# N/S/N

## Technical Memorandum 79549

'(NASA-TM-79549) THE ANALYSIS OF TEMPORAL N78-27725
VARIATIONS IN REGIONAL MODELS OF THE
SARGASSO SEA FROM GEOS-3 ALTIMETRY
Technical Memorandum, Jul. 1975. - Aug. 1976
(NASA) 58 p HC A04/MF A01 CSCL 08C G3/48 25787

# The Analysis Of Temporal Variations In Regional Models Of The Sargasso Sea From GEOS-3 Altimetry

R. S. Mather, R. Coleman, and B. Hirsch

May 1978

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

# THE ANALYSIS OF TEMPORAL VARIATIONS IN REGIONAL MODELS OF THE SARGASSO SEA FROM GEOS-3 ALTIMETRY

R.S. Mather\*
Geodynamics Branch
Goddard Space Flight Center
Greenbelt, Md 20771

R. Coleman\*
B. Hirsch\*
Department of Earth and Planetary Sciences
Johns Hopkins University
Baltimore, Md 21218

May 1978

\*On leave of absence from the University of New South Wales, Sydney, Australia.

Presented at the Second International Symposium
"The Use of Artificial Satellites for Geodesy and Geodynamics"

Lagonissi, Greece

May 29 to June 3 1978

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

### CONTENTS

|      |                                                                                                                                                                                   | Page |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ABS  | STRACT                                                                                                                                                                            | vii  |
| 1.   | THE DATA BASE                                                                                                                                                                     | 1    |
| 2.   | REGIONAL SEA SURFACE MODELLING                                                                                                                                                    | 2    |
| 3.   | CORRELATIONS OF REGIONAL MONTHLY MODELS OF DYNAMIC SEA SURFACE TOPOGRAPHY VARIATIONS WITH SURFACE OCEAN DATA                                                                      | 5    |
| 4.   | THE ANALYSIS OF OVERLAPPING PASSES IN THE SARGASSO SEA                                                                                                                            | 8    |
| 5.   | CONCLUSIONS                                                                                                                                                                       | 10   |
| 6.   | ACKNOWLEDGMENTS                                                                                                                                                                   | 11   |
| 7.   | REFERENCES                                                                                                                                                                        | 11   |
| 8.   | APPENDIX                                                                                                                                                                          | 13   |
| 8.1  | The Quasi-Stationary Component of the Sea Surface Topography in the Vicinity of the Gulf Stream                                                                                   | 13   |
| 8.2  | Correlations from Overlapping Pass Analysis with Eddies                                                                                                                           | 14   |
|      | TABLES                                                                                                                                                                            |      |
| Tab. | <u>le</u>                                                                                                                                                                         | Page |
| 1    | Regional Monthly Solutions for the Shape of the Sargasso Sea from GEOS-3 Altimetry                                                                                                | 15   |
| 2    | Statistics for Overlapping Pass Sets                                                                                                                                              | 16   |
| 3    | Residual Noise ( $\sigma$ in Equation 3) as a Function of Junction Point Size                                                                                                     | 21   |
| 4    | The Effect of Allowing for the Ocean Tide on the Root Mean Square Residual ( $\sigma$ ) for a Monthly Solution in the Sargasso Sea                                                | 21   |
| 5    | Three Parameter Transformations of Regional Sea Surface Models to the GEM 9 Datum                                                                                                 | 22   |
| 6    | Correlations Between Remote Sensed Cyclonic Eddies/Monthly Surface Temperature Means and Dynamic Sea Surface Heights of Regional Models of the Sargasso Sea from GEOS-3 Altimetry | 23   |

| <u>Table</u> |                                                                                                                                     | Page |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| 7            | The Variation of Specific Volume of Sea Water With Temperature                                                                      | 24   |
| 8            | Spectral Analysis of Overlapping Pass Set 8 (Table 2)                                                                               | 25   |
| 9            | Spectral Analysis of 32 Sets of Overlapping Passes in Western North Atlantic (For Description of Headings See Footnote of Table 8)  | 26   |
|              | ILLUSTRATIONS                                                                                                                       |      |
| Figure       |                                                                                                                                     | Page |
| A1           | Smoothed Guestimates of Quasi-Stationary Sea Surface Topography in the Vicinity of the Gulf Stream-Epoch: — July 1975 — August 1976 | 30   |
| 1            | The Sargasso Sea Test Area                                                                                                          | 31   |
| 2            | Sets of Overlapping Passes of GEOS-3 Altimetry in the Western North Atlantic                                                        | 32   |
| 3            | Sea Surface Models of Sargasso Sea — October 1975 Differences [Tide Corrected Model — Uncorrected Model]                            | 33   |
| 4            | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — July 1975                                              | 34   |
| 5            | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — August 1975                                            | 35   |
| 6            | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — September 1975                                         | 36   |
| 7            | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — October 1975                                           | 37   |
| 8            | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — November 1975                                          | 38   |
| 9            | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — April 1976                                             | 39   |
| 10           | Regional Model of Dynamic Sea Surface Topography Variations – Sargasso Sea – May 1976                                               | 40   |
| 11           | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — June 1976                                              | 41   |

| Figure |                                                                                                                                           |   | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|---|------|
| 12     | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — July 1976                                                    | • | 42   |
| 13     | Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — August 1976                                                  | • | 43   |
| 14     | Sargasso Sea Discrepancies Between Average Sea Surface (Oriented on GEM 9) and Marsh 5 Minute Gravimetric Geoid. Contour Interval — 50 cm | • | 44   |
| 15     | Sargasso Sea Variation of Monthly Sea Surface Heights as a Function of Position (rms residual ± cm)                                       | • | 45   |
| 16     | Offset in Longitude for Overlapping Passes as a Function of Time                                                                          |   | 46   |
| 17     | Root Mean Square (RMS) Discrepancy as a Function of Pass Length                                                                           | , | 47   |
| 18     | Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (September 1975)                                                          |   | 48   |
| 19     | Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (October 1975)                                                            |   | 49   |
| 20     | Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (November 1975)                                                           |   | 50   |
| 21     | Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (December 1975)                                                           |   | 51   |
| 22     | Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (April 1976)                                                              |   | 52   |

# THE ANALYSIS OF TEMPORAL VARIATIONS IN REGIONAL MODELS OF THE SARGASSO SEA FROM GEOS-3 ALTIMETRY

R. S. Mather\*
R. Coleman\*
B. Hirsch\*

### ABSTRACT

The dense coverage of short pulse mode GEOS-3 altimeter data in the western North Atlantic provides a basis for studying time variations in the sea surface heights in the Sargasso Sea. Two techniques are utilized in this study.

- the method of regional models; and
- the analysis of overlapping passes.

Monthly models of the Sargasso Sea are produced for the period July to November 1975 and from April to August 1976. The analysis of the heights of common 0.2° x 0,2° squares indicates a root mean square (rms) discrepancy of ±43 cm in values produced from different solutions. Approximately one quarter of this is due to the variation in geoid slope across 0.2° squares. The residual discrepancy is due to instabilities introduced by variable pass geometry, unmodelled ocean tides and meoscale variations in sea surface topography. Shortwave maxima and minima in the regional sea surface models are examined for correlations with surface and remote sensed infrared temperature data. On allowing for differences in the quantities being compared, an 88 percent correlation is obtained between the location of cyclonic eddies obtained from infrared imagery and reported by the National Weather Service, and sea surface height minima in the altimeter models. This figure drops to 59 percent in the case of correlations with maxima and minima of surface temperature fields.

The analysis of overlapping passes provides a better picture of instantaneous sea state through wavelengths greater than 30 km. The resolution obtained is significantly higher (±33 cm on average) through the areal representation is limited to 32 selected profiles. Correlation studies with cyclonic and anti-cyclonic ocean eddies from the NIMBUS 6 and GEOS I and II infrared imagery indicate satisfactory agreement being obtained with equivalent sea surface height features 98 percent of the time if time varying factors are allowed for. The spectral analysis of the overlapping

<sup>\*</sup>On leave of absence from the University of New South Wales, Sydney, Australia.

passes shows once again the high relative precision of the GEOS-3 altimeter in the short pulse mode. The variability of the Sargasso Sea through wavelengths between 150 km and 5000 km is estimated at ±28 cm. On considering the magnitude of unmodelled orbital error this value is in reasonable agreement with oceanographic estimates and is compatible with the eddy kinetic-energy of a wind driven circulation.

An approximate estimation technique shows that the quasi-stationary SST maintaining the Gulf-Stream is present in the GEOS-3 data but cannot be estimated with confidence in the absence of an adequate-geiodal model.

# THE ANALYSIS OF TEMPORAL VARIATIONS IN REGIONAL MODELS OF THE SARGASSO SEA FROM GEOS-3 ALTIMETRY

### 1. THE DATA BASE

The GEOS-3 spacecraft, launched in April 1975, was used to acquire short pulse mode radar altimeter ranges in the form of discrete passes not exceeding 20 minutes in length, off the east coast of the United States. The relative precision of GEOS-3 altimeter data recorded in the Tasman and Coral Seas was found to be ±20 cm (Mather and Coleman 1977) though the values provided by Wallops Flight Center after pre-processing, are usually in error by up to 2 orders of magnitude greater than this value (Mather et al. 1977, p.30).

These earlier studies indicated that the intensive mode GEOS-3 altimeter data contained information on regional variations in the height of the sea surface ( $\zeta$ ) with wavelengths which were less than twice the maximum pass length (i.e., less than 9000 km) and with amplitudes which were greater than  $\pm 10$  cm. It was also found that factors pertaining to either the sea state or else, the method of averaging used in the altimeter, may cause problems in the resolution of features of wavelengths much less than 30 km (Mather 1977, p.25).

The area covered by the dense network of GEOS-3 altimetry is shown in Figure 1. Table 1 sets out a summary of the data available in the 1977 GEOS-3 altimeter data bank at Goddard Space Flight Center. The data is catalogued on a monthly basis from April 1975 to August 1976. This data was selected in two different ways to study regional variations in  $\zeta$ .

In the first, the intensive mode GEOS-3 altimetry was processed on a monthly regional basis using the intersection of passes to provide a framework of control for the adjustment of the sea surface model (Mather et al. 1977, pp. 37 et seq.). It was assessed that meaningful models of the sea surface could not be obtained unless the number of passes (n) approached 15 and the number of junction points were approximately 4n. It was decided on this basis, to restrict the study of time variations on a regional basis from monthly analyses, to the period July to November 1975, and April to August 1976. These studies are described in Section 2. Section 3 studies the correlations between such satellite-determined models of the sea surface and their variations against surface and remote-sensed temperature data and the location of eddies in the test area.

The second data base was prepared using the observation that GEOS-3 groundtracks approximately repeat themselves every 526 revolutions. This occurs after 37.18 days. Profiles of intensive mode GEOS-3 altimetry in the Sargasso Sea test area (Figure 1) which occur over the same groundtrack after a lapse of 526 revolutions or multiples thereof, were sorted into separate data sets. Thirty-two such sets of overlapping passes are available for analysis in the test area, and their groundtracks are shown in Figure 2.

Table 2 sets out detailed information on the 32 sets of overlapping passes which are used in the present study in the Sargasso Sea. Section 4 describes the techniques used in the study of sets of overlapping passes and the results obtained from the analysis of such data.

### REGIONAL SEA SURFACE MODELLING

Early studies of intensive mode GEOS-3 altimetry in the Tasman and Coral Seas off eastern Australia (Mather et al. 1977; Mather 1977) indicated that passes of altimetry data provided to Principal Investigators were subject to orbital errors varying from ±2 m to in excess of ±10 m. Pairs of overlapping passes in this data bank were studied, these included a pair where one of the passes was subject to a radial error in excess of 700 m. The relative discrepancy could be reduced to ±61 cm of which 66 percent occurred with wavelengths equal to twice the length of the pass if the passes were fitted to each other (Mather and Coleman 1977, Tables 1 and 2, Row 1). The improved relative fit was obtained by applying a correction for tilt c and bias b per pass with lengths in excess of 10<sup>3</sup> km. In less extreme cases, the root mean square (rms) discrepancy after allowing for tilt and bias, is significantly smaller. A typical figure (Table 2) is ±30 cm over a 3000 km pass.

As such, it is possible to model the quasi-stationary sea surface height  $(\phi,\lambda)$  at the point whose latitude is  $\phi$  and longitude  $\lambda$  in terms of estimates  $\zeta_{ij}$   $(\phi,\lambda)$  from the j-th element of the i-th pass of GEOS-3 altimetry using the relation

$$\zeta = \zeta_{ii} + b_i + c_i (t_{ij} - t_{ii}) + \zeta_t + v_r$$
 (1)

on dropping the position identifier,  $\zeta_t$  being the height of the combined Earth and ocean tide,  $t_{ij}$ ,  $t_{il}$  the times of the j-th and first elements in the i-th pass.  $v_r$  would represent all unmodelled effects including mesoscale variations in the dynamic sea surface topography (SST).

The estimates of  $\zeta$  from values  $\zeta_{ij}$  and  $\zeta_{k\ell}$  on the i-th and k-th passes which intersect at P, give two equations of the form at (1), which on combination, give an observation equation of the form

$$v = \zeta_{ij} - \zeta_{k\ell} + (b_1 - b_k) + c_1 (t_{ij} - t_{il}) - c_k (t_{k\ell} - t_{kl})$$
 (2)

on assuming that the tidal signal can be treated as being included in either ζ or v.

The first stage in devising an impersonal and flexible system in regional sea surface modelling, is the definition of an event which is construed as a crossover (or junction point). The GEOS-3 altimeter has a finite footprint. Therefore one possibility is to treat a  $p^{\circ} \times p^{\circ}$  square as a junction point. Table 3 sets out the residual statistics (i.e., the rms value of v in equation 2) obtained when adjusting the same block of data using different values of p. If

$$\sigma = \sum_{1=1}^{N} \left( v_1^2 \right)^{\frac{1}{2}}$$
 (3)

where N is the number of junction (crossover) points, the dominant contribution to  $\sigma$  is the slope of the sea surface if p>0.2, being almost 99 percent of  $\sigma$  for 1° x 1° junction points (Mather et al. 1977, p.40) as illustrated in Table 3.

The noise level of the GEOS-3 altimeter is assessed at  $\pm 20$  cm on a relative basis. The value of  $\sigma$  should be kept as small as possible so that time variations on a regional basis can be recovered with an equivalent resolution. However, computer limitations and the finite footprint of the altimeter also limit the minimum value p can take. A good compromise is an  $0.2^{\circ}$  x  $0.2^{\circ}$  square. The geoid variations within such a square should not materially mask features in the sea surface with amplitudes greater than  $\pm 25$  cm and wavelengths in excess of 40 km. Regional sea surface models obtained from solutions based on 0.2 degree squares as crossover "points" should be adequate for the location of eddies in the western Sargasso Sea which are expected to have exhibit sea surface height variations in excess of  $\pm 50$  cm over extents as large as  $10^2$  km (e.g., Cheney and Richardson 1976).

The basic area in which GEOS-3 altimetry data was analysed for the generation of regional sea surface models is a 12° x 12° area shown in Figure 1. The ocean tides were treated as noise in the present series of computations as the inclusion of a current tidal model in a sample had a negligible effect on the heights of the sea surface as summarized in Table 4 and Figure 3.

Table 1 sets out all data used in this analysis (Rows 4 to 8 and 13 to 17) detailing the number of passes and junction points and values of  $\sigma$  obtained after adjustment. It has been noticed that the value of  $\sigma$  increases slightly as the volume of data increases. This is probably due to the fact that noisy records are not filtered out of the solutions. A second observation concerns the relatively larger values of  $\sigma$  for July, August and September 1975 (Table 1; Rows 5, 6 and 7). This cannot be attributed to orbital error. Possible causes for this may be time tag errors which occur from time to time in the 1977 GEOS-3 altimetry data bank. The authors are not aware of any reason to believe that this reflects an increasingly noisy sea for the period.

The monthly sea surface models so obtained are

- insensitive to absolute datum, being based on a set of observation equations which are differential in nature (Equation 2); and
- subject to slight arbitrary variations in Earth space orientation which is a function of the location of the junction points over the area (Figures 4 to 13). It was therefore decided to provide an absolute datum to the 10 monthly models by making a three parameter fit to the best available satellite gravity field model GEM 9 (Lerch et al. 1977).

The orientation was effected by using observation equations of the form-

$$v = \zeta - \zeta_{GEM 9} + a_0 + a_1 (\phi - \phi_0) + a_2 (\lambda - \lambda_0)$$
 (4)

over the test area which was approximately 1200 km long,  $\phi_0$ ,  $\lambda_0$  being co-ordinates of the southwest corner of the region studied. The corrections obtained are listed in Table 5. The variation in the overall tilt between different sea surface models to GEM 9 is less than 10 cm per 10<sup>2</sup> km. This is a measure of the stability obtained internally in each monthly solution and is of adequate resolution for studies of variations in sea surface topography which have magnitudes in excess of 20 cm in relation to the surrounding oceans. It must be emphasized that the data generated from the ten monthly solutions can only be used for the study of variations in the sea surface topography and not the quasi-stationary SST for which a geoid of adequate precision is required. While the discrepancy between the heights of the sea surface from different monthly solutions disagree by less than  $\pm 40$  cm on the average in areas covered by altimetry, the disagreement with the best available geoid (Marsh and Chang, 1978) is considerable, the discrepancies being correlated with distance from the east coast of North America, as illustrated in Figure 15. This is probably due to the decreasing density of gravity data of adequate quality as a function of position in computations of the gravimetric geoid.

The contours shown in Figures 4 to 13 are estimated heights of the average sea surface for the month relative to the mean sea surface for the epoch (July 1975 to August 1976) with wavelengths greater than 200 km and do not reflect the quasi-stationary sea surface topography in the region. The plots represent wavelengths greater than 200 km, but enhanced by additional data in the vicinity of eddies. Thus the contours of the quasi-stationary component of the Gulf Stream to the west of the test area, have been filtered out of the solution. Attempts to recover the quasi-stationary component of the Gulf Stream are described in the Appendix.

