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PREFACE 

L 

This report provides an introduction to the theory of linear sys- 

tems defined over rings. The theory is presented with a minimum of 

mathematical details, so that anyone having some knowledge of linear 

system theory should find the work easy to read. The presentation 

centers on four classes of systems that can be treated as linear systems 

over a ring. These are (i) discrete-time systems over a ring of scalars 

such as the integers; (ii) continuous-time systems containing time delays; 

(iii) large-scale discrete-time systems; (iv) time-varying discrete- 

time systems. 

The material given here is an expanded version of a series of lec- 

tures given at NASA Ames Research Center, Moffett Field, California 

during the week of November 7, 1977. I am very grateful to Professor 

R. E. Kalman and Brian Doolin for the opportunity of giving these lectures. 

My gratitude also extends to Eduardo Sontag, Yves Rouchaleau, and Bostwick 

Wyman for countless hours of discussions on linear systems over rings. 

Part of the research work presented here was supported by the U. S. Army 

Research Office, Research Triangle Park, N. C., under Grant DAAG29-77-G- 

0085. 



1. INTRODUCTION 

1.1 Linear systems over fields. 

Since the late 1950's, a great deal of effort has been devoted 

to the study of linear finite-dimensional continuous-time and discrete-time 

systems specified by state equations defined over a field K. More precisely, 

given a triple (F,G,H) of nxn, nxm, pxn matrices over a field K, a m- 

input p-output n-dimensional time-invariant discrete-time system is 

defined by the state equations 

x(t + 1) = Fx(t) + Gu(t) 

(1.1) 

y(t) = Rx(t) 

where t6Z = set of integers. In the continuous-time case, with K = R = 

field of real numbers, a time-invariant system is given by the state 

equations 

ax(t) - = Fx(t) + Gu(t) 
dt 

(1.2) 

y(t) = Hx(t) 

where teR. In both (1.1) and (1.2), the state x(t), input u(t), and 

output y(t) are column vectors over the field K. 
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Initial efforts in studying linear systems defined over a field 

K usually assumed that K was a particular infinite field, such as the 

field R of real numbers. Infinite fields are fields that contain a 

subset which can be put into a one-to-one correspondence with the set of 

integers. In addition to the field R, the field of rational numbers 

and the field of complex numbers are examples of infinite fields. 

There are several textbooks (e.g., [1,2,3]) on the theory of time- 

invariant and time-varying linear systems defined over the field R. 

In a sequence of publications beginning in 1965, R. E. Kalman 

[4,5,6] developed an algebraic theory for discrete-time systems of the 

form (1.1) defined over an arbitrary (finite or infinite) field K. 

Hence, in addition to being applicable to systems over the real or 

complex numbers, Kalman's theory can be applied to systems over finite 

fields, which includes linear sequential circuits [7]. 

1.2 Discrete-time systems over a ring of scalars. 

After the completion of his work on discrete-time systems 

over arbitrary fields, Kalman initiated the study of discrete-time sys- 

tems over rings. The notion of a ring is a generalization of the notion 

of a field: A ring is a set with two operations, called addition and multi- 

plication; however, unlike a field, a ring can contain nonzero elements 

that do not have a multiplicative inverse (see[8, Chapter II]). 

An example of a ring is the set of integers Z with the usual 

addition and multiplication operations. Since ncZ has a multiplicative 

inverse belonging to Z if and only if n = 1 or -1, Z is not a field. 

Another example of a ring is the set K[z] of polynomials in a symbol z 
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with coefficients in a field K, with the usual operations of polynomial 

addition and multiplication. The only elements in K[z] that are invertible 

are the nonzero polynomials of degree zero. 

The first detailed results dealing with discrete-time systems 

over arbitrary commutative rings were derived in Rouchaleau's Ph.D. 

thesis [9] in 1972 under the supervision of R. E. Kalman. This work was 

concerned with the class of linear time-invariant discrete-time systems 

over a commutative ring A given by the state equations 

x(t + 1) = Fx(t) + Gu(t) 

(1.3) 

y(t) = Hx(t) 

where tcZ, F, G, H are nxn, nxm, pxn matrices over the ring A, and x(t), 

u(t), y(t) are column vectors over A. 

An interesting example of a system over a ring is a system 

with the ring of scalars equal to Z. By definition, such a system 

accepts vector sequences over Z, processes these sequences using integer 

operations, and then outputs vector sequences over Z. These systems are 

of interest from a computational standpoint, since integer operations can 

be implemented "exactly" on a digital computer (assuming that magnitudes are 

less than 1Ol2 for 12-digit precision). Further, systems over Z appear 

in various applications, such as coding theory [lo] and scheduling or 

sequencing problems [ll]. 
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1.3 Continuous-time systems over rings of operators. 

In 1973, Kamen [121 showed that a large class of linear infinite- 

dimensional continuous-time systems can be represented by first-order 

vector differential equations defined over a ring of operators (due to 

publication delays, [121 did not appear in print until 1975). The ring 

approach developed in [121 and [13,14] applies to time-invariant and time- 

varying continuous-time systems containing pure and distributed time 

delays. Independently of this work, Williams and Zakian [15,16] constructed 

the same type of operator setting for a class of time-invariant continuous- 

time systems with pure time delays. 

In this section we shall define the operator framework for the 

class of systems with commensurate delays given by the dynamical equations 

a(t) - 
dt E - ia) + 

i=O 
Fix (t 

i=O 
Giu(t - ia) 

(1.4) 
S 

y(t) = 1 Hix(t - ia) 
i=O 

where a is a fixed positive number, the F ir G.r H. are nxn, nxm, pxn 
1 1 

matrices over the field of real numbers R, and x(t), u(t), y(t) are column 

vectors over R. 

The n-vector x(t) in (1.4) is usually referred to as the state at 

time t; however, as a result of the delay terms, the actual state at time 

t is the function segment X(T), t - qa 2 T I t. TO solve (1.4) for t > 0, 

we need to know the actual state at time t = 0, which consists of the func- 

tion segment x(r), -qa S r < 0. 
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In the mathematics literature, equations of the form (1.4), or 

generalizations of (1.41, are usually treated as ordinary differential 

equations in a Banach or Hilbert space consisting of function segments 

(see [17,18,19]). In contrast, we shall view (1.4) as a vector differen- 

tial equation with coefficients belonging to a ring of delay operators. 

The constructions are as follows. 

Let V denote the linear space consisting of all R-valued functions 

defined on R with support bounded on the left (i.e., for each VEV, there 

is a tvcR such that v(t) = 0 for all t<tv). Let d:V+V denote the a-second 

delay operator on V defined by (dv) (t) = v(t-a), vrV. We can extend 

d to column vectors v = (vl,...,vn)' over V by defining 

(dv) (t) = (vl(t-a),...,vn(t-a))' 

where the prime denotes the transpose operation. 

Let R[d] denote the set of all finite sums T: aidi where aieR and 
i 

dv) (t) = v(t-ia), vN. With the usual operations of polynomial addition 

and multiplication, R[d] is a ring of delay operators. 

Now viewing the state trajectory x and the input function u as 

column vectors over V (or some subspace of V), we can write (1.4) in the form 

ax(t) - = (F(d)x)(t) + (G(d)u) (t) 
dt 

y(t) = (H(d)x) (t) 

(1.5) 
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where F(d), G(d), H(d) are nxn, nxm, pxn matrices over the operator ring 

R[d] given by 

F(d) = 7 F.di, 
i=O ' 

G(d) = f Gidi, H(d) = ; H.di 
i=O i=O IL 

Thus the class of time-delay systems given by (1.4) can be studied 

in terms of the vector differential equation (1.5) defined over the ring 

RIdI. We shall refer to the system (1.5) as a linear time-invariant 

continuous-time system over the ring of operators R[d]. 

EXAMPLE 1.1 Consider the time-delay system given by the dynamical 

equations 

dxl (t) 
- = -xl(t-a) + x,(t) dt - x2(t-2a) + u(t) 

dx2 (t) 

dt = xl(t) + xl(t-a) - x,(t) + u(t-a) 

y(t) = xl(t-a) - xl(t-2a) + x2(t) 

This system of equations can be written in the form (1.5) with 

F(d) = 

-d 
. 

l-d2 

l+d -1 

H(d) = E-d2 
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By exploiting the structure of the operator-ring representation 

(1.51, we can develop an algebraic theory for the class of time-delay 

systems given by (1.4). In particular, we can obtain constructive results 

given in terms of operations on matrices and vectors defined over the ring 

RIdI, or ring extensions of R[d]. Examples will be given in the next 

three chapters of these notes. 

As noted above, systems with noncommensurate delays and distributed 

delays can be studied in terms of differential equations over rings of 

operators. Also, as shown in [14], initial data for equations of the form 

(1.51, or generalizations of (1.51, can be incorporated into the operator 

framework. 

Note that in the representation (1.5), the elements of the ring 

R[d] act on functions; whereas in (1.31, the elements of the ring A 

act on values of functions. This is the reason for referring to (1.5) 

as a system over a ring of operators and (1.3) as a system over a ring 

of scalars. We shall show that both types of systems can be studied 

using the same techniques. 

1.4 Discrete-time systems over a ring of operators. 

In this section we shall show that there are discrete-time systems 

that can be treated as systems over a ring of operators. Consider the 

class of discrete-time systems given by the following dynamical equations 

E 
r 

x(t + 1) = 
i=O 

Fix(t-i) + 1 
i=O 

Giu(t-i) 

S 

y(t) = 1 
i=O 

Hix(t-i) 

where teZ, the Fi,G., Hi are nxn, nxm, pxn matrices over a field K, and 1 

x(t) I u(t) I y(t) are column vectors over K. 

-7- 

(1.6) 



Note the similarity between (1.4) and (1.6). In fact, if we 

proceed as we did above for continuous-time systems with time delays, 

it is clear that we can write (1.6) as a vector difference equation 

over the operator rins K[ol consistincr of all nolvnomials in the riaht- 

shift operator U:x(t)+x(t-1) with coefficients belonging to the field 

K. More precisely, we have that 

x(t + 1) = (F(a)x) (t) + (G(U)u) (t) 

(1.7) 

y(t) = (H(u)x) (t) 

where F(u), G(u), H(U) are matrices over K[ul given by 

F(u) = IFi& G(u) = cGiu=, H(u) = cHiu= 
i i i 

We shall refer to the system (1.7) as a linear time-invariant discrete- 

time system over the ring of operators K[ul. 

via the representation (1.71, we can study large (high-dimensional) 

discrete-time systems in terms of some subset of the set of all possible 

state variables. This is made possible by lumping together components 

with memory in the coefficient matrices F(U), G(U), H(U). In other 

words, the representation (1.7) can be viewed as an aggregated model for 

large discrete-time systems. 
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The representation (1.7) is a natural model for systems consisting 

of an interconnection of subsystems separated by time lags with the 

components of x(t) equal to the states of the subsystems. This is 

illustrated by the following example. 

