
Na Code 932

NASA- GSFCMicroprocessor Utilization in Search & Rescue Missions

FINAL REPORT

Introduction:

The position of an energency transmitter may be determined by mreasuring

the Doppler shift of the distress signal as received by an orbiting satellite.

TIis requires the ccputation of an initial estimate and refinement of this

estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algoritm was implemented at Goddard Space Flight

Center (GSFC) and tested by locating a transmitter on the premises and obtaining

observations from a satellite. The conputer used was an IBM 360/95. The po­

sition was determined within the desired 10 km radius accuracy.

The purpose of this project is to determine the feasibility of performing

the same task in real tize using microprocessor technology. The least square

algorithm was inplemrented on an Intel 8080 microprocessor and the same experi­

ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IBM im­

plementation in accuracy and be perforned inside the time limitations set.

V78-28068
(NASA-CR-156788) mICROPROCESSOR UTILIZATION

IN SEARCH AND RESCUE MISSIONS Final Report,

27 Sep. 1976 - 26 Sep. 1977 (Columbia Univ.)

CSCL 09B Unclas
75 p HC A04/MF A01
G3/03 27062

Columbia University inthe City of New York

DEPARTMENT OF ELECTRICAL ENGINEERING New York, N.t 10027
AND COMPUTER SCIENCE

Mr. Paul Schmid

Goddard Space Flight Center

National Aeronautics

Computer Science & Space Administration "

Greenbelt, MD. 20771

DEC 2 7 1971

4

https://ntrs.nasa.gov/search.jsp?R=19780020125 2020-03-22T02:51:58+00:00Z

Why Microprocessors:

Tine is an inplicit restriction in any search and rescue mission. The

use of satellites and computers is dictated by that time limit. The use of

a big onputer to determine the position presupposes comiunication between the

satellite and the conputer. This comunication introduces a time delay since

the satellite is not always within radio visibility of an installation that

possesses both the conrnunication and coupnting power for this problem. Fur­

therore the result has to he forwarded to a comnand center to do the dispatching.

Microprocessor utilization can alleviate this situation in two ways:

by giving cheap canputing power to comunication facilities or by incorporating

the conputing power in the satellite itself thus eliminating this conmnication

coiwpletely.

Microprocessors offer light weight, small volume, low paAer processing.

Their speed is improving rapidly and their cost is going down. They are the

logical choice for a satellite search and rescue system if they can perform.

Machine Configuration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

* Development system

" Minimal execution system

" Actual field configuration

Initially our development system consisted of an MDS-80 Intellec micro­

computer by Intel with 16k bytes of RAM memory and a resident lOM monitor.

Most of the floating point package was developed in machine language on that

system using the monitor's limited hexadecimal editor and debugger. The need

for nore sophistication becane apparent. After several failures in exploring

alternatives (as fancy as hooking up to a PDP 11 through a telephone line

for more storage) we were able to acquire a dual floppy disk drive by Intel.

A spare line printer was attached to the system with minor hardware n-odifica­

tions and 16k bytes wore RAM were added in order to support DOS. The enhanced

system had the power of a mini-cofrputer in software (assembler, editor, li­

brary manager, linkage editor, leader, and a sufficient file manager) at a

speed which was slow but acceptable. The floating point package was converted

to assembly language, and two more packages were developed: the I/O package

and the matrix manipulation package. Unexpected help came from the use of

ICE-80 (In Circuit Emlator), designed for a different application, as a

powerful symbolic debugger substituting for the monitor hexadecimal debugger.

Out of this final version of the developrent system only a limited

amount of resources were used for the final run. Those define the minimal

execution system. .The disk was only used for input of data. The essential

parts were:

* The CPU card

- 16k Bytes of memory

"
The console device and its interface

" Power supply: 12V, 5V, -5V, ground

Additionally, the line printer was used to produce a hardcopy version of

the results.

The actual field configuration would be the sane if the machine were

located on the ground. Sone kind of omrunications equipment would be re­

quired to provide the data input and, maybe, start the run autnmatically.

The configuration would be different, though, if the machine were located on

the satellite. The requirements for the satellite configuration would be:

" The CPU card

* 16k bytes of memory

An interface that can load the information in memory

" A means to communicate the result to the world

* Power supply: 12V, 5V, -5V, ground

The Floating Point Package:

Based on estimates of the number of operations required we were in­

clined to think that any floating point operations would have to be performed

by hardware and not by software since estimated tines became prohibitive.

This floating point package was developed to help us count the actual number

of operations rather than perform them in an actual situation. The final run

pinved our estimates wrong and the package gained new ixportance.

There are a nuiber of representations of floating poing numbers dif­

fering in accuracy and range as a trade off to the number of bytes required

per number.. The one used was the ANSI format for FORTRAN which happens to

be implemented by hardware as an option in IBM computers. It consists of one

sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa­

decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2

decimal digits. Specific operations werd not timed although a more general

timing analysis appears in a later section. This format was chosen as opposed

to the BCD format because the space requirements are laver for the sane

amount of precision, which in turn reduces execution time slightly. A man­

tissa of binary digits was not used because of the frequent need for normali­

zation.

Addition and subtraction take exactly the same tire, whereas multipli­

cation is approxim.tely equal to 22 addition and division is approximately

60 additions.

Multiplication produces a 48 bit result mantissa which is then normalized

and rounded to 24 bits. This preserved-the number of significant digits, or,

viewed from a different angle, is the same as a double precision multiply if

the two arguments were expanded with zero fill.

Division preserves the significant digits again by expanding the man­

tissa of the dividend to double precision and results in full single preci­

sion result. Normalization and rounding occur as in multiplication.

Accuracy is thus preserved to true single precision throughout in a

numerically stable manner keeping the length of the number to 4 bytes. The

cost is expensive multiplication and, expeciallu, division. This dictates

a programming style whereby division is avoided unless it is absolutely neces­

sary. The benefits, on the other hand, are numerically stable inplementa­

tions whose results match the double precision to the extent possible as

will be seen when the results of the run are analyzed.

The square root function was implemented by using a variation of Heron's

formula based on the observation that the mantissa of any floating point num­

ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first

guess an approximation to a straight line connecting the two end points is

made. Experimentally, six iterations wre found necessary to produce an

accurate result. A better first guess could improve that significantly, but

tiie constraints did not allow us to pursue that direction.

Finally, input and output of floating point numbers turn out a :mch

more serious task than first expected. The input routine recognized numbers

with a mayixn of ten integer and ten fraction digits. This proved more

than sufficient for our needs. The output routine p.oduces a rigid scienti­

fic format with 10 fraction digits. When interpreting the results it should

be kept in mind that at ost only 7 are significant. The format was re­

tained in case of future expansion of the mantissa. Both the input and output

routines could be better, but since their function is only tangential to the

project at hand they were kept on the bare functional level.

matrix Operations: -

All matrices in the system are defined as two-dirensional, including

vectors. The first tx-n bytes contain the numiber of rows and the number of

columns in the particular matrix, respectively. This effectively limits the

number of observations to 256. Vectors have one of their dimensions identi­

cally equal to 1. The nedxt two bytes contain the address of the first byte

that follows the last byte belonging to the matrix. Adjacent elements in

a row of the matrix are stored as adjacent floating point numbers in memory.

Bows are stored sequentially starting from the first row in the fifth byte.

In an effort to minimize the number of address calculations in the least

squares algorithm the APL program we were supplied with, (LSQ), was converted

into FORTRAN. The calculations involved in the residual equations were all

grouped together inside one big loop. The advantage of such a scheme is that

once an offset is calculated it can be used to address all the needed elements

of the matrices involved in the calculation. When the tine came though, to

inplement it using 8080 assembly language, it becane all too apparent that

there were too many addresses to keep track of and too few registers to help.

Therefore, due to the limitation of addressing capabilities, routines were

implenented for the various matrix operators in APL. This resulted in well.

structured and very efficient code, the style being dictated by the instruc­

tion set.

A minium number of matrix utility routines was necessary. Matrices can

be created by specifying their dimnsions, they can be filled with zeros, they

can be read from a device, they can be moved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following arguments.

* a constant and a matrix

* a vector and a matrix

" two matrices (plus possibly a result matrix)

" one matrix (for example, inversion)

In our particular application there was only one inversion of a 2 by 2

matrix involved. A simple algorithm derived from Euler's method is ixple­

mented using fixed pivots. Execution time and temporary storage are opti­

mized.

IiplTenting the Experirent:

Having developed the tools that were discussed in previous sections the

actual implementation was straight forward. For reasons already mantioned a

routine was written to match the LSQ routine* developed by Dr. Marini almost

statement by statement. The correspondence is indicated in the source pro­

gram by keeping track of the APL statement numbers. The array names were

kept the same as much as possible and only one additional tenrporary matrix

was required. The program was written for a maximum of 100 observations.

All matrix operations as well as the square root keep track of the calls to

the floating point routines.

The whole package makes limited use of two nonitor routines, which can

easily be eliminated. The reason they are there is because software was

being developed in machine language and the monitor provided a lot of needed

help. So, essentially, LSQ can be run conpletely independently.