The values of  $\sigma$  obtained for the solutions, except in the three cases mentioned above, are only marginally greater than the expected variation of the geoid over a 0.2° square. However, the contours in Figures 4 to 13 are reliable only in the vicinity of groundtracks shown on the Figures. The precision of contours is significantly worse than  $\pm \sigma$  in Table 1 at locations more than 50 km away from a groundtrack. Contours shown in broken lines should be treated as suspect with errors being as large as  $\pm 1$  m.

The models shown in the above figures do not exclude the ocean tides. Earlier studies in the Tasman and Coral Seas (Mather et al. 1977, p.40) showed that the Hendershott tidal model provided with the Wallops tapes did not materially affect the statistics of regional solutions. As it is widely held that the tidal models in the Sargasso Sea are of better quality than those in the Tasman and Coral Seas, it was decided to test whether the application of the ocean tide model would improve the values of  $\sigma$  obtained. This was not found to be the case (see Table 4). The application of the Hendershott tidal model as provided by Wallops Flight Center for a test period of one month which has the most data (October 1975) was found to produce no change in the residuals  $\sigma$  after adjustment. The average value of the heights of the 243 crossover points changed by 0.03 m. The change in values of  $\zeta_8$  is highly

correlated with position, as shown in Figure 3. However, the magnitude of the effect was considered too small to warrant consideration in the present study.

The ten regional monthly solutions so obtained were examined against mean monthly measurements of surface temperature in the area and against tracks of eddies obtained from satellite remote sensing, as described in the next section.

# 3. CORRELATIONS OF REGIONAL MONTHLY MODELS OF DYNAMIC SEA SURFACE TOPOGRAPHY VARIATIONS WITH SURFACE OCEAN DATA

The Sargasso Sea lies to the east of the Gulf Stream. It is one of the best surveyed oceans in the world for surface temperature fields. The motion of the major eddies and the location of both the edge of the slope water and the Gulf Stream are monitored on a monthly basis and a monthly record published by the US National Weather Service (NOAA 1975; NOAA 1976). The following dominant features reported in this publication:

- the location of eddies; and
- the clearly defined maximum and minimum mean monthly temperatures for 1° x 1° squares

are also located in Figures 4 to 13.

Most of the comparisons occur in deep oceans and the significance of the results, illustrated in Figures 4 to 13 and listed in Table 6 can be interpreted as follows. Assuming the existence of a layer of no motion at great depth H (= 2000 m) in the region at which isobaric and level surfaces coincide, the constant pressure P at depth (h = H) is given by

$$P = \begin{bmatrix} 0 & \rho_{w} & dz \\ 0 & \rho_{w} & dz \end{bmatrix}_{Ocean} + \begin{bmatrix} h_{a} & \rho_{a} & dz \\ 0 & \rho_{a} & dz \end{bmatrix}_{Atmosphere} = Constant$$
 (5)

where g is observed gravity,  $\rho_{\rm W}$  the density of sea water and  $\rho_{\rm a}$  the atmospheric density at the element of height dz for a given location, the integration being along the local vertical. The variations in  $\rho_{\rm W}$ ,  $\rho_{\rm a}$  cause anomalies dh in the height of the standard column of water above the level of no motion. These can be related to temperature anomalies dT at the pressure increment dp corresponding to dz, in terms of the relation

$$dh = \frac{1}{g} \left[ \int_{P}^{P_0} \frac{\partial \alpha}{\partial T} dT dp - \frac{1}{\rho_W} dp_a \right] + o\{f dh\}$$
 (6)

where  $\alpha$  is the specific volume of sea water and  $dp_a$  the atmospheric pressure anomaly from the standard atmospheric model at the air/sea interface where the pressure is  $P_0$ .

The density of sea water  $\rho_{\rm w}$  varies from 1.022 in the surface layers of equatorial oceans to 1.028 in deep oceans (Monin et al. 1974, p.36). Expressed in terms of  $\alpha$ , these variations as a function of temperature can be expressed by a relation of the form

$$\alpha_{\rm W} = (\alpha - 1) \times 10^{-4} = a_1 + a_2 \log_{\rm e} T$$
 (7)

The use of the table in (Dietrich 1963, p.44) in evaluating a<sub>1</sub> and a<sub>2</sub> in equation 7 gives

$$a_1 = -5.18 \times 10^{-5}$$
 ;  $a_2 = 8.72 \times 10^{-6}$  (8)

for T in  $^{\circ}$ K and  $\rho_{\rm W}$  in g cm<sup>-3</sup>, in the range 0  $^{\circ}$ C to 40  $^{\circ}$ C with a correlation coefficient of 0.9. Thus

$$\frac{\partial \alpha}{\partial T} = 10^4 \frac{a}{T^2} \text{ cm}^3 \text{ g}^{-1} (^{\circ}\text{K})^{-1}$$
 (9)

Table 7 sets out values of  $\partial \alpha/\partial T$  which conform with a model defined by equations 7 and 8. It also provides a simplified, even simplistic estimate of the sea surface height anomaly which can be expected from a typical Gulf Stream eddy. For example, the cyclonic eddy reported by Cheney and Richardson (1967, p.145) is equivalent to changes in SST of between -60 cm and -152 cm, assuming a level of no motion at 1000 m deep. Temperature anomalies which average 1°C over 2000 m are equivalent to a SST anomaly of approximately 60 cm. Surface temperature measurements do not appear to be representative of the entire oceans especially if representative of an eddy-type structure (ibid). In the case of such structures, temperatures from the deeper layers have a greater influence on local SST maxima and minima than an estimate of the surface temperature which could be deceptively near normal.

Consequently, correlations between surface temperature measurements and local maxima and minima in the shape of the sea surface should not be expected in all cases.

An examination of Figures 4 to 13 also show that there is not always an exact correlation between the location of cyclonic eddies in the Sargasso Sea and lows in the surface temperature means, on the one hand, and SST lows on the other. There are two possible reasons for this

- Gulf Stream rings have been observed to move at irregular rates of up to 8 km per day (Richardson et al. 1973, p.297).
- The surface temperature is no indicator of the existence of a cold cyclonic eddy (Cheney and Richardson 1976, p.145)
- The Gulf Stream ring locations are given at the end of each month, while the altimetry-determined highs are based on data collected at various times over a month and therefore reflect average conditions for the month.

Table 6 summarises the extent of correlation between

- a) cyclonic rings shown in (NOAA 1975, NOAA 1976) and lows in the GEOS-3 altimeter models of the sea surface shape, and
- b) highs in both the monthly sea surface temperature means (ibid) as well as in the altimeter model.

None of the comparisons made between cyclonic eddies and sea surface lows can be classified as being unsatisfactory, given the differences between the two types of information compared. The correlation between the altimeter sea surface model and mean sea surface temperatures is less impressive. Sixteen percent of the comparisons obtained were not positive. This is not unexpected as surface temperature anomalies are not necessarily an indicator of any equivalent SST anomaly.

In view of this evidence, it can be concluded that regional sea surface modelling has achieved a precision of ±40 cm and provides a reliable basis for the study of eddies which cause larger variations in sea surface heights.

These figures only apply in the immediate vicinity of groundtracks. The precision falls off rapidly with distance from the nearest groundtracks. Unless the geometry of the passes is grossly irregular (e.g., Figures 4 or 9), it appears that the precision of sea surface models is seldom worse than ±1 m.

However, there are too many exceptions to claim 100% reliability at these levels. So far, no data has been excluded. However, departures of the monthly regional sea surface height from the mean of ten solutions are strongly correlated with position, as illustrated in Figure 16. There is a tendency towards weak determinations at the peripheries of the region being studied. There is extra strength in this index of variability at the edges abutting the Gulf Stream.

The contours shown in Figures 4 to 13 specifically exclude the quasi-stationary component of the SST. The possibility of recovering this part of the spectrum of SST at the present time is discussed in the Appendix. The contours shown in these figures are based on data on a one degree grid and thereby reflect wavelengths greater than 200 km. Additional data was plotted at 20 km intervals to enhance local features in areas where infrared imagery reported the existence of cyclonic eddies.

The significance of the contours referred to above is hard to assess. The solution statistics do not indicate confidence in features with wavelengths much longer than 200 km unless they have amplitudes in excess of 40 cm. This restricts any analysis to the region in the vicinity of the Gulf Stream. However, the results in this peripheral area may be flawed by geometrical uncertainties. These should not be treated as limitations of the regional altimetric technique used in this study. A much improved solution can be obtained under the following circumstances.

- 1) The region is covered with an adequate network of passes.
- ii) A reasonable tidal model is available for the area.

These limitations can be avoided in the processing of SEASAT-A data. The present study should be treated as preliminary. The possibility still exists that the results can be refined by a factor of 60% by re-processing the data with an accurate tidal model. A project for the recovery of the tidal signal from the GEOS-3 altimetry is currently underway.

A 25% improvement in the resolution can be obtained by restricting the study to those limited number of cases where the groundtracks satisfy the overlap condition.

### 4. THE ANALYSIS OF OVERLAPPING PASSES IN THE SARGASSO SEA

The orbital period of the GEOS-3 spacecraft is approximately 101.79 minutes: The condition for a repeated groundtrack after n revolutions is

$$\sum_{1}^{n} \left[ \dot{\Omega}_{1} t_{i} - \omega_{1} t_{i} \right] = 0 \tag{10}$$

on suppressing multiples of  $2\pi$  in the second term,  $\omega_i$  being the angular velocity of rotation of the Earth during the i-th revolution of GEOS-3 which is completed in time  $t_i$ ,  $\dot{\Omega}_i$  being the instantaneous rate of precession of the orbital node. This condition is nearly satisfied every 526 revolutions, the observed drifts ( $\delta\lambda$ ) in longitude being set out in Figure 16. There is no simple pattern of overlaps in the Sargasso Sea test area due to the irregular manner in which data was collected. Nevertheless, a dense network of overlapping passes has been established in the western North Atlantic. Using the multiple of 526 revolutions as a criterion, 32 sets of from 5 to 9 overlapping passes were identified in the Sargasso Sea as illustrated in Figure 2.

Consider the case of the j-th element of the i-th pass and the l-th element of the k-th pass which have identical latitudes, the i-th and k-th passes satisfying the overlap condition. The observed sea surface heights  $\zeta_{ij}$  on the i-th pass and  $\zeta_{kl}$  on the k-th pass can be used to set up observation equations of the form

$$\zeta_{ij} - \zeta_{k\ell} + (b_1 - b_k) + c_1 (t_{ij} - t_{il}) - c_k (t_{k\ell} - t_{kl}) + (\zeta_{tij} - \zeta_{tk\ell}) + \delta \lambda \frac{\partial N}{\partial \lambda} = v_{s} (11)$$

where  $(b_i, b_k)$  and  $(c_i, c_k)$  are corrections for bias and tilt to the 1-th and k-th passes on account of orbit integration errors,  $(\zeta_{ti_j}, \zeta_{tk\ell})$  are the tidal heights at the location at the instant of data acquisition  $(t_{ij}, t_{k\ell})$ ,  $(t_{il}, t_{kl})$  being the times corresponding to the initial instant of data acquisition per pass. The last term on the left in equation 11 allows for the slope of the good due to any possible longitudinal displacement  $\delta\lambda$  between the pair of overlapping passes (Figure 16).

Table 2 sets out details of the 219 passes which make up the 32 overlapping sets shown in Figure 2. Passes where  $\delta\lambda$  exceeded 35 km were excluded from this study.

The most striking feature of the results in Table 2 is the internal precision of the GEOS-3 altimetry reflected in the values of the root mean square discrepancy  $\sigma_{\rm m}$  obtained by comparing each profile with the mean of the set after using equation 11 in the case where the mean profile replaces the k-th pass. The analysis of the values of  $\sigma_{\rm m}$  in Table 2 as a function of length (Figure 17) shows some correlation with pass length to 4000 km. The data used in the construction of this figure has not been filtered in any way. The complexity of the Sargasso Sea test area makes it hard to draw simple conclusions.

Table 8 summarises the spectral analysis of the discrepancies between each pass and the average of the set for the largest of the sets (No. 8 in Table 2) containing 9 overlapping passes. The harmonic coefficients determined  $(A_1, B_1, where i is the integral number of complete wavelengths in the length <math>\ell$  over which comparisons are made) were given by the relations

 $\begin{bmatrix} A_1 \\ B_i \end{bmatrix} = \frac{2}{\ell} \int_0^{\ell} v_s \begin{bmatrix} \sin \\ \cos \end{bmatrix} \frac{2\pi s}{\ell} i ds$  (12)

where ds is the sampling interval, the residual  $v_s$  defined by equation 11 being at a distance s from the commencement of comparisons.

The significance of the amplitudes  $(A_1, B_i)$  so obtained is assessed by comparison against a spectrum of white noise (Mather 1977, p.17). If the rms residual of comparison is  $\sigma_m$ , the percentage contribution per frequency (E) to the white noise spectrum is given by

$$E = \frac{100}{N} \tag{13}$$

where N is the number of frequencies between 1 and Nyquist limit imposed largely by the altimeter footprint  $(^{\varrho}/10)$ .

The percentage strength of signal 0 obtained from equation 12 is defined by

$$0 = \frac{A^2 + B^2}{2\sigma_m^2} \tag{14}$$

Table 9 sets out the results for all 32 sets of passes as an average per set. The root mean square (rms) residuals obtained in this area are somewhat larger than those obtained in the study of the Tasman and Coral Seas (Mather 1977, pp.24 and 25), averaging  $\pm 33$  cm instead of  $\pm 20$  cm obtained when each profile is fitted to the mean of the set of profiles (Coleman and Mather 1978).

Tables 8 and 9 are self-explanatory. Significant strengths of signal (i.e., O/E>3) are obtained for several wavelengths in excess of 150 km. The average square of the strength of signal for wavelengths between 150 and 5000 is 784 cm<sup>2</sup>. This is not unlike values quoted by oceanographers for the magnitude of seasonal variations and is compatible with variations in the SST arising from wind driven circulation.

The next stage in the processing of sets of overlapping passes is the analysis of the data for the tidal signal on a regional basis. In the interim, attempts have been made to study correlations between remote sensed temperature data and the variations in the sea surface heights as a function of position and time. These are reported in the Appendix (Sec. 8.2).

The analysis of overlapping passes provides the most accurate data for the study of regional variations in the dynamic sea surface topography. The limitations of coverage are offset by the 50 percent gain in precision over the regional solution method.

<sup>&</sup>quot;Frequencies were grouped in "bins" according to wavelength (WL) to simplify the presentation of results.

### 5. CONCLUSIONS

There is no doubt that the GEOS-3 altimeter data in the short pulse mode is of sufficient precision for oceanographic studies. The main problem in regional studies remains the orbital uncertainty. These can be reduced to ±40 cm in the radial component if any claims to global relevance are sacrificed. This improves the resolution from ±1½ m globally (Mather et al. 1978) to ±40 cm on a regional basis if bad records are appropriately filtered, and if the geometry of passes is adequate (e.g., Figures 6-8). The technique of overlapping passes has a higher resolution (±33 cm on average).

The stability of the solutions is enhanced if very short passes are not subject to corrections for tilt (equation (1)). The internal statistics of solutions (in this case an average rms of ±25 cm) is almost a factor of 3 more optimistic than the estimated precision obtained from the intercomparison of solutions (±43 cm).

There is considerable confidence in recovering short wave features in sea surface shape which have dimensions between 30 and 100 km and amplitudes in excess of ±50 cm. Except in the case of solutions in 1975 where for some unaccountable reason, the solution statistics were significantly inferior (Table 1), there are variables in the sea surface with amplitudes in excess of 50 cm and dimensions in excess of 400 km (one third that of the region studied) which show up in this study. It can be concluded that the variations in SST with time in areas away from fast moving currents like the Gulf Stream are unlikely to exceed ±30 cm. This figure is confirmed by the spectral analysis of overlapping passes in the region.

This, in turn, indicates the necessity for the significant concentration of effort in generating force field models for the integration of orbits with radial errors much less than ±5 cm. There is little doubt that GEOS-3 data is of adequate resolution to study eddies. There are also grounds for cautious optimism that the data can be used to recover some of the dominant long wave characteristics of the quasi-stationary SST (ibid). Progress in other areas is likely to be slow in forthcoming till the gravity field models have been improved by at least an order of magnitude (hopefully, to 3 parts in 10.9). This goal has to be achieved before further progress can be made in studying intermediate wavelengths of SST, both the quasi-stationary and time varying components.

Stringent criteria have to be enforced to exclude the 1% of noisy data encountered in the processing of GEOS-3 data. There is no real difficulty in identifying the faulty records.

Neither of the methods described has the potential to provide information on time variations in sea level which are constant over the entire area. Each method provides insight into certain portions of the spectrum of SST. The regional method cannot resolve features with periods shorter than a month (in the case of GEOS-3) while the higher-resolution technique of overlapping passes is restricted to selected groundtracks and variations with periods greater than a month. All information in the time varying part of the spectrum of SST with wavelengths greater than twice the dimension of the region studied are also lost.

The terms in the quasi-stationary part of the spectrum can only be recovered if an adequate gravity field model were available. The approximate estimating technique used in the Appendix shows that the large SST gradients maintaining the Gulf Stream are present in the GEOS-3 altimeter data. They are not recoverable with confidence at the present time.

### 6. ACKNOWLEDGMENTS

This project is supported by NASA Grant NSG 5225 and the Australian Research Grants Committee.

The first author worked on this project while holding Senior Resident Research Associateship of the US National Academy of Sciences at Goddard Space Flight Center while on leave of absence from the University of New South Wales.

The second author is supported by a Fulbright Travel Grant and Post-Graduate Award from the Government of Australia's Department of Education.

