.6 17.1 15.8 16.0 15.6 15.1 15.3 15.4 15.4 15.8 16.1 21.1 19.8 16.5 17.2 16.9 10.6 16.3 15.9 15.6 15.3 15.0 15.1 15.1 9.7 8 ° 4 9°2 . 6. 6 7.8 9.1 7.1 9.°H 7.1 10.7 J.1 . H.1 11.1 10.4 15.9 17.2 15.1 15.6 17.1 10 -ን

6°0° -1.0 -1-0 -1:0 -1.1 -0.5 -0.6 6.0-0.2 -0.1 -0.4 -0.7 -0.2 -0.9 -0.9 -1.0 -1.0 -1.0 14 -0.9 0.1 -0.2 0.0 -0.3 -0.6 =0.7 =0.8 =0.8 -0-8-0-8-0-8 -0.3 -0.9 -0.9 -1.0 0.4 -0.3 -0.9 -0.9 -1.0 -0.2 -1.1 -1.1 -1.1 -1.1 -0-1 40 0.4 • 6.0-99 0.5 8°0-0.8 38 0**.**5 0°8 E.0 -0-2 -0**-**8 1.2 Em 1.2 8.0 9.0 0.2 0.2 0.1 0.2 1.0 36 1.7 1.1 1.3 0.8 1.0 9°0 0.*6 2.0 6.0 0.7 1.2 ŝ 1.6 2.2 2.2 2.1 2.1 1.4 1.8 2.3 2.3 1.2 1.1 ٣ 4.1 3°1 4 °3 4.5 4.0 2.6 3.4 2°6 3.1 2.7 2.8 93 6.4 7.4 6**.**6 7.3 4°5 **9°**6 6.3 3.1 3.1 5.1 5.9 32 9.4 8.7 5.1 6°9 15.1 15.1 15.1 15.1 15.1 14.7 14.3 13.9 13.5 13.1 10.2 9.1 4.6 5.6 7.1 0°6 15.3 15.3 15.4 15.4 14.9 14.5 14.0 13.6 13.1 10.2 IE 9.6 9.3 15.5 15.6 15.8 15.9 16.0 16.2 16.3 15.1 13.8 12.6 8.8 9.1 9°6 16.4 16.6 14.8 16.9 17.1 17.3 16.2 15.1 11.1 15.1 16.3 16.4 16.5 16.8 17.0 17.2 16.1 15.1 12.0 ŝ E.9 16.5 16.6 16.8 17.0 17.1 17.3 14.6 11.9 13.1 15.6 13.9 15.7 15.4 15.0 14.7 14.3 14.0 13.6 13.3 12.9 29 15.2 0.6 0.6 28 17.2 16.9 17.3 17 0°6 16.7 26 9.1 16.5 15.7 15.5 15.2 15.7 16.2 25 9.1 15.7 16.1 24 9.1 23 9.4 15.5 2.2 9.7 15.4 16.2 15.2 16.3 21 11 2

0.0 0.0 6.0-6.0--0.3 0.0 0.2 0.1 0.0 -0-6 -0.7 -0-7 0.3 0.2 0.2 0.2 0.1 0.1 -0-7 -0-7 -0.7 -0-8 41 0.1 0.0 0.0 . . . 0.3 4.0 0.2 0.2 -0.3 -0.4 -0 • -0 -0-7 8.0-0.0 0,3 -0-3 0.0 0.4 -0.2 -0-5 -0.2 3 0°0 -0.6 6.0-6.0--0 ·] 9.0 9.0 0.9 0.2 0.0 0.0 -0.2 -0.1 0.0 **0.4** 4.0 0.5 4.0 0.2 0.5 0.2 0.1 39 0.0 -0-8 6.0-6.0 0.3 0.1 -0.8 -0.6 -0.9 6.0-4.0-0.0 9.°0 0.5 9.0 0.5 4.0 0.1 -0.2 4.0-0.7 0.7 38 1.0 0.0 -0.4 0.5 0.4 -1.0 0.6 -0.1 -0.6 -0° A -0.9 -1.1 -1.2 6.0--0.9 0.0 6.0 8.0 0.7 0.6 0.7 1.1 33 -1-0 ÷ 0-1:0 0.4 0.1 0.0 -0.1 -0.2 -0.6 -1.0 -1.0 -1.1 1.1. -1.0 0*0 1.0 9°0 6.0 4.1 0.7 0.7 0.7 36 0.0 1.6 -0-6 -1-0 6.0-5.0--1.1 -1.0 -0.5 0.0 1.5 1.8 1.3 1.0 0.9 0.8 **c**•0 0.1 1.5 0.0 0.2 -0.3 ŝ 0.6 0.2 0.0 1.5 1.9 1.0 0.9 -0.5 **6°0**--1.0 -0-2 0.0 ·0.6 -0.2 -0.8 -0.7 2.4 2.6 2.1 1.8 9.0 0.0 34 2.0 0.2 0.0 -0.4 1.4 1.0 0.7 1.0 0.6 -0.5 -0.4 -0.6 -0.8 0.0 2.4 2.1 0.1 0.0 **₹**• E 2.8 1.1 3.1 BB 0.2 0.0 2°2 2.4 0.1 -0-4 -0.3 1.8 0.8 -0.1 -0-2 -0.7 0.0 4.2 9°4 2.9 1.1 0.7 0.5 0°.5 4.2 0.8 32 0.0 0.0 1.4 0.2 2,0 1.7 -0.2 -0.5 -0.3 0.0 5.2 Э°0 0.8 0.4 0.4 0.3 0.2 0.2 0.0 4.1 3.5 0.5 31 0.0 0.0 1.0 6.0 9°, 0.1 2.3 2.4 0.0 0.1 -0-1 -0.2 4.0--0.2 0.0 3°5 3.3 9 ° F 0.2 0.1 0.2 0.2 30 0.4 -0.1 0.0 1.8 0.5 0.2 0.0 -0.1 -0.2 -0.2 -0.1 0.0 1.7 2.7 1.2 -0.1 -0-1 1,8 -0.1 -0.1 0.1 0.1 29 -0-3 -0-2 0.0 -0.2 -0.1 0.0 0.1 0.0 2.0 0.0 1.2 0.1 -0-5 -0.4 0.0 0.0 -0-2 -0.2 -0.2 -0.1 -0-1 -0.1 97 0.0 9.0 -1.0 -0.2 -0.5 =0.3 -0-2 0.0 0.0 -0.4 -0.3 -0-1 -0.1 -0.2 -0.1 -0.2 -0-1 -0.3 -1-0 0.0 -0.1 -0.1 5 -1.1 0.0 -1.1 -0.6 -0.5 -0.2 0.0 -0.1 =0°8 -0-8 -0.6 0.3 -0.2 -0.1 -0.1 0.0 8.0 0.1 *0.1 -0.1 -0.1 0.1 26 1.0-0.0 0.7 -0.1 -0.1 0.0 -1.2 -1.2 -1.2 -0°-9 -0.6 -1.1 -1.0 6.0--0-7 -0-3 0.3 0.0 0.0 1.0-6.0 0.1 25 -1.2 -1.0 -0.3 1.0 1.0-0.0 0.0 -1.2 -1.2 -1-2 0.0 6.0 0°5 0.2 0.0 0.0 -0.1 -0. -1.1 -1.2 -1--1---0 • B 24 -1.2 4.0-0.1 0.0 0.0 -0.1 0.0 0.0 -1.0 -1.1 -1.1 -1.1 -1.1 -1.2 -1.0 0.0 0.8 4.0 -1.1 0.2 0.1 1.0 53 0.0 0.0 -1.1 -1.0 0.1-0.1-0.1--1°0 -0°-9 +0.4 0°5 0.1 5°0-0.0 0.4 0.2 0.0 0.0 -1.1 0.1 0.1 22 -0.6 6.0--0.3 0.0 -0.7 -0.1 5.0с. Э 0.3 0.2 0.2 0.0 -0.B F.0.+ -0.1 -0.7 4.0 0.1 0.0 0.0 0.0 71 1 2 2

Table 2A-10(b) Wind Speed Perpendicular to Frontal Motion, W_y Case 10(J) Series No. 2206, meters

212.77

H

۸X

m, Horizontal Increment

8510.8

H

Ч

Field

of

Length

า ัง

E

 $W_{X} = 13.1$

21

20

51

81

1.1

10

15

14

9

12

1

01

3

30

Table 2A-10(c) Vertical Wind Speed, W_z

Case 10(J) Series No. 2206,

212.77 meters II Δx m, Horizontal Increment = 8510.8 Н = 13.1 m s⁻¹, Length of Field × 3

6.6 0.0 0.7 2.0 2.0 8.5 10.0 10.2 10.3 10.5 10.6 10.8 11.0 11.1 11.3 0.7 1.04 1.6 1.7 2.1 9.9 11.8 12.1 12.4 12.6 12.9 13.2 13.1 13.1 13.0 8.0 9.3 10.7 12.0 12.1 12.1 12.2 12.3 12.3 12.4 1,8 8.6 10.8 13.0 13.6 14.1 14.1 14.1 14.1 14.0 14.0 14.0 8.1 10.2 12.2 12.6 12.9 13.3 13.6 14.0 13.9 13.9 13.8 21 ÷, 8°6 4 . F 0.0 0.0 6.0 1.7 1.8 1.9 1.2 -0.3 ¥. 4 1. A 20 40 1.1 1.4 1.5 1.0 1.6 9.6 9.7 =0°3 -0° 0.8 1.0 0.5 0.0 =0.3 =0.7 =1.0 =1.4 =1.8 =2.1 =2.0 =2.0 =1.7 =1.3 =1.0 =0.7 61 39 1.1 1.J 1.4 0.1 6.0 U.0 -0.3 -0.5 -0.8 -1.1 -1.4 -1.6 -1.9 -1.6 -1.3 -0.9 -0.6 0.4 0.7 0.7 0.0 -0.3 -0.6 -0.9 -1.2 -1.5 -1.8 -2.1 -1.8 -1.4 -1.0 -0.7 ŝ 18 9.4 1.2 0.4 0.6 6.0 1.0 0.0 0.3 0.0 -0.4 -0.7 -1.1 -1.5 -1.1 -0.7 -0.3 11 37 0.8 6.9 0.3 0.6 0.1 1.0 0.0 0.1 0.0 -0.3 -0.6 -0.8 -1.1 -0.7 -0.4 91 36 0.0 0.5 8.0 9.1 9.2 0.3 -0.8 -0.4 -0.2 35 15 е. 0 0.0 0.0 -0.5 0.5 34 14 0.0 0.1 0.5 0.7 -0.1 -0.3 -0.6 0.0 -0.2 -0.3 Ë E 6.H 0.7 6.0 0.1 0.2 12 25 6.0 2.9 0.3 €"0 1.0 6.9 5.7 6 ° 7 11 Ē **0.4** 1.2 6.3 6.1 0.1 1.1 5.9 5.4 4.6 0.2 0.4 5,3 2 30 0.4 1.2 1.4 9.E 4.0 -0.1 0.0 0.2 0.3 0.5 4.1 4.1 4 ° 0 4.0 29 1.4 1.0 3.3 0.7 9.0 3.7 3.8 3.7 3.7 3**.**6 0.0 0.J 0**.**5 0.1 -0.1 30 87 1.6 1.7 3 ° 4 2.7 0.1 9.*0 3.4 0.2 0.8 9**°**9 3.4 **4** ° E ç.5 17 1.8 1.9 3.1 2.0 0.0 0.0 0.6 Э.С 3.1 0.0 0.2 0.7 3.1 9°0 6 °. 9°2 0.3 s 26 2.1 2.0 2.0 2.8 0.4 0.8 2.8 2.7 2.7 0.1 -0.2 -0.1 0.0 2.7 0.1 -0.1 0.0 -0.3 -0.2 0.0 -0.3 -0.1 0.1 0.2 25 2.7 2.0 6°0 2.4 2.4 0.2 3.1 2.3 2.4 0.0 -0.4 -0.2 0.0 2.5 24 0.3 3.4 4.0-2°3 2.1 0.0 1.0 4.1 2.0 2.1 2.1 2.1 -0.2 53 0.4 0.0 6°*0 1.1 2•5 3.0 J. . 1.4 4 · F 1.4 2.0 2.1 0.0 0.° 0.4 0.3 U. Ì 22 1.8 0.7 1.2 1.5 2°0 0.0 U.7 0.6 9.0 4.1 . • 1.0 0.8 9.0 5 5.0 0.7 7 4 -2 0

÷.5

4.6

2.7

4° 8

4.8 2.9 2.0

4.9

9**.**6

3.8 4.0

2.0

. . .

8.0

8.0 6.2 4.6

.0.8

8.0 6.2

8.0

8.0 6.1

8°0

6°1 6°1 1°0

7.0

6.0 3.3 4.4

5.0 4.5

4.0

3.5

2.5 3.1 3.2

2.0

2•0 2•4

2.0 2.0 2.0 2.0

2.0

2.0

1.7 1.7 2.0 2.0

6.2

6.2 4.7

6.1

6.1

4.1 3.6 3.6

3.0 4.E

2.6

1.9

1.8

1.9

1.9

1.9

2.0

2.0

2.0

2.4

2.8

÷.0

4.1

4 . Ì

Э•0

2.0

2.0

2.1

2.1

Э**°**С

2.5

1.8

1.9

5.2

3.6

2.6

2.8

2.9

3.2

3.5 3.2

0.4 1.7 2.4

1.4

2.4

3.1 4.3

3.9 4.8 5.0

4.6

6.3 5.4

7.2

8.1 7.7 6.3

0.6

9.9.9

10.6 10.9 11.2 11.5 11.8 12.1 12.4 11.5 10.7

5.2

5.7

6.2

8.4

9.7

10.6 10.4.

10.1 10.3 10.5 10.7 10.9

7°7

2.6

3.4

÷.4

1.7

5.3

0.0

6.3

1.8

9.3

9.4 10.3 10.9 10.1

6.6

6°9

14.8 14.6 -3.7 -3.6 -2.6 -1.8 -1.6 14.7 14.5 14.1 12.4 10.6 -3.8 -1.1 -0.6 26.9 25.3 24.1 22.8 21.4 21.1 20.7 20.4 18.4 14.4 14.8 15.2 15.6 16.0 16.4 16.5 16.5 16.4 16.3 15.6 15.0 14.4 17.1 15.7 14.4 14.1 13.7 13.4 14.1 14.7 15.4 14.8 14.8 14.0 13.8 13.5 13.2 12.9 12.7 12.4 10.5 10.8 6.6 6.8 Ţ -0.2 **0.** 4 20.6 25.1 23.5 22.0 20.5 20.6 20.7 19.1 17.5 16.0 14.4 14.4 14.4 15.1 15.8 16.5 16.5 16.4 15.9 15.3 15.2 20.4 18.4 16.4 15.9 15.4 15.7 16.0 16.3 16.6 15.9 15.3 14.6 14.5 14.5 14.5 14.5 14.4 14.4 14.4 20.4 19.4 18.4 16.4 14.4 14.4 14.5 14.5 16.3 16.5 15.8 15.1 14.4 14.4 14.3 14.3 14.3 14.2 14.2 13.3 -3.7 -0.6 -1.6 -2.6 -0.1 -0.9 -1.8 -0°8 0.4 -0.6 14.8 14.7 10.4 15.7 15.1 14.4 12.3 12.4 12.4 12.4 12.4 13.4 13.1 12.7 12.4 12.4 12.4 12.4 12.4 12.4 12.4 11.3 10.3 8 • ¥ 0.0 -1.0 -1.9 -2.8 40 15.0 -3.6 0.2 0.7 15.1 8.3 8.4 8.4 15.6 39 1.6 2.4 1.3 1..3 15.2 20.5 24.9 23.2 21.5 19.9 20.3 20.6 19.4 18.2 17.0 15.8 14.6 15.0 15.4 15.7 16.1 16.5 16.1 25.4 24.4 22.4 20.9 19.4 19.4 19.4 19.4 18.4 17.4 16.4 15.6 14.8 15.0 15.2 15.4 15.6 15.3 -1.2 -2.4 38 0.8 4.0 2.6 2.3 2.3 3.2 15.4 15.4 33 8.3 0.0 1.4 1.6 3.5 4.0 9.0 3.1 3.2 36 8.3 2.4 1.2 1.8 2.5 4.4 4.) 20.4 18.4 16.4 17.4 18.3 17.9 17.4 17.0 16.5 15.6 14.8 14.9 15.1 3.9 9.6 50 7.9 5.5 2.7 3**.**4 5.7 2.4 G. G 4.6 **4**. 8 34 7.5 4.7 4.4 4.9 5.6 5.2 7.1 6. 6 3.4 ŝ 7.2 8.4 7.7 5.4 6.5 6.4 5.9 6.7 4 • 4 32 6.8 1.6 8.8 7.3 8.6 8.1 0°.9 6.6 7.1 31 6.4 9.3 9.6 2.3 11.1 5.6 10.6 9.0 9.7 30 8.9 8.3 7.7 7.0 15.0 14.3 14.4 14.5 14.5 14.4 14.4 14.4 12.4 12.9 12.6 14.4 14.4 14.5 13.4 12.4 12.8 13.1 11.2 14.6 14.3 14.4 14.5 13.4 12.3 12.5 12.8 11.2 14.5 14.3 14.3 14.4 13.3 12.3 12.5 12.8 11.2 14.1 13.9 13.6 13.4 12.9 12.4 12.6 12.9 10.1 12.4 12.5 12.6 12.7 12.8 12.9 13.0 13.1 12.4 10.8 11.1 11.4 11.6 12.1 12.4 12.8 13.2 11.5 5.67 **5** N 14.3 14.4 14.5 13.9 13.4 13.1 23 26 9°2 25 13.6 12.4 10.1 24 23 22.4 22 24.4 14.7 2.2.4 14.9 14.8 22 n, 2 11 11

Wind Speed in Direction of Frontal Motion, $W_{\mathbf{X}}$ Series No. 2118, Case 11(K) Table 2A-11(a)

m, Horizontal Increment $\Delta x = 204.08$ meters = 8163.2 Field L s-1 Length of 12.4 m 41 3

21

20

61

81

17

16

15

1

Ē

27

7

10

Э

÷
Field L = 8163.2 m, Horizontal Increment Δx = 204.08 meters = 12.4 m s^{-1} , Length of 13[×]

-1.6 -1.3 -1.2 -1-0 -1-0 -1.0 -0.8 0.0 1.1--1.6 -0.8 0.0 -1.5 -1.5 -1.3 -1.3 -1.6 -1.1 -1.1 -1.1 -1.0 -1.1 0.0 -1.5 -1.1 0.1 -0.5 -1.1 -1.2 -1.3 -1.4 -1.4 -1.5 -1,3 -1.2 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 -0.3 -0.2 -0.3 -0.4 -0.6 -0.7 -0.7 -0.7 4.1-0.0 -1.5 ±1,4 -1.2 -1.2 -1.2 -1.1 -1-2 -1.4 -1.2 0.0 -1.3 -1.3 -1.2 -1.1 0.0 -1.1 -1.2 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -0.9 -0.5 -0.7 -1.0 -1.2 -0.9 -1.0 0.0 -1.0 0.1 -0.5 -1.1 -1.2 •I.1 0.0 -0.5 -1.0 -1.1 0.0 -0.4 -0.7 -1.0 -0.7 -0.5 -0.7 -0.9 -0.5 -0.7 0.0 0.0 0.0 -I.1 -1.0 -0.9 -0.7 -0.6 -0.7 -0.9 -1.0 -1.0 -1.0 -0.4 -0.9 -1.1 -1.0 -0.4 -0.9 -1.1 -0.7 -0.4 -1.0 -1.0 -0.9 -1.1 -0.9 -0.6 -1.0 -1.0 0.0 0.0 -1.0 -1.1 1.1- 6.0-0.0 0.0 -0.7 -0.7 -0.7 -0.7 -0.8 -0.7 -0.7 -0.7 -0.9 -0.9 -0.8 -0.8 -0.9 6.0-0.*0 -1.0 -1.0 -1.0 -0.9 0.0 -0.9 0.0 -1.2 -1.1 0.0 -1.1 -1.2 8.0- 9.0-5.0--1.1 -0.9 -0.7 -0.9 -0.8 -1.1 -0.4 -0.4 -1.2 0.0 -1.0 -1.2 1.1-1.1-1.1--1.1 -0.4 -1.2 -1.2 -1.2 0.0 5 11

9.0 1.3 1.0 0.2 0.0 1.3 1.2 1.2 1.2 1.4 41 0.7 0.1 1.2 6.0 0.00 1.2 1.0 1.0 1.0 6*0 1.1 40 0.5 0.1 6.0 1.1. 1.0 0.0 . . 6.0 0.8 0.8 8.0 39 0.0 0.*0 1.0 6.0 6.0 6.0 0.6 9.0 9.0 **6°**0 0.4 38 0.0 0.0 0°9 0°8 6.9 1.3 1.2 6.0 0.7 0.7 o.5 37 -0.1 0.1 0.0 1.7 1.6 1.0 0.8 0.9 0.7 9.0 9.0 36 0.0 0.0 0.0 2.0 2.0 1.5 1.0 0.7 1.0 1.2 9.0 35 1.4 0.1 0.1 0.0 1.9 1.7 1.1 2.4 2.3 6.0 0.7 34 0.0 0.0 0.2 2.7 1.4 0.6 2.7 2.4 2.1 1.8 33 0.0 3.1 -0.9 -0.9 -0.9 -0.4 -1.0 -0.9 -0.9 -0.6 -0.4 -0.1 1.4 0.5 9.0 3.0 2.2 1.8 1.0 -0.3 -0.1 32 2.5 0.5 0.*0 0.5 0.0 2.0 1.4 2.0 1.0 E 0.4 0.5 2.0 1.0 ÷0-0.0 0.0 0.0 0.0 1.0 0.0 1.0--U.H -1.0 -1.2 -1.4 -1.5 -1.7 -1.4 -1.1 -0.7 30 ۰**،** د 0.0 0.0 -0.5 -1-0 -1.4 "0.9 "1.0 "1.5 "2.1 "2.6 "2.2 "1.9 "1.5 0.4 0.4 53 -1.7 -1.8 -1.8 -1.9 -2.0 -2.4 -1.7 -1.0 -1.6 -1.7 -2.0 -2.3 -2.6 -1.8 -1.0 -2.0 -1.0 -3.0 -2.5 -1.9 -2.2 -1.4 -3.1 -2.5 -2.0 28 0.3 27 0.3 0.0 -1.6 -1.7 -2.1 -2.6 -3.0 -3.1 26 0.0 -0.9 -0.8 -1.4 -2.0 -2.5 -1.0 -1.4 -1.8 -2.4 *2.5 25 U.U U.O 0.0 -1.9 -1.8 -2.1 24 -1.2 53 9.0--1.2 -1 • 4 22 0.0 -1.6 -1.6 -1.2 -1.0 -1.0 -1.0 9.0--1.4 **-1.**3 21 -21

-9°8 -6-3 -8.9 -7.3 -6.5 -3.3 -3.5 -3.8 -4.1 -4.1 -4.0 -4.0 -3.7 -3.3 -3.0 -2.7 -2.5 -2.2 -2.8 -3.4 -4.0 -4.3 -4.7 -5.0 -4-2 -8.1 -5.3 -5.0 -4.8 -4.5 -4.3 -4.5 -4.8 -5.0 -5.2 -5.4 -5.7 -5.9 -7.2 -8.5 -9.2 -9.9-10.1-10.2-10.1-10.1 -5.9 -5.9 -5.3 -4.6 -4.0 -4.3 -4.5 -4.8 -5.1 -5.4 -5.6 -5.9 -7.1 -8.2 -8.9 -9.5-10.2-10.2-10.1-10.1 -b.1 -b.0 -6.0 -5.0 -4.0 -4.3 -4.5 -4.8 -5.1 -5.4 -5.6 -5.9 -6.4 -6.9 -7.5 -8.0 -9.1-10.1 -9.9 "►6.0 -6.0 -5.3 -4.7 -4.0 -4.3 -4.5 -4.8 -5.0 -5.3 -5.5 -5.8 -6.3 -6.8 -7.4 -7.9 -8.5 -9.1 -9.7 .8.0 -6.2 -6.4 -2.0 -2.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.0 -3.0 -2.0 -2.0 -2.0 -2.0 -2.5 -3.0 -3.5 -4.0 -8.6 -6.8 -7.0 -1.6 -7.5 -8.0 -8.3 -7.2 -6.5 -4.2 -4.2 -4.1 -4.0 -4.5 -5.0 -5.5 -6.0 -6.1 -6.8 -6.3 -5.6 -5.3 -5.0 -4.7 -4.5 -4.2 -4.4 -4.6 -4.8 -5.1 -5.3 -5.5 -6.0 -6.5 -7.0 =5.4 +5.2 =5.0 +4.8 =4.6 =4.4 =4.6 =4.8 =5.0 =5.2 =5.4 =5.6 =5.8 =6.0 =6.4 -4.3 -4.9 -5.4 -6.0 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -4.2 -2.0 -2-0 -4.7 -4.2 0.6--5.5 -5.8 -5.6 -4.9 -1.2 -0.1 -6.1 -0.0 -2.0 -2.1 -6.0 3 2

-6.0 -6.1 -6.0 -5.6 -4.9 -4.2 -2.1 -5.5 -6.1 -5-8 -6.0 -5.8 -1.0 ~7.4 +8.0 +8.0 +6.0 +5.0 +6.0 +6.1 +6.1 +6.2 +6.2 +6.3 +6.3 +6.3 +6.3 +6.3 +6.3 +6.3 +6.2 -5.5 -5.2 -4.1 -4.1 -6.0 -6.1 -0-7 -5.8 -6.2 -6.2 -6.2 -6.1 ••• -6.2 -6.0 -6.0 9°0 -6.1 -6.0 -6.9 -7.4 -8.0 -6.8 -5.7 -4.0 -5.1 -6.1 -6.2 -6.2 -6.2 -6.3 -6.3 -6.3 -6.3 -6.2 -6.2 -6.2 -6.1 -6.7 -7.4 -8.0 -6.6 -5.2 -3.9 -4.0 -6.0 -6.1 -6.1 -6.2 -6.2 -6.2 -6.2 -6.2 -6.2 -6.1 -6.1 -5.0 -5.5 -6.0 -5.5 -4.9 -4.4 -3.3 -4.6 -5.2 -5.9 -5.9 -5.9 -6.0 -6.0 -6.0 -6.0 -6. -4.0 -4.0 -3.3 -2.7 -2.0 -4.0 -4.3 -4.5 -4.8 -4.4 -4.1 -4.1 -4.1 -4.0 -4.0 2.0 -6.1 - 9.3 -0.1 0.3 =1.1 -2.5 -4.0 -3.0 -2.0 -3.0 -4.0 -1.5 -6.2 "6.U =6.U =6.0 =6.0 =5.9 =5.9 =5.9 =5.9 =5.9 =5.9 =6.0 =6.0 =6.0 =6.0 =6.1 =6.1 =6.1 -6.1 -2.2 -6.1 -6.1 -6.2 -b.2 -2.2 -6.1 -6.1 -2.1 -5.9 -5.9 -6.0 -6.0 -6.1 -6.0 -6.0 -6.1 -2.0 -2.0 -2.1 1.0 0.4 • • • • • -6.1 0.9 1.3 -0.3 -2.0 -0.1 1.8 4.0 - 6.2 -6.0 -6.0 -5.8 -6.1 2.0 -6.2 0.0 -6.1 -6.0 -6.0 -6.0 -7.2 -6.9 -6.5 -8.0 -7.3 -6.5 2.0 4.0 3.0 -6.8 -7.4 -4.0 -4.0 0.4 2.0 - **b** . 5 =6 • B -6.9 -6.1 -4.0 0.0 1.0 -6.1 -6.3 -0.1 -6.2 -0-3 11 2

fable 2A-11(c) Vertical Wind Speed, W_z
Case 11(K) Series No. 2118,

meters m, Horizontal Increment $\Delta x = 204.08$ = 8163.212.4 m s⁻¹, Length of Field L 13×

51

20

19

8

5

16

15

4

2

2

11

10

ō

30

,o

ŝ

Table 2A-12(a) Wind Speed in Direction of Frontal Motion, W_x

Case 12(L) Series No. 1759,

90.90 meters 11 Field L = 3636.0 m, Horizontal Increment Δx Length of ີ ຍ E 5.5 li 3×

5.9 9.0 6.1 é. 5 6.7 6.1 6.8 1.5 21 6.3 6.4 6.3 6. S . 9.* 9 3.6 ŝ 6.2 6.6 5.9 5.3 50 6.4 **6**.6 6.5 6.1 6.4 5.7 6.6 6.1 6°5 5.7 6.3 61 6°9 6.9 6.8 6.9 6.6 6.3 5.8 6.4 **6**.0 9°0 6. 8 **1**6 7.1 6.2 **6.**0 7.1 7.0 6.7 6.3 6.8 6.9 7.1 7.1 11 6.9 1.3 7.2 7.4 6.1 7.9 7.1 7.4 + 6.1 5.5 10 7.5 7.6 1.4 7.6 7.1 7.6 9.0 S.S 6.3 7.5 7.6 15 7.7 7.5 7.3 5.8 5.7 6.7 7.6 , e 9.0 7.6 **4** • 5 4 **6.**0 5.8 7.5 7.6 1.7 7.7 7.5 7.4 5.7 7.6 3. **4** 7 1.7 7.6 7.6 7.6 5.6 5.7 6.4 1.7 7.6 4.5 7.8 12 6.6 6.2 2.5 7.5 6.3 6°9 5.5 8.0 8.1 1.7 7.6 11 5°2 4.9 4.4 6.5 8°2 7.6 1.0 7.5 5.9 10 3°2 ų, M Ş.°Ş 6.5 6.3 8.4 8.5 1.1 7.5 7.6 7.6 6 3.6 7.5 7.6 8.6 5.5 **4.**8 7.5 6.6 6.7 6.1 7.7 æ Э**•**9 7.4 6°8 7.7 7.4 6.6 5.5 6.1 1.7 6.9 7.1 8.6 8.4 8.0 7.4 6.J 7.6 9.2 7.5 9.1 1.5 8°3 ٥ 8.8 8.8 5.9 9.5 9.5 9.3 8.8 8.6 9.4 8.8 7.9 ŝ 10.3 10.9 11.6 10.2 10.4 10.9 11.5 10.1 8.2 9.5 6"6 9.9 11.5 11.0 10.5 10.0 11.0 10.9 10.7 10.0 10.6 11.1 11.5 10.2 9.3 11.7 11.2 10.6 10.1 **10.5** 9.6 6°2 10.4 C. 6 10.9 9.6 1.1 6. P 10.6 10.2 ۷.6 11.6 9.3 11.5 1 10

-2.0 -4.5 -4.5 -6.5 -4.7 -5.7 -5.5 -6.7 -6.7 -6.0 "S.J -4.7 -4.7 -4-7 -6.6 -4.9 -4.5 -4.3 -6.7 -3°2 -5.0 -5.5 -4.9 -4.4 -3.7 -6.5 -4.2 е, е , -2.4 -2.3 -2.4 -2.5 -2.6 -3.3 -3.9 -4.6 -5.1 -5.6 -6.0 -6.5 -6.5 -6.6 -6.6 - 3°8 -3.0 -4.1 9.6. -0.5 -1.2 -2.0 -2.8 -6.2 *4.5 -2.6 -3.2 -2.9 -5.8 -2.3 -2.3 -4.9 -3.7 -4.1 -4.2 -4.4 -2.9 -3.2 -3.5 -3.8 -3.6 -2.5 -2.6 -2.9 -3.2 -1.7 -0.5 -1.1 -1.7 -4.7 -4.8 -5.5 -1.8 -2.4 -1.0 -5.2 =0 °.e 0.2 -4.6 -4.5 -4.8 9.0 **4**°0 -0.1 -0.5 -1.1 -0.2 -4.1 -0.2 -0.3 -0.5 -0.7 -0.8 -1.7 -2.5 -2.9 -3.3 -1.0 -1.6 -2.1 -2.6 -0.5 -1.0 -1.6 -2.1 1.5 0.2 1.J -2.3 -2.9 -3.4 -3.9 -0.5 -0.6 -0.1 -0.8 -1.7 -2.5 -3.0 -3.6 1.4 2.0 °.5 1.4 0.4 6.0 2.5 .0°е P.0 1.3 1.5 -0-5 0.1 2.3 2..8 3**.**5 0.7 1.3 -0.1 -1.7 -1.8 -2.0 -2.1 . • • • • • 2.0 3.4 4.2 . . . L.3 6.1 5°2 4.2 8.0 1.8 2.8 6.4 .e.s 2.4 5.0 1.2 3.5 7.5 6.4 -2.6 -1.5 **5°**0 1.7 2.6 4.0 5.5 4.6 1.3 3.5 4.0 5°2 9°° 5.7 **6** 4 1.5 -0.5 -0.4 -2.4 é. 5 7.1 5.8 5°.9 5.9 1.5 4.0 0.0 2.9 6.5 **b.**8 5°.0 **0**•0 ••• 0.1 1.5 ę., 1

4

9

39

38

5

36

35

34

33

32

Ĩ

30

53

28

57

26

25

2.4

53

77

21

0.4-

-4.7

-0.7 -1.7 -2.6 -3.6

0.0

8.0

1.5

1.9

2.3

2.6

0°E

4 ° F

5.5

6.7

7.8

7.5

7.3

7.0

0.1

		••••••••••••••••••••••••••••••••••••••		·									· ·	•			··· ÷ •								
	21	1.5	1.0	0.4	0.0	0.0	-0.2	-0.1	-0.1	-0.1	-0.1	0.0		41	1.1	1.1	1.1	1.1	6.0	4.0	0.0	-0.1	-0.1	-0.1	0.0
	20	0.0	0.0	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1	-0.1	-0.1	0.0		40	1.0	1.0	1.0	1.0	6.0	0.4	0.0	-0.1	-0.1	-0.1	0.0
	19	-0.2	-0.2	-0.3	E * 0-	-0.3	-0-3	-0-2	-0.1	-0.1	-0.1	0.0		36	1.0	1.0	1.0	1.0	6*0	0.4	0.0	0.0	-0.1	-0.1	0.0
	18	-0°-2	-0-5	é é	-0-5	• 0 •	-0-¥	E.0-	-0.2	-0.2	0.2	0.0		8	6°*0	6.0	6.0	6.0	0.8	0.5	0.1	0.1	0.0	.0.1	0.0
	17	0.7	-0.7	-0-1	0.7	-0.5	0.4	-0°3	•0•2	-0-2	0.2	0.0		37	0.9	0.9	6.0	6.0	0.8	0.5	0.2	0.1	0.0	0.0	0.0
	16	.1.0	1.0	6.0-	8 0	-0.7	-0-2	- 0 - 4 ·	0.2	-0-2	-0.2	0.0		36	1.1	11	1.0	1.0	0.8	9.0	0.4	0.1	0.0	0.0	0.0
	15	-1.2	. 0 . 1 -		. 0.1-	. 9.0.	9.0	0.4	-0-2	-0-T	0.1	0.0		35	1.2	1.2	1.1	6°0	0 ° 8	0. 6	0.5	0.0	0*0	0.0	0.0
	14	1.2	1.1	-1.0	. 6.0-	. 9.0	• 0 • 2 •	• 0 • 3 •	. 1 . 0	.0.1	.0.1	0.0		34	1.4	1.4	1.0	0.8	6.0	0.7	0.6	0.0	0.0	0.0	0.0
,	ET	.1.1	.1.1	6.0-	-0.1	• 5•0-	• • • •	-0.2	.0.1	.0.1	0.1	0.0		33	9.7	1.5	1.0	6°0	6.0	9.0	0.7	0.1	0.1	0.0	0.0
	12	.1.1	.1.0	0.7	• 9 • 0 •	.0.3	0.2	-0.2	.0.1	.0.1	-0.1 -	0.0		32	1.8	1.7	1.2	1.0	1.0	6*0	6.0	0°3	0.1	0.1	0*0
	11	1.1	1.0	• 0 • 0	-0-5	0.2	0.1	.0.1	0.0	0.0	0.0	0.0		16	1.9	1.9	1.5	1.3	1.0	6.0	1.0	0.4	0.2	0.1	0*0
	10	1.1	. 6.0.	0.5	. 4 . 0	0.0	• • •	0.0	0*0	0.0	0.0	0.0		30	2.1	2.0	1.8	1.5	1.3	1.0	1.1	0.6	E.0	0.2	0.0
	Q,	1.1.	. 6.0	÷ 0 •	-0.2	0.0	0.1	0.0	0.1	0.1	0.1	0.0		29	3.5	2+4	2.0	1.8	1.5	1.3	1.2	0.7	4 .*0	0.2	0.0
	30	-1.0	0.8	0.2	-0.1	0.0	0.2	0.1	0.2	0.2	0.1	0.0		28	2.9	2.7	2.5	2.2	1.8	1.5.	1.4	6.0	0	6°9	0.0
	۲	1.0	8.0-	0.1	0.0	0.2	0,3	0.1	0.2	0.1	0.1	0.0		27	3.3	3.1	2.9	2.5	2.1	1.8	1.5	1.0	0.5	0.3	0.0
	-0	1.0	· 0 • 3	0.0	0.2	0.4	0.5	0.1.0	0.1	0.1	0.0	0.0		56	3.2	3.0	2.5	2.0	1.6	1.4	1.0	0.7	0.3	0.2	0.0
	Ś	-0-1	0.1	0.4	0.5	0 • 6	0°.6	0.2	0.1	0.0	1.0-	0.0		52	3.2	3.0	2.0	1.5	1.1	6.0	0.5	0.3	0.2	0.1	0.0
	4	0 • 4 ·	0.6	0.8	0.7	9*0	0.7	0.2	0.0	-0-1	-0.1	0.0		24	3.1	9°0	2.0	1.2	8.0	† *0	0.0	0.0	0.0	0.0	0.0
	m	1.0	1.1	1.2	1.0	1.0	÷.0	0.4	0.2	0.0	-0-F	0.0		23	3.1	2.9	2.0	1.0	0.4	0.0	0*0	0.0	0.0	0.0	0.0
	.N	d.1	1.6	1.6	1.2	1.1	1.0	0.7	٤.0	0.2	0.0	0.0		73	J. U	2.0	1.0	c•0	1.1	1.0-	-0.1	-0.1	-0.1	-0.1	0.0
	1	2.1	1.1	2.0	1.5	1.2	1.1	0°3	0•)	6.9	0.0	0.0		21	1.5	1.0	0.4	0.0	0.0	-0-2	-0.1	-0.1	-0.1	1.0-	0.0
		11	1 c	. 7	-19	1	ø	S	4	7	~	·			11	10	57	Ð	1	ø	n	4	-	8	-

Table 2A-12(b) Wind Speed Perpendicular to Frontal Motion, Wy Case 12(L) Series No. 1759,

 $\overline{W} = 5.5 \text{ m s}^{-1}$ Length of Field L = 3636.0 m, Horizontal Increment $\Delta x = 90.90 \text{ meters}$

Table 2A-12(c) Vertical Wind Speed· W_z

Case 12(L) Series No. 1759,

Horizontal Increment $\Delta x = 90.90$ meters ц В 5.5 m s^{-1} , Length of Field L = 3636.0 j) × |3

-5.9 -5.9 -6.0 -6.1 -6.2 -6.3 -6.4 -5.0 -5.3 - 0--5.0 -6.1 w3.0 −3.4 −3.2 −3.0 −3.3 −3.7 −4.0 −4.4 ×4.8 −5.2 −5.6 −6.0 −6.1 −6.1 −6.2 −6.3 −6.3 −6.4 −6.3 -3.3 -3.0 -3.3 -3.7 -4.0 -4.5 -4.9 -5.4 -5.9 -6.0 -6.0 -6.1 -6.2 -6.2 -6.3 -6.4 U.C -1.U -2.O -2.3 -2.6 -2.9 -3.1 -3.4 -3.7 -4.0 -4.2 -4.4 -4.7 -4.9 -5.1 -5.3 -5.6 -5.8 -6.0 -6.0 -6.0 -6.0 -6.3. -6.2 -4.0 -3.6 -3.2 -3.6 -4.0 -4.4 -4.8 -5.2 -5.6 -6.0 -6.1 -6.2 -6.2 -6.3 -6.3 -6.4 -6.4 -6.0 -6.0 -6.1 -0.7 -1.5 -2.2 -2.5 -2.8 -3.1 -3.4 -3.7 -4.0 -4.3 -4.5 -4.8 -5.0 -5.3 -5.5 -5.8 -6.0 -6.0 -6.2 -6.2 -6.1 -6.1 -6.1 -0.0 ~2,8 ~3,0 ~3,2 ~3,2 ~3,2 ~3,4 ~3,6 ~3,8 ~4,0 ~4,4 ~4,8 ~5,2 ~5,6 ~6,0 ~6,1 ~6,1 ~6,2 ~6,2 -1.0 -1.1 -1.7 -2.0 -2.4 -2.8 -3.1 -3.5 -3.9 -4.2 -4.5 -4.8 -5.1 -5.4 -5.7 -6.0 -6.0 -6.1 -6.2 -6.1 -6.2 -U.6 -I.1 -I.5 -2.0 -2.4 -2.7 -3.1 -3.4 -3.8 -4.1 -4.3 -4.6 -4.9 -5.2 -5.4 -5.7 -6.0 -4.7 -1.3 -2.0 -2.3 -2.7 -3.0 -3.4 -3.7 -4.1 -4.4 -4.6 -4.9 -5.1 -5.4 -5.6 -5.9 -5.8 -6.1 -6.1 -5.7 -6.0 -6.1 -6.1 -5.5 -2.0 -2.2 -2.4 -2.6 -2.9 -3.2 -3.4 -3.7 -4.0 -4.3 -4.7 -5.0 -5.3 +i.7 −i.8 −2.0 −2.i −2.5 −2.8 +3.2 −3.5 −3.9 −4.2 −4.5 −4.8 −5.2 -3.7 -4.0 -4.0 -4°0 0.0 0.0 -3.2 9.6. 1 10