EXAMPLE 1.2 Suppose that K = R. Consider the discrete-time 

system given by the following block diagram. 

Here xl(t) (reSP. x,(t)) is the state of the subsystem having transfer 

function l/(z+l) (resp. l/z-l)). We have that 

x1(t+l) = -x1(t) - x2(t-1) + u(t) 

x2(t+l) = x,(t) + x1(t-1) 

y(t) = x,(t) 

These equations can be written in the form (1.7) with 

F(U) = 
-u 1 1 H(u) = E 3 
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Thus we have a representation of order two over R[u]. Defining x3(t) = 

xl(t-1) and x4(t) = x2(t-1), we also have a four-dimensional representation 

over R given by 

x1 (t+l) 

x2(t+l) 

1 

= 
x3 l-t+11 

x (t+l) 
-4 _I 

11 0 0 -1 

0 11 0 

1 0 0 0 

0 1 0 0 
- 

x1(t) 

x2(t) 

I 

+ 
x3(t) 

x (t) 
-4 

_ 
1 

0 

0 

0 
_ 

u(t) (1.8) 

y(t) = x,(t) 

The representation over R[u] can be very useful, because in some problems 

it is more efficient from a computational standpoint to work with the 

two-dimensional representation over R[U], rather than the four-dimensional 

representation over R. An example will be given in Chapter 4. 

1.5 Additional examples. 

In addition to the examples given above, there are many other 

examples of systems that can be treated as linear systems over rings. 

These include systems given by discretized partial differential equations 

[20,21] and linear two-dimensional digital filters viewed as linear 

systems defined over a ring of proper rational functions in one variable [22]. 

Linear time-varying systems can also be viewed as systems over rings, 

in this case a ring of time functions. However, the algebraic theory 

of time-varying systems differs from the theory of time-invariant systems. 

The primary reason for the difference stems from the fact that time-varying 

systems, viewed as systems over a ring of time functions, must be studied 

in terms of a special type of nonlinear transformation, called a pseudolinear 
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transformation 1231. In the last chapter of these notes, we develop this 

approach for the class of linear time-varying discrete-time systems. The 

theory is based on the concept of a semilinear transformation, which is 

an example of a pseudolinear transformation. 

-ll- 
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2. REPRESENTATION AND REALIZATION THEORY 

2.1 Abstract systems over rings. 

For the three classes of systems defined in Sections 1.2 - 1.4, 

it turns out that many structural and dynamical properties depend only on 

the triple (F,G,H) of matrices appearing in the state equations. In 

other words, the particular form of the dynamical equations (e.g., 

discrete time or continuous time) is not always a primary consideration. 

Thus it is possible to develop a general theory of systems over rings 

specified in terms of a triple of matrices over a ring. This was the 

approach taken by Sontag in his survey paper 1241 on systems over rings. 

In this section, we define the major components of the theory, beginning 

with the notion of an abstract system over a ring. 

DEFINITION 2.1 Let A be a commutative ring and let n, m, p be 

fixed positive integers. An abstract (free) linear time-invariant system 

over A is a triple (F,G,H) of nxn, nxm, pxn matrices over A. The integer 

n is called the dimension of the system (F,G,H). 

Although the concept of an abstract system does not include any 

explicit reference to dynamical behavior, an abstract system (F,G,H) 

can be interpreted as a dynamical system by associating a set of state 

equations specified in terms of F,G,H. For instance, (F,G,H) can be 

interpreted as a discrete-time system over the ring of scalars A, given 

by the state equations (1.3). 

Let (F,G,H) be an abstract system over the ring A. Suppose that 

C is a ring extension of A, i.e., A is a subset of C with the property 

that addition and multiplication in C, when restricted to elements in A, 

are identical to addition and multiplication in A. In other words, the 
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ring A is a subring of C. Then since the elements comprising F,G,H 

can be viewed as elements of C, (F,G,H) can be viewed as an abstract sys- 

tem over C. 

It is of particular interest to note that when A is an integral 

domain, there is a ring extension of A which is a field. Integral 

domains are commutative rings that do not contain divisors of zero. 

That is, if ab = 0 for some a,bcA, then either a or b must be zero. 

Examples of integral domains are the ring of integers Z and the operator 

rings R[d] and K[U] constructed in the preceding chapter. 

An integral domain A can be viewed as a subring of a field Q(A), 

called the quotient field of A. The field Q(A) is equal to the set of all 

formal ratios a/b where a,beA, b # 0, with addition and multiplication 

defined by 

al/b1 + a2/b2 = (alb2 + a2bl)/(blb2) 

(al/bl) (a2/b2) = (ala2)/(bl/b2) 

For example, the quotient field of Z is the field of rational numbers 

and the quotient field of R[d] is the field of rational functions in d. 

Now given an abstract system (F,G,H) over an integral domain A, 

we can view (F,G,H) as a system over the quotient field Q(A). Thus 

there exists the possibility of utilizing results from the theory of 

systems over fields in the study of systems over rings. Although 

this approach is useful (e.g., in the realization problem), the 
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quotient-field framework seldom gives a complete solution to a given 

problem, since in general the results are specified in terms of elements 

of Q(A), rather than elements of A. 

Next, we have the concept of an input/output sequence. 

DEFINITION 2.2 Let m,p be fixed positive integers. An input/output 

(i/o) sequence f over a commutative ring A is a sequence f = (Jl, J2, . ..I 

consisting of pxm matrices over A. The i/o sequence of an abstract system 

(F,G,H) or a dynamical system specified in terms of (F,G,H) is the sequence 

f = (J1, J2, . ..) where Ji = H(Fi-')G for i = 1,2,... 

In the remainder of this section, we shall show that the i/o sequenca 

associated with the systems defined in Sections 1.2 - 1.4 completely charac- 

terizes the input/output behavior of these systems. 

(a) Consider the discrete-time system over the ring of scalars A 

with the dynamical equations (1.3). Solving (1.3) by iteration, we have 

resulting from initial state x(to) at time that the state x(t) at time t 

to < t and input u(t), t 2 to is given by 

t-t 
x(t) = F 0 

X 

t-1 
(t-1 + 1 Ft-i-lGu( i), t>t 

0 

If x(to) = 0, the output response is 

Y 
t-1 

(t) = 1 HFt-i-lGu ( i 
i= t 

0 

” i=t 
0 

1, t ' to 

(2.1) 

(2.2) 
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From (2.2) it is seen that the input/output behavior of the system is com- 

pletely determined by the sequence (Jl,J2,...) where Ji = HF i-l G for i = 1,2,... 

(b) Consider .a continuous-time system over the operator ring R[d] 

with the dynamical equations (1.5). Assuming that x(t) = 0 for 

t 5 0 and taking the (one-sided)Laplace transform of (1.5), we get 

Y(s) = H(eaas) (s1 - F(e-as))-lG(e'as)U(s) 

where F(e -as), G(eaas), H(emas) are computed from F(d), G(d), H(d) by 

setting d = e -as , and where U(s) (resp. Y(s)) is the Laplace transform 

of u(t) (y(t) 1. Thus the transfer function matrix T(s,e -as) is given by 

T(s,e -as) = H(eSas) (~1 - F(e-as))-lG(e-as) 

Expanding (s-1 - F(eeas)) -1 into a power series in s -1 , we have that 

co 
T(s,e -as) = 1 H(e-as)Fi-l(e-as)G(e-as)s-i 

i=l 

Hence T(s,e -as) can be determined from the sequence (Jl(d) ,J2(d) ,---) I 

where Ji(d) = H(d)F i-1(d)G(d). 
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(c) Consider a discrete-time system over the operator ring 

K[u] with the dynamical equations (1.7). We shall specify the input/ 

output behavior using the formal z-transform defined as follows. 

Let z be a symbol. Given a function f:Z+K with f(t) equal to zero 

for t<O, we define the (formal) z-transform of f to be the formal power 

series F(z-l) = y f(i)zSi. 
inO 

Now if we assume that x(t) = 0 for ts 0 and take the z-transform 

of (1.71, we get 

Y(z-') = T(z-l)U(z-1) 

where T(z-l) = H(z-l) (z1 - F(z-l))-lG(z-1 ) is the transfer function matrix. 

Expanding (z1 - F(z -l))-l into a formal power series in z -1 , we have that 

m 

T(z-l) = 1 H(~-l)F~-~(z-l)G(z-~)z-~ (2.3) 
i=l 

Thus the sequence (Jl(U), J2(U), . ..I. where Ji(u) = H(U)F i-l(u)G (u) , 

determines T(z -1 ). However, it should be noted that the expansion (2.3) 

is not unique. Therefore, the input/output behavior of a discrete-time 

system over K[U] cannot be characterized uniquely by a sequence (Jl(U), J2(U),...) 

over K[U]. 

2.2. Problem of realization 

In this section we present a general approach to realizability 

based on the concept of abstract systems. The results given here can 

be applied directly to discrete-time systems over a ring of scalars 

and continuous-time systems over a ring of delay operators. 
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DEFINITION 2.3 An abstract system (F,G,H) over A is a realization 

of an i/o sequence (J 1,J2,.-- ) over A if and only if J. = H(FiV1)G 1 

for i = 1,2,... A realization (F,G,H) is minimal if its dimension is 

minimal among all possible realizations. 

Let us first consider the realization of a scalar sequence f = 

(al,a2,...), aie A. To the sequence f, we associate the formal power 

series w(z -l) = i aizBi in the symbolz -1 with coefficients in the ring 
i=l 

A. The power series w(z-l) is said to be rational if it can be written 

as a ratio of the form 

n-l n-2 
w(z-l) = 

C 
n-lZ 

+c z n-2 + . . . + c z + c 0 
Z n+e Z n-l 

n-l 
+ . . . + elz + e 0 

(2.4) 

where the c ,e E A. ii 

We then have the following results on realization. The proofs of 

these results are omitted, as they are easy generalizations of the field 

case. 

PROPOSITION 2.4 A scalar sequence is realizable if and only if 

its associated power series w(z -1 ) is rational. 

PROPOSITION 2.5 Let f be a scalar sequence with associated power 

series given by (2.4). If the polynomials comprising w(z -1 ) contain no 

common factors of degree 1 1, then (F,g,h) is a minimal realization of f 

where 

0 

0 
6 

,g= : . 
. 
0 

1 
n-y I; 

,h= 
C co c1 "'Cn-l I 
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The result in Proposition 2.4 can be extended to matrix sequences 

f = (J~,J~,...) as follows. Let W(z") denote the formal matrix power 
m 

series in z -1 associated with f; i.e., W(z-') = 1 J.z 
-i 

. 
i=l 1 

By definition, 

W(z-') can be written as a matrix whose elements are scalar power series 

-1 inz . The matrix W (z -1 ) is rational if each element of W(z-') is 

rational. 

We then have the following result [241. 