### 7. REFERENCES

- Cheney, R.E. & Richardson, P.L., 1976. Observed Decay of a Cyclonic Gulf Stream Ring, Deep Sea Res., 23, 143-155.
- Coleman R. & Mather, R.S., 1978. On the Determination of Time Varying Features in the Sea Surface Topography Using GEOS-3 Altimetry. EOS, 59 (4), 259.
- Dietrich, G., 1963. General Oceanography An Introduction. Wiley, New York.
- Leitao, C.D., Huang, N.E. and Parra. E.G., 1977. Ocean Current Surface Measurement using Dynamic Elevations Obtained by the GEOS-3 Altimeter. Proc. Symp.

  Satellite Applications to Marine Technology, New Orleans, November 15-17, 1977.

  American Institute of Aeronautics & Astronautics, New York, 43-49.
- Lerch, F.J., Klosko, S.M., Laubscher, R.E. and Wagner C.A., 1977. Gravity Model Improvement Using GEOS-3 (GEM 9 & 10). NASA/GSFC Rep. X-921-77-246, Goddard Space Flight Center, Greenbelt, Md., 121 pp.
- Marsh, J.G. and Chang, E.S., 1978. Five Minute Detailed Gravimetric Geoid in the North Western Atlantic Ocean. Marine Geodesy, 1 (3) (In Press).
- Mather, R.S., 1968. The Free Air Geoid for Australia. Geophys. J.R. Astr. Soc., 16, 515-530.

- Mather, R.S., 1977. The Analysis of GEOS-3 Altimeter Data in the Tasman and Coral Seas. NASA Tech. Memorandum 78032, Goddard Space Flight Center, Greenbelt, Md., 32 pp.
- Mather, R.S. and Coleman, R., 1977. The Role of Geodetic Techniques in Remote Sensing the Surface Dynamics of the Oceans. (In) Napolitano, L.G. (ed.).

  Using Space Today and Tomorrow. (Bergamon, Oxford) (In Press).
- Mather, R.S., Coleman, R., Rizos, C. and Hirsch, B., 1977a. A Preliminary Analysis of GEOS-3 Altimeter Data in the Tasman and Coral Seas. International Symposium on Satellite Geodesy, Budapest, 28 June to 1 July 1977. Unisury G, 26, 27-46.
- Mather, R.S., Lerch, F.J., Rizos, C., Masters, E.G. and Hirsch, B., 1978. Determination of some dominant parameters of the dynamic sea surface topography from GEOS-3 Altimetry. NASA Tech. Memorandum 79558, Goddard Space Flight Center, Greenbelt, Md., 39 pp.
- Monin, A.S., Kamenkovich, V.M. and Kort, V.G., 1974. Variability of the Oceans. Wiley, New York.
- NOAA 1975. Gulfstream, 1 (1-12), US National Weather Service, Washington, D.C.
- NOAA 1976. Gulfstream, 2 (1-120), Loc. cit. supra.
- Richardson, P.L. Strong, A.E. and Knauss, J.A., 1973. Gulf Stream Eddies Recent Observations in the Western Sargasso Sea. J. Phys. Oceanography, 3, 297-301. May 1, 1978.

### 8. APPENDIX

# 8.1 The Quasi-Stationary Component of the Sea Surface Topography in the Vicinity of the Gulf Stream

The velocities reported in the vicinity of the Gulf Stream in the western part of the Sargasso Sea test area are greater than  $10^2$  cm s<sup>-1</sup>. The sea surface topography gradient needed to maintain such a current should be about  $1.5 \times 10^2$  cm per  $10^2$  km orthogonal to the mean direction of flow (Figure 1). This information can only be obtained from the GEOS-3 altimetry, processed in the form of regional models, as discussed in Section 2, if the sea surface heights were referred to an error free geoid. As seen from Figure 14, the discrepancies between the sea surface models from altimetry, after orientation to GEM 9 (Table 5), are systematically discrepant with the best available gravimetric geoid in the region (Figure 14). These discrepancies can be attributed to the following factors

- i) Differences between the gravimetric geoid and the satellite determined gravity field model.
- n) The quasi-stationary component of the sea surface topography (SST).

For example, if it were assumed that the GEM 9 gravity field model were free from error, the differences at i) are due entirely to errors in the gravimetric geoid due to the variable quality and distribution of surface gravity data currently available for such computations in this region. As the gravimetric geoid is computed from a fixed gravity data bank using quadratures techniques, the resulting errors in the geoid are slowly varying functions of position (e.g., see Mather 1968). As the pattern of discrepancies is a function of distance from the east coast of North America (Figure 14), it is possible to make a very approximate estimate of the quasi-stationary SST from the pattern of contours in Figure 14.

On assuming that the gravimetric good error N has a structure

$$e_{N} = N_{o} + \frac{\partial N}{\partial \ell} \quad \ell$$
 (A-1)

where  $\ell$  is the length along a section perpendicular to the coastline and terminating at the 2000 m depth contour, it is possible to estimate  $e_N$  on this basis at all points west of the 2000 m contour. The correlation coefficients obtained for such linear regression analysis are always above .99.

Figure A-1 shows a plot of

$$e_{\zeta_s} = D - e_N \tag{A-2}$$

where D is the quantity plotted in Figure 14.  $e_{\zeta_s}$  is an estimate of the quasi-stationary component of the SST for the epoch July 1975 to August 1976. One data point has been eliminated, as shown on Figure A-1. The contours are in reasonable agreement with the expected flow of the Gulf Stream, given the approximate nature of the technique used.

The object of this note is to show that the quasi-stationary topography is recoverable from GEOS-3 altimetry if properly referred to a geoidal model of adequate precision. It also shows that present-day gravimetric geoids for the region are madequate for this purpose. Procedures of the type described above (e.g., Leitao et al. 1977) are based on assumptions outlined in the preceding development and do not constitute a reliable basis for the determination of quasi-stationary SST.

### 8.2 Correlations from Overlapping Pass Analysis with Eddies

See Section 4. The residuals of fit ( $v_s$  in equation 12) to the mean surface for each overlapping pass, contains information on variations in sea surface height with wavelengths between 2  $\ell$  and the Nyquist limit. Typical eddy features are expected to have half wavelengths between 50 and 100 km, amplitudes up to  $10^2$  cm and a decay period of  $10^2$  days. The data in Table 2 indicates that sea surface topography variations with amplitudes greater than 30 cm can be recovered with confidence.

A high pass filter corresponding to wavelengths greater than 100 km was applied to profiles of  $v_s$  listed in 32 sets in Table 2. The altimeter profiles which crossed an eddy reported in (NOAA 1975; NOAA 1976) for the periods September to December 1975 and April 1976, were examined through the window obtained for equivalent features in the profiles. The resulting altimeter defined sea surface topography variations are shown in Figures 18 to 22. The symbol H is used to designate anti-cyclonic eddies which should be associated with a SST high, while the symbol L is used to designate cyclonic eddies which are expected to be associated with a low in the SST.

Thirty-seven comparisons were made over a period of 7 months. Fifty-eight percent of these comparisons between altimeter and infrared data correlated favourably. A further 40 percent of the comparisons showed a partial overlap between the feature as sensed from the two data types. Only 2 percent of the comparisons did not correlate at all. These results are in substantial agreement with the results obtained from regional solutions (Table 6) which are subject to slightly higher levels of uncertainty.

Table 1

Regional Monthly Solutions for the Shape of the Sargasso Sea from GEOS-3 Altimetry

|                                                       |           | Ba   | sic Junction Poi | nt Size – 0,2° x | 0.2° |    |  |  |  |  |  |
|-------------------------------------------------------|-----------|------|------------------|------------------|------|----|--|--|--|--|--|
|                                                       |           | 24   |                  |                  | -    |    |  |  |  |  |  |
| No of No. of No. of Period Obsns. Passes Jn. Pts (± c |           |      |                  |                  |      |    |  |  |  |  |  |
| 1                                                     | Aprıl     | 1975 | 587              | 4                | 8    | 12 |  |  |  |  |  |
| 2                                                     | May       | 1975 | 821              | 6                | 13   | 12 |  |  |  |  |  |
| 3                                                     | June      | 1975 | 620              | 5                | 7    | 38 |  |  |  |  |  |
| 4                                                     | July      | 1975 | 2058             | 15               | 63   | 40 |  |  |  |  |  |
| 5                                                     | August    | 1975 | 2836             | 23               | 97   | 50 |  |  |  |  |  |
| 6                                                     | September | 1975 | 3446             | 28               | 156  | 35 |  |  |  |  |  |
| 7                                                     | October   | 1975 | 4225             | 35               | 243  | 29 |  |  |  |  |  |
| 8                                                     | November  | 1975 | 3578             | 28               | 175  | 26 |  |  |  |  |  |
| 9                                                     | December  | 1975 | 1399             | 10               | 27   | 15 |  |  |  |  |  |
| 10                                                    | January   | 1976 |                  | -                | _    | _  |  |  |  |  |  |
| 11                                                    | February  | 1976 | 705              | 5                | 7    | 5  |  |  |  |  |  |
| 12                                                    | March     | 1976 | 560              | 4                | 4    | 8  |  |  |  |  |  |
| 13                                                    | Apri!     | 1976 | 2205             | 19               | 63   | 17 |  |  |  |  |  |
| 14                                                    | May       | 1976 | 2092             | 16               | 70   | 19 |  |  |  |  |  |
| 15                                                    | June      | 1976 | 3195             | 25               | 140  | 26 |  |  |  |  |  |
| 16                                                    | July      | 1976 | 3089             | 22               | 122  | 20 |  |  |  |  |  |
| 17                                                    | August    | 1976 | 3093             | 24               | 131  | 22 |  |  |  |  |  |
|                                                       |           |      |                  |                  |      |    |  |  |  |  |  |

Table 2
Statistics For Overlapping Pass Sets

| Set | Rev   |     | ate | DIRN     | Length | Start o | f Overlap | No of      | Bias          | Tilt      | δλ <i>φ</i> =0° | RMS Resid    | dual (± cm) | % Data   |
|-----|-------|-----|-----|----------|--------|---------|-----------|------------|---------------|-----------|-----------------|--------------|-------------|----------|
| No  | No    | ΥY  | DDD | DIRN     | (km)   | Ý       | λ         | Pts        | (m)           | (arc sec) | (km)            | 9N\9y=0      | 9и\9у≠о     | Rejected |
| 1   | 183   | 75  | 112 | NS       | 2205   | 43 19   | 293.94    | 248        | -0 53         | -0 300    | 0               | 32.8         | 32 8        |          |
| •   | 1235  | ~   | 187 | NS       | 2176   | 43 19   | 293.94    | 245        | 4 12          | -0 412    | -12             | . 337        | 358         |          |
|     | 2813  |     | 296 | NS       | 2168   | 43 19   | 293,94    | 244        | 0 52          | 0 230     | -12<br>-21      | 47 1         | 42 4        |          |
|     | 4917  | 76  | 82  | NS       | 2189   | 43 14   | 293.90    | 246        | -4 09         | 0 041     | -5              | 28 7         | 30 4        |          |
|     | 5443  | ۳.  | 119 | NS       | 2077   | 43 14   | 293,90    | 234        | -4.36         | 0 090     | 2               | 22 2         | 20.2        |          |
|     | 5969  | ĺ   |     |          |        | 43 03   | 293 80    | 245        | 4 39          | 0 315     | 11              | ;            |             |          |
|     | 2303  |     | 156 | NS       | 2182   | 43 03   | 233 00    | 275        | 7 33          | 0.515     | ''              | 32 2         | 328         |          |
| 2   | 183   | 75  | 112 | NS       | 1036   | 24.08   | 278 58    | 83         | -3 57         | -0 270    | 0               | 21 2         | †           | 2%       |
|     | 1235  |     | 187 | NS       | 1018   | 24 08   | 278.58    | 81         | -0.82         | -0 231    | -12             | 18 4         |             | 2%       |
|     | 2287  |     | 261 | NS       | 1036   | 24 08   | 278 58    | 83         | -2 73         | 0 484     | -20             | 26.9         |             | 2%       |
|     | 2813  |     | 298 | NS       | 1027   | 24 08   | 278.58    | 82         | 1 62          | 0 567     | -21             | 27 2         | <del></del> | 2%       |
|     | 49 17 | 76  | 82  | NS       | 1036   | 24 08   | 278 58    | 83         | -3 37         | 0 065     | -5              | 20 4         | —           | 2%       |
|     | 5969  | ļ   | 156 | NS       | 1016   | 23.96   | 278.50    | 81         | 7 71          | 0 105     | 11              | 34.3         |             |          |
| ,   | 246   | 75  |     | CN       | 1004   | 20.20   | 200.66    | 214        | 0.56          | 0.350     |                 | 44.5         | 44.5        |          |
| 3   | 246   | 15  | 117 | SN       | 1994   | 20.20   | 290 66    | 181        | 0.56<br>-2.06 | 0 258     | 0<br>-17        | 44.5         | 44 5        |          |
|     | 1824  |     | 228 | SN       | 1617   | 22 53   | 289 21    |            |               | 0 127     | -17             | 24 4         | 26'8        |          |
|     | 2876  |     | 303 | SN       | 1628   | 22.37   | 289 31    | 180        | -0.50         | 0 110     | -20             | 25 4         | 33.4        |          |
|     | 3402  | 1   | 340 | SN       | 238    | 31 24   | 283 30    | 30         | -1,00         | -0 297    | -18             | 22 6         | 23.4        |          |
|     | 6032  | 76  | 161 | SN       | 1932   | 20.20   | 290 66    | 206        | -0 04         | 0 105     | 14              | 57 0         | 51 2        |          |
|     | 7084  |     | 235 | SN       |        |         |           |            |               |           | 36              |              |             |          |
| 4   | 374   | 75  | 126 | SN       | 1456   | 22 02   | 288 15    | 152        | -3 61         | 0 108     | o               | 29 7         | 29 7 -      |          |
|     | 2478  | i   | 275 | SN       | 1404   | 22 02   | 288 15    | 149        | 0 07          | 0 090     | -18             | 37 6         | 23 0        | 3%       |
|     | 3004  |     | 312 | \$N      | 1404   | 22 02   | 288 15    | 149        | 0 99          | 0 0 2 6   | -18             | 36 6         | 17.0        | 3%       |
|     | 6160  | 76  | 170 | SN       | 1456   | 22 02   | 288 15    | 152        | -0 64         | -0 086    | 18              | 36 6         | 16 4        | 3%       |
|     | 6686  |     | 207 | SN       | 1427   | 22 19   | 288.04    | 149        | 3 02          | -0 194    | 29              | 60.9         | 28 1        |          |
|     | 7212  | 1   | 244 | SN       | 1      | ''      |           |            |               |           | 41              | 0            | ,           |          |
|     |       |     |     |          |        |         |           |            |               |           |                 |              |             |          |
| 5   | 524   | 75  | 137 | NS       | 2990   | 44.87   | 300.56    | 358        | 2 48          | -0 086    | 0               | 25 3         | 25 3        | *        |
|     | 1576  | 1   | 211 | NS       | 2967   | 44 73   | 300 40    | 355        | -0 77         | -0 093    | -11             | 29 7         | 29 7        | 4%       |
|     | 2678  | 1   | 285 | NS       | 121    | 26.84   | 285 16    | 15         | 0 16          | 0 296     | -16             | 76           | 83          | ,        |
|     | 3154  | ł   | 322 | NS       | 2983   | 44.83   | 300 51    | 357        | 0.92          | -0 105    | -16             | 42 3         | 39 8        |          |
|     | 5258  | 76  | 106 | NS       | 2990   | 44,87   | 300 56    | 358        | -3.20         | -0 008    | 4               | 22 0         | 258         |          |
|     | 6310  | 1   | 181 | NS       | 2967   | 44 73   | 300 40    | 355        | -1 30         | 0 181     | 23              | 31 8         | 31,5        |          |
|     | 6836  |     | 218 | NS       | 2975   | 44 78   | 300 45    | 356        | 1 88          | 0 109     | 34              | 41 1         | 40 2        |          |
| 6   | 530   | 75  | 137 | SN       | 1490   | 27 73   | 293.97    | 183        | -1,54         | -0 088    | 0               | 23 2         | 23 2        |          |
| _   | 2108  |     | 248 | SN       | 1450   | 27 89   | 293 86    | 178        | 3 32          | -0 101    | -14             | 213          | 19 1        |          |
|     | 3160  | 1   | 323 | SN       | 1483   | 27 73   | 293.97    | 182        | 0.96          | 0 0 1 0   | -16             | 25 0         | 23.9        |          |
|     | 5264  | 76  | 107 | SN       | 1465   | 27,89   | 293 86    | 180        | 2 49          | -0 091    | 4               | 22 8         | 238         |          |
|     | 6316  | ` ` | 181 | SN       | 1465   | 27 89   | 293 86    | 180        | -2 47         | 0 000     | 23              | 22 4         | 213         |          |
|     | 6842  |     | 218 | \$N      | 1441   | 28 05   | 293 75    | 177        | -1 74         | 0 132     | 34              | 27.9         | 19 7        |          |
| _ ! | `     |     |     |          |        |         |           |            |               | 4         |                 |              |             |          |
| 7   | 587   | 75  | 141 | SN       | 1553   | 25 62   | 291.97    | 187        | -4 51         | -0 080    | 0               | 23 0         | 23 0        |          |
|     | 2165  | 1   | 253 | SN       | 1369   | 26 11   | 291.64    | 166        | 0 36          | 0 373     | -14             | 17 4         | 17 1        |          |
|     | 2691  |     | 290 | \$N      | 1522   | 25 62   | 291.67    | 183        | 0 36          | -0 102    | -15             | 21 2         | 19 1        |          |
| į   | 5321  | 76  | 111 | SN       | 1553   | 25 62   | 291 67    | 187        | 4 67          | -0 161    | 5               | 17 0         | 162         |          |
|     | 5847  | 1   | 148 | \$N      | 1536   | 25 73   | 291.89    | 185        | -0 77         | -0 008    | 14              | 17 5         | 19.9        |          |
|     | 6373  |     | 185 | SN       | 1552   | 25 62   | 291.97    | 187        | 0 25          | -0 039    | 25              | 29.5         | 23 6        |          |
| 8   | 595   | 75  | 142 | N\$      | 5300   | 46 67   | 304 74    | 534        | -2 00         | 0 065     | 0               | 29 8         | 298         | 1%       |
| -   | 1121  | `*  | 179 | NS       | 5300   | 46 67   | 30474     | 534        | -0 18         | -0 0 1 0  | -6              | 29 5         | 340         | 1%       |
|     | 1647  |     | 216 | NS       | 5300   | 46 67   | 304 74    | 534        | -7 47         | 0014      | -11             | 50 7         | 497         | 1%       |
|     | 2173  |     | 253 | NS       | 5001   | 44 89   | 302 65    | 527        | 571           | -0 348    | -14             | 38 5         | 37 5        | 1%       |
|     | 2699  | ŀ   | 290 | NS       | 4993   | 44.84   | 302 60    | 526        | 2 57          | 0 136     | -15             | 39 2         | 34 6        |          |
|     | 3751  |     | 365 | NS<br>NS | 4993   | 44.84   | 302 60    | 526<br>526 | -3 48         | -0 022    | -12             | 33 4         | 32 2        | 1%       |
|     | 1     | 70  |     |          |        | 44.67   | 304 74    | 526<br>534 |               | 0 0 0 3 9 | -12             | 37 O         | 385         | 1%       |
|     | 5329  | 76  | 111 | NS<br>NS | 5300   | 1       |           |            | -2 10<br>5 08 | [         |                 |              | 308         | 170      |
|     | 5855  | :   | 148 | NS<br>NC | 5001   | 44 89   | 302 65    | 527<br>524 | 5 08          | 0 068     | 15              | 38 4<br>55 2 |             |          |
|     | 6381  | 1   | 186 | NS       | 4972   | 44.89   | 302 65    | 524        | 2 37          | 0 010     | 25              | 55 3         | 44 1        |          |

