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ABSTRACT

The far field diffraction pattern of a geometrically perfect

corner reflector is examined analytically for normally incident

monochromatic light. 	 The states of polarization and the complex

amplitudes of the emerging light are expressed through transforma-

tion matrices in terms of those of the original incident light for

each sextant of the face in a single coordinate system. 	 The ana-

lytic expression of :he total diffraction pattern is obtained for

a circular face.	 This expression consists of three component func-

tions in addition to the basic Airy function.	 The coefficient of

each function is expressed in terms of complex coefficients of

reflectance of the reflecting surface.	 Some numerical results for

including	 internaldifferent reflecting surfaces, 	 total	 reflection,

are presented.	 The iso-intensity contours of the diffraction pattern

evaluated from the analytical expressions for an uncoated solid

corner reflector are also presented along with the photographs of

the pattern.

INDEX HEADINGS:	 Diffraction, Corner Reflector.

Total Internal Reflection.

Polarization Effects.
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I.	 INTRODUCTION
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It is known that a monochomatic plane wave of light falling

normally upon a flat circular mirror produces in the far field, upon

reflection, the well-known Airy diffraction pattern. When the flat

mirror is replaced by a corner reflector of the same circular aperture

the far field pattern is no longer the Airy pattern. We will consider,

in this report, the far field diffraction pattern of a corner reflector

with special emphasis on the effects of the relative phase shifts

between orthogonal polarizations caused by total internal reflection.

Mahanl has reported a similar comprehensive study on the polarization

effects from a roof prism.

E. R. Peck  has studied the resultant state of polarization of

the reflected light when a pencil of light falls upon one sector of a

corner reflector. M. M. Rao 3 , following the method of Peck, has made

a numerical study of the state of polarization for a corner reflector

constructed of a particular t ype of glass. The eigen states of

polarization predicted by Peck have been experimentally verified by

Rabinowitz, et a14 . A study, in terms of geometric optics, of the effects

of angular errors in the prism on the return image has been made by

P. R. Yoder Jr. 5 and also by R. C. Spencer	 However, our present

discussion shall assume that the corner is geometrically perfect; i.e.

there are no angular erros in the corner reflector.

In the following we consider the far field pattern produced by

combining the beams of different polarization which emerge from the six

sectors of the corner reflector. The polarization and amplitude of each

of these six beams is determined by the optical properties of the reflec-

tion surface. The reflection surface can be one of many forms, such as

air to metal, glass to metal and glass to air for the case of an open

corner, a solid corner with metal coating, and an uncoated solid corner,
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respectively. In general, this pattern has more structure and angular

divergence than the pattern which would be obtained if the corner

redactor acted in the same manner as a flat mirror of the same diameter.

In more detail, each ray which "composes" the incident plane

wave falling on a corner reflector is followed through the corner

reflector in the manner of Peck, and the phase and amplitude of the ray

emerging from the face of the corner reflector are determined. We thus

neglect diffraction effects which occur inside the corner reflector.

The phase shift and amplitude are determined by the optical properties

of the rear surface; i.e., the glass-metal, glass-air, or air-metal

interface. Each of these rear interfaces causes a relative phase shift

between the components polarized parallel and perpendicular to the plane

of incidence. An interface with a metal component also introduces a

change in the amplitude of the light wave. Our results will be compared

to those for a "perfect" metal coating at the rear interface by which we

mean an interface with the ideal properties of no change in amplitude and

a relative change of phase between the parallel and perpendicular compon-

ents of polarization of -n. (A material with infinite conductivity at

optical frequencies would satisfy this criterion of "perfection.")

The amplitude and phase or, equivalently, the complex amplitudes

thus determined have different values on the different sextants. In this

computation, it has been assumed that the incident plane wave is perpen-

dicular to the front face. Tilting the corner reflector by an angle S

would have two effects: (1) an overall change in the apparent shape of

the front face (or the aperture) which would expand one axis of the

resultant diffraction pattern, and (2) a change in the angles of refrac-

tion at the rear interface, which would involve the change of relative

phase shifts with angle. The latter effect is second order in the angle
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^ and thus small for small angles. For a larger angle, the-analytic

expression of the complex amplitude of the emerging beam cannot be

obtained simply. We have, utilizing a computer, adopted the ray trace

technique and we will report the results separately.

The face of the corner reflector is assumed to be circular.

