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Introduction:
 

The position of an energency transmitter may be determined by mreasuring 

the Doppler shift of the distress signal as received by an orbiting satellite.
 

TIis requires the ccputation of an initial estimate and refinement of this 

estimate through an iterative, nonlinear, least-squares estimation.
 

A version of the above algoritm was implemented at Goddard Space Flight 

Center (GSFC) and tested by locating a transmitter on the premises and obtaining 

observations from a satellite. The conputer used was an IBM 360/95. The po­

sition was determined within the desired 10 km radius accuracy. 

The purpose of this project is to determine the feasibility of performing 

the same task in real tize using microprocessor technology. The least square 

algorithm was inplemrented on an Intel 8080 microprocessor and the same experi­

ment was run as at GSFC. 

The results indicate that a microprocessor can easily match the IBM im­

plementation in accuracy and be perforned inside the time limitations set. 

V78-28068
(NASA-CR-156788) mICROPROCESSOR UTILIZATION 

IN SEARCH AND RESCUE MISSIONS Final Report,
 
27 Sep. 1976 - 26 Sep. 1977 (Columbia Univ.)
 

CSCL 09B Unclas
75 p HC A04/MF A01 
G3/03 27062 

Columbia University inthe City of New York 

DEPARTMENT OF ELECTRICAL ENGINEERING New York, N.t 10027
AND COMPUTER SCIENCE 

Mr. Paul Schmid
 
Goddard Space Flight Center
 
National Aeronautics
 
Computer Science & Space Administration "
 
Greenbelt, MD. 20771
 

DEC 2 7 1971
 

4 

https://ntrs.nasa.gov/search.jsp?R=19780020125 2020-03-22T02:51:58+00:00Z



Why Microprocessors: 

Tine is an inplicit restriction in any search and rescue mission. The 

use of satellites and computers is dictated by that time limit. The use of 

a big onputer to determine the position presupposes comiunication between the 

satellite and the conputer. This comunication introduces a time delay since 

the satellite is not always within radio visibility of an installation that 

possesses both the conrnunication and coupnting power for this problem. Fur­

therore the result has to he forwarded to a comnand center to do the dispatching. 

Microprocessor utilization can alleviate this situation in two ways: 

by giving cheap canputing power to comunication facilities or by incorporating 

the conputing power in the satellite itself thus eliminating this conmnication 

coiwpletely. 

Microprocessors offer light weight, small volume, low paAer processing. 

Their speed is improving rapidly and their cost is going down. They are the 

logical choice for a satellite search and rescue system if they can perform. 



Machine Configuration: 

Strictly speaking there are three microprocessor configurations in 

this project which we are going to discuss individually. 

* Development system 

" Minimal execution system 

" Actual field configuration 

Initially our development system consisted of an MDS-80 Intellec micro­

computer by Intel with 16k bytes of RAM memory and a resident lOM monitor. 

Most of the floating point package was developed in machine language on that 

system using the monitor's limited hexadecimal editor and debugger. The need 

for nore sophistication becane apparent. After several failures in exploring 

alternatives (as fancy as hooking up to a PDP 11 through a telephone line 

for more storage) we were able to acquire a dual floppy disk drive by Intel. 

A spare line printer was attached to the system with minor hardware n-odifica­

tions and 16k bytes wore RAM were added in order to support DOS. The enhanced 

system had the power of a mini-cofrputer in software (assembler, editor, li­

brary manager, linkage editor, leader, and a sufficient file manager) at a 

speed which was slow but acceptable. The floating point package was converted 

to assembly language, and two more packages were developed: the I/O package 

and the matrix manipulation package. Unexpected help came from the use of 

ICE-80 (In Circuit Emlator), designed for a different application, as a 

powerful symbolic debugger substituting for the monitor hexadecimal debugger. 

Out of this final version of the developrent system only a limited 

amount of resources were used for the final run. Those define the minimal 

execution system. .The disk was only used for input of data. The essential 

parts were: 

* The CPU card 

- 16k Bytes of memory 



"
The console device and its interface 

" Power supply: 12V, 5V, -5V, ground 

Additionally, the line printer was used to produce a hardcopy version of 

the results. 

