MASA

Technical Memorandum 79549

```
    (NASA-TM-79549) THE ANALYSIS OF TEMPORAI N78-27725
    VARIATIONS IN REGIONAL MODELS OF THE
    SARGASSO SEA FROM GEOS-3 ALTIMETRY
Technical Memorandum, Jul. 1975.- Aug. 1976 Unclas
(NASA) 58 P HC A04/MFAO1 CSCL 08C G3/48 25787
```


The Analysis Of Temporal Variations In Regional Models Of The Sargasso Sea From GEOS-3 Altimetry

R. S. Mather, R. Coleman, and B. Hirsch

May 1978

Natıonal Aeronautics and
Space Adminıstration
Goddard Space Flight Center Greenbelt, Maryland 20771

THE ANALYSIS OF TEMPORAL VARIATIONS IN REGIONAL MODELS OF THE SARGASSO SEA FROM GEOS-3 ALTIMETRY

R.S. Mather* Geodynamics Branch
Goddard Space Flight Center
Greenbelt, Md 20771
R. Coleman*
B. Hırsch*
Department of Earth and Planetary Sciences
Johns Hopkins University
Baltımore, Md 21218
May 1978
*On leave of absence from the University of New South Wales, Sydney, Australa.
Presented at the Second International Symposium
"The Use of Artıficial Satellıtes for Geodesy and Geodynamics"
Lagonissi, Greece
May 29 to June 31978
GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

CONTENTS

Page
ABSTRACT vii

1. THE DATA BASE 1
2. REGIONAL SEA SURFACE MODELLING 2
3. CORRELATIONS OF REGIONAL MONTHLY MODELS OF DYNAMIC SEA SURFACE TOPOGRAPHY VARIATIONS WITH SURFACE OCEAN DATA 5
4. THE ANALYSIS OF OVERLAPPING PASSES IN THE SARGASSO SEA 8
5. CONCLUSIONS 10
6. ACKNOWLEDGMENTS 11
7. REFERENCES 11
8. APPENDIX 13
8.1 The Quasr-Stationary Component of the Sea Surface Topography in the Vicinity of the Gulf Stream 13
8.2 Correlations from Overlapping Pass Analysis with Eddies 14
TABLES
Table Page
1 Regional Monthly Solutions for the Shape of the Sargasso Sea from GEOS-3 Altimetry 15
2 Statistics for Overlapping Pass Sets 16
3 Residual Noise (σ in Equation 3) as a Function of Junction Point Size 21
4 The Effect of Allowing for the Ocean Tide on the Root Mean Square Residual (σ) for a Monthly Solution in the Sargasso Sea 21
5 Three Parameter Transformations of Regional Sea Surface Models to the GEM 9 Datum 22
6 Correlations Between Remote Sensed Cyclonic Eddies/Monthly Surface Temperature Means and Dynamic Sea Surface Heights of Regional Models of the Sargasso Sea from GEOS-3 Altimetry 23
7 The Variation of Specific Volume of Sea Water With Temperature 24
8 Spectral Analysis of Overlapping Pass Set 8 (Table 2) 25
9 Spectral Analysis of 32 Sets of Overlapping Passes in Western North Atlantic (For Description of Headings See Footnote of Table 8) 26
ILLUSTRATIONS
Figute Page
A1 Smoothed Guestimates of Quast-Stationary Sea Surface Topography in the Vicmity of the Gulf Stream-Epoch: - July 1975 - August 1976 30
1 The Sargasso Sea Test Area 31
2 Sets of Overlapping Passes of GEOS-3 Altımetry in the Western North Atlantic 32
3 Sea Surface Models of Sargasso Sea - October 1975 Dıffereaces [Tide Corrected Model -. Uncorrected Model] 33
4 Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - July 1975 34
5 Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - August 1975 35
6 Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - September 1975 36
7 Regıonal Model of Dynamic Sea Surface Topography Vanations - Sargasso Sea - October 1975 37
8 Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - November 1975 38
9 Regional Model of Dynamic Sea Surface Topography Varıations - Sargasso Sea - Aprıl 1976 39
10 Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - May 1976 40
11 Regional Model of Dynamic Sea Surface Topography Varnations - Sargasso Sea - June 1976 41
Figure Page
12 Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - July 1976 42
13 Regional Model of Dynamic Sea Surface Topography Vanations - Sargasso Sea - August 1976 43
14 Sargasso Sea Discrepancies Between Average Sea Surface (Oriented on GEM 9) and Marsh 5 Minute Gravimetric Geord. Contour Interval - 50 cm 44
15 Sargasso Sea Variation of Monthly Sea Surface Herghts as a Function of Position (rms residual $\pm \mathrm{cm}$) 45
16 Offset in Longitude for Overlapping Passes as a Function of Tume 46
17 Root Mean Square (RMS) Discrepancy as a Function of Pass Length 47
18 Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles 48 (September 1975)
19 Correlation of Infra-red Imagery with GEOS-3 Altmetry Profiles 49 (October 1975)
20 Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles 50 (November 1975)
21 Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles 51
(December 1975)
22 Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles 52 (April 1976)

THE ANALYSIS OF TEMPORAL VARIATIONS IN REGIONAL MODELS OF THE SARGASSO SEA FROM GEOS-3 ALTIMETRY

R. S. Mather ${ }^{*}$
R. Coleman ${ }^{\star}$
B. Hirsch*

Abstract

The dense coverage of short pulse mode GEOS-3 altimeter data in the western North Atlantic provides a basis for studyıng time variations in the sea surface heights in the Sargasso Sea. Two techniques are utilized in this study.

- the method of regional models; and
- the analysis of overlapping passes.

Monthly models of the Sargasso Sea are produced for the period July to November 1975 and from April to August 1976. The analysis of the helghts of common $0.2^{\circ} \times 0.2^{\circ}$ squares indicates a root mean square (rms) discrepancy of $\pm 43 \mathrm{~cm}$ in values produced from different solutions. Approximately one quarter of this is due to the varıation in geold slope across 0.2° squares. The residual discrepancy is due to m stabilities introduced by varrable pass geometry, unmodelled ocean tides and meoscale variations in sea surface topography. Shortwave maxima and minima in the regional sea surface models are examined for correlations with surface and remote sensed infrared temperature data. On allowing for differences in the quantities being compared, an 88 percent correlation is obtamed between the location of cyclonic eddies obtained from infrared imagery and reported by the National Weather Service, and sea surface height minima in the altimeter models. This figure drops to 59 percent in the case of correlations with maxıma and minima of surface temperature fields.

The analysis of overlapping passes provides a better picture of instantaneous sea state through wavelengths greater than 30 km . The resolution obtaned is signficantly higher ($\pm 33 \mathrm{~cm}$ on average) through the areal representation is limited to 32 selected profiles. Correlation studes with cyclonic and anti-cyclonic ocean eddies from the NIMBUS 6 and GEOS I and II infrared imagery indicate satisfactory agreement being obtained with equivalent sea surface height features 98 percent of the time if time varying factors are allowed for. The spectral analysis of the overlapping

[^0]passes shows once again the high relative precision of the GEOS-3 altimeter in the short pulse mode. The variability of the Satgasso Sea through wavelengths between 150 km and 5000 km is estimated at ± 28 cm . On considerng the magnitude of unmodelled orbital exror this value is in reasonable agreement with oceanographic estimates and is compatible with the eddy kineticenergy. of a wind driven circulation.

An approximate estimation technique shows that the quasi-stationary SST mantainung the Gulf Stream is present in the GEOS-3 data: but cannot be estimated with confidence in the absence of an adequate.geiodal model.

THE ANALYSIS OF TEMPORAL VARIATIONS IN REGIONAL MODELS OF THE SARGASSO SEA FROM GEOS-3 ALTIMETRY

1. THE DATA BASE

The GEOS-3 spacecraft, launched in April 1975, was used to acquire short pulse mode radar altimeter ranges in the form of discrete passes not exceeding 20 minutes in length, off the east coast of the United States. The relative precision of GEOS-3 altimeter data recorded in the Tasman and Coral Seas was found to be $\pm 20 \mathrm{~cm}$ (Mather and Coleman 1977) though the values provided by Wallops Flight Center after pre-processing, are usually in error by up to 2 orders of magnitude greater than this value (Mather et al. 1977, p.30).

These earlier studies indicated that the intensive mode GEOS-3 altimeter data contamed information on regional variations in the height of the sea surface (ζ) with wavelengths which were less than twice the maximum pass length (1.e., less than 9000 km) and with amplitudes which were greater than $\pm 10 \mathrm{~cm}$. It was also found that factors pertaining to either the sea state or else, the method of averaging used in the altimeter, may cause problems in the resolution of features of wavelengths much less than 30 km (Mather 1977, p.25).

The area covered by the dense network of GEOS-3 altımetry is shown in Figure 1. Table 1 sets out a summary of the data avallable in the 1977 GEOS-3 altimeter data bank at Goddard Space Flight Center. The data is catalogued on a monthly basis from April 1975 to August 1976. This data was selected in two different ways to study regional variations in ζ.

In the farst, the intensive mode GEOS-3 altimetry was processed on a monthly regional basis using the intersection of passes to provide a framework of control for the adjustment of the sea surface model (Mather et al. 1977, pp. 37 et seq.). It was assessed that meanngful models of the sea surface could not be obtained unless the number of passes (n) approached 15 and the number of junction points were approximately 4 n . It was decided on this basis, to restrict the study of time variations on a regional basis from monthly analyses, to the period July to November 1975, and April to August 1976. These studies are described in Section 2. Section 3 studies the correlations between such satellite-determined models of the sea surface and therr variations against surface and remote-sensed temperature data and the location of eddies in the test area.

The second data base was prepared using the observation that GEOS-3 groundtracks approximately repeat themselves every 526 revolutions. This occurs after 37.18 days. Profiles of intensive mode GEOS-3 altimetry in the Sargasso Sea test area (Figure 1) which occur over the same groundtrack after a lapse of 526 revolutions or multiples thereof, were sorted into separate data sets. Thirty-two such sets of overlapping passes are available for analysis in the test area, and their groundtracks are shown in Figure 2.

Table 2 sets out detailed information on the 32 sets of overlapping passes which are used in the present study in the Sargasso Sea. Section 4 describes the techniques used in the study of sets of overlapping passes and the results obtamed from the analysis of such data.