<sup>&</sup>lt;sup>†</sup>Data bank errors

Table 2 (continued)

| Set<br>No. | Rev    |            | ate<br>DDD | DIRN | Length |       | f Overlap       | No of      | Bras          | Tilt      | δλ <i>φ</i> =0° |         | dual (± cm)      | % Data   |
|------------|--------|------------|------------|------|--------|-------|-----------------|------------|---------------|-----------|-----------------|---------|------------------|----------|
| No         | No     | YY         | 000        |      | (km)   | φ     | λ               | Pts        | (m)           | (arc sec) | (km)            | 9N/9Y=0 | 9n/9y <b>≠</b> 0 | Rejecte  |
| 9          | 837    | 75         | 159        | NS   | 2161   | 44 88 | 294 40          | 261        | -3 21         | 0 136     | 0               | 53 4    | 534              |          |
|            | 1363   |            | 196        | NS   | 2111   | 44 79 | 294.29          | 265        | -2 52         | 0 276     | -5              | 57 9    | 572              | i        |
|            | 2415   | ĺ          | 270        | NS   | 2040   | 44.88 | 294 40          | 249        | -282          | -0 065    | -12             | 414     | 342              |          |
|            | 2941   |            | 307        | NS   | 21 18  | 44.88 | 294 40          | 256        | 658           | -0 779    | -12             | 73 5    | 74 2             |          |
|            | 6097   | 76         | 165        | NS   | 1984   | 43 76 | 293 16          | 244        | 450           | -0 093    | 22              | 61 1    | 33 5             |          |
|            | 6623   |            | 203        | NS   | 19-69  | 43 66 | 293 06          | 242        | -0.24         | -0 064    | 33              | 70 7    | 24.3             |          |
|            | 7149   | ļ.,        | 240        | NS   | .5.55  |       | 1               | • • •      | ]             | -0007     | 45              | , ,,,   |                  |          |
| 10         | 837    | 75         | 159        | NS   | 1188   | 24.99 | 277.74          | 111        | -2 13         | 0 099     | 0               | 24 6    | 246              | 5%       |
| -          | 1363   | '`         | 196        | NS   | 1188   | 24.99 | 277 74          | 111        | -071          | 0 213     | -5              | 195     | 235              | 5%<br>5% |
|            | 2941   |            | 307        | NS   | 1188   | 24 99 | 277 74          | 111        | -187          | -0 451    | -12             | 188     | 270              |          |
|            | 6097   |            | 165        | NS   | 1133   | 24 78 | 277 70          | 105        | 5,55          | -0 151    | 22              | 1       |                  | 5%       |
|            | 6623   | { i        | 203        | NS   | 1134   | 24 67 | 277 53          | 105        | -0.96         | f I       | ſ               | 23 7    | 363              | 2%,      |
|            | 7149   |            | 240        | NS   | 1134   | 2407  | 27753           | 103        | -0.36         | 0 017     | 33<br>45        | 26 9    | 33 5             |          |
| 1          | 843    | 75         | 159        | SN   | 1614   | 23 67 | 290 47          | 185        | -10 85        | -0 627    | 0               | 28 1    | 28 1             |          |
|            | 1369   |            | 196        | SN   | 1545   | 24 10 | 290 19          | 177        | 210           | 0 123     | -6              | 21 7    | 20 2             |          |
|            | 1895   |            | 233        | SN   | 247    | 23 67 | 290 19          | 27         |               | -0 302    |                 |         |                  | ı        |
| - 1        | 2421   |            | 271        | SN   | 1554   | 24,05 | 290 47          |            | 4 23          |           | -10<br>10       | 10 9    | 108              |          |
|            | 2947   |            | 308        | SN   | 1614   | 23.67 | 290 22          | 178<br>185 | 0 46<br>2 84  | 0 131     | -12<br>-13      | 319     | 305              |          |
|            | 4525   | 76         | 54         | SN   | 1614   | 23 67 | 1               |            |               | 0 173     | -13             | 29 7    | 250              |          |
|            | 6103   | ′°         | 166        |      | I      |       | 290 47          | 185        | 3 78          | -0 010    | -2              | 27 1    | 26 1             |          |
|            | 6629   | 1 1        | 203        | SN   | 1563   | 23.99 | 290.26          | 179        | -187          | 0 217     | 23              | 38 0    | 314              |          |
|            | 6043   |            | 203        | SN   | 1571   | 23 94 | 290 29          | 180        | 208           | 0 052     | 34              | 43 3    | 312              |          |
| 2          | 851    | 75         | 160        | NS   | 2091   | 28 58 | 285 66          | 193        | 3082          | -1 103    | 0               | 44 8    | †                | 1%       |
|            | 1377   | <b>i</b> i | 197        | NS   | 1947   | 28 58 | 285 66          | 178        | -440          | 0 433     | -6              | 41.2    |                  |          |
| }          | 1903   |            | 234        | NS   | 2082   | 28 58 | 285 66          | 192        | -18 53        | -0 905    | -10             | 44 6    |                  | 3%       |
|            | 2429   |            | 271        | NS   | 2072   | 28.58 | 285 66          | 191        | -3.01         | 0 499     | -12             | 37 9    |                  | 3%       |
|            | 2955   | 1          | 308        | NS   | 2082   | 28 58 | 285 66          | 192        | -4 05         | -0 139    | -12             | 38 9    |                  |          |
|            | 3481   |            | 346        | NS   | 2082   | 28 58 | 285 66          | 192        | -4 18         | 0 330     | -11             | 408     |                  | 2%       |
| ,          | 6111   | 76         | 166        | N\$  | 2091   | 28 58 | 285 66          | 193        | 4 30          | 0 439     | 23              | 76 7    |                  | 1%       |
|            | 6637   |            | 204        | NS   | 2091   | 28 58 | 285 66          | 193        | -055          | 0 255     | 34              | 114 4   |                  | 1%       |
|            | 7163   |            | 241        | NS   |        |       |                 |            |               |           | 46              | 1       |                  |          |
| 3          | 1164   | 75         | 182        | NS   | 711    | 36 59 | 285 60          | 85         | <b>-43 11</b> | -0 461    | 0               | 593     | 593              | 15%      |
|            | 2216   |            | 256        | NS   | 590    | 36 02 | 285 12          | 72         | 8 4 5         | -0 210    | -8              | 20 9    | 22 1             | 4%       |
|            | 3268   | ) }        | 330        | NS   | 566    | 35.87 | 285 00          | 69         | 11 11         | -0 002    | -8              | 20 1    | 207              |          |
| ļ          | 4846   | 76         | 77         | NS   | 711    | 36 59 | 285 60          | 85         | 5 3 6         | -0 733    | 6               | 469     | 432              | 15%      |
| 1          | 5372   |            | 114        | NS   | 711    | 36 59 | 285 60          | 85         | 976           | -0 677    | 13              | 56 7    | 460              | 15%      |
|            | 5898   |            | 151        | NS   | 711    | 36 59 | 285 60          | 85         | 1585          | -0 751    | 23              | 65.8    | 476              | 15%      |
|            | 6950   |            | 226        | NS   |        |       |                 |            |               |           | 45              |         |                  |          |
| 4          | 1164   | 75         | 182        | NS   | 1164   | 25 44 | 2 <b>7</b> 7 31 | 129        | -43 61        | 0 776     | 0               | 435     | 435              | :<br>5%; |
| 1          | 2216   |            | 256        | NS   | 1126   | 25 44 | 277 31          | 125        | 8 18          | -0 012    | -8              | 36 6    | 400              | 2%       |
|            | 3268   |            | 330        | NS   | 1126   | 25 44 | 27731           | 125        | 11 09         | -0 025    | -8              | 36 9    | 398              | 2%       |
|            | 4846   | 76         | 77         | NS   | 662    | 25.39 | 277 27          | 75         | 440           | -0 508    | 6               | 45 2    | 437              | 1%       |
|            | 5372   |            | 114        | NS   | 1119   | 25 17 | 277 14          | 124        | 705           | 0 503     | 13              | 80 5    | 809              | 2%       |
| - [        | 5898   |            | 151        | N\$  | 1146   | 25 34 | 277 24          | 127        | 13 03         | 0 383     | 23              | 54 4    | 523              | 5%       |
|            | 6950   |            | 226        | NS   |        |       |                 |            |               |           | 45              |         |                  |          |
| 5          | 1170   | 75         | 182        | SN   | 705    | 29 12 | 286 07          | 81         | 403           | -1.530    | ٥               | 26 4    | 264              |          |
| - 1        | 2222   |            | 257        | SN   | 553    | 29 12 | 286 07          | 62         | -073          | 0 495     | -8              | 24 4    | 173              |          |
| - 1        | 2748   | ( (        | 294        | SN   | 697    | 29 12 | 286.07          | 80         | -0 14         | 0 272     | -9              | 23 5    | 173              |          |
|            | 4852   | 76         | 77         | SN   | 705    | 29 12 | 286 07          | 81         | 045           | 0 431     | -3<br>6         | 18 4    | 155              |          |
|            | 5904   | `          | 152        | SN   | 705    | 29 12 | 286 07          | 81         | -394          | 0 454     | 23              | 31 5    | 207              |          |
|            | 6956   |            | 226        | SN   |        |       | 20007           | 3'         |               | 0.404     | 45              | 313     | 20,              |          |
|            | 1 22-0 | 1          |            | J.,  |        |       |                 | 1          | [             | ]         | i **            | i       | i                |          |

Table 2 (continued)

| Set | Rev  | D     | ate |          | Length | Start o | f Overlap | No of | Bras       | Tilt      | δλ <i>φ</i> =0° | RMS Resid   | tuat (± em) | % Data   |
|-----|------|-------|-----|----------|--------|---------|-----------|-------|------------|-----------|-----------------|-------------|-------------|----------|
| No  | No   | YY    | DDD | DIRN     | (km)   | φ       | λ         | Pts   | (m)        | (arc sec) | (km)            | 9n/9y=0     | 9ν/9γ≠ο     | Rejected |
| 16  | 1178 | 75    | 183 | NS       | 4640   | 44.87   | 299 13    | 469   | -2.25      | -0 001    | 0               | 322         | †           | 1%       |
| 10  | 2230 | ( ' ' | 257 | NS       | 4596   | 44 72   | 298 96    | 464   | -1.56      | -0 001    | -8              | 39 4        |             | 176      |
|     | 2756 |       | 294 | NS       | 4630   | 44 87   | 299 13    | 468   | 3 26       | -0 112    | -o<br>-9        |             |             | 444      |
|     |      | 70    |     |          | i      | 44 72   | 298.96    | 466   | -4 72      |           |                 | 44 3        |             | 1%       |
|     | 4860 | 76    | 78  | NS       | 4615   |         |           |       | 1          | -0.002    | 6               | 278         | _           |          |
|     | 5386 |       | 115 | NS       | 4624   | 44 77   | 299 02    | 467   | -3 52      | -0 041    | 14              | 270         | _           |          |
|     | 5912 |       | 152 | NS       | 4640   | 44.87   | 299 12    | 469   | 6 64       | 0 115     | 23              | 36 2        |             | 1%       |
|     | 6438 |       | 190 | N\$      | 3517   | 44.82   | 299 07    | 371   | 3 17       | -0 045    | 33              | 49 7        |             | 1%       |
|     | 6438 |       | 190 | NS       | 663    | 20 51   | 279 64    | 72    | 156        | 1 302     | 33              | 38 3        |             |          |
| 7   | 1440 | 75    | 301 | SNI      | 1558   | 25 14   | 291 50    | 161   | 6 56       | -0 544    | 0               | 22 1        | 22 1        | 1%       |
|     | 1966 |       | 238 | SNI      | 1558   | 25 14   | 291 50    | 161   | -1 17      | 0 100     | -4              | 215         | 216         | 1%       |
|     | 2492 |       | 276 | SN       | 1558   | 25 14   | 291.50    | 161   | 089        | 0 0 2 6   | -6              | 189         | 19 4        | 2%       |
|     | 3018 |       | 313 | SNI      | 1535   | 25 19   | 291 47    | 158   | -2 82      | 0 139     | -6              | 238         | 24 3        |          |
|     | 4596 | 76    | 59  | SNI      | 1558   | 25 14   | 291,50    | 161   | -015       | 0 058     | 5               | 19 1        | 19 3        | 2%       |
|     | 6174 |       | 171 | SNI      | 1523   | 25 36   | 291 35    | 157   | -3.32      | 0 169     | 31              | 32 4        | 177         |          |
|     | 6700 | 1     | 208 | SM       |        |         |           | İ     | 1          |           | 42              |             | į i         |          |
|     | 7226 |       | 245 | SNI      |        |         |           |       |            |           | 54              |             |             |          |
| 8   | 1562 | 75    | 210 | NS       | 2081   | 43 61   | 293 60    | 237   | 0 46       | 0 0 2 0   | o               | 304         | 30 4        | ,        |
| د   |      | /5    | 247 | NS<br>NS | 2073   | 43 56   | 293 55    | 237   | 1 25       | -0 282    | -3              | 378         | 365         |          |
|     | 2088 |       | 321 | NS<br>NS | 2073   | 43 61   | 293 55    | 235   | -2 55      | -0 282    | -3<br>-5        | 264         |             |          |
|     | 3140 |       |     |          |        |         | 1         | l .   |            | -0 143    | ľ               |             | 278         |          |
|     | 3666 |       | 359 | NS       | 2081   | 43 61   | 293 60    | 237   | -0 49      |           | -2              | 346         | 37 1        |          |
|     | 5770 | 76    | 142 | NS       | 2042   | 43.37   | 293 34    | 232   | 1 58       | 0 409     | 24              | 319         | 24 7        |          |
|     | 6822 | !     | 217 | NS       |        |         |           | ļ     | <b>i</b> 1 |           | 45              |             |             |          |
| 9   | 1562 | 75    | 210 | NS       | 258    | 24 63   | 278 10    | 26    | 0 94       | 0311      | 0               | 720         | 720         |          |
|     | 2088 | i     | 247 | NS       | 258    | 24 63   | 278 10    | 26    | -2 76      | -0 167    | -3              | 70 1        | 69 2        |          |
|     | 3140 |       | 321 | NS       | 258    | 24 63   | 278 10    | 26    | -1 41      | -0112     | <b>-</b> 5      | 708         | 743         |          |
|     | 3666 |       | 359 | NS       | 258    | 24 63   | 278 10    | 26    | -0 35      | -0 002    | -2              | 65 1        | 73.2        |          |
|     | 5770 | 76    | 142 | NS       | 142    | 24 20   | 277,82    | 17    | 5 13       | 1 304     | 24              | 115         | †           |          |
|     | 6822 | '     | 217 | NS       |        |         |           |       |            |           | 45              |             |             |          |
|     |      |       |     |          |        |         |           |       | 200        |           |                 | 004         |             |          |
| 0   | 1558 | 75    | 210 | SN       | 1607   | 24 13   | 290 77    | 183   | 0 23       | 0 0 2 6   | 0               | 26 1        | 26 1        |          |
|     | 2094 |       | 247 | SNI      | 1607   | 24 13   | 290 77    | 183   | 1 95       | -0 296    | -3              | 263         | 26 2        |          |
|     | 2620 | 1     | 285 | SNI      | 1565   | 24.35   | 290 63    | 178   | -0.53      | -0 102    | -5              | 202         | 18 1        |          |
|     | 3146 | 1.    | 322 | SN       | 1599   | 24 13   | 290 77    | 182   | 0 54       | -0 078    | -5              | 24 7        | 23 2        |          |
|     | 5776 | 76    | 143 | SN       | 1590   | 24.24   | 290 70    | 181   | 1 10       | 0 111     | 24              | 25 3        | 23 1        |          |
|     | 6302 | 1     | 180 | SNI      | 1590   | 24 24   | 290 70    | 181   | -341       | 0 369     | 34              | 32 6        | 29 9        |          |
|     | 6828 | ]     | 217 | SN       |        |         |           |       | ;          |           | 46              |             |             |          |
| 21  | 1625 | 75    | 214 | SNI      | 1510   | 22 36   | 288 48    | 165   | -0 78      | 0 0 58    | 0               | 21 0        | 210         |          |
|     | 2151 | 1     | 252 | SN       | 1502   | 22 36   | 288 48    | 164   | 2 16       | -0 308    | -3              | 24 4        | 22 6        |          |
|     | 2677 | 1     | 289 | SN       | 1478   | 22 36   | 288 48    | 163   | -1 58      | 0 0 1 3   | <b>-</b> 5      | 20 1        | 183         |          |
|     | 3203 | 1     | 326 | SN       | 1478   | 22 36   | 288 48    | 163   | -194       | 0 058     | -4              | 267         | 23 0        |          |
|     | 3729 | ł     | 363 | SNI      | 1502   | 22 36   | 288 48    | 164   | -1 33      | 0 108     | -2              | 323         | 309         |          |
|     | 5307 | 76    | 110 | SN       | 1510   | 22 36   | 288 48    | 165   | 0 11       | 0 066     | 17              | 36 2        | 22 1        |          |
|     | 5833 | ۱′۰   | 147 | SN       | 1510   | 22 36   | 288 48    | 165   | 343        | -0 041    | 26              | 468         | 25 5        |          |
|     | 6885 |       | 221 | SN       |        | 22.00   | 200 40    | '05   | J          | -0 0-1    | 47              |             | 200         |          |
| _   | 1    | 1.    |     |          |        |         |           |       |            |           |                 |             |             |          |
| 2   | 1682 | 75    | 218 | SN       | 1973   | 15 14   | 289 41    | 180   | -0 25      | 0 020     | 0               | 35 2        | 35 2        | 1%       |
|     | 2208 | Į.    | 256 | SN       | 1965   | 15 14   | 289 41    | 179   | -1 76      | -0 003    | -3              | 388         | 399         | 2%       |
|     | 3260 |       | 330 | SN       | 1963   | 15 20   | 289.37    | 179   | 2 50       | -0 350    | -3              | 39 7        | 47 2        | 1%       |
|     | 5364 | 76    | 114 | SN       | 1121   | 20 21   | 286 39    | 112   | -0 21      | -0 103    | 18              | 40 <b>1</b> | 29 1        | 1%       |
|     | 6416 |       | 188 | \$N      | 1103   | 20 32   | 286 32    | 110   | 051        | 0519      | 38              | 1063        | 498         |          |
|     | 6942 | t l   | 225 | SN       | I      | l       | 1         | l *   | 1 :        | l         | 49              |             |             |          |