The actual field configuration would be the sane if the machine were 

located on the ground. Sone kind of omrunications equipment would be re­

quired to provide the data input and, maybe, start the run autnmatically. 

The configuration would be different, though, if the machine were located on 

the satellite. The requirements for the satellite configuration would be: 

" The CPU card 

* 16k bytes of memory 

An interface that can load the information in memory 

" A means to communicate the result to the world 

* Power supply: 12V, 5V, -5V, ground 



The Floating Point Package: 

Based on estimates of the number of operations required we were in­

clined to think that any floating point operations would have to be performed 

by hardware and not by software since estimated tines became prohibitive. 

This floating point package was developed to help us count the actual number 

of operations rather than perform them in an actual situation. The final run 

pinved our estimates wrong and the package gained new ixportance. 

There are a nuiber of representations of floating poing numbers dif­

fering in accuracy and range as a trade off to the number of bytes required 

per number.. The one used was the ANSI format for FORTRAN which happens to 

be implemented by hardware as an option in IBM computers. It consists of one 

sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa­

decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2 

decimal digits. Specific operations werd not timed although a more general 

timing analysis appears in a later section. This format was chosen as opposed 

to the BCD format because the space requirements are laver for the sane 

amount of precision, which in turn reduces execution time slightly. A man­

tissa of binary digits was not used because of the frequent need for normali­

zation. 

Addition and subtraction take exactly the same tire, whereas multipli­

cation is approxim.tely equal to 22 addition and division is approximately 

60 additions. 

Multiplication produces a 48 bit result mantissa which is then normalized 

and rounded to 24 bits. This preserved-the number of significant digits, or, 

viewed from a different angle, is the same as a double precision multiply if 

the two arguments were expanded with zero fill. 

Division preserves the significant digits again by expanding the man­

tissa of the dividend to double precision and results in full single preci­

sion result. Normalization and rounding occur as in multiplication. 



Accuracy is thus preserved to true single precision throughout in a 

numerically stable manner keeping the length of the number to 4 bytes. The 

cost is expensive multiplication and, expeciallu, division. This dictates 

a programming style whereby division is avoided unless it is absolutely neces­

sary. The benefits, on the other hand, are numerically stable inplementa­

tions whose results match the double precision to the extent possible as 

will be seen when the results of the run are analyzed. 

The square root function was implemented by using a variation of Heron's 

formula based on the observation that the mantissa of any floating point num­

ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first 

guess an approximation to a straight line connecting the two end points is 

made. Experimentally, six iterations wre found necessary to produce an 

accurate result. A better first guess could improve that significantly, but 

tiie constraints did not allow us to pursue that direction. 

Finally, input and output of floating point numbers turn out a :mch 

more serious task than first expected. The input routine recognized numbers 

with a mayixn of ten integer and ten fraction digits. This proved more 

than sufficient for our needs. The output routine p.oduces a rigid scienti­

fic format with 10 fraction digits. When interpreting the results it should 

be kept in mind that at ost only 7 are significant. The format was re­

tained in case of future expansion of the mantissa. Both the input and output 

routines could be better, but since their function is only tangential to the 

project at hand they were kept on the bare functional level. 



matrix Operations: -

All matrices in the system are defined as two-dirensional, including 

vectors. The first tx-n bytes contain the numiber of rows and the number of 

columns in the particular matrix, respectively. This effectively limits the 

number of observations to 256. Vectors have one of their dimensions identi­

cally equal to 1. The nedxt two bytes contain the address of the first byte 

that follows the last byte belonging to the matrix. Adjacent elements in 

a row of the matrix are stored as adjacent floating point numbers in memory. 

Bows are stored sequentially starting from the first row in the fifth byte. 

In an effort to minimize the number of address calculations in the least 

squares algorithm the APL program we were supplied with, (LSQ), was converted 

into FORTRAN. The calculations involved in the residual equations were all 

grouped together inside one big loop. The advantage of such a scheme is that 

once an offset is calculated it can be used to address all the needed elements 

of the matrices involved in the calculation. When the tine came though, to 

inplement it using 8080 assembly language, it becane all too apparent that 

there were too many addresses to keep track of and too few registers to help. 

Therefore, due to the limitation of addressing capabilities, routines were 

implenented for the various matrix operators in APL. This resulted in well. 

structured and very efficient code, the style being dictated by the instruc­

tion set. 