The space requirments for this particular run was approximately 16k

bytes, out of which 4k could e in XUM and 12k in RAM. The exact numbers

are as follows:

Code: 3656 bytes

Data: 10365 bytes

Stack: 100 bytes (arbitrarily)

Total: 14121 bytes

Incorporated into the package were four counting routines that kept

track of the number of additions, subtractions, multiplications and divisions

required during each iteration. The results will be analyzed in the next sec­

tion. The actual inplementation would not require these- routines. The counting

'overhead to each arithmetic operation is appioximately equal to half the time

of an addition.

* See Appendix C.

Interpreting tle Results:

The final run converged and yielded five digits of accuracy. If conver­

gence is defined as a ratio of two succesive RMS residuals being close to 1

(in absolute) it was attained at the ninth iteration to within 0.00001.

Co iparing these results to the run at GSFC (run at double precision, or 16

digits of accuracy) we note the 5 digit accuracy of our result.

Numerical analysis gives us enough tools to justify the loss of two signi­

ficant digits in the course of the iterations. The main source of error ap­

pears to be the subtraction Of the estimated range rates from the actuals.

The subtraction of the average residual equations could could contribute to

the error as well.

The measured execution time for this particular run was 62 seconds per

iteration. The microprocessor used was an 8080A by Intel. Adjusting for

counting the number of operations the true time beccmes 61 seconds. The

8080A CPU has a cycle time of 2 microseconds. If this system were actually

inplemented, the 808OA-1 CPU could be used which offers higher speed with

cycle time of 1.3 microseconds which could bring execution time down to 40

seconds for each iteration giving approximately 6 minutes to reach conver­

gence. This figure is derived with no modification of the software. Since,

it falls within our difinition of "real time", which was around 15 minutes,

it is definitely a workable solution.

Another alternative is, of course, to use hardware floating point units.

Two units that we are familiar with indicate a disparity in execution tines

of several orders of magnitude. Their specifications appear in Appendix B

for the purposes of the following analysis, 'typical' execution tines for 8

digits of precision of the North Star Conputers, Inc. FPB unit were used.

Our system indicated the following frequency of floating point operations

for each iteration:

Additions - 3137

Subtractions - 672

Multiplications - 2382

Divisions - 940

When trying to conpute the tiit it would take to execute those instruc­

tions we noticed that the tine it takes to access hardware floating point

unit is ore than twice than the tine it takes to do the calculations. Namely,

we came up with the following numbers:

TME (SEC). 	 PURPOSE

0.35 	 perform the operations

0.825 	 input and output the number form
FPB (8080A-I)

1.175 	 total time required

Therefore, use of hardware units make it possible to decrease the execu­

tion tine by one order of magnitude.

Future Research:

The parameters that have to be optimized in the search and rescue

mission consist of the accuracy of the position estimation and the time in

which it is performed. Proving the feasibility of a microprocessor

implementation is far fron devising an optimal algorithm.

If the nonlinear regression method is utilized there is a lot of

room for improvement in the inital estimate, a quantity that can affect

the whole outcome of the iterations. Several methods that are suggested

in Dr. Marini's paper can be explored. Furthermore, since the data

collection takes an appreciable amount of time an algorithm should be devised

in which an estimate is upgraded with each incoming datum. If that algorithm

is good enough then the estimate could be the result itself.

A further enhancerent on the calculation tiem can be achieved through

parallelism. It can appear on two levels:
" The imnplementation of the least squares algorithm

" The grouping of data

The least squares algorithm may be broken into parallel subtasks that

can be performed by different processors in parallel, especially floating

point operations.

The data may be grouped in clusters on which the least squares

algorithm is applied. The estimate provided by each cluster is then processed

through least squares estimation itself. This method could be applied at

data collection'- time - too.

Appendix A

Sample run at GSFC

Sample run at Columbia

NASA sample run at GSFO

i . i ARE . 4 .. ,4Ij

01245 -469:3096IL1 27C->121

D* Enl

HGr"FRE: , . 7 1 9.61.1. i;:.p?494?01 OE-13

S1014 "4830.0894:,VOiI,. _

1 LEIG EN
HOTIq.,, F ktI r "'.1- 7 .F7 ;:,' 'c't1t. .ci4A7.sE~

:31 IAS: f4,.

q.:IT
-P3S6 M36.251F15 2 C4IL~

- II. .5LS " " " ".

,.4
-HOT

IS:
ARE: 39.4761;;20iC 1 u7d$S1 P.0f9,4q 1j :Dj1%3

07 -4837-90-343 '4......'"4

- ':,0 r'

* JaLS:
.1I4T FIRE: 09.0:01951 .1. 05 5WI .944I.SE

* Ti -48Sfl. .05.495m ;IIIC< "ThIR

-lOGT FRE: :39.240250i4fl".67?3949

?99 -4838:..33 5 4.02022050

.T. 1 1537952 ,01-i 7107637 ci

176 48. 37-'' 1-IPAGE"IS
T ,

CN ORIGINAL PAdg/j

i-lT
1::;:
c"c.-

HI .E

ARE: C'

4-3- ,$S ."

15~c
.. ,,- ,1 .

,,

0.2

>-: C: j­

9-'
0Q O R QUT

i crrica:*:i'lSv~sa

:..thi_:;: .06..f.l1:-.0I3E::j 1

433E:. CSICM'.- 1

3. IBjA7'I+4J:J:%

" H!:LS : .• 64?4:302;S:3

1jGT IRE: '9. C:3:):44 C '' 1

*~~ K-~,438. "D"235:R9 -'0J9

,,."C, J9."48:B£,.:-::--::5.::.,t.. :3
-PAC&­

is/

6

http:06..f.l1

THE RESII.ITIIG POSITION
-o, 558- :::!5E+f­ 9

IS.
-8. 4 32S$E+01 ?

sample
3A.4:93s6'-.137E+o4

run at Columbia -'

RIIS :E4I",LdIALS = 0. 4i54215482E+81

THE RESULTING POSITION IS:
0=8. 82-694?55E+83 Y= -8. 491251754EE+04 hZ=0. 476.82-6,E+4

1S-FE Ir.;UIRAEb-- O.l054o7,2-E+O.. . . .

THE--ESUITING-POSITION
8. 84G45:-2211E+03

IS
Y=

--......
-0. 48;.9F78,995E+04 Z= 0. 406026S=5E+84

FMS--RESI[-UASE-T=%. 94f729E+8

TRE-FESLrf - -TI-ONS.
X:= 8. S4?0C83:i25E+04 Y= -0. 48783449859E+04 Z= 0. 4019426E+04

RHS-RESIFULS----7078420iE+00

THE-
X=

ESULTI NCiGSfT ITION- IS
8 . _3751 5 867,E+8. Y= -o. 40_.o?.:,E+0 2" i. 40 "-44,2E+04

RS--ES ,A S "AL -­ ;065O79G-F+G-L0

THE-RESULTING POSITION-IST
X= . 99994748E+04 Y-= -8. 482-T76'9859E+04 .J1 . -48282t57.1.4E-84

6;R.S- RESIDUALS- -0'. 06454442E+00

THE" RESULTING - POSITION IS'.
X= 0. -I802:-.9:E+84 Y= -0. 4Z-3279-59E+4 2= 0. 481949e-_9E+04

-. 1_,RESIDUALS- -0. 064749857E+80

THE- PESIUL.TIHG--POSITION IS:
X= 0. ifl2528i975E+34 Y-,= -0. 433D3',:..462E+;I4 :-- u

¢ . ,= - q­
4.$,2.5'-.-SE+.-1

RtMc-RE I C,LIFLS--1--- 064?4S048TE+OGT

THE-RESU LTING POSITION IS:

X- 0. 02,66-847E+04 Y= -. 480:'-59E+a,4 2-= 0. 4O±9..'4C

......

E+04

P.wS FESIE'UAL, = 0."6'4747867SE+-'0

'
"THE-RESI-L-TINC-POSI[TIOJ I.".[IECS2r"+0-. 4:C.SE+4 V

OlRIGINA
OF POORI

PAGE 12
QUALITY'

R1MS-RESIDU1FLS-~ 0." 1,647M82872E+03

4
J
T-HE RF;'ESU;LLT-I N.CT-O;S ZT ION. IS .:-­

'z-.- j. lP026782.1E+O4 "Y' -0. tSCZ 98KS:5 E+±04 8,-'. "t-1929i.......1E:= t'q-: IN:'.

F:MS FRESIC'UL.S = Ci. C6474SZ4.tE0I- - -

Appendix B

Two typical hardware floating point units

" FPB by North Star Conmuters, Inc.

