@ https://ntrs.nasa.gov/search.jsp?R=19780020125 2020-03-22T02:51:58+00:00Z

- MASA B1- /5¢ 783 g s

NASA -GSFC

rm*‘

Microprocessor Utilization in Search & Rescue Missions

[

FINAL REPORT

Introduction:

The position of an emergency transmitter may be determined by measuring
the Doppler shift of the distress signal as received by an orbiting satellite.
This requires the cczrput;‘:ttion of an initial estimate and refinement of this
estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was inmplemented at Goddard Space Flight
Center (GSFC) and tested by locating a transmitter on the premises and obtaining
observations from a satellite. The computer used was an IBM 360/95. The po-
sition was determined within the desired 10 km radius accuracy.

The purpose of this project is to detexmine the feasibility of performing
the same task in real time using microprocessor technology. The least squafe
algorithm was implemented on an Intel 8080 microprocessor and the same experi-
ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IBM im-

plementation in accuracy and be perforwed inside the time limitations set.

gNASA-CR-?SG?BE) HICBOEBOCESSOR BTILIZATION R78w28068
IN SEARCH AND RESCUE MISSIONS Final Re?ort
-y 27 Sep. 1976 - 26 Sep. 1977 {Columbia Univ.)

- 2 C AO4/NF A1 ¢SCL 098 Unclas !
47> P B / G3/03 2’-?(_)62)

Y e

! Colulnbia University in the City of New York

DEPARTMENT OF ELECTRICAL ENGINEERING New York, N.Y. 10027
AND COMPUTER SCIENCE

g 4

E Mr. Paul Schmid >
B Goddard Space Flight Center ::2
= National Aeronautics i
= Computer Science & Space Admlnlstratlon o
o Greenbelt, MD. 20771 A

“DEC 2 7 1977

Why Microprocessors:

Time is an implicit restriction in any search and rescue mission. The
use of satell_ites and computers is dictated by that time li.mit.ﬂ The use of
.a big computer to determine the position presupposes commmication betwsen the
satellite and the computer. This commnication introduces a time delay since
the satellite is not always within radio visibility of an installation that
possesses both the communication and camputing power for this prob]:em. Far-
" thermore the result has to be Forwarded to a command center to do the dispatching.
Microprocessor utilization can alleviate this situvation in two ways:
by giving cheap camputing power to communication facilities or by incorporating
the computing power in the satellite itself thus eliminating this communication
conpletely.
Microprocessors offer light weight, small volume, low power processing.
Their speed is improving rapidly and their cost is going down. They are the

logical choice for a satellite search and rescue system iF they can perform.

Machine Configquration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

« Development system
» Minimal execution system

+ Actual Field configuration

~ Initjally our development system consisted of an MDS-80 Intell’ec micro-
‘con“puter by Intel with 16k bytes of RAM memory and a resident ROM monitor.
Most of the _.Eloating point package was developed in' machine language on that
system using the monitor's limited hexadecimal editor and debugger. The need
For more sophistication became apparent. After several failures in exploring
altematives (as fancy as hooking up to a PDP 11 through a telephone line
For more storage) we were able to acguire a dval floppy disk drive by Intel.
A spare line printer was attached to the system with minor hardware modifica-
tions and 16k bytes more RAM were added in order to support DOS. The enhanced
‘system had the power of a mini—computer in software (asserrblei:, editor, 1li-
brary manager, linkage editor, leader, and a sufficient file manager) at a
speed which was slow but acceptable. The Floating point package was converted
to assenbly language, and two more packages were developed: the 1/0 package
and the matrix manipulation package. Unexpected help came from the use of
TCE-80 (In Circuit Emilator), designed for a difFferent application, as a
pawerFul symbolic debugger substituting Ffor the monitor hexadecimal debugger.

Out of this Final version of the developrent system only a limited

amount of resources were used for the EJ:;1a1 run. Those define the minimal
execution system.r TJhe disk was only used for input of data., The essential

parts were:

- The CPU card

- 16}‘@ Bytes of memory

* The console device and its interface

- Power supply: 12V, 5V, -5V, ground

Additionally, the line printer was used to produce a hardcopy version of
the results.

The actual Eield configuration would be the same if the machine were
located on the ground. Some kind of oommmicatio.ns equipment would be re-
quired to provide the data input and, meybe, start the run autcmatically.

The configuration would be different, though, if the machine were located on

the satellite. The requirements for the satellite configquraticn would be:

* The CPU card

16k bytes of memory

' An interface that can load the information in memory
+ A means to conmunicate the result to the world

« Power supply: 12V, 5V, -5V, ground

The Floating Point Package:

Based on estimates of the number of operations required we were ‘in-
clined to think that any floating point operations would have to be performed
by hardware and not by software since estimated times became péohibitive.
This Floating point package was developed to help us count the actual nunber
of operations rather than perform them in an actual situation. The final run
proved our estimates wrong and the package gained new importance.

There are a nuber of representations of floating poing numbers dif-
fering in accuracy and range as ‘a trade off to the mmber of bytes required
per nmnber." .. The one used was the ANSI format for FORTRAN which happens to
be implemented by hardware as an option in IBM computers. It consists of one
sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa—
decimal digits. The accuracy is 6 hexadecir;al digits or approximately 7.2
decimal digits. Specific operations were not timed although a more general
timing analysis appears in a later section. This format was chosen as opposed
to the BCD format because the space requ:iienents are lower for the sane
amount of precision, which in turn reduces execution time slightly. A man—
tissa of binary digits was not used because of the frequent need for norrali-
zation.

Addition and subtraction take exactly the same time, whereas multipli-
cation is approximately equal to 22 addition and division is approximately
60 additions.

Multiplication produces a 48 bit result mantissa which is then normalized
and rounded to 24 bits. 'This preserved-the nunber of significant digits, or,
viewed From a different angle, is the same as a double precision multiply if
the two arguments were expanded with zero Fill. ‘

Division preserves the s‘;ignificant digits again by expanding the man-
tissa of the dividend to double precision and results in Full single preci-

sion result. Normalization and rounding occur as in multiplication.

Accuracy is thus preserved to true single precision throughout in a
nurerically stable mannexr keeping the length of the nmumber to 4 bytes. The
cost is expensive maltiplication and, expeciallu, division. This dictates
a programming style whereby division is avoided unless it is ab‘solutely' neceg-
sary. The benefits, on the other hand, are numerically stable implementa~
tions whose results match the double precision to the extent possible as
will be seen when the results of the run are analyzed.

The square root function was implemented by using a variation of Heron's
formula based on the cbservation' that the mantissa of any floating point num-
ber will hav;a a value of 1/16 to 1 (interpreted as a fraction). 2As a first
quess an approximation to a straight line comnecting the two end points is
made. Experimentally, six iterations were found necessary to produce an
accurate result. A better first guess could improve that significantly, but
time constraints did not allow us to pursue that direction.

Finally, input and output of floating point numbers turn ou:t a mach
more serious task than First expected. The 'input routine recognized numbers
with a maximum of ten integer and ten fraction d:..g:.ts This proved more
than sufficient for our needs. The output routine p;roduces a rigid scienti-
Fic format with 10 f:_:'acti.on digits. When interprgti’i’ag the results it should
be kept in mind that at most only 7 ave significa:':t'. The format was re-
tained in case of future expansion of the mentissa. Both the input and output
routines could be better, hut since their function is only i.:angential to the

project at hand they were kept on the bare functicnal level.

Matrix Operations: -

All matrices in the system are defined as two-dimensional, including
vertors. The First two bytes contain the nuiber of rows and tl;le number of
columns in the particular matrix, respectively. This effectively limits the
nurber of observations to 256, Vectors have cne of theitr dimensions identi-
cally equal to 1. The next two bytes contain the address of the First byte
that follows the last byte belonging to the matrix. Adjacent elements in
a row of the matrix are stored as adjacent floating point mmbers in memory.
Rows are sto_red sequentiaily starting from the First row in the Fifth byte.

In an effort to minimize the number of address calculations in the least
squares algorithm the APL program we were supplied with, (LSQ), was converted
into FORTRAN. The calculations involved in the residual equations were all
grouped together inside one big locop. The advantage of such a scheme is that
once an offset is caléulated it canbe used to address all the needed elements
of the matrices involved in the calculation. When the time came though, to
inplement it using 8080 assembly language, it became all too apparent that
there were too many addresses to keep track of and too few registers to help.
Therefore, due to the limitation of addressing capabilities, routines were
inplemented for the various matrix operators in APL. This resulted in well.
structimred and very efficient code, the style being diqtated by the instruc—
tion set.

A minimm number of matrix utility routines was necessary. Matrices can
be created by specifying their dimensions, they can be Filled with zeros, they
can be read From a device, they can be moved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following arguments.

+ a constant and a matrix

« a vector and a matrix

« two matrices (plus possibly a result matrix)

+ one matrix (for example, inversion)

In our particular application there was only one inversior;‘ ofa2by2
matrix involved. A simple algorithm derived from Fuler's method is imple-
mented using fixed pivots. Execution time and temporary storage are opti-

mized.