A minium number of matrix utility routines was necessary. Matrices can 

be created by specifying their dimnsions, they can be filled with zeros, they 

can be read from a device, they can be moved (copied) in storage. 

There are four classes of operations by which matrices may be altered 

involving the following arguments. 

* a constant and a matrix 

* a vector and a matrix 



" two matrices (plus possibly a result matrix) 

" one matrix (for example, inversion) 

In our particular application there was only one inversion of a 2 by 2 

matrix involved. A simple algorithm derived from Euler's method is ixple­

mented using fixed pivots. Execution time and temporary storage are opti­

mized. 



IiplTenting the Experirent: 

Having developed the tools that were discussed in previous sections the 

actual implementation was straight forward. For reasons already mantioned a 

routine was written to match the LSQ routine* developed by Dr. Marini almost 

statement by statement. The correspondence is indicated in the source pro­

gram by keeping track of the APL statement numbers. The array names were 

kept the same as much as possible and only one additional tenrporary matrix 

was required. The program was written for a maximum of 100 observations. 

All matrix operations as well as the square root keep track of the calls to 

the floating point routines. 

The whole package makes limited use of two nonitor routines, which can 

easily be eliminated. The reason they are there is because software was 

being developed in machine language and the monitor provided a lot of needed 

help. So, essentially, LSQ can be run conpletely independently. 

The space requirments for this particular run was approximately 16k 

bytes, out of which 4k could e in XUM and 12k in RAM. The exact numbers 

are as follows:
 

Code: 3656 bytes
 

Data: 10365 bytes 

Stack: 100 bytes (arbitrarily) 

Total: 14121 bytes 

Incorporated into the package were four counting routines that kept 

track of the number of additions, subtractions, multiplications and divisions 

required during each iteration. The results will be analyzed in the next sec­

tion. The actual inplementation would not require these- routines. The counting 

'overhead to each arithmetic operation is appioximately equal to half the time 

of an addition. 

* See Appendix C. 



Interpreting tle Results: 

The final run converged and yielded five digits of accuracy. If conver­

gence is defined as a ratio of two succesive RMS residuals being close to 1 

(in absolute) it was attained at the ninth iteration to within 0.00001. 

Co iparing these results to the run at GSFC (run at double precision, or 16 

digits of accuracy) we note the 5 digit accuracy of our result. 

Numerical analysis gives us enough tools to justify the loss of two signi­

ficant digits in the course of the iterations. The main source of error ap­

pears to be the subtraction Of the estimated range rates from the actuals. 

The subtraction of the average residual equations could could contribute to 

the error as well. 

The measured execution time for this particular run was 62 seconds per 

iteration. The microprocessor used was an 8080A by Intel. Adjusting for 

counting the number of operations the true time beccmes 61 seconds. The 

8080A CPU has a cycle time of 2 microseconds. If this system were actually 

inplemented, the 808OA-1 CPU could be used which offers higher speed with 

cycle time of 1.3 microseconds which could bring execution time down to 40 

seconds for each iteration giving approximately 6 minutes to reach conver­

gence. This figure is derived with no modification of the software. Since, 

it falls within our difinition of "real time", which was around 15 minutes, 

it is definitely a workable solution. 

Another alternative is, of course, to use hardware floating point units. 

Two units that we are familiar with indicate a disparity in execution tines 

of several orders of magnitude. Their specifications appear in Appendix B 

for the purposes of the following analysis, 'typical' execution tines for 8 

digits of precision of the North Star Conputers, Inc. FPB unit were used. 

Our system indicated the following frequency of floating point operations 

for each iteration: 

Additions - 3137 



Subtractions - 672
 

Multiplications - 2382 

Divisions - 940
 

When trying to conpute the tiit it would take to execute those instruc­

tions we noticed that the tine it takes to access hardware floating point 

unit is ore than twice than the tine it takes to do the calculations. Namely, 

we came up with the following numbers: 

TME (SEC). 	 PURPOSE 

0.35 	 perform the operations 

0.825 	 input and output the number form 
FPB (8080A-I) 

1.175 	 total time required 

Therefore, use of hardware units make it possible to decrease the execu­

tion tine by one order of magnitude. 