* FPU by Cyberuetic Micro Systems

FPB DATA SHEET

- EXECUTION TIMES 1,2,3

PRECISION DIGITS: 2 4 6 8 10 12 14

ADD best
typical
worst

1
8-

10

1
8

10

1
9

10

1
9

11

1
10
11

1
10
12

1
11
12

SUBTRACTbest
typical
worst

4
8

15

4
8

16

4
9

17

4
9

18

4
10
19

4'
10
20

4
11
21

MULTIPLY best
typical
worst

5
18
51

5
34

125

5
55

228

5
80

382

5
111
527

5
146
720

5
186
933

DIVIDE best
typical
worst

7
39
62

7
70

139

. 7
109
229

7
156
340

7
211
470

7
274
621

7
370
779

1.Times given in microseconds
2. Execution times are a function of the input values
3. Times listed do not include transmission of input values and result

Board dimensions:
Model A: 5 in. by 10 in.
Model 8: 6%in. by 12 in.

Power requirements:
Model A: 8 V (unregulated) @1.7 A
Model B: 5V (regulated) @1.7 A

Board Construction:
FR4 material, gold plated edge connectors

Floating point number representation:
Byte 1: bit 7=sign (1=negative number, O=positive number)

bits 6-0 = exponent in excess 64 binary representation
bits 7-0 = zero represents the zero value

Byte 2: bits 3-0 = least significant digit of value in BCD coding
bits 7-4 = next least significant digit of value

Byte n: bits 7-4 = most significant digit of value in BCD coding
bits 3-0 = next most significant digit of value

All values are nomalized.

Other representations of BCD floating point numbers require a change in microcode and areavailable on
special order.

*Sample use of the North Star FPB for a divide operation with 8 digit precision
*inthis example assume arguments are in memory in form:
* Most significant byte (msb) digit pair
* Susequent digit pairs follow the msb
* Exponent/sign byte follows Isb digit pair.
* Pointer addresses the exponent/sign byte
*BC has left arg pointer
*DE has right arg pointer
*HL has result pointer

*The FPB receives its arguments by ",peeking" at the 8080 bus
*when the argument values are loaded to accumulator.
*Two jumperable "hardwired" addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision.

FDIV LDA RSTRT This "hardwired" reference signals FPB to "wake up"
MVI A,8*16+DIVOP Specify precision and operation code to FPB
LDAX D Exponent/sign byte of right arg
DCX D Advance pointer to next byte
LDAX D Least significant digit pair of right arg
DCX D Advance pointer to next byte
LDAX D

DCX D
LDAX D
DCX D
LDAX D Most significant digit pair of right arg
LDAX B Exponent/sign byte of left arg
DCX B
LDAX B Least significant digit pair of left arg
DCX B
LDAX B
DCX B
LDAX B
DCX B
LDAX B Most significant digit pair of left arg
Now the Floating Point Board is performing the operation
LXI D,FPDIN "Hardwired" address for receiving value from FPB

FDIVi LDAX D Loop waiting for completion signal (sign bit)
The FPB is done when the sign bit becomes I'll,ORA A

JP FDIV1 Loop if sign bit is still "0"
ANI EBITS Check for error, condition tested at end
LDAX D' Exponent/sign of result
MOV MIA Store exponent/sign of result
DCX H Advance pointer.
LDAX D Least significant' digit pair of result
MOV MIA
DCX H
LDAX D

MOV M,A
DCX H
LDAX D
MOV M,A
DCX H
LDAX D msb byte of result
MOV MA Store it
RZ Return if no error was detected
JMP ERROR Go report error (i.e. underflow or divide by 0)

FLOATING POINT UNIT

PRICE LIST

MODEL QUANTITY

-25 100

#1 $595.00 $535.00 $475.00

#2 470.00 4.25.00 375.00

#3 345.00 315.00 275.00

All sales FOB Palo Alto

EXECUTION TIMES

FUNCTION TIME IN MILISECONDS (approximate)

ADD, SUB 110

MUL, DIV, SQRT 225

TAN 846

LN, SIN, COS,-s'POL 1250

POWER 1720

LC9EBLETIC 11CFO 51?5TEL5
2460 EMBARCAtERO WAY

PALO ALTO, CA 94303
(415) 321-0410

Appendix C

The APL least squares program

v,.Ioj
11 VI K;R; 1;ED; FV ; ; 111,t' j, ; I.

S '3., FIRST GLIESS FI[1 i' P i - "1e:111

:1 t, Il IS NUMBER OFI Hl h;'l :; I dI III IIIII : &E#l"
j I -FL2--FL

1:1 AlCE £ l:t-L.E- i I-l ;1 i E R I FRAEFROM FiI Ii i H I ;I.IP Ir-fl- E D1IUS"
]1 +E pII(II=0t I

1&. A N TBY 3 I.TFRI F i 14 ie",; Muy OJF E-C:.IFIES

I. ECTOR OF RANGE ROWiFS LHEEMl VELL. itt1011 POSITION E
'A i+ 'L-A."'L -R
4)f Js* N COMIPONIENI .T3yf OF ro~ltj~~'Nll4rc- R'T ES

1 IL I . FIRS- (+/RES) .-- '-':"=

.3 -, I=HI+)I/rID

S¢i-IL :LILAIfE TERIRIX OF PFSIDUEILO 0UTIOHes
F-LIl

v 3-, (P) PR
":. ' \ , l:"-r (,,tPl')PRD±PA2:;

i• , - n . fllU . (+'/[1 ru I-v tolri

2$. W S" IILITE SPHERICAL-CriFFI.N fIRNSFORIFIrIC9I

-00 1; - - a P (-EIxEE.,1 F-W) (- E J PE3-.) (E13, (K:X (El3*) +EE3A

.1 ;.'LIA'RK '' ''

ES ,--,SOLUTION O- F3 IDUAL EQLI1ffCl41S

7VAS RESIDUALS: ' ; (.'R"ES") ":rFS) AO. _
CAD IS TRANSFORMATION PRO CARTES1iN TO GEODETIC ICOO-RDINATES
* LI'N HGT RE: I Cll.,B C
ITIONI IS:

ORIGINAL PAGE IS

OF POOR QUALITY

Bibliography

Sterbeuz, Pat H. (1974), "Floating-Point Cbmputation",

Prentaice-Hall, Inc., Englewood Cliffs, N.J.

Hashizune, Burt (Nov. 1977), "Floating Point Aritlntic", Byte,
Vol. 2, No. 11, pp. 76-78, 180-188.

Marini, John W. (Oct. 1976), "Initial Position Estinates for
Satellite-Aided Search and Rescue", Goddard Space Flight

Center, Greenbelt, Maryland.

Microprocessor Utilization in Search & Rescue Missions

FINAL REPORT

Introduction:

The position of an energency transmitter may be determined by mreasuring

the Doppler shift of the distress signal as received by an orbiting satellite.

This requires the computation of an initial estimate and refinement of this

estinate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was implemented at Goddard Space Flight

Center (GSFC) and tested by locating a transmitter on the premises and obtaining

observations from a satellite. The coputer used was an IBM 360/95. The po­

sition was determined within the desired 10 kin radius accuracy.

The purpose of this project is to determine the feasibility of performing

the same task in real tine using microprocessor technology. The least square

algorithm was implemented on an Intel 8080 microprocessor andthe sane experi­

ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IBM im­

plementation in accuracy and be performed inside the time limitations set.

Why Microprocessors:

Tire is an inplicit restriction in any search and rescue mission. The

use of satellites and computers is dictated by that time limit. The use of

a big conrputer to determine the position presupposes ccnunication between the

satellite and the conputer. This conxrunication introduces a tine delay since

the satellite is not always within radio visibility of an installation that

possesses both the communication and ccoputing power for this problem. Fbr­

thermore the result has to be forwarded to a command center to do the dispatching.

Microprocessor utilization can alleviate this situation in two ways:

by giving cheap coputing power to ccamnnication facilities or by incorporating

the conputing powxer in the satellite itself thus eliminating this communication.

coiletely-

Microprocessors offer light weight, small volume, low power processing.

Their speed is inproving rapidly and their cost is going down. They are the

logical choice for a satellite search and rescue system if they can perform.

Machine Configuration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

* Development system

* Minimal execution system

* Actual field configuration

Initially our development system consisted of an MDS-80 Intellec micro­

comrputer by Intel with 16k bytes of RAM nemory and a resident RM monitor.

Most of the floating point package was developed in-machine language on that

system using the nonitor's limited hexadecimal editor and debugger. The need

for more sophistication became apparent. After several failures in exploring

alternatives (as fancy as hooking up to a PDP 11 through a telephone line

for nore storage) we were able to acquire a dual floppy disk drive by Intel.

A spare line printer was attached to the system with minor hardware nodifica­

tions and 16k bytes more RAM were added in order to support DOS. The enhanced

system had the power of a mini-conputer in software (assembler, editor, li­

brary manager, linkage editor, leader, and a sufficient file manager) at a

speed which was slow but acceptable. The floating point package was converted

to assenbly language, and two =re packages were developed: the I/O package

and the matrix manipulation package. Unexpected help cane from the use of

ICE-80 (In Circuit Etlator), designed for a different application, as a

powerful symbolic debugger substituting for the nonitor hexadecimal debugger.