2. REGIONAL SEA SURFACE MODELLING

Early studies of intensive mode GEOS-3 altimetry in the Tasman and Coral Seas off eastern Australia (Mather et al. 1977; Mather 1977) indicated that passes of altimetry data provided to Princıpal Investigators were subject to orbital errors varying from $\pm 2 \mathrm{~m}$ to in excess of $\pm 10 \mathrm{~m}$. Pairs of overlapping passes in this data bank were studued, these included a pair where one of the passes was subject to a radial error in excess of 700 m . The relative discrepancy could be reduced to $\pm 61 \mathrm{~cm}$ of which 66 percent occurred with wavelengths equal to twice the length of the pass if the passes were fitted to each other (Mather and Coleman 1977, Tables 1 and 2, Row 1). The improved relative fit was obtamed by applying a correction for tilt c and bias b per pass with lengths in excess of $10^{3} \mathrm{~km}$. In less extreme cases, the root mean square (rms) discrepancy. after allowing for tilt and bias, is significantly smaller. A typical figure (Table 2) is $\pm 30 \mathrm{~cm}$ over a 3000 km pass.

As such, it is possible to model the quasi-stationary sea surface height (ϕ, λ) at the point whose latitude is ϕ and longitude λ in terms of estimates $\zeta_{1 \mathrm{j}}(\phi, \lambda)$ from the j -th element of the 1 -th pass of GEOS-3 altimetry using the relation

$$
\begin{equation*}
\zeta=\zeta_{i j}+b_{1}+c_{1}\left(t_{1 j}-t_{11}\right)+\zeta_{t}+v_{r} \tag{1}
\end{equation*}
$$

on dropping the position identifier, ζ_{t} being the heaght of the combined Earth and ocean tide, $t_{i j}, t_{11}$ the times of the j-th and first elements in the 1 -th pass. v_{r} would represent all unmodelled effects including mesoscale variations in the dynamic sea surface topography (SST).

The estimates of ζ from values ζ_{11} and $\zeta_{\mathrm{k} \ell}$ on the i-th and k -th passes which intersect at P, give two equations of the form at (1), which on combination, give an observation equation of the form

$$
\begin{equation*}
v=\zeta_{\mathrm{ij}}-\zeta_{\mathrm{k} \ell}+\left(\mathrm{b}_{1}-\mathrm{b}_{\mathrm{k}}\right)+\mathrm{c}_{\mathrm{l}}\left(\mathrm{t}_{\mathrm{ij}}-\mathrm{t}_{11}\right)-\mathrm{c}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{k} \ell}-\mathrm{t}_{\mathrm{kl}}\right) \tag{2}
\end{equation*}
$$

on assuming that the tidal signal can be treated as being moluded in either ζ or v.
The first stage in devising an impersonal and flexible system in regional sea surface modelling, is the definition of an event which is construed as a crossover (or junction point). The GEOS-3 altimeter has a finite footprint. Therefore one possiblity is to treat a $\mathrm{p}^{\circ} \times \mathrm{p}^{\circ}$ square as a junction point. Table 3 sets out the residual statistics (1.e., the rms value of v in equation 2) obtamed when adjusting the same block of data using different values of p. If

$$
\begin{equation*}
\sigma=\sum_{1=1}^{\mathrm{N}}\left(\mathrm{v}_{1}^{2}\right)^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

where N is the number of junction (crossover) points, the dominant contribution to σ is the slope of the sea surface of $\mathrm{p}>0.2$, being almost 99 percent of σ for $1^{\circ} \times 1^{\circ}$ junction points (Mather et al. 1977, p.40) as illustrated in Table 3.

The noise level of the GEOS-3 altimeter is assessed at $\pm 20 \mathrm{~cm}$ on a relative basis. The value of σ should be kept as small as possible so that time variations on a regional basis can . be recovered with an equivalent resolution. However, computer limitations and the finite footprint of the altimeter also limit the minimum value p can take. A good compromise is an $0.2^{\circ} \times 0.2^{\circ}$ square. The geoid vanations within such a square should not materially mask features in the sea surface with amplitudes greater than $\pm 25 \mathrm{~cm}$ and wavelengths in excess of 40 km . Regional sea surface models obtained from solutions based on 0.2 degree squares as crossover "points" should be adequate for the location of eddres in the western Sargasso Sea which are expected to have exhibit sea surface height variations in excess of $\pm 50 \mathrm{~cm}$ over extents as large as $10^{2} \mathrm{~km}$ (e.g., Cheney and Richardson. 1976).

The basic area in which GEOS-3 altımetry data was analysed for the generation of regional sea surface models is a $12^{\circ} \times 12^{\circ}$ area shown in Figure 1. The ocean tides were treated as norse in the present series of computations as the inclusion of a current tidal model in a sample had a negligible effect on the herghts of the sea surface as summarized in Table 4 and Figure 3.

Table 1 sets out all data used in this analysis (Rows 4 to 8 and 13 to 17) detaling the number of passes and junction points and values of σ obtained after adjustment. It has been noticed that the value of σ increases slightly as the volume of data increases. This is probably due to the fact that noisy records are not filtered out of the solutions. A second observation concerns the relatively larger values of σ for July, August and September 1975 (Table 1; Rows 5, 6 and 7). This cannot be attributed to orbital error. Possible causes for this may be time tag errors which occur from time to time in the 1977 GEOS-3 altimetry data bank. The authors are not aware of any reason to believe that this reflects an increasingly noisy sea for the perrod.

The monthly sea surface models so obtained are

- insensitive to absolute datum, being based on a set of observation equations which are differential in nature (Equation 2); and
- subject to slight arbitrary variations in Earth space orientation which is a function of the location of the junction points over the area (Figures 4 to 13). It was therefore decided to provide an absolute datum to the 10 monthly models by making a three parameter fit to the best avallable satellite gravity freld model GEM 9 (Lerch et al. 1977).

The orientation was effected by using observation equations of the.form

$$
\begin{equation*}
\mathrm{v}=\zeta-\zeta_{\text {GEM } 9}+\mathrm{a}_{\mathrm{o}}+\mathrm{a}_{1}\left(\phi-\phi_{0}\right)+\mathrm{a}_{2}\left(\lambda-\lambda_{0}\right) \tag{4}
\end{equation*}
$$

over the test area which was approximately 1200 km long, ϕ_{0}, λ_{0} being co-ordinates of the southwest corner of, the region studied. The corrections obtained are listed in Table 5. The variation in the overall tilt between different sea surface models to GEM 9 is less than 10 cm per $10^{2} \mathrm{~km}$. This is a measure of the stablity obtamed internally in each monthly solution and is of adequate resolution for studies of variations in sea surface topography which have magnitudes in excess of 20 cm in relation to the surrounding oceans. It must be emphasized that the data generated from the ten monthly solutions can only be used for the study of variations in the sea surface topography and not the quasi-stationary SST for which a geord of adequate precision is requred. While the discrepancy between the -heights of the sea surface from different monthly solutions disagree by less than $\pm 40 . \mathrm{cm}$ on the average in areas covered by altumetry, the disagreement with the best avalable geoid (Marsh and Chang, 1978) is considerable, the discrepancles being correlated with distance from the east coast of North America, as illustrated in Figure 15. This is probably due to the decreasing density of gravity data of adequate quality as a function of position in computations of the gravimetric geord.

The contours shown in Figures 4 to 13 are estimated heights of the average sea surface for the month relative to the mean sea surface for the epoch (July 1975 to August 1976) with wavelengths greater than 200 km and do not reflect the quasi-stationary sea surface topography in the region. The plots represent wavelengths greater than 200 km , but enhanced by additional data in the vicinty of eddies. Thus the contours of the quasistationary component of the Gulf Stream to the west of the test area, have been filtered out of the solution. Attempts to recover the quasistationary component of the Gulf Stream are described in the Appendix.

The values of σ obtained for the solutions, except in the three cases mentioned above, are only marginally greater than the expected variation of the geold over a 0.2° square. However, the contours in Figures 4 to 13 are reliable only in the vicmity of groundtracks shown on the Figures. The precision of contours is significantly worse than $\pm \sigma$ in Table 1 at locations more than 50 km away from a groundtrack. Contours shown in broken lines should be treated as suspect with errors beng as large as $\pm 1 \mathrm{~m}$.

The models shown in the above figures do not exclude the ocean tides. Earler studies in the Tasman and Coral Seas (Mather et al. 1977, p.40) showed that the Hendershott tidal model provided with the Wallops tapes did not materially affect the statistics of regional solutions. As it is widely held that the tidal models in the Sargasso Sea are of better quality than those in the Tasman and Coral Seas, it was decided to test whether the application of the ocean tide model would improve the values of σ obtained. This was not found to be the case (see Table 4). The application of the Hendershott tidal model as provided by Wallops Flight Center for a test period of one month which has the most data (October 1975) was found to produce no change in the residuals σ after adjustment. The average value of the heights of the 243 crossover points changed by 0.03 m . The change in values of ζ_{s} is highly
correlated with position, as shown in Figure 3. However, the magnitude of the effect was considered too small to warrant consideration in the present study.

The ten regional monthly solutions so obtained were examined against mean monthly measurements of surface temperature in the area and against tracks if eddies obtained from satellite remote sensing, as described in the next section.

3. CORRELATIONS OF REGIONAL MONTHLY MODELS OF DYNAMIC SEA SURFACE TOPOGRAPHY VARIATIONS WITH SURFACE OCEAN DATA

The Sargasso Sea les to the east of the Gulf Stream. It is one of the best surveyed oceans in the world for surface temperature fields. The motion of the major eddies and the location of both the edge of the slope water and the Gulf Stream are monitored on a monthly basis and a monthly record published by the US National Weather Service (NOAA 1975; NOAA 1976). The following dommant features reported in this publication:

- the location of eddies; and
- the clearly defined maximum and minimum mean monthly temperatures for $1^{\circ} \times 1^{\circ}$ squares
are also located in Figures 4 to 13.
Most of the comparisons occur in deep oceans and the significance of the results, illustrated in Figures 4 to 13 and listed in Table 6 can be interpreted as follows. Assuming the existence of a layer of no motion at great depth $\mathrm{H}(\dot{\doteqdot} 2000 \mathrm{~m})$ in the region at which isobaric and level surfaces coincide, the constant pressure P at depth $(h=H)$ is given by

$$
\begin{equation*}
\mathrm{P}=\left[\int_{\mathrm{H}}^{0} \mathrm{~g} \rho_{\mathrm{w}} \mathrm{dz}\right]_{\text {Ocean }}+\left[\int_{0}^{\mathrm{h}_{\mathrm{a}}} \mathrm{~g} \rho_{\mathrm{a}} \mathrm{dz}\right] \underset{\text { Atmosphere }}{=\text { Constant }} \tag{5}
\end{equation*}
$$

where g is observed gravity, ρ_{w} the density of sea water and ρ_{a} the atmospheric density at the element of height dz for a given location, the integration being along the local vertical. The varrations in $\rho_{\mathrm{w}}, \rho_{\mathrm{a}}$ cause anomalies d in the height of the standard column of water above the level of no motion. These can be related to temperature anomalies dT at the pressure increment dp corresponding to dz , in terms of the relation

$$
\begin{equation*}
\mathrm{dh}=\frac{1}{\mathrm{~g}}\left[\int_{\mathrm{P}}^{\mathrm{P}_{\mathrm{o}}} \frac{\partial \alpha}{\partial \mathrm{~T}} \mathrm{dT} \mathrm{dp}-\frac{1}{\rho_{\mathrm{w}}} \mathrm{dp} \mathrm{p}_{\mathrm{a}}\right]+\mathrm{o}\{\mathrm{f} \mathrm{dh}\} \tag{6}
\end{equation*}
$$

where α is the specific volume of sea water and $d p_{a}$ the atmospheric pressure anomaly from the standard atmospheric model at the arr/sea interface where the pressure is P_{o}.