Scalar diffraction theory is used to determine the far field pattern

which results from all sextants with different complex amplitudes. The

diffraction is calculated first for an arbitrary complex amplitude for

each sector, and later the complex amplitudes are given the values which

would result from a particular rear interface. The Fresnel reflection

from the front face has been neglected at present as we may assume an
AME

anti-reflection coating on the front face of a corner reflector. The 	 -_

presence of the Fresnel reflection at the front face causes multiple

reflections which interfere with the original retro beam. We will

present a detailed discussion of this aspect separately.

The properties cf specific interfaces are considered in 	 f

Section V, and the diffraction patterns for silver, aluminum and total

internal reflection are discussed. The metals have diffraction patterns

rather similar to that of a "perfect" metal, and total internal reflec-

tion produces marked diffraction effects. The iso-intensity contours,

which are evaluated from the analytic expressions, of the diffraction

pattern for an uncoated solid corner reflector are presented along with

the photographs of the pattern.

The analysis was undertaken to provide a thorough understanding 	 t

of the diffraction pattern of corner reflectors in connection with the 	
y=

design and testing of the Apollo 11 Laser Ranging Retro-Reflector. This

uses total internal reflection to allow near diffraction limited opera-

tion in the lunar thermal environment.



II. POLARIZATION AND INTENSITY EFFECTS OF A CORNER REFLECTOR ON A

PENCIL OF LIGHT

The front face of a corner reflector is divided into six equal

sections, when viewed from the front, by the projections of the three real

back edges and their images. We define a coordinate system in the face

of the corner reflector by a pair of mutually orthogonal unit vectors

i and j with the j-axis coincident with the projection of one of the

real back edges in the face as shown in Fig..l. The six sections are

labeled by numbers 1 through 6. A beam of light entering the corner

reflector through one of the sections always emerges from the opposite

section.

If we consider a pencil of light which enters axially into the sextant

labeled by 4 then the unit vectors i and j are perpendicular and

parallel respectively to this plane of incidence. We assume here

the light to be monochromatic and of single polarization. The amp-

litude of the light entering the 4th sextant can then be represented

by u which has two complex components u 	 and u2 in the directions i

and J.	 This light beam, after being reflected consecutivel y from three

uack surfaces, emerges from the sextant labeled by 1 with amplitude v

which is different from u.	 By tracing the light through each reflection,

it has been found 	 that u and v can be related by a 2 x 2 matrix C, such

2

that vi M	 Cij uj , 1 = 1,2 or v = Cu.

j=1

The matrix C has the->form

Cll =	 rs [ (rs + rp ) T + 4rp (rs - rp) l	 (la)

C12	 '-..8 rp' (r	 +	

rp),	

(lbl

•3
C1 1 	 8 r

s	(ra + rp )	 (lc)
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C	 r^ 14ra (ra - rp ) - 'ra + rp ) E j	

(ld)

where r  and r  are complex coefficients of reflectance which may be

written as ra M Ps exp (16 8 ) and r  - o  exp W p ). For lossless

reflection Pa and P  
have unit magnitude, In general, however, the

magnitudes of c a and op are less than unity, representing the losses

in reflection. This is the matrix for light emerging from t..e first

sextant and the matrix in Eq. ( 1) could be 1•abeled C I . In general,

the transformation matrix or the relation between incident intensity

and polarization is different for each sextant, so we have

v  . C n 
u

where n - 1, ?, 3, 4, 5, and b. The superscript n of the complex

amplitude v  and the matrix C  is associated with the light emerging

from the nth sextant. The matrix in Eq. ( 1), now identified as CI

can be re-expressed in terms of pauli's spin matrices, for the con-

venience of the following calculation, in the form

tC	 &l + R 3/2 t` :` +	 +	 112 tip.
x	 V	 z

whe re
l	 1 C^^	 '0 1 1	 '0 i	 1 Ol

^0 1	 `1 x 	 ^ 1 W , y	 ^1 0^ 	 z . ^0 -1"

and

1	 '
, (rs - rp) 13(rs + rp ) x - "(ra - rp) j.