2.0 2.0 2.0 1.7 1.5 1.3 1.0 0.9 0.7 0.5 0.3 4 0.2 4.0 2.0 1.3 6.0 6.0 0.7 0°.S 0.2 2.0 \$ 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.7 0.2 0.2 0.1 99 -6.4 -6.5 -6.6 -5.7 -6.8 -6.3 -5.7 -5.2 -4.2 -3.2 -2.9 -2.6 -2.3 -2.0 -1.7 -1.3 -0.9 -0.4 0.0 0.0 -0-1 -0.1 -6.3 -6.2 -6.1 -6.1 -6.0 -6.0 -5.3 -4.7 -4.0 -3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 -6.5 -7.0 -7.5 -8.0 -8.0 -8.0 -7.0 -6.0 -4.9 -3.9 -3.5 -3.1 -2.8 -2.4 -2.0 -1.5 -1.0 -0.5 -5.5 -4.9 -4.4 -3.9 -3.0 -2.8 -2.7 -2.5 -2.4 -2.3 -2.1 -1.8 -1.5 -1.2 -0.8 -0.5 -0.2 -b.U -5.3 -4.7 -4.0 -3.7 -3.5 -3.3 -3.U -2.8 -2.5 -2.3 -2.0 -1.7 -1.3 -1.0 -0.7 -0.3 -6.1 -b.1 -b.0 -5.5 -5.0 -4.5 -4.0 -3.7 -3.3 -3.0 -2.6 -2.3 -1.9 -1.5 -1.1 -0.8 -0.4 ••• 38 0.0 0.0 0.0 -5.9 -5.2 -4.5 -3.8 -2.8 -1.9 -2.0 -2.0 -1.8 -1.7 -1.5 -1.4 -1.2 -1.1 -0.9 -0.6 -0.3 -5.9 -5.3 -4.6 -4.0 -3.0 -2.0 -2.1 -2.2 -2.2 -2.1 -2.0 -2.0 -1.7 -1.4 -1.1 -0.7 -0.4 5 0.0 0.0 0.0 36 0.0 0.0 0.0 35 0.0 0.0 -4.7 -4.0 -3.0 -2.0 -1.8 -1.7 -1.5 -1.3 -1.1 -0.9 -0.6 -0.4 -0.2 ₹8 -4.0 -3.3 -2.5 -1.8 -1.6 -1.5 -1.3 -1.1 -0.9 -0.6 -0.4 -0.2 -5.0 -4.0 -3.0 -2.0 -1.8 -1.6 -1.3 -1.1 -0.9 -0.7 -0.4 -0.2 0.0 33 32 Ē 30 29 **5**8 27 26 25 24 23 22 -6.2 -5.0 -5.3 -6.0 * o • 1 5 11 2

Table 2A-13(a) Wind Speed in Direction of Frontal Motion, W_x

Series No. 0211,

Case 13(M)

Table 2A-13(b) Wind Speed Perpendicular to Frontal Motion,W_v

Case 13(M) Series No. 0211,

= 158.73 meters m, Horizontal Increment Δx 6349.2 11 Field L s⁻¹, Length of 9.6 m H |₃×

-1.2 6.0--0.6 -0.5 -0.2 1.0. .1.1. -0-1 -0.1 ••• 0.0 -0.3 -0.1 -0.1 -0.2 -0.6 -1.1 -1.0 -1.0 -0.9 -0.9 -1.0 -1.2 -1.3 -0.2 -0.4 -0.6 -0.8 -0.8 -0.7 -0.7 -0.9 -1.0 -1.2 -0.1 -0.1 0.0 -0.8 -0.8 -0.9 -1.0 -0.9 8.0. -0.ª -0.2 -0.2 -0.3 -0.1 0.0 -0.7 -0.7 -0.4 -0.5 -0.6 0.0 -0.1 -0.3 -0.4 0.0 -0.2 -0.4 -0.1 -0.2 -0-1 0.0 -0.6 0.0 0.0 -0.1 0.0 0.1 -0 · J 0.0 0.0 0.0 0.0 -0-6 0.1 0.1 0.0 0.0 -0-1 0.0 -0.4 -0.7 -0.7 -0.7 -0.1 -0.2 -0.3 -0.4 -0.5 -0.1 -0.1 -0.2 -0.2 -0.3 0.1 0.0 0.0 0.0 -0.1 -0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.2 0.1 0.1 0.0 0°2 =0.2 0.0 0.2 0.0 0.2 0.1 0.1 0.0 0.0 -0.1 0.0 0.1 0.2 0.1 1.0. 0.1 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.0 0.1 0.2 0°. 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.3 0.2 **0.**4 **c.**2 0.4 0.5 0.4 0.3 0°.3 0.1 0.1 0.0 0.0 **4** 9.4 0.5 9.*0 **ç.**0 0.3 6.0 0.1 0.0 0.0 0.1 0.3 0.4 0.4 0.5 0.6 0 . 4 0.1 0.3 0.2 0.2 0.0 0.3 0.4 0.4 0.3 9.2 0.2 0.3 0.0 0°3 0.2 0.1 0.3 0.0 6°3 0.3 0.2 0.2 0.2 0.3 0.1 ..0 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 9°0 0.2 0.2 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.2 0.1 1.0 0.1

6.0 6.0 0.0 2.0 1.5 1.0 8.0 0.6 4.0 0.2 0.1 4 2.2 1.1 1.0 6.0 e. O 0.1 0.0 1.7 E • 1 0.9 0°5 9 0.0 2.4 1.8 1.3 1.2 1.0 6.0 9.0 1.6 6.4 0.1 <u>6</u>E 2.7 2.0 1.9 1.5 1.3 1.1 6.0 9.*0 **6.**4 0.2 0.0 38 2 . 4 2.0 1.7 1.0 0.2 0.0 2.9 1.3 6.0 0.7 0.5 37 1.0 3.1 1.7 1.2 0.0 2.8 2.2 6.0 9.0 0.6 0.2 36 2.7 6*0 3.1 2.4 1.8 1.2 6.0 9.9 0.7 0.2 0.0 35 **1.**8 1.6 0.0 9-0 2,5 2.5 1.0 6°0 0°0 **8**•0 0.2 34 3° 0 2.7 2.4 3°0 2.0 1.6 1.2 1.0 0.8 0.2 0.0 33 3.6 3.1 3.0 2.4 2.2 1.1 6.0 0.3 0.0 3.9 1.5 32 3.6 3**°**6 1.0 0.3 0.0 4.1 1.3 3.4 2.7 2.8 1.8 Ē 9.0 e.0 4.1 4.0 3.2 3,1 2.4 2.1 1.1 0.0 4.1 30 3.1 3.0 2°0 6.0 0.7 0.2 0.0 4.2 4 . i 2.7 1.7 53 3.1 0.0 4.2 4.0 2.8 2.4 0.5 0.3 1.6 1.3 9.0 **3**8 3.0 0.1 0°0 4.2 4.0 2.5 2.0 **1.**3 0.8 4.0 0.4 27 3.3 2.7 3.0 1.8 i.3 6.0 0.4 0.2 0.2 0.0 0.0 26 2.5 1.5 1.5 1.0 0.0 0.0 0.7 2.0 0.0 0.0 0.1 25 0.0 0.2 0.0 0.0 0.7 0.1 1.0--0.2 -0.1 0°¢ 0.1 24 0.0 -1.0 +0-4 -0.1 0.0 -0.2 -0.2 6°0. -0.1 -0°I -0.2 23 -1.0 -0.6 o. e -1.2 -1.1 # 0<mark>-</mark> -0.3 -0.1 0.0 0.0 0.0 o.0 27 -1.1 -0.9 0.0--0-1 -0.1 -0.1 0.0 0.0 0.0--0-2 21 11 2

					1															
•	~		4	ŝ	ø	2	30	6	10	11	12	EI	14	15	16	17	18	19	20	21
9	.2	0.3	0.3	0.3	0.4	0.4	0.2	0.1	-0-1	-0.2	. 9.0	1.1	1.0	-1.0	6.0	6.0-		-1.2	-1.3	-1.2
0	2	0.2	0.3	0.4	9 - 4	0.5	6.0	0.2	0.0	-0-2	- 0 - 4 -	9.0	8.0	8.0-	0.1	0.7	- 6 - 0 -	1.0	1.2	1.1
Þ	- 3	0.3	0.3	0.4	0.5	0.4	0.2	0.1	-0-1	-0.2	-0.4.	.0.7	0.7	-0.7	8.0-	8.0-	. 6.0-	-1.0	-0-0	6.0-
0	.2	0.3	0.4	0.5	0.6	6 •0	6°3	0.2	0.0	-0.1	-0.2.	· E • 0 •	-0-F	-0-5	9.0-	-0-6	-0.7	-0.7	-0-8	-0.6
0	.2	6 .0	0 .4	0 •6	ć. 0	0.4	0.2	0.1	0.0	-0.1	-0.1	.0.2	• 0 • 2	e.0-	-0-3	-0 - F	0.5	9.0	-0.7	-0.5
-	1.1	0.2	0.3	0 4	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.1	0.1	1.0-	0.0	0.1	• e • 0 •	4.0	-0.3	-0.2
-	1.0	0.2	0.2	0.3	0.3	0.°3	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0*0	0.2	-0.4	-0-3	0.1
	Ú. 1	0.1	0.2	0.2	0.1	0.1	0°0	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.0	0.0	-0.2	-0.3	-0.2	-0.1
	0.1	0.1	0.2	0.2	1.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	-0.2	-0.1	1.0-
	0.1	0.1	0.1	0.1	0*0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0-1	-0.1	-0.1	-0.1	0.0
	ŋ•ŋ	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	75	53	24	25	26	27	58	29	30	31	32	66	34	ŝ	36	37	96	30	40	14
	1.1	-1.0	0.7	2.5	3.3	4.2	4.2	4.2	4.1	4.1	3.9	3.0	3.0	3.1	3.1	2.9	2.7	2.4	2.2	2.0
	1.0	÷0.4	0.2	1.5	2.7	4.0	4.0	4.1	4.1	3.8	3.6	3.0	2.5	2.7	2.8	2.4	2.0	1.8	1.7	1.5
	0.6	-0.2	0.1	1.5	3.0	3.0	3.1	3.1	4.0	3°6	3.1	2.7	2.5	2.4	2 • 2	2.0	1.9	1.6	1.3	1.0
8	0.4	-0.2	0.0	1.0	1.8	2.5	2.8	э.0	3.2	3.4	3.0	2.4	1.8	1.8	1.7	1.7	1.5	1.3	1 • I	6*0
•	5.0	-0.2	0.0	0.7	1.3	2.0	2.4	2.7	3.1	2.7	2.4	2.0	1.6	1.2	1.2	1.3	1.3	1.2	1.0	6.0
	0.1	0.0	0.1	0.2	6.0	1.3	1.6	2.0	2.4	2.8	2.2	1.6	1.0	0.9	1.0	1.0	1.1	1.0	6*0	0.8
	0.0	-0.1	-0.1	0.0	0.4	0.8	1,3	1.7	2.1	1.8	1.5	1.2	0.9	6.0	6*0	6.0	6*0	6.0	0.9	0.6
	0.0	-0.1	-0.2	0.0	0.2	0.4	0.6	6.0	1.1	1.3	1.1	1.0	6°0	6.0	0.8	0.7	0.6	0.6	0.5	0.4
	0.0	-0-1	-0.1	0.1	0.2	0.4	0.5	0.7	0.8	1.0	0•0	0.8	8° 0	0.7	0.6	0.5	0.4	0.4	0.3	0.2
	u.0	0.0	0.0	0.0	0.0	0.1	0+2	0+2	0.3	0*3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 2A-13(c) Vertical Wind Speed, 1

I≥×

m, Horizontal Increment $\Delta x = 158.73$ meters

Wind Speed in Direction of Frontal Motion, $W_{\rm X}$ Table 2A-14(a)

Field L = 5128.4 m, Horizontal Increment Δx = 128.21 meters Series No. 0109, Case 14(N) 8.0 m s⁻¹, Length of 11 X IB

0.0 ••• 2.9 2.2 2.0 1.0 a. 4 * 0.9 53 Ŧ 4.0 Э. 4 2.3 1.5 **0.**8 9.0 0.1 ••• • 0.4 2.1 20 9 3.6 6.0 ••• 3.2 2°2 2.2 2.0 1.2 0.2 3°9 **3.**6 61 6E 3.2 Э•5 3.2 3.2 2.9 2.4 2.2 1.6 0°6 1.1 0.1 18 38 2.8 3.0 2.8 3.8 2.7 2.3 2.1 0.3 0.0 1.5 1.1 17 37 2.5 2.4 2.4 2.4 1.0 0.0 0.0 2.4 2.2 1.2 2.1 91 36 2.0 2.0 2.0 0.7 0.0 0.0 2.0 2.1 2.0 1.0 2.2 15 35 1.0 1.3 0.0 1.5 1.6 2.0 2.0 0.5 0.0 ·1.9 0.7 1 4 E 1.1 0.0 0.7 1.2 1.5 **1.6** 1.5 0.3 0.2 0.0 0.0 13 Ē 0.0 9.0 ••• 0.8 1.2 1.2 0.0 1.1 0.0 0°°0 -0.1 -0.1 -0.1 12 32 0.0 -0-1 0.0 0.2 0.2 0.4 9.0 6.0 9.0 0.0 11 Эl 0.3 0.4 0.6 0.0 0.0 -0.1 0.2 6.0 0.5 0.2 10 30 0.0 0.3 0.5 0.6 1.0 0.4 0.0 0.7 0.7 -0.1 -0.1 æ 29 0.4 0.6 0.7 6.0 1.2 0.6 0.0 0.0 0.0 0.8 0.2 30 28 1.3 0.6 0.8 6.0 1.0 1.0 с. Э 0.1 0.1 0.1 0.7 ~ 27 1.0 1.1 0.2 0.7 1.2 1.4 1.2 6.0 0.5 0.3 0.3 ø 26 1.1 6.0 1. J 1.4 1,5 1.1 0.6 **5**•0 9.4 e.0 . . 25 ŝ 1.0 1.3 1.5 1.5 0.5 1.3 **0.**8 0.5 0.5 1.6 4.5 24 1.5 1.2 1.6 1.7 1.4 1.0 0.6 1.7 **0**.6 **9°**0 1.8 ŝ 23 1.4 9.1 1.9 1.4 1 • U 1.6 0.7 1.8 0.8 9.0 1.1 22 1.5 1.⁸ **7**.0 5.0 0. . . 2.0 8 1.... 0°.9 0.9 9.0 51 1 2

11.0 10.5 0.6 **4**.0 11.3 10.1 8.5 10.0 10.4 10.8 11.2 11.6 12.0 12.1 12.1 12.1 12.0 12.0 6.2 5.1 8.1 1.2 12.0 12.0 12.0 10.7 10.1 0°6 8.1 5.9 4.6 **д •** Е 6.7 12.0 10.8 4.0 5.5 8.1 3.0 10.1 9.1 6.1 11.0 10.0 10.6 11.1 11.5 12.0 12.0 12.0 2.5 9.1 8°°0 5.1 3.5 6.1 9.5 10.0 11.0 12.0 10.7 10.0 8.0 .0 2.0 9.1 4.8 10.4 2.5 1.5 9°3 8.6 7.3 6.0 4.4 9.6 2.0 1.0 5.1 • • • F...8 9.0 6.7 8.8 8.0 1.6 .**5°0** 7.0 9.0 3.5 4.1 3.0 1.2 **6** 8 0°6 9°0 7.0 6.0 9°° 0.0 4.0 0.8 0.0 2°2 9.1 8°.2 7.5 6.6 9.0 5.1 .0.4 9.0 8.3 0°8 7.0 6.2 9.0 2.0 -0.1 -0.1 -0.2 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 4.7 3.9 0.*0 6.0 4.1 2.3 2.0 1.0 6**.**5 5.0 4.0 0.0 -0.1 -0.1 -0.2 -0.2 -0.2 -0.1 -0.1 7.0 4.7 0.0 0.0 4.0 3.0 2.0 2.0 5°2 0.0 0.0 3.3 2.0 1.0 0.0 2.0 0.0 -0.1 4.0 2.0 1.4 1.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 0° E 0.0 0.0 0.0 -0.1 -0.1 -0.1 1.6 0°8 -0.1 2.0 1.2 1.6 0.7 0.0 0.0 2.0 2.0 2.3 1.4 1.0 1.0 0.0 0.0 4.0. 0.7 0.0 0.0 3.0 2.1 3.1 2.0 1:0 0.0 1.3 0.5 0.0 4.0 9.E 2.1 2.5 2.0 0.0 4.0 4.0 9.4 • 3.4 2.9 2.5 5.0 1.0 ÷.•0 0°. 0.0 1

meters 10.0 10.2 10.1 10.2 10.2 10.0 8.6 6.6 4.9 6.0--2.1 -2.2 -2.1 -1.5 0.0 -2.1 -1-8 -1.3 -1.8 -2.0 -2.1 23 4 10.1 10.1 10.2 10.0 10.0 10.1 10.1 10.1 10.1 10.2 6°6 -0.8 -2.2 -2.1 128.21 6.9 5.4 0.0 -2.1 -2.1 -2.0 -1.5 -1.0 8.1 -1.2 20 40 10.2 10.2 -2.1 -2.1 6.6 6.8 7.2 5.9 0.0 -0.3 -0.3 -0.2 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.3 -0.5 -0.7 -0.9 -1.1 -1.2 -1.4 -1.6 -0.5 -1.1 -1.6 -2.1 -2.1 -2.1 -2.1 -2.1 -1°9 -1.2 6*0--0.6 19 39 10.2 n 10.2 6.6 8.8 1.5 6.1 0.0 0.0 -0.4 -0.8 -1.2 -1.6 -2.0 -2.0 -2.0 -2.0 -1.5 -0-5 -0.4 -0.9 -1.5 -2.0 -2.0 -2.1 -2.1 6.0--0°3 18 38 Δx 10.2 7.3 0.1 6.6 8.6 **6.**0 -1.0 -1.5 -2.0 -0 · 0 -0-2 0.0 1.1 C. m, Horizontal Increment 37 10.2 7.2 0.1 6°6 8°2 5°8 -0.8 -0.3 0.3 0.8 16 36 7.0 10.2 0.1 5°5 **4°**8 5.7 -0.4 6*0 1.6 0.0 15 35 10.1 10.2 10.2 10.2 10.2 0.1 9.2 8°3 6°9 5 ° 8 -0.5 0.0 1.0 1.4 2.4 4 ₹e Scries No. 0109, 9.7 0.1 8.1 8°8 6.8 0°8 2.0 2.0 **0°** 0.0 3.2 13 e 9.3 8.5 8.0 0.1 -0.1 -0.2 -0.1 6.7 0.0 6.1 0.9 3.0 1.6 3.2 4.0 12 32 9.7 8.1 .0 ° 6 7.8 9*****9 -0-1 0.1 1.6 3.0 5.7 1.9 4.0 4.5 4.7 11 31 6.6 8.6 6.6 9.6 6°8 8.1 7.6 6.2 5.0 1.5 5.3 6*0 2.1 3.2 3°2 4.4 5.7 5128.4 5°0 5.5 10 30 7.4 6°6 6°.0 Case 14(N) 10.1 10.1 10.1 10.1 10.1 9.5 8.7 8.1 Э.0 **4**.8 **8.4** 1.3 4.0 2.0 5.1 5.8 6.0 **6**•0 6.2 0 29 6.9 10.0 10.0 10.0 5.0 ,II £*6 8.1 5.3 4.4 6°9 7.3 3.2 4.0 6**.**4 2.1 5.5 6.7 7.2 7.0 6 . U **6.**0 30 3.8 8.0 m s^{-1} Length of Field L 9.7 10.0 10.0 10.0 8.5 0°°8 9.2 7.1 4.7 - **4** 4.0 5.1 0.0 6.9 7.0 ·0 • 8 6.1 e. 9 7.9 .0°*8 2*0 27 9.1 8.3 8 • 4 8.0 6.9 4.0 **9**°,0 7.0 0.*8 8°5 0°°.6 8.6 4.0 9**.**1 8.0 .1.9 4.0 26 9.8 **6**°8 8.3 8.0 4.0 8.4 0**°**6 9.7 10.0 6.7 3°9 10.0 10.0 4.0 8.0 9,3 8.0 6.1 52 9.5 8.1 4.0 8.8 **0°**8 6. 6 9.9 9*8 10.1 10.0 10.0 Э**°** 6 9.0 10.1 10.0 10.0 10.1 10.0 10.0 10.0 10.0 **1.** P 6.0 3.9 24 9°4 9.°6 9.7 9.6 10.0 10.0 9.9 9.6 6°3 8.7 **6**•0 6. 4 10.1 3.9 7.7 3.9 3.9 10.0 10.0 10.0 10.2 10.1 . Э 6.0 53 ۴.6 9.1 9. د 5.06 0.6 8.5 ð.0 1.3 0 ° 2 10.1 3.4 3.8 ¥.9 10.1 8 • 4 6..3 4.4 2.2 ъ. 5° 9. e 10.0 8.8 8.8 6.4 8.0 7.0 0.*0 Э.9 10.1 10.2 10.2 10.2 4.9 8.8 3 **.** 6 **8.**6 9.9 51 lt 2 2 11 5 13×

Wind Speed Perpendicular to Frontal Motion, W_v

Table 2A-14(b)

ORIGINAL PAGE IS OF POOR QUALITY,

Table 2A-14(c) Vertical Wind Speed, W,

Case 14(N) Series No. 0109,

1

m, Horizontal Increment $\Delta x = 128.21$ meters s⁻¹, Length of Field L = 5128.48.0 m 11 13×

-0.7 =0°.e -0-5 0.0 -0.2 -0.4 -0.6 -0.8 -1.U -1.U -1.1 -1.1 -1.0 -1.0 -0.6 4.0-0.0 -0.6 -U.1 -U.1 -O.2 -O.3 -U.3 -U.4 -U.4 -O.4 -O.3 -O.3 -O.3 -U.2 -U.2 -U.3 -U.4 -O.5 -O.6 -O.7 -O.6 -O.5 -O.4 -0.8 -0.7 -0.6 -0.5 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 21 -1.0 -0.8 -0.8 -0-1 -0.6 0.0 20 -1.0 -1.1 -1-0 -0.8 -0-7 0.0 19 -1.1 -1.1 -1-0 0.0 -0.9 1.1-18 0.0 1.1--1.0 6°0--0.8 -1-0 17 0.0 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -0.9 -1.0 -0.9 -1.0 =0 • <u>8</u> 0.0 =0.4 =0.7 =0.7 =0.6 =0.6 =0.5 =0.4 =0.4 =0.3 =0.2 =0.3 =0.4 =0.6 =0.7 -0.1 -0.3 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -0.3 -0.4 -0.5 -0.6 -0.6 -0.7 -0.3 -0.3 -0.3 -0.3 -0.3 9 0.0 -0.6 -0.6 -0.7 ŝ 0.0 -0.2.-0.3 8.0- 7.0--0.0 e e 0.0 0.0 -0.5 -0.2 -0.5 12 -0.1 -0.1 -0.3 -0.4 -0.3 -0.3 -0.3 -0.2 -0.3 -0.4 11 0.0 10 0.1 0.1 -0.2 0.0 0.0 3 0.1 0.0 1.0 =0.3 -0.4 -0.5 -0.4 -0.3 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 8 0.3 -0.1 -0.5 -0.9 -0.9 -1.0 -0.5 0°°) -1.0 -1.0 -0.1 0.0.0.0 -1.0 -0.5 -0.7 ø -0.1 -0.7 0.0 -0.1 -0.2 -0.4 \$ -0.5 -0.3 0.0 0.0 0.0 -0.2 0.0 -0.2 0.0 -0.2 0.0 2 1.2 0.3 0.0 0.0 0.0 1.1 0.0 n. (0.0 1.11.1 11 2

0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 1.0 0.1 . • 0°.3 0.3 0.1 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 40 0.1 0.0 0.3 0.0 0.4 0 • 4 0.4 0.4 0.4 0. 4 0.3 39 0.2 0.1 0.4 0 • 4 0.0 9.0 0.6 9.0 0°2 0.5 9°2 88 8.0 0.8 0.1 0.7 0.6 9.0 0.6 0.2 0.0 0.5 9°2 37 E.0 0.1 0.0 6.0 6.*0 6.0 9.0 0.8 0.7 0.6 0.6 36 6*0 0.4 0.1 0.0 1.1 1.1 1.0 0.9 0.9 0.7 9.0 35 1.4 1.5 1.3 1.1 0.7 0.**4** 0.1 ••• 1.2 1.0 0.8 97 10 1.2 0°8 0,5 0.2 0.0 1.7 1.8 1.4 6.0 1.7 1,6 Ē 2.0 1.0 .6.*0 9°,0 0.2 2.0 2.2 1.9 1.6 1.4 0.0 32 0.6 3.0 1.0 0.2 2.1 1.5 1.2 0.0 2°2 2.3 1.9 E **0.**8 0° 4 0.0 2.3 0.1 3.1 2.8 2.7 2.1 1..7 1.0 30 1.4 0.8 0**.**6 0.2 0.0 3.2 3.2 3.0 2.0 1.1 0.0 - 0.0 29 0.0 0.4 3.1 2.6 2.3 3.6 1.4 1.0 9.0 0.0 28 3.0 1.7 0.7 0.4 0.2 -0.3 -0.1 2.0 1°2 1.0 0.0 27 0.0 0.7 0.4 2.3 1.5 1.0 1.0 0.2 -0.4 -0.4 -0.4 -0.4 -0.3 0.0 -0.2 -0.1 26 0.0 0.1 -0.3 -0.3 -0.2 -0.1 ••• 1.0 0.6 1.5 0.6 0.3 25 0.5 -0.4 -0.3 -0.2 -0.1 9.0 0.2 0.1 0.0 0.0 0.0 -0.3 -0.3 -0.2 24 0.1 0.0 -0.4 -0.3 -0.1 0.0 -0.3 -0.1 -0.3 -0.1 -0.3 -0.2 23 -0.6 -0.3 -0° 0.0 2.2 -0.1 -0-0--0.5 4.0--0-6 -0.5 -0.4 0.0 23 21

ORIGINAL PAGE POOR QUALITY OF

IS

14.5 14.5 13.9 12.8 11.0 6.6 7.2 **9**.0 2.°8 6.1 8.0 10.0 12.0 14.0 14.0 14.0 14.0 14.0 14.0 13.9 13.9 13.9 13.8 13.8 1.e 3.0 2.5 1.9 1.5 3.2 2.8 2.7 2°2 2.4 2.1 41 51 14.5 13.8 7.0 5.7 **5.**8 2.3 14.4 9.6 2.9 2.0 1.9 9.0 10.0 11.0 12.0 12.0 12.1 12.1 12.3 12.6 10.0 10.2 10.4 10.6 10.8 1.8 2.1 2.5 2.4 2.2 2.2 1.8 4.1 20 40 14.5 1.3 2.0 2.0 2°0 14.3 5.4 1.9 2.5 2.3 2.1 2.1 1.9 1.7 1.9 12.8 13.1 13.5 13.6 13.7 9.3 6.8 2.1 39 61 14.5 14.3 5.1 2.7 1.9 1.9 2.1 2.0 **1.**6 1.5 6°*8 **6.**6 2.0 2.0 1...8 . 8 1.8 1.7 38 18 14.5 14.2 6.4 4.8 2.6 1.9 2.0 2.0 2.0 1.7 1.7 1.6 1.5 1.5 1 1.9 **1.6** 8°6 2.2 11 33 ÷.5 2.5 1.9 1.5 1.5 1.5 1 ° 4 1.4 1.8 1.8 14.5 14.1 8.3 6.2 1.9 2.1 2.2 2.0 10 36 1.4 1.4 1.6 14.3 14.0 9.3 0.8 0.0 4.2 2.5 2.0 2.0 1.3 1.2 2°0 1.8 2.1 2°0 15 ŝ 4.1 2.8 1.8 2.0 8.7 7.4 5.6 2.0 14.0 14.2 10.7 11.9 13.0 13.5 10.8 12.0 12.4 2.1 2.0 2.0 1.6 1.2 1.2 1.1 1.1 1.2 14 34 1.6 4. 1 0*E 2.2 1.0 1.1 2.0 .0 5.2 1.4 1.0 1.0 6.0 6.7 2.0 8.1 1.7 ŝ Ē 2.0 4.0 2.0 1.5 12.0 13.0 1.7 1.5 1.5 1.2 6.0 6.0 0.8 0.9 1.1 1.8 7.03 6.1 4.8 32 27 9.6 8.0 3•6 2.0 2.0 0.6 1.0 4.5 1.7 6.3 5°.6 4 **.** 4 1.3 1.2 1.2 1.0 0.7 0.1 0.8 IE 1 2.0 0.7 0.5 1.0 1.2 1.5 10.3 9.2 8° 4 7.0 .0°9 5.1 4 °.0 3.2 2.0 0.7 1.0 1.0 8.0 0.7 6°0 10 30 2.8 2.0 2.0 - 2.0 1.2 0.8 0.7 0.4 0.0 6.0 1.6 8°°6 6.0 1.0 1.4 9.0 7.2 5.1 4.5 3.•6 1.2 ġ, 29 2.6 2.0 7.0 1.7 1.5 1.5 1.2 9.0 0.6 0°3 0.4 9.0 1.5 1.6 6.3 • • • 9.0 5.C 4.2 3.2 38 30 2.0 2 "8 2.4 2.0 1.7 1.9 6.0 6.2 6. S 2.0 0.6 0.7 5.6 4.0 4 ° 0 3°8 1.6 1.7 1 • 4 0.8 0.J 0.3 27 2.0 0.2 5.5 2.4 2.2 2.1 2.0 5.0 **9.**0 0.2 0.1 9°0 1.8 2.0 5.5 4.7 3.7 3.7 3.6 4.9 2.0 1.6 5.6 ø 2.0 3.3 2.3 2.2 1.9 2.0 2.0 5.0 4 ° 8 4.2 3.5 3.5 2.1 2.1 1,8 0.9 9.*0 0.1 ••• 0.5 4.0 2 ° 0 25 ŝ 2.1 2.0 1.6 4.5 4.0 л. 1 М 3.3 3.2 3.1 2.3 1.8 0.4 н. В 2.2 0.7 2.0 1.8 0.3 0.1 2.2 2.1 2.0 24 2.2 2.0 0.2 . . 1.7 1.2 4 °.0 3.5 9°4 3.0 2.9 0°. 0°f 1.4 6°3 0.2 e.º 5.0 ۲., 2.0 2.1 2.1 , S 23 2.0 1,9 2.7 1.6 9.0 ¢•0 **Э**•6 3.5 0°° F 8°7 2.1 0.2 1.9 2.0 1.3 1.0 0.1 6.9 9.0 1.2 3.2 2.7 22 ~ . را به ف 2.1 2.5 0.0 9°2 3.2 2.1 1.9 1.9 1.5 ¢.5 0.2 0.0 **0**.4 2.5 2.5 4.4 8.0 0.8 0.5 0.°5 0.2 17 2 11 2 1

= 185.19 meters

Increment Δx

Horizontal

'n,

Field L = 7407.6

Ч

Length

°,

11.4 m

11 IN X

Case 15(0)

Table 2A-15(a)

×

Wind Speed in Direction of Frontal Motion,

Series No. 0436,

Table 2A-15(b) Wind Speed Perpendicular to Frontal Motion, W_V

Case 15(0) Series No. 0436,

m, Horizontal Increment $\Delta x = 185.19$ meters 11.4 m s⁻¹, Length of Field L = 7407.6 11 13×

507 61 18 17 16 15 * Ē 12 -10 3 ¢ ŝ ~

21

0.5 0.0 0.0 0.0 -0.2 9.0 0.5 0.5 0.0 1.0-0.1 0.3 0**.** ک 0.0 0.0 0.0 0.0 0.0 .0 6°9 0.2 0.2 0.2 0.0 E.0 0.2 0.2 0.3 0.5 0.4 0.2 0.0 0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 -0.1 0.1 -0-4 -0-1. 1.0-0.0 0.0 -0.1 -0.1 -0.1 -0.2 -0.3 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 -0.2 -0-2 0.0 -0.1 0°0 -0°4 0.0 -0.3 -0.1 -0.2 0.0 0°0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.2 0.0 0.2 0.1 0.2 0.0 0.1 0.0 0. I C.J U.2 0. J 0.3 0.6 9.0 0.1 0.0 0.1 **0** 0.4 0.4 0.2 0.1 0.0 0.2 0.1 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.2 0.2 0.2 0.0 +0.1 0.0 0.0 0.0 -0.1 0. 0 0.0 0.0 -0.1 -0.2 -0.3 -0.1 -0.1 -0.1 -0.1 -0.1 0*0 -0.4 -0.6 -0.8 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 -0.3 -0.3 -0.3 -0.3 -0.2 -0.2 -0.1 -0.1 0.0 -0° 0.0 *****.0.**-**-0.2 -0.2 -0.2 -0.3 -0.3 -0.2 -0.2 -0.1 -0.2 -0.3 -0.3 -0.4 -0.3 -0.2 -0.2 -0.1 -0.2 -0.3 -0.4 -0.5 -0.4 -0.3 -0.2 -0.2 -0.8 0.0 -0.8 -0.7 -0.5 -0.3 -0.4 -0.5 -0.6 -0.5 -0.4 -0.2 -0.3 -0.3 -0.2 -0.1 -0.1 -0.1 -0.1 -1°0 0.0 -0.8 0.0 -0-1 0.0 -0.3 -0.5 -0.6 -0.5 -0.1 -0.2 -0-1 0.0 5°0 0.0 t ° 0 --0.2 -0.2 -0.2 -0.3 -0-2 -0.2 -0.2 0.0 0.0 0.0 -0

.. 0 0.2 0.0 0:0 0.0 0.0 0.3 0.2 0.2 0.1 0.1 4 **5°0** 9.4 0.4° 0°.3 6°3 0.2 0.2 0.1 1.0 0.0 0.0 40 0.7 5.0 0.4 0.5 • • 0.5 0°.4 0.2 0.0 0.0 0.1 99 6*0 0**.**5 0.5 0.5 0.0 0.0 9.0 0.3 0.7 0.6 0.2 98 0.0 1.1 9.0 0.8 0.7 0.7 **9°0** 9.0 0.4 0.2 0.0 37 0.5 0.1 1.5 0.7 1.0 B.0 0.9 8.0 0.7 6.0 0.0 36 1.9 9.0 9°.0 0.1 1.2 1.0 6.0 9.0 0.4 3°0 1.5 ŝ 2,5 1.6 1.2 1.0 0.8 1.0 **9** • • 0.1 2.0 0.7 0.0 34 1.0 0.5 2 0.1 0.0 6.0 2.0 1.5 1.1 0.8 3.1 3.0 2.3 Ē 9° T 1.3 F.0 0.5 0.1 1.0 2.7 2.3 6.0 0.0 32 0.1 3.2 3.2 2.0 1.4 1.1 1.0 0.6 0.0 3.0 2.5 E 0.5 0.0 3.1 3.0 1.8 1.1 6.0 0.1 1.2 2.7 2.2 90 1.5 9°0 2.7 2.0 1.0 1.1 0 ° 4 0.1 2.3 0.7 0.0 29 1.2 2.8 1.7 9.0 ۰° 0.3 1.0 0.0 2.5 2.0 9.0 2,8 0.4 0.0 2.5 2.2 1.7 1.0 0.6 0.7 6.3 0.1 1.4 53 2.3 2.0 1.4 1.2 **6°**0 4.0 4.0 0.2 0.2 0.0 0.0 26 0.0 2.0 1.4 1.1 6.0 0.7 0.2 0.2 0.1 0.1 0.0 52 0.0 0.0 1.0 8*0 6.0 0.6 0.6 0.0 0.0 0.0 -0.1 54 0°.4 0.0 0.0 0.0 6.0 0.7 0.8 6.9 -0.2 =0.2 -0.2 23 0.3 0.0 -0-P 0.0 0.0 0.7 0,0 0.6 4.0 -0-4 -0 --22 0.1 0.6 0.5 0.0 0.0 **?**... S.0 0.5 2.7 -0.1 0.0 21 1

Table 2A-15(c) Vertical Wind Speed, $\ensuremath{\mathsf{W}_{\mathsf{Z}}}$

m, Horizontal Increment $\Delta x = 185.19$ meters 0436, Series No. = 7407.6 Case 15(0) ', Length of Field L 11.4 m s⁻¹, JI. l≥[×]

-0.5 -0.6 -0.6 -0-3 0.0 0.0 -0.5 0.1 0.1 0.0 -1.0 -1.0 -0.5 0.0 0.1--1.0 -0.6 0.1 0.0 0.0 -1.5 -0.4 0.0 0.0 -1.5 -1.5 -1.0 -1.0 0.2 -1.5 -2.0 -2.0 -2°0 -1.5 -0.4 0.1 0.2 -2.0 -1.4 -1.3 -U.9 -2.0 •0•8 0.0 0. 1 -1.7 -2.0 -2.0 -2.0 -2.1 -0.7 -0.3 0.1 -2.1 -2.1 -2.2 -2.1 -2.1 -2.1 -2.1 -2.0 -2.0 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -2.1 -2.1 -1.6 -1.8 -2.0 -1.3 -1.5 -1.7 0**.**0 -2,1 -2.1 -2.1 -2.0 -2.1 -2.1 -1.8 -0°5 -2.0 -2.2 -2.2 -2.1 -2.0 -2.0 -2.0 -2.1 -2.1 -2.0 -1.7 -1.3 -1.0 -2.1 -2.2 -2.1 -2.0 -1.9 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 e1.9 -2.0 -1.9 -1.7 -2.1 -2.0 -1.8 -1.5 -2.0 -1.5 -1.0 -2.0 -2.0 -2.0 -2.0 -2.1 -2.0 -2.0 -2.0 -2.0 -2.1 -2.0 -2.2 -2.1 -2.1 -2.3 -2.0 -2.2 -2.3 -2.3 -2.3 -2.2 -2.2 -2.0 -2.0 -2.0 -2.0 -2.1 -2.2 -2.1 -2.2 -2-4 -2.5 -2.4 -2.3 -2.2 -2.3 -2.5 -2.3 -2.2 -2,3 -2.4 -2.4 -2.4 -2.1 -2.2 -2.2 -2.3 -2.2 -2.2 -2.2 -2.2 -2.2 -2.1 -2.1 -2.0 -2.3 ~2°3 -2.1 - 2 . 2 -2.1 -2.1 -2.2 -2.3 -2.1 -2°0 -2.3 -2°0 -2.0 -2.1 -2.2 -2.2 -2.3 -1.9 -2.0 -1.9 -2.0 -2.1 -2.1 -2.4 -1.9 -2.1 -1.1 -1.7 -1.6 -1.0 -1 - G -1.4 0.7-..... -5-2--2.2 10

ORIGINAL PAGE IS OF POOR QUALITY

10.8 10.3 9.0 10.0 10.2 10.3 10.5 10.6 10.8 10.9 11.1 9.5 8.0 6.8 0°0 2.5 4.1 2.1 4 10.6 2.0 10.2 2.1 9.3 4.0 8.2 1.7 6.5 5.7 40 2.4 10.4 7.4 2.0 10.1 6.4 9.1 8.1 5.5 4.1 66 2.8 2.0 4.1 10.1.10.3 10.0 6° 8 8.1 7.1 6.3 5.3 **8**E 2.3 3.1 6.6 4.2 8.6 9.0 9.9 6.2 5.2 37 3.5 6.6 **4 °** 6 ·8 • 4 1.5 .e 6.1 5.0 4.1 2.7 36 7.0 6.3 6.0 3.1 2.3 9.1 9.9 4.8 8.2 4.1 35 2.6 2.0 **9** 0°6 8°0 6°5 8°.4 4.6 4.0 5.7 34 2.2 1.0 1.9 7.0 **6**•0 5.6 5.3 4.5 3**.**6 8.2 ΞЭ 1.2 2.0 8°.0 7.5 7.0 e * 0 5.5 5.2 5.0 3**.**2 4.3 32 9.0 7.0 6.7 6.1 5.1 4.6 4.1 2. 0 1.9 5.5 4.7 31 6°0 6.0 1.7 4.0 5.6 .6 ÷.3 4. E **"** 2.4 5.1 30 5.5 2.0 0*0 **5°** Э.9 3**°**2 2.7 0.9 5.1 4.1 4.6 29 0.2. 1.6 0.0 2.0 3.0 2.8 5.0 3.4 2.0 4.6 4.1 8.7 2.0 0.2 0.2 1.2 4.5 2.8 2.2 :1 • 5: 4.5 4.1 3.5 12 0.3 0.3 1.5 1.0 0.8 **4** ° 0 4.0 3**°**2 2.8 2.1 1.8 2.6 3.3 2.2 1.0 0.5 0.4 0.2 0.2 3.6 2.8 1.6 1.4 52 0.0 3.2 2.7 1.0 6.0 0.5 0.0 0.00 0.0 2.2 1.6 24 0.0 0.0 1 • 8 2.0 1.0 0.7 د. ۲ **5** 0 0.3 **.**.1 0.0 23 0.0 0.3 0.0 -0-1-0.0 0.2 0.1 0°0 0°0 0.1 -0.1 2.2 1.0-E.0. 0.0 0.0 0.0 -0.5 e.0= -0°-0--0.5 0.1 0.1 71 1 3

Wind Speed in Direction of Frontal Motion, $W_{\rm X}$ Series No. 0220, Case 16(P) Table 2A-16(a)

m, Horizontal Increment $\Delta x = 111.11$ meters Field L = 4444.4s⁻¹, Length of = 6.9 m 13×

7.5 7.2 7.4 7.2 7.3 4. 7.1 7.0 6.9 6.0 4.9 7.6 7.6 7.0 6.9. 4.9 7.1 1.1 4.7 7.3 5.9 7.0 7.0 6.9 5°9 4.8 1.9 7..8 1.9 7.3 7.4 7.3 8.1 8.1 7.4 7.0 7.0 8.2 6.7 7.9 7.2 5.7 4.8 8.6 8.3 8.3 7.5 7.3 7.0 4.8 7.1 6.9 6.4 5.5 6.9 8.5 8.5 7.6 6°9 6.7 6.2 с. С 4.8 7.3 7.0 9.9 5.1 8.8 8.7 7.6 7.2 7.0 6.8 6.4 5.9 4.8 6.9 ****** **0°6** 6"B 4.9 7.7 7.2 6.9 6.7 6.1 5.7 6.8 8°.9 7.6 7.2 7.0 6°9 **6.**6 6.3 5 ° 4 4.9 7.9 .0.**•** 8 **8.1** 7.5 7.2 7.0 6.9 7.0 6°9 5.9 **4**.9 6.9 7.4 7.0 7.0 6.5 6.9 6. 4 1.7 7.2 7.3 7.1 6°3 6.9 7.3' 7.2 7.0 7.1 7.0 6°9 6.0 1.2 7.2 6.9 6.9 7.1 7.1 7.0 6.9 6.2 6.0 7.3 7.1 7.2 6.9 6.9 6.3 1.1 7.0 6.9 7.2 7.3 1.3 7.3 1.1 7.2 7.2 7.4 7.5 6°9 6.4 7.4 7.4 7.2 7.1 7.0 7.5 7.5 7.7 1.7 6.9 6.6 7.5 7.2 7.2 7.5 7.1 7.8 7.8 7.1 6°9 6.7 7.9 7.8 7.5 7.2 7.2 1.7 8.1 6.8 8.1 8.2 9.0 7.6 7.3 6.9 7.8 7.2 7.1 8.4 0.0 6.9 в.4 ₽**.** 9 7.3 7.3 2 ° P 7.9 1.7 7.2 7.1 8.7 8.7 8.7 8°,4 9,00 1.1 4 ° L 7.3 7.2 7.1 7.2 **J**•0 9.0 * . 1.2 ÷., 9. 2 2