Implementing the Experiment:

Having developed the tools that were discussed in previocus sections the
actual implementation was straight Forward. For re;asons already mentioned a
routine was written to match the LSQ routine* developed by Dr. Marini almost
statement by statement. The correspondence is indicated in the source pro-
gram by keeping track of the APL statement numbers. The array names were
kept the same as much as possible and only one additional tenporary matrix
was required. The program was written For a maximum of 100 observations,
211 matrix operations as well as the sguare root keep track of the czalls to
the Eloating point routines.

The whole package makes limited use of two monitor routines, which can
ecasily be eliminated. The reasor; they are there is because software was
being developed in machine language and the monitor provided a lot of needed
help. 8o, essentially, LSQ can be run completely independently.

The space requirements Ffor this particular run was approximately 16k
bytes, out of which 4k could be in ROM and 12k in RAM. The exact mmbers
are as follows: '

Code: 3656 bytes

Data: 10365 bytes

Stack: 100 bytes (arbitrarily)

Total: 14121 bytes

Incorporated into the package were four counting routines that 'kept

track of the number of additions, subtractions,. nultiplications and divisions
required during each iteration. The results will be analyzed in the next sec-
tion. The actual implementation would not reguire these xroutines. The counting
overhead to each arithmetic operation is approximately equal to half the time

of an addition.

* See Appendix C.

Interpreting the Results:

The final run converged and yielded Ffive digits of accuracy. If conver-
gence is defined as a ratio of two succésive RYS residuals being close to 1
(in absolute) it was attained at the ninth iteration to within:.0.00001.
Comparing these results to the run at GSFC {run at double.precisioﬁ, or 16
digits of aoc;Jracy) we note the 5 digit accuracy of our result.

Numerical analysis gives us enough tools to justify the loss of two signi-
ficant digits in the course of the iterations. The main source of error ap-
pears to be the subtraction of the estimated range rates from the actuals.
The subtraction of the average residual equations could could contribute to
the error as well.

The measured execution time for this particular run was. 62 seconds pexr
iteration. The microprocessor used was an 8080A by Intel: Adjusting for
counting the number of operations the true time beccmes 61 seconds. The
8080A CPU has a cycle time of 2 microseconds. IF this system were actually
implemented, the 8080A-1 CPU- could be used which offers higher speed with
cycle time of 1.3 microseconds which could bring execution time down to 40
seconds for each iteration giving approximately 6 minutes to reach conver-
gence., This figure is derived with no modification of the software. Since.
it falls within our difinition of "real time", which was aromd 15 minutes,
it -is definitely a workable solution.

Another alternative is, of course, to use hardware floating point units.
Two units that we are familiar with indicaté a disparity in execution times
of several orders of magnitude. Their.gﬁecifications appear in Aﬁpendix B
For the purposes of the following analysis, 'typical' execution times For 8
digits of precision of the North Star Computers, Inc. FPB unit were used.
Qur system indicated the Following Frequency of Floating éoint operations
For each iteration: .

Additions - 3137

Subtractions — 672
Multiplications - 2382
Divisions ~ 940
VWhen trying to compute the time it would take to execute those instruc-
tions we noticed that the time it takes to access hardware floa{ting point

wmit is more than twice than the time it takes to do the calculations. Namely,

we came up with the following numbers:

TIME [(SEC) . "PURPOSE

0.35 perform the operations

0.825 input and output the number form
FPB {B0BOA~1)

1.175 total time reguired

Therefore, use of hardware units make it possible t6 decrease the execu-

tion time by one order of magnitude.

Muture Research:

The parameters that have to be optimized in the search and rescue
mission consist of the accuracy of the position estimation and the time in
which it is performed. Proving the Feasibility of a mcroprocessor :
implementation is far Efram devising an optimal algorithm,

IF the nonlinear regression method is utilized there is a lot of
room for improvement in the inital estimate, a quantity that can afFect
the whole outcome of the iterations. Several methods that are suggested
in Dr. Marini's paper can be explored. Furthermore, since the data
collection takes an appreciable amount of time an algoritlm should be devised
in which an estimate is upgraded with each incoming datum. IE that algorithm
is good énough then the estimate could be the result itself.

A Further enhancement on the calculation tiem can be achieved through
parallelism. It can appear on two levels:

- The implementation of the least squares algorithm
- The grouping of data

The least squares algoritim may be broken into parallel subtasks that
can be performsd by diFferent processors in parallel, especially Eloat:mg
point operations.

The data may be grouped in clusters on which the least squares
algorithm is applied. The estimate provided by each cluster is then processéd
through ‘least squares estimation itself. This method could be applied at
data collection. time-too.

2ppendix A

*. Sample run at GSFC

+ Sample run at Columbia

NASA sanple run at GSFC i
[O I I
TIALS S o Y e 4]0
ol HGT ARE:S St i a0 ; s :
MU b s
S el L _46'3:3- R et R S E25
D1das
Ly naz
A
ry < HG SR beSTON T LB PONEE 15
i 1=
RS D S 5 e PR b R T R iy
1 L= B
S HREEY D B PRI oE TS
1i .'I:-L E
il BN
il =a (5 T O | % e A B
« HGT BRES SRaarfehial o 2o \@din s LA FRISE T 1S
i
= TASIT. 29034 = T =
S
= PH
EER 2 | W i SE5
HGT FIRE: S B B B B B L M O e T s B T A i
howid v R,
I e 10 2e 5] S5
-i- e

T8 Sy
dEll sl BL A S ESATE

Vi HIEBET BHRES " E59. 22482584 0 22lebivaada o

T4R22. [GA3TS 4000, 2205993

=3 EH

LS . B6AT
« HGT AEE: S0 .FIRTEIT A

=t S]

27 TaRd

X ORIGIN
| | PR R S E R et
© HOTYRARES ™ 558t 31 3800A3 | SR 1S
e :
S0 THBRE.ERIEET an19. 718311

T
EEHLIE | - B i Tt o TS D

o HCT ARE: o0, BESEEAR . e 1 Tang S

FAmE e S U § R Pt oy [

R Fia BeodATd SR S0RE
L% | } i-'l':‘E: 1 1 . n..1 :-_-I'-.;- ..
il TA83R. TSR3 a2 FrEATH
o
SEL B
¢ AL S He Q5
i dAGT ARES B o AT S
£ [
j % Taza =37

http:06..f.l1

THE FESIL_TING FOSITION I,
e —3, DOTIEESSISEY0SY Y= -0 JER502080

(]
1

RHSFE

i3Ik

HLS =

THE FESOLTING POSITION IS
= A 52 1e2d475EaSE+53 Y= =3,

SHMSTRESICUALES = O ABS08afcrE+Gl

K

THE TFESULTIHG FOSITION IS
= A SdEdSETOLAE+HRT Y= -0 453

FMSTRERIDORLCS = o)
i
|
THE FEZDOCLTIHG FOSITION 157 7

e SdTEHVEILZSEREE . Y= "3.4533534493E+§4

el

FMSTREZILUALS B Gyesd82idiE+an

THE FESILTIHNG POSTITION IS~ 777~ 77
M= B SQET515a02BE+E8E Ys -8 dS8ESMETILEE+Gd

EHE RESIDUALS =8 05507 cZi2E+EE

1
THETRESULTING POSITIONTIST -
Y= @ SOSSSYTI4BE+ET Y= -0

FME REESIDALS =778, O8d

TH:“PEfUtTINP FOSITION IS -
B ABOZENEEaEE+64 Y= 0 JSEEETIREDIESE

v——

EMSTRESIDUALS =R Bed 74 Ra530E+06
1

THE FEZULTIHG FOSITION IS:
W= 0. LEBISIEISTEHNY =

~F. eI 83

Y= B+

(SRS Rt 5 n s Sy e S

EMETRESIDUALS ™=

THE EESLULTIHG FPOSITION IS:
w= B ADGEEREIMTVEREd Y= -5 J2TRiTRIGIE+O
EMS RESTDUALS =7 '8

Gt r 3y sy LE+DE

THE PEfULTIHP“PDcTTInN Ic_
x= o @ 1DBIEEZITEE+E
HS RESIDURALS =

ﬁDSITIDH IsT 7
Yo =0, GRIERTIELIES

TI“L:

FMS FESTCUALS = @ O84748I444E+00

I

I
i

~J

-]

Il

IJ

|

il

£l

sample run at Columbia™

Q. AZ3EZeRL2TE+G4

8 417E22258ZE+AS
4

'l"..‘
Lo
2
1y
D
J
I
1T|
M
+
iy
BN

SOX RG2S 2E 0

|
!

——————— e ——— —— - —

44508

S T 35 Pay E-+i3d

G, dEZRITTALIE

B, 6191 ERR25E+04
O AEL8E 25 2EE+E

G, 01060 RE+Ed

ORKﬂNAJ,PAGEIS
", OF POOR QU

G, JRL9ZET IR E+64

A, SOL3TARDTE Y

Appendix B

Two typical hardware Eloating point units

* FPB by North Star Computers, Inc.