Future Research:
 

The parameters that have to be optimized in the search and rescue 

mission consist of the accuracy of the position estimation and the time in 

which it is performed. Proving the feasibility of a microprocessor 

implementation is far fron devising an optimal algorithm. 

If the nonlinear regression method is utilized there is a lot of 

room for improvement in the inital estimate, a quantity that can affect 

the whole outcome of the iterations. Several methods that are suggested 

in Dr. Marini's paper can be explored. Furthermore, since the data 

collection takes an appreciable amount of time an algorithm should be devised 

in which an estimate is upgraded with each incoming datum. If that algorithm 

is good enough then the estimate could be the result itself. 

A further enhancerent on the calculation tiem can be achieved through 

parallelism. It can appear on two levels: 
" The imnplementation of the least squares algorithm 

" The grouping of data 

The least squares algorithm may be broken into parallel subtasks that 

can be performed by different processors in parallel, especially floating 

point operations. 

The data may be grouped in clusters on which the least squares 

algorithm is applied. The estimate provided by each cluster is then processed 

through least squares estimation itself. This method could be applied at 

data collection'- time - too. 



Appendix A 

Sample run at GSFC 

Sample run at Columbia 
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Appendix B 

Two typical hardware floating point units 

" FPB by North Star Conmuters, Inc. 

* FPU by Cyberuetic Micro Systems 



FPB DATA SHEET 

- EXECUTION TIMES 1,2,3 

PRECISION DIGITS: 2 4 6 8 10 12 14 

ADD best 
typical 
worst 

1 
8-

10 

1 
8 

10 

1 
9 

10 

1 
9 

11 

1 
10 
11 

1 
10 
12 

1 
11 
12 

SUBTRACTbest 
typical 
worst 

4 
8 

15 

4 
8 

16 

4 
9 

17 

4 
9 

18 

4 
10 
19 

4' 
10 
20 

4 
11 
21 

MULTIPLY best 
typical 
worst 

5 
18 
51 

5 
34 

125 

5 
55 

228 

5 
80 

382 

5 
111 
527 

5 
146 
720 

5 
186 
933 

DIVIDE best 
typical 
worst 

7 
39 
62 

7 
70 

139 

. 7 
109 
229 

7 
156 
340 

7 
211 
470 

7 
274 
621 

7 
370 
779 

1.Times given in microseconds 
2. Execution times are a function of the input values 
3. Times listed do not include transmission of input values and result 

Board dimensions: 
Model A: 5 in. by 10 in. 
Model 8: 6%in. by 12 in. 

Power requirements: 
Model A: 8 V (unregulated) @1.7 A 
Model B: 5V (regulated) @1.7 A 

Board Construction: 
FR4 material, gold plated edge connectors 

Floating point number representation: 
Byte 1: bit 7=sign (1=negative number, O=positive number) 

bits 6-0 = exponent in excess 64 binary representation 
bits 7-0 = zero represents the zero value 

Byte 2: bits 3-0 = least significant digit of value in BCD coding 
bits 7-4 = next least significant digit of value 

Byte n: bits 7-4 = most significant digit of value in BCD coding 
bits 3-0 = next most significant digit of value 

All values are nomalized. 

Other representations of BCD floating point numbers require a change in microcode and areavailable on 
special order. 



*Sample use of the North Star FPB for a divide operation with 8 digit precision 
*inthis example assume arguments are in memory in form: 
* Most significant byte (msb) digit pair 
* Susequent digit pairs follow the msb 
* Exponent/sign byte follows Isb digit pair. 
* Pointer addresses the exponent/sign byte 
*BC has left arg pointer 
*DE has right arg pointer 
*HL has result pointer 

*The FPB receives its arguments by ",peeking" at the 8080 bus 
*when the argument values are loaded to accumulator. 
*Two jumperable "hardwired" addresses are required for signaling the FPB 

*This routine may be generalized to perform any operation, at any precision. 