Out of this final version of the development system only a limited

amount of resources were used for the final run. Those define the minimal

execution system. The disk was only used for input of data. The essential

parts were:

- The CPU card

* 16k Bytes of menory

* The console device and its interface

" Power supply: 12V, 5V, -5V, ground

Additionally, the line printer was used to produce a hardcopy version of

the results.

The actual field configuration would be the same if the machine were

located on the ground. Some kind of comnunications equipent would be re­

quired to provide the data input and, maybe, start the run automatically.

The configuration would be different, though, if the machine were located on

the satellite. The requirements for the satellite configuration would be:

" The CPU card

* 16k bytes of menory

An interface that can load the information in menory

* A means to comumnicate the result to the world

* Power supply: 12V, 5V, -5V, ground

The Floating Point Package:

Based on estimates of the number of operations required we were in­

clined to think that any floating point operations would have to be performed

by hardware and not by software since estimated times became prohibitive.

This floating point package was developed to help us count the actual number

of operations rather than perform them in an actual situation. The final run

proved our estimates wrong and the package gained new inportance.

There are a nuTber of representations of floating poing numbers dif­

fering in accuracy and range as a trade off to the number of bytes required

per number. The one used was the ANSI format for FORTRAN which happens to

be implemented by hardware as an option in IBM computers. It consists of one

sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa­

decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2

decimal digits. Specific operations were not timed although a more general

timing analysis appears in a later section. This format was chosen as opposed

to the BCD format because the space requirements are lower for the same

amount of precision, which in turn reduces execution time slightly. A man­

tissa of binary digits was not used because of the frequent need for normali­

zation.

Addition and subtraction take exactly the same time, whereas nmltipli­

cation is approximately equal to 22 addition and division is approximately

60 additions.

Multiplication produces a 48 bit result mantissa which is then normalized

and rounded to 24 bits. This preserved-the number of significant digits, or,

viewed fron a different angle, is the same as a double precision multiply if

the two arguments wre expanded with zero fill.

Division preserves the significant digits again by expanding the Man­

tissa of the dividend to double precision and results in full single preci­

sion result. Nbrmalization and rounding occur as in multiplication.

Accuracy is thus preserved to true single precision throughout in a

numerically stable manner keeping the length of the number to 4 bytes. The

cost is expensive multiplication and, expeciallu, division. This dictates

a programming style whereby division is avoided unless it is atsolutely neces­

sary. The benefits, on the other hand, are nunferically stable implenenta­

tions whose results match the double precision to the extent possible as

will be seen when the results of the run are analyzed.

The square root function was implemented by using a v riation of Heron's

formula based on the observation that the mantissa of any floating point num­

ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first

guess an approximation to a straight line connecting the two end points is

made. Experimentally, six iterations were found necessary to produce an

accurate result. A better first guess could improve that significantly, but

time constraints did not allow us to pursue that direction.

Finally, input and output of floating point numbers turn out a much

more serious task than first expected. The input routine recognized numbers

with a maximum of ten integer and ten fraction digits. This proved more

than sufficient for our needs. The output routine produces a rigid scienti­

fic format with 10 fraction digits. When interpreting the results it should

be kept in mind that at most only 7 are significant. The format was re­

tained in case of future expansion of the mantissa. Both the input and output

routines could be better, but since their function is only tangential to the

project at hand they wre kept on the bare functional level.

Matrix Operations:

All matrices in the system are defined as two. dimensional, including

vectors. The first two bytes contain the number of rows and the number of
A

columns in the particular matrix, respectively. This effectively limits the

number of observations to 256. Vectors have one of their dimensions identi­

cally equal to 1. The next two bytes contain the address of the first byte

that follows the last byte belonging to the matrix. Adjacent elenents in

a row of the matrix are stored as adjacent floating point numbers in memory.

rows are stored sequentially starting from the first row in the fifth byte.

In an effort to minimize the number of address calculations in the least

squares algorithm the APL program we were supplied with, (LSQ), was converted

into FORTRAN. The calculations involved in the residual equations were all

grouped together inside one big loop. The advantage of such a scheme is: that

once an offset is calculated it can be used to address all the needed elements

of the matrices involved in the calculation. When the time came though, to

implement it using 8080 assembly language, it became all too apparent that

there were too many addresses to keep track of and too few registers to help.

Therefore, due to the limitation of addressing capabilities, routines were

implenented for the various matrix operators in APL. This resulted in well

structured and very efficient code, the style being. dictated by the instruc­

tion set.

A minimum nuiber of matrix utility routines was necessary. Matrices can

be created by specifying their dimensions, they can be filled with zeros, they

can be read from a device, they can be ioved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following argunients.

. a constant and a matrix

. a vector and a miatrix

* two matrices (plus possibly a result matrix)

- one matrix (for example, inversion)

In our particular application there was only one inversion, of a -2 by 2

matrix involved. A simple algorithm derived from Euler's method is imple­

iented using fixed pivots. Execution time and temporary storage are opti­

mized.

Inplementing the Experiment:

Having developed the tools that were discussed in previous sections the

actual inplenentation was straight forward. For reasons already mentioned a

routine was written to match the ISO routine* developed by Dr.4 Marini almost

statement by statement. The correspondence is indicated in the source pro­

gram by keeping track of.the APL statement numbers. The array names were

kept the sane as much as possible and only one additional temporary matrix

was required. The program was written for a maximn of 100 observations.

All matrix operations as well as the square root keep track of the calls to

the floating point routines.

The whole package makes limited use of two monitor routines, which can

easily be eliminated. The reason they are there is because software was

being developed in machine language and the monitor provided a lot of needed

help. So, essentially, LSQ can be run conpletely independently.

The space requirements for this particular run was approximately 16k

bytes, out of which 4k could be in RoM and 12k in RAM. The exact numbers

are as follows:

Code: 3656 bytes

Data: 10365 bytes

Stack: 100 bytes (arbitrarily)

Total: 14121 bytes

Incorporated into the package were four counting routines that kept

track of the number of additions, subtractions, multiplications and divisions

required during each iteration. The results will be analyzed in the next sec­

tion. The actual implementation would not require these routines. The counting

overhead to each arithmetic operation is approximately equal to half the tine

of an addition.

* See Appendix C.

Interpreting the Pesults:

The final run converged and yielded five digits of accuracy. If conver­

gence is defined as a ratio of two succesive PNS residuals being close to 1

(in absolute) it was attained at the ninth iteration to within 0.00001.

Conparing these results to the run at GSFC (run at double precision, or 16

digits of accuracy) we note the 5 digit accuracy of our result.

Numerical analysis gives us enough tools to justify the loss of two signi­

ficant digits in the course of the iterations. The main source of error ap­

pears to be the subtraction of the estimated range rates from the actuals.

The subtraction of the average residual equations could could contribute to

the error as well.

The measured execution time for this particular run was 62 seconds per

iteration. The microprocessor used was an 8080A by Intel. Adjusting for

counting the number of operations the true time becomes 61 seconds. The

8080A CPU has a cycle tine of 2 mtcroseconds. If this system were actually

inplemented, the 8080A-1 CPU could be used which offers higher speed with

cycle time of 1.3 microseconds which could bring execution time down to 40

seconds for each iteration giving approximately 6 minutes to reach conver­

gence. This figure is derived with no modification of the software. Since­

it falls within our difinition of "real time", which was around 15 minutes,

it is definitely a workable solution.

Another alternative is, -pf course, to use hardware floating point units.

Two units that we are familiar with indicate a disparity in execution times

of several orders of magnitude. Their specifications appear in Appendix B

for the purposes of the following analysis, 'typical' execution times for -8

digits of precision of the North Star Coftputers, Inc. FPB unit were used.

Our system indicated the following frequency of floating point operations

for each iteration:

Additions - 3137

Subtractions - 672

Multiplications - 2382

Divisions - 940

When trying to conpute the tine it would take to execute 'those instruc­

tions we noticed that the time it takes to access hardware floating point

unit is rrore than twice than the time it takes to do the calculations. Namely,

we came up with the following numbers:

TIME (SC) 	 PURPOSE

0.35 	 perform the operations

0.825 	 input and output the number form
FPB (8080A-1)

1.175 	 total time required

Therefore, use of hardware units make it possible to decrease the execu­

tion time by one order of magnitude.

Future Research:

The parameters that have to be optimized in the search and rescue

mission consist of the accuracy of the position estimation and the time in

which it is performed. Proving'the feasibility of a microprocessor

implementation is far fran devising an optimal algorithm.

If the nonlinear regression method is utilized there is a lot of

room for inprovement in the inital estimate, a quantity that can affect

the whole outcome of the iterations. Several methods that are, suggested

in Dr. Marini's paper can be explored. Furthermore, since the data

collection takes an appreciable amount of time an algorithm should be devised
in which an estimate is upgraded with each incoming datum. If that algorithm

is good enough then the estimate could be, the result itself.

A further enhancement on the calculation tiem can be achieved through

parallelism. It can appear on two levels:

" The implementation of the least squares algorithm

• The grouping of data

The least squares algorithm may be broken into parallel subtasks that

can be performed by different processors in parallel, especially floating

point operations.