Table 2 (continued)

| Set | Rev   | _   | ate | DIRN | Length |       | f Overlap | No of | Bias          | Tilt      | δλ <i>φ</i> = <b>0°</b> |         | lual (± cm) | % Data   |
|-----|-------|-----|-----|------|--------|-------|-----------|-------|---------------|-----------|-------------------------|---------|-------------|----------|
| No  | No    | ΥY  | DDD |      | (km)   | φ     | λ         | Pts   | (m)           | (arc sec) | (km)                    | 9N/9Y=0 | 9и/9у≒о     | Rejected |
| 23  | 1710  | 75  | 220 | SN   | 1508   | 26 82 | 293 09    | 152   | 0.85          | -0 051    | Ò                       | 26 7    | 26 7        |          |
|     | 2236  |     | 258 | SN   | 1508   | 26.82 | 293.09    | 152   | 0.78          | 0 2 1 9   | -3                      | 28 1    | 27 0        |          |
|     | 2762  |     | 295 | SN   | 262    | 31 24 | 289.96    | 28    | 0 08          | -0 025    | -4                      | 128     | 12 3        |          |
|     | 2762  |     | 295 | SN   | 40     | 36 37 | 285 91    | 6     | -0 49         | 0 729     | -4                      | 15.8    | 18 1        |          |
|     | 5392  | 76  | 116 | SN   | 1508   | 26.82 | 293 09    | 152   | 1 48          | -0 205    | 19                      | 20 9    | 28 5        |          |
|     | 5918  |     | 153 | sN   | 332    | 33 48 | 288 26    | 28    | -1 62         | -0 438    | 28                      | 153     | 118         |          |
|     | 6444  |     | 190 | SN   | 1490   | 26.94 | 293 01    | 150   | -1.82         | -0 112    | 38                      | 31.8    | 28 1        |          |
|     | 6970  |     | 227 | SN   |        |       |           |       |               |           | 50                      | 2.112   |             |          |
| 24  | 1789  | 75  | 226 | NS   | 992    | 25 73 | 290 45    | 105   | 306           | -0 127    | 0                       | 33 1    | 33 1        |          |
|     | 2315  |     | 263 | NS   | 992    | 25 73 | 290 45    | 105   | -1 31         | -0 165    | -3                      | 38 5    | 44 3        |          |
|     | 2841  |     | 300 | NS   | 992    | 25 73 | 290 45    | 105   | -0 28         | -0 009    | -3                      | 32.9    | 33 7        | 3%       |
| -   | 4945  | 76  | 84  | NS   | 973    | 25 73 | 290 45    | 103   | -081          | 0 062     | 13                      | 413     | 24 8        | 3%       |
|     | 5471  |     | 121 | NS   | 946    | 25 73 | 290 45    | 100   | -0 60         | -0 048    | 21                      | 43 0    | 24 5        | 6%       |
|     | 7049  |     | 233 | NS   |        |       |           |       |               |           | 53                      |         |             |          |
| 25  | 1810  | 75  | 227 | SN   | 1105   | 19 36 | 285 53    | 95    | -0 54         | 0 214     | 0                       | 38 4    | 38 4        |          |
|     | 2336  |     | 265 | SN   | 1105   | 19.36 | 285 53    | 95    | 302           | -0 347    | -2                      | 48 8    | 47 4        |          |
|     | 2862  |     | 302 | SN   | 1105   | 19 36 | 285 53    | 95    | -1 37         | 0 307     | -3                      | 34 6    | 32 5        |          |
|     | 3388  |     | 339 | SN   | 493    | 23 04 | 283 24    | 43    | -0 84         | -0 0 18   | -2                      | 25 4    | 26 5        |          |
|     | 5492  | 76  | 123 | SN   | 1086   | 19 47 | 285 47    | 93    | -2 22         | 0 247     | 21                      | 526     | 31 4        |          |
|     | 6018  |     | 160 | SN   | 348    | 19 47 | 285 47    | 23    | -083          | 0 129     | 31                      | 99 7    | 39 8        |          |
|     | 7070  |     | 234 | SN   |        |       |           |       |               |           | 53                      |         |             |          |
| 26  | 1846  | 75  | 230 | NS   | 1825   | 25 87 | 287 12    | 157   | 1 65          | -0 310    | 0                       | 407     | 40 7        | 2%       |
|     | 2898  | 1 1 | 304 | NS   | 1825   | 25 87 | 287 12    | 157   | -5 5 <b>1</b> | -0 708    | -3                      | 50 1    | 47.9        | 2%       |
|     | 5528  | 76  | 125 | NS   | 1797   | 25 87 | 287 12    | 154   | -2 20         | 0 204     | 22                      | 35 5    | 24 6        | 2%       |
|     | 6054  |     | 162 | NS   | 1797   | 25 87 | 287 12    | 154   | 4 64          | 0 234     | 32                      | 48 8    | 35 7        |          |
|     | 6580  |     | 200 | NS   |        |       |           |       |               |           | 42                      |         |             |          |
|     | 7106  |     | 237 | NS   |        |       |           |       |               |           | 54                      |         |             |          |
| 27  | 1974  | 75  | 239 | NS   | 4481   | 41 96 | 298 71    | 468   | 2 95          | -0 369    | 0                       | 31 4    | 31.4        |          |
|     | 2500  |     | 276 | NS   | 4471   | 4196  | 298 71    | 467   | 4 08          | 0 222     | -2                      | 398     | 38 8        |          |
|     | 3026  |     | 313 | NS   | 4462   | 41.96 | 298 71    | 466   | -0.27         | -0 109    | -2                      | 310     | 30 6        |          |
|     | 3552  |     | 351 | N\$  | 4471   | 41.96 | 298 71    | 467   | -0 78         | -0 108    | 0                       | 34 3    | 34.9        |          |
|     | 4604  | 76  | 60  | NS   | 3036   | 41,96 | 298 71    | 343   | -471          | 0 0 0 1   | 9                       | 24 0    | 27 2        |          |
|     | 6182  |     | 171 | NS   | 4481   | 41.96 | 298 71    | 468   | 1 57          | -0 172    | 35                      | 637     | 49 7        |          |
|     | 6708  |     | 209 | NS   |        |       | [         |       | f             |           | 46                      |         |             |          |
|     | 67-08 |     | 209 | NS   |        |       |           | 1     |               |           | 46                      |         |             |          |
|     | 7234  |     | 246 | NS   |        |       |           |       |               |           | 58                      |         |             |          |
| 28  | 2037  | 75  | 243 | SN   | 1526   | 26 35 | 292 70    | 173   | 2 62          | -0 430    | 0                       | 26 2    | 26 2        |          |
|     | 2563  |     | 281 | SN   | 1526   | 26 35 | 292 70    | 173   | 0 03          | -0 035    | -2                      | 20 1    | 20 3        |          |
|     | 3089  |     | 318 | SN   | 1526   | 26,35 | 292 70    | 173   | 0 60          | -0 088    | -2                      | 20,2    | 198         |          |
|     | 5193  | 76  | 102 | SN   | 1480   | 26 41 | 292 67    | 167   | 2 28          | 0 0 1 4   | 18                      | 18 7    | 26 3        |          |
|     | 5719  |     | 139 | SN   | 1518   | 26 41 | 292 67    | 172   | -1 26         | -0 0 18   | 26                      | 197     | 23 0        |          |
|     | 6245  |     | 176 | SN   | 1501   | 26.52 | 292 60    | 170   | -2 31         | 0 050     | 36                      | 27 0    | 20 1        |          |
| 29  | 2159  | 75  | 252 | พร   | 4315   | 44.35 | 296 43    | 438   | -506          | -1 022    | 0                       | 1028    | †           |          |
|     | 3211  | l i | 326 | N\$  | 4315   | 44 35 | 296 43    | 438   | 3 28          | 0 132     | -1                      | 667     |             |          |
|     | 3737  |     | 364 | NS   | 4315   | 44 35 | 296 43    | 438   | 272           | 0 0 4 7   | 2                       | 49 0    | —           |          |
|     | 5315  | 76  | 110 | NS   | 4315   | 44 35 | 296 43    | 438   | -1 67         | 0 236     | 20                      | 68 3    |             |          |
|     | 5841  |     | 147 | NS   | 235    | 44 21 | 296 27    | 33    | 380           | 0312      | 29                      | 18 9    |             |          |
|     | 5841  |     | 147 | NS   | 3038   | 36 43 | 288 81    | 284   | 6 38          | 0 260     | 29                      | 65 8    |             |          |
|     | 6893  |     | 222 | NS   |        | i     | ŀ         | I     | i i           | I         | 51                      | i i     |             |          |

Table 2 (continued)

| Set | Rev  | D   | ate | 51511 | Length , | Start o | f Overlap | No of | , Bisz | Tilt      | δλ <i>φ</i> =0° | RMS Resid | lual (±cm) - | % Data   |
|-----|------|-----|-----|-------|----------|---------|-----------|-------|--------|-----------|-----------------|-----------|--------------|----------|
| No  | No   | YY  | DDD | DIRN  | (km)     | φ       | λ         | Pts   | (m)    | (arc sec) | (km)            | 9N\9y≈0   | -9ν/9λ≠ο     | Rejected |
| 30  | 2464 | 75  | 274 | SN    | 1130     | 18 57   | 284 61    | 89    | -1 74  | -0 157    | 0               | 38 2      | 38 2         | 4%       |
| ~   | 3516 | . ~ | 348 | SN    | 213      | 18 67   | 284 61    | 22    | -0 04  | -0 549    | 2               | 19 4      | 215          |          |
|     | 3516 | ŀ   | 348 | SN    | 532      | 22 09   | 282 45    | 59    | -1 10  | 0 682     | 2               | 15 4      | 164          |          |
| L   | 4568 | 76  | 57  | SN    | 1130     | 18.57   | 284 61    | 89    | 052    | -0 112    | 10              | 27 6      | 37 4         | ł.       |
|     | 6146 | ]   | 169 | SN    | 1066     | 18 95-  | 284 38    | 84    | 1 49   | -0 155    | 36              | 57.9¹     | 32 2         | 8%       |
|     | 7198 |     | 243 | SN    |          |         |           |       |        |           | 59              |           |              |          |
| 31  | 2486 | 75  | 275 | NS    | 2392     | 43.51   | 294.81    | 257   | 2 72   | -0 045    | o               | 24 5      | 24 5,_       |          |
|     | 3012 | 1   | 312 | NS    | 2346     | 43 51   | 294 81    | 252   | 3 10   | 0 011     | 0               | 383       | 40 0         | 1        |
|     | 4590 | 76  | 59  | NS-   | 2392     | 43 51   | 294.81    | 257   | -207   | -0 030    | 11              | 22 9      | 26 1         |          |
|     | 5116 |     | 96  | NS    | 2384     | 43 46   | 294 76    | 256   | -2 72  | 0 050     | 18              | 216       | 25 9         | Ļ        |
|     | 5642 |     | 133 | NS    | 2392     | 43 51   | 294 81    | 257   | -1 19  | 0 057     | 27              | 34 4      | 290          | l        |
|     | 6694 |     | 208 | NIS   |          |         |           |       |        |           | 48              |           |              |          |
|     | 7220 |     | 245 | NIS   | ,        |         |           | 1     |        | 1         | 60-             |           |              |          |
| 32  | 2506 | 75  | 277 | SN    | 1431,    | 28 72   | 294 48.   | 167   | 179    | 0 330     | 0               | 26 2      | 26 2         |          |
|     | 3558 |     | 351 | SN    | 1423     | 28 72   | 294 48    | 166   | 0 00   | -0 089    | 2               | 278       | 28 2         |          |
|     | 4610 | 76  | 60  | SN    | 1431     | 28 72   | 294 48    | 167   | 1 64   | -0 130    | 11              | 20 4      | 21,5         |          |
|     | 5136 | ĺ   | 98  | SN    | 1423     | 28 78   | 294 44    | 166   | 0 64   | -0 138    | 19              | 19.8;     | 22 6         | ľ        |
|     | 5662 |     | 135 | SN    | 1406     | 28 88   | 294.36,   | 164   | -071   | -0 133    | 27              | 164       | 21 9         |          |
| l   | 6188 |     | 172 | SN    | 1366     | 29 15-  | 294 18    | 159   | -1 68  | -0 054    | 37              | 218       | 25 4         |          |

Table 3
Residual Noise (σ in Equation 3) as a Function of Junction Point Size

| Junction Point (Crossover)<br>Size (Degrees) | Root Mean Square Residual<br>(± cm) |
|----------------------------------------------|-------------------------------------|
| 0.2° x 0 2°                                  | 20                                  |
| 0 5° x 0 5°                                  | 52                                  |
| 1° x 1°                                      | 78                                  |

Table 4

The Effect of Allowing for the Ocean Tide on the Root Mean Square Residual (o) for a Monthly Solution in the Sargasso Sea

| Tıdal Model —           | Hendershott             | Month — October 1975                                        |
|-------------------------|-------------------------|-------------------------------------------------------------|
| For mor                 | e details, see Table 1, | Row 7 and Figure 15                                         |
| Solution<br>Description | σ<br>(± cm)             | Mean Sea Surface<br>Height at 243<br>Junction Points<br>(m) |
| Tide Not<br>Modelled    | 29                      | -49.36                                                      |
| Tide<br>Modelled        | 29                      | -49.33                                                      |

Table 5

Three Parameter Transformations of Regional Sea Surface Models to the GEM 9 Datum

| _                    | . Equa | tion 4                                   | GEM 9 to (                                   | 30,30)                        |
|----------------------|--------|------------------------------------------|----------------------------------------------|-------------------------------|
| Solution<br>Descript |        | Meridional Tilt<br>(+ N)<br>cm per 10 km | Prime Vertical<br>Tilt (+ E)<br>cm per 10 km | Radial -<br>Correction<br>(m) |
| July                 | 1975   | -4                                       | +1.5                                         | +0 7                          |
| August               | 1975   | -6                                       | +2 5                                         | +1.7                          |
| September            | .1975  | -5 5                                     | +3                                           | -28                           |
| October              | 1975   | -5                                       | +4                                           | -3.6                          |
| November             | 1975   | -5 5                                     | +3.5 .                                       | +1.4                          |
| April                | 1976   | -5                                       | <del>1</del> 5                               | +18                           |
| Мау                  | 1976   | -4.5                                     | +4.5                                         | +1 6                          |
| June                 | 1976   | -5 5                                     | +4.5                                         | +1 5                          |
| July                 | 1976   | -5.5                                     | +5                                           | +1.5                          |
| August               | 1976   | -5                                       | +4.5                                         | +1.5                          |