* FPU by Cyberuetic Micro Systems

FPB DATA SHEET

- EXECUTION TIMES 1.2,3

PRECISION DIGITS: _ 2 4 8 8 10 12 14
ADD _ best 1 1 1 1 1 1 1
typical 8 - 8 9 10 10 1
worst 10 10 10 11 11 12 12
SUBTRACT best 4 4 4 4 4 4 4
typical 8 8 9 9 10 10 1
worst 15 " 16 17 18 19 20 21
MULTIPLY best 5 5 5 5 5 5 5
typical 18 34 55 80 111 146 186
worst 51 125 228 382 527 720 933
DIVIDE best 7 7 - 7 7 7 7 7
typical 39 70 109 166 211 274 370
worst 62 139 229 340 470 621 779

1. Times given in microseconds
2. Execution times are a function of the input values
3. Times listed do not include transmission of input values and result

Board dimensions:
Model A: 5in. by 10in.
Model B: 6% in, by 12 in,

Power requirements:
Model A: 8 V {unregulated) @ 1.7 A
Model B: 5V (regulated} @ 1.7 A

Board Construction: .
FR4 material, gold plated edge connectors

Floating point number }epresentation:

Byte 1: bit 7=sign {1=negative number, O=positive number}
bits 6-0 = exponent in excess 64 binary representation
bits 7-0 = zero represents the zero value . :

Byte 2: bits 3-0 = least significant digit of value in BCD coding
bits 7-4 = next least significant digit of value

Byte n: bits 7-4 = most significant digit of valide in BCD coding
bits 3-0 = next most significant digit of value

All values are nomalized.

Other representations of BCD fioating point numbers require a change in microcode and are.available on

special order.

*Sample use of the North Star FPB for a divide operation with 8 digit precision
*In this example assume arguments are in memory in form:

* Most significant byte {msb} digit pair

* Susequent digit pairs follow the msb

* Exponent/sign byte follows Isb digit pair.

* Pointer addresses the exponent/sign byte

*BC has left arg pointer

*DE has right arg pointer

*HL has result pointer

*The FPB receives its arguments by “peeking’’ at the 880 bus
*when the argument values are loaded to accumulator.
*Two jumperable “hardwired’” addresses are required for signaling the FPB

" *This routine may be generalized to perform any operation, at any precision.

FDIV LDA RSTRT This ““hardwired” reference signals FPB to "“wake up”
MV1 A 8%16+DIVOP Specify precision and operation code to FPB
LDAX D Exponent/sign byte of right arg
DCX D Advange pointer to next byte
LDAX D Least significant digit pair of right arg
DCX D Advance pointer to next byte
LDAX D -

DCX D

LDAX D

bCX D

LDAX D Most significant digit pair of right arg
LDAX B Exponent/sign byte of left arg

DCX B

LDAX B Least significant digit pair of left arg
DCK B

LDAX B

DCX B

LDAX B

DCX B

LDAX B Most significant digit pair of left arg
Now the Floating Point Board is performing the operation
LX1 D,FPDIN “Hardwired'’ address for receiving value from FPB

FDIV1 LDAX D Loop waiting for completion signal (sign bit}
ORA A The FPB is done when the sign b:t becomes **1"*
JP FDIV1 Loop if sign bit is still “8"

ANt EBITS Check for error, condition tested at end
LDAX D~ Exponent/sign of result

MOV M,A - Store exponent/fsign of result
DCXH Advance pointer,

LDAX D Least significant digit pair of resuit
MOV M,A

DCX H

LDAX D

MOV M,A

DCX H

LDAX D

MOV M A

BCX H

LDAX D msbh byte of result

MOV M A Store it

RZ Return if no error was detected

JMP ERROR Go report error {i.e. underflow or divide by @)

FLOATING POINT UNIT

PRICE LIST
MODEL QUANTITY
1 25 100
#1 $535.00 $535.00 $475.00
#2 470.00 425.00. 375.00
43 345.00 315.00 275.00

A1l sales FOB Palo Alto

EXECUTION TIMES

FUNCTION TIME IN MILISECONDS (approximate}
ADD, SUB 110
MUL, DIV, SQRT 225
TAN 846
LN, SIN, COS,-»POL 1250
POWER 1720

CYBERNETIC ZICRO SYSTEAS

2480 EMBARCADERO WAY
PALO ALTO, CA 94303

(415) 321-0410

Appendix C
The APL least squares program

N

A Lu faats

-4 (T
i et b L e Vm ted ed b

SRIESRSERSFCE S8

‘I

JIZPLACE B FROM FOLES Firin
142 11 +1E"FXRE= (P [)= -
: _+{[E[1]*EI+LL[.}*-|= i

= PE
R I = Pl
I OMECTOR OF RAMGE RATE

DR SR
i1 IS H OCOMPOMENT whECTio
I = 1

ESRES—EBIASE (+-RES) <PRES

;ﬂ.;:H]+1J«tHD
fCALCULATE MATRIM OF FESTICRL EOUAT IO

s
- '\‘.
.l - ™"
Tk i
D
SN
A

LTI T B) =

Vieorpem (bR PRISRAZ

ot = EMAVE (01 M 1t
f# b ULATE SPHERTCAL-CAR TS

ST SOUARES SOLUTION lI

« T

ol
""x

5 ot |
': f

s HGT REE: "TETOGE
FFION 15

{4

« RESIDUALS: 5 [+-FES
o

L

T GUESS FOR SHITE
IPEk OF JTERFRTYON::S

T
TRAMZFOF HHTIHH FROM CAR

”I'.I‘!]l j'

i Pt bt =1 &2

el R e e (s g
1 l 11
5 e e g

}5- RN BY 3 MATRIN OF ¢ .rlLl.L.J TE eesl TIoHS:

SLIFTFICE s AE=

e 128 5 W [[1 BT o ‘lin{ lrhﬂvﬂlrﬂirl-

OF BELOCITIES

S FETHEEH SATELLITE AHD FOSITION E

CIF TERSLIRED FAmnGE

LAM TREAHSFORNNT 10
2 PI-ELIXEL31) s (-F[21) » (R 2I=PL210 sFP L1 s K

FESTOUAL ERLTIoNs

oy I

RESI . 5
T
L:'

IEL1]x2) +E (2] &

=
EZIAF T8 GEQDETTIC COORDINATES

EFIETH FAD I s

ORIGINAL PAGE IS
OF POOR QUALITY

.Bibliography

Sterbeuz, Pat H. (1974), "Floating-Point Computation”,
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Hashizume, Burt (Nov. 1977), "Floating Point Arithmetic", Byte,
Vol. 2, No: 11, pp. 76-78, 180-18B.

Marini, John W. (Oct.' 1976), "Initial Position Estimates for
Satellite-Aided Search and Rescue", Goddard Space Flight
Center, Greenbelt, Maryland.

Microprocessor Utilization in Search & Rescue Missions

FINAT, REPORT

Introduction:

The position of an emergency transmitter may be determined by measuring
the Doppler shift of the distress signal as received by an orbiting satellite.
This requires the ccxrput;ation of an initial estimate and refinement of this
estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was implemented at Goddard Space Flight
Center (GSFC) and tested by locating a transmitter on the premises and obtaining
observations from a satellite. The computer used was an IBM 360/95. The po-
sition was determined within the desired 10 km radius accuracy.

The purpose of this project is to determine tl;e feasibility of performing
the same task in real time using microprocessor technology. The least square
algorithm was inplemented on an Intel 8080 microprocessor and.the same experi-
ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IBM im-

plementation in accuracy and be performed inside the time limitations set.

Why Microprocessors:

Time is an inplicit restriction in any search and rescue mission. The
use of satellites and computers is dictated by that time limit.) The use of
a big computer to determine the position presupposes commmication between the
satellite and the computer. This commmication introduces a time delay since
the satellite is not always within radio visibility of an installation that
possesses both the communication and camputing power for this problem. Fur-
thermore the result has to be forwarded to a command center to do the dispatching.

Microprocessor utilization can alleviate this situation in two ways:
by giving cheap computing power to commnication Facilities or by incorporating
the computing power in the satellite itself thus eliminating this communication.
completely.

Microprocessors offer light weight, small volume, low power processing.
Their speed is improving rapidly and their cost is going down. They are the

logical choice Ffor a satellite search and rescue system if they can perform.

Machine ConFiguration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

+ Development system
- Minimal execution system

- Actual Field configuration

Tnitially our development system consisted of an MDS-80 Intellec micro-
computer by Intel with 16k bytes of RAM memory and a resident ROM monitor.
Most of the floating point package was developed in_- machine language on that
system using the monitor's limited hexadecimal editor and debugger. The need
for more sophistication became apparent. After several failures in exploring
altermatives (as Fancy as hooking up to a PDP 11 through a telephone line
for nmore storage) we were able to acquire a dual floppy disk drive by Intel.

A spare line printer was attached to the system with minor hardware modifica-
tions and 16k bytes more REM were added in order to support DOS. The enhanced
system had the power of a mini-computer in software (assembler, editor, li-
brary manager, linkage editor, leader, and a sufficient file manager) at a
speed which was slow but acceptable. The floating point p.ackage was converted
to assembly language, and two more packages were developed: the I/0 package
and the matrix manipulation package. Unexpected help came from the use of
ICE-80 (In Circuit Emilator), designed for a different application, as a
powerful symbolic debugger substituting for the monitor hexadecimal debugger.