R	 -

l± (rS 
+ r	 r\i	 p

-i
,	

Ir +rl	 r - r}tc;	 s	 p	 p

(2a)

(4t,)

-	 7	 -	 -	 -	 --
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The 3rd and the 5th sextants transform into the first sextant if we

rotate the coordinates by +120 6 , therefore one can obtain the matrices C3

and C5 through the rotation of the coordinate system. Such a rotation may

be accomplished by R7 1 C R, where R - 2 (1 - v3 i o y ) for + 120 6 and R

• -	 ( 1 + ► 3 i oy) for - 120 6 , yielding

C 3 1 - ►̀ 3 2no x + Gov + r1J2ncz s

C5	 1 + Ca
Y - 

r2ndz

Matrices C` , C 4 , and C6 can be obtained by inverting C 5 , C 3, and C1

respectively with 
oz 

because they are mirror image parrs and we obtain

C 	 ';zC7-naz, n = N, 4, and b

This equation, because of the anticommutation relation of ols, results in

simply changing of signs of the coefficients of o
x
 and cy components. Con-

sequently we can write 
C  

in a general form as

C 	 1 + fn• 3 2no x + gn cy + hnJl̂ 7
	

(3)

The coefficients f n , g  and h  are tabulated in Table I for all sextants.

As indicated by the form of the transformation matrices C  the

polarization and amplitude of the entering light is in general not

preserved. one can, however, use projection operators to decompose the

emerging beam into two polarization components along directions other than

i and J. In particular we will consider one component parallel to the

incident polarization and the other perpendicular to it. Assume the



- 9 -

i
1

incident light to be linearly polarized with the direction of the electric

field at an angle 9 to the i-axis so it has the form u - u o ( cise)where uo

is the amplitude of the field. The ei envectors of these projectionection oP	 8	 P j	 era-P

tors are,

Cos 9	 sln 8V
	

and v
p - is in ^^	 s - (-cos 6

respectively for the components parallel and perpendicular to the incident

polarization. Thus the normalized complex amplitudes of the emerging light

from nth sextant for these two components are,

1

Y^ vp Cn u/ (ufiu)^

•	 + f
n 

.3/2n,	
n

sin(26) + h •122 cos (20)	 (4a)

1

ys	 v$ Cn u/(u*u)`

-gni4 + hn « l/2/2n sin ( 26) - fn •'3 2n cos (26)	 (4b)

It is now clear that the polarization and intensity of the emerging light

are different from one sextant to the other and are also determined b y the

magnitudes and relative phase of r" and y''
s

I
t

_	
-



a
• - 10 -

III. DIFFRACTION PATTERN FOR A SIX-SECTORED CIRCLE WITH ARBITRARY PHASES

AND AMPLITUDES

For a single polarization the integral governing Fraunhofer diffrac-

tion for circular aperture of radius a is given, in polar coordinates, by

U(P) • B !
0a 271 a-ikpw cos( -^ 

) ododm	 (S)!0

where U(P) is the amplitude at the far field point . P, and (p,m) is the

polar coordinate at the aperture whereas (w,w) is the polar coordinate of

the point P, and k = 2r/A. However, w is the sine of the angle between the

direction of the light beam and the direction of point P. The constant B

is the complex amplitude of the light in the aperture.

Now consider a circular aperture of radius a with imaginary lines

dividing the aperture into six sextants. Suppose the linearly polarized

light emerging from the aperture has different phases and amplitudes at

different sextants but with uniform phase and amplitude over a given sextant.

Tien the diffraction integral should become

6	 ra nn 13
U(P)	 Bn( 	

e-ikpw cos ( -'v)pdpdo ,
	 (6)

nal	 •o '(n
-1) °J 3

where B  describes the phase and the amplitude of the light emerging from

the n-th sextant. The polar an,les ^ and ^ are both measured counter-

clockwise froia j-axis when we are facing the emerging beam.

In order to consider the problem of the corner reflector we

may assume the aperture to be a certain reflector and the emerging beam

to be the reflection of the incident beam impinging normally on the reflector.

Sit.ze our interest is in the distribution of the energy, we can norm-

alize the amplitude such thaz in the case of a circular "perfect" mirror
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2
the central intensity to =	 IU(0,0)+	 is unity.	 Thin yields

A(P) •	 `	 Yn a nr/3	 a-ikow cos($-V+)pdpd,

Tta	 n•1	
fo^(n-1)it/3	

(7)

where A(P) is the normalized complex amplitude of the diffraction and yn is

the normalized complex amplitude	 of the n-th sextant.

i To evaluate the integral in Eq. (7), we use the formulas 9

cos	 (z cos 8)	 Jo (z) + 2	
(-}k 

.IZk (_)	 cos (2k6)_
k'1

._ siz	 (z cos	 b) - 2	 y	 (-) k J2k+1(z)cos	 ((2k +1)b),k•0

where J -)k W are the Bessil functions, to separate the radial and angular

parts in the integral .lQ After evaluating, the angular part, we obtain

1	
6	

n	
,x

A(P)	 2	 T	 v	 Jo(y)dy r3
T x	 na l	 o

t	 i

i
it

}

E	 )

+ 4	 1	 J (y) sin ` cod(f(n3 -	 -	 )^.
	