-1.3 -1.1 0.2 0.8 1.2 2.6 2.7 2. H 1.8 2.1 2.7 41 -1.3 2.8 2.8 6.0 1.2 2.0 2.3 2.7 6.0-0.2 2.8 **9** 1.0 2.9 *1.2 2.9 -0.7 ... 0 1.3 2.2 2.5 2.8 2°3 39 "1.1 -1.1 "1.1 "1.2 "1.2 -0.5 0.3 6.0 1.3 2.6 2.9 3**.**2 2°5 2. J Э.Э 36 3°2 3°6 0.4 8.0 1.4 3.2 3.6 -0.3 2.5 2.8 37 3.8 3.0 9°°6 4.0 0.5 9.0 1.5 2.7 3.1 -0.2 36 9.6 4.3 4.2 0.0 0. b 9.0 1.5 2.9 3.3 4°.5 35 0.2 6.0 1.6 4.5 4.6 **0**•0 2.8 3.1 4.2 4.7 40 -1.1 0 . 4 9.0 0.9 1.6 2.8 2.9 4.6 4.8 4.9 5.0 ŝ 0.8 1.6 2.2 2.7 3.5 4.9 5,1 5,6 6.9 9.0 -1.1 -1.1 32 2.2 2.8 5.2 5.5 6.2 6*9 8.0 1.0 **4**.E 4.2 IE 5.6 **9** ° 0 1.5 5.9 3.5 4.8 6.0 6.9 6.9 1.2 4.2 ŝ 2.0 3.6 5.5 5.9 6.4 6.7 1.5 4°2 6.9 0.4.-0.1 4.9 29 6.3 1.9 6.3 6.6 6.4 2.5 4.2 **4 .** 9 9.9 6.7 28 6.7 6°8 6.0 8 ° 7 **з•**0 4.9 9°9 6.2 7.0 6.7 6 ° 4 23 2.9 7.0 7.1 1.0 6.9 3.8 4.9 5**.**6 é..3 6.9 6.2 5.0 1.1 6.7 3.9 4.8 5.9 6.3 1.0 7.0 7.0 5.9 7.0 25 7.1 4.9 5.9 6,9 7.0 7.1 6**,**5 7.1 7.0 1.1 **5.**6 54 5°9 ÷.9 7.1 7.2 7.1 7.0 6.2 7.1 7.1 S.2 7.2 53 5.3 7.1 0°°9 7.1 7.3 7.3 7.1 E.• 0 7.1 7.2 7.4 22 * 1.2 4. \$ ~ 1.0 6.0 0.0 2. 4.9 51

	r s																										
	mete			21	0.6		0.3	0.4	0.2	0.2	0.2	0.1	0.0	0.0	0.0	41	1.2	1.2	1.0	0.7	0.5	0.1	0.0	0.0	0.0	0.0	0.0
•	.11	с. ,4 ,4		20	4.0	0°3	0,2	0.2	0.2	0.1	0.1	0.0	0.0	0.0	0.0	40	1.5	4.1	1.2	1.0	0.7	4.0	0.1	0.1	0.1	0.0	0.0
	TTT			19	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	39	1.7	1.5	1.3	1.1	1.0	8.0	0.3	0.2	0.2	0.0	0.0
Ж	II X			18	0.2	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0	38	2.0	1.7	1.5	1.2	1.0	6.0	0.4	0.2	0.2	0.1	•••
ion	nt A		· * # .	17	0.1	0.0	0.1	.0.1	0.1	1.0.	0.1	.0.2	.0.1	0.1	0.0	37	2.0	1.8	1.6	1.3	1.0	6.0	0.5	0.3	.E.•0	0.1	0.0
Mot	reme	•		16	0.0	0.1	0.2	0.2	0.2	0.2	0.2	. 1.0.	0.2	.0.1	0.0	36	2.0	2.0	1.6	1.4	1.1	6•0	0.7	0.3	0 . 4	0.1	0.0
ntal	Inci			15	0.1	0.2 -	0.2 -	- - -	0.2	0.1 -	0.1 -	• 0 • 0	0.0	. 0.0	0.0	35	2.0	1.9	1.1	1.3	1.1	1.0	9°0	4.0	0.5	0.1	0.0
Froi	tal		•••	14	0.2 -	0.3 -	0.2	0.2 -	0.1	• • • •	- 0.0	0.1	0.1	0.0	0.0	₹€	2.0	1.9	1.6	1.2	1.0	6.0	6.0	0.6	0.6	0.1	0.0
ţ	20, Lzon			13	• •		0.2 -	0.2 -	0.1 -	- 0.0	0.1	0.2	0.1	0.1	0.0	EE	2.0	1.8	1.5	1.1	1.0	0.7	6°0	0.7	9.0	0.2	0.0
ılar	. 02 Hor:			12	0.5 -	0.5 -	0.3 -	0.1 -	0.1 -	0.1	0.1	0.2	0.2	0.1	0.0	32	2.2	2.0	1.8	1.6	1.5	1.2	1.0	6°0	0.7	0.2	0.0
dici	ON E			11	- 9.0	ر. 6 ا	0.3 -	0.1 -	- 0.0	0.1	0.2	6.0	0.1	0.1	0.0	31	2.4	2.2	2.1	2.1	2.0	1.7	1.1	1.1	9.0	0.2	0.0
rpen	ries 1.4			10	0.7 -	0.7 -	0.3 -	0.1 -	0.0	0.1	0.1	0.2	0.1	0*0	0.0	90	2.6	2.4	2.0	2.0	1.8	1.4	1.0	6.0	0.6	0.2	0.0
I Pe) Se 444			5	- 5.0	- R.O	0.5 -	0.3 -	0.2	0.0	0.0	0.1	0.0	0.0	0.0	56	2.8	2.6	2.0	1.8	1.5	1.1	1.0	1.0	0.4	0.1	0.0
peed	б (Р) Г			30	1.0 -	- 6*0	0.6 -	0.5 -	- E. O	0.2	0.1	0.0	0.0	0.0	0.0	28	3.0	2.8	2.0	1.7	1.2	6.0	0.7	0.4	0.2	0.1	0.0
nd S	se] eld			L	1.0 -	1.0 -	- 8 °0	0.6	O	U.3 ÷	0.2	0.1	0.1.	U.1	0.0	27	3.0	3.0	2.0	1.5	1.0	0.6	U. 5	0.2	0.0	0.0	0.0
ГM	Ca Fie			۵	1.1 -	1.0 -	1.0 -	- 9.0	7 -	0 . 5 -	0.4 -	0.2 +	0.1 -	0.1 -	0.0	26	3.0	2.0	1.5	1.0	0.8	6.0	0.2	0*0	0.0	0.0	0.0
(q)	h of			ش	1.1 -	1.1 -	- 0.1	1.0 -	- A.O	0.6 -	0.5 -	- 6.0	0.1 -	0.1.	0.0	25	1.0	6.0	9.8	6*0	0.6	0.0	0.0	0.0	0*0	0.0	0.0
A-16	engt			•		1.1 -	1.0 -	1.1 -	1.0 -	н В. В. С	0.6 -	0.4 -	0.1 -	0.1 -	0.0	24	6.0	0.8	0.7	0.7	. <u>5</u> •0	0.1	0.1	0.1	0.0	0.0	0.0
le 2	й , н			r.	1.1 -	- 1.1	1.1 -	1.1 -	1.0 -	0.7 -	0.5 -	0.4 -	0.2 -	0.2 -	0.0	23	9.0	0.1	0.6	0.6	0,3	0.1	0.1	0.1	0.0	0.0	0.0
Tabl	ם מ				1.2 -	1.2 -	1.1 -	1.U =	- 6.0	u.7 -	- c.U	9.J =	U.2 -	0.2 -	0.0	55	0.7	0.5	c. 0	0 . 5	0.2	2.0	0.2	0.1	0.0	0.0	0.0
				-	1.2 -	1.2 -	1.1 -	1.0 -		0°0	J. 4 . U	9.3 -	0.2 -	0.2 -	0.0	17	0.6	0.4	٤.0	0.4	0.2	5.0	0.2	0.1	0°0	0.0	0•0
					-	.	ן די	, 19	-) 0	i S	4	1 10	י א			11	10	ת	10	1	ø	ă,	+	T.	° N	-
	13	5																						•			

Table 2A-16(c) Vertical Wind Speed, W_z

Case 16(P) Series No. 0220,

m, Horizontal Increment $\Delta x = 111.11$ meters Field L = 4444.46.9 m s⁻¹, Length of H |××

-2.0 -2.5 -2.2 -1.7 -2.0 -2.4 -0.7 -0.8 -1.0 -1.2 -1.4 -1.6 -1.7 -1.9 -2.1 -2.2 -2.3 -2.4 -2.4 -2.3 -2.1 -2.0 -2.1 -2.2 -2.1 -2.0 -1.6 2 -2.3 -0.9 -1.1 -1.2 -1.4 -1.5 -1.7 -1.8 -2.0 -2.2 -2.3 -2.5 -2.5 -2.4 -0.2 -0.2 -0.2 -0.4 -0.6 -0.7 -0.9 -1.1 -1.2 -1.4 -1.6 -1.8 -1.9 -2.1 -2.2 -2.3 -2.3 -0.2 -0.4 -0.6 -0.8 -0.9 -1.1 -1.3 -1.5 -1.7 -1.9 -2.1 -2.2 -2.2 -2.1 -2.0 -2.0 +2,5 -1.9 20 -2.5 -2.3 -1.4 -1.6 -1.7 -1.9 -2.0 -2.4 -2.8 -3.2 -3.6 -4.0 -4.0 -4.0 -3.3 -2.6 -2.5 -2.7 -2.6 -2.4 19 -2.8 -2.7 -2.7 18 -2.8 -3.0 -2.9 -3.5 -3.1 11 0.0 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.6 -2.1 -2.3 16 -0.9 -1.0 -1.1 -1.2 -1.4 -1.5 -1.6 -1.8 -1.9 -2.0 -2.5 -3.0 -3.3 -u.7 -U.8 -0.9 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.8 -1.9 -2.0 -2.3 -2.5 -2.3 5 -0.6 -0.7 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.8 -1.9 -2.0 -U.5 -O.0 -U.7 -U.8 -O.9 -1.0 -1.1 -1.2 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 1 13 12 11 10 Ś -0-5 -0.4 -0.4 -0.5 -0.5 -0.6 -0.6 -0.8 0.0 -0.3 -0.3 -0.3 م 0.0 0.0 -1.0 -1.1 -1.3 ŝ 0.0 -0.2 -0.1 -0.1 -0-1 -0.3 -0.2 -0.2 1,+0--0-1 -0.3 +0 • R 2 -0.5 -0.1 -0--0.7 -0.6 -0.6 -0.3 -0.2 -0.2 01 11

2.6 4.0 2.0 6.1 5.9 5.5 4.8 4.4 4.2 6. J 6.3 4 2.3 Э**.** Э 1.8 6.2 6.2 5.7 5.4 5.0 4.4 4.0 3.6 . 4 2.1 3.1 2.7 1.5 5.3 4.9 4.6 4.0 3.6 6.2 6.0 39 2.0 1.9 1.2 2.5 6.1 5.0 **4**.8 4.4 4.1 **0.**0 3.2 38 2.0 1.5 2.5 1.0 9.0 5.1 4.4 з.9 3.6 3.1 2.8 37 3.8 5.5 2 • P 2.0 1.3 0.7 ě., 4.0 4.0 2.9 5.7 36 2.0 1.0 0.5 4.0 3°0 4.4 3.5 2.7 5.4 4.1 4.1 35 1.0 0.2 2.0 3.8 9**°**0 2.7 5.1 4.2 • ÷. 4.1 34 0.0 0.5 3.1 1.2 4.0 2.3 4.9 4.3 4°2 4.1 4.0 ŝ 4.0 0.2 -2.0 -1.4 -1.4 -1.9 -2.0 -2.0 -2.0 -2.0 -2.0 -1.5 -1.0 -0.5 Э**°**0 2.5 2.0 4.6 4.0 4.2 4.2 4.0 32 -2.1 -2.0 -2.8 -2.0 -2.1 -2.1 -2.1 -2.6 -2.0 -1.0 0.0 9.0 3.0 2.0 2.0 4.3 4.1 4.1 9.6 31 4.0 -2.3 -2.3 -2.3 -2.2 -2.1 -2.0 -1.8 -1.7 -1.6 -0.4 3.9 3.4 2.9 2.0 1.0 0.0 30 0.0 1.0 -1.4 -0.7 J. J 2.7 1.9 2,5 3,0 3,5 2.9 -1.0 2.6 0.0 2.0 6.0 28 -2-0 7.0 9.0 -0-1 -0.3 -2.1 -2.1 51 -1.3 -0.9 -0.6 -0.3 0.0 2 ° 0 -1.7 -1.6 -1.6 -1.5 -1.5 -0.4 • 0 • 6 -2.0 -2.0 -2.0 -1.0 -2.4 26 -1.5 -1.1 -0.8 -0.4 0.0 -1.7 -1.4 -1.1 -0.9 -2.2 -2.2 -2.4 -2.3 -2.3 -2.2 -2.2 25 24 -2.3 23 -2.0 -2.4 2.2 -2.0 0.2--1.6 **6.2**-17 -10

285.71 meters j**i**ł ×× m, Horizontal Increment $\Delta \mathbf{x}$ Wind Speed in Direction of Frontal Motion. Series No. 1837, Field L = 11428.4Case 17(Q) of Table 2A-17(a) Length 17.5 m s⁻¹

li

N X

6.5 13.5 11.5 13.3 13.5 14.3 13.9 1.3.0 13.5 11.5 20.6 20.4 21.3 21.6 21.5 21.2 20.8 20.5 20.2 19.8 19.5 19.1 18.7 18.2 17.8 17.4 16.6 15.7 14.9 14.1 13.3 20.4"21.5 21.6 21.6 21.7 21.6 21.5 20.4 20.2 19.6 19.0 18.5 17.9 17.3 16.7 16.1 15.5 14.8 14.0 20.4 21.2 21.4 21.7 21.6 21.5 21.5 21.5 21.0 20.5 19.9 19.4 18.8 18.1 17.5 16.8 16.2 15.5 14.8 14.2 Zu.4 21.0 21.5 21.2 20.9 20.6 20.4 20.1 19.8 19.5 19.2 18.9 18.6 18.4 18.1 17.8 17.5 16.8 16.0 15.3 14.8 13.5 20.8 21.4 21.5 21.6 21.6 21.7 21.6 21.5 20.8 20.1 19.4 18.8 16.1 17.5 15.5 14.8 14.2 13.5 12.8 12.2 14.5 14.8 6.6 15.1 16.0 **6**°9 20.1 19.9 19.7 19.5 19.5 19.5 19.4 19.4 19.0 18.7 18.4 18.0 17.9 17.8 17.7 17.6 17.5 16.2 20.0 19.8 19.7 19.5 13.5 17.5 18.0 18.5 18.4 18.3 18.1 18.0 17.9 17.8 17.7 17.6 17.6 17.5 16.3 16.2 14.º 14.º 17.5 15.5 15.5 15.5 15.5 15.5 15.5 15.8 16.1 16.4 16.6 16.9 17.2 17.5 17.5 17.5 15.5 6*9 17.5 14.8 14.0 14.3 17.5 16.5 15.5 15.7 15.4 16.2 16.4 16.6 16.8 17.1 17.3 17.5 17.5 17.5 17.5 7.1 20.4 21.5 21.6 21.6 21.6 21.7 21.6 21.5 20.8 20.2 19.5 18.8 18.2 7.5 7.4 7.2 6.0.3 19.6 1 2

1.4 1.3 1.4 1.3 1.3 1 - A 1.5 2.8 3°.4 3.6 3.7 1. J 1.3 1.5 1.3 1.5 . 8. 2.9 3.4 . 9.е 1 . (3.6 1.4 1.4 1.5 1.9 2.0 9°0 3.4 3.5 3.6 1.3 1.4 1.4 1.4 1.5 2.3 2.3 3.2 3.5 ₽.° € 1.4 1.4 3.5 1.4 1.4 3°2 1.4 1.5 1.5 2.7 2,5 3.3 3°2 4.2 2.0 1. 4 1.5 1.7 1.4 J.1 Э, Э 3.4 å . 5 4.8 3,5 2.0 1.4 1.0 5.0 5°,0 2.4 4.1 4.4 5.5 1.5 3.5 2.4 1.6 1.5 1.5 2.9 5.5 6.5 7.5 9.5 4.2 **4**.8 3.4 5.5 1.5 5. 6 6**.**5 7.5 1.5 1.7 2.1 4.8 9.6 1.5 2.3 8**.**4 9.6 1.5 0°E 3.9 5.5 9. S 7.5 9.8 1.8 1.5 9.8 2.9 9.4 **6°**6 ы. Э. 4.5 6°5 7.4 0.8 1.5 2.2 3°2 4 ° 0 5.1 6,2 7.4 8.4 9.4 9.8 10.0 10.3 10.2-10.0 9.9 9.7 10.1 10.4 10.3 10.1 10.0 4.8 4.4 7.5 9**.**5 2.5 9°\$ 6°6 6.8 1.5 9.°P 5.5 8**.**3 2.5 4.1 , Ç 8**.**1 9.4 5.3 9.4 9.6 7.6 9°°6 9°0 9.6 3.5 9**•**9 6.3 5.8 9°6 9.6 4.5 7.4 6°6 11.2 10.7 10.1 9°8. 13.9 12.7 11.5 11.1 10.7 10.2 1.6 8.4 5.5 5**°**3 14-5 12-5 11-5 10-9 10.2 10.5 13.5 12.4 12.0 11.3 10.5 9**°**2 9.4 9.7 6.0 9.4 6.5 12.4 11.6 11.1 6.2 13.5 12.2 10.9 7.5 13.3 11.5 10.4 14.3 13.3 12.2 13.0 11.5 10.6 10.8 10.1 6.3 9°2 11.5 ç. o 13.3 11.5 11 2

Table 2Å-17(b) Wind Speed Perpendicular to Frontal Motion, W_y

Case 17(Q) Series No. 1837,

m, Horizontal Increment $\Delta x = 285.71$ meters 17.5 m s^{-1} Length of Field L = 11428.4 ļI 13×

5

0.0 0.0 0.0 0.0 **.** 9.0 0.0 0.2 1.1 1.1 -0.1 0.0 1.0 -0.1 1.3 1.1 0.5 ... Ó.1 0.0 0.2 1.0 ÷.0 0.2 0.0 -0.3 -0.2 -0.1 -0.1 -0.1 0.0 0.1 1.1 1.1 0.7 0.0 0.0 -0.1 -0.2 -0.4 -0.5 -0.6 -0.4 -0.3 -0.1 -0.2 -0.4 -0.5 -0.3 -0.2 0.0 1.0 9.0 0.2 ... -0.1 0.0 -0.1 -0.3 -0.4 -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.5 -0.5 -0.4 -0.1 -0.2 -0.2 -0.3 -0.4 -0.5 -0.4 -0.2 -0.2 -0.3 -0.3 -0.2 -0.2 0°.3 -0.2 0.5 0.1 0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 -0.2 -0.5 -0.3 0.0 0.1 -0.1 -0.3 -0.1 0.0 -0.2 -0.5 -0.2 0.0 -0.1 -0.2 0.0 0.0 0.2 0.0 -0.2 -0.2 -0.3 -0.3 -0.2 -0.2 -0.2 0.0 0.0 **9°**0 0.0 4.0 -0.1 0.0 0.0 -0.2 0.0 0.0 -0.1 -0.2 -0.1 -0.1 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 U.U =0.1 =0.1 =0.2 =0.2 =0.3 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.1 0.1 0.0 0.1 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 1.0 0.1 0.1 0.1 0.0 -0.1 0.0 0.1 0.0 -1.0 -0.7 -0.3 0.1 0.1 0.0 -0.1 0.0 0.0 0.1 -0.4 -0.2 -0.1 -0.1 0.0 -1.0 -0.5 -0-1 0.0 0.0 0°0 0.*0 1.0- 2.0--0°-3 -0.5 -0-2 -0.2 -0-2 -0.2 -0-2 0.0 10

0.0 0.0 0.0 ... 0.1 0.0 0.0 0.0 0.0 0.0 0.0 41 0.3 0.0 0.0 0.0 0.2 0.2 0.1 0.0 0.0 0.2 0.2 \$ **4** • 0 0.4 0.5 9.0 0.0 ***** 0.2 0.1 0.0 0.0 0.0 39 0.0 9.0 0.5 0.8 0.5 0.4 0.1 0.1 0.7 0.7 0.0 38 0.7 1.1 0.1 0.1 0.0 0.0 1.0 0.9 0.6 1.0 0.5 37 6.0 1.0 6.0 **ئ**ە ئ 0.0 6.0 6°0 0.1 0.1 0.2 0.7 36 6.0 0.2 0.1 1.0 6.0 8.0 0.8 0.5 0.1 0.0 6.0 ŝ 6.0 6.0 0.8 0.6 0.2 0.1 1.2 1.0 6.0 0.2 0.0 34 1.5 1.2 1.0 1.0 6.0 0.8 0.6 0.2 0.2 0.1 0.0 Ē 1.0 1.4 6.0 0.1 0.0 1.8 1.2 0.7 9°0 0.3 0.2 32 2.0 1.0 0.1 0.0 1.5 1.4 1.0 0.7 0.4 0.3 0.1 <u>8</u> 1.3 1.0 1.7 1.0 0.5 0.0 2.0 0.3 0.2 0.1 0.0 ŝ 6.0 0.0 1.1 1.0 4.0 0.2 0.0 0.0 2.1 1.8 0.1 53 0.0 2.1 1.8 1.0 1.1 6.0 0.2 0.0 0.0 0.00 0.0 28 0.0 2.1 ۷.1 1.1 1.1 6°0 0 • 4 0.1 0.0 0.0 0.0 5 2.0 1.0 1.2 1.1 0.2 0.0 0.0 0.0 **6°0** 0°. 0.0 26 1.1 2.0 1.3 1.0 1.0 0.0 9.0 0.3 0.1 0.1 0.0 25 1.1 1.2 1.0 6.0 1.9 0.7 0. 4 **.**.0 0.2 0.1 0.0 24 1.1 1.2 6.0 0.7 0.6 Ū.5 0.4 £ 0 0.2 1.7 0.0 23 0.7 9.0 0°2 **0.4** 1.6 1.1 1.1 0.2 0.2 0.1 0.0 2.2 1.4 0.0 Ū.5 0.3 0.2 0.0) * 0 0.0 0.0 1.1 51 1

	21	0.0	0.1	4.0	0.8	1.0	1.2	1.9	2.1	2.1	2.1	2.0	41	10.0	10.0	10.1	1.01	10.1	£*6-		-6.2	-5.0	-2.8	-2.0
-	30	0.1	0.2	9 • 0	0.6	0°8	1.0	1.6	1.9	2.0	2.0	2.0	40	-8-6-	-6 * 6 -	10.0-	10.0-	-9-4-	-8.6	-7.6	-5.9	-4.6	-2.B	-2.0
	61	0.2	0.3	0.5	0.5	9.0	0.7	1.3	1.7	2.0	1.9	2.0	39	-9°2	-9°.6	-9.6-	-9.6-	-8.7	-8.0	-7.2	-5.7	-4.1	-2.9	-2.0
	18	6.0	9.0	••0	0.3	0.4	0.5	6.0	1.5	1.9	1.9	2.0	3H	6.9	- 6 - 6 -	9.2	- 1 - 6 -		-1.6	-Q. 8	-5.4	4.1	-2-9	-2.2
	11	0.4	0.3	0.2	0.2	0.2	0.2	0.6	1.2	1.8	2.0	2.1	37	. 0.6.	. 0.6.	6 8	9.6	.8.0	-1.2	.6.4	-5.1	4.1	-3.0 ·	-2.3
	16	0.4	0.2	0.1	0.0	0.0	0.0	0.3	1.0	1.5	2.0	2.2	36	. 1.8	. 1.8.		8.2	7.5	8.9	. 0 . 9	9.9	9.0	-3.0	-2.5
	15	0.3	0.2	0.0	0.0	0.00	0.0	0.0	9.0	1.2	1.4	2.2	35	- 5 -	-8.4	-8.1	. 1.1	. 0 . L .	- 6 - 4	5.4.	4.6	4.0	-2.7	-2.3
	1	0.3	0.1	0.0	0.1	0.0	0.1	0.0	0.6	1.6	2.0	3.1	34	. 6. 9	.8.1	. 1.5 -	. 1.1.	· 6 • 5 •	- 0 - 9	4.9	. 6 . 9 .	-3.0	2.3	2.0
	13	0.3	0.0	0.0	0.1 -	0.0	0.1	• • 0	1.0	2.0	2.5	4.0	33	8.0	. 1.1	·6.8	9. 6	• • •	5.1 -	4.3	. 9.6	-2.1	2.0	1.1
	12	6.0	0.0	0.1	0.1 -	0.0	0.1	6.0	1.5	2.0	3.1	4.0	32	- 1.6	7.3	- 6.2	. 0.9.	5.3	4.2	4.0	-2.8	-2-1	1.6	-1.3
	11	0.2	0.0	0.1 -	0.1.	0.0	0.1	0.6	1.3	2.0	3.2	4.0	31	1.1	6.8	- 5*5	5.4	4.7	- 3 • 9	3.7	-2.1	-2.0	1.2	1.0
	10	0.2	0.0	0.1 -	0.2 -	0.1	0.0	0.3	1.1	2.0	3.2	4.0	30	6.7	6.4	5.6	. 6.4.	4.0	- 3.6	3,3.	-2.2	2.0	B 0	0.1
	3	0.2	0.0	0.1 -	0.2 -	0.1 -	0.1	0.0	6.0	2.0	2.8	4.0	29	6.2 -	6.0	5.3 -	4.4	3.9	÷.E.	-3.0	-2.3	-2.0		
	30	0.5	0.0	0.1 -		0.1	0.1 .	0.0	0.7	1.8	2.4	3.2	5.6	·5.1 ·	4.7	4.1.	4.0.	3.8.	. 0 . 6	1.5	1.1	6.0-	0.0	0.0
	1	9.0	0.3	- 0.0	0.1 -	· 1 · 0	0.1	0.0	0°5	1.5	2.0	2.3	27	4.0	. 8.8	2.8	-2.0	-1.9	-1.5	-0-1	0*0	0.2	0-3	0.5
	ò	1.1	0.6	0.3	0.1 -	- 0.0	0.1 -	£.0	0.7	1.8	2.0	2.4	26	. 0 . C	- 0 - 2 -	- 6-1-	-0.1	• 0 • 0	0.1	0.2	0.3	0.6	1.0	1.0
	S	1.4	6.0	0.7	- 0.0	0.0	- 0.0	0.7	1.0	2.0	2.1	2.6	25	-2.0	.1.5 -	. 6.0.	0.1.	0.2	0.3	0.6	0.7	6.0	1.0	1.5
		1.7	1.1	1.0	0.0	0.0	0.0	1.0	1.3	2.0	2.0	2.7	24	1.5	1.0.	0.0	0.3	0 . 4	0.5	0 •9	1.0	1.3	1.3	2.0
	-	2.0	1.4	1.3	0.7	6. 0	0.6	1.3	1.7	2.0	2.2	2.8	23	-I.O	. 5.0-	0.2	0.4	0.6	9.0	1.2	1.4	1.5	1.7	2.0
	~	2.0	1.7	1.7	1.3	1.1	1.1	1.7	2.0	2.2	۲.5	3.0	22	۰ ۵.5	. 0.0	6.0	0.6	0.8	1.0	1.0	1.8	2.0	2.0	2.0
2	-	2.0	2.0	2.0	2.0	1.7	1.7	2.0	2.42	2.4	2.7	1.1	21	• ∩•0	Ū.1	0.4	9.6	1.0	1.2	1.9	1.1	2.1	2.1	2.0
			_								- 1				_	•	-	-			-	-	~	

Table 2A-17(c) Vertical Wind Speed, $\ensuremath{\text{M}_{Z}}$

Wind Speed in Direction of Frontal Motion, $W_{\rm X}$ Series No. 1651, Case 18(R) Table 2A-18(a)

m, Horizontal Increment $\Delta x = 400.0$ meters Field L = 16000.025.0 m s⁻¹ Length of H 13×

15.8 15.7 13.7 14.4 15.0 15.0 15.0 15.0 15.0 17.0 17.7 18.3 19.0 19.2 16.1 13.0 12.8 12.6 13.0 14.3 15.6 16.9 15.9 14.8 12.9 12.9 13.0 13.6 14.1 14.6 15.2 15.6 16.1 16.6 17.0 15.1 13.1 12.3 11.5 12.9 13.9 15.0 16.0 14.5 12.2 12.4 12.7 12.9 13.1 14.1 15.0 15.2 15.4 15.6 15.8 16.0 14.6 13.1 12.4 11.8 12.9 13.6 14.3 15.0 13.7 11.8 12.0 12.2 12.4 12.6 12.6 13.0 13.4 13.8 14.2 14.6 15.0 14.1 13.1 12.1 12.6 13.0 13.0 13.1 13.1 12.0 11.5 11.7 11.8 11.9 12.1 12.3 12.4 12.6 12.7 12.9 13.0 13.0 12.9 12.9 12.8 12.8 12.8 12.7 12.6 11.8 11.0 9.7 6.9 8.4 6.7 0.0 7.0 13.5 13.7 13.8 14.0 14.4 14.9 15.3 16.6 17.1 17.6 18.0 18.5 15.8 13.0 11.2 12.1 13.0 14.4 15.7 17.1 12.9 13.1 13.0 13.5 14.0 14.5 15.0 16.0 17.0 17.3 17.5 17.8 17.0 13.1 11.4 12.2 12.9 14.3 15.6 17.0 6.8 9.7 7.0 6.8 9.0 9.0 10.0 11.0 11.7 12.3 13.0 12.1 11.1 10.4 8.0 6 ° 0 0°6 7.0 9.0 11.0 12.1 13.1 10.1 9.0 10.9 11.9 13.0 11.0 7.1 8.0 5.2 7.0 5.8 6.0 <u>ر</u> م 6.4 0.0 0°*6 7.0 5.9 8.0 ۥ6 6.9 9.6 0.6 1.8 9.9 0°6 7.0 9.1 7.0 10.6 10.3 9.1 0.7 E.1.1 10.9 1.0 4.1 2 4

15.7 14.3 13.0 13.0 13.0 13.0 13.0 12.0 11.0 11.2 11.4 11.7 11.9 12.1 12.4 12.6 12.8 12.5 12.2 11.8 11.5 6.6 15.8 14.5 14.2 14.0 13.7 13.4 13.2 12.9 12.9 12.9 12.9 12.9 12.9 12.9 13.0 13.0 12.7 12.4 12.2 11.9 11.6 12.3 11.0 11.0 10.9 10.9 10.8 10.8 10.7 10.7 10.9 11.1 11.1 11.1 11.0 11.0 11.0 11.1 11.1 11.1 11.0 10.9 10.6 10.3 10.0 10.1 10.1 10.2 10.3 10.4 10.4 10.5 10.6 10.6 10.7 10.8 10.8 10.9 10.9 11.0 10.5 6.8 7.0 5°0 5.0 6°6 9°. 7.4 5.7 5.7 9.8 10.0 10.1 10.3 10.3 10.2 10.2 10.1 10.1 10.0 6.8 7.8 6.3 6.9 8°.3 0.6 7.0 1.0 7.8 **6**°0 8.7 8.1 8.7 9.5 9.1 **6°0 9**•6 1.6 9°6 0.6 **6**•3 9.1 8**.**3 8.9 7.0 7.0 0.6 9.2 7.6 9.2 9.1 7.0 7.0 9.2 7.0 9,2 7.2 6°6 6°3 7.0 7.4 9*6 £..9 9.4 7.0 9.4 7:6 1.6 9.5 7.1 6**.**9 0°°6 P. 1 8.6 7.2 **0 •** 0 9.1 9°9 8.5 7.3 9.1 8.1 8.3 7.6 7.2 7.6 7.2 0.6 8.1 1.0 6.8 8°6 7.1 0.0 **6.**8 9.0 1.7 6. ⁶ 11.0 10.0 6. b 13.7 12.0 4.7 ð. 4 6.9 10 11

41

\$

39

00 M

31

5

ŝ

46

Ē

33

31

ŝ

29

38

27

36

25

24

23

55

	21	-1.0	-1.0	-1.0	-1-0	÷.0-	-0-1	-0.2	-0.3	-0.2	-0.1	0.0	41	0.4	0.4	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	20	-1.0	-1.0	-1.0	-1.0	-0-8	-0.3	-0-5	-0.2	-0.1	-0.1	0.0	40	0.6	0.5	0.6	c *0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	` 16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0-1	0.0	0.0	36	0.8	.0.7	0.7	0.6	0.0	0.0	0.0	0.0	0.1	0.0	0.0
	16	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0*0	0.0	0.0	0.0	38	1.0	0.8	6.0	0.8	0.3	0.3	0.2	0.1	0.1	0.1	0*0
	11	0.0	0.1	0.1	0.5	1.0	1.0	0*0	0.3	0.2	0.1	0.0	37	2.0	1.2	1.0	1.0	0.7	0.5	0.5	0.3	0.2	0.1	0.0
	16	0.1	0.1	0.3	0.5	1.0	1.0	1.0	0.7	0.5	0.1	0.0	36	2.0	1.7	1.5	1.1	1.0	9.0	0.7	0.4	0.2	0.1	0.0
	15	0.1	0.2	0.4	0.6	1.0	1.1	1.1	1.0	0.7	0.2	0.*0	35	2.1	2.1	1.9	1.1	0.9	0.7	9.0	0.4	0.2	0.1	0.0
	14	0.1	0.1	0.3	0.6	1.0	1.0	1.0	0°.8	0.6	0.2	0.0	34	2.0	1.8	1.6	1.0	0.9	0.7	0.6	0.3	0.2	0.1	0.0
	f I	0.1.	0.0	0.1	0.5	0.8	0.8	0.7	9.0	4.0	0.1	0.0	E	1.7	1.5	1.4	0.9	8.0	0.6	0.6	0.3	0.2	0.1	0.0
	12	0.0	0.0	0.0	* • 0	0.6	0.6	0.5	0.4	0.3	0.1	0.0	32	1.4	1.3	1.1	9.0	0.7	0.6	0.5	6.0	0.1	0.1	0.0
٠	11	0.0	0.1	0.1	E.0	0.4	0.4	0.2	0.2	0.1	0.1	0.0	31	1.1	1.0	0.9	0.7	0.6	0.5	0.4	0.3	0.1	0.1	0.0
	10	0.1	0.2	0.2	0.2	0.2	0.2	0.0	0.0	0*0	0.0	0.0	30	1.0	6.0	0.8	0.7	0°.8	0.5	0.4	0.2	0.1	0.1	0*0
	3	0.0	0.1	0.1	0.1	0.0	0.0	-0.1	-0-2	1.0-	0.0	0.0	29	6*0	0.8	0.7	.0 . 6	0.5	4.0	٤.0	0.2	0.1	0.1	0.0
	20	0.0	0.1	0.0	0.0	-0-1	-0.2	-0.2	-0.3	-0.1	-0.1	0.0	8	0.7	0.7	0.6	0.5	0.4	6.3	0.3	0.2	0.1	0.0	0.0
	-	-0-1	0.0	0.0	0.0	-0-1	-0.1	-0.1	-0.2	-0.1	-0.1	0.0	21	0.6	0.6	0.5	0.4	0.4	6.0	0.2	0.1	0.1	0.0	0.0
	Q	-0.1	0.0	-0.1	-0.1	0.0	0-0	0.0	-0.2	0.0	0.0	0.0	5 6	0. 5	0.4	0.4	6°0	0.3	0.2	0.2	0.1	0.1	0.0	0.0
	(. n	-0.1	0.0	-0-2	•0.3	-0-2	-0.1	0.0	-0-1	0.0	0.1	0.0	52	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.1	0*0	0°0	0.0
	7	0.0	0.0	-0.1	-0°	+ 0.4	-0.1	-0.1	-0.1	0.1	0.1	0.0	24	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0°0
	e.	0.0	0.0	-0.1	-0.6	-0.6	-0.2	-0.1	0.0	-0.1	0.1	0.0	23	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	-0 · A	-0 · R	-0.6	9.0-	-0.2	-U.J	0.0	0.0	22	0°0	0.0	0.0	0.0	0.0	0.0	0.0	n" n	0.0	0.0	0.0
	-	6°0-	-1.0	-1.9	-1.0	-1-0	-1.0	-1.0	· · · ·	0.0	0.0	0.0	21	-1-0		-1.0	-1.0	-0.4	-0.7	-0-2	-0-3	-0-2	-0.1	0.0
			2		30	~	0	, n	•	~	~	-			0	"	70	~	.o	n		-	2	

Table 2A-18(b) Wind Speed Perpendicular to Frontal Motion, W_V

Case 18(R) Series No. 1651,

 $\overline{W} = 25.0 \text{ m s}^{-1}$ Length of Field L = 16000.0 m, Horizontal Increment $\Delta x = 400.0 \text{ meters}$

Table 2A-18(c) Vertical Wind Speed, W_z

Case 18(R) Series No. 1651,

m, Horizontal Increment $\Delta x = 400.0$ meters 25.0 m s^{-1} Length of Field L = 16000.0 ł 13×

4.0 9.0 0°. 8.1 0.8 6.1 7.6 **6.4** 5.6 8.1 ... 21 8.1 8.2 9.0 ... 8.0 6.7 4.0 **6**•3 51 - 18 8 - 11 0.9 50 8.0 8.0 8.0 9.0 4.0 8.1 7.1 5.2 8.1 8.1 19 6.6 6.0 **e**•0 7.0 7.1 7.1 7.0 6.0 4.9 **4***0 4.0 18 4.0 .0.4 5.0 **6.**0 6.0 5.0 5.9 6.0 **6.**0 4.5 4.1 11 4.0 0.4 å . ë 5.0 4.1 9° 9 5.7 9.9 t•1 **4** • 2 ... 16 4.0 4.0 4.2 4.2 4.7 4.8 ÷.0 £.5 2.3 5. L 15 4.4 4.2 4.4 **4**.5 0. S **4**.0 4.2 £.2 4.7 4.2 **4.1** 4 4.8 4.3 4.7 4.0 4.2 4 . J 4.4 4.7 ***** - 5 ***** 1 4.1 13 4.2 5.2 4.9 4.2 4.3 4.0 ÷. 4.1 4.1 £.1 4.2 12 5.6 5.1 • 4.2 4.0 4.0 4.1 3.7 3.7 4.1 4.4 11 6.0 5.3 **₽.**€ 3.3 3.3 4.0 4.0 4.4 4.0 9° 6 10 **6** 0 2.7 3.9 4.0 3.1 Э.0 3.0 **9.°**¢ 4.8 4.0 .3.8 **6**.0 2.7 2.0 2.0 0.1 3.0 5,4 2.9 4.4 4.0 3 • 4 œ 2.0 2.0 2.3 5°3 3.0 2.0 2.0 9.0 **5 •** 9 **4** • 0 9°2 1.9 1.9 1.9 9°0 2,3 2.0 1.9 5.1 4.9 4.0 **č**•2 ف 6.1 1.8 5.6 2.5 2.2 2.0 1.9 2.0 1.9 4.4 4.0 ഗ 1.8 1.8 1.8 1.7 6.0 4.0 4.0 2°0 1.9 1.9 2.1 1.6 1.9 1.7 4.0 2.0 2.6 2.2 4.7 3.1 6.1 2.0 m .c.1 6.2 5.5 5,0 4.1 2.0 ٤.٤ 2.0 1.9 3.4 1.7 6.3 6.2 3.0 0.0 ... 4-4 6. Ú 2.5 8. R ... • 11 2

10.2 0.6 8.0 7.2 6.5 9.5 10.0 10.0 10.1 10.1 10.2 10.2 10.0 10.1 10.1 10.1 10.2 9.5 10.0 10.0 10.1 10.1 9.6 10.1 10.1 10.0 **9.** 0 4.6 41 10.0 10.0 10.1 10.1 9.1 **0**•8 7.5 . 9 4.9 3.3 40 8.0 9.3 7.8 6.0 **9.**6 2.0 58 8.6 8.0 7.5 6.0 4.1 4.0 38 9.1 8°0 7.6 7.2 e.0 4.3 4.2 37 6°6 9.3 6.8 8°.5 7.7 6 . B 6.0 4.6 7.2 36 8°5 8.7 8.4 8.0 T.3 6.9 6.5 6.0 4.8 4.5 35 **0°6** 8°0 8.0 7.9 3.0 6.5 6.°2 6°.0 5.0 7.5 4.9 46 6.1 5.0 8.5 7.1 5°-6 7.8 1.7 7.5 6.7 9°. 4.5 33 **8**.0 7.6 7.3 6.6 6.3 5.7 5.4 ... ••• 0.4 7.1 33 4.0 7.8 6.0 5.2 4.9 0. • 7.4 7.0 6.8 6.1 3 4.0 • • 7.5 7.2 6.6 \$°9 6.0 5.5 ÷.8 4.0 30 7.3 7.0 6.3 6.0 4.3 4.0 **4**.0 4.5 **6.**0 5.9 5°0 29 1.7 **4**. 6 0.***** 4.0 9 9 7.3 6.6 6.2 6.0 **6.**0 5.5 28 4.1 0.8 6.0 4.0 4.5 5°3 7.5 6.9 6.5 6.1 4.0 27 4.0 5.9 4.1 4.2 4.7 7.2 6.8 6.2 8°.0 7.8 6.1 36 4 ° 0 4.0 **4**°0 8.1 7.5 1.0 6.3 5.7 6.0 4.2 6.1 25 3.9 6°0 7.8 7.3 6.4 6.2 5.5 4.2 4.0 4.0 ð.1 54 9°9 7.9 6.9 7.5 5°8 4.7 4.0 6 ° 6 8.2 9.9 6.7 53 4.0 6.0 4.3 **8.2** 7.4 5.1 4 . U 9°0 о• В 9.1 7.1 2 **5.**6 4.6 d.1 4.0 • 6.1 1.6 **6.**4 **0.**† 0.1 5