PROPOSITION 2.6 The matrix sequence f is realizable if and only if 

its associated power series is rational. 

The realization of matrix sequences can be approached by first reali- 

zing the elements of W(z-'), but the resulting realizations are seldom 

minimal. As will be seen, for a special class of rings, minimal realiza- 

tions of a matrix sequence f = (J~,J~,...) can be constructed from the Hankel 

matrix B(f) given by 

J2 J3 J4 

B(f) = J3 J4 J5 

. . . . . . . . . I 
1 

It is well known [61 that a matrix sequence f over a field K is 

realizable if and only if the rank of B(f) is finite. The rank of B(f) 

is the smallest integer q such that all minors of B(f) of order greater 

than q are zero. If the rank of B(f) is finite, f has a minimal 
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realization of dimension equal to the rank of B(f). 

Realizability results for matrix sequences over fields can be applied 

to matrix sequences over an integral domain A: Given such an f, we can view 

f as a sequence over the quotient field Q(A). Then since Q(A) is a field, 

f has a realization over Q(A) if and only if the Hankel matrix B(f) has 

finite rank as a matrix over Q(A). But since we are seeking realizations 

over A, we would like to know when realizability over Q(A) implies realiz- 

ability over A. As proved in [9], this is the case for the class of rings 

referred to as principal ideal domains (for more general results see 

[25,26,27]). 

A principal ideal domain (p-i-d.) is an integral domain A with the 

property that, for any subset S of A such that a f bcS whenever a,beS 

and ab~S whenever aEA, be.S, there is an element aeS such that S = {ab:bsA} 

(i.e., every ideal S of A is generated by a single element a&). The 

ring of integers and the operator rings R[d] and K[u] are examples of 

p.i.d.'s. 

Since realizability over Q(A) implies realizability over A when A 

is a p-i-d., we see that if a matrix sequence over Z has a realization 

over the field of rational numbers, there is a realization over Z; and if 

a matrix sequence over R[d] has a realization over the field of rational 

functions in d, there is a realization over R[d]. These are very interes- 

ting results. 

It is proved in [91 that a realizable matrix sequence f over a p.i.d. 

has a minimal realization of dimension equal to the rank of the Hankel 

matrix B(f) as a matrix over Q(A). In the p.i.d. case, minimal realizations 

can be computed from B(f) using Rouchaleau's algorithm [9]. The algorithm 
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yields a minimal realization over Q(A) using Silverman's formulas, from which 

a minimal realization over A is generated via a similarity transformation. 

The steps of a condensed version of this algorithm are given below. 

Let f = (J~,J~... ) be a matrix sequence consisting of pxm matrices 

defined over a p.i.d. A. Suppose that B(f) has finite rank equal to n. 

Then a minimal realization of f over A can be constructed by carrying 

out the following steps. 

(1) Let C be a nxn submatrix of B(f) having rank n as a matrix over Q(A). 

(2) Let D be the nxnm submatrix of B(f) containing the same rows as C 

and the first n block columns of B(f). 

(3) From D construct a nxn matrix V as follows. Let bl be the 

greatest common divisor of the elements in the first row of D. There is 

an A- linear combination v 1 of the columns of D having bl as first element; 

and for each column d i of D, there is a rieA such that the first element 

of d i 
- r.v 

11 
is zero. Define D 1 = Ml - rlVl d2- r2v1 . . . Nn - rmvl]. d 

A.pply the same procedure to Dl working with the second row, which yields a 

column vector v 2 and a matrix D2. Continue until [v1,v2...vnl = V is constructed. 

(4) Let N be the nm submatrix of the first block column of B(f) 

containing the same rows as C. 

(5) Let E be the pxn submatrix of the first block row of B(f) 

containing the same columns as C. 

(6) Let M be the nxn submatrix of B(f) sitting to the right of C. 

Then (F,G,H) is a minimal realization of f where 

F = (V-l)M(C-l)V, G = (V-l)N, H =E(C-l)V (2.5) 
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2.3 Example 

Consider the continuous-time system with time delays given by the 

transfer function matrix 

T(s,eBS) = 2 1 

s +(ems-l)s-eDs 

s-l I 
--s -2s e s+l+e 

l-s -1 
1 

We want to compute a minimal realization of T(s,ewS) given by a triple 

(F (d) , G Cd) , H(d)) over the operator ring R[d] with 

T(s,emS) = H(emS) (~1 - F(e-s))-lG(e-s) 

Since the least common denominator (as a polynomial in s) of T(s,e -s ) 

has degree equal to two, it follows that T(s,eVS) has a realization over R[d] 

of dimension 4. We shall compute a minimal realization using the above 

algorithm. First, expanding T(s,e --s ) -1 into a power series in s , we get 

T(s,+-~) =kl :‘] S-l + j.‘;’ ;;I s-2 + [ ;,l:, :-s+Js-3 + - - - 
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Then 

B(f)= 

1 e-' 
I --s 
1-e 
I -s 
I e 

t 
I 

l+eas 1 
I 

-1 I - 
-s l+ews ' e -2s -e 

I 
-s I -2s e -1 I-e ---L-I-l--- 

1 
. I - 

. . . 

. . - 

1‘ 
I 
I e -s+l ) 

,-m--e 
I . I 

. 

. 

Since there is a realization of dimension 4, the rank of B(f) must be less 

than or equal to 4, so it is not necessary to consider any more blocks 

in B(f) than those given above. Checking the minors of the 4x4 submatrix of 

B(f) given above, we find that the rank of B(f) is 2. Thus there is a reali- 

zation of dimension 2. We then choose 

1 e-' 

C = L 1 -1 0 

so that 

- 

D= 
1 -1 1 e-s 0 -e-s e -s -1 l+ems 1 
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Applying the procedure given in Step (3) to D, we get 

[ 

1 
v= 

-1 

We have that N = E = C and M = 

0 

‘S 
e 1 

- 
-s 

-e 

-s e - 

l+ems 

-1 

Then from (2.5), we have the following minimal realization of T(s,eWS): 

F(d) = [I '+;I, G(d) = [ 1, H(d) = 

10 [ 1 -1 d 

In component form, the realization is given by 

dx, (t) 
L = -xl{t-1) + x,(t) + x2(t-1) + x2(t-2) + ul(t) + u2(t-1) dt 

dx2 (t) 
- = x,(t) + up(t) 

dt 

yl(t) = x1(t) 

y2(t) = -x,(t) + x2(t-1) 
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3. REACHABILITY, OBSERVABILITY, AND DUALITY 

We shall now study the concepts of reachability and observability 

for discrete-time systems over a ring of scalars and continuous-time 

systems over the operator ring R[d]. The results obtained here lead to 

a definition of reachability and observability for abstract systems over 

rings. In the last part of Section 3.3, we consider a concept of duality 

for abstract systems. 

3.1 Discrete-time systems over a ring of scalars. 

Consider the discrete-time system given by the state equations 

x(t + 1) = Fx(t) + Gu(t) 

(3.1) 

y(t) = Hx(t) 

where F,G,H are nxn, nxm, pxn matrices over the ring A. Let An denote 

the set of all n-element column vectors over A. 

DEFINITION 3.1 The system (3.1) is reachable if for any xeAn, 

there is an integer N > 0 and inputs u(O), u(l), . . ..u(N-1) that drive 

the system from the zero state at time t = 0 to the state x at time t = N. 

n 
The system is reachable in n steps if for any xeA , the integer N can be taken 

to be n. 

In Definition 3.1, we have taken the initial time to be zero. This 

does not imply any loss of generality, since the system is time invariant. 

Let vl,v2,...,vq be fixed elements belonging to An. We say 

that xeAn is an A-linear combination of v ,V 
1 2'...% 

if x can be written 

in the form 

x= for some eieA 
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In terms of this concept, we have the following criterion for reachability. 

PROPOSITION 3.2 The following conditions are equivalent. 

(1) The system (3.1) is reachable. 

(2) The system (3.1) is reachable in n steps. 

(3) Every element of An can be written as an A-linear combination 

of the columns of G,FG,...,F n-l G. 

Proof. Fram (2-l), the state x(n) at time t = n starting from 

x(O) = 0 is given by 

n-l 
x(n) = 7 F n-i-l Guti) 

i=O 
(3.2) 

The equivalence of conditions (2) and (3) follows from (3.2). The 

equivalence of conditions (1) and (2) follows from the Cayley-Hamilton 

theorem [S, page 4001. 

COROLLARY 3.3 Let m = 1 (the single-input case). Then (3.1) is 

reachable if and only if the nxn matrix [G,FG,...,F 
n-l G] is invertible 

n-l 
over A, which is the case if and only if the determinant of [G,FG,...,F G] 

has an inverse in A. 

EXAMPLE 3.4 Suppose that (3.1) is a single-input system over the ring 

of integers Z. Since the only invertible elements of Z are +l and -1, 

by Corollary 3.3 we have that the system is reachable if and only if the 

determinant of [G,FG,...,F n-l G] is equal to +l or -1. Thus, given a system 

selected "at random", it is very unlikely that every element in Z n can be 

reached using integer-valued controls. 

Again consider the system (3.1) defined over the ring A. Let U de- 

note the nxmn matrix [G,FG,...,F n-l G], and let ueAmn denote the control 

vector u = [u(n-1) u(n-2) . . . u(l) u(O) I’. It follows from (3.2) that u drives 
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the system to the state XCA n at time t = n if and only if u satisfies the 

equation x = Uu. If the system is reachable, in the single-input case there is 

a unique solution given by u = U 
-1 

x, where U 
-1 is the inverse of U. In the 

multi-input case (m > l), the computation of a control u (if one exists) is in 

general a difficult problem. For a class of fields, we have the following 

result. 

THEOREM 3.5 bet A = K, where K is a field with the property that liai2# 

-1 for any aieK. Then the system (3.1) is reachable if and Only if the nxn 

matrix U(U') is invertible over K, in which case a solution ue P of x = Uu is 

u = (U’) ruwh-lx. 

The above result is well known for the case in which K = R = field of 

real numbers. The usual proof for the K = R case extends to the class of 

fields K with the property thatliai2 # -1 for any aieK. It is also well known 

that when K = R, the control u = (U')[U(U')]-lx minimizes lbll , where II II 

denotes the Euclidean norm, and where u ranges over all solutions of x = Uu. 

In the ring case, invertibility of U(U') over A implies that the system 

is reachable, but the converse is not true: 

EXAMPLE 3.6 Consider the discrete-time system over z given by x(t + 1) = 

x(t) + u,(t) + u,(t) I Y(t) = Hx(t). Here G = [l 11, and U = G. Since the 

columns of U generate z, the system is reachable. But U(U') = 2, which does 

not have an inverse in Z. 