The density of sea water ρ_{w} varies from 1.022 in the surface layers of equatorial oceans to 1.028 in deep oceans (Monm et al. 1974, p.36). Expressed in terms of α, these variations as a function of temperature can be expressed by a relation of the form

$$
\begin{equation*}
\alpha_{w}=(\alpha-1) \times 10^{-4}=a_{1}+a_{2} \log _{e} T \tag{7}
\end{equation*}
$$

The use of the table in (Dietrich 1963, p.44) in evaluating a_{1} and a_{2} in equation 7 gives

$$
\begin{equation*}
a_{1}=-5.18 \times 10^{-5} \quad ; a_{2}=8.72 \times 10^{-6} \tag{8}
\end{equation*}
$$

for T in ${ }^{\circ} \mathrm{K}$ and ρ_{w} in $\mathrm{g} \mathrm{cm}^{-3}$, in the range $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ with a correlation coefficient of 0.9. Thus

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \mathrm{T}}=10^{4} \frac{\mathrm{a}}{\mathrm{~T}^{2}} \mathrm{~cm}^{3} \mathrm{~g}^{-1}\left({ }^{\circ} \mathrm{K}\right)^{-1} \tag{9}
\end{equation*}
$$

Table 7 sets out values of $\partial \alpha / \partial \mathrm{T}$ which conform with a model defined by equations 7 and 8. It also provides a simplified, even simplistic estimate of the sea surface height anomaly which can be expected from a typical Gulf Stream eddy. For example, the cyclonic eddy reported by Cheney and Richardson (1967, p.145) is equivalent to changes in SST of between -60 cm and -152 cm , assuming a level of no motion at 1000 m deep. Temperature anomahes which average $1^{\circ} \mathrm{C}$ over 2000 m are equivalent to a SST anomaly of approximately 60 cm . Surface temperature measurements do not appear to be representative of the entre oceans especially if representative of an eddy-type structure (ibid). In the case of such structures, temperatures from the deeper layers have a greater influence on local SST maxima and minima than an estimate of the surface temperature which could be deceptively near normal.

Consequently, correlations between surface temperature measurements and local maxima and minima in the shape of the sea surface should not be expected in all cases.

An examination of Figures 4 to 13 also show that there is not always an exact correlation between the location of cyclonic eddies in the Sargasso Sea and lows in the surface temperature means, on the one hand, and SST lows on the other. There are two possible reasons for this

- Gulf Stream rings have been observed to move at rregular rates of up to 8 km per day (Richardson et al. 1973, p.297).
- The surface temperature is no indicator of the existence of a cold cyclonic eddy (Cheney and Richardson 1976, p.145)
- The Gulf Stream ring locations are given at the end of each month, while the altimetry-determined highs are based on data collected at various times over a month and therefore reflect average conditions for the month.

Table 6 summarises the extent of correlation between
a) cyclonic rings shown in (NOAA 1975, NOAA 1976) and lows in the GEOS -3 altimeter models of the sea surface shape, and
b) highs in both the monthly sea surface temperature means (1bid) as well as in the altimeter model.

None of the comparısons made between cyclonic eddies and sea surface lows can be classified as being unsatisfactory, given the differences between the two types of information compared. The correlation between the altimeter sea surface model and mean sea surface temperatures is less impressive. Sixteen percent of the comparisons obtained were not positive. This is not unexpected as surface temperature anomalies are not necessarily an indicator of any equivalent SST anomaly.

In vew of this evidence, it can be concluded that regional sea surface modelling has achieved a precision of $\pm 40 \mathrm{~cm}$ and provides a reliable basis for the study of eddies which cause larger variations in sea surface heights.

These figures only apply in the immediate vicinity of groundtracks. The precision falls off rapidly with distance from the nearest groundtracks. Unless the geometry of the passes is grossly irregular (e.g., Figures 4 or 9), it appears that the precision of sea surface models is seldom worse than $\pm 1 \mathrm{~m}$.

However, there are too many exceptions to claim 100% reliability at these levels. So far, no data has been excluded. However, departures of the monthly regional sea surface height from the mean of ten solutions are strongly correlated with position, as illustrated in Figure 16. There is a tendency towards weak determinations at the peripheries of the region being studied. There is extra strength in this index of variability at the edges abutting the Gulf Stream.

The contours shown in Figures 4 to 13 specifically exclude the quasi-stationary component of the SST. The possibility of recovering this part of the spectrum of SST at the present time is discussed in the Appendix. The contours shown in these figures are based on data on a one degree grid and thereby reflect wavelengths greater than 200 km . Additional data was plotted at 20 km intervals to enhance local features in areas where infrared imagery reported the existence of cyclonic eddies.

The significance of the contours referred to above is hard to assess. The solution statistics do not indicate confidence in features with wavelengths much longer than 200 km unless they have amplitudes in excess of 40 cm . This restricts any analysis to the region in the vicinaty of the Gulf Stream. However, the results in this peripheral area may be flawed by geometrical uncertainties. These should not be treated as limitations of the regional altimetric technique used in this study. A much improved solution can be obtained under the following circumstances.

1) The region is covered with an adequate network of passes.
ii) A reasonable tidal model is available for the area.

These limitations can be avoided in the processing of SEASAT-A data. The present study should be treated as prelıminary. The possibility still exists that the results can be refined by a factor of 60% by re-processing the data with an accurate tidal model. A project for the recovery of the tidal signal from the GEOS -3 altimetry is currently underway.

A 25% improvement in the resolution can be obtaned by'restricting the study to those limited number of cases where the groundtracks satısfy the overlap condition.

4. THE ANALYSIS OF OVERLAPPING PAṠSES IN THE SARGASSO SEA

The orbital period of the GEOS-3 spacecraft is approximately 101.79 minutes: The condition for a repeated groundtrack after n revolutions is

$$
\begin{equation*}
\sum_{1=1}^{n}\left[\dot{\Omega}_{1} t_{i}-\omega_{1} t_{1}\right]=0 \tag{10}
\end{equation*}
$$

on suppressing multiples of 2π in the second term, ω_{i} being the angular velocity of rotation of the Earth during the \mathbf{i}-th revolution of GEOS -3 which is completed in time $t_{1}, \dot{\Omega}_{\mathrm{i}}$ being the instantaneous rate of precession of the orbital node. This condition is nearly satisfied every 526 revolutions, the observed drifts ($\delta \lambda^{\prime}$) in longitude being set out in Figure 16. There is no smple pattern of overlaps in the Sargasso Sea test area due to the irregular manner in which data was collected. Nevertheless, a dense network of overlapping passes has been established in the western North Atlantic. Using the multiple of 526 revolutions as a criterion, 32 sets of from 5 to 9 overlapping passes were identified in the Sargasso Sea as illustrated in Figure 2.

Consider the case of the j-th element of the i-th pass and the ℓ-th element of the k -th pass which have identical latitudes, the 1 -th and k -th passes satisfying the overlap condition. The observed sea surface herghts ζ_{11} on the 1 -th pass and $\zeta_{\mathrm{k} \ell}$ on the k -th pass can be used to set up observation equations of the form

$$
\begin{equation*}
\zeta_{\mathrm{ij}}-\zeta_{\mathrm{k} \ell}+\left(\mathrm{b}_{1}-\mathrm{b}_{\mathrm{k}}\right)+\mathrm{c}_{1}\left(\mathrm{t}_{\mathrm{ij}}-\mathrm{t}_{\mathrm{il}}\right)-\mathrm{c}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{k} \ell}-\mathrm{t}_{\mathrm{k} 1}\right)+\left(\zeta_{\mathrm{tij}}-\zeta_{\mathrm{tk} \ell}\right)+\delta \lambda \frac{\partial \mathrm{N}}{\partial \lambda}=\mathrm{v}_{\mathrm{s}} \tag{11}
\end{equation*}
$$

where $\left(b_{i}, b_{k}\right)$ and ($\left.c_{1}, c_{k}\right)$ are corrections for bias and tilt to the $1-t h$ and k-th passes on account of orbit integration errors, $\left(\zeta_{\mathrm{tij}}, \zeta_{\mathrm{tk} \ell}\right)$ are the tidal heights at the location at the instant of data acquisition $\left(t_{1 j}, t_{k \ell}\right),\left(t_{i 1}, t_{k l}\right)$ being the times corresponding to the initial instant of data acquisition per pass. The last term on the left in equation 11 allows for the slope of the geord due to any possible longitudinal displacement $\delta \lambda$ between the parr of overlapping passes (Figure 16).

Table 2 sets out detalls of the 219 passes which make up the 32 overlapping sets shown in Figure 2. Passes where $\delta \lambda$ exceeded 35 km were excluded from this study.

The most striking feature of the results in Table 2 is the internal precision of the GEOS-3 altimetry reflected in the values of the root mean square discrepancy σ_{m} obtained by comparing each profile with the mean of the set after using equation 11 in the case where the mean profile replaces the k-th pass. The analysis of the values of $\sigma_{\mathrm{m}} \mathrm{m}$ Table 2 as a function of length (Figure 17) shows some correlation with pass length to 4000 km . The data used in the construction of this figure has not been filtered in any way. The complexity of the Sargasso Sea test area makes it hard to draw simple conclusions.

Table 8 summarises the spectral analysis of the discrepancies between each pass and the average of the set for the largest of the sets (No. 8 in Table 2) containing 9 overlapping passes. The harmonc coefficients determined ($\mathrm{A}_{1}, \mathrm{~B}_{\mathrm{i}}$, where i is the integral number of complete wavelengths in the length ℓ over which comparisons are made) were given by the relations

$$
\left[\begin{array}{l}
\mathrm{A}_{1} \tag{12}\\
\mathrm{~B}_{\mathrm{i}}
\end{array}\right]=\frac{2}{\ell} \int_{0}^{\ell} \mathrm{v}_{\mathrm{s}}\left[\begin{array}{l}
\sin \\
\cos
\end{array}\right] \frac{2 \pi \mathrm{~s}}{\ell} 1 \mathrm{ds}
$$

where ds is the sampling interval, the residual v_{s} defined by equation 11 being at a distance s from the commencement of comparisons.