(g)

^Rl

where x =	 kaw, v = kow.

It is known that

•x

V Jo (y)	 dy	 xJl(x),	 (^'>

integral	 involve=s higher	 of the Bessel functionsand the second	 which	 orders
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can be expresse3 in terms of the Bessel functions or in a power series of

x. In either case the series converges rather quickly, and has the forn.9

1
x  J (y) dy - 2tx I	

(k + 2m + 1)	 J	 (x)	 (10)
o	

M-0 (I + 2m + 2)(t +2m) k + 2m + 1

or

f

xyJ 
(y) dy	 4(E2)

i+2 r	 (-x2/4)m	
(11)

o 
i 	 m==0 (Z + 2m + 2 ) (m!)(k + m)i

Since the integral is well-determined, we can, for short, define a new

function Fi (x) for Z ?1 a.-:

_ 1	 x
Ft(x)	

= ix 	 y J ^ (y) dy	
(12)

fo

Then Eq. ( J) can be rewritten as:

6

A(P) - 2J1(^)
	

Y- + 4 L (-1) 1 F (x) sin 
kn 

L yn cos(R(nn

x	 n-1 6	
Tr 

k-1	
1	 6 

n-1	
3	 6

In the case of a "perfect" mirror, all yn, s are equal to unity (omitting

the common phase). Then I Y  A - 1 plus the indentity
n-1

6
sin ^'^	 L cos ik(1 -a)] ri 0

n-1

for all 2 and a, reduces Eq.(13) to the well-known diffraction pattern

resulting from a circular aperture,

2JI(kew'
A(P) -	

kaw

x;

f



-13-

This discussion has been for a single polarization. In general, (and

for the corner reflector in particular) the polarization from each of the

sextants may not be the same. Since beams of orthogonal polarization do not

interfere, we may calculate the diffraction pattern due to each polarization,

calculate the intensities due to each polarization, and then add the inten-

sities. Although VA s may be done for a resolution into any pair of ortho-

gonal polarization states, we will find it convenient to consider orthogonal

linear polarizations.

I
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IV. DIFFRACTION PATTERNS AS A FUNCTION OF THE REFLECTING SURFACE

In Section II we have derived the expressions of the normalized complex

amplitudes for two orthogonal polarization states resulting from an incident

linearly	 polarized	 plane wave with uniform intensity. The coeffi-

cients &, n and C, first defined in Eq. (2) are indeed determined by the

properties of the reflecting surfaces; and the reflecting surfaces may be,

as far as the corner reflector is concerned, glass-metal, glass-air or

air-metal interface.

Since the light in orthogonal polarization states do not interfere,

we will treat each of the outgoing polarizations separately. First we

substitute the value of y  and ys obtained from Eq. (4) into Eq. (13) and

then sum over n from 1 to 6. After somewhat lengthy algebraic calculations

we obtain the expression of the normalized amplitude for both polarizations

Ap(x,^,0) - EGO (x) + nG 1 (x,^;B)	 (14)

where

As ( x ,J;6 ) _ ^;G,(x.V) 4 ,IG1(x:V'.8),	 (15)

2J 1(x)	
(16)G0 (x)	 x

3
^ 2	 mm

G 1 (x,^;0) _ -^Z 	 2	 L (-)M+1F2Q+6m(x) cos[(2R+6m)^ + (-)^ 28] (17)
R.=1 m-0

G2(x, 	
2L4 r (-)m+1F3+

6m(x)
 sin (3+6m)o	 (18)

MOO

3
2	 OD

G3(x,V^^d) _ (6)T
	 c	 c (-)m+Z-1F2k+6m(x)sin[(2t+6m)^ + (-)Z 26]. (19)

IT	
Z-1 m-O

It is interesting to note that the basic diffraction pattern of a corner

reflector depends solely on four functions regardless of the property of the
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surface. The difference in the properties of the reflecting surfaces affects

only the strengths and the relative phases of these four functions.