Table 2A-19(a) Wind Speed in Direction of Frontal Motion, $W_{\rm X}$

Case 19(S) Series No. 1904,

178.57 meters .H Horizontal Increment Δx n, 7142.8 Length of Field L = ÷ d T Ŋ 11.0 m Ш. 13×

11.1 11.7 13.0 13.0 12.9 12.4 11.4 10.6 9 ° 4 e. 9 7.0 11.0 13.0 9.1 10.1 11.0 11.7 12.3 13.0 13.1 13.1 13.0 10.0 10.3 10.6 10.9 11.3 11.7 12.2 12.6 13.0 12.9 12.9 10.1 10.4 10.7 11.0 11.3 11.6 11.9 12.2 12.5 12.1 11.8 11.0 6.6 0°6 11.8 10.2 11.1 12.1 13.1 13.1 13.0 0°0 9.0 10.0 11.0 13.0 13.0 9.0 10.0 11.0 11.9 10.4 10.7 11.0 11.3 11.5 11.8 12.0 11.7 11.3 9.0 10.0 9.9 10.4 11.0 11.2 11.3 11.5 11.3 11.0 10.5 **6** 8 0°.6 10.9 10.6 10.0 8.0 10.6 11.0 11.0 7.0 9.5 10.0 10.5 11.0 11.1 11.3 8°U 6.0 7.0 **8**°0 9.2 5.0 10.2 7.0 8.5 **6.**0 **4**.0 **6°6** 1.7 6.0 3°6 4 ° 9 9.4 5.0 7.0 9 • 1 3.9 2.9 **0°6** 7.4 9.1 10.1 6.9 0°6 4.6 5.7 3.9 8°.7 6.6 0°6 6°6 9.6 6.3 1.7 9.2 **0°**6 4.9 2*5 8.5 9.6 9.6 4.5 7.0 8,1 9.0 5°6 9.1 **0°**6 ٤.3 4.0 6.9 э.о 3.7 0.9 7.1 8.0 9.2 9.3 9.1 0.6 **9°0** 2°0 3.0 9°9 9**.**0 0.1 6**.**9 **0°6** 0°6 0°6 **0°°6** 1.5 8.6 2.3 8°3 8.6 8**.1** 0.7 7.0 **6**.6 1.0 **4**.0 5,0 1.1 9.2 7.2 7.0 7.0 8.2 6.0 0.0 M ÷. 5.2 7.6 1.0 6.0 0 2.3 4.0 9°° 9 7.0 7.8 7.9 7.2 1.0 7.4 0 • Û 7.0 0.H 9.9 ۲.5 7.1 1.7 J.5 4 ° 9 7.2 6.0 7.0 0.7 0.7 0.°S 1.1 1.2 1.0 3.0 1.2 1.2 1 2

ORIGINAL PAGE 18 OF POOR QUALITY

2.7 3.0 3.5 0.3 6°0 1.0 2.0 2.5 4..2 **?** 41 9 ° 9 0.8 6.0 2.3 3.0 3**.**8 4.3 5.3 5.6 1.5 5.7 2 7.0 7.0 7.0 7.0 6°0 1.0 2.0 2.0 5.7 2.7 3.7 6E 8.0 6.0 2.0 2°2 0.°E 6.0 7.0 7.4 8.0 8.0 4°2 36 1.0 0°E 7.0 1.7 0°6 о**•**е 7.8 **0°**6 0.0 5,2 4.5 33 8.3 3.0 4.0 4.5 8.0 8.6 7.1 8.2 6.0 8.7 8.7 36 6.3 9.0 0.0 **0°**6 8.6 8.2 5°0 6.0 7.5 8.5 8.3 35 12.4 11.9 11.5 11.0 11.1 11.1 11.1 11.2 11.3 11.3 11.1 11.0 10.0 **0°**6 9.4 2.0 6.7 7.5 6°. 0°6 8.7 8°2 8°2 34 5.0 7.0 0°0 13.0 12.6 12.1 11.7 11.3 11.4 11.6 11.7 11.8 11.5 11.3 11.0 10.0 8°6 0.6 9°.9 8.7 8.8 11.0 10.5 10.0 33 6.5 8.2 12.4 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.0 0°6 0.6 0°6 0°6 33 9.6 8.0 9.1 9.1 9.1 0.6 IE **6°2** 11.6 11.6 11.5 11.4 11.3 11.3 11.2 11.1 11.0 9.2 6°3 **0°6** 10.8 9.1 30 9.2 0.6 10.3 10.5 10.7 9.1 8.4 29 9.1 1.6 8.4 7.8 38 9.1 9.1 7. U 7.2 27 9.2 **0°6** 10.0 10.2 7.2 6.4 26 8.5 6**.**6 9.2 5.1 25 9.0 10.7 10.3 6°5 9 ° 0 4.9 24 9°6 6. B 0°9 6 ° 4 53 11.9 11.0 7.5 6.0 10.1 6.9 25 11.7 13.0 12.9 12.4 11.4 8.3 7.0 10.6 4.7 51 2 1

Table 2A-19(b) Wind Speed Perpendicular to Frontal Motion, W_v Case 19(S) Series No. 1904,

meters Field L = 7142.8 m, Horizontal Increment $\Delta x = 178.57$ = 11.0 m s⁻¹, Length of N X

0.2 0.2 0.2 0.1 0.0 0.0 0.0 0.0 =0.5 0.2 0.1 -0.2 0.0 0.0 0.0 -0.1 0.0 0.0 -0.5 -0.1 -0-1 -2.0 -2.0 -2.0 -1.0 -0.8 -1.4 -2.0 -1.5 -1.0 -1.6 -2.2 -2.1 -2.0 -1.7 -1.3 -1.0 -0°3 -0-1 -0.1 0.0 -0.2 -0.2 -1.4 -1.6 -1.7 -1.9 -2.0 -1.5 -1.0 -0.8 -1.4 -2.0 -1.5 -1.0 -1.4 -1.7 -2.1 -1.7 -1.4 -1.0 -1.3 -1.4 -1.5 -1.6 -1.7 -1.4 -1.0 -0.4 -1.2 -1.7 -1.3 -0.9 -1.5 -2.0 -1.6 -1.3 -0.9 -0.6 -0° 4 0.0 -0-2 =0°.4 -0.2 -1.2 -1.2 -1.1 -1.1 -1.1 -1.1 -1.0 -1.0 -1.0 -0.7 -1.1 -1.5 -1.2 -0.9 -1.2 -1.4 -1.7 -1.0 -0.7 -1.2 -1.2 -1.1 -1.1 -1.1 -1.1 -1.1 -1.0 -1.0 -0.7 -1.0 -1.3 -1.0 -0.8 -1.0 -1.2 -1.0 -0.6 -0.2 -0.1 0.0 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -0.9 -0.7 -1.0 -1.1 -1.0 -0.8 -1.0 -1.2 -1.0 -0.7 -1.0 -1.1 -1.1 -1.1 -1.0 -1.0 -0.8 -0.8 -0.8 -1.0 -0.8 -0.6 -0.8 -1.0 -0.8 -0.6 -1.0 -1.0 -1.0 -1.0 -1.0 -0.8 -0.7 -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 -0.4 -0.1 -0.9 -0.9 -0.8 -0.8 -0.7 -0.5 -0.4 -0.3 -0.3 -0.2 -0.2 -0.2 -0.3 -0.3 -0.2 -0.2 -0.1 0.0 -0.2 -0.2 -0.2 -0.1 -0.1 -0.1 0.0 **?**.0 0.0 0.0 ••• 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.2 0.0 0.0 0.0 ••• 0.0 °.° 0.0 ""!.3 "!.5 "!.6 "!.8 0 -0.5 0.0 -1.0 -1.2 1.1--1.0 -0.5 -0.2 ີ່ວ , T 11 3

÷. 1.2 0.8 0.0 1.5 1.5 1.0 6.0 0.9 0.6 0.1 Ŧ 2.0 1.8 1.6 1.5 1.4 0.9 0.7 0.2 0.0 1.8 1.1 \$ 2°3 2.1 2.1 2.1 2.0 1.8 1.4 1.1 6.0 0.3 0.0 99 2,3 1.3 6.•0 0.2 2°2 2.5 2.1 1.8 1.6 0.7 0.0 38 1.4 1.1 1.5 2.6 2.0 **0**.6 0.2 0.0 2.8 0.7 2.8 37 1.1 1.0 0.5 0.2 0.0 3.1 3.1 2 ° 9 2.0 1 °2 4.0 36 0.0 2:2 1.9 1.6 1 ° 2 1.0 6.0 **ç°**0 6.0 6.J 0.1 33 0.4 0.1 1.2 1.1 8°0 0.5 0.0 0*0 0.1 0.2 0.0 ₩. 0°.3 0.3 0.0 0.0 0.0 0.0 0.2 -0.2 -0.6 -1.0 -1.4 -1.7 -1.3 -0.9 -0.4 -0.2 0.4 =0.1 =0.5 =1.0 =1.6 =2.2 =1.5 =0.9 =0.2 -0.7 -1.1 -1.6 -2.0 -1.4 -0.8 -0.2 -0.5 33 0.6 -0.1 -0.6 -1.1 -1.7 -2.2 -1.4 -0.6 0.4 -0.1 -0.6 -1.1 -1.7 -2.2 -1.6 -1.0 -0.4 -0.1 0.1 -0.9 -1.3 -1.8 -2.2 -1.4 -0.5 0.0 0.1 =0.2 =0.6 =0.9 =1.3 =1.6 =1.3 =1.0 9.0= 32 0.0 6.0- 9.0-6.0--0.3 -0.4 -0.3 E 0.0 -1.2 30 -1°0 0.0 -1.0 29 -0.2 -0.2 0.0 -0.9 -0.5 -0.7 28 0.0 0.1 -0.2 -0.6 12 0.0 -0.2 0.0 0.2 -0.2 0.0 -0.1 26 1.0 0.0 52 0.3 0.4 1.0 0.4 0.1 0.0 1.2 1.0 6.0 9.0 0.2 24 0.1 1.0 0.0 0.8 1.0 9.0 9.0 ¢.•0 . O. 0.2 0.7 2 0.4 0.J 9.1 0.1 0.0 0.0 0.4 0.2 0.4 **0.**4 **0**.4 52 0.2 0.2 0.2 0.1 0.0 0.0 0.0 Ú.°Ú -0.5 0.1 0.2 51 -0

-5.0 -7.5 -7.3 -7.0 -6.8 -7.1 -7.4 -7.7 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -6.0 -6.5 -7.0 -7.5 -8.0 -8.5 -9.0 • 8 • S -8-3 -7.8 -0.5 -5.8 -10.0 -9.5 -9.0 -8.5 -8.0 =7.8 =7.6 =7.7 -7.9 -8.0 -8.0 -8.0 -7.8 -7.7 -7.5 -8.0 -9.0-10.0-10.1-10.1-10.2 -7.7 -8.0 -8.0 -8.0 -8.0 -7.6 -7.2 -8.0 -8.7 -9.3-10.0-10.1-10.2 -8.0 -7.7 -7.5 -7.2 -7.6 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -7.5 -7.0 -7.5 -8.0 -8.7 -9.3-10.0-10.1 41 -7.5 -7.2 -7.0 -6.7 -6.9 -7.1 -7.3 -7.6 -7.8 -8.0 -8.0 -8.0 -5.9 -5.9 -5.9 -5.9 -6.0 -7.0 -8.0 -7.2 -6.9 -6.1 -b.0 -6.0 -6.1 -6.1 -5.8 -5.4 -5.1 -4.7 -4.3 -4.0 -4.0 -4.0 -3.4 -2.0 -2.8 -3.6 -4.3 -5.1 -6.0 -6.0 -6.0 -6.0 -6.0 -5.3 -4.7 -4.0 -4.0 -4.0 -3.9 -3.9 -3.9 -4.1 -2.0 -2.0 -2.0 -2.0 -4.0 -4.5 -6.0 40 -5.0 -6.0 -6.0 99 -1.3 -1.2 -1.0 -6.9 -6.7 -6.9 -1.1 -1.3 -7.4 -7.6 -7.8 -8.U -7.0 -6.0 -5.9 -5.8 -5.9 -5.9 -4.0 -4.0 -5.1 -5.1 38 37 -6.6 -6.6 -6.7 -6.7 -6.8 -6.8 -6.9 -6.9 -7.0 -6.5 -6.0 -5.5 -5.0 -b.5 -b.j -b.1 -6.2 -6.2 -b.2 -b.1 -b.1 -b.0 -6.0 -5.9 -5.8 -5.0 -4.0 -4.0 90 35 34 33 32 33 30 29 -7.5 -7.2 -7.5 87 57 26 -7.7 25 - 8 - 0 24 -8.5 -6.1 -0.5 -8.5 53 0.6-0.6-C.8. -1.8 22 -1.1 -6-9 -6.1 -0.0 9.*.0.. 5.6-0.6-0.8-2.6-71 1 9

-6.9 -6.0 -0.6 0°6--8.0 -0-1 -9.6-10.0-10.0-10.0-10.0-10.0 -9.3 -8.6 -8.9 -9.3 -9.6-10.0 -9.7 -9.3 -9.0 -8.7 -8.3 -8.0 -7.7 -7.3 -9.8-10.0-10.1-10.1-10.1-10.0 -8.4 -8.9 -9.5-10.0-10.1-10.2-10.3-10.2-10.1-10.1-10.0 -9.5 -9,7-10.0-10.1-10.2-10.1-10.0 -9.3 -8.5 -9.0 -9.5-10.0-10.1-10.1-10.1-10.0 -9.5 -9.0 -8.5 -9.1 -9.4 -9.7-10.0 -9.6 -9.2 -8.8 -8.4 -8.0 -8.4 -8.0 -8.5 -9.2 -8.8 -8.4 -8.0 -7.8 -7.7 -7.5 -8.5 -8.7 -8.8 -9.0 -8.7 -8.5 -8.3 -8.0 -7.2 -8.0 -8.1 -8.2 -8.1 -8.0 -7.8 -7.6 -7.4 -7.1 ·8.0 -8.0 -7.9 -7.9 -7.9 -7.9 -8.0 -8.0 -8.0 -7.4 -6.8 -7.2 -7.5 -7.9 -7.7 -7.5 -7.4 -7.2 -7.0 -6.8 -6.2 -6.1 -6.2 -6.U -5.9 -5.9 -5.9 -5.9 -5.4 -6.0 -6.0 -6.0 -6.0 -6.1 -6.1 -6.1 -6.1 -6.1 -6.2 -6-1 -6.0 -5.0 -5.5 -4.0 -4.0 -4.0 -4.0 -4.2 -4.3 -4.2 -4.0 -4.0 -4.0 -4.5 -8.0 -8.7 -10.U-10.U-10.0+10.0-10.1-10.1+10.0 -9.1 -8.2 -10.0-10.0-10.0-10.0-10.0-10.0'-9.0 -8.0 -4.0 -4 · 5 -9.1 5.6--9.2 ÷.9--8-2 -8-4 5.6-- 4.2 - 6 - 9 -8°2 0.*;;-.2.0 3 10

Table 2A-19(c) Vertical Wind Speed, W₇

Case 19(S) Series No. 1904,

m, Horizontal Increment $\Delta x = 178.57$ meters Field L = 7142.811.0 m s⁻¹, Length of Ň 13[×]

5

50

61

8

1

16

15

14

13

12

7

10

6

.....

ø

,n

÷

~

Table 2A-20(a) Wind Speed in Direction of Frontal Motion, $\mathtt{W}_{{\sf X}}$

Case 20(T) Series No. 0029.

m, Horizontal Increment $\Delta x = 333.33$ meters 13333.2 Field L = s-1 Length of m 6.01 N |₃[×]

17.3 9.9 10.3 10.7 11.2 11.6 12.0 12.9 13.9 15.2 16.6 17.9 18.2 18.6 18.9 15.4 10.4 11.3 12.1 12.7 13.3 13.9 14.1 14.4 14.2 14.1 13.9 13.9 13.9 13.9 14.9 15.9 17.9 18.7 19.6 19.9 10.6 11.4 12.1 12.5 12.8 13.2 13.6 13.6 13.7 13.7 13.8 13.8 14.9 16.0 17.4 18.8 19.9 9.9 10.6 11.2 11.9 12.1 12.2 12.4 12.5 12.7 13.0 13.3 13.5 13.4 15.1 16.4 18.0 18.9 19.9 19.9 9.9 10.2 10.5 10.8 11.0 11.3 11.6 11.9 12.4 12.8 13.3 13.8 15.2 16.6 18.0 18.9 19.9 19.9 9.9 10.2 10.6 10.9 11.2 11.6 11.9 12.6 13.2 13.9 15.3 16.6 18.0 18.5 19.0 19.5 9.7 10.1 10.6 11.1 11.6 12.1 13.3 14.6 15.8 16.9 17.9 18.3 18.7 13.1 9.9 10.9 11.9 12.9 13.9 14.1 14.2 14.3 14.5 14.5 14.5 14.6 14.6 14.6 14.6 15.2 15.8 17.2 18.5 19.9 19.9 9.9 10.7 11.4 12.2 12.9 13.7 13.9 15.2 16.4 17.7 13.9 15.9 10.8 11.9 13.7 9.9 10.9 11.9 11.9 12.0 9°6 9.6 9.9 9°4 9°°6 6.9 6°8 **8** 4 8°4 7.9 6°\$ 7.9 5°,6 9.1 6.9 5.9 9.2 8.7 5,9 5.9 9.4 8.8 6.3 6.4 5.9 2.9 6.9 8.3 6.7 6°*5 7.4 6.3 5*3 9.4 **8**.4 9.6 6 8. 7.4 6.9 6°5 5.8 7.9 9.2 5°6 4.9 6.9 6.4 5,8 7.5 6°7 9.9 5.9 5.8 6.4 5°.¥ 9.9 7.1 7.9 3° 8 7 . 4 5.4 5.7 9.7 6°.9 1.9 6.J **.**, 1 2

З.7 3.7 3.9 3.8 3.8 3.9 3.8 г. - М 3.8 3.8 4.1 4 3.8 9°.0 4.5 4.3 3**.**9 9°6 3**.**9 3.7 3.8 3.9 3.9 6 4.5 4.4 9°0 3.6 **4**. 8 4.7 4.0 4.0 S. **4**.5 ¢.6 66 4.6 3°9 5.1 5.1 5.2 5.1 5.1 4.8 **6.** ¥ 5.2 5.2 38 5.3 **4**°6 5.6 5.0 5.9 5.8 S.5 5.5 5.7 5.7 9°.5 Ē 6°.0 6. B 9.9 6.6 6.0 5.9 6.6 6.4 6.9 6°.0 5.9 36 6.5 6 • 6 6.9 6.8 7.5 7.2 7.9 1.1 1.7 7.4 1+2 35 6.9 7.8 8°2 8.0 6°8 8°.7 8°3 7.9 7.3 7.9 6.7 **4**E 7°9 8.8 9.4 **8°6** 7.4 8.9 9**.** 3 6°6 8.6 9.2 6°8 33 6.1 6°8 14.7 18.3 17.9 17.4 16.9 16.4 15.9 14.9 13.9 12.8 11.7 10.4 6°.6 9.9 9.8 19.9 19.9 19.1 18.3 17.6 15.8 16.0 14.9 13.9 12.8 11.6 10.5 19.9 19.4 18.8 16.3 17.7 17.2 16.1 15.1 14.0 13.0 11.9 10.6 19.5 19.1 18.6 18.2 17.7 17.3 16.2 15.1 14.1 13.0 11.9 10.8 14.9 18.6 18.4 18.1 17.9 16.9 15.9 15.0 14.0 12.9 11.9 10.8 14.4 19.4 18.9 18.3 17.8 17.3 16.2 15.1 14.1 13.0 11.9 10.9 32 **8.**6 15.4 14.4 14.4 13.9 13.9 13.9 13.9 12.9 11.9 10.9 9.9 14.4 19.4 19.3 18.6 18.0 16.9 15.9 14.6 13.2 11.9 10.9 17.3 16.8 16.4 15.9 15.9 15.9 14.9 13.9 12.9 11.9 10.9 19.9 19.9 19.9 18.9 17.9 16.7 15.5 14.2 13.0 11.8 10.8 31 11.1 12.5 11.9 11.9 11.9 11.9 11.9 10.9 9.9 9.2 30 29 87 23 20 52 24 23 22 71 11 2 ð

21	-1.7	-1.4	-1.0	- 0*0-	-0.1	• • • •	-0.3	-0.2	-0.1	-0.1	0*0	41	0.1	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0*0	
20	-2.0	-1.9	-1-5	-1.0	-0 •9	-0-5	-0-4	-0.3	-0.1	-0.1	0.0	40	0.1	0.2	0.2	0.1	0.1	0.0	0.0	0*0	0.0	0.0	0.0	
19	-2.8	-2.3	-1-9	-1.3	-1.0	-0.6	-0.5	-0.4	-0.2	-0-1	0.0	39	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	
19	-3.0	-2.7	-2.0	-1.6	-1.0	-0.B	-0.7	-0-5	-0.2	-0.1	0.0	38	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.0	0.0	0.0	
11	-3.0	-2.4	-2.0	-1.4	-1.1	-0-9	-0-8	-0.4	-0.2	-0.1	0.0	37	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.0	0.0	0.0	
16	-2.5	-2.1	-1.7	-1.2	-1.0	8.0-	-0.7	-0-3	-0.1	-0-1	0.0	36	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0-0	0*0	0.0	
15	-2.0	8-1-	-1.5	-1.0	6*0=	1.0-7	-0.6	-0-2	-0.1	0.0	0.0	35	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.0	0*0	0.0	
4	-1.5	-1.4	-1.2	6*0-	-0.7	= 0*6	-0.4	-0.2	-0.1	0.0	0.0	34	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.1	0.0	0.0	0.0	
13	-1.1	-1.1	6.0-	-0.8	-0.6	-0.5	-0.3	-0.1	0.0	0.0	0.0	33	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.0	0.0	0.0	
12	-1.1	-1.1	6°0-	-0.8	•0 • 5	-0.4	-0-2	0.0	0.0	0.0	0.0	32	0*0	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.0	0.0	0*0	
11	-1.1	-1.1	-1.0	6.0-	-0 - 0	-0-3	-0.1	0.0	0*0	0.0	0.0	31	0.0	0*0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0*0	0.0	
10	-1.1	-1.1	-1.0	e.0-	¢*0.=	-0-3	-0.1	0.0	0.0	0*0	0.0	30	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0"0	0.0	
. .	-1.1	-1.1	-1.0	6*0-	•0•6	-0.4	-0.2	0.0	0+0	0.0	0.0	29	0*0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	
39	-1.2	-1.2	-1.0	9.0-	-0-6	-0.4	-0.2	0.0	0.0	0.0	0.0	28	0.0	0.0	0.0	0.0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	
٢	-1.2	-1.2	-1.0	6.0-	-0.6	-0 -	-0-3	0.0	0.0	0.0	0.0	27	-0-2	-0-2	-0-1	-0-1	0.0	0*0	0.0	0.0	0.0	0.0	0.0	
م	-1.2	-1.2	-1.0	6*0-	-0-6	ç. 0-	-0-3	0.0	0.0	0.0	0.0	26	-0 - 4	-0-3	-0.2	÷0.2	-0-1	-0.2	-0-	0.0	0.0	0.0	0.0	
ŝ	-1.2	-1.2	-1.1	-1.0	-0-5	-0-4	-0.2	0.0	0.0	0.0	0.0	25	-0-6	-0.5	4-0-	-0-4	-0-5	-0-2	-0-1	0.0	0*0	0*0	0-0	
4	-1.2	-1.1	-1.0	8.0-	-0.4	-0-3	-0.1	0*0	0.0	0.0	0.0	24	-0.8	-0.1	-0.6	-0- i	-0.3	-0.1	-0.1	0.0	0.0	-0.1	0.0	
)	-1.1	-1.1	6.0-	9°0-	-0-3	-0.1	0.0	0.0	0.0	0.0	0.0	23	-1.0	-0-H	-0-1	-0 -	-0-	-0-1	0.0	0.0	0.0	-0.1	0.0	
۲	-1.0	۹°0-	-0-6	-0°2	1-0-1	0.0	0.1	0.1	0.1	0.0	0.0	57	-1-1	J-1-1	5-0- (-0-1	9.0-1	1-0-1	-0-1	-0-1	1.0.1	-0-1	0.0	
	-0.6	- 0 - 5	-0.4	-0 -	0.0	0.1	0.1	0.1	0.1	0.0	0.0	12	-1-	-1.4	-1.0	10.1	-0-	- · · -	• 0 -	-0-	1*0-	-0-	0.0	
	-	5	5	30	~	ø	,n	- 18		\sim	-		-	3	3	30	~	9	ŝ	4	- 73	N		

Table 2A-20(b) Wind Speed Perpendicular to Frontal Motion, W_v

Case 20(T) Series No. 0029,

 $\overline{W} = 19.9 \text{ m s}^{-1}$, Length of Field L = 13333.2

m, Horizontal Increment $\Delta x = 333.33$ meters

Table 2A-20(c) Vertical Wind Speed, W_z

Series No. 0029, Case 20(T)

m, Horizontal Increment $\Delta x = 333.33$ meters = 19.9 m s⁻¹, Length of Field L = 13333.2 13×

-4°0 -4.2 -3.7 =14.2-14.1-14.1-14.0-13.6-13.2-12.8+12.4+12.0+11.0 +9.9 -8.9 -7.9 -7.0 -6.1 -5.2 -4.2 -3.9 -3.7 -3.4 -3.5 "i4.2"i3.8"i3.5"i3.1"i2.7"i2.4"i2.0"i1.0"i0.0 "9.1 "8.1 "7.6 "7.0 "6.4 "5.9 "4.9 "4.0 "3.8 "3.7 "3.5 "3.3 "i4.0"11.5"13.0"12.5"12.0"11.3"10.7"10.0 "9.3 "8.7 "8.0 "7.3 "6.7 "6.0 "5.3 "4.7 "4.0 "3.8 "3.6 "3.4 "3.2 -13.U-12.4-11.H-11.2-10.6-10.U -9.5 -8.9 -8.4 -7.9 -7.2 -6.6 -5.9 -5.3 -4.8 -4.2 -4.0 -3.7 -3.5 -3.2 -3.0 -11.5+10.6-10.1 -9.4 -6.7 -8.0 -7.6 -7.2 -6.7 -6.3 -5.9 -5.0 +4.1 -4.1 -4.0 -3.8 -3.6 -3.5 -3.3 -3.9 -3.8 -3.9 "3.8" =3.6 =3.5 =3.4 -11.0-10.5-10.0 -9.3 -8.5 -7.8 -7.3 +6.9 -6.4 -6.0 -5.0 -4.0 -3.9 -3.9 -3.6 -3.6 -3.6 -3.4 -3.3 -3.1 -2.9 -2.7 -4°0 -4.0 -14°.3-14°.2-14°.2-14°.1-14°.0-13°.5-13°.0-12°.5-12°.0-11°.0-10°.0 -9°.0 -8°.0 -5°.0 -5°.0 -5°.0 -3°.6 6.9--4° -14.2-14.2-14.1-14.1-14.1-14.0-14.0-14.0-13.5-13.0-12.5-12.0-11.0-10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -5°8 ÷5,3 11 -1:4.U-14.U-14.0-14.0-14.0-14.0-13.8-13.5-13.3-13.0-12.8-12.5-12.3-12.0-10.2 -8.5 -6.7 -13.0-11.5-11.0-10.5-10.0 -9.3 -8.7 -8.0 -7.5 -6.9 -6.4 -5.9 -5.4 4.9 -4.5 -4.0 -3.9 "i4.i"14.i"14.i"14.i"14.0"14.0"14.0"13.7"13.3"13.0"12.7"12.3"12.0"11.3"10.7"10.0 "8.0 "6.7 2

-5.0 -6.5 -6.0 -4.0 -4.2 -4.4 -4.7 -4.9 -5.1 -5.3 -5.6 -5.8 -6.0 -6.5 -7.0 -7.5 -8.0 -9.0-10.0-11.0-12.0-12.1-12.1-12.2 -4.0 -4.2 -4.4 -4.6 -4.8 -5.0 -5.2 -5.4 -5.6 -5.8 -6.0 -6.7 -7.3 -8.0 -8.5 -9.0 -9.5-10.0-10.5-11.0 -3:7 -3.6 -3.9 -4.0 -4.2 -4.4 -4.7 -4.9 -5.1 -5.3 -5.6 -5.8 -6.0 -6.5 -7.1 -7.6 -8.1 -8.6 -9.1 -9.5-10.0 -3.5 +3.0 -3.4 -3.9 -4.0 -4.2 -4.4 -4.7 -4.9 -5.1 -5.3 -5.6 -5.8 +6.2 -6.5 -6.9 -7.3 -7.6 -8.0 -8.5 -9.0 -3.3 -3.5 -3.7 -3.8 -4.0 -4.1 -4.2 -4.4 -4.5 -4.6 -4.9 -5.3 -5.7 -6.0 -6.3 -6.6 -6.9 -7.1 -7.4 -7.7 -8.0 -3.2 -3.4 -3.5 -3.7 -3.8 -4.0 -4.0 -4.1 -4.1 -4.1 -4.5 -4.9 -5.2 -5.6 -6.0 -6.0 -6.1 -6.1 -6.4 -6.8 -7.1 -3.2 -3.3 -3.4 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 -4.2 -4.2 -4.5 -4.9 -5.1 -5.4 -5.7 -5.9 -6.2 -4.7 -5.4 -5.7 -3°9 -4°4 -3.8 -4.1 -4.8 -5.1 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.5 -3.0 -3.4 -3.9 -3.7 -3.5 -3.6 -3.7 -4.1 =3.0 =3.0 =3.1 =4.0 =4.1 =4.3 =4.4 =4.5 -4.0 -4.0 -4.0 -4.1 -2.3 -2.6 -3.0 -3.3 -3.7 -2.9 -2.8 -2.9 -2.7 -2.5 -2.4 -2.2 -2.U -2.2 -2-9 -3.2 -3.0 -2.4 -2.2 -3.1 -... -2.5 .6° . -J.0 - J., 4 -2.9 -2.7 Ì j.

41

40

39

38

37

36

35

34

Ē

32

31

30

29

78

12

36

25

24

53

22

APPENDIX 2B

ORIGINAL PAGE IS OF POOR QUALITY

GRAPHICAL ILLUSTRATION OF THUNDERSTORM WIND SPEED PROFILES

This appendix contains graphical illustrations of the wind speed profiles encountered along flight paths having a 3° glide slope through each of the 20 thunderstorm cases. The position of each flight path relative to the streamlines fixed in the frame of reference moving with the storm is illustrated in each of the figures, and is chosen to terminate in the left-hand corner of each data set. The flight paths are, therefore, essentially arbitrary flight paths which could be encountered during any routine landing through a passing thunderstorm.

The longitudinal, lateral, and vertical wind speeds encountered along the glide slope are shown. The ordinate in the wind speed profiles is height, \hat{z} , nondimensionalized with the length, H = L tan 3°, where L is the length of the wind field. Each profile is the wind as seen by an airplane traveling along the flight path drawn across the streamlines as shown in the upper figures. Note that the streamlines plotted are relative to the speed of the front which, for reference purposes, has been indicated on the horizontal wind speed profile with a vertical dashed line. The wind speed profiles are relative to the fixed earth frame of reference.

The purpose of these illustrative profiles is to provide an impression of the diversity and severity of wind shear that can be encountered during a routine approach when a thunderstorm is in the vicinity of the terminal area. The data sets do not necessarily represent a wind field through the center of the storm nor the worst downdraft conditions, but represent storms which may have passed either to one side or the other of the tower from which the data were measured. Therefore, the profiles do not illustrate necessarily the 20 most severe flight paths which would be encountered through the given thunderstorms but rather a collection of wind speed profiles that represent an averaged situation.

Series No. 1314, 2 Jul 72, Case 2(B) Glide Slope: E Typical Wind Profiles along a $\frac{1}{W}X = 5.0 \text{ m s}^{-1}$, H = 3279 tan 3° Figure 2B-2

~ 19

Series No. 1942, 7 Jun 71, Figure 2B-7 Typical Wind Profiles along a 3° Glide Slope: Case 7(G) $\overline{W}_{x} = 11.8 \text{ m s}^{-1}$, H = 7843 tan 3° (m)

Typical Wind Profiles along a 3° Glide Slope: $\overline{W}_{x} = 8.5 \text{ m s}^{-1}$, H = 5556 tan 3° (m) Figure 2B-8

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX 2C

COMPUTER PROGRAM FOR CALCULATION OF TURBULENT THUNDERSTORM WIND FIELDS

This appendix describes a computer program used to obtain the longitudinal, lateral, and vertical wind speeds at a given point (x,z) and all six velocity gradients at that point. The computer program has the option of superimposing a non-Gaussian turbulent field on the thunderstorm wind speeds. When the turbulence option is utilized, an input for time is required. The specified time designates to the program the period over which the turbulent fluctuations are computed.

The subroutine VELO calls seven additional subroutines as schematically illustrated in Figure 2C-1. These seven subroutines are entitled TURB, ROMDON, FILTER, GAUSS, FFT, WIND, and BUILD.

Program Description

The program is written in FORTRAN IV and generates the wind field with turbulence superimposed for (x,z,T) inputs from the calling flight simulator program.

Subroutine VELO

For the given position and time the VELO subroutine furnish the wind velocity [U,V,W <u>output</u>] and velocity gradient [UDX,UDZ,VDX,VDZ,WDX,WDZ, <u>output</u>] in a flow field which is one of 20 cases of cold air outflow from thunderstorms detected by National Severe Storms Laboratory during 1971 through 1974 [2-1].

Also, a non-Gaussian Dryden spectrum turbulence fluctuation is added to the wind velocity.

VELO first calls the subroutine FILTER which sets up the transfer function for tailoring the random signal. It then calls subroutine TURB. The subroutine TURB processes the random signal generated in subroutine ROMDON through the prescribed filter system and outputs fluctuations w_x , w_y and w_z

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2C-1 Schematic of VELO Subroutine

having a non-Gaussian distribution with a Dryden spectrum form (Equation 2-4). The transfer to VELO is achieved with a common statement. VELO then calls subroutine WIND to obtain the mean wind velocities at (x,z) to which the corresponding fluctuations are added. The wind speed and wind speed gradients are then computed and the data is output in units of m s⁻¹ and s⁻¹, respectively.

Nomenclature

Subroutine VELO(X,Z,T,HAM,NBB,U,V,W,UDX,UDZ,VDX,VDZ,WDX,WDZ)

Position vector in longitudinal direction (user's units)	[INPUT]
Position vector in vertical direction (user's units)	[INPUT]
Controls time period of turbulent signal (sec)	[INPUT]
Ratio of unit (meter/user's units)	[INPUT]
Integer number for calling a new thunderstorm case. NBB=1 calls a new thunderstorm data set into storage	[INPUT] [OUTPUT]
Velocity in longitudinal direction (m s ⁻¹)	[OUTPUT]
Velocity in vertical direction $(m s^{-1})$	[OUTPUT]
Velocity in lateral direction (m s ⁻¹)	[OUTPUT]
Longitudinal velocity gradient in x direction (s^{-1})	[OUTPUT]
Longitudinal velocity gradient in z direction (s ⁻¹)	[OUTPUT]
Vertical velocity gradient in x direction (s^{-1})	[OUTPUT]
Vertical velocity gradient in z direction (s^{-1})	[OUTPUT]
Lateral velocity gradient in x direction (s ⁻¹)	[OUTPUT]
Lateral velocity gradient in z direction (s ⁻¹)	[OUTPUT]
	Position vector in longitudinal direction (user's units) Position vector in vertical direction (user's units) Controls time period of turbulent signal (sec) Ratio of unit (meter/user's units) Integer number for calling a new thunderstorm case. NBB=1 calls a new thunderstorm data set into storage Velocity in longitudinal direction (m s ⁻¹) Velocity in vertical direction (m s ⁻¹) Velocity in lateral direction (m s ⁻¹) Longitudinal velocity gradient in x direction (s ⁻¹) Longitudinal velocity gradient in x direction (s ⁻¹) Vertical velocity gradient in x direction (s ⁻¹) Lateral velocity gradient in x direction (s ⁻¹) Lateral velocity gradient in x direction (s ⁻¹)

T is incremented with each integration time step of the calling program and is a control variable for the length of the random, turbulent signal generated. When VELO is first called in it generates a turbulent signal at height z for a specified time period TEND. Each time VELO is called following the initial case, i.e., NBB = 1, T is compared with TEND, when $T \ge TEND$ a new turbulent signal at the current height z of time period TEND is generated. Thus a quasi-turbulence variation with height is achieved.

NBB is set equal to unity for the first time VELO is called. It automatically changes NBB = 2 until another thunderstorm is desired at which time the calling program must reset NBB = 1.

ORIGINAL PAGE IS OF POOR QUALITY

Listing of Subroutine VELO

SUBRUUTINE VELO(X,Z,F,HAM,NBB,U,V,W,UDX,UDZ,VDX,VDZ,WDX,WDZ) COMMON/ST2/IX COMMUN/ST4/H(3,3,128) COMMON/ST7/DX COMMON/ST12/DT.NNN COMMON/ST13/GG(3,128) IF(NBB-1) 101,101,105 101 IX=65549 CALL FILTER(Z) CALL TURB(Z) TEND=0. NCC=0103 TEND=TEND+DT*NNN 105 IF(T-TEND) 109,108,108 108 CALL TURB(Z) NCC=NCC+1 GO TO 103 109 ER=T/DT NT=ER+1-NNN*NCC UP=GG(1,NT) VP=GG(2,NT)WP = GG(3, NT)CALL WIND(X,Z,HAM,NBB,WX,WZ,WY,WXX,WXZ,WZX,WZZ,WYX,WYZ) J = WX + UPV = WZ + VPW=WY+WP NU=NT+1 UDX = WXX + (GG(1, NU) - UP) / DXVDX = wZX + (GG(2, NU) - VP) / DXWDX = WYX + (GG(2, NU) - WP) / DXUDZ=WXZ VDZ=wZZ WUZ=WYZ RETURN

END

Subroutine TURB

The subroutine TURB is called by the subroutine VELO. This subroutine carries out the calculation for the turbulent fluctuations based on non-Gaussian turbulence model of Reeves, et al. [2-3]. A Dryden spectrum is used. A schematic of the non-Gaussian turbulence simulation model is given in Figure 2C-2.

Figure 2C-2 Physical Interpretation of a Single Component of the Non-Gaussian Turbulence Model

TURB first calls the subroutine ROMDON to obtain three independent discrete Gaussian white noise random functions N_a , N_b , N_c . These signals are processed through a common statement by the subroutine FILTER having the filter function H_a , H_b , H_c .

After mathematical analysis the simulated turbulent fluctuation $w_{\chi}(t)$, $w_{\gamma}(t)$ and $w_{z}(t)$ are determined and with a common statement returned to VELO.

Listing of Subroutine TURB

	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
	SUBROOLINE IORB(Z)				
	DIMENSION RR(3,128), RI(3,1	28),XR(128),	XI(128)	,GH(3)	,3,128)
	COMMON/ST2/IX				
	COMMON/S[4/H(3.3.128)				
	CUMMUN/STI2/DT, NNN				
	COMMON/ST13/GG(3,128)				1 g
	NENNN				
	R=1.				
	[T= 1				
99				*	
77					
	LALL RUMDUN(RR, RI, NI, NIZ)			· ·	
100	DU 110 $K=1, NT$				
	XR(K)=H(IT,J,K)*RR(J,K)			- Y	•
	XI(K)=Q_				
110	CONTINUE				
	CALL FFT(XR.XI.NT.NT2,2)			•	
	DO 111 K=1.NT				
	CHIIT 1 K)-YR(K)			•	
111	CUATTURE	×		•	
	J=J+1				
	IF(J-3) 100,100,130				

ORIGINAL PAGE IS OF POOR QUALITY 130 DO 140 K=1,NT XR(K)=GH(1T,1,K)*GH(IT,2,K) GG(IT,K)=R/(1.+R*R)**0.5*XR(K)+1./(1.+R*R)**0.5*GH(IT,3,K) 140 CONTINUE IT=IT+1IF(IT-3) 99,99,150 150 CONTINUE wRITE(6,2) DU 160 I=1,3 WRITE(6,1) (GG(1,K),K=1,NI) IF(1-2)154,155,160 154 WRITE(6,3) GO TO 160 155 WRITE(6,4) 160 CONTINUE 1 FORMAT(10(1X, E11.4)) 2 FORMAT(15X, 'LUNGITUINAL') 3 FORMAT(15X, 'VERTICAL') 4 FORMAT(15X, 'LATERAL') RETURN END

Subroutine ROMDON

The subroutine ROMDON is called by the subroutine TURB. This subroutine calls the subroutine GAUSS which generates a random Gaussian white noise signal. Three series of normalized zero mean random function $N_a(t)$, $N_b(t)$ and $N_c(t)$ are transferred to the subroutine FFT which fast Fourier transforms $N_a(t)$, $N_b(t)$ and $N_c(t)$ and returns the transformed signal to TURB.