The significance of the amplitudes ($\mathrm{A}_{1}, \mathrm{~B}_{\mathrm{i}}$) so obtaned is assessed by comparison against a spectrum of white noise (Mather 1977, p.17). If the rms residual of comparison is σ_{m}, the percentage contribution per frequency (E) to the white noise spectrum is given by

$$
\begin{equation*}
E=\frac{100}{N} \tag{13}
\end{equation*}
$$

where N is the number of frequencies between 1 and Nyquist limit imposed largely by the altimeter footprint ($\ell / 10$).

The percentage strength of signal 0 obtaned from equation 12 is defmed by

$$
\begin{equation*}
0=\frac{\mathrm{A}^{2}+\mathrm{B}^{2}}{2 \sigma_{\mathrm{m}}^{2}} \tag{14}
\end{equation*}
$$

Table 9 sets out the results for all 32 sets of passes as an average per set. The root mean square (rms) residuals obtained in this area are somewhat larger than those obtained in the study. of the Tasman and Coral Seas (Mather 1977, pp. 24 and 25), averaging $\pm 33 \mathrm{~cm}$ instead of $\pm 20 \mathrm{~cm}$ obtained when each profile is fitted to the mean of the set of profiles (Coleman and Mather 1978).

Tables 8 and 9 are self-explanatory* Signuficant strengths of signal (i.e., $O / E>3$) are obtained for several wavelengths in excess of 150 km . The average square of the strength of signal for wavelengths between 150 and 5000 is $784 \mathrm{~cm}^{2}$ This is not unlike values quoted by oceanographers for the magnitude of seasonal variations and is compatible with variations in the SST arising from wind driven circulation.

The next stage in the processing of sets of overlapping passes is the analysis of the data for the tidal signal on a regional basis. In the interm, attempts have been made to study correlations between remote sensed temperature data and the variations in the sea surface heights as a function of position and time. These are reported in the Appendix (Sec. 8.2).

The analysis of overlapping passes provides the most accurate data for the study of regional variations in the dynamic sea surface topography. The limitations of coverage are offset by the 50 percent gain in precision over the regional solution method.

[^1]
5. CONCLUSIONS

There is no doubt that the GEOS-3 altimeter data in the short pulse mode is of sufficient precision for oceanographic studies. The main problem in regional studies remains the orbital uncertainty. These can be reduced to $\pm 40 \mathrm{~cm}$ in the radial component if any claims to global relevance are sacrificed. This mproves the resolution from $\pm 11 / 2 \mathrm{~m}$ globally (Mather et al. 1978) to $\pm 40 \mathrm{~cm}$ on a regional basis of bad records are appropnately filtered, and if the geometry of passes is adequate (e.g., Figures 6-8). The technique of overlapping passes has a higher resolution ($\pm 33 \mathrm{~cm}$ on average).

The stability of the solutions is enhanced if very short passes are not subject to corrections for tilt (equation (1)). The anternal statistics of solutions (an this case an average rms of $\pm 25 \mathrm{~cm}$) is almost a factor of 3 more optimıstıc than the estimated precision obtained from the intercomparison of solutions ($\pm 43 \mathrm{~cm}$).

There is considerable confidence in recovering short wave features in sea surface shape which have dimensions between 30 and 100 km and amplitudes in excess of $\pm 50 \mathrm{~cm}$. Except in the case of solutions in 1975 where for some unaccountable reason, the solution statistics were sigmificantly inferior (Table 1), there are variables in the sea surface with amplitudes in excess of 50 cm and dimensions in excess of 400 km (one third that of the region studied) which show up in this study. It can be concluded that the variations in SST with time in areas away from fast moving currents like the Gulf Stream are unlikely to exceed $\pm 30 \mathrm{~cm}$. This figure is confurmed by the spectral analysis of overlapping passes in the region.

This, in turn, indicates the necessity for the significant concentration of effort in generating force field models for the integration of orbits with radial enors much less than $\pm 5 \mathrm{~cm}$. There is little doubt that GEOS-3 data is of adequate resolution to study eddies. There are also grounds for cautious optimism that the data can be used to recover some of the dommant long wave characteristics of the quasi-stationary SST (1bid). Progress in other areas is likely to be slow in forthcommg till the gravity field models have been improved by at least an order of magnitude (hopefully, to 3 parts in 10^{-9}). This goal has to be acheved before further progress can be made in studying intermediate wavelengths of SST, both the quasi-stationary and time varying components.

Stringent criteria have to be enforced to exclude the 1% of noisy data encountered in the processing of GEOS -3 data. There is no real difficulty in identifying the faulty records.

Nether of the methods described has the potentral to provide information on time variations in sea level which are constant over the entire area. Each method provides insight into certain portions of the spectrum of SST. The regional method cannot resolve features with periods shorter than a month (in the case of GEOS-3) while the higherresolution technique of overlapping passes is restricted to selected groundtracks and variations with periods greater than a month. All information in the time varying part of the spectrum of SST with wavelengths greater than twice the dimension of the region studied are also lost.

The terms in the quasi-stationary part of the spectrum can only be recovered if an adequate gravity field model were available. The approximate estimating techmque used in the Appendix shows that the large SST gradients maintaning the Gulf Stream are present in the GEOS-3 altimeter data. They are not recoverable with confidence at the present time.

6. ACKNOWLEDGMENTS

This project is supported by NASA Grant NSG 5225 and the Australian Research Grants Committee.

The first author worked on this project whule holding Senior Resident Research Associateship of the US National Academy of Sciences at Goddard Space Flight Center while on leave of absence from the Unversity of New South Wales.

The second author is supported by a Fulbright Travel Grant and Post-Graduate Award from the Government of Australia's Department of Education.

7. REFERENCES

Cheney, R.E. \& Richardson, P.L., 1976. Observed Decay of a Cyclonic Gulf Stream Ring, Deep Sea Res., 23, 143-155.

Coleman R. \& Mather, R.S., 1978. On the Determmation of Tıme Varying Features in the Sea Surface Topography Using GEOS-3 Altumetry. EOS, 59 (4), 259.

Dietrich, G., 1963. General Oceanography - An Introduction. Wiley, New York.
Leitao, C.D., Huang, N.E. and Parra. E.G., 1977. Ocean Current Surface Measurement using Dynamic Elevations Obtained by the GEOS-3 Altimeter. Proc. Symp. Satellite Applications to Marine Technology, New Orleans, November 15-17, 1977. American Institute of Aeronautics \& Astronautics, New York, 43-49.

Lerch, F.J., Klosko, S.M., Laubscher, R.E. and Wagner C.A., 1977. Gravity Model Improvement Using GEOS-3 (GEM 9 \& 10). NASA/GSFC Rep. X-921-77-246, Goddard Space Flight Center, Greenbelt, Md., 121 pp.

Marsh, J.G. and Chang, E.S., 1978. Five Minute Detanled Gravimetric Geoid in the North Western Atlantic Ocean. Marme Geodesy, 1 (3) (In Press).

Mather, R.S., 1968. The Free Air Geold for Australia. Geophys. J.R. Astr. Soc., 16, 515-530.

Mather, R.S., 1977. The Analysis of GEOS-3 Altımeter Data in the Tasman and Coral Seas. NASA Tech. Memorandum 78032, Goddard Space Flight Center, Greenbelt, Md., 32 pp .

Mather, R.S. and Coleman, R., 1977. The Role of Geodetic Techniques in Remote • Sensing the Surface Dynamics of the Oceans. (In) Napolitano, L.G. (ed.). Using Space Today and Tomorrow. (Bergamon, Oxford) (In Press).

Mather, R.S., Coleman, R., Rizos, C. and Hirsch, B., 1977a, A Prelımınary Analysis of GEOS-3 Altimeter Data in the Tasman and Coral Seas. International Symposium on Satelite Geodesy, Budapest, 28 June to 1 July 1977. Unisurv G, 26, 27-46.

Mather, R.S., Lerch, F.J., Rizos, C., Masters, E.G. and Hirsch, B., 1978. Determination of some dominant parameters of the dynamic sea surface topography from GEOS-3 Altimetry. NASA Tech. Memorandum 79558, Goddard Space Flight Center, Greenbelt, Md., 39 pp .

Monin, A.S., Kamenkovich, V.M. and Kort, V.G., 1974. Vanıability of the Oceans. Wiley, New York.

NOAA 1975. Gulfstream, 1 (1-12), US National Weather Service, Washnngton, D.C.
NOAA 1976. Gulfstream, 2 (1-120), Loc. cit. supra.
Ruchardson, P.L. Strong, A.E. and Knauss, J.A., 1973. Gulf Stream Eddies Recent Observations in the Western Sargasso Sea. J. Phys. Oceanography, 3, 297-301. May 1, 1978.

8. APPENDIX

8.1 The Quasi-Stationary Component of the Sea Surface Topography in the Vicinity of the Gulf Stream

The velocities reported in the vicinity of the Gulf Stream in the western part of the Sargasso Sea test area are greater than $10^{2} \mathrm{~cm} \mathrm{~s}^{-1}$. The sea surface topography gradient needed to maintain such a current should be about $1.5 \times 10^{2} \mathrm{~cm}$ per $10^{2} \mathrm{~km}$ orthogonal to the mean direction of flow (Figure 1). This information can only be obtamed from the GEOS-3 altimetry, processed in the form of regional models, as discussed in Section 2, if the sea surface heights wese referred to an error free geoid. As seen from Figure 14, the discrepancies between the sea surface models from altimetry, after orientation to GEM 9 (Table 5), are systematically discrepant with the best available gravimetric geoid in the region (Figure 14). These discrepancies can be attributed to the following factors
i) Differences between the gravimetric geoid and the satellite determined gravity field model.
i1) The quasi-stationary component of the sea surface topography (SST).
For example, if it were assumed that the GEM 9 gravity field model were free from error, the differences at i) are due entirely to errors in the gravimetric geold due to the variable quality and distribution of surface gravity data currently available for such computations in this region. As the gravimetric geold as computed from a fixed gravity data bank using quadratures technqques, the resulting errors in the geord are slowly varying functions of position (e.g., see Mather 1968). As the pattern of discrepancies is a function of distance from the east coast of North America (Figure 14), it is possible to make a very approximate estımate of the quasi-stationary SST from the pattern of contours in Figure 14.

On assuming that the gravimetric geord error N has a structure

$$
\begin{equation*}
e_{N}=N_{0}+\frac{\partial N}{\partial \ell} \ell \tag{A-1}
\end{equation*}
$$

where ℓ is the length along a section perpendicular to the coastline and terminating at the 2000 m depth contour, it is possible to estimate e_{N} on this basis at all points west of the 2000 m contour. The correlation coefficients obtained for such linear regression analysis are always above .99.