Table 6

Correlations Between Remote Sensed Cyclonic Eddies/Monthly Surface Temperature Means and Dynamic Sea Surface Heights of Regional Models of the Sargasso Sea from GEOS-3 Altimetry

|           |      | No of  | No of              | RMS<br>Residual             | % of             | Corr   | elations With (                                                                                                                                                                                              | -     |                | (%)            | 1          | ons With Month<br>d Minima Defin |            |         |                |
|-----------|------|--------|--------------------|-----------------------------|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|----------------|------------|----------------------------------|------------|---------|----------------|
| Month     | Year | Passes | Junction<br>Points | After<br>Adjustment<br>(±m) | Data<br>Rejected | 0<4<50 | (%)<br>50 <d<100< td=""><td>d&gt;100</td><td>Insuff<br/>Data</td><td>Sample<br/>Size</td><td>Positive**</td><td>(%)<br/>Favorable**</td><td>Negativa**</td><td>No Data</td><td>Sample<br/>Size</td></d<100<> | d>100 | Insuff<br>Data | Sample<br>Size | Positive** | (%)<br>Favorable**               | Negativa** | No Data | Sample<br>Size |
| July      | 1975 | 15     | 63                 | 0 40                        | 0                | 100    | _                                                                                                                                                                                                            | _     | -              | 2              | _          | -                                | _          |         | _              |
| August    | 1975 | 23     | 97                 | 0 50                        | 18               | 67     | -                                                                                                                                                                                                            | -     | 33             | 3              | 67         | -                                | 17         | 16      | 6              |
| September | 1975 | 28     | 156                | 0 35                        | 8                | 75     | 25                                                                                                                                                                                                           | -     | -              | 4              | 40         | 40                               | -          | 20      | 5              |
| October   | 1975 | 35     | 243                | 0 29                        | 2                | 75     | 25                                                                                                                                                                                                           | -     | -              | 4              | 67         | 16                               | 17         | _       | 6              |
| November  | 1975 | 28     | 175                | 0 26                        | 1                | 50     | 25                                                                                                                                                                                                           |       | 25             | 4              | 43         | _                                | _          | 57      | 7              |
| April     | 1976 | 19     | 63                 | 0 17                        | 6                | 50     | 25                                                                                                                                                                                                           | -     | 25             | 4              | 40         | _                                | 20         | 40      | 5              |
| May       | 1976 | 14     | 59                 | 0 21                        | 1                | 50     | 50                                                                                                                                                                                                           | -     |                | 2              | 40         | _                                | 20         | 40      | 5              |
| June      | 1976 | 25     | 140                | 0 26                        | 2                | -      | 100                                                                                                                                                                                                          | _     | _              | 1              | 33         | 33                               | -          | 34      | 3              |
| July      | 1976 | 22     | 122                | 0 20                        | _                | 67     | 33                                                                                                                                                                                                           | _     | _              | 3              | 50         | _                                | 50         | _       | 4              |
| August    | 1976 | 24     | 131                | 0 22                        | -                | 75     | -                                                                                                                                                                                                            | _     | 25             | 4              | 50         | _                                | 25         | 25      | 4              |
|           |      |        |                    | Total                       |                  | 64     | 24                                                                                                                                                                                                           | _     | 12             | 33             | 50         | 9                                | 16         | 25      | 44             |

<sup>\*</sup>Correlations established from relative sea surface height variations along profiles over eddy locations reported in (NOAA 1975, NOAA 1976)

<sup>\*\*</sup>Positive correlation defined by occurrence of highs or lows of same sign in both altimeter sea surface models and in surface temperature means for 1° x 1° squares (ibid)

Positive = exact correlation in four cardinal directions or ground track directions if available

Favorable = exact correlation along three out of four cardinal or ground track directions

Negative = exact correlation along less than three out of four cardinal or ground track directions

Table 7 The Variation of Specific Volume of Sea Water With Temperature

| Temperature<br>°C | $(\partial \alpha / \partial T) \times 1.0^{-4}$ cm <sup>3</sup> g <sup>-1</sup> (°K)-1 |
|-------------------|-----------------------------------------------------------------------------------------|
| 0                 | 3.19                                                                                    |
| 5                 | 3.14                                                                                    |
| 10                | 3.08                                                                                    |
| 15                | 3.03                                                                                    |
| 20                | 2:98                                                                                    |
| 25                | 2 93                                                                                    |
| 30                | 2.88                                                                                    |
| 35                | 2.83                                                                                    |
| 40                | 2.78                                                                                    |
|                   |                                                                                         |

25

Table 8 Spectral Analysis of Overlapping Pass Set 8 (Table 2)

| Rev No                 |     |          | 595  |     |      | 1121 |    |       | 1647     |     |      | 2173       |     |      | 2699 |      |       | 3751 |     |          | 5329 |         |      | 5855 |       |      | 6381     |     |              | M            | ean for S | Set & |              |
|------------------------|-----|----------|------|-----|------|------|----|-------|----------|-----|------|------------|-----|------|------|------|-------|------|-----|----------|------|---------|------|------|-------|------|----------|-----|--------------|--------------|-----------|-------|--------------|
| Range of<br>Wavelength | NI  | Ot       | Εı   | 51  | ٥    | E    | \$ | o     | E        | s   | ٥    | É          | \$  | ٥    | E    | 5    | 0     | Ē    | \$  | 0        | E    | s       | ٥    | E    | s     | ٥    | ε        | s   | 0            | υ            | E         | σ     | Ratio        |
| 25                     | 59  | 29       | 20,3 |     | 39   | 203  |    | 16    | 20.3     |     | 57   | 240        |     | 75   | 24 0 |      | 73    | 24 0 |     | 30       | 203  |         | 5-8  | 24 O |       | 40   | 24 1     |     | 4 63         | 2 05         | 22 37     |       | 021          |
| 50                     | 103 | 9.8      | 398  |     | 73   | 398  |    | 46    | 398      |     | 73   | 380        |     | 10 D | 380  |      | 103   | 38 O | 1   | 87       | 398  |         | 10 7 | 38 0 |       |      | 37 9     |     | 8 77         | 2 01         | 38 86     |       | 0 23         |
| 75                     | 35  | 2 13     | 135  |     | 42   | 135  |    | 34    | 135      |     | 57   | 129        |     | 42   | 126  |      | 74    | 126  |     | 41       | 135  |         | 5-4  | 129  |       | 38   | 126      |     | 457          | 1 38         |           | 0 43  | 0 35         |
| 100                    | 17  | 24       | G 4  |     | 28   | 64   |    | 22    | 64       |     | 35   | 61         |     | 32   | 65   |      | 32    | 65   |     | 41       | 64   |         | 46   | 61   |       | 63   | 65       |     | 3 59         | 1 27         | 6 36      |       | 0 56         |
| 125                    | 10  | 63       | 41   |     | 44   | 4 1  |    | 30    | 41       |     | 29   | 38         |     | 50   | 38   |      | 36    | 38   |     | 56       | 41   |         | 33   | 38   |       | 4 7  | 38       |     | 4 31         | 1 20         | 3 96      |       | 1 09         |
| 150                    | 7   | 69       | 26   |     | 34   | 26   |    | 55    | 26       |     | 54   | 27         |     | 7.4  | 23   | ••   | 57    | 23   | •   | 31       | 26   |         | 7 2  | 27   | ••    | 84   | 23       | ]   | 5 89         | 1 79         | 2 52      |       | 2 93         |
| 175                    | 5   | 33       | 1.9  |     | 39   | 19   |    | 33    | 1.9      | _   | 49   | 1 9        |     | 10.5 | 1,9  | •••• | 59    | 19   |     | 33       | 19   |         | 46   | 19   | •••   | 10 4 | 19       | ]   | 5 57         | 29           | 190       |       | 3 14         |
| 200                    | 4   | 71       | 15   | *** | 50   | 15   |    | 44    | 15       | •   | 23   | 11         |     | 32   | 16   | •    | 34    | 15   | -   | 70       | 15   | •       | 10   | 11   |       | 05   | 15<br>08 |     | 4 46         | 1 67         | 1 42      |       | 173          |
| 225                    | 3   | 33       | 11   |     | 39   | 11   | •• | 23    | 11<br>08 |     | 18   | 11         |     | 66   | 08   |      | 19    | 08   |     | 19<br>30 | 08   |         | 14   | 08   |       | 17   | 11       |     | 196          | 1 96         | 0.89      |       | 2 20         |
| 250                    | 2 2 | 43<br>25 | 08   | ••  | 07   | 08   |    | 15    | 08       | ••• | 21   | 08         |     | 07   | 04   |      | 03    | 64   |     | 25       | 08   | ••      | 45   | 08   |       | 01   | 04       |     | 1 67         | 1 40         | 0 63      |       | 2 65         |
| 275<br>300             | 2   | 48       | 08   |     | 13   | 08   |    | 16    | 08       |     | 28   | 08         | ••  | 08   | 08   |      | 17    | 08   |     | 48       | 08   | ••      | 25   | 08   | • • • | 27   | 08       |     | 256          | 1 43         | 0.76      |       | 3 36         |
| 300                    | ;   | 35       | D4   |     | 12   | 04   |    | 17    | 04       |     | 03   | 04         |     | 07   | 04   |      | 02    | 0.4  |     | 11       | 0.4  | ٠       | 01   | 04   |       | 2 1  | 04       |     | 121          | 1 10         | 0 38      | 0     | 3 19         |
| 350                    | ;   | 06       | 04   |     | 06   | 04   |    | 12    | 04       |     | 09   | ٠,         |     | 00   | 0.4  |      | 00    | 0.4  |     | 0.8      | 04   |         | 04   | 0.4  |       | 0.9  | 04       |     | 0 60         | 0 41         | 0 38      | 0     | 1 58         |
| 375                    | 1 : | 08       | 04   |     | 10   | 0.4  |    | 01    | 04       |     | 11   | 0.4        |     | 0.4  | 0.4  |      | 12    | 0.4  | •   | 24       | 0.4  | •       | 09   | 04   | •     | 06   | 04       |     |              | 0.65         | 0 38      | 0     | 2 48         |
| 400                    | 1   | 20       | 04   |     | 18   | 0.4  | •• | 09    | 0.4      | •   | 26   | 04         | ••  | 111  | 04   | ••   | 09    | 04   |     | 21       | 0.4  | •       | 20   | 0.4  | • • • | 19   | 04       |     | 1 73         | 0 63         | 0.38      | 0     | 4 56         |
| 425                    | ; ' | 15       | 0.4  | •   | 28   | 0.4  | •  | 26    | 04       |     | 24   | 04         | *** | 10   | 04   |      | 19    | 04   | • • | 01       | 0.4  |         | 15   | 04   | •     | 14   | 04       | ••  | 1 69         | 0 85         | 0 38      | 0     | 4 44         |
| 450                    | 1 1 | 02       | 04   |     | 31   | 0.4  |    | 06    | 04       |     | 1    |            |     | 1    |      |      |       |      |     | 0.6      | 04   |         |      |      |       |      |          |     | 1 12         | 1 33         | 0.38      | 0     | 2 96         |
| 475                    | 1 1 | 1        |      |     |      |      |    | l     |          |     | 02   | 0.4        |     | 35   | D 4  | ٠    | 44    | 04   |     |          |      |         | 27   | 04   | •     | 55   | 04       |     | 3 26         | 2 00         | 0 38      | 0     | 8 58         |
| 500                    | 1   | 1,2      | 04   | ••• | 23   | 04   |    | 16    | 04       |     | l    |            |     | 73   | 04   |      | 18    | 04   | ••  | 18       | 04   |         |      |      |       | 24   | 04       | • • | 263          | 2 10         | 0.38      | 0     | 6 92         |
| 525                    | 1   | l        |      |     |      |      |    |       |          |     | 43   | 04         |     |      |      |      | ļ     |      |     |          |      |         | 17   | 04   | • • • |      |          |     | 30           | 1 84         | 0.38      | 0     | 79           |
| 550                    | 1   | 4.3      | 04   |     | 29   | 04   |    | 24    | 04       | ٠   |      |            |     |      |      |      |       |      |     | 45       | 04   | ***     |      |      |       |      |          |     | 3 53         | 1 03         | 0 38      | 0     | 9 28         |
| <b>5</b> 75            | 1   | l        |      |     |      |      |    | ł .   |          |     | 20   | 04         | •   | 02   | 04   |      | 43    | 04   |     |          |      |         | 29   | 04   |       | 2 4  | 04       | ••  | 2 36         | 1 49         | 0 38      | 0     | 6 21         |
| €00                    | 1   | 27       | 04   | **  | 64   | 04   |    | 50    | 04       |     |      |            |     |      |      |      |       |      |     | 05       | 04   |         | ŀ    |      |       | 1    |          |     | 3 65         | 2 60         | 0.38      | 0     | 9 60         |
| 625                    | 1   | l        |      |     |      |      |    | 1     |          |     | •    |            |     | 33   | 04   | ٠    | 31    | 0.4  |     | 1        |      |         | 1    |      |       | 11   | 0 4      | •   | 183          | 1 27         | 0 38      | 0     | 4 82         |
| 650                    | 1   | l        |      |     |      |      |    | 1     |          |     | 11   | 04         |     |      |      |      |       |      |     |          |      |         | 42   | 04   | •     | l    |          |     | 2 65         | 2 19         | 0 38      | 0     | 6 97         |
| <b>G</b> 75            | 1   | 05       | 0 4  |     | 07   | 04   |    | 17    | 04       |     | ,    |            |     | ļ    |      |      | ļ     |      |     | 13       | 0.4  | • • • • | 1    |      |       | ļ.,  |          |     | 1 05         | 0 55         | 0 38      | 0     | 2 76         |
| 725                    | 1 1 | ĺ        |      |     |      |      |    | 1     |          |     | 16   | 04         |     | 09   | 04   | •    | 0.5   | 04   |     | 1        |      |         | 2 1  | 04   | ••    | 04   | 04       |     | 1 10         | 0 73         | 0 38      | 0     | 2 90         |
| 775                    | 1   | 02       | 04   |     | 2 1  | 04   |    | 0.4   | 04       |     | 1    |            |     | 1    |      |      |       |      |     | 33       | 04   | •       | ١    |      |       | ١    |          |     | 1 50         | 1 47         | 0.38      | 0     | 3 95<br>9 42 |
| B50                    | 1   | 1        |      |     |      |      |    | 1     |          |     | 36   | 04         | ٠   | 43   | 04   |      | 71    | 0.4  |     | l        |      |         | 0.5  | 04   |       | 24   | 04       |     | 3 58         | 2 44         | 0.38      | 0     | 8 75         |
| 900                    | 1   | 53       | 04   | ٠   | 20   | 04   | ٠  | 10    | 04       |     | l    |            |     | l    |      |      | 1     |      |     | 50       | 04   | •       |      |      |       | ١.,  | 04       |     | 3 32         | 2 15         | 0.38      | 0     | 12.28        |
| 1000                   | ١ ١ |          |      |     |      |      |    | ĺ     |          |     | ١    |            |     | 5,4  | 0 4  |      | 39    | 04   | •   |          |      |         | ١,,  |      |       | [4/  | 04       |     | 4 67<br>2 55 | 0 75<br>2 62 | 0 38      | 0     | 671          |
| 1025                   | 1 ! | ١        |      |     | _ ا  |      |    | ١     |          |     | 44   | 04         |     | 1    |      |      | 1     |      |     | ۱.,      | 04   |         | ۱۳′  | 04   |       | I    |          |     | 270          | 1 04         | 0 38      | ŏ     | 7 1          |
| 1075                   | 1 ! | 30       | 0.4  | •   | 22   | 04   |    | 40    | 04       |     | 1    |            |     | ١.,  | ۸.   |      | ا ۔ ۔ |      |     | ' ' '    | 04   | -       | 1    |      |       | ١.,  | 04       |     | 55           | 2 10         | 0.38      | 0     | 14 47        |
| 1250                   | l ! | 1        |      |     |      |      |    |       |          |     | ١.,  |            |     | 78   | Ų4   |      | 150   | 04   | -   |          |      |         | 88   | 04   | ••    | ]°′  | 04       |     | 66           | 3 11         | 0 38      | ŏ     | 17 37        |
| 1275                   | !   | ١.,      | ۰.   |     |      |      |    | ١, ا  | 0.4      |     | 44   | 04         |     |      |      |      | 1     |      |     | 02       | 0.4  |         | ""   | -    |       | 1    |          |     | 2 35         | 2 58         | 0 38      | ō     | G 18         |
| 1350                   | 1!  | 116      | 04   |     | 61   | 04   |    | 15    | 04       |     | 40   | 04         |     | 30   | 04   |      | 56    | 0 4  |     | ] " *    |      |         | 40   | 0.4  |       | 30   | 0.4      |     | 3 92         | 1 06         | 0 38      | ō     | 10 32        |
| 1675                   | 1 : |          |      |     | 64   | 04   |    | 1 0.7 | 04       |     | 1 "" | 04         |     | 1 30 | V4   |      | 5 0   | V -4 |     | 03       | 04   |         | 1    |      |       | 1    | - 1      |     | •            | 2 79         | 0 38      | ō     | 6 32         |
| 1775<br>2500           |     | ' '      | 04   | •   | ا ا  | V 4  |    | "'    | 04       |     | 1    |            |     | 03   | 0.4  |      | £03   | 04   |     | ້ໍ       | ~ ~  |         | 1    |      |       | 47   | 04       |     | 51           | 5 01         | 0 38      | ō     | 13 42        |
| 2500                   | 1 ; | 1        |      |     |      |      |    |       |          |     | n a  | 0.4        |     | "    | U-1  |      | ١     | •    |     | 1        |      |         | 52   | 0.4  | •     | 1    |          |     | 5 85         | 0 92         | 0 38      | 0     | 15 40        |
| 2675                   | 1 ; | 1,,      | 0.4  |     | ١,,  | 0 4  |    | 1,,   | 04       |     | "    | <b>5</b> - |     |      |      |      | 1     |      |     | 43       | 0.4  |         | 1    | -    |       | i i  |          |     | 32           | 0 99         | 0 38      | ō     | 8 42         |
| 4975                   | 1 ; | ' '      | 0.4  |     | l '' | 0.4  |    | 1 3 1 | 0.4      |     |      |            |     |      |      |      | 1     |      |     |          |      |         | 1    |      |       | 67   | 04       |     | 67           | -            | 0 38      | 0     | 17 63        |
| 5000                   |     | }        |      |     | •    |      |    | 1     |          |     | 1    |            |     | 111  | 04   |      | 09    | 0.4  |     | 1        |      |         | 1    |      |       | 1    |          |     | 10           | 0 14         | 0 38      | 0     | 2 63         |
| 5025                   | Li  | 1        |      |     | 1    |      |    | 1     |          |     | 161  | 04         |     | 1    |      |      | 1     | -    |     | 1        |      |         | 69   | 04   |       | 1    |          |     | 115          | 65           | 0 38      | 0     | 30-26        |
| 5325                   | 1   | 1117     | 04   |     | 143  | 0.4  |    | 35 0  | 0.4      |     |      |            |     | İ    |      |      | ì     |      |     | 186      | 04   |         | 1    |      |       | 1    |          |     | 19 9         | 10 46        | 0 38      | 0     | 52 36        |

tN number of frequencies per bin

<sup>10 =</sup> observed strength of signal (Egn 14)