The data may be grouped in clusters on which the least squares

algorithm is applied. The estimate provided by each cluster is then processed

through least squares estimation itself. This method could be applied at

data coilection_ tine too.

Appendix A

* Sample run at GSFC

* Sample run at Columbia

NASA sanple run at GSFC

Ibq I....•d 'J

iAG ARE: 2
-- :145 4693. S964

WPAV
070 : I01P

:.1;
0."OF

ORIGINAL PAGE
POOR QUALITY

.

-i.-

i: I--GT

1-.":35"37CC

AR:E: 4C- 337.14967. i. 1.094 94?1SEJI

-11I4 '48:3i.IJI1 :94 4100r'&A

i-Ir FIRE: 09. 71C,4, -, ,9i . .949470

, -I.:IS:

71:536

*"LS EN jV

S- It- . . .WJWS
ARE: 09. 776501"49"47M 7V.- 37
IS:

MLSt.. .IZ471M
i::

488359- 0. " 7'1j.. 0TM5 -"& -if-,LS - 4-

I 4._, !4 5, .. >1 ._54., [._', .-. ,C .:'....

HGT AIRE: '39. C2402504 2Z1-.677394i9 0

.021,3,683.5F.E

L V:. El"{

-HCJ AIRE: C,39-15%79152 RolC I 710753 7 0
1 .

,. 4:Et?6,.370943 ''"' '- ,,,77604

... - 48 -817 40 9. 10 1

...'I.:,, .3 iv -,:4 119.:'" :;O

1:

--1IC AF : P.2 D M Z A

ORIGINAL PAGE 18
.",F
POOR QUALITI

ul]AR:2-10M 01P7f

bKT ARE: 3:9. 1303448 P21 OPA

..'"I lle< -4838.3:- l.... cb644 8833119 I.

ic, AR 3 : K
; F : .233I44 I.7

,('} 4SS-i~5 .iI9,;

4,.-j

rHE. .ES.ULTIJ
=3- ..­

.1S PESI5IARLS

.POSITION IS:
zE+_ Y -o :-,,

0. 1154F5482E+0-l

,_,. +04 0
sanple

43SC,47Z7E+04
run at Columbia"

-=n R126947555E+3 Y= -0 4912517517E+04

:FS-RESIDURES----i15S2G67E+i

Z:= El. 417S22t2E+04

4

THE RE ,IILTINGh POSITION IS. -

C. Se:464587211E+03 Y= -0.
--­

483s673995E+f4 Z 0. 406058883.6E+04

R-S--RESIbiURL-S---E.-73t9402±21tE +00

1H-RSUTN -

I

'= 0.94875150680E83 Y= -a. 48-:8340?:44E+04

RMS-ESIDIRLS _ -80.O6579 -E+O0

Z= El A

_f5T_____IS

'4Te, 08E+04

X=0 _S'?,964T±40E+Ci3 Y= -0. 483 8E7890~tFE+L'_

~1gRESXCDUALS - 0. 0E,47S44244OL3

27- 0. 120231,154E+04

THE- PES1LTING -POSITION IS7---
X= ±0e289??39?E+04 Y= -0. 48_,379c7'9519E+04T

Rtl-RnESI DUALS -- -0 06547490596E3-00

0. *IRI94*98825E+04

THE RESIULTING ---PSITION IS:
X=0 0_lt5,0 +_n4:456E04+(

RMS-PESIALALS ... 0&.4 _.74-,7E+0

• iS', ESIDIJRLS" =-= 0. 06474675F+00

- . 4Y=22-0.3E+

THE RESULTING"POSITION IS:
1-:= 0. 10g2L47E+04 Y-= -0. 48'3 7SE: E.

P~i'S TESTDJRL= a0644786 3E0L3ORIGINAL

THERESULTING POSITION IS,.
X= 0. :1-036821.E+04 Y­ -0. 4.C.401.287-.-.TE+04

Fi-1_,ESIDlJLS'- -0. 0647482872E+00

-THE tSILTI NCG-m_-mI TICN I C-,­

7- .

0.

4231 ±54E+O4

PAGE IS

OFPOOR QUALITY1

,
X= 0.iJ 0 r7'--IE+04 1 -7 - . . ' - ''.. 0. 0i.S.3,9- .,.-E+14

PMS -FESI.UALS = 0.-64748?447E+0I

Appendix B

Two typical hardware floating point units

"
FPB by North Star Corputers, Inc.

* FPU by Cyberuetic Micro Systems

FPB DATA SHEET

EXECUTION TIMES 1,2,3.

PRECISION DIGITS: 2 4 6 8 10 12 14

ADD best
typical
worst

1
8

10

1
8

10

1
9

10

1
9

11

1"
10
11

1
10
12:

1
11
12

SUBTRACTbest
typical
worst

4
8
15

4
8
16

4
9
17

4
9

18

4
10
19

4
10
20

4
11
21

MULTIPLY best
typical
worst

5
18
51

5
34

125

5
55

228

5
80

382

5
111
527

5
146
720

5
186
933

DIVIDE best
typical
worst

7
39
62

7
70

139

• 7
109
229

7
156
340

7
211
470

7
274
621

7
370
779

1. Times given in microseconds
2. Execution times are a function of the input values
3. Times listed do not include transmission of input values and result

Board dimensions:
Model A: 5 in. by 10 in.
Model B: 6% in. by 12 in.

Power requirements:
Model A: 8 V (unregulated) @1.7 A
Model B: 5 V. (regulated) @1.7 A

Board Construction:
FR4 material, gold plated edge connectors

Floating point number representation:
Byte 1: bit 7=sign (1=negative number, O=positive number)

bits 6-0 = exponent in excess 64 binary repreentation
bits 7-0 = zero represents the zero value

Byte 2: bits 3-0 = least significant digit of valte in BCD coding
bits 7-4 = next least significant digit of value

Byte n: bits 7-4 = most significant digit of valde in BCD coding
bits 3-0 = next most significant digit of value

All values are nomalized.

Other representations of BCD floating point numbers require a change in microcode and are available on
special order.

*Sample use of the North Star FPB for a divide operation with 8 digit precision
*Inthis example assume arguments are in memory in form:

Most significant byte (msb) digit pair
* Susequent digit pairs follow the msb
* Exponent/sign byte follows Isb digit pair.
* Pointer addresses the exponent/sign byte
*BC has left arg pointer
*DE has right arg pointer
*HL has result pointer

*The FPB receives its arguments by "peeking" at the 8080 bus
*when the argument values are loaded to accumulator.
*Two jumperable "harcwired" addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision.

FDIV LOA RSTRT This "hardwired" reference signals FPB to "wake up"
MVI A,8*16+DIVOP Specify precision and operation code to FPB
LDAX D Exponent/sign byte of right arg
DCX D Advance pointer to next byte
LDAX D Least significant digit pair of right arg

DCX D Advance pointer to next byte
LDAX D
DCX D
LDAX D
DCX D

LDAX D Most significant digit pair of right arg
LDAX B Exponent/sign byte of left arg
DCX B
LDAX B Least significant digit pair of left arg
DCX B
LDAX B
DCX B
LDAX B
DCX B
LDAX B Most significant digit pair of left arg
Now the Floating Point Board is performing the operation
LXI D,FPDIN "Hardwired" address for receiving value from FPB

FDIV1 LDAX D 't, Loop waiting for completion signal (sign bit)
ORA A
JP FDlV1
ANI EBITS
LDAX D

MOV M,A
DCX H
LDAX D
MOV M,A
DCX H
LDAX D
MOV M,A
DCX H
LDAX D
MOV M,A
DCX H
LDAX D
MOV M,A
RZ
JMP ERROR

The FPB is done when the sign bit becomes "1"
Loop if sign bit is still "0"
Check for error, condition tested at end
Exponent/sign of result
Store exponent/sign of result
Advance pointer.
Least signifidant'digit pair of result

msb byte of result
Store it
Return if no error was detected
Go report error (i.e. underflow or divide by 0)

FLOATING POINT UNIT

PRICE LIST

MODEL QUANTITY

1 25
 100

#1 $5§5.00 $535.00 $475.00

#2 470.00 425.00 375.00

#3 345.00 315.00 275.00

All sales FOB Palo Alto

EXECUTION TIMES

FUNCTION TIME INMILISECONDS (approximate)

ADD, SUB 110

MUL, DIV, SQRT 225

TAN 846

LN, SIN, COS,-*POL 1250

POWER 1720

Ct BERi'ilETaC LARBO SWSTEmS

2460 EMBARCAbERO WAY

PALO ALTO, CA 94303
(415) 321-0410

Appendix C

The APL least squares program

*, E';K;E; I ;.: H Ito' ;K;Ff;
-

j' , IItRST GtES FOF ... 1.VP 11'i III iI Si I r: IS (IF I. k i ili1 i1l11 1 1 ,.- .
BDtUIBER 1il1iI1]o!.