Out of this Final version of the development system only a limited
amount of resources were used for the f;nal run. Those define the minimal
@(ecutign system. The disk was only used for input of data. The esseptial

parts were:

+ The CPU card

- 16k Bytes of memory

* The console device and its interface

« Power supply: 12V, 5V, -5V, ground

Additionally,_ the line printer was used to produce a hardcopy version of
the results. . &

The actual field configuration would be the same if the machine were
located on the ground. Some kind of communications equipment would be re-
quired to provide the data input and, maybe, start the run automatically.

The configuration would be different, though, if the machine were located on

the satellite. The requirements for the satellite configuration would be:

= The CPU card

16k bytes of memory

" An interface that can load the information in memory
« A means to communicate the result to the world

* Power supply: 12V, 5V, -5V, ground

The Floating Point Package:

Based on estimates of the number of operations required we were in-—
clined to think that any £loating point operations would have to be performed
by hardware and not by software since estimated times became p;oiﬁbitive.
This Floating point package was developed to help us count the actual number
of operations rather than perform them in an actual situation. The final run
proved our estimates wrong and the package gained new importance.

There are a number of representations of floating poing nmurbers dif-
fering in accuracy and range as a trade off to the munber of bytes required
per munber., The one used was the ANSI format for FORTRAN which happens to
be implemented by hardware as an option in IBM computers. It consists of one
sign bit, a seven bit exponent (excess 64}, and a 24 bit mantissa of hexa-
decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2
decimal digits. Specific operations were not timed although a more general
timing analysis appears in a later section. This format was chosen as opposed
to the BCD format because the space requirements are lower for the same
amount of precision, which in tumm reduces execution time slightly. A man-
tissa of binary digits was not used because of the frequent need for normali-
zation.

Addition and subtraction take exactly the same t:.me, whereas multipli-
cation is approximately equal to 22 addition and division is approximately
60 additions.

Multiplication produces a 48 bit resﬁlt mantissa which is then normalized
and rounded to 24 bits. This preserved-the mmber of significant digits, ox,
viewed from a different angle, is the ‘same as a double precision maltiply if
the two arquments were expanded with zero Fill. ‘

Division preserves the significant digits again by expanding the man—
tissa of the dividend to double precision and results in full single preci-

sion result. Normalization and rounding occur as in multiplication.

BAccuracy is thus preserved to true single precision throughout in a
numerically stable manner keeping the length of the nurber to 4 bytes. The
cost is expensive multiplication and, expeciallu, c;llivision. This dictates
a programming style whereby division is avoided unless it is absolutely neces-
sary. The benefits, on the other hand, are numerically stable implementa—
tions whose results match the double precision to the extent possible as
will be seen when the results of the run are analyzed.

The square yoot function was implemented by using a variation of Heron's
Formmla based on the observation that the mantissa of any floating point num—
ber will have a value of 1/16 to 1 (interpreted as a Fraction). BAs a Ffirst
guess an approximation to a straight line connecting the two end points is
made. Experimentally, six iterations were found necessary to produce an
accurate result. A better first guess could improve that signiFicantly, but
time constraints did not allow us to pursue that direction.

Finally, input and output of floating point mumbers turm out a mach
more serious task than first expected. The input routine recognized numbers
with a maximm of ten integer and ten Ffraction digits. This proved more
than sﬁsfficient for our needs. The output routine produces a rigid scienti-
fic forgmat with 10 fraction digits. When interpreting the results it should
be kept in mind that at most only 7 are significant. The format was re-
tained in case of future expansion of the mantissa. Both the input and output
routines could be better, but since their function is only tangential to the

project at hand they were kept on the bare functional level.

Matrix Operations:

All matrices in the system are defined as two. dimensional, including
vectors. The First two bytes contain the number of rows and the nurber of
colums in the particular matrix, respectively. This effectiv;ly limits the
nurber of observations to 256. Vectors have one of their dinensions identi-

cally equal to 1. The next two bytes contain the address of the First byte
that follows the last byte belonging to the matrix. Adjacent elements in

a yow of the matrix are stored as adjacent floating point nubers in memory.
Rows are stored sequentially starting from the first row in the Fifth byte.

In an effort to minimize the nuwber of address calculations in the least
squares algorithm the APL program we were supplied with, (LSQ), was converted
into FORTRAN. The calculations involved in the residual equations were all
grouped together inside one big loop. The advantage of such a scheme is' that
cnce an offset is calculated it can be used to address all the needed elements
of the matrices involwved in the calculation. UWhen the time came though, to
implement it using 8080 assembly language, it became all too apparent that
there were too many addresses to keep track of and too few registers to help.
Therefore, due to the limitation of addressing capabilities, routines were
implemented for the various matrix operators in APL, This resulted in well
structured and very efficient code, the style being dictated by the instruc-
tion set.

A minimm mmber of matrix utility routines was necessary. Matrices can
be created by specifying their dimensions, they can be Filled w1th zexos, they
can be read from a device, they can be moved (copied) in storage. '

II"here are four classes of operations by which matricges may be altered

involving the following arguments.

» a constant and a matrix

- a vector and a matrix

- two matrices (plus possibly a result matrix)

- one matrix (For example, inversion)

In our particular application there was only one i‘nversion& of a2 by 2
matrix involved. A simple algorithm derived from Euler's method is inple-
mented using Fixed pivots. Execution time and temporary storage are opti-

mized.

Implementing the Experiment:

Having developed the tools that were discussed in previous sections the
actual implementation was straight forward. For J;easons already mentioned a
routine was written to match the ISQ routine* developed by Dr.* Marini almost
statement by statement. The correspondence is indicated in the source pro-
gram by keeping track of. the APL statement mumbers. The array names were
kept the same as much as possible and only one additional temporary matrix
was required. The program was written Ffor a maximum of 100 cbservations.

- All matrix operations as well as the square root keep track of the calls to
the Floating point routines,

The whole package makes limited use of two monitor routines, which can
easily be eliminated. The reason they are there is because software was
being developed in machine language and the monitor provided a lot of needed
help. So, essentially, ISQ can be run completely independently.

The space requirements For this particular run was approximately 16k
bytes, -out of which 4k could be in ROM and 12k in RAM. The exact mmbers

are as follows:

Code: 3656 bytes

: 10365 bytes
Stack: 100 bytes (arbitrarily)

:

Total: 14121 bytes

Incorporated into the package were foux: counting routines that kept
track of the mumber of additions, subtractions, nﬂtiplications and divisions
required during each iteration. The results will be analyzed in the next sec-
tion. The actual implementation would not require these routines. The counting
overhead to each arithmetic operation is approximately equal to half the time

of an addition.

* See ZAppendix C.

Interpreting the Results:

The Final run converged and yielded five digits of accuracy. IE conver-—
gence is defined as a ratio of two succesive RMS rés.iduals being close to 1
{(in absolute) it was attained at the ninth iteration to within:. 0.00001.
Comparing these results to the run at GSFC (run at double precision, or 16
digits of accuracy) we note the 5 digit accuracy of our result.

Nurerical analysis gives us enough tools to justify the loss of two signi-
Ficant digits in the course of the iterations. The main source of error ap~
pears to be the subtraction of the estimated range rates from the actuals.
The subtraction of the average residual equations could could contribute to
the error as well.

The measuwred execution time for this particular run was 62 seconds per .
iteration. The microprocessor used was an 8080A by Intel. Adjusting for
counting the mmber of operations the true time becomes 61 seconds. The
8080A CPU has a cycle time of 2 microseconds.™ If this system were actudlly
implemented, the 8080A-1 CPU could be used which offers higher speed with
cycle time of 1.3 microseconds which could bring execution time down to 40
seconds for each iteration giving approximately 6 minutes to reach conver—
gence. This figure is derived with no modification of the software. Since .
it falls within our difinition of ;"real time", which was around 15 minutés,
it is definitely a workable solution.

Another alternative is, 'of course, to use hardware floating point umits.
Two units that we are familiar with indicaté a disparity in execution times
of several orders of magnitude. Their specifications appear in Appendix B
For the purposes of the following analysis, ’typlcal' evecution times For -8
digits of prec:.s:Lon of the North Star Coiputers, Inc. FPB unit were used.

Our system indicated the Ffollowing frequency of fleating point operations
for each iteration:

2Additions -~ 3137

Subtractions - 672
Multiplications ~ 2382
Divisions - 940
¥hen trying to compute the time it would take to execute ‘those instruc-—
tions we noticed that the time it takes to access hardware Floating point

unit is more than twice than the time it takes to do the calculations. Namely,

we came up with the following mumbers:

TIME (SEC) PURPOSE
0.35 perform the operations
0.825 input and output the murber Fform

FPB (8080A-1)

1.175 total time required

Therefore, use of hardware wnits make it possible to decrease the execu-

tion time by one order of magnitude.

Foture Research:

The parameters that have to be optimized in the search and rescue
mission consist of the accuracy of the position estimation and the time in
which it is performed. Proving the feasibility of a microprocessor -
implementation is Ffar Fram devising an optimal algorithm.