NOW assume that A is an integral domain with quotient field Q(A) 

having the property that Iiai2 # -1 for any aiCe( Suppose that the system 

(3-l), viewed as a system over Q(A), is reachable. Then by Theorem 3.5, 

any xiA n can be reached by applying the control u = (u') [U(LJ')]'~X, which 

in general is defined over Q(A). This is an acceptable solution if the 

control over Q(A) can be generated. 
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EXAMPLE 3.7 Again let (3.1) be a system over Z. Viewing (3.1) as 

a system over Q(Z), the field of rational numbers, we have that it is 

reachable if and only if the determinant of U(U') is nonzero. In this case, 

the control u = (U')[U(U')l-l x would be a vector of rational numbers in 

general. 

For systems over Z, a very interesting problem is the computation of 

integer-valued controls u that minimize [lull, h w ere u ranges over all integer- 

valued solutions of x =Uu. When the determinant of U&J') is equal to +l or 

-1, an integer-valued solution minimizing ~~u~~ is u = (u') [u(u')I-lx. Unfor- 

tunately, invertibility of U(U') is too severe of a condition to be of 

much value. 

For systems over a p.i.d. (such as Z), 
mn 

controls belonging to A can 

be computed by first putting U into diagonal form (the Smith form) using 

row and column operations (see [28, page 1091). The details of this proce- 

dure will not be considered here. 

We now consider the concept of observability. 

DEFINITION 3.8 The system (3.1) is observable if for any nonzero initial 

state x(0)eAn, there is an integer N > 0 such that the output response y(t) 

resulting from x(O) is nonzero for at least one value of t l {O,l,...,N-1). The 

system is observable in n steps if for any nonzero x(0)eAn, the integer N can 

be taken to be n. 

PROPOSITION 3.9 The following conditions are equivalent. 

(1) The system (3.1) is observable. 

(2) The system (3.1) is observable in n steps. 

(3) There is no nonzero xcAn such that 

x'[H',(F') (H'),...,(F')~-~(H')~ = 0. 
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Proof. From (2-l), the Output response y(t) for 0 < tin-1 resulting from 

initial state x(O)eA" can be expressed in the form y(O) H 

I 1 I Y(l) = HF . . . 

H (F I x (0) 

in-l) . n-1) 

The equivalence of conditions (2) and (3) follows directly from (3.3). 

The equivalence of conditions (1) and (2) follows from the Cayley-Hamilton 

theorem. 

Let V denote the npxn matrix 

v= 

ii 

HF 
. 
. . n-l 

I _H(F ) 

(3.3) 

and let yeA np denote the response vector [y(O) y(l) . . . y(n-l)] '. By (3.3), 

the response vector y resulting from initial state xcAn at time t = 0 is 

given by y = Vx. We would like to be able to compute the initial state x from 

knowledge of y. In the case of systems over fields, this problem is dual to 

the problem of computing controls in the generation of states. In particular, 

we have the dual of Theorem 3.5. 

THEOREM 3.10 Let A = K, where K is a field with 1 iai2 f -1 f or any aicK. 

.rhen the system (3.1) is observable if and only if the nxn matrix (V')V is 

invertible over K, in which case, given y = Vx for some xeKn, x = (V'V) -1 
(V')y. 
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Proof. Recall that a system over a field is observable if and only if 

its dual, specified in terms of the matrices F',H',G', is reachable [5]. 

Then apply Theorem 3.5. 

Although the duality between reachability and observability does not 

extend to systems over rings (see Section 3.31, Theorem 3.10 can be extended 

to systems over an integral domain as follows. 

COROLLARY 3.11 Suppose that A is an integral domain with 1 a2# -1 
ii 

for any aieQ(A). Then the system (3.1) over A is observable if and only if 

(V')V is invertible over Q(A), in which case, given y = Vx for some xcAn, 

x = (V'V) -1 
(V')y. 

Proof. It is easily verified that the system (3.1) is observable if and 

only if it is observable as a system over the field Q(A). Then apply Theorem 3.10. 

3.2 Continuous-time systems over a ring of delay operators 

Consider the continuous-time system given by 

dx (t) - = (F(d)x) (t) + (G(d)u) (t) dt 

(3.4) 

y(t) = (H(d)x) (t) 

where F(d), G(d), H(d) are nxn, nxm, pxn matrices over the operator ring 

R[d]. 

Given a fixed positive number tl, let L2([0,tl];Rn) denote the Hilbert 

space of square-integrable functions on [O,tl] with values in Rn. The norm 

llfll of a function belonging to L2([0,tl];Rn) is defined by 
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where the norm in the integrand is the Euclidean norm. 

We can now define the notion of Euclidean reachability. 

DEFINITION 3.12 The system (3.4) is R"-reachable in time tl > 0 

n 
if for any xCR , there is an input ueL2([0,tl];Rm) that drives the system 

to the state x at time t = tl with initial state function x(t) = 0 for t I 0. 

We shall give a necessary and sufficient condition for Rn-reachability 

in terms of the following constructions. 

Let M(t) denote the inverse Laplace transform of the nxm matrix csI _ 

F(eBas ) ) -lG teeas ) - It can be shown (see [14]) that the state x(tl) at time tl 

resulting from the input ueL2([0,tll;Rm) with x(t) = 0 for t I 0 is given by 

x(tl) = tlM(t 
0 1 

- s)u(s)ds 

Define the map X(tl):L2([0,tl];Rm)+ Rn:u + 
I 

tlM(t 
0 1 - s)u(s)ds. 

We then have the following result which follows directly from (3.5). 

PROPOSITION 3.13 The system (3.4) is Rn-reachable in time tl if and 

only if the map X(tl) is onto. 

We can get an explicit condition for reachability in terms of the 

adjoint h*(tl)of A(t,) defined by 

,: (tl):Rn-+L2([0,tl];Rm):x+M'(tl - s)x, 0 5 s s t1 

(3.5) 

Here we are using the result that the elements of M(t) are square-integrable 

on any finite interval 0 I t I tl. 

-3o- 



The composition X (tl)A*(tl) is a map from R" into R" given by 

X (tl) h *(tl) :x-m (tlh 

where 

B(tl) = I 
% 

0 
M(tl - s)M'(tl - s)ds 

The matrix B(tl) is the controllability gramian for time-delay systems. 

THEOREM 3.14 The system (3.4) is Rn-reachable in time tl if and only 

if B(tl) is invertible, in which case the control u = A* (tl)B -l (tl) x sets 

up the state xeR n at time t = t 1' Further, this control minimizes llull, 

where u ranges over all solutions of x = X(tl)u. 

Proof. Follows from standard results in the theory of linear transfor- 

mations and their adjoints (refer to Luenberger's book [291). 

Although B(t) is constructed from the matrices F(d) and G(d), we would 

like to have a criterion for R" -reachability specified directly in terms 

of F(d), G(d). This can be accomplished by first noting that the system 

n 
(3.4) is R -reachable in time t 1 if and only if A* (t,) is one-to-one, 

which is the case if and only if there is no nonzero XER n such that x'M(t) = 0 

forOst<t. We then have the following result. 
1 

THEORRM 3.15 Given the system (3.41, suppose that F(d) = i! F.d' and 

G(d) = f Gidi, 
i=Or 

where the F. and G i are matrices over R. Then the following 
i=O 1 

are equivalent. 

-31- 



(1) The system is R" -reachable in time t 1 for some tl > 0. 

(2) The system is Rn-reachable in time tl for any tl > q(n-l)a + ra. 

(3) There is no nonzero mRn such that 

~'[c(d),F(d)G(d),...,F(d)~-lG(d)l = 0. 

Proof. Clearly, (2) *(l). We shall show that (1) implies (3): 

Suppose that there is a nonzero xeRn such that ~'1G(d),F(d)G(d),...,F(d)~-lG(d) 1 = 0. 

Then by the Cayley-Hamilton theorem, x'F(d) i-l G(d) = 0 for all i 2 1. Now by 

definition of M(t), it can be expanded into the series 

M(t) = f (F(d)i-lG(d))ti-l, t t 0 
i=l 

Thus, x'M(t) = 0 for all t Z 0, so the system is not Rn-reachable. 

(3)$(2) : Suppose that the system is not Rn-reachable for tl > q(n-1)a + ra. 

Then there exists a nonzero xeRn such that x'M(t) = 0 for 0 I t I q(n-1)a + ra. 

Now let A(t) denote the inverse Laplace transform of (s1 - F(esas)) -1 . 

Than M(t)=. (AG(d)) (t) = A(t - ia)Gi. Evaluating M(t) at t = ia and 
i=O 

noting that A(0) = I = nxn identity matrix, we have that x'G. = 0 for i = 1 

0,1,2,...,r. Hence x'G(d) = 0. Taking the first derivative of x'M(t) 
9 r 

for t > 0, we have that x'(F(d)AG(d))(t) = x' 1 1 FiA(t - ia - ja)G. 
[ 

= 0 
i=O jzo I 

7 

for 0 I t 5 q(n-1)a + ra. Evaluating this at t = ia + ja, we get 

x'F.G 
1 j 

= 0 for i = 0,l ,...,q and j = O,.,...,r, which implies that x'F(d)G(d) = 0. 

Continuing in this manner, we can show that x'F(d) i-l G(d) = 0 for i= 1,2,...,n. 

Now let U(d) denote the n%nn matrix [G(d),F(d)G(d),...,F(d) n-lG(d)l, 

and let R(d) denote the quotient field of R[d]. We then have the following 

sufficient condition for Rn-reachability. 
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COROLLARY 3.16 Suppose that the rank of U(d), viewed as a matrix 

over R(d), is equal to n. Then the system (3.4) is Rn-reachable. 

Proof. The rank of U(d) is equal to n if and only if there is no 

nonzero fern such that x'U(d) = 0. Then apply Theorem 3.15. 

A generalized version of condition (3) in Theorem 3.15 was given by 

Sontag [24, page 281. Results similar to those given in Theorem 3.15 

were derived by Williams and Zakian [161. For a geometric version of these 

results, see Byrnes 1301. 

Unfortunately, the notions of R" -reachability and R"-controllability 

(driving x(t) to zero at some time tl > 0) are of limited use in the 

design of control systems with time delays, since the value of x(t) at time t 

is not the complete state of the system. For example, the existence of 

an open-loop or closed-loop control which drives x(t) to zero at some time 

tl> 0 does not imply that x(t) will remain zero for all t> t 1' This of 

course is due to the storage of signals within the delay lines. 

In the literature on systems with time delays, conditions based on 

the concepts of exact or approximate function space reachability are usually 

considered [311. These conditions are much stronger than Rn-reachability 

since they deal with the problem of reaching (from zero) or controlling 

(to zero) R" -valued function segments, rather than points in Rn. 

It is interesting to note that the rank condition in Corollary 3.16 

is stronger than R n-reachability: 

EXAMPLE 3.17: Consider the system(3.4) with 

1 '0 
F(d) = [ I 1 1 

and G(d) = , so that U(d) = 
0 1 [ I d d 
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There is no nonzero xCR2 such that x'U(d) = 0, so the system is R2-reachable. 