Nomenclature

Subroutine ROMDON (RR,RI,NT,NT2)

RR(1,J)	Real part of Fourier transform of N _a (t)	[OUTPUT]
RR(2,J)	Real part of Fourier transform of $N_{b}(t)$	[OUTPUT]
RR(3,J)	Real part of Fourier transform of $N_{c}(t)$	[OUTPUT]
RI(1,J)	Imaginary part of Fourier transform of N _a (t)	[OUTPUT]
RI(2,J)	Imaginary part of Fourier transform of $N_{h}(t)$	[OUTPUT]
RI(3,J)	Imaginary part of Fourier transform of $N_{c}(t)$	[OUTPUT]
NT	Integer number of discrete noise signal, usually NT = 128	[INPUT]
NT2	(2) ^{NT2} = NT (for example, if NT = 128, NT2 = 7)	

Listing of Subroutine ROMDON

```
SUBROUTINE RUMDON(RR, R1, NT, NT2)
    CUMMON/ST2/IX
    DIMENSION RR(3,128), RI(3,128), XR(128), XI(128)
    00 \ 110 \ I=1,3
    SUM=0.
    DU 105 J=1,NT
    CALL GAUSS(IX,1.,0.,R)
    RR(I,J)=R
    SUM=SUM+RR(I,J)
105 CUNTINUE
    AVE=SUM/NT
    SIG=0.
    DU 106 J=1,NT
    RK(1,J)=RK(1,J)-AVE
    SIG=SIG+RR(I,J)**2
106 CONTINUE
    SIG=(SIG/NT)**0.5
    DU 107 J=1,NT
    RR(1,J)=RR(I,J)/SIG
107 CUNTINUE
    DO 108 J=1,NT
    XR(J) = RR(I,J)
    X1(J)=0.
108 CONTINUE
    CALL FFT(XR,XI,NT,NT2,1)
    DO 109 J=1,NT
    RR(I,J) = XK(J)
    RI(I,J) = XI(J)
109 CONTINUE
110 CUNTINUE
    RETURN
    END
```

Subroutine GAUSS

The subroutine GAUSS is called by the subroutine ROMDON. Each time GAUSS is called it generates a new random number. Random numbers generated by GAUSS are white noise having a Gaussian distribution.

Nomenclature

Subroutine GAUSS(IX,S,AM,V)

- IX Arbitrary starting number, IX = 65549

[INPUT]

[OUTPUT]

[INPUT]

AM Adjusting number, setting AM = 0.0 gives zero mean

V Random number output

Listing of Subroutine GAUSS

```
SUBRUUTINE GAUSS(IX,S,AM,V)

REAL*8 Y

A=0.0

DU 50 I=1,12

IY=IX*65539

IF(IY) 5,6,6

5 IY=IY+2147483647+1

6 Y=IY

Y=Y*0.4656613D-9

IX=IY

50 A=A+Y

V=(A-6.0)*S+AM

REFURN

END
```

ORIGINAL PAGE IS OF POOR QUALITY

Subroutine Filter

The subroutine FILTER is called by the subroutine VELO. The input list contains the height z. This subroutine sets up nine filter functions shown in Table 2C-1, for generating the three direction fluctuating signal, w_x , w_y and w_z .

These are returned to TURB through a common statement where H(IT,J,K) equals $H_a(K)$ if J = 1, $H_b(K)$ if J = 2 and $H_c(K)$ if J = 3. The value of IT = 1 specifies longitudinal fluctuations; IT = 2 vertical and IT = 3 lateral.

Listing of Subroutine FILTER

```
SUBROUTINE FILTER(Z)
CUMMON/ST4/H(3,3,128)
COMMON/ST12/DT,NNN
NT=NNN
Z1=Z*3.281
UMEAN=8.
ALU=(Z1/(0.177+0.832*0.001*Z1)**1.2)/3.281
ALV=ALU
```

185

[INPUT] [OUTPUT]

TABLE 2C-1

TRANSFER FUNCTIONS OF THE NON-GAUSSIAN MODEL

```
ALW=ALU
    AMU=0.106*8./(0.177+0.832*0.001*21)**0.4
    AMV=AMU
    AMW=AMU
    UDU=ALU/UMEAN
    VOU=ALV/UMEAN
    WOU=ALW/UMEAN
                                         ORIGINAL PAGE IS
    DD=128**0.5
                                         OF POOR QUALITY
    DE=3.**0.5
    FC=1./(2.*DT)
    DJ 110 K=1,NT
    S=FC*(K+1)/NT
    H(1,1,K) = 4.*AMU*UOU/(1.+2.*UUU*S)
    H(1,2,K)=1./(1.+2.*U0U*S)
    H(1,3,K)=AMU*(2.*U0U)**0.5/(1.+U0U*S)
    H(2,1,K)=AMU*DD*VOU**2/(1.+2.*VOU*S)
    H(2,2,K)=S/(1.+2.*V0J*S)**2
    H(2,3,K)=AMV*V00**0.5*(1.+DE*V00*S)/(1.+V00*S)**2
    H(3,1,K)=AMW*DD*W0U**2/(1.+2.*W0U*S)
    H(3,2,K)=S/(1.+2.*WDU*S)**2
    H(3,3,K)=AMW*WOU**0.5*(1.+DE*WOU*S)/(1.+WOU*S)**2
110 CONTINUE
    RETURN
```

```
END
```

Subroutine FFT

The subroutine FFT provides a discrete fast Fourier or inverse Fourier transformation and it is called by the subroutine ROMDON and the subroutine TURB.

In the subroutine ROMDON, FFT is utilized to transform N_a , N_b and N_c from the time domain to the frequency domain.

In subroutine TURB, after the frequency function has passed through the filter function, FFT is used to transform the frequency function back to the time functions a(t), b(t) and c(t).

Nomenclature

Subroutine FFT(XR,XI,N,NU,NGG)

				• .			
1. J. J.	transformed						
XI	Array of the imagin	nary part of	f the function t	to be			
XR	Array of the real p	oart of the	function to be	transformed			

N Total number of the Array (N); usually N=128

187

[INPUT] [OUTPUT] [INPUT] [OUTPUT] [INPUT] NU

(2)NU=N; usually NU=7 which gives N=128

[INPUT]

÷.

NGG

If NGG=1, the subroutine performs the Fourier Transform If NGG=2, the subroutine performs the Inverse Fourier Transform

[INPUT]

Listing of Subroutine FFT

SUBROUTINE FFT(XR,XI,N,NU,NGG) DIMENSION XR(N), XI(N) IF(NGG.E0.1) GO TO 321 DO 320 I=1,N 320 XI(I) = -XI(I)321 N2=N/2 NU1=NU-1 K=0 DO 100 L=1,NU 102 DO 101 1=1,N2 P=IBITR(K/2**NU1,NU) ARG=6.283185*P/FUDAT(N) C=COS(ARG) S=SIN(ARG) K1 = K + 1K1N2 = K1 + N2TR=XR(K1N2)*C+XI(K1N2)*STI=XI(K1N2)*C-XR(K1N2)*SXR(K1N2) = XR(K1) - TRXI(K1N2) = XI(K1) - TIXR(K1) = XR(K1) + TRXI(K1) = XI(K1) + TI101 K=K+1 K = K + N2IF(K.LT.N) GO TO 102 K=0 NU1=NU1-1 100 N2=N2/2 DO 103 K=1,N I = IBITR(K-1, NU) + 1IF(1.LE.K) GO TO 103 TR=XR(K) TI=XI(K) $XR(K) = XR(I)^{\circ}$ X1(K) = XI(I)XR(1)=TR1T = (1)IX103 CONTINUE IF(NGG.EQ.1) GO TU 121 DO 124 1=1,N XR(I) = XR(I) / NX1(1) = X1(1) / N

124	CONTINUE
121	RETURN
	END
•	FUNCTION IBITK(J,NU)
•	J1=J
	IBITR=0
	DU 200 I=1,NU
	J2=J1/2
	IBITR=IBITR*2+(J1-2*J2)
200	J1=J2
	RETURN
	END

Subroutine WIND

The WIND subroutine is called by the subroutine VELO for the given position (x,z) from VELO. Interpolation by an area-weighting method for the velocity at the point x,z in the flow field based on the tabulated data for the given thunderstorm data set placed in storage by subroutine BUILD. The area-weighting interpolation method is illustrated in Figure 2C-3.

The area-weighting scheme calculates the velocity and velocity gradient of each point by using the four nearest neighboring grid point velocities.

Figure 2C-3 Area-Weighting Technique

The velocity at point P is given by:

$$W_{p} = \frac{1}{A} [A_{1}W_{1} + A_{2}W_{2} + A_{3}W_{3} + A_{4}W_{4}]$$

where

 $A = A_1 + A_2 + A_3 + A_4$

The same interpolation method is used for the velocity gradients.

Nomenclature

Subroutine WIND (X,Z,HAM,KCK,WX,WZ,WY,WXX,WXZ,WZX,WZZ,WYX,WYZ)

(X,Z)	Position vector (users units)	[INPUT]								
HAM	Ratio of units (users units)									
КСК	CK Integer number for storing a new thunderstorm case. If KCK=1, the subroutine BUILD is called and a new thunderstorm data set is read in; otherwise KCK=2.									
WX.	Velocity in longitudinal direction	ж., Ж								
WZ	Velocity in vertical direction	[OUTPUT]								
WY	Velocity in lateral direction									
WXX,WXZ	Velocity gradient	· .								
WZX,WZZ	Velocity gradient	[OUTPUT]								
WYX,WYZ	Velocity gradient									

Listing of Subroutine WIND

	SUBROUTIN	E WIND(X,Z,	HAM, KCK, WX	, WZ, WY, WXX, W	XZ,WZX,WZZ	,WXX,WYZ)
	DIMENSION	DXX(2,2),D	XZ(2,2),DZ	X(2,2),UZZ(2	,2), DYX(2,	2),
-	SUY2(2,2)	•				
	COMMUN/II	/A(41,11,3)	,DX,DZ			
11	FJRMAT(//	, *** X-VAL	UE IN SUBR	OUTINE INTER	IS OUTSID	E FLOW ',
	S'REGIUN	X = 1, E13.6	,11)			
21	FORMAR(//	, *** Y-VAL	UE IN SUBR	OUTINE INTER	IS OUTSID	e flow !,
	S'REGIUN	Y = ', E13.6	,11)		14	
31	FJRMAT(2X	, ****PUINT	X = 1, E13.	6, ' Z = ', E1	3.6, 15 0	UTSIDE')
	IF CKCK . NE	.1) GU TU 1	00	>		
- 11	CALL BUIL	D		•	,÷	- 16
	KCK=2					

100	XP=X*HAM	
	ZP=Z*HAM	
	IF (XP. Lf. V. OR. 2P. LT. D.) GU FU 210
	JJ 101 I=2.41	
	$x_{1}=(I-1)*0x$	
	LE (XP.LE.X1) GU TO 102	
101	CJNFINUE	OPICINAL PAGE IS
	WRITE(6,11) XP	OF POOR OUALITY
102	[2=I-1	OF FOOL QUILLE
	00 103 J=2,11	
	21 = (J - 1) * UZ	
	IF(ZP.LE.Z1) GU TO 104	
103	CONTINUE	
	wRITE(6,21) ZP	and the second state of the se
104	JP=J-1	
	ALFA=(XP-(1P-1)*DX)/DX	
	BETA=(ZP-(JP-1)*DZ)/DZ	
	K=1	
105	VAL=(1.0-ALFA)*(1.0-BET/	A)*A(1P,JP,K)+BETA*(1.0-ALFA)*A(IP,JP
5	5+1,K)+ALFA*(1.0-BETA)*A	(IP+1,JP,K)+ALFA*BETA*A(IP+1,JP+1,K)
	1F(K-2) 106,107,108	
100	WX=VAL	
107	NZ= VAL	
	K=K+1	
	GD 10 105 B	
108	WY=VAL	
	UJ 208 I=1,2	
	DU 208 J=1,2	
	1F(1P.LQ.1.AND.I.EQ.1) (GU TO 201
	IF(1P.EQ.40.AND.I.EQ.2)	GU TO 202
	DXX(I,J) = 0.5/DX * (A(1P+1,	, JP+J-1,1)=A(IP+I=2, JP+J=1,1))
	DZX(1,J) = 0.5/DX * (A(1P+1, J))	, JP+J-1,2)-A(1P+I=2, JP+J=1,2))
	DXX(1, J) = 0.5/DX * (A(IP+I))	,JP+J=1,3)=A(IP+I=2,JP+J=1,3))
	GU TU 203	
201	DXX(1,J) = (A(2,JP+J-1,1))	-A(1, JP+J-1, 1))/DX
	DZX(1,J) = (A(2,JP+J-1,2))	-A(1,JP+J-1,2))/DX
	DIX(1, J) = (A(2, JP+J-1, 3))	-A(1,JP+J-1,3))/UX
000		
202	DXX(2,J)=(A(41,JP+J+1,1))	J-A(40,JP+J-1,1)]/JX
	$D_{A}(2, J) = (A(41, JP+J-1, 2))$	J=A(40,JP+J=1,2)J/DX
334	$\bigcup X (2, J) = (A(41, JP+J=1, 3))$	J=A(40,02+0=1,3))/0A
203	$\frac{1}{1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	CD 10 204
	IFLUESERSIUSANUSUSESS	$\begin{array}{c} \text{GJ IU } 2\text{US} \\ -1 10 \pm 1 10 \pm 1 \pm 2 10 \pm 1 \pm 2 10 \end{array}$
	D/2(1,0)=0.5/02+(A(1P+1-	-1,0270,1)-8(1241-1,0270-2,1))
	$\frac{\partial \omega \omega (\mathbf{I}_{1} \cup \mathbf{J}_{2} - \mathbf{U}_{2} \cup \mathbf{J}_{2} \cup \mathbf{U}_{2} - \mathbf{U}_{1} \cup \mathbf{U}_{2} - \mathbf{U}_{1} \cup \mathbf{U}_{2} \cup \mathbf{U}_{2} - \mathbf{U}_{1} \cup \mathbf{U}_{2} \cup \mathbf{U}_{2} - \mathbf{U}_{1} \cup \mathbf{U}_{2} \cup $	-1,05,1,2)=X(1021=1,0570=2,2)) =1,102,1,2)=X(1021=1,0570=2,2))
	- ロエムビエッジュージ。3706年(A(1941* - 二)、 ドローンの身	-110240101010417547-110540-61311
204	$03 \pm 0 = 200$ $0122(1 = 1) = (A(1)) \pm 1 = 1 = 2 = 1) = -1$	- A () P+T=1 1 1)) / 02
2 V Y	0.2.7(1-1) = (A(1721-1)/2) = (A(1721-1)/2)	-A(10+1+1-1-2))/00 -A(10+1+1-1-2))/00
	0 = (1 + 1) = (1 + 1 + 1) = (2 + 2)	$= \Delta(1) P + (=1, 1, 3)) / (1)$
	C) EU 208 CTETTT1/2/31	
	90 40 EVV	

205 DXZ(1,2)=(A(1P+1-1,11,1)-A(1P+1-1,10,1))/DZ DZZ(I,2)=(A(1P+I-1,11,2)-A(1P+1-1,10,2))/DZ Ui2(1,2)=(A(1P+I-1,11,3)-A(1P+I-1,10,3))/DZ208 CUNTINUE WXX=(1.0-ALFA)*(1.0-BEFA)*DXX(1,1)+BEFA*(1.0-ALFA)*DXX(1 *,2)+AUFA*(1.0-BETA)*DXX(2,1)+AUFA*BETA*DXX(2,2) $\forall XZ = (1.0 - ALFA) * (1.0 - BEFA) * DXZ(1,1) + BEFA*(1.0 - ALFA) * DXZ(1)$ *,2)+ALFA*(1.0-BETA)*DXZ(2.1)+ALFA*6@TA*DXZ(2.2) w4X=(1.0-ALFA)*(1.0-BETA)*DZX(1,1)+BETA*(1.0-ALFA)*DZX(1 *,2)+ALFA*(1.0-BETA)*DZX(2,1)+ALFA*BETA*DZX(2,2) WZZ=(1.0-ALFA)*(1.0-BEFA)*DZZ(1,1)+BETA*(1.0-ALFA)*DZZ(1 *,2)+ALFA*(1.0-BETA)*DZZ(2,1)+ALFA*BETA*DZZ(2,2) WYX=(1.0-ALFA)*(1.0-BEFA)*DYX(1,1)+BETA*(1.0-ALFA)*DYX(1 *,2)+ALFA*(1.0-BETA)*DYX(2,1)+ALFA*BETA*DYX(2,2) wrZ=(1.0-ALFA)*(1.0-BETA)*DYZ(1,1)+BETA*(1.0-ALFA)*DYZ(1 *,2)+ALEA*(1.0-BETA)*DYZ(2,1)+ALEA*BETA*DYZ(2,2) GO TO 215 210 WRITE(6,31) XP,ZP 215 RETURN END

Subroutine BUILD

The subroutine WIND is called by the subroutine BUILD which reads individual sets of wind speed data into storage. The thunderstorm cases are read in sequential order based on the numbering system utilized in this report; that is, Case 1 corresponding to Case A, Serial No. 0446 of Reference [2-1] is read in first and remains in storage until KCK in list statement of subroutine WIND is assigned the value 1. The subroutine WIND then calls the next thunderstorm case in numerical order.

In subroutine BUILD, the grid system for the wind field is shown in Figure 2C-4 where IT=41 and JT=11.

Figure 2C-4 Grid System of Wind Field 192

At point (I,J) the normal velocity $W_{\chi}(I,J)$ and vertical velocity $W_{\chi}(I,J)$ are stored as

 $A(I,J,1) = W_{x}(I,J); A(I,J,2) = W_{z}(I,J)$

A common statement is used to transfer the data A(I,J,K) to the subroutine WIND.

Listing of Subroutine BUILD

SUBRUUTINE BUILD

ORIGINAL PAGE IS OF POOR QUALITY

```
DIMENSION IB(41)
   CUMMUN/IT/A(41,11.3), DX, DZ
 1 FJRMAI(20X, HORIZONIAG VEGOCITY ',/,/)
 2 FJRMAT(1316.2)
 3 EDRMAT(4X,12,2X,2105.1)
                                  VELOCITY ' ,/,/)
 4 FURMAT(/,/,ZUK, VERTICAL
 5 FJRMAT(2F10.4, F5.1)
 o FJRMAT(5x, 'DX =', F8.2, 3X, 'DZ =', F8.2, 3X, 'MEAN VX =', F5.1)
  7 FJRMAT(3X, 'J/1', 2X, 21(13, 2X))
 8 FJRMAT(/,/,20X, 'LATERAL
                                VELOCITY',/,/J
   READ(5,5) DX, DZ, UMEAN
   WRITE(0,0) DX, DZ, UMEAN
   01 90 1=1,41
90 18(1)=1
    K=1
    WRITE(0,1)
100 NRILE(0,7) (IB(I), 1=1,41,2)
    00 105 J=1,11
    R \le AO(5,2) (A(I,J,K), I=1,41)
    LF (K.GE.2) GU TU 105
    UJ 101 1=1,41
    A(1,J,K) = A(1,J,K) + UMEAN
101 CONTINUE
105 CUNTINUE
    0J 102 J=1,11
    JKJ=12-J
102 WRITE(6,3) JKJ, (A(I,JKJ,K),1=1,41,2)
    K=K+1
    IF(K-3) 103,104,106
103 WKIIL(0,4)
    GD IU 100
104 WRITE(0,8)
    GJ TU 100
106 RETURN
    C NU
```

APPENDIX 3A

TABULATED STABLE AND NEUTRAL BOUNDARY LAYER DATA

This appendix contains the tabulated data interpolated from the extensive measurement of wind speeds under varying conditions of stability reported by Clarke and Hess [3-1].

The tabulated values are the longitudinal and lateral wind speeds $\hat{W}_{x}(\hat{z}) = \hat{W}_{x}/u_{\star}$ and $\hat{W}_{y}(\hat{z}) = W_{y}/u_{\star}$ for neutral and stable boundary layers for $\mu \ge 0$ where the dimensionless height $\hat{z} = zf/u_{\star}$. The data actually stored on computer cards and used with the computer lookup routine given in Appendix 3C is

$$\Delta \hat{W}_{x} = \hat{W}_{x}(\hat{z} = 0.15) - \hat{W}_{x}(\hat{z})$$

and

$$\Delta \hat{W}_{y} = \hat{W}_{y}(\hat{z}) - \hat{W}_{y}(\hat{z} = 0.15)$$

These data have been converted to \widehat{W}_{x} and \widehat{W}_{y} using the relationships

$$\hat{W}_{X}(\hat{z}) = \Delta \hat{W}_{X}(\hat{z} = 0.001) - \Delta \hat{W}_{X}(\hat{z}) + \hat{W}_{X}(\hat{z} = 0.001)$$

and

$$\hat{W}_{y}(\hat{z}) = \Delta \hat{W}_{y}(\hat{z}) - \Delta \hat{W}_{y}(\hat{z} = 0.001)$$

where

$$\hat{W}_{x}(\hat{z} = 0.001) = \kappa^{-1} [ln(0.001 \text{ Ro} + 1) + 0.01125 \mu]$$

To extend the tables to values of \hat{z} < 0.001, wind speeds can be computed from

$$\hat{W}_{\chi}(\hat{z}) = \frac{1}{\kappa} \{ \ln(\operatorname{Ro} \hat{z} + 1) + 4.5 \hat{z} \mu / \kappa \}; \mu \ge 0, 0 \le \hat{z} \le 0.001 \}$$

ORIGINAL PAGE IS OF POOR QUALITY

 $\hat{W}_{y}(\hat{z}) = 0$

and

The data are presented in a right-hand coordinate system with W_{χ} positive in the direction from left to right and W_{χ} positive into the plane of the paper.

Tabulated results are given for values of μ ranging from 0 to 200 in increments of $\Delta\mu$ = 10 listed across the top of the tables and for values of \hat{z} ranging from 0.001 to 0.15 listed in the vertical left-hand column.

From these tables the user can construct wind speed profiles for given values of μ , u_* and f. Note that $\hat{z} = zf/u_*$ and Ro = u_*/zf .

Table 3A-1(a) Longitudinal Wind Speed, \hat{W}_{x} , Ro =10⁷

	-											· · · · · · · · · · · · · · · · · · ·	
		u	10	20	30	40	געל געל	60	70	8U _	УU	100	
0.150		12.0	40.5	51.2	20.1	bU.1	63.4	00.1	00.8	71.5	73.8	15.0	
0.140		4,2, U	46.5	51.2	56.3	60.1	0J.4	on.1	00.0	71.5	73.0	75.0	
u.130		42.0	46.5	51.2	50.5	00,1	03.4	00.1	68.N	71.5	73.8	75.0	
u,120		42.0	40.5	51.2	50.3	60.1	03.4	66.1	00.0	71.5	73.8	75.8	
0.110		4,2.0	46.5	51.2	50.3	09.1	63.4	66.1	68.8	71.5	73,8	75.0	
0.100		42.0	46.5	51.2	50.3	00.1	03.4	00.1	08.8	71.5	73.0	75.5	
0.040		42.0	40.5	51.2	56,3	00.1	03.4	00.1		71.4	73.3	74.9	
v,ua0.	•	42.0	46.5	51,.2	50.3	ьV.1	n 3. 4	05.9	ob 2	70,3	72.0	73.5	
0,070		42.0	40.5	51.2	50.3	59.9	62.7	65.0	67.1	69.0	70.0	72.1	
0.000		41.8	46.4	51.0	50.1	59.2	61.4	63.4	05.5	07.6	69.2	70.7	
0.000		39.9	43.7	48.3	53.1	50.0	59.3	b 1.4	63.5	65.5	67.2	68.7	
0,040		37.9	41.6	45.9	50.0	54.0	50.9	59.0	60.9	62.7	64.0	65.2	
0.030		35.9	19.7	43.6	48.2	51.3	53.B	55.8	57.5	50.0	59.4	60.U	
0.020		53.7	37.1	41.5	45.0	40.3	46.5	40.0	47.1	47.2	48.3	50.9	
0. 010		29,1	11.5	31.8	35,8	30.2	35,.9	35.8 °	35.7	35.1	30.5	37.9	
0.005		25.7	27.0	20.1	29.2	29.5	29.5	29.1	29.8	29.9	30.4	31.2	
u, uut		23.0	65.5	23.6	23.9	24.1	24.4	24.7	25.0	25.3	25.0	25.d	
							ġ.					• •	
	÷	LUU	110	120	130	140	150	160	170	180	190	200	
0-150		75,8	77.3	78.6	79.5	80.4	91.2	81.5	81.8	82.1	82.4	82.7	
0140		75.8	77.3	78.6	79.4	80.2	d1.0	81.1	81.3	81.6	81.8	82.1	
J⊧.130		75.8	77.3	7 d . 4	79.1	79.0	dV.5	40.6	80.7	81.0	81.3	A1.5	
v.120		75.8	77,1	78.2	18.6	79.2	79.7	79.9	80.1	80.4	80.7	80.9	
110.00		15.0	16.)	77.7	78.0	78.6	79.3	79.4	79.5	79.7	79.9	80.2	
6.100	.*	15.5	76.4	77.1	77.4	78.0	78.8	78.8	78.9	78.9	79.1	79.4	
0.040		74.9	75.8	7.6 . 5	16.8	77.4	18.2	78.2	78.2	78.1	78.3	78.6	
ື່ລ້າງຂດ		73.5	14.5	75.4	15.9	16.4	77.1	77.1	77.2	77.1	77.2	77.3	
0.970	•	12.1	73,2	74.1	14.4	75.0	15.1	75.7	75.7	75.7	75.8	75.8	
0.000		70.7	71.9	72.5	72.6	13.2	74,1	73.9	73.8	73.9	74.0	74.2	
0.050		68.7	59.8	70.6	70.7	/1.3	12.1	71.9	71.6	71.4	71.2	71.1	
0.040		65.2	05.2	66.9	60.9	67.3	od.1	68.0	67.9	67.8	67.7	67.7	
0.030	•	60.0	60.9	61.5	61.2	61.0	62.4	62.6	62.9	63.1	63.3	63.5	
0.020		50.0	51.3	52.3	52.9	53.0	54.5	54.8	55.0	55.3	55.0	55.8	
0.010		37.9	34.9	39.8	40.5	41.1	41.7	42.0	42.3	42.6	42.9	43.1	
0.005		31.2	31.9	32.4	32.8	33.2	33.7	34.0	34.3	34,5	34.9	35.1	
0.001		25.9	26.1	26.4	20.7	27.0	27.2	27.5	27.8	28.1	28.4	28.7	

Table 3A-1(b) Lateral Wind Speed, \hat{W}_y , Ro =10⁷ ORIGINAL PAGE IS OF POOR QUALITY

. *	0	10	20	30	40	50	60	70	80	90	100	
0.150	-18.0	-20.4	-22.9	-25.0	-28.7	-32.0	-31.4	-30.7	-29.8	-28.9	-28.0	
0.140	-17.4	-19.6	-22.3	-24.9	-28.0	-31.2	-30.6	-29.8	-28.9	-27.9	-27.0	
0.130	-17.1	-19.4	-21.7	-24.2	-27.2	-30.4	-29.7	-28.9	-28.0	-27.0	-26.1	
0.120	-17.0	-19.1	-21.2	-23.4	-20.3	-29.5	-28.8	-28.1	-27.1	-26.1	-25.2	
0.110	-16.3	-18.4	-20.5	-22.0	-25.3	-28,3	-27.0	-20,7	-25.6	-24.0	-23.7	
0.100	-15.5	-17.8	-19.9	-21.8	-24.3	-27.2	-26.2	-25.2	-24.0	-23.0	-22.1	
0.090	-14.5	-17.1	-19.4	-20.9	-23.2	-25.9	-24.7	-23.5	-22.3	-21.3	-20.4	
0.080	-13-5	-15,.5	-17.4	-18.9	-20.9	-23.2	-22.3	-21.4	-20.4	-19,0	-18.8	
0.070	-12.1	-13.5	-15.0	-10.5	-18.0	-21.1	-20.3	-19.3	-18.0	-17.2	-16.5	
0.060	-10.4	-11.3	-12.4	-13.9	-16.4	-19.4	-18.4	-17.2	-15.2	-14.3	-13.9	
0.050	-8.7	-9.8	-10.9	-12.0	-14,2	-17.0	-15.9	-14.7	-13.3	-12.3	-11,5	
0.040	-7.0	-8.1	-9.2	-10.2	-1.2.1	-14,5	-13.3	-12.1	-10.9	-9,9	-9.0	
0.030	-5.3	-6.2	-7.2	- 6.4	-10.0	.=11,8	-10.0	-9,4	-8.2	-7.2	-6.3	
0.020	-3.7	-3.9	-4.4	-5.4	-7.1	-9.1	-7.9	-0.8	-5.8	-4.9	-4.0	
0.010	-1.8	-1.8	-2.0	-2.5	-3.0	-4.5	-4.1	-3,4	-2.9	-2.4	-1.8	
0.005	-0 . 8	-0.8	-0.9	-1.1	-1.0	-2.1	-1.8	-1.5	-1.3	-1.0	-0.8	
0.001	υ.υ	0.0	0.0	0.0	v.0	0.0	0.0	0.0	0.0	. 0 .∎0.	0.0	
	100	110	120	130	140	150	160	170	180	190	200	
0,150	-28.0	-26.8	-25.8	-25.2	-24.2	-23.0	-21.8	-20.5	-19,1	-17.2	-1.5.0	
0.150	-28.0	-26.8 -25.8	-25.8	-25.2 -24.2	-24.2 -23.3	-23.0 -22.2	-21.8 -21.1	-20.5 -19.8	-19,1 -18,4	-17.2	-15.0 -14.3	
0.150 0.140 0.130	-28.0 -27.0 -26.1	-26.8 -25.8 -24.8	-25.8 -24.7 -23.8	-25.2 -24.2 -23.3	-24.2 -23.3 -22.4	-23.0 -22.2 -21.4	-21.8 -21.1 -20.2	-20.5 -19.8 -19.0	-19,1 -18,4 -17,6	-17.2 -16.5 -15.7	-15.0 -14.3 -13.6	
0,150 0,140 0,130 0,120	-28.0 -27.0 -26.1 -25.2	-26.8 -25.8 -24.8 -23.9	-25.8 -24.7 -23.8 -22.9	-25.2 -24.2 -23.3 -22.4	-24.2 -23.3 -22.4 -21.6	-23.0 -22.2 -21.4 -20.5	-21.8 -21.1 -20.2 -19.3	-20.5 -19.8 -19.0 -18.0	-19,1 -18.4 -17.6 -15.6	-17.2 -16.5 -15.7 -14.8	-15.0 -14.3 -13.6 -12.8	
0,150 0,140 0,130 0,120 0,110	-28.0 -27.0 -26.1 -25.2 -23.7	-26.8 -25.8 -24.8 -23.9 -22.5	-25.8 -24.7 -23.8 -22.9 -21.5	-25.2 -24.2 -23.3 -22.4 -21.0	-24.2 -23.3 -22.4 -21.6 -20.0	-23.0 -22.2 -21.4 -20.5 -18.8	-21.8 -21.1 -20.2 -19.3 -17.9	-20.5 -19.8 -19.0 -18.0 -16.9	-19,1 -18.4 -17.6 -15.6	-17.2 -16.5 -15.7 -14.8 -13.8	-15.0 -14.3 -13.6 -12.8 -11.8	
0.150 0.140 0.130 0.120 0.110 0.110	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6	-24.2 -23.3 -22.4 -21.6 -20.0 -15.0	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3	-21.8 -21.1 -20.2 -19.3 -17.9 -16.6	-20.5 -19.8 -19.0 -18.0 -16.9 -15.6	-19.1 -18.4 -17.6 -16.6 -15.6 -14.6	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1	
0.150 0.140 0.130 0.120 0.110 0.110 0.090	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -16.1	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9	-21.8 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3	-20.5 -19.8 -19.0 -18.0 -15.5 -15.5	-19,1 -18.4 -17.6 -16.6 -15.6 -14.6 -13.8	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5	
0.150 0.140 0.130 0.120 0.110 0.100 0.090 0.080	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -18.1 -16.7	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.6	-21.8 -21.1 -20.2 -19.3 -17.9 -15.6 -15.3 -14.0	-20.5 -19.8 -19.0 -18.0 -16.9 -15.6 -14.7 -13.3	-19,1 -18,4 -17,6 -16,6 -15,6 -14,6 -13,8 -12,5	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8	
0.150 0.140 0.130 0.120 0.110 0.100 0.090 0.080 0.080	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -16.5	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -16.1 -16.7 -15.0	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3	-21.0 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7	-20.5 -19.8 -19.0 -18.0 -15.6 -15.6 -14.7 -13.3 -12.0	-19,1 -18.4 -17.6 -16.6 -15.6 -14.6 -13.8 -12.5 -11.3	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2 -10.1	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7	
0,150 0,140 0,130 0,120 0,110 0,100 0,090 0,080 0,080 0,070 0,060	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -18.5 -13.9	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -16.1 -16.7 -15.0 -13.0	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9	-21.8 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3	-20.5 -19.8 -19.0 -18.0 -15.6 -15.6 -14.7 -13.3 -12.0 -10.7	-19,1 -18.4 -17.6 -15.6 -15.6 -14.6 -13.8 -12.5 -11.3 -10.2	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2 -10.1 -8.9	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2	
0.150 0.140 0.130 0.120 0.110 0.100 0.090 0.080 0.080 0.070 0.060 0.050	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -18.8 -15.5 -13.9 -11.5	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5 -11.0	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2 -10.7	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -16.1 -16.7 -15.0 -13.0 -10.6	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5 -10.5	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9 -9.9	-21.0 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3 -9.7	-20.5 -19.8 -19.0 -18.0 -15.6 -15.6 -14.7 -13.3 -12.0 -10.7 -9.3	-19,1 -18.4 -17.6 -15.6 -15.6 -14.6 -13.8 -12.5 -11.3 -10.2 -8.6	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2 -10.1 -8.9 -7.3	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2 -5.6	
0,150 0,140 0,130 0,120 0,110 0,100 0,090 0,080 0,080 0,050 0,050 0,040	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -18.8 -15.5 -13.9 -11.5 -9.0	-26.8 -25.8 -24.8 -73.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5 -11.0 -8.4	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2 -10.7 -8.0	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -16.1 -16.7 -15.0 -13.0 -10.8 -5.1	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5 -10.5 -7.9	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9 -9.9 -7.7	-21.8 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3 -9.7 -7.8	-20.5 -19.8 -19.0 -18.0 -15.6 -15.6 -14.7 -13.3 -12.0 -10.7 -9.3 -7.6	-19,1 -18.4 -17.6 -15.6 -15.6 -14.6 -13.8 -12.5 -11.3 -10.2 -8.6 -7.0	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2 -10.1 -8.9 -7.3 -5.7	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2 -5.6 -4.0	
0.150 0.140 0.130 0.120 0.100 0.100 0.080 0.080 0.050 0.050 0.050 0.040 0.030	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -16.5 -13.9 -11.5 -9.0 -6.3	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5 -11.0 -8.4 -5.7	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2 -10.7 -8.0 -5.2	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -18.1 -16.7 -15.0 -13.0 -10.6 -5.1 -5.0	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5 -10.5 -7.9 -5.0	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9 -9.9 -7.7 -5.3	-21.0 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3 -9.7 -7.8 -5.0	-20.5 -19.8 -19.0 -18.0 -16.9 -15.6 -14.7 -13.3 -12.0 -10.7 -9.3 -7.6 -5.8	-19,1 -18.4 -17.6 -15.6 -15.6 -14.6 -13.8 -12.5 -11.3 -10.2 -8.6 -7.0 -5.5	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2 -10.1 -8.9 -7.3 -5.7 -4.2	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2 -5.6 -4.0 -2.4	
0,150 0,140 0,130 0,120 0,110 0,100 0,090 0,080 0,080 0,070 0,050 0,050 0,040 0,030 0,020	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -18.8 -13.9 -11.5 -9.0 -6.3 -4.0	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5 -11.0 -8.4 -5.7 -3.1	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2 -10.7 -8.0 -5.2 -2.7	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -18.1 -16.7 -15.0 -13.0 -13.0 -10.6 -5.1 -5.0 -3.1	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5 -10.5 -7.9 -5.0 -3.1	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9 -9.9 -7.7 -5.3 -3.0	-21.8 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3 -9.7 -7.8 -5.0 -3.5	-20.5 -19.8 -19.0 -18.0 -15.6 -15.6 -14.7 -13.3 -12.0 -10.7 -9.3 -7.6 -5.8 -3.6	-19,1 -18,4 -17,6 -15,6 -15,6 -14,6 -13,8 -12,5 -11,3 -10,2 -8,6 -7,0 -5,5 -3,6	-17.2 -16.5 -15.7 -14.8 -13.6 -13.6 -12.3 -11.2 -10.1 -8.9 -7.3 -5.7 -4.2 -2.8	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2 -5.6 -4.0 -2.4 -1.4	
0.150 0.140 0.130 0.120 0.120 0.100 0.090 0.080 0.080 0.050 0.050 0.050 0.050 0.040 0.030 0.020 0.010	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -18.8 -18.8 -13.9 -11.5 -9.0 -0.3 -4.0 -1.8	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5 -11.0 -8.4 -5.7 -3.1 -1.3	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2 -10.7 -8.0 -5.2 -2.7 +1.0	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -18.1 -16.7 -15.0 -13.0 -13.0 -10.6 -5.1 -5.0 -3.1 -1.4	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5 -10.5 -7.9 -5.0 -3.1 -1.4	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9 -9.9 -7.7 -5.3 -3.0 -1.2	-21.0 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3 -9.7 -7.8 -5.0 -3.5 -1.0	-20.5 -19.8 -19.0 -18.0 -15.6 -14.7 -13.3 -12.0 -10.7 -9.3 -7.6 -5.8 -3.8 -1.8	-19,1 -18,4 -17,6 -15,6 -14,6 -13,8 -12,5 -11,3 -10,2 -8,6 -7,0 -5,5 -3,6 -1,9	-17.2 -16.5 -15.7 -14.8 -13.8 -13.0 -12.3 -11.2 -10.1 -8.9 -7.3 -5.7 -4.2 -2.8 -1.4	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2 -5.6 -4.0 -2.4 -1.4 -0.6	
0,150 0,140 0,130 0,120 0,110 0,100 0,090 0,080 0,080 0,070 0,050 0,050 0,050 0,040 0,050 0,040 0,030 0,020 0,010	-28.0 -27.0 -26.1 -25.2 -23.7 -22.1 -20.4 -18.8 -18.8 -18.5 -13.9 -11.5 -9.0 -0.3 -1.8 -0.8	-26.8 -25.8 -24.8 -23.9 -22.5 -21.0 -19.4 -17.8 -15.8 -13.5 -11.0 -8.4 -5.7 -3.1 -1.3 -0.6	-25.8 -24.7 -23.8 -22.9 -21.5 -20.0 -18.5 -17.1 -15.3 -13.2 -13.2 -10.7 -8.0 -5.2 -2.7 -1.0 -0.5	-25.2 -24.2 -23.3 -22.4 -21.0 -19.6 -16.1 -16.7 -15.0 -13.0 -13.0 -10.6 -5.1 -5.0 -3.1 -1.4 -0.6	-24.2 -23.3 -22.4 -21.6 -20.0 -18.0 -17.1 -15.8 -14.2 -12.5 -10.5 -7.9 -5.0 -3.1 -1.4 -0.0	-23.0 -22.2 -21.4 -20.5 -18.8 -17.3 -15.9 -14.0 -13.3 -11.9 -9.9 -7.7 -5.3 -3.0 -1.2 -0.5	-21.8 -21.1 -20.2 -19.3 -17.9 -16.6 -15.3 -14.0 -12.7 -11.3 -9.7 -7.8 -5.0 -3.5 -1.0 -0.7	-20.5 -19.8 -19.0 -18.0 -15.6 -15.6 -14.7 -13.3 -12.0 -10.7 -9.3 -7.6 -5.8 -3.6 -1.8 -0.8	-19,1 -18,4 -17,6 -15,6 -15,6 -14,6 -13,8 -12,5 -11,3 -10,2 -8,6 -7,0 -5,5 -3,6 -1,9 -0,6	-17.2 -16.5 -15.7 -14.8 -13.6 -13.6 -12.3 -11.2 -10.1 -8.9 -7.3 -5.7 -4.2 -2.8 -1.4 -0.6	-15.0 -14.3 -13.6 -12.8 -11.8 -11.1 -10.5 -9.8 -8.7 -7.2 -5.6 -4.0 -2.4 -1.4 -0.6 -0.3	