IF the nonlinear regression method is utilized there is a lot of
room for improvement “in the inital estimate, a quantity that can affect
the whole outcome of the iterations. Several methods that are. suggested
in Dr, Marini's paper can be explored. Furthermore, since the data
collection takes an appreciable amount of time an algorithm should be devised
in which an estimate is upgraded with each incoming datum. If that algorithm
is good éncugh then the estimate could be the result itself.

A Further enhancement on the calculation tiem can be achieved through
parallelism., It can appear on two levels:

* The implementation of the least squares algorithm
+ The grouping of data

The least s.quares algorithm may be broken into parallel subtasks that
can bhe performe?i by different processoi:s in parallel, especially Floating
point operations.

The data may be grouped in clusters on which the least squares
algorithm is applied. The estimate provided by each cluster is then processed
through least squares estimation itself. This method could be applied at
data collecticn. time too.

Appendix A

* Sarple run at GSFC

* Sample run at Columbia

L =
T2 T e Lo b E T
L Sl HGT ARES SR GG TSR e N Bt STER T S 1

x LR -t

SRS THEH3. 58084 dETD. 20180

Sz ORIGINAL PAGE IS
R OF POOR QUALITY

A

SESOT CLARdATRISET LS

Lo B
LR 1 TR S P s T 15 P T T
CCis HGT ARE: 32.75197471 273.92000:0 2.8%4947R18E 13

gy

i
5
0
)
)
1
it
—

[T
-

!
Fo g ey —

[L]
i
—

et B
PALSE Gl SC507R) 408

20 L MTHNATS DL RDIMTAIDE TS

DE1TESIGA0 T EE4N4TRISET 13

Lars! E
§ DALES

23

5 -
45

S I A 1

243

S8 B
S | et (. G Faaada] =0
« HET BRES " J29.231380503 28l V9es n
L

NASA sanple run at GSFC

1

£

3= o

AGT ARES

He BGG 7 20E

BB Bl b

ATy ST Dt Lo o
b e Tooe I T ok Tl O P

L1 E

ORIGINAL PAGE BB
7 POOR QUALITY]

A

o e
PR I s e i
iP5

"

THE. FESULTING FOSITION IS: sample run at Columbia™
= =3 DOZIASIERISE4ET Y= -0 423002207 8E+04 = B 4RI IeflEVE+FSd

il

s FESICUALS = B, 1154615462E+R1

i —— e

FESULTING FOSITION IS:
A.

|
THE FES!
B EZ1EQ47SSEE+ET Y= ~B 121251 TSIFE+GY

I~
i
1]
I
[
=1
IT:
o
[rs
(A
Ty
1Tt
]
m
+
%3
Ia

-.r:ﬁ"-_'.—FE IDUARLCE (S M N s paiutot el a i oy ap gt

b

‘.ﬂ

g e

I'HE“T: ESULTIRG FOSITION IS — ’ ’ : R o T
=B Sded5EY21IAE+HRE Y= -6 4EEReTIRI5EA :

1
i
W]
|r‘_
Al
19
5
J'l
:
&
m
+
Q
NN

"-ITZI'?S“RE':—-IUUHE’S = O IZRSYYATRREEETTTTT T ’ -

| -
THE_FE' SOCTYIAG FOSTTION =7 7 7 7 o o
N SATATEHIAZSE+HES Y= ~38 48D25E3S0E+St D= 8 SEETREIZSEE -+

SMSTRESIDURCS ST B arRsdefdiilE+s8 - o
1
iz

THEAF-'E:DLTTI}GT‘US.ITI'TUWTS: T o T T
B, SEVE1EESEAE+ET Y= A, $8DE4ArTISE+GY = 2

—s

[}
[nn}
I

ﬂn
i
EMSTPESIDUARLS =7 BIOETEERAS

f)

"1 RE+

[xx]
m
iz
%)
H
1

i
TRE™RESU
4= @ o

TING POSITION T IST T T
S3TLAGE+0E Y= -0, 28I TERRcE+GY O S

U
i)

)
H
1%
-
]
£
b
Il
L'j
il
,_.
o
.M
+
<)
I

FMS RESTLUALS = ° 8. BS4TEIHI29F+66 e

3
‘\._I
bel
b
1)
mu
+
)
.I'..
-
li
i
1]
L
]
1ad
iy}
[H)
=]
)]
X
5]
1 D
m
+
=1
o
I-1
h
iz
5
[
L1
o
EAY]
L]
]
]
Py
1!
i
o n

ok e

THE FESULTING RPOSITION IS: T T

K= B 108EL2ERETE+EY Y= -E JREEESIEEREE+FEd F %hl‘:'_—.ff.__r-E**ﬂi?

o
'-f-

FMz "PESTDURLES ™= WS B€4r4‘§‘134 TE+5E -oTm -

THE FESULTIHNG FOSITION IS:
B B ABRREEZEIL4VEFGd Y= —h JEFRITRINIESCY

I]

- B AB1RTEL-bOE+GY

FHS FESIDUJALS =~ B, a5d747 287 oE+06 ’ e - -
E . . ORIGINAL PAGE IS

.o . OF POOR QUALITY] .
THE“REE_LT MG POSITION IS7 - . . Co T omTEmTeT '
We @ SES TEE+E S+ = ALSZETIAIE+SY

Iv
ot
;.;
[y}
t_LI
||1
fa
=
-1
T4
mu
+
=
o
-

1

}
X
£
]
1-1
[}

.1

1]
S
faf)
"y
0
il
4
1
—t
r-]

i
o
I
[}

EHS*RESIDURLS'E"@.564?4523?25+ﬁn‘ _ e -

THE RESULTIHS FOSITION 167 . T o
¥ @ A00AZESTEZIEHEY Yo —f ASFNTISTIEHGY T 30 J0LAIRERIE S0

FME PESICUALS = 6. OE4T48T444E+06

Appendix B
Two typical hardware Eloating point units

* FPB by North Star Computers, Inc.

* FPU by Cyberuetic Micro Systems

FPB DATA SHEET

EXECUTION TIMES 1,2,3.

PRECISION DIGITS: 2 4 6 8 10 | 12 14
ADD best i 1 1] T 1 1
typical 8 8 9 10 10 11
worst 10 10 10 11 11 12. 12
SUBTRACT best 4 4 4 4 4 4 4
typical 8 8 9 9 10 10 11
worst 15 16 17 18 19 20 21
MULTIPLY best b 5 5 b 5 5 5
typical 18 34 55 80 111 146 186
worst 51 125 228 382 527 720 933
DIVIDE best 7 7 - 7 7 7 7 7
typical 39 70 109 156 211 274 370
worst 62 139 229 340 470 621 778

1. Times given in microseconds
2. Execution times are a function of the input values
3. Times listed do not include transmission of input values and result

Board dimensions:
Model A: 5in. by 10in.
Maodel B: 6% in.by 12 in,

Power 1equirements:
Model A: 8 V {unregulated} @ 1.7 A
Model B: 5 V {regulated} @ 1.7 A

Board Construction:
FR4 material, gold plated edge connectors

Floating point number representation:
Byte 1: bit 7=sign {1=negative number, O=positive number)
, bits 6-0 = exponent in excess 64 binary representation
bits 7-0 = zero represents the zero value ' .
Byte 2: bits 3-0 = least significant digit of valUe in BCD coding
bits 7-4 = next least significant digit of vafue

Byte n: bits 7-4 = most significant digit of valde in BCD coding
bits 3-0 = next most significant digit of value

All valtdes are nomalized,

Other representations of BCD floating point numbers require a change in microcode and are avaitable on

special order.

*Sample use of the North Star FPB for a divide operation with 8 digit precision
*In this example assume arguments are in memory in form:

.* Most significant byte (msb) digit pair

* Susequent digit pairs follow the msbh

* Exponent/sign byte foliows Ish digit pair.

* Pointer addresses the exponent/sign byte

*BC has left arg pointer

*DE has right arg pointer

*HL has result pointer

*The FPB receives its arguments by “peeking” at the 8080 bus
*when the argument values are loaded to accumulator,
*Two jumperable "hardwired”” addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision.