But the rank of U(d) is equal to one. Thus R" -reachability does not neces- 

sarily imply that the rank of U(d) is equal to n. 

A very interesting open question is whether or not the rank condition 

in Corollary 3.16 is equivalent to one of the various notions of function 

space reachability specified in terms of some topological structure. 

There is a much stronger condition than the rank condition given in 

Corollary 3.16. Namely, we can require that any xeR[dln can be written 

as an R[d]-linear combination of the columns of U(d). In the single-input 

case, we can do this if and only if the determinant of U(d) is equal to a 

nonzero element of R (which is seldom the case). As will be seen in 

the next chapter, this condition is necessary and sufficient for "pole 

assignability" using state feedback of the form u = -B(d)x, where the feedback 

matrix B(d) is a lxn matrix over R[d]. 

The last topic of this section is Rn-observability. 

DEFINITION 3.18 The system (3.4) is R"-observable in time tl > 0 

if for any nonzero initial state x(0)eRn with x(t) = 0 for all t < 0, 

the output response y(t) resulting from x(O) is nonzero for some range of 

values of t belonging to [O,tll. 

The next result states that R" -observability is dual to Rn- 

reachability. 

PROPOSITION 3.19 The system (3.4) is Rn-observable in time t 
1 if 

and only if the dual system, specified by the matrices F(d)', H(d)', G(d)', 

is R n -reachable in time t 
1‘ 

Proof. Follows from the theory of adjoints [29]. 
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I 

COROLLARY 3.20 Given the system (3.41, suppose that F(d) = 

Fidi and H(d) = F H.di. Then the following are equivalent. 
i=O i=O 1 

(1) The system is R" -observable in time tl for some tl > 0. 

(2) The system is Rn-observable in time tl for any tl > q(n-l)a + sa. 

(3) There is no nonzero xeRn such that 

x'[H(d) ' ,F(d)'H(d)',...,(F(d)') "-'H(d)'] = 0 

Dualizing Corollary 3.16, we have that the system (3.4) is R"- 

observable if the rank of [H(d)',F(d)VH(d)',...,(F(d)')n-lH(d)'l, 

viewed as a matrix over the quotient field R(d), is equal to n. The relation- 

ship (if there is one) between this rank condition and the various notions 

of function space observability is not known at present. 

Suppose that (3.4) is Rn-observable in time tl. Given the output 

response y(t) on [O,tl] resulting from initial state x(0)eRn, by dualizing 

Theorem 3.14 we can derive an expression for x(0) in terms of y(t) on [O,tll. 

The straight-forward details are omitted. 

3.3 Abstract systems. 

The results given in Sections 3.1 and 3.2 suggest the following notions 

of reachability and observability for abstract systems. Here we also define 

canonical systems and minimal systems. 

DEFINITION 3.21 Let (F,G,H) be an n-dimensional abstract system 

over the commutative ring A. Then (F,G,H) is reachable if any xeAn can 

be written as an A-linear combination of the columns of G,FG,...,F n-l G. 

The system is observable if there is no nonzero xeAn such that x'[H',F'H', 

. . . (F')n-lH'] = 0. The system is canonical if it is reachable and observable. 

The system is minimal if its input/output sequence f = (HG,HFG,...,H(F i-1)G,...) 



cannot be realized by a system over A with dimension strictly less than n. 

When A is a field, it is known [6] that a system is canonical if and 

only if it is minimal. When A is not a field, it is still true that a 

canonical system is minimal, but the converse is not necessarily true: 

EXAMPLE 3.22 Consider the one-dimensional system (l,d,l) over R[d]. 

The system is obviously minimal. But since R[d] #~d~(d):~(d).eR[dl], it is not 

reachable, so it is not canonical. 

We define the dual of (F,G,H) to be the system(F',H',G'). If (F',H',G') 

is reachable, it can be shown that (F,G,H) is observable. But it is not 

necessarily true that observability of (F,G,H) implies reachability of 

(F',H',G'): 

EXAMPLE 3.23 Consider the system (F,G,H) over Z with F = 1 and H = 2. 

There is no nonzero xeZ such that Hx = 0, so the system is observable. 

But not every xeZ can be written in the form x = (H')a = 2a for some aeZ, so 

the dual is not reachable. 

Thus reachability of the dual is a stronger condition than observability 

of the given system. In the next chapter, we shall see that the stronger 

condition is useful in the construction of state observers. 

A reachable system whose dual is also reachable is said to be a split 

system [24]. For split systems, it is possible to approach the design of 

regulators by feeding back an estimate of the state obtained from a state 

observer. An interesting question is whether or not a given input/output 

sequence can be realized by a split system. For results on this, see Sontag 1241 

and Byrnes 1301. 
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4. CONTROLLERS AND OBSERVERS 

4.1 Introduction. 

In the first part of this chapter , we consider the construction of 

feedback controllers for abstract systems over rings. The general theory 

is illustrated by examples involving the three classes of systems defined 

in Sections 1.2 - 1.4. In the last section of the chapter, we consider the 

construction of observers by dualizing the results on feedback controllers. 

4.2 Assignability. 

Let Q be a ring extension of the ring A. Given a fixed element 

0 belonging ton, let A[81 denote the subring of R consisting of all finite 

sums of the form F a,ei 
i=O ' 

, where aieA and 8 0 = 1. Given a symbol z, let A[zl 

denote the ring of polynomials in z with coefficients in A. Finally, let p 

denote the map 

9 . 
1 aiel 

i=O 

The element 8 is said to be transcendental over A if the map p is 

one-to-one. That is, there does not exist a nonzero polynomial n(z)~A[zl 

such that p(~~r(z)) = ~(0) = 0. If 8 is transcendental over A, the rings A[zl 

and A[01 are isomorphic (i.e., p is onto and one-to-one, and p(nlr2 + n3) = 

;)(r 1 )P(n,) + P(n,) for any 7r lrn2, a3~Ab'l). 

If 8 is not transcendental over A, it is said to be algebraic over A. 

If 8 is algebraic over A, an element of A[01 does not have a unique expression 

as a polynomial in 8 with coefficients in A. Nevertheless, we can still 

say that bEA is a zero of n(B)6A[8] if there exists a @(e)EA[I!I] such that IT(S) 

= (e - b)B(e). 

Let (F,G,H) be an abstract system over A. As before, we assume that 
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F is nxn, G is nxm, and H is pxn. Given a mxn matrix B over A, the system 

(F-GB,G,H) will be referred to as a closed-loop system formed from (F,G,H). 

The matrix B is called the feedback matrix (or controller). Now given 

0~.Q=a, let det(BI - F + GB) denote the determinant of 81 - F + GB, where I 

is the nxn identity matrix. It can be shown that det (81 - F + GB) is an 
n-l . 

element of A[01 of the form en + 1 aiel, aipA. In terms of these construc- 
i=O 

tions, we have the following concepts. 

DEFINITION 4.1 The triple (F,G,e) is coefficient assignable if 

for any bo,bl,...,bn-l belonging to A, there is a B over A such that n 1 

det(eI - F + GB) = en + f bi8i. The triple (F,G,e) is zero assignable 
i=O 

if for any cl,c2,...,cn belonging to A, there is a B over A such that det(81 - F + GB) 

= (e - c,) (e - c,) . . . (e - cn). 

As indicated below, for the three classes of systems defined in 

Sections 1.2 - 1.4, zero (or coefficient) assignability implies that by 

employing state feedback, we can specify the "asymptotic" behavior of the 

state response resulting from arbitrary initial states with zero input. 

(a) Consider a discrete-time system over a ring of scalars A given 

by the dynamical equations 

x(t + 1) = Fx(t) + Gu(t) 

y(t) = Hx(t) 
(4.1) 

We can feed back the state x(t) by setting 

u(t) = -Bx(t) + r(t) (4.2) 

where B is the feedback matrix defined over A and r(t) is an external input 

or disturbance. Combining (4.1) and (4.2), we have that the closed-loop 
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system is given by 

x(t + 1) = (F - GB)x(t) + Gr(t) (4.3a) 

y(t) = Hx(t) (4.3b) 

Let (5 -1 denote the left-shift operator defined by (a -lf) (t) = f(t + l), 

where f is a function on Z with values in A. Then viewing A as a subring 

of A[0 -1 I, we can write (4.3a) in the form 

(uB1l - F + GB)x = Gr 

From a well-known result in matrix theory [8, page 3341, we have that 

[det(c-lI - F + GB)][c?I - F + GB]-1 = Adj(o-?I - F + GB) 

(4.4) 

where Adj (a 
-1 I - F + GB) is the transpose of the matrix of cofactors of 

-1 
(5 I - F + GB. It follows from (4.4) and (4.5) that if the triple (F,G,c -1 ) 

is zero or coefficient assignable, by selecting the feedback matrix B, 

we can specify the behavior of the free response x(t) (i.e., r(t) = 0 for 

t 1 0) as t-t=. In particular, by choosing B so that det(o -5 - F + GB) = 

-n 
0 I we have that the free response x(t) is zero for t 2 n, starting from 

any initial state x(0)eAn. This is often referred to as "dead-beat" control. 

(b) Consider the discrete-time system over the operator ring K[al 

given by 

X(-t + 1) = (F(c)x) (t) + (G(a)u)(t) 

(4.6) 
y(t) = (H(o)x)(t) 
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Setting u(t) = -(B(c)x) (t) + r(t), we have that the closed-loop system is 

given by 

x(t + 1) = (F(c) - G(o)B(u)x) (t) + (G(u)r) (t) 

y(t) = (H(u)x) (t) 

(4.7a) 

(4.7b) 

where B(u) is a matrix over K[u]. In this case, the feedback signal 

-(B(u)x) (t) consists of delayed versions of x(t). 

-1 
Let u denote the inverse of u, so that u -1 is the left-shift 

-1 operator. Now we can view K[u] as a subring of the ring K[u, 0 I consisting 

of all finite sums ids jE~ai juiu- j with the a..eK. 
13 

It is important to note 

that u -1 is not transcendental over K[IJ]. To see this, consider the 

polynomial a(z) = uz - le(K[u]) [zl. We have that IT(U-'1 = u(c-'1 -l=O, 

so the map p defined above is not one-to-one. It follows that the ring 

K[u,u-'1 is not isomorphic to (K[ul) [zl. 

Viewing (4.7a) as an operator equation over K[u,u -1 
1, we have that 

(~~'1 - F(u) + G(u)B(u))x = G(u)r (4.8) 

As in the case of systems over A, it follows from (4.8) that if the triple 

(F(u), G(u), u 
-1 ) is zero or coefficient assignable, we can specify the 

behavior of the free response x(t) as t -f m. In fact, if B(u) is chosen so 

that the determinant of u -1 I - F(u) + G(u)B(u) is equal to (5 -n, the free 

response x(t) will be zero for t 2 t 
1' 

where t 
1 

is some positive integer. 
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(c) Consider the closed-loop continuous-time system over R[d] 

given by 

dx (t) - = (F(d) 
dt - G(d)B(d)x) (t) + (G(d)r) (t) 

y(t) = (H(d)x) (t) 

(4.9a) 

(4.9b) 

As in the previous example, the feedback signal -(B(d)x) (t) consists of 

delayed versions of x(t). 