I -FL.2-FL

I AH.EC P FROM PILE, l111i lIi lit 1 I I;;lt l 1 IFFfCf;A EF.RADIUS'
E LL1] +1E .E. (12.EIz-0 11 ,

r-:t>f ((2f 13 *:2 + w[:AE) f t [A] .­3j it.V)0 ty,
1: A N :BYs I31FTIRI:K. i:<aI l.E Up OF eLOCITIESIllIT i.It-13.10

IS K'EC:TOR OF I-rfItLE Fur At 1HEEH :titlIE ANDW POSITION P
i ;'1NIS Nl CO_-MF'ON['EHNT 1.117-7TOWl Cr l::" 1F.1 'It1-ioI ;c RF.'s.IIrnRD

;in S-BIFIS4(+IRES) +-RE,..

C ' ,LLILFTE lTIRIX OF 'ESi11111L tEOURA]TiCorIS
:11:]>i - I -: jziq:l PRIi+RAS

10-(0il)PRtIfUe (+/[1:) +1
s WOa VIjLFITE SPHERIICL-ALRtTES I N TlRl.FltHF.FlIFsH.ltIZ- +23,

2 (- IE :1.[:-: -EF. W; .) (P [,E'J-1 3I:i [l (] F : E[23*.:1*2i

40 - E. -OLU M I R:ES] DUAL 'T]T OF EOI.FI37II !F11S

... FI:ESGrl

*' .5RES IDUALS!: ' . / ES CFS) '0.5
=1 IS TRAN-SFORMIAT]ION FREl- CARTESIANP- TO GEODE TIC COlORIlNATES

1-110NHT ARE: ; nrcGn C
3TON Is:

-

ORIGINAL PAGE IS'

OF POOR QUALITY

http:i.It-13.10

Bibliography

Sterbeuz, Pat H. (1974), "Floating-Point Computation",
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Hashizume, Burt (Nov. 1977), "Floating Point Aritmietic", Byte,
Vol. 2, No: 11, pp. 76-78, 180-188.

Marini, John W. (Oct. 1976), "Initial Position Estimates for
Satellite-Aided Search and Rescue", Goddard Space Flight
Center, Greenbelt, maryland.

raui E. Schn ¢.d

NASA -GSFCE6 7P
JAN 1 6 1978

MICROPROCESSOR UTILIZATION IN SEARCH & RESCUE MISSIONS

Mischa Schwartz
Theodore R. Bashkow
Department of Electrical Engineering &

Computer Science

1312 S.W. Mudd Building, Columbia University

New York, NY 10027

January 1978
Final Report for Period 9/27/76 - 9/26/77

Prepared for

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

TECHNICAL REPORT STANDARD TITLE PAGE

I Report No. 	 j2. o.vnent.ion Accc. No - 3 fecii'eri', Cotolog No.

4Tilf ndS ite ---- -SReport 	 Dote

MICROPROCESSOR UTILIZATION IN 	 r.n.r...t C .. .
code6 PcootSEARCH & RESCUE MISSIONS

I 	 8 c~fom~n Orgn;=tion Report No

7.so,(lsSchwartz and Theodore R. Bashkow
1O. Work Unit No.9. Peformning Oronizotios Nome ond Addess

Dept. of Elec. Eng. F Computer Science

1312 S.W. Mudd Building, Columbia Universit y. Cotrt or Grons No.

New York, NY 10027 	 NAS 5 23727
13. 	 Type of Repot and Peiod Covered

12. 	 Sponoring Ageny Ioe o.n A- .ddress FINAL REPORT
Nat'l Aeronautics & Space Administration 9/27/76 - 9/26/77
Goddard Space Flight Center i4. S...o.or.ign9cy Cod.

Greenbelt, Maryland 20771

15. Supplenentory Notes

16. Abstroet
The position of an emergency transmitter may be determined by

measuring the Doppler shift of the distress signal as received by

an orbiting satellite. This requires the computation ot an initial

estimate and refinement of this estimate through an iterative, non­
linear, least-squares estimation.

A version of the above algorithm was implemented at Goddard

Space Flight Center (GSFC) and tested by locating a transmitter

on the premises and obtaining observations from a satellite. The

computer used was an IBM 360/95. The position was determined with­

in the desired 10 km radius accuracy.

The purpose of this project is to determine the feasibility of

performing the same task in real time using microprocessor techno­
logy. The least square algorithm was implemented on an Intel 8080

microprocessor and the same experiment was run as at GSFC.

The results indicate that a microprocessor can easily match

the IBM implementation in accuracy and be performed inside the

time limitations set.

17. 	 Key Words (S lected by Author(s)) [Dstibution Stotemenit

j2019. 	 security Ceissif. (Fl this ror .1 Secit li., l. (of hisp. e 1., N . Viroges 22 Pric.

Flor sale by tne Clear shou~ c for Fecderal Sci ent i ndsi *Itlaiii-11 i.iris,Spr sngfscld. Vi rgiui'A 22151.Inf r....

http:S...o.or

Microprocessor Utilization in Search & Pescue Missions

FINAL REPORT

Introduction:

The position of an energency transmitter nmay be determined by measuring

the Doppler shift of the distress signal as received by an orbiting satellite.

This requires the ccmputation of an initial estimate and refinement of this

estimate through an iterative, nonlinear, least-squares estimation.

A version of the above algorithm was implemented at Goddard Space Flight

Center (GSFC) and tested by locating a transmitter on the premises and obtaining

observations from a satellite. The conputer used was an IBM 360/95. The po­

sition was determined within the desired 10 km radius accuracy.

The purpose of this project is to determine the feasibility of performing

the sane task in real tine using microprocessor technology. The least square

algorithm was inplemnted on an Intel 8080 microprocessor and the same experi­

ment was run as at GSFC.

The results indicate that a microprocessor can easily match the IBM im­

plementation in accuracy and be performed inside the time limitations set.

2

Why Microprocessors:

Time is an implicit restriction in any search and rescue mission. The

use of satellites and conuters is dictated, by that time limit. The use of

a 'big conrputer to determine the position presupposes connication between the

satellite and the computer. This onmunication introduces a time delay since

the satellite is not always within radio visibility of an installation that

possesses both the communication and ccaputing power for this problem. Fur­

thermore the result has to be forwarded to a connand center to do the dispatching.

Microprocessor utilization can alleviate this situation in two ways:

by giving cheap computing power to comunication facilities or by incorporating

the computing power in the satellite itself thus eliminating this omunication

completely.

Microprocessors offer light weight, small volum, low power processing.

Their speed is ixrproving rapidly and their cost is going down. They are the

logical choice for a satellite search and rescue system if they can perform.

3

Machine Configuration:

Strictly speaking there are three microprocessor configurations in

this project which we are going to discuss individually.

- Development system

* Minimal execution system

* Actual field configuration

Initially our development system consisted of an NDS-80 Intellec micro­

coputer by Intel with 16k bytes of RAM memory and a resident tOM monitor.

Mst of the floating point package was developed in machine language on that

system using the monitor's limited hexadecimal editor and debugger. The need

for more sophistication became apparent. After several failures in exploring

alternatives (as fancy as hooking up to a PDP 11 through a telephone line

for more storage) we were able to acquire a dual floppy disk drive by Intel.

A spare line printer was attached to the system with minor hardware modifica­

tions and 16k bytes more RAM were added in order to support DOS. The enhanced

system had the power of a mini-computer in software (assembler,-editor, li­

brary manager, linkage editor, leader, and a sufficient file manager) at a

speed which was slow but acceptable. The floating point package was converted

to assembly language, and two more packages were developed: the I/O package

and the matrix manipulation package. Unexpected help cane from the use of

ICE-80 (In Circuit Emulator), designed for a different application, as a

powerful symbolic debugger substituting for the monitor hexadecimal debugger.

Out of this final version of the development system only a limited

amount of resources were used for the final run. Those define the minimal

execution system. The disk was only used for input of data. The essential

parts were:

The CPU card

16k Bytes of memory

4

" The console device and its interface

* Power supply: 12V, 5V, -5V, ground

Additionally, the line printer was used to produce a hardcopy version of

the results.

The actual field configuration wuld be the sane if the machine were

located on the ground. Soe kind of communications equipment wOuld be re­

quired to provide the data input and, maybe, start the run automatically.

The configuration vnuld be different, though, if the machine were located on

the satellite. The requirements for the satellite configuration would be:

* The CPU card

* 16k bytes of menory

An interface that can load the information an enory

"A means to communicate the result to the world

"Power supply: 12V, 5V, 75V, ground

5

The Floating Point Package:

Based on estimates of the number of operations required we were in­

clined to think that any floating point operations would have to be performed

by hardware and not by software since estimated times became prohibitive.

This floating point package was developed to help us count the actual number

of operations rather than perform them in an actual situation. The final run

proved our estimates wrong and the package gained new inportance.