FDIV LDA RSTRT This "hardwired” reference signals FPB to "“wake up”*
MVI A8*16+DIVOP Specify precision and operation code to FPB
LDAX D Exponent/sign byte of right arg
bCX D Advance pointer to next byte
LDAX D Least significant digit pair of right arg
DCX D , Advance pointer to next byte
LDAX D
DCX D
LDAX D
DCX D
LDAX D Mest significant digit pair of right arg
LDAX B Exponent/sign byte of left arg
DCX B
LDAX B Least significant digit pair of left arg
DCX B '

LDAX B

DCX B

LDAX B

DCX B

LDAX B Most significant digit pair of left arg

Now the Floating Point Board is performing the operation

LX! D,FPDIN “Hardwired” address for receiving value from FPB

FDIVI LDAX D gt Loop waiting for completion signal {sign bit)
ORA A The FPB is done when the sign bit becomes 1"
JP FDIV1 Loop if sign bit is stili “@"

ANI EBITS Check for error, condition tested at end
LDAX D~ Exponent/sign of result
MOV MLA Store exponent/sign of result
DCX H Advance pointer,
LDAX D Least significant digit pair of result
MOV MA ;
DCX H
LDAX D
MOV M,A
DCX H
LDAX D
MOV M,A
. DCX H
LDAX D msb byte of result
MOV M,A Store it
RZ Return if no error was detected

JMP ERROR Go report error (i.e. underflow or divide by @)

FLOATING POINT UNIT

PRICE LIST
MODEL QUANTITY .
1 25 100
#1 $595.00 $535.00 $475.00
#2 470.00 425.00 375.00
£3 345.00 315.00 275.00
A1l sales FOB Palo Alto
EXECUTION TIMES
FUNCTION TIME IN MILISECONDS (approximate)
ADD, SUB 110
MUL, DIV, SQRT 225
TAN 846
LN, SIN, C0S,-»POL 1250
POWER 172G

CRBERNETIC MICARO SYSTEAS

2460 EMBARCADERO WAY
PALC ALTO, CA 94303

{(4158) 321-0410

Appendix C

The APL least sguares program

1
.
i | B i
v 3 .
F
; 4
T oY

dLER PIRSESEsSEISRUESHs s ﬁll:'”

15 FIRST BliE2S Fib S HThbe.d 11'Ii’i'f' SR COORDIMATES

A1 13 MUMBER OF ITCERGTIOE.S 0 b ean b I:FH...
e R S

SESPES Eh
PIOLACE B OFROM POLES ARl fic 55T LERNSYH 30 SURFACES AE= ERRTH FADIUS

JEE D +1ETTRAER BT =60 £, =it

"-;—-||1:[1]-\ |+u; S el B 4l RN 2. 5
I F N BY 3 MATRIK. OF SFTE !I J .r FOSITICHES W OF UELOCITIES
= {750 92

S AH. S

ZOMECTOR OF RAMGE RS LETHEED SAIELLITE fHD POSITION E
iR SR
U Is N CORPOHERT LECTOR OF PIEZASLIFEED Fronlt BEATES
= Ip-RD

‘!
1%=

ESFRES-BIRSE I+/RESY =FRES
I=iI+1) “END

TOLCULATE MATRIN OF FESTDUAL. ECUATIOHS
by DLy PR

i (PR PRIGRAS

- M EHAVE (01 M =11en

= P=PL1I=ELZ1) s (-ELE1 s (-EL2I=EL210 B 010 s (KX (P12 +P[2] X

T ALCULATE SPHERTCAL-CAR TESIAN T'Fl'il‘l"l"l_li'Iil'il']l'n{

ciaT SEUARES SOLUTION OF FESTDUAL EXUTIoHs
T :

- PR ESEM

STDURLS: ' s Di4-RESaZ) SPRED) 0.5

LR TRAHSFORMA T I n.un i-Hl.Ti__IHH i GEODETIC COORDINATES
s LM HST ARE: 'SETOGE £

0 2 [B

&

ORIGINAL PAGE IS
OF POOR QUALITY

http:i.It-13.10

Bibliography

Sterbeuz, Pat H. (1974}, "Floating-Point Computation”,
Prentice-Hall, Inc., Englewocod Cliffs, N.J.

Hashizume, Burt (Nov. 1977), "Floating Point Arithmetic", Byte,

Marini, John W. (Oct. 1976), "Initial Position Estimates For
Satellite-Aided Search and Rescue", Goddard Space Flight
Center, Greenbelt, Maryland.

7 }/7 ' . K; /;7
Q’?) /l ' %o%g%wﬂj 4%(/2]7

. | E. Schmig
E@ o "'r’% < é 2F/ L
NES D S] NASA - GSFC
E'E M it Sl VY
Wieu i JAN 16 1978

MICROPROCESSOR UTILIZATION IN SEARCH & RESCUE MISSIONS

Mischa Schwartz

Theodore R. Bashkow

Department of Electrical Engineering §
Computer Science

1312 S.W. Mudd Building, Columbia University
New York, NY 10027

January 1978
Final Report for Period 9/27/76 - 9/26/77

Prepared for
National Aercnautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

TECHMCAL REPORTYT STANDARD TITLE PAGE

’ 1 Report Ne. r. Government Accession No 3 Reclp:cm [CotolOg No ’ ——|
4 Title end Subtitle Tt i 5§ ReporDaie = - ST]
MICROPROCESSOR UTILIZATION IN B

l SEARCH § RESCUE MISSIONS erforming Org

B Performing Organization Report Mo

7 ‘i\ﬂm(’ha Schwartz and Theodore R. Bashkow

9 Perfarming Organizotion Home and Address 10. Work Umit No.
Dept. of Elec. Eng. § Computer Science

;, 1312 S.W. Mudd Building, Columbia UniverSity|ii. Contract or Grant No.

New York, NY 10027 NAS 5 23727 . S
: 13. Type of Report and Perod Covered
12. Sporsoring Agency Nome and Address FINAL REPORT

Nat'l Aeronautics § Space Administration 9/27/76 - 9/26/77
Goddard Space Flight Center YT TTT Ty PTTrTY ot
| Greenbelt, Maryland 20771 4 Sponsering Rgency C

15, Supplementary Notes

16, Abstract

The position of an emergency transmitter may be determined by
measuring the Doppler shift of the distress signal as Teceived by
an orbiting satellite. This requires the computation otf an initial
estimate and refinement of this estimate through an iterative, non-
linear, least-squares estimation.

A version of the above algorithm was implemented at Goddard
Space Flight Ceunter (GSFC) and tested by locating a transmitter
. on the premises gnd obtaining observations from a satellite. The
; computer used was an IBM 360/95. The position was determined with-
in the desired 10 km radius accuracy.

The purpose of this project is to determine the feasibility of
per forming the same task in real time using microprocessor techno-
logy. The least square algorithm was implemented on an Intel 8080
microprocessor and the same experiment was rum as at GSFC.

The results indicate that a microprocessor can easily match

the IBM implemeuntation in accuracy and be performed inside the
time limitations set.

|
1
|
i

17. Key Words (5. tected by Author(s}) 13-.—533;&!:1;!56 Statement

19. Security Classif. {of this report) 120, Secunty Classif. {of this p_u_t;)___ —Iﬂ. Mo, of Pages |22, Price®

|

*For sale by e Cleattaghouse for ederal Scicntific and Techmeal Information, Sperngheld, Virgine 22151,

http:S...o.or

Microprocessor Utilization in Search & Rescue Missions

FINATL, REPORT

Introduction:

The position of an emergency transmitter may be determined by measuring
the Doppler shift of the distress signal as received by an orbiting satellite.
This requires the computation of an initial estimate and refinement of this
estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was implemented at Goddard Space Flight
Center (GSFC) and tested By locating a transmitter on the premises and obtaining
observations from a satellite. The conputer used was an IBM 360/95. The po-
sition was determined within the desired 10 km radius accuracy. '

The purpose of this project is to determine the feasibility of performing
the same task in real time using microprocessor technology. The least square
algorithm was implemented on an Intel 8080 microprocessor and the same experi-
ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IBM im-

plementation in accuracy and be performed inside the time limitations set.

Why Microprocessors:

Time is an implicit restriction in any search and rescue mission. The
use of satellites and computers is dictated by that time limit. The use of
a big conputer to determine the position presupposes commmication between the
satellite and the computer. This commmication introduces a time delay since
the satellite is not always within radio visibility of an installation that
possesses both the commumnication and ccaputing power for this problem. Fur—
thermore the result has to be forwarded to a command center to do the dispatching.

Microprocessor utilization can alleviate this situation in two ways:
by giving cheap camputing power to comminication facilities or by incorporating
the computing power in the satellite itself thus eliminating this commmication
completely.

Microprocessors offer light weight, small volume, low power processing.
Their speed is improving rapidly and their cost is going down. They are the

logical choice for a satellite search and rescue system iF they can perform.

Machine Configuration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

- Development system
- Minimal execution system

+ Actual Field configuration

Initially our development system consisted of an MDS~80 Intellec micro—
computer by Intel with 16k bytes of RAM memory and a resident ROM monitor.
Most of the Floating point package was developed in machine language on that
system using the monitor's limited hexadecimal editor and debugger. 'The need
for more sophistication became apparent. After several failures in exploring
alternatives (as Ean;:y as hooking up to a PDP 11 through a telephone line
for more storage) we were able to acquire a dval floppy disk drive by Intel.
A spare line printer was attached to the system with minor hardware modifica-—
tions and 16k bytes more RAM were added in order to support DOS. The enhanced
system had the power of a mini-conmputer in software (assembler,-editor, li-
brary manager, linkage editor, leader, and a sufficient file manager) at a
speed which was slow but acceptable. The £loating point package was converted
to assembly language, and two more packages were developed: the I/0 package
and the matrix manipulation package. Unexpected help came from the use of
ICE-80 (In Circuit Emulator), designed For a different application, as a
powerful symbolic debugger substituting for the monitor hexadecimal debugger.

Out of this final version of the development system only a limited
amount of resources were used for the Einal run. Those define the minimal
execution system. The disk was only used for input of data. The essential

parts were:

The CPU card

16k Bytes of menory

* The console device and its interface

- Power supply: 12V, 5V, -5V, ground

Additionally, the line printer was used to produce a hardcopy version of
the results. .