Figure A-1 shows a plot of

$$
\begin{equation*}
\mathrm{e}_{\zeta_{\mathrm{s}}}=\mathrm{D}-\mathrm{e}_{\mathrm{N}} \tag{A-2}
\end{equation*}
$$

where D is the quantity plotted in Figure 14. $\mathrm{e}_{\xi_{s}}$ is an estimate of the quasi-stationary component of the SST for the epoch July 1975 to August 1976. One data ponnt has been elimnnated, as shown on Figure A-1. The contours are in reasonable agreement with the expected flow of the Gulf Stream, given the approximate nature of the technique used.

The object of this note is to show that the quasistationary topography is recoverable from GEOS-3 altimetry if properly referred to a geoidal model of adequate precision. It. also shows that present-day gravimetric geoids for the region are madequate 'for this purpose. Procedures of the type described above (e.g., Leitao et al. 1977) are based on assumptions outhned in the preceding development and do not constitute a reliable basis for the determination of quasi-stationary SST.

8.2 Correlations from Overlapping Pass Analysis with Eddies

See Section 4. The residuals of fit (v_{S} in equation 12) to the mean surface for each overlapping pass, contains information on varations in sea surface height with wavelengths between 2ℓ and the Nyquist limit. Typical eddy features are expected to have half wavelengths between 50 and 100 km , amplitudes up to $10^{2} \mathrm{~cm}$ and a decay period of 10^{2} days The data in Table 2 indicates that sea surface topography variations with amplitudes greater than 30 cm can be recovered with confidence.

A high pass filter corresponding to wavelengths greater than 100 km was applied to profiles of v_{S} listed in 32 sets in Table 2. The altimeter profiles which crossed. an eddy reported in (NOAA 1975; NOAA 1976) for the periods September to December 1975 and Aprl 1976, were examined through the window obtained for equivalent features in the profiles. The resulting altimeter defined sea surface topography variations are shown in Figures 18 to 22. The symbol HI is used to designate anti-cyclonic eddies which should be associated with a SST high, whule the symbol L is used to designate cyclonic eddies which are expected to be associated with a low in the SST.

Thirty-seven comparisons were made over a perıod of 7 months. Fufty-eight percent of these comparisons between altımeter and infrared data correlated favourably. A further 40 percent of the comparisons showed a partal overlap between the feature as sensed from the two data types. Only 2 percent of the comparisons did not correlate at all. These results are in substantial agreement with the results obtained from regonal solutions (Table 6) which are subject to slightly higher levels of uncertainty.

Table 1
Regional Monthly Solutions for the Shape of the Sargasso Sea from GEOS-3 Altmetry

$25^{\circ} N^{\prime} \leqslant \phi \leqslant 37^{\circ} \mathrm{N}$				$282^{\circ} \mathrm{E} \leqslant \lambda \leqslant 294^{\circ} \mathrm{E}$		
Basic Junction Point Size $-0.2^{\circ} \times 0.2^{\circ}$						
	Period		No of Obsns.	No. of Passes	No. of Jn. Pts	$(\pm \mathrm{cm})^{*}$
1	April	1975	587	4	8	12
2	May	1975	821	6	13	12
3	June	1975	620	5	7	38
4	July	1975	2058	15	63	40
5	August	1975	2836	23	97	50
6	September	1975	3446	28	156	35
7	October	1975	4225	35	243	29
8	November	1975	3578	28	175	26
9	December	1975	1399	10	27	15
10	January	1976	-	-	-	-
11	February	1976	705	5	7	5
12	March	1976	560	4	4	8
13	April	1976	2205	19	63	17
14	May	1976	2092	16	70	19
15	June	1976	3195	25	140	26
16	July	1976	3089	22	122	20
17	August	1976	3093	24	131	22
*Equation 3						

Table 2
Statistics For Overlapping Pass Sets

$\begin{aligned} & \text { Set } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Rev } \\ & \text { No } \end{aligned}$	Date		DIRN	Length (km)	Start of Overlap		No of Pts	Bus (m)	Thit (arc sec)	$\begin{gathered} \delta \lambda \phi=0^{\circ} \\ (\mathrm{km}) \end{gathered}$	RMS Residual ($\pm \mathrm{cm}$)		\% Data Rejected
		YY	ODO			ϕ	λ					$\partial \mathrm{N} / \partial \lambda=0$	$\partial \mathrm{N} / \partial \lambda \neq 0$	
1	183	75	112	NS	2205	-4319	293.94	248	-0 53	-0 300	0	32.8	328	
	1235		187	NS	2176	4319	293.94	245	412	-0 412	-12	- 337	358	
	2813		296	NS	2168	4319	293.94	244	052	0230	-21	471	424	
	4917	76	82	NS	2189	4314	293.90	246	-409	0041	-5	287	304	
	5443		119	NS	2077	4314	29390	234	-4.36	0090	2	222	20.2	
	5969		156	NS	2182	4303	29380	245	439	0315	11	322	328	
2	183	75	112	NS	1036	24.08	27858	83	-3 57	-0 270	0	212	$\ldots{ }^{\dagger}$	2\%
	1235		187	NS	1018	2408	278.58	81	-0.82	-0231	-12	184	-	2\%
	2287		261	NS	1036	2408	27858	83	-273	0484	-20	26.9	-	2\%
	2813		298	NS	1027	2408	278.58	82	162	0567	-21	272	\square	2\%
	4917	76	82	NS	1035	2408	27858	83	-3 37	0065	-5	204	-	2\%
	5969		156	NS	1016	23.96	278.50	81	771	0105	11	34.3	-	
3	246	75	117	SN	1994	20.20	29066	214	0.56	0258	0	445	445	
	1824		228	SN	1617	2253	28921	181	-206	0127	-17	244	$26^{\prime} 8$	
	2876		303	SN	1628	22.37	28931	180	-0.50	0110	-20	254	33.4	
	3402		340	SN	238	3124	28330	30	-1.00	-0 297	-18	226	234	
	6032	76	161	SN	1932	20.20	2966	205	-004	0105	14	570	512	
	7084		235	SN							36			
4	374	75	126	SN	1456	2202	28815	152	-361	0108	0	297	297°	
	2478		275	SN	1404	2202	28815	149	007	00.90	-18	376	230	3\%
	\(3004													
		312	SN	1404	2202	28815	149	099	0026	-18	366	170	3\%	
	6160	76	170	SN	1456	2202	28815	152	-0 64	-0086	18	366	164	3\%
	6686		207	SN	1427	2219	288.04	149	302	-0 194	29	60.9	281	
	7212		244	SN							41			
5	524	75	137	NS	2990	44.87	300.56	358	248	-0086	0	253	253	
	1576		211	NS	2967	4473	30040	355	-077	-0093	-11	297	297	4\%
	2678		285	NS	121	26.84	28516	15	016	0200	-16	76	83	
	3154		322	NS	2983	44.83	30051	357	0.92	-0 105	-16	423	398	
	5258	76	106	NS	2990	44.87	30056	358	-3.20	-0 008	4	220	258	
	6310		181	NS	2967	4473	30040	355	-130	0181	23	318	31.5	
	6836		218	NS	2975	4478	30045	356	188	0109	34	411	402	
6	530	75	137	SN	1490	2773	293.97	183	-1.54	-0088	0	232	232	
	2108		248	SN	1450	2789	29386	178	332	-0 101	-14	213	191	
	3160		323	SN	1483	2773	293.97	182	0.96	0010	-16	25.0	23.9	
	5264	76	107	SN	1465	27.89	29386	180	249	-0091	4	228	238	
	6316		181	SN	1465	2789	29386	180	-2 47	0000	23	224	213	
	6842		218	SN	1441	2805	29375	177	-174	0132	34	27.9	197	
7	587	75	141	SN	1553	2562	291.97	187	-451	-0080	0	230	230	
	2165		253	SN	1369	2611	291.64	166	036	0373	-14	174	171	
	2691		290	SN	1522	2562	291.67	183	036	-0 102	-15	212	191	
	5321	76	111	SN	1553	2562	29167	187	467	-0 161	5	170	162	
	5847		148	SN	1536	2573	291.89	185	-077	-0008	14	175	19.9	
	6373		185	SN	1552	2562	291.97	187	025	-0 039	25	29.5	236	
8	595	75	142	NS	5300	4667	30474	534	-200	0065	0	298	298	1\%
	1121		179	NS	5300	4667	30474	534	-0 18	-0010	-6	295	340	1\%
	16.47		216	NS	5300	4667	30474	534	-747	0014	-11	507	497	1\%
	2173		253	NS	5001	4489	30265	527	571	-0 048	-14	385	375	1\%
	2699		290	NS	4993	44.84	30260	526	257	0136	-15	392	346	
	3751		365	NS	4993	44.84	30260	526	-348	-0022	-12	334	322	1\%
	5329	76	111	NS	5300	4467	30474	534	-2 10	0039	6	370	385	1\%
	5855		148	NS	5001	4489	30265	527	508	0068	15	384	308	
	6381		186	NS	4972	4489	30265	524	237	0010	25	553	441	

Table 2 (continued)