Now we consider the energy which lies within a given angular radius from

the center of the beam. Lot L(wo) denote the fraction of the total energy

which lies within an angular radius w0 . Then we obtain 11

2	 2rt wo

L(w0)	 2	 f	 I
(w ,^; 6) w dw di ,	 (20)

a 	 Jo 0

where a - 2njk is the wavelength of the light. The intensity is given by

	

I(w.^;6) - JAD (x,t, ; B)l 2 + (As (X.*;e)12	 (21)

where x - kaw as before. Using Eqs. (14) and ( 15), we get

I(W,^;6) - (EIG0 (x) + (En*+C*n)G 0(x)GI (x.Vq s) +In1
2
G 12 (x.0;6)

+ I;I
2

 G22(x.o)+(;n*+;*n)G2(XIO G3 (x,*; 6)+1n1 2G32 (x,Vp ;6).	 (22)

Noting that the cross terms in I(w,^;e) vanish after the angular integration

over ^, we may evaluate the angular part for each term and obtain

x 2	 2	 x
I (X)	 L 

c	
°P	 O

L(w0)- 2 W !
x 	

dx + 102 ,'1, R
L 1 mLO ^0

F22X+6m(x)x dxo l
X-1 s

^ m X

+ 142 (^^	 L 
fo0 

F 
2 + 6m(x)x dx.

m-Q

The energy within the first zero of the Airy pattern is given by L(w0)

when x  - 3.83 (or wo M 3.83Jka) where the first zero of the Airy pattern

occurs. Evaluating Eq. (23) numerically with that argument we obtain

L(wo) - 0.840 1E1 2 + 0.415 n, + Q.056 j;i^. (W

(23)



If we also consider thf effect of absorption by the back surfaces

we can denote the ratio of the total output energy to the total input energy by R

and we have

R � 	 utCnleu, ulul
. . . .n-1

1C1 -+ 21nl # + ICI..(2)5)

As a simple illustration, let us consider the values of the coeffi-

cients C, n and 4 when the reflecting surface of a corner reflector acts as

a „perfect" mirror. This ideal condition can be sufficiently described

physically by the condition that the electric field which is parallel to the

mirror surface vanishes, but the electric field which is perpendicular to

the mirror surface remains unchanged. Then, it follows that o p - Ps - l

and S p - U. i s - nor in other wards r  + r9 - 0 and r  - r  - 2.

Substituting these values into Eq. (2 ), we obtain

f; - landn -.

This result reduces Eqs. (14) and (15) to what we expect from a circular

aperture, that is

^d (x)
A	

X
	 and As (x.Z, *) - C .
P

Thus a corner reflector whose back surfaces act as a "perfect" mirror

has the same diffraction pattern as a "Perfect" flat circular mirror.i
t
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EXPECTED PATTERNS FROM CORNER REFLECTORS COATED WITH ALUMINUM.

SILVER, UNCOATED, AND OPEN CORNER REFLECTORS

n

Since the diffraction pattern of a corner reflector is a linear

combination of the four G-functions, we need only evaluate the coefficients

&, n and ; of different reflecting surfaces. We assume the wavelength of

0

the light to be 6943 A which is the value for a ruby laser. We have con-

sidered the cases of ( 1) an open corner reflector using the silver or the

aluminum as the reflecting surfaces, ( 2) a solid corner reflector coated

with the silver or the aluminum, and (3) an uncoated solid corner reflector.

In all cases the index of refraction of the solid corner is assumed to be

1.45. The complex index of refraction of the metals was taken from Schulz

and Tangherlini12,

We have found that In,6 and 1;1 2 for the cases (1) and (2) a.,

negligibly small ( less than 1% of ^ ^^). The energy ratios R are 951% and

70 1% for silver and aluminum, respectively, in case (1) and 92% and 61% in

case (2).

For an uncoated solid corner 191 and 1^1_ are comparable with

Although the energy ratio R is 100% in this case, the energy within the first

zero of Airy pattern is about 36:.

The diffraction pattern for the case of (1) or (2) is approximately

an Airy pattern. The diffraction pattern of an uncoated corner reflector

is, however, quite different. We have evaluated the analytic expressions in

Eqs. (14), (15) and (22) for 0 - d° and plotted the iso-intensit y contours at

different intensities in Figs. 2, 3 and 4. The total pattern as well1
f

r
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as the two components of the mutually orthogonal polarization states are

shown separately.

The contours show certain symmetries, such as I p (x MO) a Ip(x,-O;0)

I p (x, 7-V;0), Is (x, W) + Is (x,-^;0) for two orthogonal polarizations, and

I(x.^;0) - I(x, -^;0) for the over all pattern. These symmetries are quite

obvious in Eqs . (16) , (17) , (18) and (19) .