E expreted contribution per bin assuming flat white noise spectrum (Eqn. 13) S \* significance of the signif >10 >20 >30

Table 9

Spectral Analysis of 32 Sets of Overlapping Passes in Western North Atlantic (For Description of Headings See Footnote of Table 8).

| Set No       |    |            | 1    |           | T  |      | :    | 2    |      | T     |     |      | 3           |     | ·  |      | 4    |       | T   | _   | 5    |       |       |    |      | 6    |     | ]  |      | 7    |     | Т    |     | 8    |       | 1     |      | 9     |     |            |
|--------------|----|------------|------|-----------|----|------|------|------|------|-------|-----|------|-------------|-----|----|------|------|-------|-----|-----|------|-------|-------|----|------|------|-----|----|------|------|-----|------|-----|------|-------|-------|------|-------|-----|------------|
| Range of W L | N  | ε          | 0    | s         |    | N    | E    | 0    |      | 5 /   | ı   | E    | ٥           | s   | N  | E    | 0    |       | N   | E   |      | <br>o | s     | N  | E    | 0    | s   | N  | E    | 0    |     | N    |     | 0    | s     | N     | E    |       |     | <br>s      |
| 0            | 78 | 64 6       | 21   | 4         | 12 | 21 8 | 50 6 | 24 1 | ,    | 5     | 0 6 | 52   | 138         |     | 80 | 63.2 | 17 5 | <br>} | 102 | 67  | 4 2r | 18    |       | 60 | 68 0 | 22.0 |     | 61 | 67 0 | 24.5 |     | 163  | •   | ·    |       | ╁     |      |       |     | -          |
| 50           | 22 | 18 0       | 13   | 2         | 1  |      |      | 20 8 |      | ŀ     |     |      | 116         | -   | l  |      | 12:  |       | 1   | 17: |      | -     |       | 1  | 170  |      |     | l  |      |      |     | '    |     | 130  |       |       | 67 : |       |     |            |
| 100          | 7  | 59         | 7    | . •       | ļ  |      |      | 14 4 |      | - 1   | 6   |      | 57          |     |    |      | 6.   |       | 1   | 7   |      |       |       | ļ  | 60   |      |     | ļ  | 170  |      |     | } `` |     | 80   |       | }     | 165  |       | 8   |            |
| 150          | 4  | 3.0        | 3 :  | 3 *       | 1  |      |      | 35   |      | - 1   |     | 28   | 74          | - * | ŀ  |      | 4:   |       | 1   | 2 8 |      |       |       |    |      |      |     | 1  | 50   |      |     | 1    |     | 10 0 |       |       | 5 3  |       | 3   | _          |
| 200          |    |            |      | -<br>5 ** | 1  |      |      | 71   |      |       |     |      | 15 <b>1</b> |     |    |      | 2    |       | 1   | 1 ; |      |       |       |    | 20   |      |     |    | 30   | _    |     | 9    | _   | 10 0 |       |       | 3 1  |       | 6   | •          |
| 250          | l  |            | _    | ·<br>3 •• | 1  |      |      | 9.5  |      | - [   | 2   |      | 51          |     | l  |      | 41   |       | Į   |     |      |       |       |    | 20   |      |     | l  | 20   |      |     | 5    | 20  |      | , **  | 1     | 1 6  |       | 7   | •          |
| 300          |    |            | -    | ,         | -  |      |      | 89   |      | 1     |     | 20   | 67          |     |    |      | 3.   |       |     | 1 1 | _    |       |       | 1  | 10   | 50   | *** | ١  | 10   |      |     | '    | 10  |      | , **  | 1     | 1 6  |       | 9   |            |
| 350          | ł  |            | _    | 3 **!     |    | •    |      | •    | ,    | - [ ] |     | 10   | 15          |     |    |      |      |       |     | 0 ( |      |       |       |    |      |      |     |    | 20   |      | **  | 1    |     | 2.0  |       | 1     | 1 6  |       | 5 * |            |
| 400          | 1  |            |      | ,<br>, •• | 1  |      |      |      |      | - 1   |     |      |             |     | '  | 08   | 6 !  | ,     | 1   | 0 ( |      |       |       | 1  | 10   | 80   | *** | 1  | 10   | 30   | *** | 2    | 10  | 3 (  | , **' | `  ²  | 1 6  | 3 13  | 8 * | * *        |
| 450          | -  | <b>'</b> ′ | 4 (  | •         | -  |      |      |      |      | *     |     | 11   | 53          |     |    |      |      | _     | •   | 1 1 |      |       |       |    |      |      |     |    |      |      |     | 2    | 10  | 3'0  | ***   | 2     | 1 €  | 12    | 1 * | **         |
| 500          | ,  | 2 -        | 05.6 |           |    |      |      |      |      |       |     |      | 100         |     |    |      | 27 5 |       | 1   | 0 6 | 6 6  | 55    | ***   | 1  | 10   | 70   | *** | 1  | 10   | 30   | *** | 2    | 10  | 60   | ***   | 1     | 0.8  | 3 2   | 2 ' | <b>! #</b> |
| 600          | ľ  |            |      | 3 ***     | 1  | 1    | 25   | 90   | , "" | 1     | ł   |      | 17          |     | 1  | 8 0  | 3 8  | 3 **  | 1   | 0 6 | 6 4  | 8     | ***   |    |      |      |     | 1  | 10   | 40   | *** | 4    | 20  | 120  | ***   | 1 2   | 1 6  | 3 21  | 1 * | **         |
| 700          |    |            | _    | ) ***     | 1  |      |      |      |      | 2     | ?   | 19   | 34 2        | *** |    |      |      |       |     |     |      |       |       |    |      |      |     | 1  | 10   | 3 0  | *** | 3    | 10  | 5 0  | ***   | 2     | 1 6  | 9     | 5 * | • •        |
| 800          | 2  | 16         | 10 4 | , ***     |    |      |      |      |      |       |     |      |             |     | 1  | 08   | 5 8  | **    | 1   | 0 € | 3 E  | 1 1   | * * * | 2  | 20   | 160  | *** | 2  | 20   | 110  | *** | 2    | 10  | 30   | ***   | 1     | 0.8  | 4     | 0 * | • •        |
| 900          |    |            |      |           |    |      |      |      |      | 1     |     | 1 1  | 8 1         | **  |    |      |      |       | 1   |     |      |       |       |    |      |      |     | ļ  |      |      |     | 2    | 10  | 7 0  | ***   | •     |      |       |     |            |
| 1000         |    |            |      |           |    |      |      |      |      | 2     | 2   | 19   | 165         | *** |    |      |      |       |     |     |      |       |       |    |      |      |     |    |      |      |     | 1    | 0 4 | 5 0  | ***   | 1     | 0.8  | 11    | 4 * | • •        |
| 1500         | 3  | 25         | 35 0 | ***       |    | 2    | 49°  | 49   |      |       |     |      |             |     | 2  | 16   | 8 6  | ***   | 1 2 | 1 1 | 1 24 | 8     | ***   | 3  | 30   | 25 0 | *** | 1  | 10   | 5 0  | *** | 5    | 20  | 20 0 | ***   | 3     | 2 4  | 16    | 3 * | **         |
| 2000         |    |            |      |           | 1  |      |      |      |      | 4     | 1 4 | 42 1 | 210         |     |    |      |      |       | 1   |     |      |       |       |    |      |      |     | 3  | 30   | 150  | *** | 2    | 10  | 60   | ***   | 2     | 1.7  | 43    | з • | **         |
| 2500         | 4  | 33         | 77 4 | ***       |    |      |      |      |      | İ     |     |      |             | - [ | 2  | 16   | 45 5 | ***   | 1   |     |      |       |       |    |      |      |     |    |      |      |     | 1    | 0.4 | 5 (  | ***   | .   з | 2 :  | 3 114 | 4 * | **         |
| 3000         |    |            |      |           |    |      |      |      |      |       |     |      |             | -   |    |      |      | •     | - 2 | 1 1 | 26   | 6 '   | •••   |    |      |      |     |    |      |      |     | 2    | 10  | 9 0  | ***   |       |      |       |     | 1          |
| 3500         |    |            |      |           | 1  |      |      |      |      |       |     |      |             | 1   |    |      |      |       |     |     |      |       | - {   |    |      |      |     |    |      |      |     |      |     |      |       |       |      |       |     |            |
| 4000         |    |            |      |           |    |      |      |      |      | 4     |     | •    |             |     |    |      |      |       |     |     |      | ,     |       |    | ~    |      |     |    |      |      |     |      |     |      |       |       |      |       |     |            |
| 4500         |    |            |      |           |    |      |      |      |      |       |     |      |             |     |    |      |      |       |     |     |      |       |       |    | ,    |      |     |    |      |      |     |      |     |      |       |       |      |       |     |            |
| 5000         |    |            |      |           |    |      |      |      |      | 1     |     |      |             |     |    |      |      |       | ,   |     |      |       |       |    |      |      |     |    |      |      |     | 2    | 10  | 80   | ***   |       |      |       |     |            |
| >5000        |    |            |      |           |    |      |      |      |      |       |     |      |             |     |    |      |      |       |     |     |      |       |       |    |      |      |     |    |      |      |     | 2    | 10  | 30 0 | ***   |       |      |       |     |            |

ORIGINAL PAGE IS OF POOR QUALITY

Table 9 (continued)

| Set No               |   | 1    | 10   |   | Γ   |     | 11   |     | 7  |      | 12   |     |    |      | 13   |      |     |     | 14   |     |   |    | 15   |     |    |      | 16   |       |    |    | 17   |     |     |    | 18   |     |
|----------------------|---|------|------|---|-----|-----|------|-----|----|------|------|-----|----|------|------|------|-----|-----|------|-----|---|----|------|-----|----|------|------|-------|----|----|------|-----|-----|----|------|-----|
| Range of W L<br>(km) | 2 | E    | 0    | ş | N   | E   | 0    | s   | N  | É    | 0    | s   | N  | E    | ٥    | \$   | N   | E   | 0    | s   | N | E  | 0    | s   | N  | E    | 0    | s     | N  | E  | 0    | s   | N   | E  | 0    | s   |
| 50                   |   | 580  |      |   | l   | -   | 24 0 |     | 54 | 57 0 | 14 4 |     | 27 | 67 1 | 131  |      |     |     | 21 1 |     |   |    | 27 4 |     |    |      | 13 3 |       |    |    | 20 3 |     |     |    | 160  |     |
| 100                  |   | 21 6 |      |   | l   | -   | 9 3  |     |    |      | 99   |     |    |      | 166  |      |     |     | 159  |     |   |    | 23 7 |     |    |      | 148  |       | -  |    | 17 2 |     |     |    | 76   |     |
| 150                  |   | 74   |      |   |     | -   | 98   |     | 1  |      | 10 2 |     |    |      | 48   |      | '   | -   | 140  |     |   | -  | 170  |     |    |      | 11 2 |       |    |    | 94   |     | j   |    | 31   |     |
| 200                  |   | 37   |      |   |     |     | 59   |     |    |      | 114  |     |    |      | 41   |      | l - |     | 94   |     | l |    | 142  |     |    |      | 8 4  |       | 1  |    | 89   |     | -   | -  | 45   |     |
| 250                  |   | 19   |      |   | l   |     | 11 1 |     |    | 21   |      |     | 1  |      | 145  |      | -   |     |      |     | l |    | 51   |     | •  |      | 11 1 |       |    |    | 34   |     |     |    | 33   | 1   |
| 300                  | • | 19   | 5 4  |   |     | •   | 5 4  |     | -  | 21   |      |     |    | 29   | 123  |      | l   | -   |      |     |   |    | 132  |     | -  |      | 45   |       |    |    | 48   |     | -   |    |      | *** |
| 350                  | _ |      |      |   |     |     | 5 2  |     | 1  |      | 20 2 |     | ١. |      |      |      |     |     |      |     |   |    | 64   |     | -  |      | 49   |       | ŀ  |    | 100  |     |     | υy | 35   | *** |
| 400                  | 1 | 19   | 83   |   |     | 1.1 | 31   |     | ĺ  |      | 59   |     |    | 24   | 25 9 |      | 2   | 3 2 | 18 2 | *** | 1 | 25 | 74   |     | ľ  |      | 47   |       | '  | 13 | 62   |     | ł   |    |      |     |
| 450                  |   |      |      |   |     |     |      |     |    | 11   |      |     |    |      |      |      |     |     |      |     |   |    |      |     |    |      | 24   |       |    |    |      |     | '   | 09 | 51   | *** |
| 500                  |   |      | 04.0 |   | _   |     |      |     |    |      | 17   |     |    |      |      |      |     |     |      |     |   |    |      |     |    |      | 12   |       | ١. |    |      |     | ] . |    |      |     |
| 600                  | 2 | 37   | 319  |   | 2   | 22  | 33 6 | *** |    |      | 27   |     | 2  | 58   | 20 6 | ***  | l   |     |      |     |   | 33 | 135  | *** | -  |      | 5 1  |       | 1  | 13 | 61   |     |     |    |      | *** |
| 700                  |   |      |      |   | _ ا |     | • •  |     |    | 22   | 126  | *** | ١. |      |      |      | l   | 27  | 128  | *** |   |    |      |     |    |      | 43   |       | ١. |    |      |     |     | 09 | 42   | *** |
| 800                  |   |      |      |   | l   |     | 76   |     | 1  |      |      |     | '  | 24   | 40 4 | ,,,, |     |     |      |     | 2 | 51 | 22 0 | *** | ļ  |      | 93   |       | 2  | 25 | 118  |     | Į   |    |      |     |
| 900                  |   |      |      |   | ļ ' | 11  | 61   | *** |    |      | .0.5 |     |    |      |      |      |     |     |      |     |   |    |      |     |    |      | 180  |       |    |    |      |     |     |    |      |     |
| 1000                 | _ |      |      |   |     |     |      |     | 1  |      | 19 5 |     |    |      |      |      |     |     |      |     |   |    |      |     | 2  |      | 50   |       |    |    |      |     |     |    |      |     |
| 1500                 | 2 | 37   | 32 0 |   |     |     |      |     | l  |      | 168  |     |    |      |      |      | 3   | 48  | 48 9 | *** |   |    |      |     | "  |      | 70   |       |    |    |      |     | 1   |    | 37 1 |     |
| 2000                 |   |      |      |   | 3   | 33  | 39 5 | *** |    | 11   |      |     |    |      |      |      |     |     |      |     |   |    |      |     |    |      | 5 4  |       | 1  | 37 | 22 2 | *** | 3   | 25 | 67 5 | *** |
| 2500                 |   |      |      |   |     |     |      |     | 2  | 21   | 98   | *** |    |      |      |      |     |     |      |     |   |    |      |     | 2  | . 08 | 8 1  | ***   |    |    |      |     |     |    |      | ļ   |
| 3000                 |   |      |      |   |     |     |      |     |    |      |      |     |    |      |      |      |     |     |      |     |   |    |      |     |    |      |      |       |    |    |      |     | ]   |    |      |     |
| 3500                 |   |      |      |   |     |     |      |     |    |      |      |     |    |      |      |      |     |     |      |     |   |    |      |     | ١. |      |      |       |    |    |      |     | 1   |    |      |     |
| 4000                 |   |      |      |   |     |     |      |     |    |      |      |     |    |      |      |      |     |     |      |     |   |    |      |     | 1  | 05   | 27   | ***   |    |    |      |     |     |    |      |     |
| 4500                 |   |      |      |   |     |     |      |     |    |      |      |     |    |      |      |      |     |     |      |     |   |    |      |     | _  |      | 40 - |       | İ  |    |      |     |     |    |      |     |
| 5000<br>>5000        |   |      |      |   |     |     |      |     |    |      |      | i   |    |      |      |      |     |     |      |     |   |    |      |     | 3  | 13   | 15 7 | - * • |    |    |      |     |     |    |      |     |