$\begin{aligned} & \text { Set } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Rev } \\ & \text { No } \end{aligned}$	Date		DIRN	Length (km)	Start of Overlap		No of Pis	$\begin{aligned} & \text { Bias } \\ & \text { (m) } \end{aligned}$	Tilt (arc sec)	$\begin{gathered} \delta \lambda \phi=0^{\circ} \\ {[\mathrm{km}]} \end{gathered}$	RMS Residual ($\pm \mathrm{cm}$)		\% Data Rejected
		YY	DDD			ϕ	λ					$\partial \mathrm{N} / \partial \mathrm{\lambda}=0$	dN/d入 \ddagger	
9	837	75	159	NS	2161	4488	29440	261	-321	0136	0	534	534	
	1363		196	NS	2111	4479	294.29	255	-252	0276	-5	579	572	
	2415		270	NS	2040	44.88	29440	249	-2 82	-0065	-12	414	342	
	2941		307	NS	2118	44.88	29440	256	658	-0779	-12	735	742	
	6097	76	165	NS	1984	4376	29316	244	450	-0093	22	611	335	
	6623		203	NS	1969	4366	29306	242	-0.24	-0 064	33	707	24.3	
	7149		240	NS							45			
10	837	75	159	NS	1188	24.99	27774	111	-213	0099	0	246	246	5\%
	1363		196	NS	1188	24.99	27774	111	-071	0213	-5	195	235	5\%
	2941		307	NS	1188	2499	27774	111	-187	-0 451	-12	188	270	5\%
	6097		165	NS	1133	2478	27770	105	5.55	-0 0151	22	237	363	2\%
	6623		203	NS	1134	2467	27753	105	-0.95	0017	33	269	335	
	7149		240	NS							45			
11	843	75	159	SN	1614	2367	29047	185	-1085	-0627	0	281	281	
	1369		196	SN	15.45	2410	29019	177	210	0123	-6	217	202	
	1895		233	SN	247	2367	29047	27	423	-0 302	-10	109	108	
	2421		271	SN	1554	24.05	29022	178	046	0131	-12	319	305	
	2947		308	SN	1614	2367	29047	185	284	0173	-13	297	250	
	4525	76	54	SN	1614	2367	29047	185	378	-0010	-2	271	261	
	6103		166	SN	1563	23.99	290.26	179	-187	0217	23	380	314	
	6629		203	SN	1571	2394	29029	180	208	0052	34	433	312	
12	851	75	160	NS	2091	2858	28566	193	3082	-1 103	0	448	\ldots	1\%
	1377		197	NS	1947	2858	28566	178	-4 40	0433	-6	41.2	-	
	1903		234	NS	2082	2858	28566	192	-1853	-0905	-10	446	-	3\%
	2429		271	NS	2072	28.58	28566	191	-3.01	0499	-12	379	-	3\%
	2955		308	NS	2082	2858	28566	192	-405	-0 139	-12	389	-	
	3481		346	NS	2082	2858	28566	192	-418	0330	-11	408	\cdots	2\%
	6111	76	166	NS	2091	2858	28566	193	430	0439	23	767	-	1\%
	6631		204	NS	2091	2858	28566	193	-055	0255	34	1144	\cdots	1\%
	7163		241	NS							46			
13	1164	75	182	NS	711	3659	28560	85	-4311	-0 461	0	593	593	15\%
	2216		256	NS	590	3602	28512	72	845	-0210	-8	209	221	4\%
	3268		330	NS	566	35.87	28500	69	1111	-0002	-8	201	207	
	4846	76	77	NS	711	3659	28560	85	536	-0733	6	469	432	15\%
	5372		114	NS	711	3659	28560	85	976	-0677	13	567	460	15\%
	5893		151	Ns	711	3659	28560	85	1585	-0 751	23	653	476	15\%
	6950		226	NS							45			
14	1164	75	182	NS	1164	2544	27731	129	-4361	0776	0	435	435	5\%
	2216		256	NS	1126	2544	27731	125	818	-0012	-8	366	400	2\%
	3268		330	NS	1126	2544	27731	125	1109	-0025	-8	369	398	2\%
	4846	76	77	NS	662	25.39	27727	75	440	-0 508	6	452	437	1\%
	5372		114	NS	1119	2517	27714	124	705	0503	13	805	809	2\%
	5898		151	NS	1146	2534	27724	127	1303	0383	23	544	523	5\%
	6950		226	NS							45			
15	1170	75	182	SN	705	2912	28607	81	403	-1.530	0	264	264	
	2222		257	SN	553	2912	28607	62	-073	0495	-8	244	173	
	2748		294	SN	697	2912	286.07	80	-0 14	0272	-9	235	173	
	4852	76	77	SN	705	2912	28607	81	045	0431	6	184	155	
	5904		152	SN	705	2912	28607	81	-394	0454	23	315	207	
	695\%		226	SN							45			

Table 2 (continued)

$\begin{aligned} & \text { Set } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Rev } \\ & \text { No } \end{aligned}$	Date		DIAN	Length (km)	Start of Overlap		No of Pts	$\begin{aligned} & \text { Bias } \\ & \text { (mi) } \end{aligned}$	Tilt (arc sec)	$\begin{gathered} \delta \lambda \phi=0^{\circ} \\ (\mathrm{km}) \end{gathered}$	RMS Residual (4 cm)		\% Data Rejected
		YY	DDD			ϕ	λ					$\partial \mathrm{N} / \partial \lambda=0$	$\partial N / \partial \lambda \neq 0$	
16	1178	75	183	NS	4640	44.87	29913	469	-2.25	-0001	0	322	- t	1\%
	2230		257	NS	4596	4472	29896	464	-1.56	-0001	-8	394	-	
	2756		294	NS	4630	4487	29913	468	326	-0 112	-9	443	\square	1%
	4860	76	78	NS	4615	4472	298.96	466	-472	-0.002	6	278	-	
	5386		115	NS	4624	4477	29902	467	-3 52	-0041	14	270	-	
	5912		152	NS	4640	44.87	29912	469	664	0115	23	362	-	1\%
	6438		190	NS	3517	44.82	29907	371	317	-0.045	33	497	\cdots	1\%
	6438		190	NS	663	2051	27964	72	156	1302	33	383	\longrightarrow	
17	1440	75	301	SN	1558	2514	29150	161	656	-0544	0	221	221	1\%
	1966		238	SN	1558	2514	29150	161	-1 17	0100	-4	215	216	1\%
	2492		276	SN	1558	2514	291.50	161	089	0026	-6	189	194	2\%
	3018		313	SN	1535	2519	29147	158	-282	0139	-6	238	243	
	4596	76	59	SN	1558	2514	291.50	161	-015	0058	5	191	193	2\%
	6174		171	SN	1523	2536	29135	157	-3.32	0169	31	324	177	
	6700		208	SN							42			
	7226		245	SN							54			
18	1562	75	210	NS	2081	4361	29360	237	046	0020	0	304	304	
	2088		247	NS	2073	4356	29355	236	125	-0282	-3	378	365	
	3140		321	NS	2064	4361	29360	235	-2 55	-0046	-5	264	278	
	3666		359	NS	2081	4361	29360	237	-0.49	-0143	-2	346	3714	
	5770	76	142	NS	2042	43.37	29334	232	158	0409	24	319	247	
	6822		217	NS							45			
19	1562	75	210	NS	258	2463	27810	26	094	0311	0	720	720	
	2088		247	NS	258	2463	27810	26	-276	-0 167	-3	701	692	
	3140		321	NS	258	2463	27810	26	-141	.0112	-5	708	743	
	3666		359	NS	258	2463	27810	26	-035	-0002	-2	651	732	
	5770	76	142	NS	142	2420	277.82	17	513	1304	24	115	- \dagger	
	6822		217	NS							45			
20	1588	75	210	SN	1607	2413	29077	183	023	0026	0	261	261	
	2094		247	SN	1607	2413	29077	183	195	-0 296	-3	263	262	
	2620		285	SN	1565	24.35	29063	178	-0.53	-0 102	-5	202	181	
	3146		322	SN	1599	2413	29077	182	054	-0078	-5	247	232	
	5776	76	143	SN	1590	24.24	29070	181	110	0111	24	253	231	
	6302		180	SN	1590	2424	29070	181	-341	0369	34	326	299	
	6828		217	SN							46			
21	1625	75	214	SN	1510	2236	28848	165	-078	0058	0	210	210	
	2151		252	SN	1502	2236	28848	164	216	-0308	-3	244	226	
	2677		289	SN	1478	2235	28848	163	-158	0013	-5	201	183	
	3203		326	SN	1478	2236	28848	163	-194	0058	-4	267	230	
'	3729		363	SN	1502	2236	28848	164	-1 33	0108	-2	323	309	
	5307	76	110	SN	1510	2236	28848	165	011	0066	17	362	221	
	5833		147	SN	1510	2236	28848	165	343	-0041	26	468	255	
	6885		221	SN							47			
22	1682	75	218	SN	1973	1514	28941	180	-025	0020	0	352	352	1\%
	2208		256	SN	1965	1514	28941	179	-176	-0003	-3	388	399	2\%
	3260		330	SN	1963	1520	289.37	179	250	-0350	-3	397	472	1\%
	5364	76	114	SN	1121	2021	28639	112	-021	-0 103	18	401	291	1\%
	6416		188	SN	1103	2032	28632	110	051	0519	38	1063	498	
	6942		225	SN				\pm			49			

Table 2 (continued)

$\begin{aligned} & \text { Set } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Rev } \\ & \text { No } \end{aligned}$	Date		DIRN	Length (km)	Start of Overlap		No of Pts	Bias(m)	Tilt (arc sec)	$\begin{gathered} \delta \lambda \phi=0^{\circ} \\ {[\mathrm{km}]} \end{gathered}$	RMS Residual ($\pm \mathrm{cm}$)		\% Data Rejected
		YY	DDD			ϕ	λ					д'N/ $\bar{\lambda}=0$	$\partial \mathrm{N} / \partial \mathrm{A}=0$	
23	1710	75	220	SN	1508	2682	29309	152	085	-0 0051	0	267	267	
	2236		258	SN	1508	26.82	293.09	152	078	0219	-3	281	270	
	2762		295	SN	262	3124	289.96	28	008	-0 025	-4	128	123	
	2762		295	SN	40	3637	28591	6	-0 049	0729	-4	15.8	181	
	5392	76	116	SN	1508	26.82	29309	152	148	-0 205	19	209	285	
	5918		153	SN	332	3348	28826	28	-162	-0438	28	153	118	
	6444		190	SN	1490	26.94	29301	150	-1.82	-0112	38.	31.8	281	
	6970		227	SN							so			
24	1789	75	226	NS	992	2573	29045	105	305	-0 127	0	331	331	
	2315		263	NS	992	2573	29045	105	-131	-0 165	-3	385	443	
	2841		300	ns	992	2573	29045	105	-028	-0009	-3	32.9	337	3\%
	4945	76	84	NS	973	2573	29045	103	-081	0062	13	413	248	3\%
	5471		121	NS	946	2573	29045	100	-0 60	-0048	21	430	245	6\%
	7049		233	NS							53			
25	1810	75	227	SN	1105	1936	28553	95	-054	0214	0	384	384	
	2336		265	SN	1105	19.36	28553	95	302	-0347	-2	488	474	
	2862		302	SN	1105	1936	28553	95	-137	0307	-3	346	325	
	3388		339	SN	493	2304	28324	43	-0 84	-0018	-2	254	265	
	5492	76	123	SN	1086	1947	28547	93	-2 22	0247	21	526	314	
	6018		160	SN	348	1947	28547	23	-083	0129	31	997	398	
	7070		234	SN							53			
26	1846	75	230	NS	1825	2587	28712	157	165	-0310	0	407	407	2\%
	2898		304	NS	1825	2587	28712	157	-551	-0708	-3	501	47.9	2\%
	5528	76	125	NS	1797	2587	28712	154	-220	0204	22	355	246	2\%
	6054		162	NS	1797	2587	28712	154	464	0234	32	488	357	
	6580		200	NS							42			
	7106		237	NS							54			
27	1974	75	239	NS	4481	4196	29871	468	295	-0 369	0	314	314	
	2500		276	NS	4471	4196	29871	467	408	0222	-2	398	388	
	3026		313	NS	4462	41.96	29871	466	-0.27	-0 109	-2	310	306	
	3552		351	NS	4471	41.96	29871	467	-0 78	-0 108	0	343	34.9	
	4604	76	60	NS	3036	41.96	29871	343	-471	0001	9	240	272	
	6182		171	NS	4481	41.96	29871	468	157	-0 172	35	637	497	
	6708		209	NS							46			
	6708		209	NS							46			
	7234		246	NS							58			
28	2037	75	243	SN	1526	2635	29270	173	262	-0 430	0	262	262	
	2563		281	SN	1526	2635	29270	173	003	-0035	-2	201	203	
	3089		318	SN	1526	26.35	29270	173	060	-0088	-2	20.2	198	
	5193	76	102	SN	1480	2641	29267	167	228	0014	18	187	263	
	5719		139	SN	1518	2641	29267	172	-126	-0018	26	197	230	
	6245		176	SN	1501	26.52	29260	170	-231	0050	36	270	201	
29	2159	75		NS	4315	44.35	29643	438	-506	-1 022	0		$\square \dagger$	
	3211		326	NS	4315	4435	29643	438	328	0132	-1	667	-	
	3737		364	NS	4315	4435	29643	438	272	0047	2	490	-	
	5315	76	110	NS	4315	4435	29643	438	-167	0236	20	683	-	
	5841		147	NS	235	4421	29627	33	380	0312	29	189	-	
	5841		147	NS	3038	3643	28881	284	638	0260	29	658	\cdots	
	6893		222	NS							51			