There are a number of representations of floating poing numbers dif­

fering in accuracy and range as a trade off to the number of bytes required

per number. The one used was the ANSI format for FORTRAN which happens to

be implemented by hardware as an option in IBM conputers. It consists of one

sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa­

decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2

decimal digits. Specific operations were not timed although a more general

timing analysis appears in a later section. This format was chosen as opposed

to the BCD format because the space requirements are lower for the sane

amount of precision, which in turn reduces execution time slightly. A man­

tissa of binary digits was not used because of the frequent need for normali­

zation.

Addition and subtraction take exactly the sane time, whereas multipli­

cation is approximately equal to 22 addition and division is approximately

60 additions.

Multiplication produces a 48 bit result mantissa which is then normalized

and rounded to 24 bits. This preserved-the number of significant digits, or,

viewed from a different angle, is the same as a double precision multiply if

the two arguments were expanded with zero fill.

Division preserves the significant digits again by expanding the man­

tissa of the dividend to double precision and results in full single preci­

sion result. Normalization and rounding occur as in multiplication.

6

Accuracy is thus preserved to true single precision throughout in a

nunerically stable manner keeping the length of the number to 4 bytes. The

cost is expensive multiplication and, expeciallu, division. This dictates

a prograxning style whereby division is avoided unless it is absolutely neces­

sary. The benefits, on the other hand, are nunerically stable iplenenta­

tions whose results match the double precision to the extent possible as

will be seeh when the results of the run are analyzed.

The square root function was inplenented by using a variation of Heron's

formula based on the observation that the mantissa of any floating point num­

ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first

guess an approximation to a straight line connecting the two end points is

made. Experimentally, six iterations were found necessary to produce an

accurate result. A better first guess could improve that significantly, but

tine constraints did not allow us to pursue that direction.

Finally, input and output of floating point numbers turn out a Rmuch

more serious task than first expected. The input routine recognized numbers

with a maximum of ten integer and ten fraction digits. This proved more

than sufficient for our needs. The output routine produces a rigid scienti­

fic format with 10 fraction digits. When interpreting the results it should

be kept in mind that at most only 7 are significant. The format was re­

tained in case of future expansion of the mantissa. Both the input and output

routines could be better, but since their function is only tangential to the

project at hand they were kept on the bare functional level.

7

Matrix Operations:

All matrices in the system are defined as two diensional, including

vectors. The first two bytes contain the number of rows and the number of

columns in the particular matrix, respectively. This effectively limits the

number of observations to 256. Vectors have one of their dimensions identi­

cally equal to 1. The next two bytes contain the address of the first byte

that follows the last byte belonging to the matrix. Adjacent elenents in

a row of the matrix are stored as adjacent floating point nuTbers in memory.

Rows are stored sequentially starting from the first row in the fifth byte.

In an effort to minimize the number of address calculations in the least

squares algorithm the APL program we were supplied with, (LSQ), was converted

into FORTRAN. The calculations involved in the residual equations were all

grouped together inside one big loop. The advantage of such a scheme is that

once an offset is calculated it can be used to address all the needed elements

of the matrices involved in the calculation. When the time came though, to

implement it using 8080 assembly language, it became all too. apparent that

there were too many addresses to keep track of and too few registers to help.

Therefore, due to the limitation of addressing capabilities, routines were

implemented for the various matrix operators in APL. This resulted in well

structured and very efficient code, the style being dictated by the instruc­

tion set.

A minirmm number of matrix utility routines was necessary. Matrices can

be created by specifying their dimensions, they can be filled with zeros, they

can be read from a device, they can be imoved (copied) in storage.

There are four classes of operations by which matrices may be altered

involving the following arguments.

" a constant and a matrix

- a vector and a matrix

8

- two matrices (plus possibly a result matrix)

- one matrix (for example, inversion)

In our particular application there was only one inversion of a 2 by 2

matrix involved. A sinple algorithm derived from Euler's nethod is irrple­

nented using fixed pivots. Execution tine and teporary storage are opti­

mized.

9

Implementing the Experiment:

Having developed the tools that were discussed in previous sections the

actual implementation was straight forward. For reasons already mentioned a

routine was written to match the ISO routine* developed by Dr. Marini almost

statement by statemrent. The correspondence is indicated in the source pro­

gram by keeping track of the APL statement numbers. The array names were

kept the same -as much as possible and only one additional teWorary matrix

was required. The program was written for a imaximum of 100 observations.

All matrix operations as well as the square root keep track of the calls to

the floating point routines.

The whole package makes limited use of two monitor routines, which can

easily be eliminated. The reason they are there is because software was

being developed in machine language and the monitor provided a lot of needed

help. So, essentially, LSQ can be run completely independently.

The space requirements for this particular run was approximately 16k

bytes, out of which 4k could be in ROM and 12k in RAM. The exact numbers

are as follows:

Code: 3656 bytes

Data: 10365 bytes

Stack: 100 bytes (arbitrarily)

Ttal: 14121 bytes

Incorporated into the package were four counting routines that kept

track of the nutber of additions, subtractions, multiplications and divisions

required during each iteration. The results will be analyzed in the next sec­

tion. The actual implementation would not require these routines. The counting

overhead to each arithmetic operation is approximately equal to half the time

of an addition.

* See Appendix C.

10

Interpreting the Results:

The final run converged and yielded five digits of accuracy. If conver­

gence is defined as a ratio of two succesive EMS residuals being close to 1

(in absolute) it was attained at the ninth iteration to within 0.00001.

Conparing these results to the run at GSFC (run at double precision, or 16

,digits of accuracy) we note the 5 digit accuracy of our result.

Numerical analysis gives us enough tools to justify the loss of two signi­

ficant digits in the course of the iterations. The main source of error ap­

pears to be the subtraction of the estimated range rates, from the actuals.

The subtraction of the average residual equations could could contribute to

the error as well.

The measured execution time for this particular run was 62 seconds per

iteration. The microprocessor used was an 8080A by Intel. Adjusting for

counting the number of operations the true time becomes 61 seconds. The

8080A CPU has a cycle time of 2 microseconds. If this system were actually

inplemented, the 8080A-1 CPU could be used which offers higher speed with

cycle time of 1.3 microseconds which could bring execution tine down to 40

seconds for each iteration giving approximately 6 minutes to reach conver­

gence. This figure is derived with no modification of the software. Since

it falls within our difinition of "real time", which was around 15 minutes,

it is definitely a workable solution.

Another alternative is, of course, to use hardware floating point units.

Two units that we are familiar with indicate a disparity in execution times

of several orders of magnitude. Their specifications appear in Appendix B

for the purposes of the following analysis, 'typical' execution tines for 8

digits of precision of the North Star Computers, Inc. FPB unit were used.

Our system indicated the following frequency of floating point operations

for each iteration:

Additions - 3137

11

Subtractions - 672

Multiplications - 2382

Divisions - 940

When trying to conpute the time it would take to execute those instruc­

tions we noticed that the time it takes to access hardware floating point

unit is more than twice than the tine it takes to do the calculations. Namely,

we came up with the following numbers:

TIm (SEC) 	 PURPOSE

0.35 	 perform the operations

0.825 	 input and output the number form
FPB (8080A-I)

1.175 	 total time required

Therefore, use of hardware units make it possible to decrease the execu­

tion tine by one order of magnitude.

12

Future Research:

The parameters that have to be optimized in the search and rescue

mission consist of the accuracy of the position estimation and the time in

which it is performed. Proving the feasibility of a microprocessor

iffplamentation is far fraxn devising an optimal algorithm.

If the nonlinear regression method is utilized there is a lot of

room for inprovement in the inital estimate, a quantity that can affect

the whole outcome of the iterations. Several methods that are, suggested

in Dr. Marini's paper can be explored. Furthermore, since the data

collection takes an appreciable amount of tine an algorithn should be devised

in which an estimate is upgraded with each incoming datum. If that algorithm

is good enough then the estimate could be the result itself.

A further enhancement on the calculation tiem can be achieved through

parallelism. It can appear on two levels:
* The implementation of the least squares algorithm
" The grouping of data

The least s.quares algorithm nay be broken into parallel subtasks that

can be performed by different processors in parallel, especially floating

point operations.

The data may be grouped in clusters on which the least squares

algorithm is applied. The estimate provided by each cluster is then processed

through least squares estimation itself. This method could be applied at

data collection time too.

13

Appendix A

* Sample run at GSFC

* Sample run at Columbia

~14

S..I LII IL.....
rISI u HLS3.t-HGT lrf:

, ,

NASA sample run at GSFC

1 L 0),:E ri
4 . ..

I TI

] ::

I LF li
.] iIfL-,i

i~FI.S r

' '1,:111 PT
Y1 1s

G.

ARE

SHGT F:':

W4

~. 1 4EM
III-1' o :

: [' Jvo~pr Fewl

-i I:

W52a 430ll!I

i77. 4'A.>.<,,

I LII

T4DS '-:

M9 -483ISi:.K"1

3'

:,

.:Q jq

' ; I " '

3X.

M Y-]:.

i'.