The actual field configuration would be the same if the machine were
located on the grownd. Some kKind of commmications equipment would be re-
quired to provide the data input and, mavbe, start tﬁe run autcmatically.

The configuration would be different, though, if the machine were located on

the satellite. The requirements for the satellite configuration would be:

* The CPU card

- 16k byvtes of memory

" An interface that can load the information in renory
+ A means to conmunicate the result to the world

* Power supply: 12V, 5V, -5V, ground

The Floating Point Package:

Based on estimates of the number of operations required we were in-
“clined to think that any £loating point operations would have to be performed
by hardware and not by software since estimated times became prohibitive.
This floating point package was developed to help us count the actual nunber
of operations rather than perform them in an actual situation. The Ffinal run
proved our estimates wrong and the package gained new importance.

There are a number of representations of floating poing numbers dif-
Fering in accuracy and range as a trade off to the number of bytes reguired
per number. The one used was the ANST format for FORTRAN which happens to
be implemented by hardware as an option in IBM computers. It consists of one
sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa-
decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2
decimal digits. Specific operations were not timed although a more general
timing analysis appears in a later section. This format was chosen as opposed
to the BCD format because the space requirements are lower for the same
amount of precision, which in turn reduces execution time slightly. A man-
tissa of binary digits was not used because of the Frequent need For normali-
zation.

Addition and subtraction tazke exactly the same time, whereas multipli-
cation is approximately equal to 22 addition and division is approximately
60 additions.

Multiplication produces a 48 bit result mantissa which is then normalized
and rounded to 24 bits. This preserved-the mumber of significant digits, orx,
viewed from a different angle, is the same as a double precision multiply if
the two arguments were expanded with zero fill.

Division preserves the significant digits again by éxpanding the man-
tissa of the dividend to double precision and results in full single preci-

sion result. Normalization and rounding occur as in maltiplication.

Accuracy is thus preserved to true single precision throughout in a
numerically stable manner keeping the length of the number to 4 bytes. The
cost is expensive multiplication and, expeciallu, division. This dictates
a programming style whereby division is avoided unless it is absolutely neces-—
sary. The benefits, on the other hand, are numerically stable implementa-
tions whose results match the double precision to the extent possible as
will be seenh when the results of the run are analyzed.

The square root function was implemented by using a variation of Heron's
formula based on the observation that the mantissa of any floating point num-
ber will have a value of 1/16 to 1 (interpreted as a EFraction). As a First
guess an approximation to a straight line connecting the two end points is
made. Experimentally, six iterations were Ffound necessary to produce an
accurate result. A better first gquess could improve that significantly, but
time constraints did not allow us to pursue that direction.

Finally, input and output of Ffleating point mumbers turn out a much
more serious task than first expected. The input routine recognized numbers
with a maximum of ten integer and ten Fraction digits. This provéd more
than sufficient for our needs. The output routine produces a rigid scienti-
fic forxrmat with 10 fraction digits. When interpreting the results it should
be kept in mind that at most only 7 are significant. The format was re-
tained in case of future expansion of the mantissa. Both the input and output
routines could be better, but since their function is only tangential to the

project at hand they were kept on the bare functional level.

Matrix Operations:

211 matrices in the system are defined as two dimensional, including
vectors. The first two bytes contain the nmumber of rows and the nurber of
colums in the particular matrix, respectively. This effectively limits the
nuber of observations to 256. Vectors have one of their dimensions identi-
cally equal to 1. The next two bytes contain the address of the first byte
that follows the last byte belonging to the matrix. Adjacent elements in
a row of the matrix are stored as adjacent Floating point numbers in memory.
Rows are stored sequentially starting from the first row in the Eifth byte.

In an effort to minimize the number of address calculations in the least
squares algorithm the APT, program we were supplied with, (LSQ), was converted
into FORTRAN. The calculations involved in the residual equations were all
grouped together inside one big loop. The advantage of such a scheme is that
once an offset is calculated it can be used to address all the needed elements
of the matrices involved in the calculation. When the time came though, to
implement it using 8080 aséerfbly language, it became all too. apparent that
there were too many addresses to keep track of and too few registers to help.
Therefore, due to the limitation of aé{dressing capabilities, routines were
implemented for the various matrix operators in APL. This resulted in well
structured and very efficient code, the style being dictated by the instruc-
tion set.

A minimm mmber of matrix utility routines was necessary. Matrices can
be created by specifying their dimensions, they can be filled with zeros, they
can be read from a device, they can be moved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following arguments.

- a constant and a matrix

- a vector and a matrix

- two matrices (plus possibly a result matrix)

- one matrix {for example, inversion)

In our particular application there was only one inversion of a 2 by 2
matrix involved. A sinple algorithm derived from Euler's method is imple-
mented using fixed pivots., Execution time and temporary storage are opti-

mized.

Implementing the Experiment:

Having developed the tools that were discussed in previous sections the
actual inmplementation was straight forward. For reasons already mentioned a
routine was written to match the IS0 routine* developed by Dr. Marini almost
statement by statement. The correspondence is indicated in the source pro-—
gram by keeping track of the APL statement numbers. The array names were
kept the same ‘as much as possible and only one additional tenmporary matrix
was required. The program was written for a maximum of 100 cbservations.
All matrix operations as well as the square root keep track of the calls to
the Floating point routines.

The whole package makes limited use of two monitor routinés, which can
easlily be eliminated. The reason they are there is because software was
being developed in machine language and the monitor provided a lot of needed
help. So, essentially, LSQ can be mm completely independently.

The space requiremenfs for this particular run was approximately 16k
bytes, out of which 4k could be in ROM and 12k in RAM. The exact mumbers
are as Follows: -

Code: 3656 bytes

Data: 10365 bytes

Stack: 100 bytes (arbitrarily)
Total: 14121 bytes

Incorporated into the package were Eou:g counting routines that kept
track of the mmber of .additions, subtractions, multiplications and divisions
required during each iteration. The results will be analyzed in the next sec-
tion. The actual implementation would not require these routines. The counting
overhead to each arithmetic operation is approximately equal to halE the time

of an addition.

* See Appendix C.

10

Interpreting the Resulis:

The final run converged and yielded fEive digits of accuracy. If conver-
gence is defined as a ratio of two succesive RMS residuals being close to 1
(in absolute) it was attained at the ninth iteration to within 0.00001.
Comparing these results to the run at GSFC (run at double precision, or 16
-digits of accuracy) we note the 5 digit accuracy of our result.

Nurerical analysis gives us enough tools to justify the loss of two signi-
Ficant digits in the course of the iterations. The main source of error ap-
pears to be the subtraction of the estimated range rates from the actuals.
The subtraction of the average residual equations could could contribute to
the exror as well.

The measured execution time for this particular run was 62 seconds per
iteration. The microprocessor used was an 8080A by Intel. Adjusting for
counting the number of operations tlie true time becomes 61 seconds. The
8080A CPU has a cycle time of 2 microseconds. If this system were actually
inmplemented, the 8080A-1 CPU could be used which offers higher speed with
c.ycle time of l.3 microseconds which could bring execution time down to 40
seconds for each iteration giving approximately 6 minutes to reach conver-—
gence. This figure is derived with no modification of the software. Since
it Falls within our difinition of "real time", which was avound 15 minutes,
it ig definitely a workable solution.

Another alternative is, of course, to use hardware Floating point units.
Two units that we are familiar with indicaté a digparity in exgcution times
of several orders of magnitude. Thelir _specifications appear in Appendix B
For the purposes of the following analysis, ‘typical' execution times For 8
digits of precision of the North Star Computers, Inc. FPB unit were used.
Our system indicated the following frequency of floating point operations
For each iteration:

Additions - 3137

11

Subtractions - 672
Multiplications — 2382
Divisions — 940
When trying to compute the time it would take to execute those instruc-—
tions we noticed that the time it takes to access hardware floating point
unit is more than twice than the time it takes to do the calculations. Namely,

we came up with the Following numbers:

TIME (SEC) PURPOSE
0.35 perform the operations
0.825 input and output the nunber form

¥PB (8080A-1)

1.175 total time required

Therefore, use of hardware units make it possible to decrease the execu-

tion time by one order of magnitude.

12

Future Research:

The parameters that have to be optimized in the search and rescue
mission consist of the accuracy of the position estimation and the time in
which it is performed. Proving the Feasibility of a microprocessor -
implementation is Far from devising an optimal algorithm.

IE the nonlinear regression method is utilized there is a lot of
" rcom For improvement in the inital estimate, a quantity that can affect
the whole outcome of the iterations. Several methods that are. suggested
in Dr. Marini's paper can be explored. Furthermmore, since the data
collection takes an appreciable amount of time an algoritlm should be devised
in which an estimate is upgraded with each incoming datum. IF that algorithm
is good enough then the estimate could be the result itself.

A further enhancement on the calculation tiem can be achieved through
parallelism. It can appear on two levels:

+ The implementation of the least squares algorithm
+ The grouping of data

The least s.quares algorithm may be broken into parallel subtasks that
can be performed by diFferent processors in parallel, especially floating
point operations.

The data may be grouped in clusters on which the least squares
algoritim is applied. The estimate provided by each cluster is then processed
through least sguares estimation itself. This method could be applied at
data collecticn’ time too.