197

Table 3A-2(a) Longitudinal Wind Speed, \hat{W}_{x} , Ro =10⁶

	0	10	20	30	40	50	60	70	ខប	90	100
0.150	36.3	40.7	45.4	50.5	54.4	57.7	60.4	03.0	65.7	68.0	70.1
U.140	36.3	40.7	45.4	50.5	54.4	57.7	60.4	03.0	65.7	69.0	70.1
0.130	36.3	40.7	45.4	50.5	54.4	57.7	60.4	63.0	65.7	68.0	70.1
0,120	36.3	40.7	45.4	50.5	54.4	57.7	60,4	63.U	65.7	68.0	70.1
0.110	30.3	40.7	45.4	50.5	54.4	51.7	bŨ.4	63.V	65.7	68.0	70.1
0,100	36.3	40.7	45.4	50.5	54.4	57.7	0.0.4	0.60	65.7	67.9	69.8
0.090	36.3	40.7	45.4	50.5	54.4	57.7	60.3	63,0	65.7	67.6	69.1
0.080	36.3	40.7	45.4	50.5	54.4	57.7	60.1	62.5	64.5	66.2	67.7
u.070	36.3	40.7	45.4	50.5	54.1	57.0	59.2	61.4	63.2	64.9	66,3
0.000	36.1	40.6	45.3	50.3	53.5	55.7	57.7	59.7	61.8	63.5	65.0
0.050	34.1	38,2	42.5	47.4	50.8	53.6	55.0	57,7	59.8	61.5	62.9
0.040	32.1	36.0	40.1	44.8	48.3	51,1	53.2	55.2	56.9	58.3	59.4
0.030	30.1	34.0	38.0	42.5	45.5	48.1	50.0	51.7	52.8	53.6	54.3
0.020	20.1	32.0	35.7	39.2	40.5	40.7	41.0	41.3	41.4	42.5	44.2
0.010	23.3	25.8	28.1	30,0	30.5	\$0.2	30.1	0.0E	29.9	30.8	32.2
0.005	20.0	21.2	22.4	23.4	23.8	23.8	23.9	24.0	24.1	24.7	25.5
1 ² *		18 - L		•				÷ .			
•					· · ·						
	100	110	120	130	140	150	160	170	180	190	200
0-120	100	110 71.6	120 72.8	130 73.7	140 74.0	150 /5.5	160 75.8	170 76.1	180 76.3	190 76.6	200
U.150 U.140	100 /0.1 70.1	110 71.6 71.6	120 72.8 72.8	130 73.7 73.6	140 74.0 74.4	150 75.5 75.2	160 75.8 75.3	170 76.1 75.5	180 76.3 75.8	190 76.6 76.1	200 76.9 76.4
0.150 0.140 0.130	100 /0.1 70.1 70.1	110 71.6 71.6 71.5	120 72.8 72.8 72.8	130 73.7 73.6 73.3	140 74.0 74.4 74.0	150 15.5 75.2 74.7	160 75.8 75.3 74.8	170 76.1 75.5 74.9	180 76.3 75.8 75.2	190 76.5 76.1 75.5	200 76.9 76.4 75.8
U.150 U.140 U.130 U.120	100 /0.1 70.1 70.1 70.1	110 71.6 71.6 71.5 71.4	120 72.8 72.8 72.7 72.4	130 73.7 73.6 73.3 72.9	140 74.0 74.4 74.0 73.4	150 15.5 75.2 74.7 74.0	160 75.8 75.3 74.8 74.1	170 76.1 75.5 74.9 74.3	180 76.3 75.8 75.2 74.6	190 76.6 76.1 75.5 74.9	200 76.9 76.4 75.8 75.2
0.150 0.140 0.130 0.120 0.110	100 /0.1 70.1 70.1 70.1	110 71.6 71.6 71.5 71.4 71.1	120 72.8 72.8 72.7 72.4 71.9	130 73.7 73.6 73.3 72.9 12.2	140 74.0 74.4 74.0 73.4 72.5	150 75.2 74.7 74.0 73.5	160 75.8 75.3 74.8 74.1 73.6	170 76.1 75.5 74.9 74.3 73.8	180 76.3 75.8 75.2 74.6 73.9	190 76.6 76.1 75.5 74.9 74.2	200 76.9 76.4 75.8 75.2 74.4
0.150 0.140 0.130 0.120 0.110 0.130	100 /0.1 70.1 70.1 70.1 70.1 69.8	110 71.6 71.6 71.5 71.4 71.1	120 72.8 72.8 72.7 72.4 71.9 71.4	130 73.7 73.6 73.3 72.9 72.2 71.0	140 74.0 74.4 74.0 73.4 72.8 72.2	150 75.2 74.7 74.0 73.5 73.0	160 75.8 75.3 74.8 74.1 73.6 73.1	170 76.1 75.5 74.9 74.3 73.8 73.1	180 76.3 75.8 75.2 74.6 73.9 73.2	190 76.6 76.1 75.5 74.9 74.2 73.4	200 76.9 76.4 75.8 75.2 74.4 73.7
U.150 U.140 U.130 U.120 U.120 U.110 U.130 U.130	100 /0.1 70.1 70.1 70.1 70.1 69.8	110 71.6 71.6 71.5 71.4 71.1 70.7	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7	130 73.7 73.6 73.3 72.9 72.2 71.0	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7	150 15.5 75.2 74.7 74.0 73.5 73.0 72.4	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0	200 76.9 76.4 75.8 75.2 74.4 73.7 72.9
0.150 0.140 0.130 0.120 0.110 0.130 0.130 0.090	100 /0,1 70,1 70,1 70,1 70,1 69,8 09,1 67,7	110 71.6 71.6 71.5 71.4 71.1 70.7 70.0	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7	150 75.2 74.7 74.0 73.5 73.0 72.4 71.3	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4	200 76.9 75.4 75.2 74.4 73.7 72.9 71.5
U.150 U.140 U.130 U.120 U.120 U.110 U.130 U.130 U.U30 U.U30 U.U30	100 /0.1 70.1 70.1 70.1 70.1 69.8 09.1 07.7	110 71.6 71.6 71.5 71.4 71.1 70.7 70.0 08.8	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7 09.2	150 15.5 75.2 74.7 74.0 73.5 73.0 72.4 71.3 59.9	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4 09.9	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 70.0	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0	200 76.9 75.8 75.2 74.4 73.7 72.8 71.5 70.0
0.150 0.140 0.130 0.120 0.110 0.130 0.130 0.130 0.090 0.090 0.070 0.070	100 /0,1 70,1 70,1 70,1 69,8 09,1 67,7 66,3 05,0	110 71.6 71.5 71.4 71.1 70.7 70.0 08.8 .0/.5 05.0	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 68.3 66.7	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 68.9	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7 09.2 07.5	150 75.2 74.7 74.0 73.5 73.0 72.4 71.3 59.9 58.4	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4 09.9 68.1	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 71.4 70.0 68.1	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0 68.3	200 76.9 75.4 75.2 74.4 73.7 72.8 71.5 70.0 68.4
U.150 U.140 U.130 U.120 U.120 U.110 U.130 U.130 U.130 U.130 U.130 U.U30 U.U30 U.U30 U.U50	100 /0.1 70.1 70.1 70.1 69.8 09.1 67.7 66.3 05.0 62.9	110 71.6 71.5 71.4 71.1 70.7 70.0 68.8 .07.5 00.0 04.1	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 64.3 66.7 64.9	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 68.5 65.0	140 74.0 74.4 74.0 73.4 72.8 72.8 72.2 71.7 70.7 09.2 07.5 05.0	150 75.2 74.7 74.0 73.5 73.0 72.4 71.3 05.9 08.4 06.4	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2 00.1	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4 69.9 68.1 65.9	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 70.0 68.1 65.6	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0 68.3 65.5	200 76.9 75.8 75.2 74.4 73.7 72.8 71.5 70.0 68.4 65.4
0.150 0.140 0.130 0.120 0.110 0.130 0.130 0.130 0.030 0.030 0.050 0.059	100 /0,1 70,1 70,1 70,1 69,8 09,1 67,7 66,3 05,0 62,9 59,4	110 71.6 71.5 71.4 71.1 70.7 70.0 08.8 0.7.5 00.0 04.1 00.5	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 64.3 65.7 64.9 61.2	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 65.0 01.1	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7 09.2 07.5 07.5 05.0 01.0	150 15.5 75.2 74.7 74.0 73.5 73.0 72.4 71.3 05.9 04.4 05.4	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2 06.1 02.3	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4 69.9 68.1 65.9 62.2	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 71.4 70.0 68.1 65.6 62.0	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0 68.3 65.5 62.0	200 76.9 75.4 75.2 74.4 73.7 72.8 71.5 70.0 68.4 65.4 61.9
U.150 U.140 U.130 U.120 U.120 U.130 U.130 U.U30 U.U30	100 /0.1 70.1 70.1 70.1 69.8 09.1 67.7 66.3 05.0 62.9 59.4 54.3	110 71.6 71.5 71.4 71.1 70.0 08.8 07.5 08.0 04.1 00.5 55.2	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 64.3 65.7 64.9 61.2 55.7	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 65.0 65.0 01.1 55.5	140 74.0 74.4 74.0 73.4 72.8 72.8 72.2 71.7 70.7 09.2 07.5 05.0 01.0 55.9	150 75.2 74.7 74.0 73.5 73.0 72.4 71.3 05.9 04.4 05.4 50.7	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2 00.1 02.3 50.9	170 76.1 75.5 74.9 73.8 73.1 72.4 71.4 69.9 68.1 65.9 62.2 57.1	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 70.0 68.1 65.6 62.0 57.3	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0 68.3 65.5 62.0 57.0	200 76.9 75.8 75.2 74.4 73.7 72.8 71.5 70.0 68.4 65.4 61.9 57.8
0.150 0.140 0.130 0.120 0.110 0.130 0.130 0.130 0.040 0.050 0.050 0.059 0.059 0.059 0.059	100 /0,1 70,1 70,1 70,1 69,8 09,1 67,7 66,3 05,0 62,9 59,4 54,3 44,2	110 71.6 71.5 71.4 71.1 70.7 70.0 08.8 0.7.5 0.0 04.1 00.5 55.2 45.5	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 64.3 65.7 64.9 61.2 55.7 46.6	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 65.0 01.1 55.5 47.1	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7 09.2 07.5 07.5 07.5 05.0 01.0 55.9 47.9	150 15.5 75.2 74.7 74.0 73.5 73.0 72.4 71.3 05.9 08.4 05.4 05.4 05.4 50.7 46.7	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2 06.1 02.3 56.9 49.0	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4 69.9 68.1 65.9 62.2 57.1 49.3	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 71.4 70.0 68.1 65.6 62.0 57.3 49.5	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0 68.3 65.5 62.0 57.5 49.8	200 76.9 75.4 75.2 74.4 73.7 72.8 71.5 70.0 68.4 65.4 61.9 57.8 50.1
U.150 U.140 U.130 U.120 U.120 U.130 U.130 U.U30 U.U30 U.U40 U.U30 U.U30 U.U30 U.U30	100 /0,1 70,1 70,1 70,1 69,8 09,1 67,7 66,3 05,0 62,9 59,4 54,3 44,2 32,2	110 71.6 71.5 71.4 71.1 70.0 08.4 07.5 00.0 04.1 60.5 55.2 45.5 33.2	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 64.9 61.2 55.7 46.6 34.1	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 65.0 01.1 55.5 47.1 34.7	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7 09.2 07.5 05.0 01.0 55.9 47.9 35.3	150 /5.5 75.2 74.7 74.0 73.5 73.0 72.4 71.3 05.9 08.4 05.4 50.7 40.7 36.0	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2 06.1 02.3 50.9 49.0 30.3	170 76.1 75.5 74.9 73.8 73.1 72.4 71.4 89.9 88.1 85.9 62.2 57.1 49.3 36.5	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 70.0 68.1 65.6 62.0 57.3 49.5 36.8	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 70.0 68.3 65.5 62.0 57.0 49.8 37.1	200 76.9 76.4 75.8 75.2 74.4 73.7 72.8 71.5 70.0 68.4 65.4 61.9 57.8 50.1 37.4
0.150 0.140 0.130 0.120 0.110 0.130 0.130 0.130 0.040 0.040 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	100 /0,1 70,1 70,1 70,1 69,8 09,1 67,7 66,3 05,0 62,9 59,4 54,3 44,2 32,2 25,5	110 71.6 71.5 71.4 71.1 70.7 70.0 68.8 67.5 66.0 64.1 60.5 55.2 45.5 33.2 20.1	120 72.8 72.8 72.7 72.4 71.9 71.4 70.7 59.7 64.3 65.7 64.9 61.2 55.7 46.6 34.1 25.6	130 73.7 73.6 73.3 72.9 72.2 71.0 71.1 70.1 68.7 65.0 01.1 55.5 47.1 34.7 27.0	140 74.0 74.4 74.0 73.4 72.8 72.2 71.7 70.7 09.2 07.5 07.5 05.0 01.0 01.0 55.9 47.9 35.3 27.5	150 15.5 75.2 74.7 74.0 73.5 73.0 72.4 71.3 05.9 08.4 05.4 05.4 05.4 05.4 05.4 05.7 46.7 36.0 27.9	160 75.8 75.3 74.8 74.1 73.6 73.1 72.4 71.4 09.9 68.2 06.1 02.3 56.9 49.0 30.3 28.2	170 76.1 75.5 74.9 74.3 73.8 73.1 72.4 71.4 69.9 68.1 65.9 62.2 57.1 49.3 36.5 28.5	180 76.3 75.8 75.2 74.6 73.9 73.2 72.4 71.4 71.4 71.4 70.0 68.1 65.6 62.0 57.3 49.5 36.8 28.8	190 76.6 76.1 75.5 74.9 74.2 73.4 72.0 71.4 72.0 71.4 70.0 68.3 65.5 62.0 57.5 49.8 37.1 29.1	200 76.9 75.4 75.2 74.4 73.7 72.8 71.5 70.0 68.4 65.4 61.9 57.8 50.1 37.4 29.3

ORIGINAL PAGE IS

200

Table 3A-2(b) Lateral Wind Speed, \hat{W}_y , Ro =10⁶

100 30 40 50 ь0 70 чÜ 90 0 10 20 -18.0 -20.4 -22.9 -25.6 -28.7 -32.0 -31.4 -30.7 -29.8 -28.9 -28.0 0.150 -17.4 -19.8 -22.3 -24.9 -28.0 -31.2 -30.6 -29.8 -28.9 -27.9 -27.0 0.140 -17.1 -19.4 -21.7 -24.2 -27.2 -30.4 -29.7 -28.9 -28.0 -27.0 -26.1 0.130 0.120 -17.0 -19.1 -21.2 -23.4 -20.3 -29.5 -28.8 -26.1 -27.1 -20.1 -25.2 -10.3 -18.4 -20.5 -22.6 -25.3 -28.3 -27.0 -20.7 -25.6 -24.6 -23.7 0,110 0.100 -15.5 -17.8 -19.9 -21.8 -24.3 -27.2 -26.2 -25.2 -24.0 -23.0 -22.1 -14.5 -17.1 -19.4 -20.9 -23.2 -25.9 -24.7 -23.5 -22.3 -21.3 -20.4 0.090 -13.5 -15.5 -17.4 -18.9 -20.9 -23.2 -22.3 -21.4 -20.4 -19.6 -18.8 0.000 -12.1 -13.5 -15.0 -10.5 -18.0 -21.1 -20.3 -19.3 -18.0 -17.2 -16.5 0.010 -10.4 -11.3 -12.4 -13.9 -16.4 -19.4 -18.4 -17.2 -15.2 -14.3 -13.9 0,060 -8.7 -9.8 -10.9 -12.0 -14.2 -17.0 -15.9 -14.7 -13.3 -12.3 -11.5 0.050 0.040 -7.0 -8.1 -9.2 -10.2 -12.1 -14.5 -13.3 -12.1 -10.9 -9.9 -9.0 -5.3 -6.2 -7.2 -8.4 -10.0 -11.8 -10.0 -9.4 -6.2 -7.2 -6.3 0.030 0.020 -4.4 -5.4 -7.1 -9.1 -7.9 -6.8 -5.8 -4.9 -4.0 -3.7 -3.4 -4.1 -3.4 0.010 -2.0 -2.5 -3.0 -4.5 -2.9 -2.4 -1.8 -1.8 -1.8 0.005 -0.8 -0.8 -0.9 -1.1 -1.0 -2.1 -1.8 -1.5 -1.3 -1.0 -0.8

> 170 180 190 100 130 140 1.50 160 110 120

0.150	-28.0	-26.8	-25.8	-25.2	-24.2	-23.0	-21.8	-20.5	-19.1	-17.2	-15.0
0.140	-27.0	-25.8	-24.7	-24.2	-23.3	-22.2	-21.1	-19.8	-18.4	-16.5	-14.3
U.130	-20.1	-24.8	-23.8	-23.3	-22.4	-21.4	-20.2	-19.0	-17.6	-15.7	-13.6
0.120	-25.2	-23.9	-22.9	-22.4	-21.0	-20.5	-19.3	-18.0	-16.6	-14.8	-12.8
0.110	-23.7	-22.5	-21.5	-21.0	-20.0	-18.8	-17.9	-16.9	-15.6	-13.8	-11.8
0,100	-22.1	-21.0	-20.0	-19.6	-18.0	-17.3	-16.0	-15.8	-14.6	-13.0	-11,1
0.090	-20.4	-19,4	-18.5	-18.1	-17.1	-15.9	-15.3	-14.7	-13.8	-12.3	-10.5
0.040	-18.8	-17.8	-17.1	-10.7	-15.8	-14.6	-14.0	-13.3	-12.5	-11.2	-9.8
0.070	-10.5	-15.8	-15.3	-15.0	-14,2	-13,3	-12.7	-12.0	-11.3	-10.1	-8.7
0.000	-13.9	-13.5	-13.2	-13.0	-12.5	-11.9	-11.3	-10.7	-10,2	-8,9	-7.2
0.050	-11.5	-11.0	-10.7	-10.5	-10.5	-9.9	-9.7	-9.3	-8.6	-7.5	-5.6
0.040	-9.0	-8.4	-8.0	-8.1	-7.,9	-7.7	-7.8	-7.6	-7.0	-5.7	-4.0
0.030	-6.3	-5.7	-5.2	-5.0	-5.0	-5.3	-5.0	-5.6	-5,5	-4.2	-2.4
0.020	-4.0	-,3,1	-2.7	-3.1	-3.1	-3.0	-3.5	-3.8	-3.8	-2.8	-1.4
0.010	-1.8	-1.3	-1.0	-1.4	-1.4	-1.2	-1.0	-1.8	-1.9	-1.4	='0 . b
0.005	-0.8	-0.ó	-0.5		÷0,6	-0.5	-0.7	-0.8	-0.8	-0.6	-0.3
0.001	0.0	0.0	0.0	υ.ΰ	0.0	0.0	υ_υ	0.0	0.0	0.0	0.0
Table 3A-3(a) Longitudinal Wind Speed, \hat{W}_{x} , Ro =10⁵

	0	10	20	30	40	50	60	70	80	90	100
0.150	30.5	35.0	39.7	44.8	46.0	51.9	54.6	57.3	60.0	62.2	64.3
U.14U	30.5	35.0	39.7	44.8	48.0	51.9	54.6	57.3	60.0	02.2	64.3
0,130	30.5	35.0	39.7	44.8	46.6	51.9	54.6	57.3	60.0	62.2	64.3
0.120	30.5	35.0	39.7	44.0	48.0	51.9	54.0	57.3	60.0	62.2	64.3
U.110	10.5	35.0	39.7	44.8	46.0	51.9	54.0	57.3	60.0	62.2	64.3
0.100	30.5	35.0	39,7	44,8	48.6	51,9	54.6	57.3	60.0	62.1	64.0
0.090	30.5	35.0	39.7	44.8	48.0	51.9	54.6	57.3	59,9	61.8	63.4
0.080	30.5	35.0	39.7	44.8	48.0	51.9	54.4	56.7	58.8	60.5	62.0
0.070	30.5	35.0	39.7	44.6	48.4	51.2	53,5	55.6	57.5	59,1	60.6
0.000	30.4	34.8	39.5	44.0	47.7	49.9	51.9	54.0	5.6.0	57.7	59.2
0.050	28.4	32.4	36.8	41.0	45.1	47.8	49.9	51.9	54.0	55.7	57.2
0.040	20.4	30.2	34.4	39.1	42.5	45.4	47.5	49.4	51.2	52.5	53.6
0.030	24.4	2e.2	32.3	30.7	39.8	42.3	44.3	45.9	47.0	47.9	48.5
0,020	22.5	20.2	30.0	33.4	34.7	34.9	3,5.3	35.5	35.6	36.8	38.5
0.010	17.0	20.0	22.3	24.3	24.7	24.4	24.3	24.2	24.2	25.0	26.4
0.005	14.2	1=.4	16.6	17.7	16.0	18.0	18.1	18.3	16.4	18.9	19.7
0.001	11.5	11_8	12.1	12.4	12.0	12,9	13.2	13,5	13.8	14.9	14.3
		<u></u>									•

100	110	120	130	140	150	160	170	180	190	200
64.3	65.8	67.1	68.0	60.9	69.7	70.0	70.3	70.6	70.9	71.1
64.3	65,8	67.1	67.9	68.7	69.5	69.6	69.8	70.0	70.3	70.6
54.3	05.7	66.9	67.0	68.3	69.0	69.0	69.2	69.5	69.7	70.0
64.3	65.6	65.6	67.1	07.0	68.2	68.4	68.6	68.9	69.1	69.4
04.3	65.4	66.2	66.5	67.0	67.8	67.9	68.0	68.2	68.4	68.7
64.0	64.9	65.6	65.9	60.5	67.2	67.3	67.4	67.4	07.6	67.9
03.4	64,3	65.0	65.3	65.7	66.7	60.7	66. 7	65.6	66.U	67.1
62.0	63.1	63.9	64.3	64.9	05,5	05.0	65.6	b5.6	65.7	65,.7
60,6	61.7	62.6	62.9	63.5	64.2	64.2	64.2	64.2	64.2	64.3
59,2	.60.2	61.0	b1.1	61.7	62.0	62.4	62.3	62.4	62.5	62.7
57.2	58.3	59.1	59.2	59.8	60.6	60.4	60.1	59.9	59.7	59.0
53.6	54.7	55.4	55.3	55.8	50.0	50.5	56.4	56.3	50.2	56.2
46.5	49.4	50.0	49.7	50.1	50,9	51.1	51.3	51.6	51.8	52.0
3,8,.5	34.8	40.0	41.4	42.1	41.0	43.2	43.5	43.8	44.0	44.3
26.4	27.4	28.3	28.9	29.0	30.2	30.5	30,8	311	31.4	31.0
19.7	20.3	20.8	21.3	21.7	22.2	22.5	22.7	23.0	23.3	23.6
14.3	14.0	14.9	15.2	15.5	15.7	16.0	16.3	16.6	16,9	17.1
	100 64.3 64.5 65.5 65.5 65.5 6	100 110 b4.3 65.8 b4.3 65.7 b4.3 65.7 b4.3 65.4 b4.0 b4.9 b3.4 b4.3 b2.0 63.1 b0.6 61.7 b9.2 60.2 b7.2 58.3 b3.4 39.5 38.5 39.8 26.4 27.4 19.7 20.3 14.3 14.0	100 110 120 b4.3 65.8 67.1 b4.3 65.7 66.9 b4.3 65.6 66.6 o4.3 65.4 66.2 b4.0 b4.9 65.6 o3.4 64.3 65.0 b2.0 63.1 63.9 b0.6 61.7 62.6 59.2 60.2 61.0 57.2 58.3 59.1 53.6 54.7 55.4 48.5 49.4 50.0 38.5 34.8 40.8 26.4 27.4 28.3 19.7 20.3 20.8 14.3 14.9 14.9	100 110 120 130 64.3 65.8 67.1 68.0 64.3 65.8 67.1 67.9 64.3 65.7 66.9 67.5 64.3 65.6 66.6 67.1 64.3 65.6 66.2 66.5 64.3 65.4 66.2 66.5 54.0 54.9 65.6 5.9 53.4 64.3 65.0 65.3 60.6 61.7 62.6 62.9 59.2 60.2 61.0 61.1 57.2 58.3 59.1 59.2 53.6 54.7 55.4 55.3 $4b.5$ 49.4 50.0 49.7 38.5 34.8 40.8 41.4 26.4 27.4 28.3 28.9 19.7 20.3 20.8 21.3 14.3 14.6 14.9 15.2	100 110 120 130 140 64.3 65.8 67.1 68.0 68.9 64.3 65.8 67.1 67.9 68.7 64.3 65.7 66.9 67.6 68.3 64.3 65.6 66.6 67.1 67.0 64.3 65.6 66.2 66.5 67.0 64.3 65.4 66.2 66.5 67.0 64.3 65.4 66.2 66.5 67.0 64.0 64.9 65.6 65.9 65.9 63.4 64.3 65.0 65.3 65.9 63.4 64.3 64.3 64.9 60.6 61.7 62.6 62.9 63.5 59.2 60.2 61.0 61.1 61.7 57.2 58.3 59.1 59.2 59.8 53.6 54.7 55.4 55.3 55.8 48.5 49.4 50.0 49.7 50.1 38.5 34.8 40.8 41.4 42.1 26.4 27.4 28.3 28.9 29.6 19.7 20.3 20.8 21.3 21.7 14.3 14.6 14.9 15.2 15.5	100 110 120 130 140 150 $b4.3$ 65.8 67.1 68.0 68.9 69.7 $b4.3$ 65.8 67.1 67.9 68.7 $b9.5$ $b4.3$ 65.7 66.9 $67.b$ $b8.3$ 69.0 64.3 65.7 66.9 $67.b$ $b8.3$ 69.0 64.3 65.6 66.6 67.1 $b7.c$ $b8.2$ $o4.3$ 65.4 66.2 66.5 67.0 $c7.8$ $b4.0$ $b4.9$ 65.6 65.9 $b5.5$ $b7.2$ $b3.4$ 64.3 65.0 65.3 $b5.7$ $b6.7$ $b2.0$ $a3.1$ 63.9 64.3 $b4.7$ $b5.5$ $b0.6$ 61.7 62.6 62.9 $b3.5$ $b4.2$ 59.2 60.2 61.0 $b1.1$ 61.7 62.6 53.6 54.7 55.4 55.3 55.8 56.6 48.5 49.4 50.0 49.7 50.1 50.9 38.5 39.8 40.8 41.4 42.1 43.0 26.4 27.4 28.3 28.9 29.6 30.2 19.7 20.3 20.8 21.3 21.7 22.2 14.3 14.6 14.9 15.2 15.5 15.7	100 110 120 130 140 150 160 64.3 65.8 67.1 68.0 68.9 69.7 70.0 64.3 65.8 67.1 67.9 68.7 69.5 59.6 64.3 65.7 66.9 67.6 68.3 69.0 59.0 64.3 65.6 66.6 67.1 67.9 68.2 68.4 04.3 65.6 66.2 66.5 67.0 67.8 67.9 64.3 65.4 66.2 66.5 67.0 67.8 67.9 64.3 65.4 66.2 66.5 67.0 67.8 67.9 64.3 65.4 66.2 66.5 67.0 67.8 67.9 64.3 65.4 65.6 65.9 60.5 67.2 67.3 63.4 64.3 65.0 65.3 65.7 $b6.7$ $b6.7$ 62.0 63.1 63.9 64.3 64.9 65.5 55.6 60.6 61.7 62.6 62.9 63.5 64.2 64.2 59.2 60.2 61.0 01.1 61.7 62.0 62.4 57.2 58.3 59.1 59.2 59.8 50.6 56.5 48.5 49.4 50.0 49.7 50.1 50.9 51.1 38.5 34.8 40.8 41.4 42.1 43.0 43.2 26.4 27.4 28.3 28.9 29.6 30.2 30.5 </td <td>100$110$$120$$130$$140$$150$$160$$170$$b4.3$$65.8$$67.1$$68.0$$6b.9$$69.7$$70.0$$70.3$$b4.3$$65.8$$67.1$$67.9$$68.7$$b9.5$$b9.6$$e9.8$$b4.3$$b5.7$$66.9$$67.6$$b8.2$$68.4$$68.6$$b4.3$$65.6$$66.6$$67.1$$b7.6$$b8.2$$68.4$$68.6$$b4.3$$65.6$$66.2$$66.5$$67.0$$b7.8$$b7.9$$b8.0$$b4.3$$65.4$$66.2$$66.5$$67.0$$b7.8$$b7.9$$b8.0$$b4.0$$b4.9$$65.6$$b5.9$$b6.5$$b7.2$$b7.3$$b7.4$$b3.4$$64.3$$65.0$$65.9$$b6.7$$b6.7$$b6.7$$b6.7$$b2.0$$b3.1$$63.9$$64.3$$b4.9$$b5.5$$b5.0$$b5.6$$b0.6$$61.7$$62.6$$62.9$$b3.5$$b5.0$$b5.6$$b0.6$$61.7$$62.6$$62.9$$b3.5$$b4.2$$b4.2$$59.2$$60.2$$61.0$$b1.1$$b1.7$$62.0$$b2.4$$c2.3$$57.2$$58.3$$59.1$$59.2$$59.8$$50.5$$56.4$$48.5$$49.4$$50.0$$49.7$$50.1$$50.9$$51.1$$51.3$$38.5$$34.8$$40.8$$41.4$$42.1$$43.0$$43.2$$43.5$$26.4$$27.4$$28$</td> <td>100$110$$120$$130$$140$$150$$160$$170$$160$$64.3$$65.8$$67.1$$68.0$$68.9$$69.7$$70.0$$70.3$$70.6$$64.3$$65.8$$67.1$$67.9$$68.7$$69.5$$59.6$$69.8$$70.0$$64.3$$65.7$$66.9$$67.0$$68.3$$69.0$$69.2$$69.5$$64.3$$65.6$$66.6$$67.1$$67.0$$68.2$$68.4$$66.6$$64.3$$65.4$$66.2$$66.5$$67.0$$67.8$$67.9$$68.0$$64.3$$65.4$$66.2$$66.5$$67.0$$67.8$$67.9$$68.7$$64.3$$65.4$$66.2$$66.5$$67.0$$67.8$$67.9$$68.7$$64.3$$65.4$$66.2$$66.5$$67.0$$67.8$$67.9$$68.0$$64.3$$65.6$$65.9$$65.5$$67.2$$67.3$$67.4$$67.4$$63.4$$64.3$$65.0$$65.3$$65.7$$b6.7$$b6.7$$b6.7$$b6.7$$60.6$$61.7$$62.6$$62.9$$b3.5$$b4.2$$b4.2$$b4.2$$b4.2$$59.2$$60.2$$61.0$$61.1$$61.7$$62.6$$62.9$$b3.5$$b5.5$$57.2$$58.3$$59.1$$59.2$$59.5$$56.4$$56.3$$57.2$$58.3$$59.1$$59.9$$50.5$$56.4$$56.3$$49.7$$59.2$$59.8$<t< td=""><td>100$110$$120$$130$$140$$150$$160$$170$$160$$190$$64.3$$65.8$$67.1$$68.0$$68.9$$69.7$$70.0$$70.3$$70.6$$70.9$$b4.3$$65.8$$67.1$$67.9$$68.7$$69.5$$59.6$$69.8$$70.0$$70.3$$b4.3$$65.8$$67.1$$67.9$$68.7$$69.5$$59.6$$69.8$$70.0$$70.3$$b4.3$$65.6$$66.9$$67.1$$b7.6$$b8.2$$68.4$$68.6$$68.9$$b9.1$$c4.3$$65.6$$66.2$$66.5$$67.0$$b7.9$$b8.0$$b8.2$$68.4$$b4.0$$b4.9$$65.6$$65.9$$b7.0$$b7.9$$b8.0$$b8.2$$68.4$$b4.0$$b4.9$$65.6$$b5.9$$b6.5$$b7.2$$b7.3$$b7.4$$b7.4$$c7.6$$b3.4$$64.3$$65.0$$65.3$$b5.7$$b6.7$$b6.7$$b6.7$$b6.7$$b6.6$$b5.7$$b0.6$$61.7$$62.6$$62.9$$b3.5$$b5.6$$b5.6$$b5.7$$b5.6$$b5.7$$b0.6$$61.7$$62.6$$62.9$$b3.5$$b4.2$$b4.2$$b4.2$$b4.2$$b4.2$$57.2$$58.3$$59.1$$51.7$$56.4$$55.3$$56.5$$56.4$$56.3$$56.2$$57.2$$58.3$$59.8$$50.6$$55.5$$56.4$$55.3$$50.8$$56.5$$56.4$</td></t<></td>	100 110 120 130 140 150 160 170 $b4.3$ 65.8 67.1 68.0 $6b.9$ 69.7 70.0 70.3 $b4.3$ 65.8 67.1 67.9 68.7 $b9.5$ $b9.6$ $e9.8$ $b4.3$ $b5.7$ 66.9 67.6 $b8.2$ 68.4 68.6 $b4.3$ 65.6 66.6 67.1 $b7.6$ $b8.2$ 68.4 68.6 $b4.3$ 65.6 66.2 66.5 67.0 $b7.8$ $b7.9$ $b8.0$ $b4.3$ 65.4 66.2 66.5 67.0 $b7.8$ $b7.9$ $b8.0$ $b4.0$ $b4.9$ 65.6 $b5.9$ $b6.5$ $b7.2$ $b7.3$ $b7.4$ $b3.4$ 64.3 65.0 65.9 $b6.7$ $b6.7$ $b6.7$ $b6.7$ $b2.0$ $b3.1$ 63.9 64.3 $b4.9$ $b5.5$ $b5.0$ $b5.6$ $b0.6$ 61.7 62.6 62.9 $b3.5$ $b5.0$ $b5.6$ $b0.6$ 61.7 62.6 62.9 $b3.5$ $b4.2$ $b4.2$ 59.2 60.2 61.0 $b1.1$ $b1.7$ 62.0 $b2.4$ $c2.3$ 57.2 58.3 59.1 59.2 59.8 50.5 56.4 48.5 49.4 50.0 49.7 50.1 50.9 51.1 51.3 38.5 34.8 40.8 41.4 42.1 43.0 43.2 43.5 26.4 27.4 28	100 110 120 130 140 150 160 170 160 64.3 65.8 67.1 68.0 68.9 69.7 70.0 70.3 70.6 64.3 65.8 67.1 67.9 68.7 69.5 59.6 69.8 70.0 64.3 65.7 66.9 67.0 68.3 69.0 69.2 69.5 64.3 65.6 66.6 67.1 67.0 68.2 68.4 66.6 64.3 65.4 66.2 66.5 67.0 67.8 67.9 68.0 64.3 65.4 66.2 66.5 67.0 67.8 67.9 68.7 64.3 65.4 66.2 66.5 67.0 67.8 67.9 68.7 64.3 65.4 66.2 66.5 67.0 67.8 67.9 68.0 64.3 65.6 65.9 65.5 67.2 67.3 67.4 67.4 63.4 64.3 65.0 65.3 65.7 $b6.7$ $b6.7$ $b6.7$ $b6.7$ 60.6 61.7 62.6 62.9 $b3.5$ $b4.2$ $b4.2$ $b4.2$ $b4.2$ 59.2 60.2 61.0 61.1 61.7 62.6 62.9 $b3.5$ $b5.5$ 57.2 58.3 59.1 59.2 59.5 56.4 56.3 57.2 58.3 59.1 59.9 50.5 56.4 56.3 49.7 59.2 59.8 <t< td=""><td>100$110$$120$$130$$140$$150$$160$$170$$160$$190$$64.3$$65.8$$67.1$$68.0$$68.9$$69.7$$70.0$$70.3$$70.6$$70.9$$b4.3$$65.8$$67.1$$67.9$$68.7$$69.5$$59.6$$69.8$$70.0$$70.3$$b4.3$$65.8$$67.1$$67.9$$68.7$$69.5$$59.6$$69.8$$70.0$$70.3$$b4.3$$65.6$$66.9$$67.1$$b7.6$$b8.2$$68.4$$68.6$$68.9$$b9.1$$c4.3$$65.6$$66.2$$66.5$$67.0$$b7.9$$b8.0$$b8.2$$68.4$$b4.0$$b4.9$$65.6$$65.9$$b7.0$$b7.9$$b8.0$$b8.2$$68.4$$b4.0$$b4.9$$65.6$$b5.9$$b6.5$$b7.2$$b7.3$$b7.4$$b7.4$$c7.6$$b3.4$$64.3$$65.0$$65.3$$b5.7$$b6.7$$b6.7$$b6.7$$b6.7$$b6.6$$b5.7$$b0.6$$61.7$$62.6$$62.9$$b3.5$$b5.6$$b5.6$$b5.7$$b5.6$$b5.7$$b0.6$$61.7$$62.6$$62.9$$b3.5$$b4.2$$b4.2$$b4.2$$b4.2$$b4.2$$57.2$$58.3$$59.1$$51.7$$56.4$$55.3$$56.5$$56.4$$56.3$$56.2$$57.2$$58.3$$59.8$$50.6$$55.5$$56.4$$55.3$$50.8$$56.5$$56.4$</td></t<>	100 110 120 130 140 150 160 170 160 190 64.3 65.8 67.1 68.0 68.9 69.7 70.0 70.3 70.6 70.9 $b4.3$ 65.8 67.1 67.9 68.7 69.5 59.6 69.8 70.0 70.3 $b4.3$ 65.8 67.1 67.9 68.7 69.5 59.6 69.8 70.0 70.3 $b4.3$ 65.6 66.9 67.1 $b7.6$ $b8.2$ 68.4 68.6 68.9 $b9.1$ $c4.3$ 65.6 66.2 66.5 67.0 $b7.9$ $b8.0$ $b8.2$ 68.4 $b4.0$ $b4.9$ 65.6 65.9 $b7.0$ $b7.9$ $b8.0$ $b8.2$ 68.4 $b4.0$ $b4.9$ 65.6 $b5.9$ $b6.5$ $b7.2$ $b7.3$ $b7.4$ $b7.4$ $c7.6$ $b3.4$ 64.3 65.0 65.3 $b5.7$ $b6.7$ $b6.7$ $b6.7$ $b6.7$ $b6.6$ $b5.7$ $b0.6$ 61.7 62.6 62.9 $b3.5$ $b5.6$ $b5.6$ $b5.7$ $b5.6$ $b5.7$ $b0.6$ 61.7 62.6 62.9 $b3.5$ $b4.2$ $b4.2$ $b4.2$ $b4.2$ $b4.2$ 57.2 58.3 59.1 51.7 56.4 55.3 56.5 56.4 56.3 56.2 57.2 58.3 59.8 50.6 55.5 56.4 55.3 50.8 56.5 56.4

ORIGINAL PAGE 15 OF POOR QUALITY Table 3A-3(b) Lateral Wind Speed, \hat{W}_y , Ro =10⁵

e.	0	10	20	30	40	5,0	60	70	80	90	100	
0.150	-18.0	-20.4	-22.9	-25.6	-28.7	-32.0	-31.4	-30.7	-29.8	-25.9	-28.0	
0.140	-17.4	-19.8	-22.3	-24.9	-26.0	-31.2	-30.0	-29.6	-28.9	-27.9	-27.0	
0,130	-17.1	-19.4	-21.7	-24.2	-27.2	-30.4	-29.7	-28.9	-28.0	-27.0	-20.1	
0.120	-17.0	-19.1	-21.2	-23.4	-20.3	-29.5	-28.8	-28.1	-27.1	-26.1	-25.2	
U.110	-10,3	-18.4	-20.5	-22.0	-25.3	-28.3	-27.6	-26.7	-25.6	-24.6	-23.7	
0.100	-15.5	-17.8	-19.9	-21.8	-24.3	-27,2	-26.2	-25.2	-24.0	-23.0	-22.1	
0.030	-14.5	-17.1	-19.4	-20.9	-23.2	-25.9	-24.7	-23.5	-22.3	-21.3	-20.4	
0.080	-13.5	-15.5	-17.4	-18.9	-20.9	-23.2	-22.3	-21.4	-20,4	-)ý.o	-18.8	
0.070	-12.1	-13.5	-1.5.0	-10.5	-1,8.0	-21.1	-20.3	-19,3	-18.0	-17.2	-16.5	
0.000	-10.4	-11.3	-12.4	-13.9	-10,4	-19,4	-1ø,4	-17.2	-15.2	-14.3	-13.9	
0.050	-u.7	-9.8	-10.9	-12.0	-14.2	-17.0	-15.9	-14.7	-13.3	-12.3	-11.5	
0.040	-7.0	-8.1	-9.2	-10.2	-12.1	-14.5	-13.3	-12.1	-10.9	-9,9	-9.0	
0.030	-5,3	-6.2	-7.2	-8.4	-10.0	-11.8	-10.6	-9.4	-8.2	-7.2	-6.3	
0.020	-3.7	-3.9	-4.4	-5.4	-7.1	-9.1	-7.9	-6.8	-5.8	-4.9	-4.0	
0.010	-1.6	-1.8	-2.0	-2.5	-3.0	-4.8	-4.1	-3.4	-2.9	= 2,, 4	-1.8	
0.005	0 <u>.</u> 8	-0.8	-0.9	-1.1	-1.0	-2.1	-1.8	-1.5	-1.3	-1,.0	-0,.8	
0.001	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	
											•	
	100	110	120	130	140	150	160	170	180	190	200	
0,150	-28.0	-26.8	-25.8	-25.2	-24.2	-23.0	-21.8	-20.5	-19.1	-17.2	-15.0	
0,140	-27.0	-25.8	-24.7	-24.2	-23,3	-22,2	-21.1	-19.8	-18,4	-16,5	-14.3	
0,130	-20.1	-24.8	-23.8	-23,3	-22,4	-21.4	-20.2	-19.0	-17.6	-15.7	-13.6	
0.120	-25.2	-23.9	-22.9	-22.4	-21.0	=20.5	-19.3	-18.0	-10.6	-14.8	-12.8	
0.110	-23.7	-22.5	-21.5	-21.0	-20.0	-18.8	-17.9	-10.9	-15.6	-13.8	-11.8	

••••											
0.130	-26.1	-24.8	-23.8	-23.3	-22.4	-21.4	-20.2	-19.0	-17.6	-15.7	-13.6
0.120	-25.2	-23.9	-22.9	-22.4	-21.0	-20.5	-19.3	-18.0	-10.6	-14.8	-12.8
0.110	-23.7	-22,5	-21,5	-21.0	-20.0	-18.8	-17.9	-10.9	-15.6	-13.8	-11.8
0.100	-22.1	-21.0	-20.0	-19.6	-16.6	-17.3	-10.0	-15.6	-14.6	-13.0	-11.1
0.090	-20.4	-19,4	-18,5	-18,1	-17.1	-15.9	-15.3	-14.7	-13.8	-12,3	-10.5
0.040	-18.8	-17.8	-17.1	-16.7	-15.8	-14,6	-14.0	-13.3	-12.5	-11.2	-9.8
0.070	-16.5	-15.8	-15.3	-15.0	-14.2	-13.3	-12.7	-12.0	-11.3	-10.1	-8.7
0.060	-13.9	-13.5	-13.2	-13.0	-12,5	-11.9	-11.3	-10.7	-10.2	-8.9	-7.2
0.050	-11.5	-11.0	-10.7	-10.8	-10.5	-9.9	-9.7	-9.3	-8.6	-7.3	-5.6
0.040	-9.0	-8.4	-8.0	-8.1	-7.9	-7.7	-7.H	-7.0	-7.0	-5.7	-4.0
0.030	-6.3	-5.7	-5.2	-5.0	-5.0	-5.3	-5.6	-2.8	-5.5	-4.2	-2.4
0.020	-4.0	-3.1	-2.7	-3,1	-3.1	- 3.0	-3.5	-3.8	-3,8	-2.8	-1.4
0.010	-1.8	-1.3	-1.0	-1.4	-1.4	-1.2	-1.0	-1.8	-1.9	-1,4	-0.6
0.005	-0.9	-0.5	-0.5	-U.D	-0.0	-0.5	-0.7	-0.8	-0.8	-0.6	-0.3
0.001	0.0	· ^ ^	0 0	0.0	0 11	ňυ	δo	0 0	0 0	0.0	0 0