10. -4, Dx.V , ,

is jr. DUA'~~ Li.~.&. I4~I15T, S ICY KiF

J:r1I

-- -

THE RE LTING POSITION IS: sample run at Columbia= =
:=-~~ ~ ~ - ~ ~ ~ ~ ~,-0.=_,,,~ *~ ~ ~~0 F -9.--,0 1 7E+0,4~ - ~. -
S16

RiIS RESIDIUALS = a i541i540'2E+3.1

4THE RESULTING POSITION IS:
,- 0. 62-Is947555E+O_ Y= -C7 49:2517547E+OG. 2. '1 4iC"- 2E+04

S--RESIrUALS =

THE-PESULTIIG POSITION IS:

0 S,46',15', 1_E-- y -E 4S..Z .E+.i 4Y=01 ,:60
", ,rl,,E+04

R:PIS -RES IUILS -0--2s9477729E+00

tRE-S TIIia POSITION IS.

• -- 0 94TS702i.25E+l -'- 7 - 40
Y-- .i-88-4,V%,-P i- ,7.94i268E+04

NItS-REIDUALS - "0.0706402tIE+0­
.4

-THE- .ES ING-P=- TI- IS-F O

Y= 7:'.f.E+i
X= 0. 97I55EI80E+ClS" -C. ' 0 402744683.E+04

RMS PESIDUALS 0. 067.079pS=E±(30

,ii
R 0- 14,,' F 00itMS, FE_,IDUALS, .OG4- 2-.;THE-RESULTING POSITION IS:

X= 0. 9 1.41+0C Y- -0. 7 gi C_3IT4_E+,,*
I02--f4

PMS RESIDUALS = 0. 96476444Zt4Fl"O

THE PESHLTIG POSITION I,

X'= 0. 0Ei285:-I-C9E+04 Y- -6i. -1.T-3SZ.E+64 . . _W

Fi, PESIDUALS = 0. 86474903'5E±+O

THE PESULTING POSITION I'
0. :1007520?47E+04 Y--" -0 im:- -.i,:F ,-. - -' -101 <2 -:_gE+oi

1r.1SRESIDtUALS 0.O6,T74:64'37jF MO

.THE PESULTING POSITION IS:
0. i3E62814TE+04 Y' -i .i::. - 4.0-"-8+" . ,4

RMS- RESIUALS = 8. 064T4T36.,ThF+0

THE-P.ESLT~TUG POSIT IOa IS,:

,,- . ±02t82il25E+04 "r"'-O cI-:h.:.:,1G2S:E+Thi .:- .40Sg7-E-

R-IIS-RE-SIDUALS 0. .-4.,t,--.T2-- -"--"­

"TH---SsULTI N' POS ITT ON IS­

,,- 0 IOO--5678TZE+04 Y- -l. *:-h:: ' OT"iFgfl.i r c ­ ,

RIS RESIDUALS = . 0647482.I4tIF+Oa

17

Appendix B

Two typical hardware floating point units

" FPB by North Star Computers, Inc.

" FPU by Cyberuetic Micro Systems

18

FPB DATA SHEET

EXECUTION TIMES 1,2,3

PRECISION DIGITS: 2 4 6 8 10 12 14

ADD best
typical
worst

1
8

10

.1
8

10

1
9

10

1
9

11

1
10
11

1
10
12

1
11
12

SUBTRACT best
typical
worst

4
8

15

4
8

16

4
9

17

4
9

18

4
10
19

4
10
20

4
11
21

MULTIPLY best
typical
worst

5
18
51

5
34

125

5
55

228

5
80

382

5
111
527

5
146
720

5
186
933

DIVIDE best
typical
worst

7
39
62

7.
70
139

7
109
229

7
156
340

7
211
470

7
274
621

7
370
779

1.Times given in microseconds
2. Execution times are afunction of the input values
3.Times listed do not include transmission of input values and result

Board dimensions:
Model A: 5 in. by 10 in.
Model B: 6%in. by 12 in.

Power requirements:
Model A: 8 V (unregulated) @1.7 A
Model B: 5 V. (regulated) @1.7 A

Board Construction:
FR4 material, gold plated edge connectois

Floating point number representation:
Byte 1: bit 7=sign (1=negative number, O=positive number)

bits 6-0 = exponent in excess 64 binary reprepentation
bits 7-0 = zero represents the zero value

Byte 2: bits 3-0 = least significant digit of value in BCD coding
bits 7-4 = next least significant digit of value

Byte n: bits 7-4 = most significant digit of valule in BCD coding
bits 3-0 = next most significant digit of value

All values are nomalized.

Other representations of BCD floating point numbers require a change inmicrocode and are available on
special order.

19

*Sample use of the North Star FPB for a divide opetation with 8 digit precision
*Inthis example assume arguments ate in memory in form:
* Most significant byte (nsb)digit pair
* Susequent digit pairs follow the rush
* Exponent/sign byte follows Isb digit pair.
* Pointer addresses the exponent/sign byte
*BC has left arg pointer
*DE has right arg pointer
*HL has result pointer

*The FPB receives its arguments by "peeking" at the 8080 bus
*when the argument values are loaded to accumulator.
*Two jumperable "hardwired" addresses are required for signaling the FPB

*This routine may be generalized to perform any operation, at any precision"

FDIV LDA RSTRT This "hardwired" reference signals FPB to "wake up"
MVI A,8*16+DIVOP Specify precision and operation code to FPB
LDAX D Exponent/sign byte of right arg
DCX D Advance pointer to next byte

LDAX D Least significant digit pair of right arg

DCX D Advance pointer to next byte

LDAX D
DCX D
LDAX D
DCX D
LDAX D Most significant digit pair of right arg
LDAX B Exponent/sign byte of left arg
DCX B
LDAX B Least significant digit pair of left arg
DCX B
LDAX B
DCX B
LDAX B
DCX B
LDAX B Most significant digit pair of left arg
Now the Floating Point Board is performing the operation
LXI D,FPDIN "Hardwired" address for receiving value from FPB

FDIVI LDAX D Loop waiting for completion signal (sign bit)
ORA A The FPB is done when the sign bit becomes "1"
JP FDIV1 Loop if sign bit is still "0"
ANI EBITS Check for error, condition tested at end
LDAX D Exponent/sign of result
MOV M,A Store exponent/sign of result
DCX H Advance pointer.
LDAX D Least significant'digit pair of result
MOV M,A

DCX H

LDAX D

MOV M,A

DCX H

LDAX D

MOV M,A

DCX H
LDAX D nisb byte of result
MOV MA Store it
RZ Return if no error was detected
JMP ERROR Go report error (i.e. underflow or divide by 0)

20

FLOATING POINT UNIT

PRICE LIST

MODEL QUANTITY

1 25 100

#1 $595.00 $535.00 $475.00

#2 470.00 425.00 375.00

#3 345.00 315.00 275.00

All sales FOB Palo Alto

EXECUTION TIMES

FUNCTION TIME IN MILISECONDS (approximate)

ADD, SUB 110

MUL, DIV, SQRT 225

TAN 846

LN, SIN, COS,-*POL 1250

POWER 1720

CV6EflfUETIC =110i S'ISTESS5
2460 EMBARCADERO WAY

PALO ALTO, CA 94303
(415) 321-0410

21

Appendix C

The APL least squares program

EL] 0 .17! 	 22

L..S EW..',Q.,F F' , l I '
, JS. F-IFRSTF LESiS.-I lI' 	 il"Tmi F Frp IHvtor-.,t'_, 	 V ,fl Wh "H,1 I ,h1i :

Al IS NIIIDE . CI] I ;1 VIIi 1-' 1;
SI-L: L

3,: iPL'AGEE oHr Ftri Cn h 1 FE r, i ETF:11-1 RADF'IUS
* M.EE12IEr7-nE MENJ3

O ECnc 2cE rF ::p8 vS(p cc
-.

' I.[V
IS A: Hi EBr 2 IAT-1

sI E.'-]+ MI ISH I-M-0'0II 1"%"1 ;H 10 41'F,
1
1,l b ,

M IIE

D. IS HCOT;F M M : I 1 H I I I r' r :-l I 3 F'

FTqVES-.B IAS b C8N.-E
IE¢ .FI1: .' ttl-cT E:"I:[:itJ t--F'r:: i ' llilrlol '.lt LIi; '[l I]'l-iI i-'2

-, -n iFT

NI 	 LILIR-E E;FPJEZI CKi.-i AF: VO'3PTA RI1 Fi] Ia''i
2op +:R1i Eoi j y to - n c17 r: Z IIr E

.F:IQUES SIIt'IIWLFMA

'.-,F-S DUALS: WESr aI IrflT I . on
1 I K -E' I IG M E DuA1:15 V.li I.SFC I i r3 111 r FC i

kI I GT AR-EI: ''. P c
- m 	 i :'

23

Bibliography

Sterbenz Pat H. (1974), "Floating-Point Computation",
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Hashizume, Burt (Nov. 1977), "Floating Point AritImetic", Byte,

Vol. 2, No: 11, pp. 76-78, 180-188.

Marini, John W. (Oct. 1976), "Initial Position Estimates for

Satellite-Aided Search and Rescue", Goddard Space Flight

Center, Greenbelt, Maryland.