Table 9 (continued)

| Set No                |    |      | 19  |     |    |   |   | 20  | )    |       |     |      | 21   |     |   |     | 22   |      |     |   | 2    | 3    |       |   |     | 24   |     |    | •   | 25   |     |   |      | 26  |        |    | 2    | 27   |       |
|-----------------------|----|------|-----|-----|----|---|---|-----|------|-------|-----|------|------|-----|---|-----|------|------|-----|---|------|------|-------|---|-----|------|-----|----|-----|------|-----|---|------|-----|--------|----|------|------|-------|
| Range of W L,<br>(km) | N  | ε    |     | 0   | s  | N | E | :   | 0    | s     | N   | ,Ē   | ó    | s   | N | E   | 0    | , 5  | 3 1 | N | Ę    | 0    | s     | N | E   | 0    | s   | N  | E   | 0    | s   | N | E    | 0   | s      | N  | E    | 0    | s     |
| 0                     | -, |      |     |     |    |   |   |     |      |       | E2  | 64.0 | 10.0 |     |   |     |      | _    | 7   |   | ^^ ^ |      |       |   |     |      |     | 20 |     | 45.0 |     | 1 |      |     | - 1    | Ī  |      |      | , ,   |
| 50                    |    | 61   |     |     |    | 1 |   |     | 26 6 |       | 1   |      | 18 0 |     |   |     | 11   |      | ŀ   |   |      | 31 8 |       |   |     | 133  | -   |    |     | 15 : |     | 1 |      |     | 0      | ŀ  | 61 8 |      | • •   |
| 100                   |    | 24 ′ |     |     |    | 1 |   |     | 15 5 |       | 1   |      | 120  |     |   |     | 14   |      |     |   |      | 13 1 |       |   |     | 161  |     |    |     | 19 8 |     |   | 23 4 |     |        | 45 | 19 4 | 6    | 0     |
| 150                   | 1  | 9:   | 2 2 | 4 2 | ** |   |   |     | 15 4 | -     | ١.  |      | 80   |     |   |     | 135  |      |     |   |      | 110  |       | ł |     | 91   |     | 1  |     | 7 :  |     | 1 | 78   |     |        | 15 | 6 4  | 2    | 6     |
| 200                   |    |      |     |     |    |   |   |     |      | •••   |     | 30   |      |     |   |     | 21 ( |      |     |   |      | 7 4  |       |   |     | 162  |     |    |     | 17 1 |     | [ |      |     | 7 **   | 7  | 30   |      | 9 *   |
| 250                   |    |      |     |     |    |   |   |     |      | * # # | 1   | 20   |      |     |   |     | 13 4 |      |     |   |      | 26   |       | 1 | 19  | 188  | *** |    |     | 19 3 |     | 1 | 26   |     | 2 ***  | 5  | 21   |      | 3 *   |
| 300                   | 1  | 8 3  | 3 6 | 51" |    |   |   |     |      | • • • | ŀ   | 20   |      | **  |   |     | 10 € |      | •   |   |      |      | ***   |   |     |      |     | 2  | 43  | 18 C | ••• | 2 | 26   | 11' | 3 ***  | 3  | 1 3  | 2    | 8 *   |
| 350                   |    |      |     |     |    |   | 1 |     |      |       | 1   | 10   |      | *** |   |     | 1 (  |      |     |   |      | 29   |       |   | 3 9 | 27 3 | *** |    |     |      | *** |   | 13   | 7   | 4 ***  | 2  | 0.9  | 0    | 9     |
| 400                   |    |      |     |     |    | ŀ |   |     |      | ***   | 1   | 20   | 50   | **  | 1 | 11  | 16   | ò '  | '   | 2 | 27   | 19 4 | ***   | ļ |     |      | ,   | 1  | 2 1 | 17 7 | *** | 1 | 1 3  | 4   | 3 ***  | 1  | 0 4  | 1    | 7 **  |
| 450                   |    |      |     |     |    | 1 | 1 | 1   | 41   | ***   | 1   |      |      |     |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     | 1 | 13   | 4   | 4 ***  | 2  | 0.8  | 4    | 9 **  |
| 500                   |    | -    |     |     |    |   |   |     |      |       | i i |      | 120  |     |   |     |      |      | l l | 1 | 13   | 17 3 | ***   | 2 | 3 8 | 108  | **  | 1  | 48  | 12 1 | **  | 1 | 13   | Ó   | 5      | 1  | 0 4  | 0    | 8 *   |
| 600                   |    |      |     |     |    | 2 | 2 | 2   | 61   | * *   | 1   | 10   | 60   | *** | 1 | 18  | 10 6 | 3 ** | •   | 1 | 13   | 18 1 | ***   |   |     |      |     | 2  | 4 3 | 33 1 | *** | 1 | 13   | 6   | 7 ***  | 1  | 0.4  | 1 1  | 4 **  |
| 700                   |    |      |     |     |    |   |   |     |      |       |     |      |      |     | 1 | 1 1 | 28   | 3 *  | *   |   |      |      |       |   |     |      |     |    |     |      |     | 1 | 13   | 1   | 9 *    | 1  | 0 4  | 8 4  | 1 **  |
| 800                   |    |      |     |     |    | 1 | 1 | 1   | 18   | *     | ,2  | 20   | 23 0 |     |   |     |      |      |     | 2 | 2 7  | 48 2 | ***   |   |     |      |     |    |     |      |     |   |      |     |        | 1  | 0.4  | 3    | 2 **  |
| 900                   |    |      |     |     |    | 1 | 1 | 1   | 58   | •••   | ı   |      |      |     |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     | 1 | 13   | 13  | 1 ***  | 1  | 0 4  | 10   | 0 **  |
| 1000                  |    |      |     |     |    |   |   |     |      |       |     |      |      |     | 1 | 1 1 | 1 3  | 3 '  | ٠   |   |      |      |       | 3 | 5 9 | 30 2 | *** |    |     |      |     | 1 | 13   | 6   | 6 ***  |    |      |      |       |
| 1500                  |    |      |     |     |    | ĺ |   |     |      |       | 1   | 10   | 220  | *** | 1 | 18  | 67   | 7 ** | * * | 1 | 13   | 105  | ***   |   |     |      |     | 2  | 4 3 | 6 €  | 3 * |   |      |     |        | 2  | 0.8  | 3 7  | 8 **  |
| 2000                  |    |      |     |     |    | 3 | 3 | 3 1 | 130  | ***   | 1   | 10   | 24 0 | *** | 1 | 1 1 | 27   | 7 *  | *   | 1 | 13   | 9 4  | . *** |   |     |      |     |    |     |      |     | 2 | 26   | 27  | 8 **'* |    |      |      |       |
| 2500                  |    |      |     |     |    |   |   |     |      |       |     |      |      | i   |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     |   |      |     |        | 1  | 0.4  | 1 0  | 9 *   |
| 3000                  |    |      |     |     |    |   |   |     |      |       |     |      |      |     |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     |   |      |     |        |    |      |      |       |
| 3500                  |    |      |     |     |    |   |   |     |      |       |     |      |      |     |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     |   |      |     |        |    |      |      |       |
| 4000                  |    |      |     |     |    |   |   |     |      |       |     |      |      | i   |   |     |      |      |     |   |      |      |       |   |     |      |     | ŀ  |     |      |     |   |      |     |        |    |      |      |       |
| 4500                  |    |      |     |     |    |   |   |     |      |       |     |      |      | :   |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     |   |      |     |        | 2  | 0 8  | 3 59 | 3 * * |
|                       |    |      |     |     |    |   |   |     |      |       |     |      |      |     |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     |   |      |     |        |    |      |      |       |
| 5000<br>>5000         |    |      |     |     |    |   |   |     |      |       |     |      |      |     |   |     |      |      |     |   |      |      |       |   |     |      |     |    |     |      |     |   |      |     |        | 1  |      |      |       |

28

Table 9 (continued)

| Set No               |    |      | 28 |       |     | 2          | 9    |     |    |      | 30   |     |    |      | 31   |       |    | ,    | 32   |     |     |      |              | Mean  |                  |      |
|----------------------|----|------|----|-------|-----|------------|------|-----|----|------|------|-----|----|------|------|-------|----|------|------|-----|-----|------|--------------|-------|------------------|------|
| Range of W L<br>(km) | N  | E    | c  | \$    | N   | E          | 0    | s   | Ν  | E    | 0    | s   | N  | Ē    | 0    | s     | N  | É    | 0    | s   | N   | ε    | $\sigma_{E}$ | 0     | $\sigma_{\rm S}$ | %    |
| 0                    | 55 | 64 9 | 23 | 2     | 103 | 62 O       | 70   | *** | 21 | 69 1 | 20 6 |     | 80 | 63 2 | 17 9 |       | 54 | 65 9 | 20 5 |     | 62  | 63 9 | 66           | 18 7  | 78               | 03   |
| 50                   | 15 | 17 6 | 17 | 1     | 34  | 19 0       | 50   |     | 9  | 24 6 | 21 8 |     | 24 | 187  | 128  |       | 14 | 17 2 | 100  |     | 19  | 19 4 | 16           | 13 4  | 5 1              | 0.7  |
| 100                  | 5  | 59   | 7  | 7     | 13  | 70         | 100  |     | 3  | 9 2  | 7 4  |     | 8  | 63   | 6 4  |       | 5  | 5 9  | 85   | •   | 6   | 69   | 13           | 10 0  | 50               | 1 4  |
| 150                  | 3  | 43 0 | 6  | 4 *   | 6   | 30         | 30   |     | 2  | 49   | 11 7 | **  | 4  | 31   | 45   |       | 2  | 26   | 42   | +   | 3   | 35   | 0 7          | 8 4   | 40               | 2 4  |
| 200                  | 2  | 2 4  | 1  | 6     | 4   | 3 <b>0</b> | 30   |     | 2  | 8 5  | 21 3 | ••  | 2  | 16   | 27   | *     | 2  | 2 4  | 7 1  | **  | 3   | 26   | 10           | 8 2   | 38               | 32   |
| 250                  | 2  | 2 4  | 3  | 2 .   | 3   | 10         | 50   | ••• | 2  | 5 2  | 132  | **  | 2  | 15   | 46   | • • • | 2  | 2 5  | 187  | *** | 2   | 25   | 12           | 103   | 93               | 41   |
| 300                  | 1  | 12   | 6  | 0 *** | 2   | 10         | 10   |     |    |      |      |     | 1  | 8 0  | 3 1  | ***   | 1  | 1 3  | 39   | *** | 2   | 2 1  | 1 0          | 89    | 60               | 42   |
| 350                  | 2  | 2 4  | 10 | 3 *** | 2   | 10         | 20   | • • | 2  | 47   | 19 2 | ••• | 1  | 08   | 65   | • • • | 1  | 1 2  | 56   | ••• | 2   | 21   | 0 6          | 10 7  | 62               | 5 1  |
| 400                  |    |      |    |       | 1   | 05         | 10   | • • |    |      |      |     |    |      |      |       |    |      |      |     | 2   | 13   | 03           | 68    | 27               | 45   |
| 450                  | 1  | 12   | 14 | 2 *** | 1   | 05         | 20   | *** | ,  |      |      |     | 2  | 16   | 27 5 | • • • | 2  | 2 4  | 29 8 | ••• | 2   | 18   | 0 5          | 125   | 68               | 69   |
| 500                  | 1  | 12   | 3  | 5 **  | 2   | 10         | 130  | *** | 2  | 5 2  | 29 4 | *** | 1  | 08   | 38   | ***   | ĺ  |      |      |     | 4   | 45   | 07           | 25 5  | 67               | 5 7  |
| 600                  |    |      |    |       | 1   | 05         | 40   |     |    |      |      |     |    |      |      |       | 1  | 13   | 06   |     | 4   | 32   | 05           | 20 5  | 5 1              | 64   |
| 700                  | 2  | 2 4  | 9  | 0 *** | 2   | 10         | 170  | *** |    |      |      |     | 1  | 08   | 58   | ***   | 1  | 1 2  | 56   |     | 4   | 41   | 05           | 33 8  | 90               | 8 2  |
| 800                  |    |      |    |       | 1   | 05         | 60   | ••• |    |      |      |     |    |      |      |       |    |      |      |     | 4   | 25   | 0 2          | 25 0  | 4 1              | 10 0 |
| 900                  |    |      |    |       |     |            |      |     |    |      |      |     | 1  |      |      |       |    |      |      |     | 4   | 39   | 0 6          | 28 7  | 72               | 7 4  |
| 1000                 | 1  | 1 2  | 47 | 4 ••• | 3   | 20         | 140  | ••• | 2  | 47   | 63 8 | *** | 2  | 16   | 86   | ***   |    |      |      |     | 16  | 15 7 | 0 5          | 144 0 | 80               | 92   |
| 1500                 | 2  | 23   | 30 | 9 *** |     |            |      |     |    |      |      |     |    |      |      |       | 3  | 3 7  | 48 5 | *** | 13  | 129  | 0 1          | 1728  | 95               | 13 4 |
| 2000                 |    |      |    |       | 1   | 05         | 24 0 | *** |    |      |      |     | 2  | 16   | 45 5 |       |    |      |      |     | 13  | 90   | 0 1          | 2195  | 138              | 24 4 |
| 2500                 |    |      |    |       |     |            |      |     |    |      |      |     |    |      |      |       |    |      |      |     | 4   | 19   | 0            | 35 7  | 4 4              | 18 8 |
| 3000                 |    |      |    |       | , 1 | 10         | 25 0 | *** |    |      |      |     | 1  |      |      |       |    |      |      |     | 1   | 07   | ø            | 25 1  | 0                | 35 4 |
| 3500                 |    |      |    |       |     |            |      |     |    |      |      |     |    |      |      |       |    |      |      |     | 1   | 05   | 0            | 27    | 0                | 50   |
| 4000                 |    |      |    |       | 1   | 05         | 25 0 | *** |    |      |      |     |    |      |      |       |    |      |      |     | 3   | 13   | 0            | 84 2  | 182              | 64 8 |
| 4500                 |    |      |    |       |     |            |      |     |    |      |      |     |    |      |      |       |    |      |      |     | 5   | 21   | 0            | 23 2  |                  |      |
| 5000                 |    |      |    |       |     |            |      |     |    |      |      |     |    |      |      |       |    |      |      |     | 2   | 08   |              | 31 4  |                  |      |
| > 5000               |    |      |    |       |     |            |      |     |    |      |      |     |    |      |      |       |    |      |      |     | ] " |      | -            |       |                  |      |





DATUM - ARBITRARY (GEM 97)

CONTOUR INTERVAL 50 cm

Figure A1. Smoothed Guestimates of Quasi-Stationary Sea Surface Topography in the Vicinity of the Gulf Stream-Epoch: — July 1975 — August 1976



Figure 1. The Sargasso Sea Test Area

31

Figure 2. Sets of Overlapping Passes of GEOS-3 Altimetry in the Western North Atlantic



Figure 3. Sea Surface Models of Sargasso Sea — October 1975 Différences [Tide Corrected Model — Uncorrected Model]



VARIATIONS – SARGASSO SEA – JULY 1975

DATUM – AVERAGE SEA SURFACE FOR JULY 1975 – AUGUST 1976

WAVELENGTHS > 200 Km CONTOUR INTERVAL 50 cm

Figure 4. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — July 1975



DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 5. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — August 1975



DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 6. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — September 1975



DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 7. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — October 1975



DATUM -- AVERAGE SEA SURFACE FOR JULY 1975 -- AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 8. Regional Model of Dynamic Sea Surface Topography Variations – Sargasso Sea – November 1975



DATUM -- AVERAGE SEA SURFACE FOR JULY 1975 -- AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS >200 km

Figure 9. Regional Model of Dynamic Sea Surface Topography Variations
- Sargasso Sea - April 1976



DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 10. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — May 1976



DATUM – AVERAGE SEA SURFACE FOR JULY 1975 – AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 11. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — June 1976



DATUM – AVERAGE SEA SURFACE FOR JULY 1975 – AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 12. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — July 1976



DATUM - AVERAGE SEA SURFACE FOR JULY 1975 - AUGUST 1976

CONTOUR INTERVAL 50 cm WAVELENGTHS > 200 km

Figure 13. Regional Model of Dynamic Sea Surface Topography Variations — Sargasso Sea — August 1976



Figure 14. Sargasso Sea Discrepancies Between Average Sea Surface (Oriented on GEM 9) and Marsh 5 Minute Gravimetric Geoid. Contour Interval — 50 cm



Figure 15. Sargasso Sea Variation of Monthly Sea Surface Heights as a Function of Position (rms residual ± cm)



Figure 16. Offset in Longitude for Overlapping Passes as a Function of Time

Figure 17. Root Mean Square (RMS) Discrepancy as a Function of Pass Length



Figure 18. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (September 1975)\*



Figure 19. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (October, 1975)\*



Figure 20. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (November 1975)\*



Figure 21. Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (December 1975)\*



Figure 22 Correlation of Infra-red Imagery with GEOS-3 Altimetry Profiles (April 1976)\*

## **BIBLIOGRAPHIC DATA SHEET**

| 1 Report No.<br>TM 79549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. Government Acce               | ssion No.                                                                           | 3. Recipient's Catalog N                     | lo                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|-------------------|
| 4. Title and Subtitle The Analysis of Temporal Variations in Regional Models of the Sargasso Sea from GEOS-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 5 Report Date<br>May 1978                                                           |                                              |                   |
| Altimetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                     | 6. Performing Organizat                      | tion Code         |
| 7. Author(s) R.S. Mather, R. Coleman and B. Hirsch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                                                                     | 8. Performing Organization Report No.<br>921 |                   |
| 9. Performing Organization Name and Address<br>Goddard Space Flight Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                                                                                     | 10. Work Unit No.                            |                   |
| Geodynamics Branch, Code 921<br>Greenbelt, MD 20771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 11. Contract or Grant No.<br>NSG 5225                                               |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 13. Type of Report and Period Covered Technical Memorandum July 1975 to August 1976 |                                              |                   |
| 12. Sponsoring Agency Name and Address Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                                                                     |                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                     | 14 Sponsoring Agency Code                    |                   |
| 15 Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                                                                     |                                              |                   |
| 16 Abstract Monthly regional models of the Sargasso Sea in the western North Atlantic are produced for the periods July to November 1975 and April to August 1976 from GEOS-3 altimetry. The average variability of the models over the period is ± 43 cm. 25% of this value is due to modeling procedures used in the study. Another non-oceanographic contribution comes from instabilities introduced by variable pass geometry. Shortwave maxima and minima in the regional sea surface models are examined for correlations with surface and remote sensed infrared temperature data. On allowing for differences in the quantities being compared, an 88% correlation is obtained on comparison with cyclonic eddies reported by the National Weather Service. This figure drops to 59% in the case of correlations with maxima and minima of surface temperature fields.  The analysis of 32 sets of 5 to 9 overlapping passes provides a better picture of instantaneous sea state through wavelengths greater than 30 km. The improved resolution (± 33 cm) shows that the variability of the Sargasso Sea through wavelengths between 150 and 5000 km is ± 18 cm. |                                  |                                                                                     |                                              |                   |
| 17. Key Words (Selected by Author(s))  18. Distributi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 18. Distribution                                                                    | n Statement                                  |                   |
| GEOS-3 Altimetry Sargasso Sea Sea Surface Topography Variations Cyclonic Eddies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                     |                                              |                   |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20. Security Classi              | f (of this page)                                                                    | 21 No. of Pages 22                           | 2 Price*          |
| *For sale by the National Technical Inform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L<br>nation Service, Springfield | I. Virginia 22151                                                                   | G                                            | SFC 25-44 (10/77) |