Table 3A-4(a) Longitudinal Wind Speed, \hat{W}_{x} , Ro =10⁴

 $\geq \{i\}$

	0	10	20	30	40	50	6U	70	80	90	100
0.150	24.8	20.2	33.0	34.0	47.4	46.2	4н. н	51.5	54.2	56.5	58.6
0.140	24.8	24.2	33.9	39.0	42.9	40.2	48.8	51.5	54.2	56.5	58.6
0.130	24_8	29.2	33.9	39.0	42.9	46.2	48.8	51.5	54.2	56.5	58.6
0.120	24.8	29.2	33.9	39.0	42.9	46.2	48.8	51.5	54.2	56.5	58.6
0.110	24.8	29.2	33.9	39.0	42.9	40.2	46.6	51.5	54.2	56.5	58.6
0.100	24.6	29.2	33.9	39.0	42.9	46.2	48.8	51.5	54.2	56.4	58.2
0.090	24.8	29.2	33.9	39.0	42.9	40.2	45.8	51.5	54.2	50.1	57.6
0.080	24.6	29.2	33.9	39.0	42.9	46.2	48.0	51.0	53.0	54.7	56.2
0.070	24.8	29,2	33.9	39.0	42.0	45.5	47.7	49.8	51.7	53,3	54.8
0.000	24.0	29,1	33.8	34,8	42.0	44.1	40.2	48.2	50.3	52.0	53.4
0.050	22.0	26.7	31.0	35.9	39.3	42.1	44,1	46.2	48.3	50.0	51.4
0.040	20.6	24.5	28.6	33.3	30.8	39,6	41.7	43.7	45.4	46.8	47.9
0.030	18.0	22.5	26.5	30.9	34.1	36.6	38.5	40.2	41.3	42.1	42.8
0.020	10.6	20.5	24,2	27.7	29.0	29.2	29.5	29.8	29.9	31.0	32.7
0.010	11.8	14.3	16.5	10.5	14.0	18.0	18.0	18.5	18.4	19,3	20.6
0.005	8.4	9.7	10.9	11.9	12,3	12.3	12.4	12.5	12.6	13.2	13.9
0.001	5.8	6.0	6.3	0.0	6.9	7.2	7.4	7.7	8.0	8.3	8.6
	•	•									
	100	110	120	130	140	150	160	170	180	190	- 200
								• • •			200
0,150	58.5	60.0	61.3	62.2	63.1	64.0	64.3	64.5	64.8	65,1	65.4
0.140	58.6	00.0	61.3	62.1	62.9	63.7	63.8	64.0	64.3	64.0	64.8
0.130	58.6	00. , 0	61.2	01.8	02.5	03.2	03.3	63.4	63.7	64.0	64.3
0.120	58.0	59,9	60.9	61.3	61.9	62.5	ô2.0	62.8	63.1	63.4	63,7
0.110	58.6	59.6	60.4	60.7	61.3	62.0	62.1	62.2	62.4	62.6	62.9
0.100	58.2	59.2	59.9	60.1	00.7	61.5	61.5	61.6	61.7	61.9	62.2
0.090	57.0	58.5	59.2	59.0	6U.2	60.9	60.9	50 . 9	60.9	61.1	61.3
0.040	56.2	57.3	58.2	58.0	59.2	59.8	59.9	59.9	59.9	59.9	60.0
0.070	54.8	56.0	56.8	57.2	57.7	58.4	58.4	58.4	58.4	58.5	58,5
0.000	53.4	.54.5	55.2	55.4	56.0	50.9	56.7	50.5	56.6	50.8	56.9
0.050	51,4	52.6	53.4	53.5	54.0	54.8	54.0	54.4	54.1	54.0	53.9
0.040	47.9	49.0	49.6	49.0	50.1	20.8	50.8	50.7	50.5	50.4	50.4
0.030	42.8	43.7	44.2	43.9	44.4	45.1	45.4	45.0	45.8	40.0	46.3
0.020	32.7	34.0	35.1	35,6	36.4	37.2	37.5	37.8	38.0	38.3	38.5
0.010	20.0	21.7	22.5	23.2	23.6	24.5	24.8	25.0	25.3	25.6	25.9
0.000	13,9	14,5	15.1	5*9 23*2	10.0	10.4	10.7	17.0	17.3	17.5	17.8
A * 2 A T	0.0	0.0	2.1	フ。サ	7.1	10.0	10.5	10.5	10.8	11.1	11.4

Table 3A-4(b) Lateral Wind Speed, \hat{W}_y , Ro =10⁴

ORIGINAL PAGE IS OF POOR QUALITY

									-		
	Ó .	10	20	30	40	50	60	70	8 O	90	100
U.150	-18.0	-20.4	-22.9	-25,6	-28.7	-32.0	- 51, 4	-30,7	-29.8	-24.9	-28.0
0.140	-17.4	-19,8	-22.3	-24,9	-28.0	-31.2	-30.0	-29.8	-28.9	-27,9	-27.0
0,130	-17.1	-19.4	-21.7	-24.2	-27.2	-30.4	-29.7	-28.9	-28.0	-27.0	-26.1
0.120	-17.0	-19,1	-21.2	-23.4	-26.3	-29.5	-26.8	-28.1	-27.1	-20.1	-25.2
0,110	-16,3	-18.4	-20.5	-22.6	-25.3	-28.3	-27.6	-26.7	-25.6	-24.0	-23.7
0.100	-15.5	-17.8	-19.9	-21.8	-24.3	-27.2	-26.2	-25.2	-24.0	-23.0	-22.1
0.040	-14,5	-17.1	-19,4	-20.9	-23.2	-25.9	-24.7	-23.5	-22.3	-21,3	-20.4
0.080	-13.5	-15.5	-17.4	-18.9	-20,19	-23.2	-22.3	-21.4	-20.4	-19.6	-18,8
0.070	-12.1	-13.5	-15.0	-10.5	-18.6	-21.1	-20.3	-19.3	-18.0	-17.2	-16.5
0.060	-10.4	-11.3	-12.4	-13.9	-16.4	-19.4	-16.4	-17.2	-15.2	-14.3	-13.9
0.050	-8.7	-9.8	-10,9	-12.0	-14,2	-17.0	-15.9	-14.7	-13.3	-12.3	-11.5
0.040	-7.0	-8.1	-9.2	-10.2	-12.1	-14.5	-13.3	-12.1	-10.9	-9.9	-9.0
0.030	-5,3	-6.2	-7.2	-8.4	-10.0	-11.8	-10.6	-9.4	-8.2	-7.2	-6,3
0.020	-3.7	-3.9	-4.4	-5.4	-7.1	-9.1	-7.9	-6.8	-5.8	-4.9	-4.0
0.010	-1.8	-1.8	-2.0	-2.5	-3.ó	-4.8	-4.1	-3.4	-2.9	-2.4	-1.5
0.005	-0.8	-0.6	-0.9	-1.1	-1.0	-2.1	-1.,8	-1.5	-1.3	-1.0	-0.8
0.001	0.0	0.0	0.0	0.0	0_0	0 .0	0.0	. 0.0	0.0	0.0	0.0

17.0 1.60

0,150	-28.0	-26.8	-25.8	-25.2	-24.2	-23.0	-21.8	-20.5	-19.1	-17.2	-15.0
0,140	-27.0	-25.8	-24.7	-24,2	-23.3	-22.2	-21.1	-19.8	-18.4	-16.5	-14.3
0.130	-26.1	-24.8	-23.8	-23.3	-22.4	-21.4	-20.2	-19.0	-17.6	-15.7	-13.6
0.120	-25.2	-23.9	-22.9	-22.4	-21.0	-20.5	-19.3	-18.0	-16.6	-14.8	-12.8
0.110	-23.7	-22.5	-21.5	-21.0	-20,0	-18.8	-17.9	-10.9	-15.6	-13.8	-11.8
0,100	-22.1	-21.0	-20.0	-19.0	-18.0	-17.3	-16.0	-15.8	-14.0	-13.0	-11.1
0.040	-20.4	-19.4	-18.5	-18.1	-17.1	-15.9	-15.3	-14.7	-13.8	+12.3	-10.5
0.080)18_B	-17.8	-17.1	-10.7	-15.8	-14.6	-14.0	-13.3	-12.5	-11,2	-9.8
0.070	-16.5	-15,8	-15.3	-15.0	-14.2	-13.3	-12.7	-12.0	-11.3	-10.1	-8.7
0.000	-13.9	-13,5	-13.2	-13.0	-12.5	-11.9	-11.3	-10.7	-10.2	-8,9	-7.2
0.050	-11.5	-11.0	-10.7	-10.5	-10.5	-9.9	-9.7	-9.3	-8.6	-7.3	-5.6
0.04	-9.0	-8.4	-8.0	-8.1	-1.9	-1.7	-7.8	-7.0	-7.0	-5.7	-4.0
0.030	6, 3	-5.7	-5.2	-5.0	-5.0	-5.3	-5.0	-5.8	-5.5	-4.2	-2.4
0.020	4.0	-3,1	-2.7	-3.1	-3.1	-3.0	-3,5	-3,8	-3.8	-2.8	-1.4
0.010	-1.8	-1.3	-1.0	-1.4	-1.4	-1.2	-1.6	-1.8	-1.9	-1.4	-0.6
0.00	-0.8	-0.6	-0.5	-0.6	-U.b	-0.5	-0.7	-0.8	-0.8	-0.0	-0.3
0.00	1 0,0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0,0	0.0

Table 3A-5(a) Longitudinal Wind Speed, \hat{W}_{x} , Ro =10³

	0	10	20	30	40	50	6U -	70	80	90	100
0.150	19.0	23.5	28.2	33.2	37.1	40.4	43.1	45.8	48.4	50.7	52.8
y.140	19.0	23.5	28.2	33.2	37.1	40.4	43.1	45.8	48.4	50.7	52.8
0.130	19.0	23.5	28.2	33.2	37.1	40.4	43.1	45.8	48.4	50.7	52.8
0,120	19.0	23,5	28.2	33.2	37.1	40.4	43.1	45.8	48.4	50.7	52.8
u.110	19.0	23.5	28.2	33.2	37.1	40.4	43.1	45.8	48.4	50.7	52.8
0.100	19.0	23.5	28.2	33.2	37.1	40.4	43.1	45.8	48.4	50.6	52.5
0.030	19.0	23.5	28.2	33.2	37.1	40.4	43.1	45.7	48.4	50.3	51,29
0.040	19.0	23.5	28.2	33.2	37.1	40.4	42.9	45.2	47.3	48.9	50.4
0.070	19.0	23,5	28.2	33.2	30.8	39.7	42.0	44.1	40.0	47.0	49.1
0.000	18.9	23.3	28.0	33.1	36.2	38.4	40.4	42.4	44.5	46,2	47.7
0.050	16.9	20.9	25.2	30.1	33.0	36.3	36.4	40.4	42.5	44.2	45.7
0.040	14.9	18.7	22.9	27.5	31.0	33.9	36.0	37.9	39.7	41.0	42.1
0.030	12,8	16.7	20.8	25.2	28.3	30.8	32.8	34.4	35.5	36.3	37.0
0.020	10.8	14.7	18.5	21.9	23.2	23.4	23.8	24.0	24.1	25.3	26.9
U., U10	6. 0	8.5	10.8	12.8	13.2	12.9	12.8	12.7	12.6	13.5	14.9
0.005	2.7	3.9	5.1	o.1	0.5	0.5	0.0	0.7	0.9	7.4	8.2
0,001	0.0	0.3	0.6	0.8	1.1	1.4	1.7	2.0	2.2	2.5	2.8
· . · ·											•
•											
	100-	110	120	190	140	150	160	170	180	190	200
0,150	52.8	54.3	55.6	50.5	57.3	58.2	58.5	28.8	59.1	59.3	54.6
0.140	52.8	54.3	55.5	56.3	57.1	58.0	58.1	58.2	58.5	58.8	59.1
0.130	52.8	54.2	55.4	56.1	56.7	57.4	57.5	57.7	58.0	58.2	58.5
0.120	52.8	54,1	55.1	55.0	50.1	56.7	50.9	57.1	57.3	57.0	57.9
0.110	52.8	53.9	54.7	55.0	55.5	56.2	50.4	56.5	56.7	56,9	57.2
0.100	52.5	53.4	54,1	54.4	55.0	55.7	55.8	55,9	55.9	56.1	56.4
0.040	51.9	52.7	53.5	53.8	54.4	55.2	55.2	55.1	55.1	55.3	55.6
0.080	50.4	51.5	52.4	52.8	53.4	54.0	54.1	54.1	54.1	54.2	54.2
0.070	49.1	50.2	51.1	51,4	52.0	52,7	52.7	52.7	52.7	52.7	52.8
0.000	47.7	48.7	49.5	47.0	50.2	51,1	50.9	50.8	50.9	51.0	51.1
0.050	45.7	46.8	47.6	47.7	48.3	49.1	48.8	46.6	46.4	48.2	48.1
0.040	42.1	43.2	43.9	43.8	44.3	45.1	45.0	44.9	44.8	44.7	44.6
0.0.30	37.0	37.9	38.4	36.2	38.0	39,4	39.6	39.8	40.1	40.3	40.5
0.020	20.9	28.3	29.3	29.9	30.0	31.5	51.7	32.0	32.3	32.5	32.8
0.010	14.9	15,9	16.8	17.4	16.1	18.7	19.0	19.3	19.6	19.8	20.1
0.005	8.2	8.8	9,3	¥.6	10.2	10.7	10.9	11.2	11.5	11.8	12.1
0.001	2.8	3,1	3.4	3.7		4.2	* 4 .5	4.8	5.1	5.3	5.6

ORIGINAL PAGE IS OF POOR QUALITY

Table 3A-5(b) Lateral Wind Speed, \hat{W}_y , Ro =10³

à,

	0	10	20	30	40	50	bυ	70	80	90	100
0.150	-18.0	-20.4	-22.9	-25.0	-28.7	-32.0	-31.4	-30.7	-29.8	-28.9	-28.0
0.140	-17.4	-19.8	-22.3	-24.9	-28.0	-31.2	-30.0	-29.8	-28.9	-27.9	-27.0
0.130	-17,1	-19,4	-21.7	-24.2	-27.2	- 30.4	-29.7	-28.9	-28.0	-27.0	-20.1
0.120	-17.0	-19.1	-21.2	-23.4	-20.3	-29.5	-28.8	-26.1	-27.1	-26,1	-25.2
0,110	-16.3	-18,4	-20,5	-22.6	-25.3	-28.3	-27.0	-26.7	-25.6	-24.0	-23.7
0.100	-15.5	-17.8	-19.9	-21.8	-24.5	-27.2	-20.2	-25.2	-24.0	-23.0	-22.1
0.090	-14.5	-17.1	-19.4	-20.9	-23.2	-25.9	-24.7	-23.5	-22.3	-21.3	-20.4
0.080	-13.5	-15.5	-17.4	-18.9	-20.9	-23.2	-22.3	-21.4	-20.4	-19.6	-18.8
U., U 7.U	-12.1	-13,5	-15.0	-10.5	-18.6	-21.1	-20.3	-19.3	-16.0	1.72	-16.5
0.050	-10.4	-11.3	-12.4	-13.9	-15.4	-19.4	-18.4	-17.2	-15.2	-14.3	-13.9
0.050	-8.7	-9.8	-10.9	-12.0	-14.2	-17.0	-15.9	-14.7	-13.3	-12.3	-11.5
0.040	-7.0	-8.1	-9.2	-10.2	-12.1	-14.5	-13.3	-12.1	-10.9	-9.9	-9.Ŭ
0.030	-5.3	-6.2	-7.2	- 6 . 4	-10.0	-11.6	-10.0	-9.4	-8.2	-7,2	-6.3
0.020	-3.7	-3.9	-4.4	-5.4	-7,1	-9.1	-7.9	-6.8	-5.8	-4.9	-4.0
0.010	-1.8	-1.8	-2.0	-2.5	-3.6		-4.1	-3.4	-2.9	-2.4	-1.8
0.005	-0,8	-0.6	-0.9	-1.1	-1.0	-2.1	-1.8	-1.5	-1.3	-1.0	-0.8
0.001	Ú.Ú	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	U.0
										n 11	

100 110 120 130 140 150 160 170 160 190 200

•											
0,150	-28.0	-26.8	-25,8	-25.2	-24.2	-23.0	-21.8	-20.5	-19,1	-17.2	-15.0
0.140	-27.0	-25,8	-24.7	-24.2	-23.3	-22.2	-21.1	-19.8	-18.4	-10.5	-14.3
0.130	=20.1	-24.8	-23.8	-23.3	-22.4	-21.4	-20.2	-19.0	-17.6	-15.7	-13.6
0.120	-25.2	-23,9	-22.9	-22.4	-21.0	-20,5	-19,3	-18.0	-16.6	-14.8	-12.8
0.110	-23.7	-22.5	-21.5	-21.0	-20.0	-18.8	-17.9	-16.9	-15.0	-13.8	-11.8
0.100	-22.1	-21.0	-20.ú	-19.6	-18.0	-17.3	-10.0	-15.8	-14.6	-13.0	-11,1
0.090	-20,4	-19,4	-16.5	-10,1	-17.1	-15.9	-15.3	-14.7	-13.8	-12.3	-10.5
0.080	-18.8	-17.8	-17.1	-10.7	-15.0	-14.0	-14.0	-13.3	-12.5	-11,2	-9.8
0.070	-10.5	-15.8	-15.3	-15.0	-14.2	-13.3	-12.7	-12.0	-11.3	-10.1	-8.7
0.000	-13.9	-13.5	-13.2	-13.0	-12.5	-11,9	-11.3	-10.7	-10.2	-8.9	-7.2
0.050	-11.5	-11.0	-10.7	-10,5	-10.5	-9.9	-9.7	-9.3	-8.6	-7.3	-5.6
0.040	-9.0	-6.4	-8.0	-e.1	-7.9	-7.7	-7.8	-7.6	-7.0	-5.7	-4.0
0.030	-6.3	-5.7.	-5.2	-5.0	-5,0	-5,3	-5.0	-5.8	-5.5	-4.2	-2.4
0.020	-4.0	-3.1	-2.7	-3.1	5.1	-3.0	-3.5	-3.6	-3.8	-2.8	-1.4
0.010	-1.8	-1.3	-1.0	-1.4	-1.4	-1.2	-1.0	-1.8	-1.9	-1.4	-0.6
0.005	-0.8	-0.6	-0.5	-0.6	-0.6	-0.5	-0.7	-0.8	-0.8	-0.6	-0.3
0.001	0.0	0.0	0.0	u. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

APPENDIX 3B

GRAPHICAL ILLUSTRATION OF STABLE AND NEUTRAL BOUNDARY LAYER WIND SPEED PROFILES

To provide an illustration of the velocity profiles which can be encountered along a flight path during approach through neutral and stable boundary layers, seven velocity profiles have been computed using the model developed in this report. Both longitudinal and lateral wind speeds are shown. The conditions for which the velocity profiles have been computed are shown in Figure 3B-1 along with wind speed profiles calculated from the standard log-linear equation for the stable boundary layer, see References [3-2 and 3-5]. This enables a comparison of the simpler theoretical models with the more elaborate simulation models developed in this report to be made. One thing to note in comparing the velocity profiles is that the loglinear, theoretical models give only the longitudinal component of wind speed, whereas, the table lookup model provides both the longitudinal and the lateral components. The lateral wind speed component is quite significant in many of the cases illustrated and represents an estimate of the directional shear encountered during approach or landing. This directional shear cannot be obtained from the simpler theoretical equations.

Figures 3B-2 and 3B-5 through 3B-7 are computed for a u_* value of 0.1 m s⁻¹. This value of friction velocity when used to compute dimensional height from the nondimensional form \hat{z} gives a value of z = 173 m at $\hat{z} = 0.15$ which is the maximum vertical extension of the tabulated data. Consequently, the aforementioned figures do not extend to the 500 m level as do Figures 3B-1, 3B-3 and 3B-4.

Additional visualization of the velocity profiles which can be encountered in stable and neutral boundary layers with turbulence superimposed are given in the text, Figures 3-8 through 3-13, Section 3.4.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3B-1 Theoretical Wind Speed Profile for Comparison with Figures 3B-2 through 3B-8 Computed with Wind Shear Model

Figure 3B-2 Stable Boundary Layer

\$

Figure 3B-3 Stable Boundary Layer

Figure 3B-4 Stable Boundary Layer

Figure 3.B-5 Stable Boundary Layer

Figure 3B-6 Stable Boundary Layer

Figure 3B-7 Stable Boundary Layer

214

į

APPENDIX 3C

COMPUTER PROGRAM

The subroutine STB is a FORTRAN computer program for calculating the wind speeds W_x and W_y and the wind speed gradients $\partial W_x/\partial z$ and $\partial W_y/\partial z$. Inputs to the program are height, z, friction velocity, u_* , Coriolis parameter, f, stability parameter, μ , and surface roughness, z_0 . These parameters must be introduced in units of meters and meters per second, respectively. The returned velocities and gradients have units of meters per second and inverse seconds, respectively. Wind speeds and gradients at a new value of height, z, are obtained by simply assigning a new value to z in the calling program. A new condition of stability is also achieved by assigning μ a new value in the calling program.

The user has the option of adding turbulent fluctuations to the wind speed by assigning the control integer NKK a value greater than two.

Subroutine STB

The subroutine STB for a given height z and with the parameter, μ , specified provides the wind velocity W_x and W_y . The user has the option of superimposing turbulence fluctuations on the mean wind speed if desired. The turbulence simulation routine uses the spectra developed in Section 3.5 and the z-transformation technique for generating the fluctuations w_x , w_y and w_z .

Subroutine STB first calls the subroutine INIT, which reads the input data into storage. The control variable NST is then set equal to two and further use of STB does not call the subroutine INIT. STB then calls the subroutine WINDF which interpolates wind speeds in the z direction for a prescribed value of μ .

At the user's option, NKK (O<NKK) can be set greater than two and the subroutine STB will call the subroutine DRYDEN which processes the random signal from the subroutine GAUSS and generates turbulent fluctuations having the modified Dryden spectra described in Section 3.4. These fluctuations are added to the turbulent wind field output.

Nomenclature

Subroutine STB(Z,AMU,USTR,F,ZO,NST,WX,WY,DWX,DWY,DT,IX,NKK)

Z	Height (m)	[INPUT]
AMU	Stability parameter (-333.33 < μ < 216.67)	[INPUT]
USTR	Surface friction velocity u_{\star} (m s ⁻¹)	[INPUT]
F	Coriolis parameter, f (s ⁻¹)	[INPUT]
Z0	Surface roughness, z _o (m)	[INPUT]
NST	Control variable NST = 1 initiates the storage of the tabulated wind speeds	[INPUT]
WX	Wind speed in the x direction (m s^{-1})	[OUTPUT]
WY	Wind speed in the y direction $(m s^{-1})$	[OUTPUT]
DWX	Gradient of W_{y} in the z direction (s ⁻¹)	[OUTPUT]
DWY	Gradient of W_{i} in the z direction (s ⁻¹)	[OUTPUT]
DT	Time increment Δt of the turbulent fluctuation (s)	[INPUT]
IX.	Initiating integer for random signal generator, value arbitrary	[INPUT]
NKK	<pre>Integer for total terms of z transformation (if NKK ≤ 2 turbulence is not added if NKK > 2 turbulence is superimposed on wind speed outputs)</pre>	[INPUT]

Listing of Subroutine STB

-

	SUBRUUTINE STB(ZP, AMU, US1	R.F.ZO.NSL.W.	X.WY.DWX.DWY.	DF.TX.NKK)
	COMMUN/WIND/WDEL(34.11.2)	. IMU. IMUM. AM	DU(34).0W(34	11.27
	SWXR(34), WYR(34), RAMJ. ALFA	UREF.VREF.U	0000499000004044 DHF	*****
	CUMMUN/ST/AL		<i></i>	
	IF(NST.WE.1) GU TO 100			· · · ·
	IX=05549			
	CALL THIT		•	•
100	O CONTINUE			
	7 = 7 P + 7 0			
		V 0.4V (10.000 70	1.1.1.1.10(1) I (2.1)	
	$= \frac{1}{1} $	A, UWI, USIR, F	, KUSTR, 14)	
1 4 1	1000000000000000000000000000000000000			
141				
	CV-U.			
4 6 1				
1.21	L CALL DRYDEN(Z, AMU, USTR, F,	WX, DU, DV, DW, I	DI, IX, NKK)	
161	1 WX = WX + DU	44 ⁻		
	M X = M X + D V			
	KELUKN			
	END		· ·	
		216		•

Subroutine DRYDEN

The subroutine DRYDEN first calls the subroutine GAUSS which generates a Gaussian white noise random signal. The random signal is then passed through a filter which generates the fluctuating output having a spectrum function of the Dryden form which fits the data of Kaimal [3-3]. The subroutine DRYDEN then returns the fluctuating wind components, DU, DV and DW to the subroutine STB.

The subroutine DRYDEN utilizes the stability parameter, μ , the friction velocity, u_* , the Coriolis parameter, f, and the wind speed at height, z. The scale frequencies, η_0 , and turbulence intensities, σ^2 , are computed internally in the subroutine.

Nomenclature

Subroutine DRYDEN(Z,SMU,USTR,F,V,DU,DV,DW,DT,IX,NKK)

Z	Height (m)	[INPUT]
SMU	Stability parameter, μ	[INPUT]
USTR	Friction velocity, u_{\star} (m s ⁻¹)	[INPUT]
F	Coriolis parameter, f (s ⁻¹)	[INPUT]
DU	Wind fluctuation in longitudinal direction (m s^{-1})	[INPUT]
DV	Wind fluctuation in lateral direction (m s ^{-1})	[OUTPUT]
DW	Wind fluctuation in vertical direction (m s ^{-1})	[OUTPUT]
DT	Time increment of the turbulent fluctuations (s)	[INPUT]
IX	Starting integer for generating random signal	[SPACE]
NKK	Total number of terms for z transform	[INPUT]

Listing of Subroutine DRYDEN

SUBRUTINE DRIDEN(2, SMU, USTR, F, V, UU, DV, DW, T, IX, NKK) DIMENSION X(10), Y(10), FO(3), SIG(3), AK(3), AC(3) CUMMUN/SI/AL ZAL=Z/AL RI=ZAL/(1.+4.5*ZAL) IF(RI-0.0288)d1, 61, 82 81 FU(1)=0.014 GU TU 83 82 FO(1)=0.5*RL 83 IF(RI=0.0176) 84,84,85 84 FO(2)=0.0265

ORIGINAL PAGE IS OF POOR QUALITY

```
GU TO 86
 85 FO(2)=1.5*R1
 80 IF (41-0.0343) 0/,0/,80
 07 FO(3)=0.0962
    GU 10 89
 88 FO(3)=2.8*R1
 89 IF (ZAL-1.) 95, 90, 96
 95 IF (ZAL-1.22) 97,94,94
 94 SIG(3)=0.
    60 10 98
 95 SIG(3)=1.3-0.13*2AL**0.5
    GN 10 98
97 STG(3)=6.49-5.32*4AL
 98 SIG(2)=SIG(3)/(0.177+0.00277*2)**0.4
    SIG(1)=$IG(3)/(0.583+0.00139*Z)**0.8
    DD 99 KK=1,3
    AK(KK)=85.78*V*FU(KK)*SIG(KK)*SIG(KK)/Z
    AC(KK)=23.85*V*FU(KK)/2
99 CONFINUE
    100 DO 130 1=1,NKK
    CALL GAUSS(1x, 1, 0, R)
    X(T) = K
130 CONTINUE
    Y(1) = 0.
    C=EXP(-AC(NBB)*T)
    D = (SQRT(AK(NBB))) * (1 - C) / AC(NBB)
    DU 141 1=2,NKK
    Y(1) = C * Y(1-1) + O * X(1-1)
141 CONTINUE
    IF (NBB-2) 142,143,144
142 DU=Y(NKK)
    GO 10 145
143 UV=1(NKK)
    GO 10 145
144 DW=X(MKK)
145 CUNPENUE
    NBB=VBB+1
    1F(NBB.4E.3) GU 10 100.
    RETURN
    END
```

Subroutine GAUSS

The subroutine GAUSS is called by the subroutine DRYDEN. Each time GAUSS is called it generates a new random number. Random numbers generated by GAUSS are white noise having a Gaussian distribution.

Nomenclature

Subroutine GAUSS (IX,S,AM,V)

IX	Arbitrary starting number, $IX = 65549$	[INPUT]
S	Adjusting number, setting S = 1.0 gives standard deviation of unity	[INPUT]
AM	Adjusting number, setting AM = 0.0 gives zero mean	[INPUT]
V	Random number output	[OUTPUT]

Listing of Subroutine GAUSS

```
SUBROUTINE GAUSS(1X,S,AM,V)

REAL*8 Y

A=0.0

DU 50 1=1,12

IY=1X*65539

IF(IY)5,6,6

5 IY=IY+2147483647+1

5 Y=IY

Y=Y*0.4656613D=9

IX=IY

V=(A-6.0)*S+AM

RETURN

HUD
```

ORIGINAL PAGE IS OF POOR QUALITY

Subroutine INIT

The subroutine INIT is called once by the subroutine STB to initiate storage of the data. Subroutine INIT stores the data according to the grid system arrangement shown in Figure 3C-1. The data are stored as WDEL (I,J,K) where each row designated by J corresponds to the wind difference at that elevation as explained in Section 3.1. Each column designated by I represents a prescribed value of μ ranging from -333.34 to 216.67. The index K=1 represents longitudinal wind speed and K=2 represents lateral wind speed. The stored data is transferred to the subroutine WINDF through a common statement.

Figure 3C-1 Grid System: K=1 Corresponds to $\Delta \widehat{W}_{x} = \widehat{W}_{y}(\widehat{z} = 0.15) - W_{x}(\widehat{z})$ and K=2 Corresponds to $\widehat{W}_{y} = \widehat{W}_{y}(\widehat{z}) - \widehat{W}_{y}(\widehat{z}^{*} = 0.15)$

Listing of Subroutine INIT

```
SUBSIDITIVE INTI
      CHIVA JN/ALND/ NDEL(34,11,2),1NU,1NUM,AMUD(34),DW(34,11,2),
     SWXR(34), WIR(34), RAMU, ALEA, UREE, VREE, UDEE
  200 FORMAT(8F10.4)
  400 FORMAT(11F5.2)
C*****
                    FEED IN INTIAL DATA NU
      READ(5,200) (AMUU(1),1=1,34)
(*****
                    PERD IN DATA WDEL
      U13 K=1,2
      Do 3 1=1,34
    3 READ(5,400) (WUEL(1,1,K),U=1,11)
C*****
                    FEED IN DATA DWX/DZ AND DWY/DZ
      2 MAX=0.15
      2411=0.001
      DZ=(ZMAX-ZMIN)/10.
      D.) 2 K=1,2
      DJ 2 1=1,34
      U_{4}(1, 11, K) = (WUEL(1, 11, K) - ADEL(1, 10, K))/DZ
      UN(1,1,K)=(WDEG(1,2,K)-WDEG(1,1,K))/UZ
      PU 2 J=2,10
      D_{M}(1, J, K) = (WDEL(1, J+1, K) - WDEL(1, J-1, K)) / DZ/2.
    2 CONTINUE
      RAMU=-400.
      ALFA=1.0
    1 REPURA
      r yD
```

Subroutine WINDF

ORIGINAL PAGE IS

OF POOR QUALITY

The WINDF subroutine is called by the subroutine STB for values of μ and ż. Interpolation is performed by an area-weighting method for the velocity at the elevation and for the stability condition, μ , from the tabulated data placed in storage by subroutine INIT. The area-weighting interpolation method is illustrated in Figure 3C-2.

Figure 3C-2 Area-Weighting Technique

The area-weighting scheme calculates the velocity and velocity gradient at the specified point by using the four nearest neighboring grid point The velocity at point P is given by: values.

$$W_{p} = \frac{1}{A} [A_{1}W_{1} + A_{2}W_{2} + A_{3}W_{3} + A_{4}W_{4}]$$

where

$$A = A_1 + A_2 + A_3 + A_4$$

The same interpolation method is used for the velocity gradients.

Nomenclature

Subroutine WINDF(AMU,Z,WX,WY,DWX,DWY,USTR,F,ROSTR)

AMU Atmospheric stability parameter, μ [INPUT]

Z	Height (m)	[INPUT]
WX	Wind speed in the x direction (m s^{-1})	[OUTPUT]
WY	Wind speed in the y direction $(m s^{-1})$	[OUTPUT]
DWX	Wind speed gradient in z direction (s^{-1})	
DWY	Wind speed gradient in z direction (s^{-1})	
USTR	Friction velocity, u_{\star} (m s ⁻¹)	[INPUT]
F	Coriolis parameter (s ⁻¹)	[INPUT]
ROSTR	Rossby number, Ro	[INPUT]

Listing of Subroutine WINDF

```
SJERDUTINE WINDF (AMU,Z,WX,WY,DWX,DWY,USIR,F,ROSTE,12)
                    C_{1} = M_{1} = M_{1
                 SAAR(34), AIR(34), RAMU, AURA, URER, VREP, UDEF
                    COMMIN/ST/AL
                    DAUJ=AMU-RAMU
                    IF(ANS(DMU)-0.01) 3,4,4
             4 18(AMU.LI.AMUU(1).UK.AMU.GE.AMUU(34)) GO 10 8
                    AL=0.4*JSTR/(r*Amu)
                    RAMISAMU
                    I=1
             9 1=1+1
                     IF(AMU.GF.AMUU(I)) GU IU 9
                     140=1
                     1404=1-1
                    ALFA=AMU#0.06-IMUM+21
                    UREF=AUFA*wDEL(IMU,1,1)+(1.-AUFA)*wDEL(IMUM,1,1)
                     VREF=A1FA*WDEL(1MU,1,2)+(1-A4FA)*WDEL(IMUM,1,2)
                    WRITE(6,16) UREF, VREF
          16 EURMAI(2X, 'UREE' =', F9.4, 3x, 'VREE' =', F9.4)
                    UDEF=(ALJG(RUS1F#0.001+1.0)+0.01125*AMU)/0.4
*********
                                                                  CUMPUTE ZBAR
              3 L=2*F/USIR
                     IF (Z.LE.0.001) GO TO 15
                    J = I
                    ZP=0.001
             5 ZP=ZP+0.01490
                    J = J + 1
                     IF(J.GE.12) GU IU /
                    IF(Z.GT.ZP) GO TU 5
                    14=1
                     1 Z M = J - 1
C******
                                                                   COMPUTE AXUEL, WYDEL, WXF, WYF, WX, WY
                    DALFA=1.-ALFA
                    PETA=(2-0.001)/0.0149-(12M-1)
                    DBETA=1.-BETA
```

```
WXDEG=DAGFA*OBETA*WDEG(IMUM, IZM, 1)+DETA*DALEA*
  SNDRU(IMUM, IZ, 1) + ALFA*UBETA*WUEL(1MU, 1ZM, 1) + ALFA*DETA*
  SHOEL(14J,1Z,1)
   NYDEL=DALFA*DBETA*WDEL(IMUM, 12M, 2)+DETA*DALFA*
  SWDED(IMUM, IZ, 2) + ALFA*DBE CA*WDEL(INU, 1ZM, 2) + ALFA*BETA*
  SWDED(1MU, 12,2)
   WX=JREF-WXDEL+UDEF
   MY=MYDEL-VKEF
   υνχ=9ΑυΓΑ*ΟΝεΓΑ*ΕΝ(ΙΜυΝ,ΙΖΜ,Ι)+ΝΕΓΑ*ΟΑΓΕΑ*ΟΝ(ΙΜυΝ,ΙΖ,Ι)
  S+ΑΠΕΑ*ΟΒΕΤΑ*ΟΝ(ΙΝΟ,ΙΖΜ,Ι)+ΑΔΕΑ*ΟυΤΑ*Ον(ΙΝΟ,ΙΖ,Ι)
   UWY=046FA*DBETA*UW(1MUM,T2M,2)+BETA*DALFA*DW(1MUM,1Z,2)
  S+ALEA*OBETA*OW(INU, 12M, 2) +ALEA*BETA*OW(1MU, 12, 2)
   WX=WX*USIR
   WY=WY+USER
   DOX SUNX *E
   DWY=DWY*F
   GO 10 1
  / WRITE(6,700)
   GO 10 1
15 wY=0.
    *X=USIR*(ALUG(RUSIR*Z+1.)+11.25*AMU*Z)/0.4
   6.1 P.J I
 8 WHITE(6,710)
110 FORMAT(5%, 'AMU IS OUT OF REGION')
100 FURMAL(2X, 12 IS LARGER THAN 0.151)
 1 \quad Z=Z*JSIR/F
   RETURN
```

ENU

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX 4A

TABULATED FRONTAL DATA

Tabulated data for two cold air synoptic fronts are given in this appendix. The tables have, due to their length, been split into six parts covering columns 1 through 20, 21 through 40, etc. The tabulated values of W_{χ} are values relative to the storm motion. The frontal speed \overline{W}_{χ} is given at the top of the table for converting W_{χ} to its value relative to the ground.

The case numbers for the two storm fronts studied are listed at the top of the table. Also listed at the top of the table are the horizontal length scales for the given wind record. The horizontal extent of each data set varies because of the data reduction procedure. Hence, the length of field, L, in kilometers and the horizontal grid spacing, Δx , are specified on each table. The vertical extent of each field is taken as 500 m with 50 m vertical grid spacing.