Letting D denote the derivative operator , we can view R[d] as a 

subring of R[d,Dl which consists of delay differential operators of the 

form llaijdiDj acting on some (unspecified) space of functions (see[l41 
ij 

for details). As shown in [12], D is transcendental over R[d], so R[d,Dl is 

isomorphic to the ring (R[d]) [z] of polynomials in z with coefficients in 

RIdI. 

Viewing (4.9a) as an operator equation over R[d,D], we have that 

@I - F(d) + G(d)B(d))x = G(d)r (4.10) 

In this case, if the triple (F(d),G(d),D) is zero or coefficient assignable, 

by choosing B(d) we can get the free response x(t) to converge to zero at 

an exponential rate e -at for any a > 0 (see 1141). 

4.3 Single-input case. 

Let (F,G,H) be an abstract system over A , where now G is an n-element 

column vector over A (i.e., m = 1, which is the single-input case). Given ecn, 
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where Q is some ring extension of A, in this section we shall present 

necessary and sufficient conditions for the triple (F,G,B) to be zero or 

coefficient assignable. Our first approach to this problem is based on the 

concept of cyclicity which we now define. 

DEFINITION 4.2 A nxn matrix F over a commutative ring A is said 

to be cyclic with generator geA n if every element of An can be expressed 

as a finite A-linear combination of g,Fg,...,Fig,... 

It follows from the Cayley-Hamilton theorem that a nxn F is cyclic 

with generator g if and only if the elements g,Fg,...,F n-l g generate An; 

i.e., every element of A 
n 

can be written as an A-linear combination of 

n-l g,Fg,...,F g. Hence F is cyclic with generator g if and only if the 

determinant of the matrix [g,Fg,...,F n-l g] has an inverse in A. We also 

have the following result. 

PROPOSITION 4.3 Let (F,G,H) be a single-input system, so that G = geA". 

Then (F,g,H) is reachable (Definition 3.21) if and only if F is cyclic with 

generator g. 

As we now show, cyclicity is equivalent to the existence of a 

particular canonical form. As before, let z be a symbol. Given a nxn matrix 
n-l . 

F over A , we have that det (z1 - F) = z "+ 1 a.zi for some aieA. Define 
i=O 1 

F= 

r 0 1 0 0 . . . 0 
1 0 0 1 0 . . . 0 

. . 
. . . = . r4 . . . . 

0 0 0 . . . '1 

L 
-a 0 -a 1 -a2 -a3 . . . -a 

1 n-l 

0 
0 

11 . . 
0 
11 1 

(4.11) 
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PROPOSITION 4.4 The matrix F is cyclic with generator g if and only 

if there exists a nxn invertible matrix P over A such that F = P-lFP and 

4 = P-'g, where F and g are given by (4.11). If F is cyclic with generator 
n-1 - -- 

g, P can be taken to be the matrix [g,Fg,...,F - n-l- -1 
gl[g,Fg,.--,@I gl . 

This result is an easy generalization of the field case, so the proof 

is omitted. Using Proposition 4.4, we can prove the following result relating 

cyclicity and assignability. 

THEOREM 4.5 Let (F,g,H) be a single-input system and let 8 be a fixed 

element of s21& with 8 transcendental over A. Then the following are 

equivalent. 

(1) F is cyclic with generator g. 

(2) The triple (F,g,8) is coefficient assignable. 

(3) The triple (F,g,S) is zero assignable. 

Proof. Clearly, (2)$(3). It follows from Sontag [24, Proposition 4.31 

that (3) implies that (F,g,H) is reachable. Hence F is cyclic with generator 

F;- So the proof is completed if it is shown that (l)+(2): Given bo,bl,...,bn-l 

belonging to A, let g denote the row vector Ebo-a0 bl-al-.-b, 1 - a,-,], 
n-l . 

where det(z1 - F) = zn + 1 aizl. Then d&(01 - F + $1 = 
n-l 

en + 1 biei, 
i=O -- 

i=O 
where F,g are given by (4.11). If F is cyclic with generator g, 

it follows from Proposition 4.4 that det(e1 - F + gg) = d&(81 - F + gB) 

where B = z(P -1 1. Thus the triple (F,g,8) is coefficient assignable. 

By Theorem 4.5, if 8 is transcendental over A, the triple (F,g,e) is 

zero or coefficient assignable if and only if the determinant of [g,Fg,...,F n-l gl 

has an inverse in A. Unfortunately, this condition can be very severe. For 

example, in the case of a single-input continuous-time system over R[dl, the 

triple (F(d),g(d),D) is zero or coefficient assignable if and only if the 
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determinant of [g(d),F(d)g(d),...,F(d)n-lg(d)] is a nonzero element 

of R (which is seldom the case). This limitation can be overcome by 

considering feedback matrices defined over a ring extension C of R[d]. 

If C contains a Illarge" subset of elements that are invertible in C, 

but not in R[d], assignability with respect to C (i.e., B is over C) 

will be a much weaker condition than assignability with respect to R[d]. 

An interesting example of a ring extension of R[d] is the ring 

consisting of all proper rational functions in d -1 which satisfy a stability 

criterion (see Sontag [241 for details). It may seem reasonable to take 

C to be the quotient field R(d), since every nonzero element of R(d) is 

invertible. However, in general it is not possible to implement feedback 

matrices defined over R(d) since they may contain noncausal or unstable 

elements. For instance, it is not possible to implement the ideal predictor 

given by d 
-1 

. 

When 8 is algebraic over A, cyclicity of F is no longer necessary 

for assignability (see Example 4.8). In this case, a necessary and 

sufficient condition for coefficient assignability can be derived using 

the identity 

d&(81 - F + gB) = d&(81 - F) + BLAdj(81 - F)lg (4.12) 

where Adj (81 - F) is the transpose of the matrix of cofactors of 81 - F 

(see 1141). 

PROPOSITION 4.6 The triple (F,g,B) is coefficient assignable if and 

only if there is a nxn matrix W over A such that 

W[Adj (e1 (4.13) 

L 1 8 n-l 



Proof. Suppose that there is a W satisfying (4.13). Given bo,bl,...,bn,l 

belonging to A, let B = [bO - a0 bl- al . . . bn 1 - anml]W, where 

det(BI - F) = en f nll aiei. It follows from (4.12) that det(81 - F + gB) = 
n-l 

en + 1 biei. 
i=O 

Conversely, suppose that (F&,8) is coefficient assignable. 
i=O 

Then for i = 1,2 r...rnr there is a row vector Bi such that det(B1 - F + gBi) 

- det(B1 
i-l -F)=8 . Let W denote the nxn matrix with i th row equal to 

B . . 1 Then W satisfies (4.13). 

COROLLARY 4.7 Suppose that F is cyclic with generator g. Then 

-1 
(4.13) is satisfied wtih W = P , where P is the matrix defined in Proposition 

4.4. 

Proof. It is easily verified that Adj(e1 - F)g = [l 8... 8 n-l I’, where 
-- 
F,g are given by (4.11). Using F = P 

-1 FP, 4 = P-'g, we have that W = P -1 

satisfies (4.13). 

EXAMPLE 4.8 Consider the discrete-time system over R[ul with 

F(u) = [; -jr s(u) = [] 

This is the system given by the block diagram in Example 1.2. For this 

example, the determinant of [g(u),F(u)g(u)l is equal to u, which does 

not have an inverse in R[u]. Thus F(u) is not cyclic with generator g(u). 

But since u -1 is algebraic over R[ul, cyclicity is not necessary for assign- 

ability. By Proposition 4.6, (F(u),g(u),u-') is coefficient assignable 

if and only if there is a W over R[u] such that 

WtAdj(a 
-1 I - F(u))lg(cr) = W (4.14) 
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- -__ ._ _ _ ,, , ,,,. ,, .,.,. . . .--. . -.-..--.. ---- - I 

Multiplying both sides of (4.14) by U, we have that (F(U),g(U), U-l) 

is coefficient assignable if and only if there is a W over R[ul such that 

l-u (5 
w2 = [ 1’1 U I2 

(4.15) 

Since 1-U and2 are relatively prime elements of R[U] , there is a W 

satisfying (4.15). Further, a solution W can be computed using the Euclidean 

algorithm. This yields 

U 1 
w= c I a+1 1 

;fer,ce (F(U) ,g(d, 0-l ) is coefficient assignable. Let's compute B(u) 

so that det (U-l1 
-2 

- F(U) + g(U)B(u)) = u . We have that det(U-lI - F(u)) 

-2 =u - 1 + u2. Thus 

B(U) = [bo-a0 bl-allW 

B(U) = [0+bU2 o- (0) 1 U 1 

[ I a+1 1 

B(U) = I-u3 + u 1 - u21 

In this case, the feedback signal -(B(U)x) (t) is equal to xl(t-3) - xl(t-1) 

+ x2(t-2) - x2(t). 

As noted in Example 1.2, this system also has a four-dimensional 

representation over R given by (1.8). 
,. ,. 

Letting F,g denote the coefficients 
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A AA ^2^ A of (1.81, we have that the rank of [g,Fg,(F) g,(i)3g] is equal to four, 
A A 

SO (F,g,c -1 ) is coefficient assignable. It is interesting to note that 

in this framework, the computation of feedback matrices using the canonical 

form (4.11) requires that we work with 4x4 matrices over R; in particular, 
AAA A A A n 

it is necessary to invert [g,Fg,(F)2g,(F)3g]. In general this procedure 

appears to be less efficient from a computational standpoint, than the one 

given above which utilizes the Euclidean algorithm to compute a W satisfying 

(4.13). This point is currently under investigation. 

4.4 Multi-input case. 

Given an abstract system (F,G,H) over A, in this section we assume 

that G is nxm with m > 1 (the multi-input case). As before, let 9 be a 

fixed element of RXA. We then have the following two results on zero assign- 

ability. 

THEOREM 4.9 If 0 is transcendental over A, the triple (F,G,~) 

is zero assignable only if (F,G,H) is reachable. 

THEOREM 4.10 If the ring A is a p.i.d., reachability of (F,G,H) 

implies that (F,G,e) is zero assignable. 

Theorem 4.9 (resp. Theorem 4.10) follows from the work of Sontag [241 

(Morse [321). It should be noted that there is a constructive proof of 

Theorem 4.10 based on the diagonalization of matrices defined over a 

p.i.d. (see 1321). Instead of pursuing this, we shall consider the problem 

of coefficient assignability using the concept of cyclicity. 