Appendix A

* Sample run at GSFC

+ Sample run at Columbia

13

EEs B
(ol = TR v i}
HGT HRE:

L= B
ESTILALSS

1=

L -

T

T “_‘ Dy)
L |

v
3
1

1 133

TAaEH. L

T4237 9303

bie iz

G e Dt
D e T B

=

NASA sample run at GSFC

"AiEET

THE RESULTING FOSITION IS:
f=—rﬁ TERSRITIISEHGT Y= 0 GRIROSDe T RERO4

(\, . e X

FHE RESTITLACS = 8, 115481540

) S
JHE FESULTING POSITION IS:

= B EHERYTISSE+GE Y= B JI12GITOE
t

TS RESILUALS = 6

ZE+RL

TE+G
AOSESS2ASTE+AL
THE"FESIILTIHG FOSITION I:.

<= @ SJdE4TESTIIIE4RE Y=

$MS"RESIDURLE'£*”=7139-

FTHE FESDCTING
3= o]

FOSITION I3,

SUTETEILITEHET ¥ -8 SISO L ESGE

MSTRESIDUALS =" "6, 6763482 L LIE+5E

F!E FESOUTING FOSTTION 157
3, SRTIISHCeE+HEE Y

i

R

MS FESIMIALS = B BSTGTV9EI1I2R+00

— s o R

THETRESULTIMNG FOSITION IS:

a= B, 28352471 458E4+5EE 0 Y= -0, 9237 8RAcE e
BMS RESIDUALS = 6, BSd7T5I34F+a0

THE FESULTING FPOSITION IS

X= @ 106D8SIISIE+E4 Y= B dRIETTISHIEHL
FMS FPESIDUALS = A BEATAPES3SF +060

THE FESULTIHG FORTTION I--

Y= R ARATOIEISOESDY Y -6 GRTETE TP e
EMETRESIDUIALS = "3 017926437 F+00
FTHE"FESULTING FOSITION I35

A= B LBEESEEIATERSG Y —3 RTRITISTOE R0

R o

TFESTIDUALS = B @SdT3TE6TSF 06

THETRESIH.TING FOSITION T2
w8 ARGEESIATEE DY e —0 d53

..... ‘Ip—"_-:.--}-l, I

EMSTRESTIMMIALS = A,

THE FESUL TIMG FOS

=

ITION I8
A0ORTEETEZAE+RDY Y —F, (DR ET TRaN9E

FMS FESIDUALS = @,

O 8T+

']

-
ML

i

-
LA

1

G,

LlElEEET

sample run at Columbia
LM IATIEGI T TE+Eed

16

AOZHITTATE+D

Lowp -

AL AT SR NRE

.
-
it
—
) L!

T u-.l n— —Q-".'}ul-.

AR EEHL

SRR RN

Appendix B

Two typical hardwore floating point units

* FPB by North Star Computers, Inc.

* FPU by Cyberuetic Micro Systems

17

18

FPB DATA SHEET

EXECUTION TIMES 1.2,3

PRECISION DIGITS: 2 4 & 8 10 12 14
ADD best 1 -1 1 1 1 1 1
typical 8 8 9 9 10 10 11
WOrst 10 10 10 - n 11 12 12
SUBTRACT best 4 4 4 4 4 4 4
typical 8 3 9 9 10 10 11
worst 15 16 17 18 19 20 21
MULTIPLY best b b 5 5] 5 b 5
typical 18 34 5% 80 111 146 186
worst 51 125 228 382 527 720 933
DIVIDE best 7 7. 7 7 7 7 7
typical 39 70 109 156 211 274 370
worst 62 139 229 340 470 621 779

1. Times given in microseconds
2. Execution times are a function of the input values
3. Times listed do not include transmission of input values and result

Board dimensions:
Model A: 5in. by 10in.
Model B: 6% in. by 12 in.

Power requirements;
Model A: 8 V {unregulated} @ 1.7 A
Model B: 5 V (regulated) @ 1.7 A

Board Construction:
FR4 matenal, gold plated edge conneciors

Floating point number representation:

Byte 1: bit 7=sign {1=negative number, O=positive number)
bits 6-0 = exponent in excess 64 binary representation
bits 7-0 = zero represents the zero value)

Byte 2: bits 3-0 = least significant digit of value in BCD coding
bits 7-4 = next least significant digit of value

Byte n: bits 7-4 = most significant digit of val,tfe in BCD coding
bits 3-0 = next most significant digit of value

All values are nomalized.

Other representations of BCD floating point numbers reguire a change in microcode and are available on
special order.

19

*Sample use of the North Star FPB for a divide operation with 8 digit precision
*Inn this example assume arguments are in memory in form:

* [Most significant byte {msb) digit pair

* Susequent digit pairs follow the msb

* Exponent/sign byte follows Isb digit pair.

* Pointer addresses the exponent/sign byte

*BC has left arg pointer

*DFE has right arg pointer

*HL has result pointer

*The FPB receives its arguments by “‘peeking” at the 808¢ bus
*when the argument values are loaded to accumulator,

*Two jumperable “hardwired”” addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision. '

FDIV LDA RSTRT This "hardwired” reference signals FPB to “"wake up”
MV A8*16+DIVOP Specify precision and operation code to FPB
LODAX D Exponent/sign hyte of right arg
DCX D Advance pointer t0 next byte
LDAX D Least significant digit pair of right arg
DCX D Advance pointer to next byte
LDAX D
DCX D
LDAX D
DCX D
LDAX D Most significant digit pair of right arg
LhAX B Exponent/sign byte of left arg
DCX B
LDAX B Least significant digit pair of left arg
DCX B
LDAX B
DCX B
LDAX B
DCX B
LDAX B Most significant digit pair of left arg
Now the Floating Point Board is performing the operation
LXt D,FPDIN “Hardwired’’ address for receiving value from FPB

FDIV1 LDAX D Loop waiting for completion signal {sign bit)
ORA A The FPB is done when the sign bit becomes 1"
JP FDIVY Loop if sign bit is still "@"

ANI EBITS Check for error, condition tested at end
LDAX D Exponent/sign of resuit

MOV M,A Store exponent/sign of result

DCX H Advance pointer,

LDAXD Least significant’digit pair of result
MOV M, A

DCX H

LDAX D

MOV M,A

DCXH

LDAX D

MOV M,A

DCX H

tDaX D msh byte of result

MOV M,A Store it

Rz Return if no error was detected

JMP ERROR Go report error (i.e. underflow or divide by 9)

20

FLOATING POINT UNIT

PRICE LIST
MODEL QUANTITY
1 25 100
#1 $595.00 ~$535.00 $475.00
#2 470.060 425.00 375.00
#3 345.00 315.00 275.00
A1l sales FOB Palo Alto
EXECUTION TIMES
FUNCTION TIME IN MILISECONDS (approximate)
ADD, SUB 110
MUL, DIV, SQRT 225
TAN 845
LN, SIN, C0S,—POL 1250
POWER 1720

CYRERNETIC ZICAD SYSTELS

2460 EMBARCADERO WAY
PALG ALTQ, CA 94303

(415) 321-0410

Appendix C

The APL least squares program

21

S LRI
SR RICEEIRIRIRO I e i 22

0 TS FIRST GUNZDS L (T b v v i o b IR CTERIFATES.

’1 I3 MUMDEF OF 1100 il s 0 sty d-maa

§—FiosE-FL

Trlelal
TERLACE B Pt yan e Sk U A COaRTO T M = ETETH RIS
;JHLE1341E'“ T LLL;]“”' L ' .
SEE CETIY ME e L ! R
| IS oMY 3 i\ ; L R AL L SRLE K N I B =
- {oEnrE
T T R P
0OTA DICOTOR QF R, -oer 0 o FHCITD st b TTE rpib ORI TTO B
SRR I
- IS COHPIENT e I TR O T L O I N TR T
S e i L
R FES—BIASE (Fe FES) w1 BT
0 T=HF 18 SRR
o VLU ETE MHATR IS CF 3= L oo,
e I L L LR B o
Povvenp m ffgofSt RO AD i
bee e iRl P LED Pl 3!
gD ATE SPHER TCAL -~ (ET 218 Teatk st r i e
HE R L o 5 R = Mk SR o Sl BN PR I 50 I I R I NI A O ST | ER ¥l 8 O ok B ol e B

ST OSELARES SOLUG IO o8 el HLFR. Drhpednngs
?
«CRESEIN

P E PRSTIURLE: SERRRE N

RRTI S TFHH-FW!IH]lM
. Lt is HET ARE: trnty
LTI Iss

iwfs

;_::-1 - ':i;:l: -E-l R 2
Fe

i
r el e g IR T I DR DIHATE S
I,

Ml

& v

23

Bibliography

Sterbenz Pat H. (1974), "Floating-Point Computation",
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Hashizume, Burt (Nov. 1977), "Floating Point Arithmetic", Byte,
Vol. 2, No: 11, pp. 76-78, 180-188.

Marini, John W. (Oct. 1976), "Initial Position Estimates For
Satellite-Aided Search and Rescue", Goddard Space Flight
Center, Greenbelt, Maryland.