ORIGINAL PAGE IS OF POOR QUALITY

								•				•																						
່ ທ				۰.										n Niceron														1						
Ξ																																		
ς Υ				 .	- 0	, cip	8	.	n ,3		ŝ	-	_	4	m	m	5	0		.	1.0	ò	.			00	n q	5 v			2	~ <	.	- m
ິ			20		0 0		4	ar c	N 6	•	Ŷ	7	07		ġ.		.			e c	4 (p=1	7			9	F.	-		-	20	- <u>1</u>	ن ق ر	• -	5
13			19	0.2	0	999 199	4.0	0.0		1 0 1 0	0		39	6.0	9.0	5	0.0	9	ດ ເຊິ່ງ	91 .C			-2.0		53	-			- 35	20	E.	~ `	0	5
307			16	0.2	. 0	5.4	4.2	5. N:	4 n 10 N 2	2 - 1	0	5.3-	36	5.1	4.9	4.0	ع• 3	5 (4	0 4	• •	4 F.	-1.4	-2.0	:	56	3.6	8			2.2	5°2	н : Н :	2 a	2.0-
]			11	9	N		4.4	0.4	ວ : ກ.ເ	2		-0.5	37.	4.2	3.9	2.0	1.7	۰. ۲	с. М	-i :	•••	-1.5	-2.1		51	7.8	5.1	5 r 5 s	10.01	10.0	9.4		5 - C	4.0
ase			10	6.3	0.1		4.4	7 ° 7		, n , n	0	-1.1	3 b	4.5	4.J	4.0	2.9	5.P	-1 i -1 (0 10	-1.6	-2-1		0 0 0	7.4	9	רי ה ני מ	0.01	0.01	7.5	3	- n	0.0
3 :::			15	6.3	7.0	0 0	4.4	Т.	2.0	0	-0.4	-1.7	35	4 . E	4.0	4.0	4.4	4°. 0	0 i N i			-1.0	-2.2		5	ъ.	8.8	ב ב יייי		10.0	9.4	۰. ۲	- -	0 1
ront	• ,		14	чт • •		9	4.3	.0. n				2.3	34	5.1	5.0	5.0	4	4.0		9 ×		بالم	-2.2		54	0.8	Э	ר ת נית		10.0	6.7	7.5		-1.0
ЪГ	7m		13	4			4.9	с , п	2.0			2.2	E E	5.4	e.d	5.5	5 ° 4	4.1	4 . M	20 : C		-2.0	-2.3		53	d . 1	د . م	ר מ ייי ג מ		5	6.1	а. Ф	л. Т.С	-1.2
о С С	153,		12	4 .0	~ ~ ~	0	4.2	4 • E	0	- 0		4	32	5.7	5.5	0.0	6.0	4.1			1 m	5.1-	-2-3		52.	8.1	ť. 4	0 20 20	• • • •	5	1 ° 2	ð. 5	4 0	4.4
for	=X∆	·	11	6 ° 4	n -		4.2	е. е.	5 C			5	31	0.0	6.0	• • 5	6.1	5.0	.	2.0	• ~		5.3		2	7° 9	e.3	ດ ສູ	- - -	0.5	л , я	0 •	n.c	-1.6
, ж	tkm,	2	10		N 0	, ,	4.4	3°5	۲.3 ۲.3	n			30	7.0	6 . 9	6.4	0.2	0.0	0. 9.0	3.2		1.6			50	8 ° 3	8.2	8 4	o u		0.9	ç.ç		
ed.	17.4		Э	ۍ و. ا			5.5	ن. م	2.7		ן ביי היי	2.5	57.	0.3	2.0	6.7	6. j	0.U	4.1	3,		1.5	2.2		45	ь.1	6.1	ກ. າ	n. •. •.		4.1	5. 0	e .	50
Spe	<u> </u>		39	m :	NO			8°.8	0			1	e.		5.1		4.0	с. о	6•1			- 	2.2		40	ч.1 .	<u>о</u> •р		n			* •	ا بر د بر د	10 10 10
lind			٢		N 4	, m	0			0.1			5	0	2	-	0,70	0.0		.	, - , -		1		5		8.0	2	23		ं • • •	0.4	ן קייי קייי	N D
al k			\$. و.		• • • •		ур. , Эр. •		 	, i		0	0				0.		3			~		.				•		4	2		10
uibi			.0	م	0.0		4	С.	а. Э	n : n :			8 2			 	• 1 •	9	m, A	о •	2 - C	17	5 .0		er ن	9	ŝ	ب ب	 			5		
gitu				0		n, c	. m	e S	0	5 n 1 2 1		i di I m	~			9	9	.s.	ê.	0 : 4 :	<u>م د</u>	4 0 1 2	1 -2		4	0	с.	m.	n c - 1	9 4 2 9	10	ŝ	: ب ا	
Lon			.9	9 5		- 9	5	m. m	0 I	0 (N /7	្រាំ	~ ~	9		a a a	у Э	7.5	4 4	4 i	9 c				4	8	-	0	ie . vr o	n a	5 5 5	0.2	о,	17
(a)			m ,	• •	، ه 		• •	ч ч					23	e e		د. م	لا ب.	ъ.	जुर्म जुर्म	0 ÷			1 -2-		64	2 7.	в Л.	۰	• • > >		- D	0 2.	0 73	
I11				¢	6 6		đ		2			1	22	9		i in	0	, 5.(4	4	• •				42		• •	0				1 2.	•••	
le 4			-	6 • 2	0.4		4	э.с	() (-			23	0			0°0	л. Л	1.1) • • · · · · · · · · · · · · · · · · ·	10	10	- 2 -		14	0	0	٥	0.4		4	7	•	
Tab				11	<i>ר</i> ב	20	-	۵	ų	+ •	n	1 - • 1			. 0.7	ת י	æ	ļ	0	n	J 7	1 ~ 1				11	2	ת	י טו	- 6) n	Ŧ	·n ·	4 -4

Table 4A-1(a) Continued

																4.5								<u>م</u> مر ، مَدَ					7	Ĵ.				
	с () я	9°0	1.3	1.0	о с м с		2.6	2.1	0.3		•	001	-J. 0	-2-8	-2.7	4.	.3.6	0				2					a A							
	66	1.1	1.0	1.2	0) c	2 2 2 2 2 2 2	9.1	0.0	. A . O		66	2.5	2.4	2.3	0 	3.2	с. П		0 (7 (х. ¹								
	76	4.4	1.7	1.9	0.0	р г • с		2.2	0.0			86	- 0 - 7 -	2.0	. A . T .	2.3		0 															4	,
•	17	1.7	2.4	2.6	5.5	2.0	0 m	2.8	0.0	0.1		16	1.5 .			9.1.			4			R . 0												
	70	2.0	3.2	3.3		er C •			0.1			96	-1.0		-0°			0 			ວ່າ ວ່າ	1.2												
с. С	<i>د۲</i>	10.00 10.00	м. М	4.0	0 ·		•	5	0.1			3 5	· · · ·			0.2		-		- - -													•	
Ч.	4	4.0	5°.3	0.0	9	ייג •		4.5	U.1	۰ ب		94	0.0	0.0	2.4	- 6 - 6	w W	ч. Ч.	ר. יד	0 ×		5.0											: :	
	73	0°5	6 • 6	6.0	0 9 9	ວ ເ ສິ່ງ		5.1	0.1			59	č. 5	4.0	5.2	0°3	6.7	6.7	с. В		•	 		113	.0.6	0 ° 0					ю. С.		- E . 2	- 6 - 2
	72	6.3 7.6	О. Р	e.]	6°.				0.2	-0.4		42	6.0	٤.0	8.0	0.0	0.01	0.0	P.	2.9		1.2		112	. ç.ç.								- 8 - 2	
	11	6.7 7.4	р. В	8.1	ь. 1		 		c•5			16	12.0	12.0	ы. Э	10.1	10.5		۲.۲	ц Т				111	4 0 -	4.0-						0	- 9 - 1	-8.1
н 1 1	, 1 1 1 1 1	0.1		h.2	2.2	N -	 		0.2	-0.3		50	12.0	12.0	10.7	11.1	11.0	10.5	<u>د.</u> ۲	ດ 2	ч г • с	4		110	m. 0	- e . 3	4						-6.1	-8.0
	ور	7.3 8.0		. 7 - 8	ເດີ. ເຊິ່ງ	ה ה ה	2 × ×	9	0.5	-0-5		53	10.5	10.7	12.0	12.1	11.5	10.8	10.0	, .		0.0		109	-6.2	7.9-			ю г о г		10	- E - E	- 8.0	-8.0
	a Q	7.7	51 - B	٤., ۶	2°5		1.6		0.7	- 0 - 5		39 79	9.0	<u>ч</u> .	10.01	10.6	12.0	11.1	10.0	ູ່ກໍ່ເ ເບ	۷× • •	10	·	106	-6.1		-0.1	0	0			0.19	0.0-	-7.6.
	67	о. ,	6.2	6 . 3	8°5	N		6.1	0.4	0.1		LR	7.5	0.°3	ю. С	o.6	11.6	10.0	10.0	- -		0		107	-6.0	-6.0	0.0	-0-1-0	4 i		2.0	0	-1.6	-7.2
	0 0	6.1 . 8	8.2	8.2	8.1			9	1.2	-0-1		96	é.0	4.7	5°0	6.3	8°9	6.3	с. К.	1.2	n c n c	, m , c		100	• : <u>-</u> :	-5.0	۰, ۰, ۰ د • ۰ •); ; ;			0 - 6 - 9 -		-7.2	-6.6
	ç ç	8°3	6.1	8.2	8.1			6.1	1.5	0.0		85	1.9	н. Н. Э	3.2	7.0	9.9		. 7.0	9 4			•	105	-5.2.	-5.1	-5-1	9	0,0 9,0 1,0		0.4 0.4	10	-6.8	- Ó . 4
	64	8.2		8.1	0.8	0 : 8 :	D 0	9	1.7	0.5		4 9	-2.1	-2.0	0.8	5.6	0.0	9.0	9	0 9	2,4	0	1	104	-4.8	7.4-	-4.6	-2.1	5. 5. 1.			ھر ا م. د	-6.4	0.0-
	e a	-1 - - 	0	8.1	2	ж - г	n a - c	9	2.0	1.0		63	0.0	0.1	2.0	4.5	4.0	5°C	0 0	41	n - n -	-0-5		103	4.4-	-4.2	-4-1	-4.7	0 I 1		0.4 2.4	- 4 - 1	- 6- 0	-4.8
	2	о • Я • Я	د ه	7.4			n (2.0	ຊ ໍ ດ		6'5 R	0.3	0.3	1,8		3.0	4.0	4 0	τ. Γ	5 2 1 0			102	0.7-	-3° 8	-3.7		0 0 4 1			- 6.0	-4.8	-3.6
•	10	7.Y	1.5	1.7	7.4	97 : 1) 4 	0	7.1	0.5		81	0.6	0.5	1.5	2.0	2.0	Э. С	رد د		ė i N įs			101	-3.5	-3.3	-3.5-	5 ° 5	- - -		0'U 1 1 1	- 5 - 0	-3.0	-2.4
			- - - - -	Ð	~	د م		درمان م					-		ጉ	æ	-	0	'n	4	.	4				0	ת	10 *	- ;	o .	n -1		2	1

Table 4A-1(b) Lateral Wind Speed, W_y , for Cold Front; Case 1, 0307, W_x =9.3 m s⁻¹

L=17.4 km, ∆X=153.7 m

20	00000000000000000000000000000000000000	40	MM000000000 000000000 11	60	202020200020
19	4 M M M M M M M M M M M M M M M M M M M	39		26	000000000000000000000000000000000000000
16	04040400400	36	00400000000000000	2 K	000000-0000
17	40000000000000000000000000000000000000	37	00000000000000000000000000000000000000	51	00000000000000000000000000000000000000
10	44444999999999999999999999999999999999	36	2000400H0NH	D D	
15	« 10 4 2 C 10 M M K 4	35	444MV422002	55	6666684 N 606
14	4 JJ J J J J J J J J J J J J J J J J J	34	4MJWNNHH500	5.4	00007140000 NNHHH000000
13	404204444444 270004444444	33	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	53	COCCCHHNHN
12	444440000	32	4 W W W W W W W W W W W W W W W W W W W	52	000000000000000000000000000000000000000
11	4444444400 22020442400	31	4444494422000 2019144040200	51	
10		30	*******	50	
Ъ.	44440000000000	29	44414 NN0222	49	
æ	44444000000000 0	5.8	******	9 7	4449933333999 444999400000
٢		27	444₩ИУИН000	47	
و. د	44444MNN400	20	4 M N N N N N O O O O O	40	
ŝ	44444MMV400 044408WMCVC	25	MMH0000000	45	
4	wa4444www woo	24	00000000000000000000000000000000000000	44	
m		23	00000000000000000000000000000000000000	4.3	~~~~~~~~~~
'n		22	4444MNNH-100	42	10000000000000000000000000000000000000
-		17	4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	41	41030333333

ORIGINAL PAGE IS OF POOR QUALITY

Table 4A-1(b) Continued

					•										_	_	-			_	_	_													
D R	6 4 8 0	0 0 0 0	4.0	4.0	4.0	4.0	2.0	5. 7	0	•	100	5.4		5.1	5 .0	4.9	5.0	5 5	4		8°0	2													
19	3°9'	4 4	4.0	9 .0	4.0	9°9	2.0	е •	0		6.6	5.1	0°0	4.9	4 ° 8	19 17 17	9	4 V	4.2	20 M	9 7	0.5	•					Ŧ							
7 te		 	4.0	4.0	4.0	1°5	2.0		0		86	4.9	4 . d	4.7	4 • 0	4.0	6 .4		4.2	у. С	5.0	с . 5													,
77	2 8 2	0 m 0 m	• •	4.0	4.0	2.)	2.0	0.0	0. 0		97	4.6	4.5	4.4	4 . 4	4.4	4.4	4 . 5	4.2	20 - M	0 - 7 - 0	c •0													
70	4.4	5.7 7	3.0	3°C	ي. د	2.3	1.4	0.0	0.0		20	ų s	4.3	4.2	5 • 4	£.4	4.2	4°3	3	2.4	2•C	0. S													
75	2.1	с с 5 г	2.0	2.6	2.0	۲. ۲	1.6	1.0	0 0		5	4.U	4 °C	4.0	4.1	4.1	4 . C	4.0	2.1	۲.۲	2.0	و. ع													
14	1. 0.0	1.0	1.5	1.0	1.4	1.4	1.7	0.1	5°5		42	2.0	1.7	2.7	3,0	о. • е	з.0	3°0	7 •0	1.0	0.	0.0													
75		0 9 0 9	1.0	1.2	6.0	•••	1.6	0.1	0.0		E A	0.0	1.3	1.3	2,0	2.0	2.0	2.6	1.7	0.1	о. О	о • 0		13	0 . 4	6°3	6 • 2	6.1	, e , e			4	9 A	2.0	^
. 7.1		0.2	0°5	0.6	1.2	1.3	1.5	0.2	0 • • •		52	0.2	0°0	0°0	1.U	1.6	1.0	1.0	1.5	0.1	0°0	0.0		12 1	6.4	6.3	6.2	6.1	0	n.	4.7	4 ° 3	4	5 °0	۰. ٥
11	 	0.0	0.5	1.4	1.4	1.5	1.4	0.2	0.1		16	0.4 -	0.0	0.0	0.0	1.1	1.1	1.2	1.2	0.2	0.0	0.0	•	11 1	6.3	6.2	0.2	6.1	9 ° 9	5.3	4.7	а. 1	4.0	2.0	0 . 5
70	33	2 9 0 0	1.3	2.0	1.7	J. 5	1.3	(, J	U •1		06	- 7 - D	0°0	0.0	0.0	0.7	c. J	9.0	5.0	0.2	0°0	0.0		10.1	6.3	6.2	6.1	• I	5°0	5.2	4°. 7	4: •	4.0	7•0 7	c.5
50	 	ء م د د	1.0	2.0	7 ° 0	2.0	1.2	0.3	0.1		63	5 D	0.0	0°.0	0.1	6.9	C.3	V.4	0.7	6. J	0.0			1 50	6.j	6.2	6.1	0.0		5,2	4-6	Т. Т.	5.5	2.0	5.5
20	3 3 3 9		5.6	2.0	1.6	1.6	1.1	6 .0	1-0		a a	1.1	0.0	0.0	0.1	ر . ا	u.7	38°0	4.0	٤.0	0-0	ر. د		UK 1	b .2	b.1	6. l	۵. С	5.5	5.2	4.0	۳.4	2.5	2.0	5° 0
5	D D D D D D D D D D D D D D D D D D D	0.0	4	1.8	1.6	1.6	1.0	U. 2	c.1		67	1.5 -	0.5	0.0	6.1	1.1	1.1	1.2	5.0	9.0	0°0	0.6		07 1	ó.2	6.1	0.1	6.0	5.5	5.2	4.6	÷.	6 °	2.0	0°5
0	00	о п о о	5.0	1.0	1.4	1.4	9.0	0.2	с• Г		¢,		1.0 -	0.0	0.12	1.0	1.0	1.6	1.5	1.0		0 • N	•	06 1	6.1	6.1	6.0	6. U	5. 5	5.1	4.0	6 ° 3	9°6	2.6	5° 0
65 -	00	30	, m	4.1	1.2	1.2	0.7	0,2			65	1.8 -	1.5 -	0.0	6.2	2.0	2.0	2.0.	2.0	1.3	0.0	0.0		05 1	6.1	6.1	0.0	5.8	5.5	5.1	4.6	4.2	5°C	2.0	0.5
44	00			1.2	1.0	1.0	0.6	0.2	1.0		49	2.0 -	3°0	0.0		0 ° C	3.0	0.°E	2.4	1.7	0.0	0.0		04 1	6.1	6.0	6.0	5.7	5.4	5.1	4. 6	4.2	6. M	2.0	. .0
63	00.0	00	4.0	1.0	9.0	ر. e	¢.0	0.1	0°0		ę 3	0.0	0.5	0.0	2.7	4.0	4.0	4.0	2.8	2.0	0.2	0.0		50	0.0	6.0	5.6	5.5	5.3	5,1	4.0	4.2	9 . 6	2.0	0.5
2.0		0.0	4	9.0	0.0	0°0	9 . 9	0.1	0 0		79.7	0.9	- 0. E	7.0	4.0	4.0	4.0	4.0	3 • 2	2°.0	0.4	ر• د ۱		02 1	6.0	5 . 6	0°.0	ۍ ، د	5.1.	5.0	4.6	4.2	٤.٢	2.0	0,5 0
0	00	0.0	e.0	0.0	r.4	0.4	ن. ²	U. 1	0°0		1 R	٤.3	ć. 5	۲ ۱	e. 0	4 ° C	4°. U	4.0	3.6	2.0	0. J	0.0		01 1	5.7		ۍ م ا	5.1	0.0	5.0	÷.	4 . 2	З.°Б	2.0	ç. 5
		T			n			~	-4				2	ጉ	•	~		0	*	5	2	7		1	1	J	7	D		ō	\$	7	~	2	1
				-	• •	-		. 4				-	-												-+	-									

228

.

ORIGINAL PAGE 1: OF POOR QUALITY

<u> </u>																															
'v'		20	0.0	2 0 2 0	0.0	•••		20	-0.4			40	9 s 5 c			0. s	3°0	0		0.0	0.0	é0	9.0	8 . 0			n. 0		30	0.0	о 0
. С.		19	0.0	2 0 0 0	0.0	1.0				ې د د د	•	39	0.1	5 0			0.5	0		0.1	0.0	59	1.0	6. 0	5 . 5	n st 0 0	0.2	0 0	5 0 5 0	0.0	0.0
یا × =9		18	0.0	2 0 2 0	0.0				0.4	2 0 0 0	•	38	1.2		8-0		0.0	0.0		0.2	0.0	, R	1.0	1.0	1.0	5 0 0	с. 1			0.0	0.0
07, 1		17	0.0	2 0 2 0	0	0.1		N M	-0.2	- 0 0.0	•	37		- ji - c		0.0	0.0	0 0 0			0.0	57	1.0	3.0			0.0	0.0	 	0.0	0.0
03(10	0.0))))	0.0		0	10	-0-1	- 0	•	36	0.1	* =		0.0	0.0	0.0			0.0	80	0.7	0°0	n : 0 :		0°.0	0.0	5	0.0	5.0
е] ,		15	0.0 0))))			3 2 0		0.0	00	•	35	5.0			0.0	0.0)) () ()		0.0	0. 0	5.5	Ú.3	5.3	0		0°.0	ວ ວີ ວິດ	200	-0.1	.
Cas		14	0 0 0 0	2 0 2 0	0.0	0.0	00		0.2	0 C 0 0	•	34	0. 			0	-0.1	0. 0		0°.	3 • •	40	0.0	0.0			-0.1			1.0-	0.0
nt;	Ē	13	0.0	2 0 2 0	0.0	0.0	0 0 0 0	0 0	0.3	000	•	еe				-0-1	-0-1		,	0.0	0°0	53	-0.1	-0-1			-0-1		- 2		0.0
Fro	3°1	12			0.0	0.0	0.0		0.2		•	32	2.0-							-0.1	0.0	52	r. 0	-0-1			-0.1			-0-1	0.0
Cold	(=]5	11	0.0	2 0 0 0	0	0.0		0	0.1	00	•	31	0. 				-0-1	2 C			0.0	51	-0.2	-0-3	0	10	-0.1	0		0.0	0.0
for	(d •	10	0.0		0	-0-1	0 1 1		-0-1	10	•	0 E	~ ~ ~	N			-0-1	2.0		-0.1	0°C	50	-0.2	-0-2			-0.1	0. 0	2 0 2 0	0.0	0.0
_N	k T	د حر	0.0		0.0				-0.2.	- - -		24			-0-	1	-0.1	2 2 2 2			0.0	49	-0.2	-0-2	0 : 0 : 1 :	5 7 F	1.0-			0.0	0.0
d, b	17°2	æ	0.0	2 C	0.0		0.0	0	0.9	2 0 5 0		28	-0-1				-0-1	N 0 0 1		-0-1	0.0	9 1	-0.3	-0-3	N (0 - 0		-0-1			-0-1	0.0
Spee	<u> </u>	٢	0 • •	20	0.0			, , , ,	-0.4	, 20 0	•	27			-0-			2		0.0	0.0	47	-0-2	-0.3	200	10	-0-1		201	-0.1	د. د
ind		Q	0.0	5 0 5 0	-0.1	N 0					•	26	0.00			0.0	-0.1			0.0	0.0	46	-0.2	-0-2			-0.1		2.0	-0-1	0.0
N Le		ŝ	0 ° 0		0.1	0.2			-0.3	- 0		25	0.0			0.0	-0-1			0.0	0°0	45	-0.1	-0.2			-0-1	2 - C	2 0 4 0	-0.2	0.0
tic	•	4	0.0	20 20		-0-1		10	-0-2		•	24	0 ° °			0	-0.1			0.0	0.0	44	0.0	-0.1			-0-1	0.5 0.5	n 4	-0-2	0.0
Ver		T.	•••	2.0				10	-0.1	- 0	•	23	•••			0.0	-0.1	0 - 0 - 0		0.0	0°0	43	0.0	+0.1		0	-0.1		5 0 1		0°C
(c)		N.	0 0	2.1	0.0	3. 7			-0-1	00		22	0.0	5 C	- 0-	0.0	-0.1	-0.7		-0-1	C. U	4.2	0.0	0.0	0 0 0 0		0.0		- C - D - D	-0-	0.0
4A-		, - 1	ວ ເ	200	0.0	0.0	0 0 0 0		0° C	00	•	71	2°0		0	0.0	-0-1	2		- n - 1	0.0	41	U.1	2. 0	0 0 5 0		0.0	50	2 · · ·	0.0	0.0
Table			19	ת כ ק	יסר		0 1	94	ŋ	~ -	•		11	2,7	2		٥	۵.	y	2	-1		11	10	נית	• •	۵	Ω,	# "N	2	-

Continued
$\widehat{\mathbf{O}}$
4A-1 (
Table

				*
о Я	000000000000000000000000000000000000000	100	NOB 40MP 7440 NN44400000	· · · · · · · · · · · · · · · · · · ·
61.	000000000000000000000000000000000000000	66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
7 B	4449000000 4449000000 4440	86		
22	00444040 , 20400444040	16	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	n de la composition d La composition de la c
10	22002000000000000000000000000000000000	96	WWWWWY99990	
75	00000000000000000000000000000000000000	6 2	44MJUHU0000	
74	000000000000000000000000000000000000000	9.4	4 M N N H H O O O O O	
73	H1300303300	63	00000000000000000000000000000000000000	3000030303000 H.O.O.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.
72	4400000000000	35	00000000000000000000000000000000000000	C0000000000000000000000000000000000000
11		15	00000000000000000000000000000000000000	000000000000000000000000000000000000000
70	20200000000000000000000000000000000000	0.6	000000000000000000000000000000000000000	
o ک	8 0 N H 3 3 0 3 3 3 5 5 3 3 5 6 6 6 6 5 6 5 5 5 5 5 5 5 5 5 5 5	63	000000000000000000000000000000000000000	
9 Q	MMHHQQQQQQQ 3Q202220002	80	0000000888000 000000888000 11111	
10	2042022222002 1	64	CCOHRORHCH // // // // // // // // // // // // //	00000000000000000000000000000000000000
Q Q		9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000
ça	MNHHHH00000 00000000000	έS	00000000000000000000000000000000000000	00000000000000000000000000000000000000
64	420000000000000000000000000000000000000	5 5	00000000000000000000000000000000000000	000000000000000000000000000000000000000
63	000000000000000000000000000000000000000	83	00// \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0	00000000000000000000000000000000000000
62	CCCOCKARA0 COCCCKARA0	8,5	0 H 3 P P T N N H 3 3 H H H H D 2 0 3 3 3 0 H H H H H H H H H H H	
01	00000000000000000000000000000000000000	19		

ORIGINAL PAGE IS OF POOR QUALITY

		20	0.0	.0	2.0	2.2	2 ° C	5.9	2.0	1.4	-	40	-2.0	-1.1	0.0	0	р 1 С -	2.0	2.2	4.1.	1.4	o•0	90	-4.0	-2.1	0	1.0	1.9	5.0	00	9.9
<	-	16		1.6	2.0	20	N 0	2	5	1.4	0	36	-2.0	-1.1	0.0		• •		0	P. 1	1.1	•	2.9	-4.0	7.		1.3			2.0	4
		18	0.0		2.1	5		2		1.4	0.1	36	-2.0	-0-2	0.4			0	2.0	1.9	8.0	0.0	58	-4.0	4.	- 0	9.0	2.0	~~~~	л «	
	. , , , , , , , , , , , , , , , , , , ,	17		9.1	2.1	2.2	4 4 7 0		 	5.1	8.0	37	-1.1	0.0	8.0	-	2	~	2.1	2.0	1.0	- -	57	-4.0			9.0		2.0	2 - - -	9
	-	10	0 0	1.7	2.1	2.5	4 F		2.0	1.0	6.0	36	-0.3	0.0	1.2	2.0			2.1	2.0	1.2	r.u	ąç	-4.0	0.7.	10	1.0	1.6	4 N		2.0
		15	10.1	1.7	2.1	2.2		-	2.2	1.1	1.1	3.5	-0.1	0.0	1.0			2	2.2	2.1			55	-4.0	-2-8		٤.1	2.7	7.0 7	N 4 70 5	2
		14	0 -0 -0		2.1	2.2	00	1 (N	N.N	1.8	7.1	34	-1.1	0.0	0.1	9.1	2 0	10	2.2	2.1	1.5	8 ° N	54	-4.0	6.2-		1.6	2.5		ю. т.	5.5
7 m	- 1	513	2.0	1.7	2.1		9.0	5.0	9.0	1.9	1,3	33	-1.6	÷0-	0 • •	4		- C	2.2	2.2	1.7	1.0	53	-4.0	0 0 M -		2.0	20.4	4	4.0	
117.		12	0.7 0.7	1.7	2.1	5		10	2.7	2.0	4.1	32	-2.0	-1.0	0.2	1.2	20		2.3	2.1	1.7	0.6	52	-4.0	4 4 7 7 7 1		2.0	9.5	4.0	0 1 9 1	0
∆X=		11	20	1.7	2.1	2.2			2.8	2.0	1.5	31	-2.0	-1.5	0		20		2.3	2.1	1.7	0 •0	51	-4.0			2.0		4.0	4	5 M
km,	:	2	-0-1	1.7	2.1	2.4	2.7		Э ° 0	2.1	1.0	30	-2.0	-1-3	0.2		10		2.3	2.0	1.7	5.0	50	-3°5	я с -		2.0	0.4	ם: היי	0 .	3. 2
3.2	:	יכ	-0-1	1.7	2.1	4 ¢		. 4. E	3.2	2.1	1.1	67.	+1.6	-1-0	4 N				2.4	2.0	1.0	•••	49	-3.1			2.0	24		2.1	0.7
1		30	1.0-1	9.1	2.0	5°2		-	() () ()	2.1	н. Т.	28	-1.5	-0 ° ¤	0.0			1 C 1	4.2	2.6	1.0	0.0	4 6	-2.6	-1-2	0	2.0			¥•7	9.1
		-	-0-1	0	2.0	5°.	200		3 . 5		1.9	72	5.1.	، ر. ۲	8			1 1 1 1 1 1 1	2.5	2.1	1.0	2	47	-2.2	-1-5		2.0	2.0	. n . m	2.2	4
		۰, ۵	0	-	2.0	5.7			3.7	2.2	а 1	26	-1.0	-0-3	5.0		N 0 N 0		2.5	-2.1	1.0	ວ. ວຸ	46	-2.2	-1-2		2.0	2.5	л сл м	0 0 0 0	1.
		ŝ	00	9	2.0	5.6	- 0 - 0 - 0	0	Э. С	2.2	1.6	25	-C. 6	0.0	-	2.0	N 0 N 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5	2.1	1.6	0.0	45	-2.2			2.0	2 . 	C .	5.0	0.1
		4	0.0	1.6	2.0	2.6	2.0	4	4.0	2.2		24	-0.5	0.9	1.3	2.0	4 C	10	2.4	2.1	1.5	0.1	44	-2.1	-1-2		2.0	2.5	P. 2	0 0 0 0	N C
		•	0.0	1.6	2.0	2.5	0	0	3.6	2.2	1.0	23	-0.3	0.1	1.5		20	10	2.4	2.1	5.7	N • 0	43	-2.1			2.0	2.1		2.0	.0
	e	N	-0-1	1.0	2.0	2.4	0 4 7 7	- 4	£.£	2.3	1.0	26	0.0	.0.1	.	2		10	2.3	2.0	1.5	5 • 0	42	-2.1			1.6	20	5.0	4 9 7 9	0.9
		-1	-0-0	0.0	2.0	2.4			2.4	2.3	1.0	11	0.0	0	.			2.5	2.3	2.0	1.0		41	-7-1			1.2	2.4	2.3	2	5

Table A4-2(a) Longitudinal Wind Speed, W_x, for Cold Front; Case 2, 1050, W_x=7.lm s⁻¹

Table 4A-2(a) Continued

		•	· · · · · · · · · · · · · · · · · · ·	
80	00000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 0.00 0.00 0.00	
52	04004444400 0 20000044400	0.04.000 0.04.000 0.05.000	5 F O H H	•
78		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11001 41001	
11	00040W444W4 9	1 0 4 4 9 9 4 4 5 3 0 4	0000	
10	2222004242474 ••••••		44160 - 3400	
75	0	र्ण्यू व व व व ठ्राव्यू व व व	4 4 4 4 0 N 4 2 2 2	
74	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 4 4 4 4 4 4 2 4 4 4 4 4 4 2 4 4 4 4 4	ब ब ब ब ब ब ब ट ० ० ० ०	
73	00000000000000000000000000000000000000	ນູນູລູລູລູທູ 2.4.ທີ່ຫວັນ 3.1.1.1.1	20000 2000	
12	99094444 9909969 9909969	9494494 280240		
11		939959 939659	0 4 4 0 0 0 9 N 9 4 0 9 N 9 4	
70	4 N W N H O N 4 4 4 4 2 0 0 0 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0	000000 00000	E I MO C M N C O	
64	444 0 0 0 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9	, , , , , , , , , , , , , , , , , , ,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2004000000000 2000000000000000000000000
6 6	44114001441 B	4 4 9 9 4 4 9 9 7 7 4 4 9 9 7 7 4 4		
67	ล้นม้ห้น่อพูญลุพม ต ออพูวอิสวหอตล เกมาอิสวหอตล	400187 700-00	8 6 9 9 H	
00	41040000000000000000000000000000000000	M & O O O O N M N N C U N	4 1 0 4 0 4 0 4 0 4 0 4 0 4 4 4 4 4 4 4	0004000000000 NOV400000000
65		0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64		4 M H O N N 0 N L L N O	5 1 C B 7	0
63		H O O O O O O	M N M M O	0 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9
62 5		00000000000000000000000000000000000000	0 0 0 0 0 0 # M N H O	202040000000
01		・* つ M N ト つ つ ・・・・・・ つ つ N M ff ff	00 M 00 ••••• C M P F	
	····	ם - ם ת כ ו-		*

÷ð,

ORIGINAL PAGE IS OF POOR QUALITY

· · ·		5					
່ທ							
Ξ.		20			7.000 0 0 m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84500010100 84500010100
x=7.		19	0 4 0 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.00 m	1000000 7000000 7111	r 0.10 r 0.10 r	10000000000000000000000000000000000000
50, 1		16	0479477. 0470477	16 8 Q 8 8 9 9 8 1 9 9 1 9 1 9 1 9	8490088 849008	R	
105		17	14600600 1900000 11111	100 100 100 100 100 100 100 100 100 100	0-00000 0-00000 0-400-49	8 0.0 	
e 2,		10	00000000000000000000000000000000000000	1063 113 113 113	0-00-0-0-0 		
Cas		15	11111	20 C C C C C C C C C C C C C C C C C C C	46+646	С Г С С С С Р С С С Г Л Л Г Г Г	0 C P M C 1 C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A C A C A A C A
ont;	·.	14	004000000000000000000000000000000000000	001-0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22221012 22221012 22221012	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00104000000000000000000000000000000000
Fr	7.7m	13	211111 211111 211111	100 M	40 25 48 28 28 28 28 28 28 28 28 28 28 28 28 28	0 0 4 5 0 0 0 7 8 0 1 1 1	00000000000000000000000000000000000000
Cold	[[=)	12	-0.467.000 -0.467.000 -1.1.1.1		2622000 2010010	111 120 111	90000000000000000000000000000000000000
for	1 , ∆	T	0-18000000 0-18000000 11111	160 100 100 100 100 100 100 100 100 100	6676047 MDNHCHN 1111	0 4 C A	CUNUNUN0+044005
۲ ک	2 km	30	0040400 00404000 11111	150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	MN404NNNN000
ed,	=]3.	3	20000000000000000000000000000000000000	и и и и и и и и и и и и и и и и и и и	0 - 1 M C M C H N M K N K C H N	0000 •••• ••• •••	00000000000000000000000000000000000000
l Spe	<u>ل</u> ب	*				00000 111 111	CONGROWING CO
Winc			- 1440 NOA 11111	0 0 0 0 • • • • • • • • • • • • • • • •	H M H J H H H H H H H H H H H H H H H H	0004 M 000 4	90000000000000000000000000000000000000
ral		٩			86986699 10886609 1111	0010 V V 000 V V 000 V V 000 V	00000000000000000000000000000000000000
Late		'n	1111 1000 1000 1000 1000 1000 1000 100	N 0000	20420402		
<u>(</u>		4					
4-2(I		e	010000			4150 4150	
e 4/		N					4NHOHNNNNO 1111111
Tabl		-4	547 51 52 5 57 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				00000000000000000000000000000000000000
				1 1 1 1 1		* 1.1 -	

Table 4A-2(b) Continued

÷

0	0000000000000000	100	, , , , , , , , , , , , , , , , , , ,					.									
61	40000000000000000000000000000000000000	56	9-0	- R C				0 * 0		4							•
18		85	0.7	0 0 0	1 M C	0.0		0 0									
5	033030000000 ,	16	39 29 20 0	8 9 4 0 0 5	0 4 Y	• • •		0.0									
10	CC0C0CCCCCC	96	лл: 	5 3 0 0 0 0		- m -	1) ;) 0 ;	0.0									
15	20200202000 V4422242200	95.		000	2 		0 0 i	0									
74	00000000000 00000000000000000000000000	46	0 NI M N			- 6 ° 0	8 m 9 2 0 0	0 0		•							
5	m 3 0 3 0 3 3 0 0 3 3 3 3 3 0 0 0 0 0 0	6 S	4 0 0 9 6	4.5.			0 . H 0 .	0.0	0.0			0.0	0.0	0 0		0.0	0.0
72		2.5	4 M S		5 6 C	0 9 9 7 7 7	5 .5 5 .4	0.0	0.0	0 0		0.0	0.00	0 	0 0 0 0	0	0.0
7.1	MAN 2000 P & NO ANN AN	16	4 4 0 - 6		4 D V	 	a m (0.0	0.0	0.0		0.0	0.0	•		0	0.0
70		06	4 M	6.9.9 6.9		- U - U - U	a n i	0.0	0.0	0 0 5 :	0	0.0	0.0	0.0	5 C	20	0.0
7 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	40		100	3 3 C	- 01	0 0 0 0	0.0		2 2 2 2 2	0.0	0.0	0	0.0 0))))	0.0
0 R	00000000000000000000000000000000000000	29 29	5 S	ກ ີກ: ວິວິດ	9 J C C	9 C - 0	9 .V. 0 0	0 0 0	0°0	1. o	00	0.0	0.0)	3 C 2 C		0.0
5	00000000000000000000000000000000000000	L a	6.7	0 0 0 2 2 0	0 30 i 2 0 i	- 9.	2.2	0.0	0.0	0.2	0 0 0	0.0	1.9		 	5	3°.3
00	000000000000000000000000000000000000000	0 0	0.0	4 4 0 0 0	* r-	6 .	4 N 2 O C	0.0	0.0	۳. ٥	- 0	0.0	u.1	1.0	 		0.0
65	00000000000000000000000000000000000000	65	00	000	0.0	200	00	0°0	20	т. С с	0	•••	0				0 ° 0
64	00000000000000000000000000000000000000	4	0 ° 0	 0 0 0	- 20	* m 0 0	00		50	4.	00	0.0	0.1		0 0	0	0.0
۶q	MOOOOMMMM40 0000000000000000000000000000	E B	0.0		- v) (7 N P	0.0	0.0	c.2	0.5	0	0.0	0.1		1 0 0		0.0
62	00000000000000000000000000000000000000	8 2	0.0		000	000	0.0	0.0	0.3	0.0	00	0.0		0		0	0.0
10	222022220020 11111	1 R		0 0 s 0 0 s		N N C C	2 C C	0.0	0.4	2.2		0.0	0.0	0. 5 <	- 0 - 0	0	0.0
			11	ים ת		04	n 4.		11	2.2	כג י	1	ø	n ;	19 - 71	- 74	T

234

10

ORIGINAL PAGE IS OF POOR QUALITY

-'s													. • ·			• •																			
E		20	0.0			0	0.0	0.0	-0.1	•••	ے د م	•	40	0.0	0.0	-0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0°0	0.9	0.4	4.0	9" 9	0.2	0		2.0 2.0	0.0	0.0	0.0
×=7.		1.6	0.0	0.0		2.0	0	0.0	0.0	0.0		•••	39	-0.1	-0. M	4.0-	-0-B	-0.2	-0.1	0.0	0.0	0.0	0.0	о О	59	0.4	0.6	0.5	C. 4	0			0	0.0	0.0
о . В		18	-0.1				-0-1	0.0	0.0	0.0	0.0	5 • •	38	0.0	-0.1	-0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	°.0	a N	0.5	0.7	0.7	С. С	•	7, c 2, c		0.1	0.1	0.0
105		17	-0.1	0 0 0 1			10.1	-0-1	•••	•		•	37	0.2	0.2	E.0	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	57	0.4	0.5	0°,	0.6	°.5		20	0.1	0.1	0.0
5		٩ ٩	-0-2			50	-0.2	-0-1	-0.1	-0 -	2 c 2 c	•	, D	0.J	0.4	0.0	, , , 0	0.1	0.0	0.0	0.0	0.0	.0.1	0.0	50	0.3	U.J	0. 4	n 2	4 f	າເ ວັເ		0.1	.	0.0
Case		15	- 5.0-		r q 2 C		-0-	-0-1	-0.1	-0.1); ; ;	•	35	0.2	0.1	0.0	0°0	0.1	0.0	0.0	0.0	Ú.Ú	-0.1	0.0	çç	2.0	0.2	0.2	0 • •	ີ ລິ		1.0	0.0	°	0.0
nt;		14	-0.2			-0-1	-0-2	-0-2	-0-2	-0.1		•	34	0.2	0.2	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	-0-1	0°0	Ĵ4	0.1	0.0	5	0	0			0.0	0.0	0.0
Fro		51	-0.2	0 0 0	10		-0.1	-0.1	-0.2	-0-3	c c c	•	EE	0.1	0.1	0.0	0.0	0.0	-0.1	0.0	3°0	0.0	-0.1	0 0	53	-0.1	-0.2	-0-1	0,2	2 0 2 0			-0.1	0.0	0.0
Cold	7.7m	17	-0.1	20		0	-0.1	-0-1	-0.1			•	32	0.1	() °)	0.0	0.0	0.0	-0.1	-0.1	-0-1	-0.1	-0-	0.0	52	-0.2	- -	N * 0 =		2 · 0		5 N 1 N 1 N	-0-1	0°0	0 0
for ((=)	11	-0-1		0.0	0.1	0.0	0.0	-0-1		0 0 3 2	•	31	0.0	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	- 0 -	-0-1	0.0	51	-0-3	-0-	4°0-				2.0	-0.1	-0-1	0.0
, z	(۵ ۱, ۵)	10	0.0		0.0	0	0.0	0°0.	0.0	0.0	5 0 5 0	•	30	0 * 0	-0-1	-0-1	-0.1	-0-1	-0-2	-0-1	1.01	- 0 - 1		о •	50	4.0-	0.	2	5				-0.2	-0.1	0.0
ч.	펀	بر	0.2			0	0.0	0.10	0 0	0	5 0 5 0	•	67		-0.1	-0-2	-0.1	-0-2	- 0 : 2	-0.1	-0-1	-0.1		2	49	÷0.5	2.1	5	5	2			- 0 - 2		0°0
Spee	=13.	Ð		0 C	0.2	0.2	0.0	0.0	0.0	0. 0	5 c 5 c	•	82. 5	-0.1	-0.2	-0.2	10 ° 5	÷0.2	-0-5	-0-1	-0-1	-0.1		0°0	4 6	- Ú - 4	1 2 1	0.0	0 0 0			10.0	1.0-	-0-1	0.0
ind	ت	2	0.2 1	n 0 0 0	0	10	0.0	0.0	0.1	0	 	•	27	-0-1	-0.2	-0.3	-0.1	-0.1	-0.1	-0.1	10-1	-0-1	-0-	0.0	47	-0-3		- - -	9 - C			100	-0.1	0.0	0.0
A		Ð	0.1			0	0.0	0.0	0.0	0.0	0 0 0	•	20	-0-1	-0-2	-0.2	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	5 • 0	4 Ó	-0-3	-0 	5 	n. 				0.0	0.0	5.0
tica		.			0.0	0	0.0	0.0	0.0	0.0		•	25	-0-1	-0.1	÷0.2	0.0	0.0	-0-1	0.0	0.0	0.0	0	0.0	45	-0.1	10	0				0	0 " 0	3	0.0
Ver		4	-0.2		0	0	0.*0	0.0	0.0	0	00	•	24	0.0	-0-1	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	44	0.0	0	0.0	0.0				0.0	0.0	0.0
()		n	4.0-	- C - C	0.0	0.0	0.0	0.0	0.0			•	23	0.0	-0.1	-0-1	0.0	0.0	0.0	0.0	0.0	0.0	0	° ° °	4 H	0.1	.	.	ח וי סיי	N 0		00	0.0	0.0	0.0
A-2(2	- 0 - 2		0.0	0.0	0.0	0.0	•••		0.0	•	22	0.0	0.0	0.0	0.0	-0-1	0.0	0.0	0.0	0	0 0	0.0	2.4	0.2	n. 0 0	2	n -	•		0.0	0.0	0 : 0	2°0
ole 4		4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0	0°0	0.0	0.0	0.0) () (0 0 0		21	0.0	0.0	0.0	0.0	1 0.1	-0-1	7 • O		3 · 0	0 ()))	0 • • •		0.0			5	9 9 9 0		0.0	0.0	0.0	.
Tat			1.1	אר כ די די	σ	1	0	n i	a r :	n .:	V			11	2	ת	σ	~	o	n	Ŧ	۳.	. •	-•		11	0,1	h 7	o.~	- 6	n c	.#	v 1 .	оı -	-1
Table 4A-2(c) Continued

1

			·····	
60		100	00101111000000000000000000000000000000	
19		· 66	99907799779996 0007790977000	
38	00000000000000000000000000000000000000	86	8897000004MN 44479047440	
17	24080408408 240800088 2411	16	8 7 7 7 8 9 9 9 9 7 7 7 8 9 9 9 7 7 9 9 9 9	
16	**************************************	20	2 2 2 2 0 0 0 0 0 4 M M M	· ,
75	0 - C & C - M & C - C - C - C - C - C - C - C - C - C	55	œ @ % Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	
74	844804022244 292804028041	94.	997 - 999 91 4 4 4 90 4 4 4 6 9 9 9 9 4 4 4 90 4 4 6 9 9 9 9 4 9 4 9 9 9 9 9 9 9 9 9 9	
73	1111 1111 420000000000000000000000000000	63	ъгоо во роча 4 4 0 0 г и и и о о о 4 4 4 0 0 г и и и и о 0 4 4 0	113 8.2 8.1 8.1
72	1111 1111 1111 1111 1111 1111 1111 1111 1111	42	ΦΦΦ4444W444 Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	112 6.2 6.2
71	1 1 1 1 2 4 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	١٢	4.4.4.W.W.W.W.W.W.4. 0.2.2.0.4.202.5.66	111 6 6 6 11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
10	С н С и С К К Ч С М И Н К К Н С Н И М Ф Р И 1	ч 0	00000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100
5.9	С — О Ф С Ф С Ф С Ф С Р К К К — О С Ф С Ф С Ф С Ф К 1 - 1 - 1	J.	2200000000000 MMMC0000NM	5 9 9 7 5 9 9 7 7 9 7 7 7 9 7 7 9 7 7 7 7 9 7 7 7 7
Q Q	40000000000000000000000000000000000000	9 9	00000000000000000000000000000000000000	3.4.46 6.4.6 6.4.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
67	MOCCEMNCN-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-CC-	67	к 96 не не се се се К но 66 се се на И	10 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0	1111 44 0000000000 2000000000000000000000000	80	40000000000000000000000000000000000000	106, 86,44
6.9	4 M 2 H 0 O H 0 H 1 H 1 H 1 0 4 4 F 4 2 6 H 0 H 0 0 4 4 F 4 2 6 H 0 H 0 1 4 5 F 4 2 6 H 1 0 F	85	000000000000000000000000000000000000000	105 8.3 8.3
40		8.4	60000000000000000000000000000000000000	104 8.3 8.3
63		R P	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103 8.3 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
76		82	80000000000000000000000000000000000000	102 8.3 8.3 8.5
61		[P	1 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	101 6.2 6.2
	1070-01470-		- רמשמים אמת כו-	337

236

4

÷

Ł.

APPENDIX 4B

GRAPHICAL ILLUSTRATION OF FRONTAL WIND SPEED PROFILES

In this appendix, the wind speed profiles which an aircraft would encounter approaching along a 3° glide slope through a cold synoptic front are illustrated. Four flight paths having 3° glide slopes and spaced at equal increments along the horizontal extent of the data set are shown in Figure 4B-1. Figures 4B-2 and 4B-3 illustrate the wind speed profiles along the four flight paths. One observes that the winds can be significantly different for aircraft approaching at different times through the same front. Due to the limited spatial extent of the data set the latter flight paths, 3 and 4, do not extend to the full 500 m level and consequently are only plotted to the height at which they pass out of the data set at the righthand margin.

The streamlines on which the flight paths are drawn are based on wind speeds relative to the motion of the front which is 9.3 m s⁻¹ and 7.1 m s⁻¹ for Figures 4B-2 and 4B-3, respectively. The vertical dashed line on the longitudinal velocity profiles illustrate the mean motion of the front, \overline{W}_{x} .

Figure 4B-3 Wind Speed Profiles Along Four Different Flight Paths Through Cold Front, Case 2