The photographs of the diffraction pattern are shown in Figs. 5, 6,

and 7	 for comparison with the plots. The corner reflector has an aperture

of one inch in diameter. The entrance face .contrary to the assumption in

this report,did not have an anti-reflection coating. However, one notices

a striking resemblance between the photographs and the plots.

8
a
e
e
9

i£

L

H

t ? f
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VI. CONCLUSION AND THE COMMENT

In this study of the far field diffraction pattern of a corner

reflector, we considered, among other things, mainly the energy concen-

tration at the central region.

The purpose of this pLrticular consideration was to investigate the

possibility of ranging to the moon with an optical radar system on the ground

and the corner reflectors on the moon 13 . Thus quantitative information on

the concentration of the returning signal was the primary interest.

The diffraction pattern from a circular aperture illuminated uni-

formly by a plane wave contains about 84% of its energy within the angular

radius of 1.22 AJd, where d is the diameter of the aperture. The diffraction

pattern from a corner reflector utilizing total internal reflection contains

slightly less than half of the energy from a circular aperture within that

angular radius. The central irradiance is, for the case of a corner reflector,

about one-fourth of that from a circular aperture. It is because the polari-

zation effect manifests itself to a greater extent in the total internal

reflection. There is little tendency that the field at points far away from

the central region would be cancelled as it would be in the case of circular

apertures. The consequence is a greater spread of energy. Coating the back

surfaces of the corner reflector with metals would generally improve the

performance in the sense that more energy would tend to concentrate in the

central region. But the absorption of the light by the metal would reduce the

returning intensity. The light entering a corner reflector has to be reflected

three times before emerging, thus the desirability of high reflectance at the

reflecting interface is greatly increased.

0
9
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The particular geometry of the corner reflector predetermines the

basic structure of its diffraction pattern as a combination of four functions.

The different optical constants of the different reflecting interfaces provide

merely the different coefficients for each of these four functions, namely &, n,

and ^.

Higher values of n and 4 would cause a wider spread of optical

energy because the functions of which n and c are the coefficients consist

of Bessel functions of higher order divided by their argument.	 A Bessel

function reaches its largest value when the argument is roughly	 equal to

its order; therefore, under the condition that I&I - +nj	 =	 to	 the diffraction

field does not become small compared to the field strength at the central

direction except when the angular direction is some distance away from the

central direction. 	 It is necessary that	 In)	 <<	 1^ 1	and Icl	 e <	 '	 )	 in order

to reduce the spread of energy by diffraction.

A corner reflector whose back surfaces are coated with metal such as

silver or aluminum satisfies the condition that (nj 	 and 1;1	 are much smaller

than	 Although it appears that such a corner reflector behaves roughly

as an ideal reflector, its application to the optimization of return signal for

the lunar ranging experiment is not straight forward. 	 The extreme temperature

gradients and the direct exposure to solar radiation in the actual lunar

environment make the optimization of return signal a problem of a different

nature which will not be discussed in this report.
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FIGURE CAPTIONS

Fig. 1	 Front view of a corner reflector with a circular face

is divided into six sectiona labeled by numbers 1

through 6. The projections of the real back edges and

their images are indicated by the solid and dashed

lines, respectively. The coordinate system is defined

by the unit vectors i and J.

Fig. 2	 The iso-intensity contours of the total diffraction

pattern are sham at three different intensities for

6 w 0° in the polar coordinate. A quartz solid corner

reflector (n-1.45) is assumed in the calculation. The

contours at 50%, 10%, and 2% of the center intensity

1(0,x,0°) are shown by	 , ---------, and

- -•-•-•	 respectively. The contour of the first

zero of The Airy pattern is shown by the dotted line

for comparison.

Fig. 3	 The iso-intensity contours of the diffraction pattern

whose polarization is the same as that of the incident

light.

Fig. 4	 The iso-intensity contours of the orthogonal polarization.

Notice that the 50% line is not present.

Fig. 5	 The photograph of the total diffraction pattern from

a quartz solid corner reflector without an anti-

reflection coating.

- -	 -
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FIGURE CAPTIONS

Fig. 6.
	 The photograph of the component of the pattern having

the original polarization.

Fig. 7
	

The photograph of the component of the pattern having

the orthogonal polarization.
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0	 TABLE CAPTIONS

Table I:	 The Coefficients of the Transformation Matrices

0	 For the Six Sectors.
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n	 fn	 gillhn

1	 1 1 1

2	 0

3	 -1 1 1

4	 1 -1 1

5	 0 1 -2

TABLE I
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