Table 2 (continued)

$\begin{aligned} & \text { Set } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Rev } \\ & \text { No } \end{aligned}$	Date		\cdots DIRN	Length (km)	Start of Overlap		No of Pts	$\left\{\begin{array}{l} 1 \text { Bias } \\ (\mathrm{m}) \end{array}\right.$	Tilt (are sec)	$\begin{gathered} \delta \lambda \phi=0^{\circ} \\ (\mathrm{km}) \end{gathered}$	RMS Ressdual ($\pm \mathrm{cm}$) -		\% Data Rejected
		YY	DDD			ϕ	λ					$\partial \mathrm{N} / \partial \lambda=0$	$\partial \mathrm{N} / \partial \lambda \neq 0$	
30	2464	75	274	SN	1130	1857	28461	89	-174	-0 157	0	382	382	4\%
	3516		348	SN	213	1867	28461	22	-0 04	-0 0549	2	194	215	
	3516		348	SN	532	2209	28245	59	-3 10	0682	2	154	164	
	4568	76	57	SN	1130	18.57	28461	89	052.	-0 112	10	276	374	
	6146		169	SN	1066	$1895-$	28438	84	149	-0 155	36	57.9	322	8\%
	7198		243	SN							59			
31	2486	75	275	NS	2392	43.51	29481*	257	272	-0045	0	245	245.	
	3012		312	NS	2346	4351	29481	252	310.	0011	0	383	400	
	4590	76	59	NS:	2392	4351	294.81	257	-207	-0 030	11	229	261	
	5116		96	NS	2384	4346	29476	256	-272	0050	18	216	259	
	5642		133	NS	2392	4351	29481	257	-119	0057	27	344	290	
	6694		208	NS							48			
	7220		245	NS							60.			
32	2506	75	277	SN	1431.	2872	29448.	167	179	0330	0	262	262	
	3558		351	SN	1423	2872	29448	166	000	-0 089	2	278.	282	
	4610	76.	60	SN	1431	2872	29448	167	164	-0 130	11	204	21.5	
	5136		98	SN	1423	2878	29444	166	064	-0 138	19	19.8:	226	
	5662		135	SN	1406	2888	294.36,	164	-071	-0 133	27	164	219	
	6188		172	SN	1366	$2915 \sim$	29418	159	-168	-0 054	37	218	254	

Table 3
Residual Noise (σ in Equation 3) as a Function of Junction Point Size

```
Junction Point (Crossover)
    Size (Degrees)
                                    Root Mean Square Residual
    (\pm cm)
        0.2}\mp@subsup{}{}{\circ}\times0\mp@subsup{2}{}{\circ
        05 ` 人05 52
```

$1^{\circ} \times 1^{\circ}$ 78

Table 4
The Effect of Allowing for the Ocean Tide on the Root Mean Square Residual (σ) for a Monthly Solution in the Sargasso Sea

Tidal Model - Hendershott Month - October 1975
For more details, see Table 1, Row 7 and Figure 15

Solution Description	Mean Sea Surface Height at 243 Junction Points (m)	
Tide Not Modelled Tide	29	-49.36
Modelled	29	-49.33

Table 5

Three Parameter Transformations of Regional Sea Surface Models to the GEM 9 Datum

Equation 4			GEM 9 to (30,30)	
Solution Descriptio		$\begin{aligned} & \text { Meridional Tilt } \\ & (+N) \\ & \text { cm per } 10 \mathrm{~km} \end{aligned}$	Prime Vertical Tilt (+ E) cm per 10 km	Radıal. Correction (m)
July	1975	-4	$+1.5$	+07
August	1975	-6	+2 5	+1.7
September	. 1975	-5 5	+3	-28
October	1975	-5	+4	-3.6
November	1975	-55	+3.5	+1.4
April	1976	-5	+5	+18
May	1976	-4.5	+4.5	+16
June	1976	-55	+4.5	+15
July	1976	-5.5	+5	+1.5
August	1976	-5	+4.5	+1.5

Table 6
Correlations Between Remote Sensed Cyclonic Eddıes/Monthly Surface Temperature Means and Dynamic Sea Surface Heıghts of Regional Models of the Sargasso Sea from GEOS-3 Altimetry

Month	Year	No of Passes	No of Junction Points	RMS Residual After Adjustment (\ddagger m)	$\%$ ofDataRejected	Correlations With Cyclonic Eddics as (\%) function of distance $\mathrm{d}(\mathrm{km})^{-}$					Correlations With Monthly Surface Temperature Mean Moxima and Minima Defined in Four Cardinal Directions				
						$0<d<50$	$\begin{gathered} 1 \% 1 \\ 50<d<100 \end{gathered}$	$d>100$	Insuff Data	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Positive**	$\begin{gathered} (\%) \\ \text { Favorable** } \end{gathered}$	Negativo**	No Data	Sample Size
July	1975	15	63	040	0	100	-	-	-	2	-	-	-	"	-
August	1975	23	97	050	18	67	-	-	33	3	67	-	17	16	6
September	1975	28	156	035	8	75	25	-	-	4	40	40	-	20	5
October	1975	35	243	029	2	75	25	-	-	4	67	16	17	-	6
November	1975	28	175	026	1	50	25	-	25	4	43	-	-	57	7
Aprl	1976	19	63	017	6	50	25	-	25	4	40	-	20	40	5
May	1976	14	59	021	1	50	50	-	-	2	40	-	20	40	5
June	1976	25	140	026	2	-	100	-	-	1	33	33	-	34	3
Juty	1976	22	122	020	-	67	33	-	-	3	50	-	50	-	4
August	1976	24	131	022	-	75	-	-	25	4	50	-	25	25	4
				Total		64	24	-	12	33	50	9	16	25	44

*Correlations estoblished from relative sea surface height variations along profiles over eddy locations raported in (NOAA 1975, NOAA 1976)
** Positive correfation defined by occurrence of highs or lows of same sign in both altumeter sea surface models and in surface temperature meons for $1^{\circ} \times 1^{\circ}$ squares (ibid)
Positive $=$ exact correlation in four cordinal directions or ground track directions if avariab
Favorable $=$ exact correlation along three out of four cardinal or ground track directions
Negative a exact correlation along less than three out of four cardinal or ground trock directions

Table 7
The Varation of Specific Volume of Sea Water With Temperature

Temperature ${ }^{\circ} \mathrm{C}$	$\langle\partial \alpha / \partial T\rangle \times 1.0^{-4}$ $\mathrm{~cm}^{3} \mathrm{~g}^{-1}\left({ }^{\circ} \mathrm{K}\right)^{-1}$
0	3.19
5	3.14
10	3.08
15	3.03
20	2.98
25	293
30	2.88
35	2.83
40	2.78

Table 8
Spectral Analysis of Overlapping Pass Set 8 (Table 2)

Rev No Range of Waveleng:I1	NH	595			1121			1647			2173			2699			3751			5329			5855			6381			Mean tor Set 8				
		or	E1	51	0	E	s	\bigcirc	E	s	\bigcirc	!	s	\bigcirc	E	s	0	E	s	0	E	s	0	E	s	0	ε	s	0	0	E	\checkmark	Ratio
25	59	29	20,3		39	203		16	20.3		57	240		75	240		73	240		30	203		58	240		40	241		463	205	2237	197	021
50	103	9.8	398		13	398		46	398		73	380		100	380		103	330		87	398		107	380		102	379		877	201	3886	095	023
75	35	20	135		42	135		34	135		57	129		42	126		74	126		41	135		54	129		38	126		457	138	1309	043	035
100	17	24	64		28	64		22	64		35	61		32	65		32	65		41	64		46	61		63	65		359	127	636	016	056
125	10	63	41		44	41		30	41		29	38		50	38		30	3 B		56	41		33	38		47	38		431	120	396	017	109
150	7	69	26		34	20		55	26		54	27		74	23	-	57	23	-	31	20		72	27	\cdots	84	23		589	179	252	017	233
125	5	33	1.9		39	19		33	1.9		49	19		105	1.9	\cdots	59	19	\because	33	19		46	19	*	104	19		557	29	190	002	293
200	4	71	15	...	50	15		44	15	-	23	11		32	16	-	34	15	-	70	15	.	43	11		34	15	.	446	107	142	017	314
225	3	33	11		39	11	\cdots	23	11		18	11		06	08		04	08		19	11		10	11		05	08		174	126	101	019	173
250	2	43	08	.	07	08		24	08	...	03	08		66	11	\cdots	19	11		30	08	-	14	08		17	11		196	196	089	020	220
275	2	25	08	*	08	08		15	08		21	08		07	04		03	04		25	08	\cdots	45	08	.	01	04		167	140	063	019	265
300	2	48	08		13	08		16	08		28	08	\cdots	08	08		17	08		48	08	\cdots	25	08	...	27	08		256	143	076	001	336
325	1	35	04	**	12	04	-	17	04		03	04		07	04		02	04		11	04		01	04		21	04	-	121	110	038	0	319
350	1	06	04		06	04		12	04		$0 \cdot$			00	04		00	04		08	04		04	04		09	04		060	041	038	0	158
375	1	08	04	-	10	04		01	04		11	04		04	04		12	04	-	24	04		09	04	\cdots	06	04		094	065	033	0	248
400	1	20	04		18	04	\cdots	09	04	-	26	04	\cdots	11	04	*	09	04		21	04	-	20	04	...	19	04		173	063	038	0	456
425	1	15	04	-	28	04	-	25	04		24	04	-•	10	04		19	04	.	01	04		15	04		14	04	*	169	085	038	0	444
450	1	02	04		31	04		06	04											06	04								12	133	038	0	296
475	,										02	04		35	04	-	44	04					27	04		55	04		326	200	038	0	858
500	1	1.2	04	\cdots	23	04		16	04					73			18	04	\cdots	18	04					24	04	-	263	210	038	0	692
525	1										43	04											17	04	...				30	184	038	0	79
550	1	4.3	04		29	04		24	04	-										45	04	-••							353	103	038	0	${ }^{9} 28$
575	1										20	04		02	04		43	04					29	04		24	04	'•	236	149	038	0	621
600	1	27	04	\cdots	64	04		50	04											05	04								365	260 127	- 038	0	960 482
625	'													33		-	31	04								11	04	-	183	127 219	- $\begin{aligned} & 038 \\ & 038\end{aligned}$	0	
650	1	05	04		07	04		17	04		11	04								13	04	*.4	42	04	-				265 105	219 055	- 038	0	697 276 27
725	1										16	04		09	04	-	05	04					21	04	.	04	04		110	073	038	0	290
775	1	02	04		21	04		04	04											33	04								150	147	038	0	395 942 04
850	1										36	04	-	43	04		21	04					05	04		24	04		358	244	038	0	942
900	1	53	04	-	20	04	*	10	04											50	04	-							332	215	038	0	875
1000	1													5,4	04		39	04	-							47	04	**	467	075	O38	0	12.28 671
1025 1025	1										44	04											07	04					255 270	262			627 71 71
1025 1250	1	30	04	-	22	04		40	04					78			50	04	-	16	04	.				B 7	04		25	210	-	0	1447
1250 1275	1										44	04		78			So	04					88	04	'*				66	311	038	0	
1350	1	16	04		61	04		15	04											02	04								235	258	038	0	
1675	1										40	04		30			56	04	-				40	09	-	30	04		392 240	106 279			1032 832
${ }^{1775}$	1	22	04	-	64	04		07	04											03	04								240 51	279 501	-	0	632 1342
2500 2525	!										65		\cdots					04					52	04	-	47	04		585	-92	-	0	1540 80 812
2675	1	21	04		27	04		37	04											43	04								32	099	038	0	${ }^{8} 42$
4975	1																									67	04		67	-	${ }^{0} 38$	0	1763 263
5000 5025	1													\because			09	04											115	014 05	- $\begin{aligned} & 038 \\ & 038\end{aligned}$	0	263 3026
5325		117	04		143	04		350	04											186	04			,					199	1046	038	0	5236