PROPOSITION 4.11 Given (F,G,H) and 0eQ., suppose that there is a 

feedback matrix L over A such that F-GL is cyclic with generator g = Gu 

for some uEAm. Then (F,G,e) is coefficient assignable. Further, there 

exists an nxn invertible matrix P over A such that, for any b Orbl~...~bn-l 
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belonging to A, there is a feedback matrix B over A such that 

(4.16) 

Proof. Suppose that F-GL is cyclic with generator g = Gu. Write 
n-l 

det(eI - F + GL) = en + 7 
i=O 

aiei, 
-- 

and let F,g denote the matrices given by 

(4.11). Then by Proposition 4.4, F =P -1 (F-GL)P,~ = P-lg, where 

P = [g,(F-GL)~,...,(F-GL) 
n-1 --I - n-l- -1 gl [g,Fg,. . . I 0’) 91 

Now given bo,bl,...,bn-l belonging to A, let 

-1 B=L-uq(P 1 

(4.17) 

(4.18) 

where q = [ao-b. al-b1 . . . an-l-bn-ll. 
n-l . 

It follows that det(BI - F + GB) = en + 1 bie=, so (F,G,e) is coefficient 
i=O 

assignable. Again applying Proposition 4.4, we have that P -l(F - GB) P 

is equal to the right side of (4.16). 

The result given in Proposition 4.11 has a very interesting interpreta- 

tion for continuous-time systems over R[d] (or discrete-time systems over K[al): 

By choosing the bi to be elements of R (or K), we can construct a closed-loop 
,. n ,. ,. 

system that is equivalent to a system (F,G,H) with F over R (or K) and with 
,. ,. 

any desired eigenvalues of F. Here equivalent means that the state x(t) of 
,. I\ A 

(P,G,H) is related to the state x(t) of the closed-loop system by the transfor- 
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mation i(t) = (P-lx) (t), where P is given by (4.17). This construction will 

be illustrated by an example later. 

To utilize the above construction on coefficient assignability, we 

need to consider conditions for the existence of a feedback matrix L such 

that F-GL is cyclic with generator g = Gu for some u6Am. When A is a field, 

it is known [33] that reachability is necessary and sufficient. When A is 

a ring, reachability is necessary, but it is not sufficient. In particular, 

Sontag [241 has shown that when A = Z or R[d], reachability is not sufficient. 

A necessary and sufficient condition for the existence of a cyclic 

F-GL is given in the following theorem (the proof is omitted). 

THEOREM 4.12 There exists a matrix L over A such that F-GL is cyclic 

m. with generator g = Gu for some WA if and only if there are elements 

m 
u~,u~,...,u~-~EA such that the elements n g orglr...rgn-l generate A , where 

90 
= Guo and gi = Fgi 1 + Gui for i = l,2,...In-l. Given UO,U1,...,un-l 

and gotglt - - . ‘gnB1 satisfying these condtions, L can be taken to be the 

matrix -(u -1 
1,u21...1un-11 01 [god+. . - ‘cJnB1l - 

The result in Theorem 4.12 specializes to a result obtained by 

Hautus [34] in the case when A is a field. When A is a field, there is 

a constructive procedure (due to Heymann [33]) for finding elements u~,u~,...,u~-~ 

and gorglt---Ign-l satisfying the conditions in Theorem 4.12. When A is a ring, 

a procedure that yields a solution whenever one exists has not been found as 

yet. However, there is a procedure involving trial-and-error, which seems 

to work well in examples for which the dimension is not large. The steps 

are as follows. 
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Step 1. If the condition in Theorem 4.12 holds, there exists a 

basis {al,a2, . . ..a.~ for An with al = Guo for some uoeAm. When A is a 

p.i.d., a basis (a 1ta21...r n a 1 with a 1 = Guo can be computed (assuming one 

exists) by putting G into Smith form. Let go = Guo. 

Step 2. Define the map 

Pl:An + A n-l : i a.a. -f 
i=l 1 1 

-- 
a2 

a3 . 

a' n -- 

Now compute a basis {~1,~2,...,~n-1} for An-' with B, = Pl(FgO + Gul) 

for some ulcAm. Again, when A is a p.i.d., there is an algorithm for com- 

puting such a basis (assuming that one exists). If no such basis exists, 

it is necessary to repeat Step 1 in order to compute another go = Guo. Given 

such a basis with 6, = Pl(FgO + Gul), let gl = Fgo + Gul. 

Step 3. Define the map r b2 - 

n-l n-2 
P2:A -f A :nC1 biBi + 

i=l 

Compute a basis {~~,y~,...,y,~] for A n-2 such that Yl = P2Pl(Fgl + Gu2) 

for some u2cAm, and so on. If possible, continue until g n-l is constructed. 

4.5 Example. 

Consider the continuous-time system over R[d] given by 

dxl(t) 
- = -x1(t) + x,(t) + up + u2w 

dt 

dx2 (t) 
- = xl(t) + x2 (t-a) + ul(t) + u2(t-a) 

dt 

-5o- 



In the operator notation, we have that 

F(d) = and G(d) = 
ii 1 _1 d 

Using the procedure given in Section 4.4 , we shall first attempt to construct 

a matrix L(d) such that F(d)-G(d)L(d) is cyclic with generator g = G(d)u for 

2 some uER[d] . 

We have that {a,,a,), where a1 = [l 11' and a2 = [O 11 ’ , 

2 
is a basis of R[d] , with al = G(d) [l 01' = go. Then Pl(F(d)go) = 1 + d. 

2 
Now we must find ulcR[dl , such that 1 + d + Pl(G(d)ul) has an inverse in 

R[dl . This is satisfied with u, = [O -11 ’ . Then gl = F(d)go + G(d)ul = L-1 11'. 

Thus, 

I 

r 
0 0 L 1 .5 .5 

L(d) = -[ul 
-1 

01 [go’gll = 

This gives 
-1.5 .5 

F(d)-G(d)L(d) = 

: I l-.5d .5d 

By construction, F(d)-G(d)L(d) is cyclic with generator g = 

Now let's compute a feedback matrix B(d) so that det(D1 - F(d) + G(d)B(d)) = 

D2 + 3D + 2. We have that 

1 -1 
19, (F-GL) gl = [ I 11 

-51- 



Using (4.17), we get 

P = (-5) 

and from (4.181, 

-1 B=L-uq(P ) 

where u = and q = (-5) [-d-5 -3-d] 

This yields 

C 5-d2 d2+4d+7 
B = (l/8) 

4 4 I 

. 

Finally, we get 

-d2-4d-3 
F(d) - G(d)B(d) = (l/8) 

-d2-7 I 

By construction, the closed-loop system is equivalent to a system whose 

free (unforced) behavior is given by 

dxl (t) 
- = x2(t) dt 

dx2w 
- = -2x1(t) dt - 3x2(t) 
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4.6 Observers. 

Let (F,G,H) be an m-input p-output n-dimensional abstract system 
,. 

over A, and let L be a nxp matrix over A. The system (F-LH,G,I), 
A 

where G = [G L] and I is the nxn identity matrix, is an observer for 
,. 

the system (F,G,H). The system (F-LH,G,I) can be interpreted in the usual 

manner. For example, if F,G,H are the coefficient matrices of a discrete-. 

time system over a ring of scalars A, the observer is given by the dynamical 

equations 

CL A A u 
x(t + 1) = (F-LH)x(t) + G [3 Y * ,. 

y(t) = x(t) 
where u (resp. y) is the input (output) of the given system. 

Now let (F-LH,O,I) denote the free (unforced) system associated with 

(F-LH,G,I), and consider the dual of (F-LH,O,I) given by (F'-(H') (L'),I,O). 

The key point to note here is that the dual (F'-(H') (L'),I,O) can be viewed 

as a closed-loop system constructed from the dual (F',H',O) of (F,O,H) 

with the feedback matrix equal to L'. Therefore, the design of observers 

can be approached by considering the design of state-feedback controllers 

for the dual system (F' ,H',O) using the above results. Note that in order 

to apply the above results in those cases for which 0 is transcendental 

over A, it is necessary that the dual be reachable. As noted in the preceding 

chapter, reachability of the dual is a stronger condition than observability 

of the given system. 
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5. LINEAR TIME-VARYING SYSTEMS 

5.1 Introduction. 

In this chapter we present an algebraic theory for the class of linear 

time-varying discrete-time systems. The theory, which is taken from [35], 

is based on the concept of a semilinear transformation that is derived 

from the given system. Using the notion of a cyclic semilinear transformation, 

we develop a (control) canonical form which is then applied to the construc- 

tion of state-feedback controllers. 

5.2 System description and properties. 

Let K be a fixed field and let A denote the set of all functions defined 

on Z with values in K. With addition and multiplication given by 

(a + b) (t) = a(t) + b(t) a bra 
I 

(ab) (t) = a(t)b(t) 

A is a commutative ring. It should be noted that A contains divisors of 

zero, so it is not an integral domain. 

Let u denote the right-shift operator on A, defined by (aa) (t)= 

a(t-1). For any a,bcA, a(a + b) = aa + ub and u(ab) = (ua) (ub). The 

operator u has an inverse c -1 = left-shift operator on A. 

We then have the following notion of a system over A. 

DEFINITION 5.1 Let m,n,p be fixed positive integers. A m-input 

p-output n-dimensional linear time-varying discrete-time system over the 

ring of time functions A is a triple (F,G,H) of nxn, nxm, pxn matrices over 

A, together with the dynamical equations 

x(t + 1) = F(t)x(t) + G(t)u(t) 

y(t) = H(t)x(t) 
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where x(t)eKn is the state at time tCZ, u(t)eKm is the input at time t, 

and y(t)EKP is the output at time t. 

We shall work with a modified version of the standard equations 

(5.1): Apply the right-shift operator to both sides of the first equation 

given by (5.1) and let D(t) = F(t-1), E(t) = G(t-1). This gives the 

following equations 

x(t) = D(t)x(t-1) + E(t)u(t-1) 

y(t) = H(t)x(t) 
(5.2) 

From here on, we shall work with the representation (5.2). The system 

given by (5.2) will be denoted by the triple 

Our first objective is to characterize 

a semilinear transformation. First, we need 

Let An denote the set of all n-element 

componentwise addition 

(D,E,H). 

systems over A in terms of 

the following constructions. 

column vectors over A. With 

(v 1 v2 . . . Vn) ' + (w 1 w2 . . . Wn) ' = (v 1 + w 1 . . . v n + Wn) ' 

and scalar multiplication 

a(vl v2. . .vn)' = (av 
12 av . . . av,)', acA 

An is a module over the ring A. A module is similar to a vector space, 

except that the scalars come from a ring rather than a field. 

Given a nxn matrix M over A, define the operator S:An+An:vtS(v) = M(Uv), 
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where (cv)(t) = v(t-1). For any vlwEAnl we have that S(v + W) = S(v) + S(w) I 

so S is additive. But for aEA,vEAnr 

S(av) = Mu(av) = M(ua) (av) = (Ua)s(V) 

which shows that S is not linear with respect to the A-module structure on 

An (linearity requires that S(av) = as(v)). The operator S is called a 

semilinear transformation relative to u. 

Now given an n-dimensional system (D,E,H) over A, the operator 

S:An+An:v-+D(uv) will be referred to as the semilinear transformation (s.1.t.) 

of the system (D,E,H). We shall first 

responses can be expressed in terms of 

show that the state and output 

the system's s.1.t. 
,. ,. 

Given tocZ and xoeKn, let x0 denote the element of An defined by x0(t) 
,. 

o when t = t and x0(t) = 0 when t # to. Let S 0 =x o = I = identity operator 

on A n , and for i = 1,2,..., define (SiE) (t) = D(t) (Si-%) (t-1). Then the 

solution x(t) of (5.2) resulting from initial state xOeKn at initial time t 
0 

and input u(t), t 2 to, is given by 

n t-1 
x(t) = (S t-toxo) (t) + 1 (St-i-lE) (t)u(i), t>t 

i=t 0 

0 

(5.3) 

If the initial state x0 is zero, the output response is 

(5.4) 
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Note that the expressions (5.3-4) for the state and output responses 

closely resemble the expressions (2.1-2) for the state and output responses 

in the time-invariant case. The primary difference between the two frameworks 

is that in the time-invariant case, dynamical behavior is specified in terms 

of the linear transformation defined by the matrix F; whereas, in the time- 

varying case dynamical behavior is given in terms of the semilinear transfor- 

mation S. 

From (5.4), we see that the input/output behavior of the time-varying 

system (D,E,H) is completely characterized by the sequence (Jl(t),J2(t),...) 

where Ji(t) = HS i-lE(t). This observation leads to a realization theory 

based on a Hankel-matrix approach. The details are under development. 

The next concept is reachability. 

DEFINITION 5.2 The system (D,E,H) is reachable at time trZ if, 

for any x(t)EKn, there is an integer N > 0 and inputs u(t-N),u(t-N+l),...,u(t-1) 

that drive the system from the zero state at time t-N to the state x(t) at time 

t. If there is a fixed N for all x(t)eKn, (D,E,H) is reachable in N steps 

at time t. The system (D,E,H) is reachable in N steps at all times if it 

is completely reachable in N steps at each teZ. 

A necessary and sufficient condition for reachability at time t can 

be expressed in terms of the system's s-1-t. S as follows. 

PROPOSITION 5.3 The following conditions are equivalent. 

(1) (D,E,H) is reachable at time t. 

(2) There is an integer N > 0 such that (D,E,H) is reachable 

in N steps at time t. 

(3) There is an integer N > 0 such that the rank of lF,SE,...,SN-lEl (t) 

is equal to n. 
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Proof. Follows from (5.3) and the fact that K" is a finite-dimensional 

vector space. 

5.3 Cyclicity. 

In this section we shall develop a structure theory based on a notion 

of cyclicity. This concept is defined in terms of the system's s-1-t. 

as follows. 

An s.1.t. S:An+An is cyclic with generator gcAn if every vcA n 
can 

be written as a finite A-linear combination of g,Sg,...; that is, An 

can be generated from g,Sg,.... Since An consists of n-element column 

vectors over A, it follows that S is cyclic with generator g if and only 

if there is a positive integer q such that the elements g,Sg,...,S q-1 g 

generate An. In constrast to the theory of linear transformations, it can 

happen that the smallest possible value of q is strictly greater than n. 

There is no Cayley-Hamilton theorem for s.l.t.'s, which would guarantee that 

q = n. 

EXAMPLE 5.4 Suppose that D = [fr 1. Letg= [I. 

Then 

and S2(g) 
2t-1 

S(g) = = r 7 
The rank of 

[g,Ss,S2gl = 

Lt 1 

E : ‘I-1 
is equal to 2 for all teZ, 2 which shows that the elements g,Sg,S g generate 

AL. Since the determinant of [g,Sg] is equal to -t, the elements g,Sg do not 

generate A2. 
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An s-1-t. S:An+An is n-cyclic with generator gfin if every vrAn 

can be written as an A-linear combination of g,Sg,...,S n-l g. This is the 

case if and only if the nxn matrix [g,Sg,...,S n-l g] is invertible over A. 

The next result interconnects cyclicity and reachability. 

PROPOSITION 5.5 Let (D,e,H) be a single-input (m = 1) n-dimensional 

system. Then (D,e,H) is reachable in N steps at all times for some N > 0 

(resp. reachable in n steps at all times) if and only if S is cyclic 

(resp. n-cyclic) with generator e. 

Proof. Follows from Proposition 5.3 and the definition of cyclicity. 

As proved in [35], n-cyclicity is equivalent to the existence of a 

canonical form that is identical to the form considered in Section 4.3. 

The constructions are as follows. 

Suppose that S:An+An- .v+D(uv) is n-cyclic with generator g. Let u 

denote the matrix [g,Sg,...,S n-l gl and define 

a = [a al . . . anBll ’ = -u 
-1 n 

0 (S 9) 

Let s denote the s-1-t. on An defined by s(v) 

-1 
Ia0 -u al 

0 

1 

0 

-2 -U a2 

= D(uv) where 

0.. . .o 

0.. . .o 

-n+l . . .-u a n- I (5.5) 

,l 
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-n-l- Finally, let 3 = [g,sg,...,S g] where s = [O 0 . . . 0 lIVeAn. 

PROPOSITION 5.6 D = P-lD(UP) and s = P-'g where I? = D(g) 
-1 

and 

(UP) (t) = P(t-1). 

If we apply the coordinate transformation x(t) = P -'(t)x(t) to the 

dynamical equations (5.2), we have that 

x(t) = E(t)x(t-1) + P -1 
(t) E (t) u (t-1) 

y(t) = H(t)P(t):(t) 

where i is given by (5.5). Thus n-cyclicity implies that the given system 

(D,E,H) is equivalent to a system (D,E,H) with 6 in the form (5.5). This 

result is useful in the study of state feedback, which we now consider. 

Given the system (D,E,H) with the dynamical equations (5.2), let 

u(t-1) = -B(t)x(t-1) + r(t-1), where B(t) is a mxn feedback matrix over 

A and r(t) is an external signal. The resulting closed-loop system is 

given by the triple (D-EB,E,H), with the dynamical equations 

x(t) = [D(t) - E(t)B(t)lx(t-1) + E(t)r (t-l) 

y(t) = H(t)x(t) 

The s.1.t. of the closed-loop system will be denoted by SB. Then SB(v) = 

(D-EB)(uv) for all vrAn. 

Now suppose that there is a feedback matrix T over A such that S 
T 

m is n-cyclic with generator g = Eu for some WA . Then [35] for any ele- 

ments b 0 ,b b 1'"" n-1 belonging to A, there is a feedback matrix B over A 
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such that 

i - 0 0 0 1 0 1 0 o... 0 0 

P-l(D-EB) (UP) = : I 
. . . 

. . 

IO 0 0 . . . . 1 

1 -b. 
-1 

-u bl -o-2b2 . . . -u 
-n+l bn 1 

where P is a Wn invertible matrix over A. 

This result implies that if we select the bi to be time independent, 

(5.6) 

we can construct a closed-loop system that is equivalent to a system 

(D,E,E) with D time independent and with any desired eigenvalues for 5. 

In particular, if we set bi = 0 for all i, the free response of the closed- 

loop system will become zero after n steps (i.e., we have a dead-beat 

control system). 

Let us first consider conditions for the existence of a feedback 

matrix T such that ST is n-cyclic with generator g = Eu. Then we will give 

the constructions for setting up (5.6). 

As shown in [35], the existence of an n-cyclic ST requires that the 

given system be reachable in n steps at all times. However, reachability 

is not a sufficient condition. A necessary and sufficient condition is 

given in the following theorem, which is the time-varying version of 

Theorem 4.12. 

THEOREM 5.7 There is a T over A such that S T is n-cyclic with 

generator g = Eu for some U&~ if and only if there are elements u OIUl#..-r 
m 

U n-l CA such that go,gl,...,gn 1 generate An, where g 0 = Euo and gi = 

D (ugi-1 ) +.Bui for i = 1,2,...,n-1. Given uo,ul,...,un 1 and go,gl,...,g 
n-l 
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satisfying these conditions, T can be taken to be the matrix -[u p2,“.,un-1’ol 

1 bgo) I bg,) , . . . , (ugn-l) ] -? 

The computation of the ui and gi can be carried out using a procedure 

corresponding to the one given in Section 4.4 for the time-invariant case. 

An example will be given shortly. 

Now suppose that we have a T and a g = Eu, such that ST is n-cyclic 

with generator g. * Given bo,bl,..., b n-l~A, we shall construct a feedback 

matrix B satisfying (5.6). First, n-l let U = [g,S,,...,S, g] and define 

d = [do dl . . . dnmll ’ = -&;g) 

Let S T denote the s-1-t. on An defined by B,(v) = DT(cv) where ET is given 

by (5.5) with the ai equal to the di. Then by Proposition 5.6, ET = P -1 
(D-ET) (UPI 

where 

P = &) = [g,S Tg,. . . ,s,“-lgl rs,s,s, . . . , (ST) “-%I -l 

Let 

B = T -uq(aP) -1 

where 

(5.7) 

(5.8) 

q = [d -b d -b . . . d -b 
00 11 n-l n-l ] 

Then [351PW1(D-EB) (UP) is equal to the matrix given in (5.6). 
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5.4 Example. 

Consider the time-varying system given by 

x1(t) = t xp-II + (t+l)x2(t-l) + t I+-1) 

x,(t) = x2(t-1) + u2(t-1) 

For this example, 

t t+1 t 0 
D= [ 1 and E = 

0 1 [ 0 1 I 
We shall first construct a matrix T such that ST is 2-cyclic with generator 

g = Eu. Following the time-varying version of the procedure given in 

Section 4.4, choose uO,uleAL so that [Euo, S(EuO) + Eul] is invertible over A. 

A solution is 

-1 

u. = and u = 1 [I 0 

Then 

This gives 

D-ET= 
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0 
By construction, S is 2-cyclic with generator g= Eu = 

T CI O 1 
Now let's compute a feedback matrix B such that 

P-%D - EB)(uP) = 

We have that 

0 1 
u = [grSTgl = [ I 11 

and 

d = -u-'(S;g) = 
2t [ I -2t-1 

Then 

0 1 
; = 

T [ I -2t 2t+3 

which gives 

From (5.71, 

1 0 
p qJ(+) = [ I -2t-2 1 
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and from (5.8) 

B = T - uq(uP) -1 

This yields 

I and q = [2t -2t-31. 

1 
B= I 2t+3 

Then 

C 2t 1 
D-EB= 7 

-4t(t+l) -2(t+l)J 

By construction, the free system x(t) = (D-EB)x(t-1) has the property 

that x(t) = 0 for t 2 to+2 for any initial state x(to)EKL at time t = to. 
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