[^2]Table 9
Spectral Analysis of 32 Sets of Overlapping Passes in Western North Atlantic (For Descruption of Headings See Footnote of Table 8).

Table 9 (contmued)

Table 9 (contınued)

Table 9 (continued)

Set No	28	29	30	31	32	Mean
Range of W L (km)	N E O S	N E O S	N E O S	N E O S	N E O S	$\begin{array}{llllllll}N & E & \sigma_{E} & 0 & \sigma_{S} & / / E\end{array}$
0	55649232	10362070 ***	21691206	80632179	54659205	$\begin{array}{llllllll}62 & 639 & 66 & 187 & 78 & 03\end{array}$
50	15176171	3419050	9246218	24187128	14172100	$\begin{array}{lllllll}19 & 194 & 16 & 134 & 51 & 07\end{array}$
	$\begin{array}{lll}5 & 59 & 77\end{array}$	1370100	$\begin{array}{llll}3 & 92 & 74\end{array}$	86364	5 5	$\begin{array}{llllllll}6 & 69 & 13 & 100 & 50 & 14\end{array}$
	343064	$6 \quad 30 \quad 30$	249117 **	43145	$2 \begin{array}{lll}26 & 42\end{array}$	$\begin{array}{llllll}3 & 3507 & 84 & 40 & 24\end{array}$
	22416	43030	$285213 \cdots$	$21627 *$	2 24 71 **	$\begin{array}{llllll}3 & 2610 & 82 & 38 & 32\end{array}$
	22432.	$31050 \cdots$	$252132 *$	$2 \quad 1546 \cdots$	$22^{2} 5187 * *$	$\begin{array}{lllllll}2 & 25 & 12 & 103 & 93 & 41\end{array}$
	11260 **	$210 \quad 10$		10831 ***	113 19	$\begin{array}{lllllll}2 & 21 & 10 & 89 & 60 & 42\end{array}$
	$224103^{* * *}$	$21020 \quad *$	$247192 * *$	$10865 \cdots$	11256 **	221061076251
450		10510 **				$\begin{array}{llllll}2 & 1303 & 58 & 27 & 45\end{array}$
	112142 **	10520 **		$216275^{* * *}$	$224298 \cdots$	$\begin{array}{llllll}2 & 18 & 05 & 125 & 68 & 69\end{array}$
	11235 **	210130 **	$252294 * *$	10838 ***		$\begin{array}{llllllll}4 & 45 & 07 & 255 & 67 & 57\end{array}$
		10540 *			11306	$\begin{array}{lllllll}4 & 32 & 05 & 205 & 51 & 64\end{array}$
	$22490 *$	$210170 \cdots *$		10858 **	$11256 \cdots$	$\begin{array}{lllllll}4 & 41 & 05 & 338 & 90 & 82\end{array}$
800		$10560 \cdots *$				$\begin{array}{llllllll}4 & 2502 & 250 & 41 & 100\end{array}$
900						$\begin{array}{llllll}4 & 39 & 06 & 287 & 72 & 74\end{array}$
	112474 ***	320140 **	247638 **	$21686 * *$		161570514408092
	$223309 \cdots$				$337485 \cdots$	$\begin{array}{lllll}13 & 129011728 & 95134\end{array}$
2000		105240 **		$216455 * *$		$13 \quad 90012195138244$
2500						$\begin{array}{llllll} 4 & 19 & 0 & 357 & 44 & 188 \end{array}$
3000						
3500		$110250^{* * *}$				$\begin{array}{lllllll}1 & 07 & 0 & 251 & 0 & 354\end{array}$
4000						$\begin{array}{llllll}1 & 05 & 0 & 27 & 0 & 50\end{array}$
		105250 **				3130842182648
						$\begin{array}{lllll}5 & 21 & 0 & 23212110\end{array}$
5000						$\begin{array}{llllll}2 & 08 & 0 & 314 & 87 & 392\end{array}$
> 5000						

Figure A1. Smoothed Guestimates of Quasi-Statıonary Sea Surface Topography in the Vicmity of the Gulf Stream-Epoch: - July 1975 - August 1976


```
—— DEPTH CONTOURS
- - - AVERAGE POSITION OF GULF STREAM
```

Figure 1. The Sargasso Sea Test Area

Figure 2. Sets of Overlapping Passes of GEOS-3 Altimetry in the Western North Atlantic

Figure 3. Sea Surface Models of Sargasso Sea -
October 1975 Differences [Tıde Corrected Model - Uncorrected Model]

VARIATIONS - SARGASSO SEA - JULY 1975
DATUM - AVERAGE SEA SURFACE FOR JUL'Y 1975 - AUGUST 1976
WAVELENGTHS $>200 \mathrm{Km}$ CONTOUR INTERVAL 50 cm

Figure 4. Regional Model of Dynamic Sea Surface Topography Varıations Sargasso Sea - July 1975

surface temp Low

DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976
 CONTOUR INTERVAL 50 cm WAVELENGTHS $>\mathbf{2 0 0} \mathrm{km}$

Figure 5. Regıonal Model of Dynamic Sea Surface Topography Variations Sargasso Sea - August 1975

SURFACE TEMP. LOW

$$
\begin{aligned}
& \text { DATUM - AVERAGE SEA SURFACE FOR JULY } 1975 \text { - AUGUST } 1976 \\
& \text { CONTOUR INTERVAL } 50 \mathrm{~cm} \quad \text { WAVELENGTHS }>200 \mathrm{~km}
\end{aligned}
$$

Figure 6. Regronal Model of Dynamic Sea Surface Topography Variations Sargasso Sea - September 1975

DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976 CONTOUR INTERVAL 50 cm WAVELENGTHS >200 km

Figure 7. Regional Model of Dynamic Sea Surface Topography Variations Sargasso Sea - October 1975

SURFACE TEMP. LOW

DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976 CONTOUR INTERVAL 50 cm WAVELENGTHS $>200 \mathrm{~km}$

Figure 8. Regional Model of Dynamic Sea Surface Topography Vanations Sargasso Sea - November 1975

surface temp low

$$
\text { DATUM - AVERAGE SEA SURFACE FOR JULY } 1975 \text { - AUGUST } 1976
$$

CONTOUR INTERVAL 50 cm WAVELENGTHS $\mathbf{> 2 0 0} \mathrm{km}$

Figure 9. Regional Model of Dynamic Sea Surface Topography Variations - Sargasso Sea - April 1976

SURFACE TEMP LOW

DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976
 CONTOUR INTERVAL 50 cm WAVELENGTHS $>200 \mathrm{~km}$

Figure 10. Regional Model of Dynamic Sea Surface Topography Variations Sargasso Sea - May 1976

DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976 CONTOUR INTERVAL 50 cm WAVELENGTHS $>200 \mathrm{~km}$

Figure 11. Regıonal Model of Dynamic Sea Surface Topography Variations Sargasso Sea - June 1976

Figure 12. Regional Model of Dynamic Sea Surface Topography Varıatıons Sargasso Sea - July 1976

$$
\begin{aligned}
& \text { DATUM - AVERAGE SEA SURFACE FOR JULY } 1975 \text { - AUGUST } 1976 \\
& \text { CONTOUR INTERVAL } 50 \mathrm{~cm} \quad \text { WAVELENGTHS }>200 \mathrm{~km}
\end{aligned}
$$

Figure 13. Regional Model of Dynamic Sea Surface Topography Variations Sargasso Sea - August 1976

Figure 14. Sargasso Sea Discrepancies Between Average Sea Surface (Oriented on GEM 9) and Marsh 5 Minute Gravimetric Geoid. Contour Interval - 50 cm
 CONTOUR INTERVAL -10 cm

Figure 15. Sargasso Sea Variation of Monthly Sea Surface Herghts as a Function of Position (rms residual $\pm \mathrm{cm}$)

Figure 16. Offset in Longitude for Overlapping Passes as a Function of Time

Figure 17. Root Mean Square (RMS) Discrepancy as a Function of Pass Length

Figure 18. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (September.1975)*

Figure 19. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (October, 1975) ${ }^{\text {* }}$

Figure 20. Correlation of Infra-red Imagery with GEOS-3 Altımetry Profiles (November 1975)*

Figure 21. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles
(December 1975)*

Figure 22 Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (April 1976)*

[^0]: *On leave of absence from the Unversity of New South Wales, Sydney, Australa.

[^1]: "Frequencies were grouped in "bins" according to wavelength (WL) to simplify the presentation of results.

[^2]: iN number ol irctuencols ther bin