FDIV LDA RSTRT This "hardwired" reference signals FPB to "wake up" 
MVI A,8*16+DIVOP Specify precision and operation code to FPB 
LDAX D Exponent/sign byte of right arg 
DCX D Advance pointer to next byte 
LDAX D Least significant digit pair of right arg 
DCX D Advance pointer to next byte 
LDAX D
 
DCX D 
LDAX D 
DCX D 
LDAX D Most significant digit pair of right arg 
LDAX B Exponent/sign byte of left arg 
DCX B 
LDAX B Least significant digit pair of left arg 
DCX B 
LDAX B 
DCX B 
LDAX B 
DCX B 
LDAX B Most significant digit pair of left arg 
Now the Floating Point Board is performing the operation 
LXI D,FPDIN "Hardwired" address for receiving value from FPB 

FDIVi LDAX D Loop waiting for completion signal (sign bit) 
The FPB is done when the sign bit becomes I'll,ORA A 

JP FDIV1 Loop if sign bit is still "0" 
ANI EBITS Check for error, condition tested at end 
LDAX D' Exponent/sign of result 
MOV MIA Store exponent/sign of result 
DCX H Advance pointer. 
LDAX D Least significant' digit pair of result 
MOV MIA 
DCX H 
LDAX D
 
MOV M,A 
DCX H 
LDAX D 
MOV M,A 
DCX H 
LDAX D msb byte of result 
MOV MA Store it 
RZ Return if no error was detected 
JMP ERROR Go report error (i.e. underflow or divide by 0) 



FLOATING POINT UNIT
 

PRICE LIST
 

MODEL QUANTITY
 

-25 100
 

#1 $595.00 $535.00 $475.00
 

#2 470.00 4.25.00 375.00
 

#3 345.00 315.00 275.00
 

All sales FOB Palo Alto
 

EXECUTION TIMES
 

FUNCTION TIME IN MILISECONDS (approximate)
 

ADD, SUB 110
 

MUL, DIV, SQRT 225
 

TAN 846
 

LN, SIN, COS,-s'POL 1250
 

POWER 1720
 

LC9EBLETIC 11CFO 51?5TEL5 
2460 EMBARCAtERO WAY 

PALO ALTO, CA 94303 
(415) 321-0410 



Appendix C 

The APL least squares program 
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Microprocessor Utilization in Search & Rescue Missions 

FINAL REPORT 

Introduction: 

The position of an energency transmitter may be determined by mreasuring 

the Doppler shift of the distress signal as received by an orbiting satellite. 

This requires the computation of an initial estimate and refinement of this 

estinate through an iterative, nonlinear, least-squares estimation. 

A version of the above algorithm was implemented at Goddard Space Flight 

Center (GSFC) and tested by locating a transmitter on the premises and obtaining 

observations from a satellite. The coputer used was an IBM 360/95. The po­

sition was determined within the desired 10 kin radius accuracy. 

The purpose of this project is to determine the feasibility of performing 

the same task in real tine using microprocessor technology. The least square 

algorithm was implemented on an Intel 8080 microprocessor andthe sane experi­

ment was run as at GSFC. 

The results indicate that a microprocessor can easily match the IBM im­

plementation in accuracy and be performed inside the time limitations set. 



Why Microprocessors: 

Tire is an inplicit restriction in any search and rescue mission. The 

use of satellites and computers is dictated by that time limit. The use of 

a big conrputer to determine the position presupposes ccnunication between the 

satellite and the conputer. This conxrunication introduces a tine delay since 

the satellite is not always within radio visibility of an installation that 

possesses both the communication and ccoputing power for this problem. Fbr­

thermore the result has to be forwarded to a command center to do the dispatching. 

Microprocessor utilization can alleviate this situation in two ways: 

by giving cheap coputing power to ccamnnication facilities or by incorporating 

the conputing powxer in the satellite itself thus eliminating this communication. 

coiletely-

Microprocessors offer light weight, small volume, low power processing. 

Their speed is inproving rapidly and their cost is going down. They are the 

logical choice for a satellite search and rescue system if they can perform. 



Machine Configuration: 

Strictly speaking there are three microprocessor configurations in 

this project which we are going to discuss individually. 

* Development system 

* Minimal execution system 

* Actual field configuration 

Initially our development system consisted of an MDS-80 Intellec micro­

comrputer by Intel with 16k bytes of RAM nemory and a resident RM monitor. 

Most of the floating point package was developed in-machine language on that 

system using the nonitor's limited hexadecimal editor and debugger. The need 

for more sophistication became apparent. After several failures in exploring 

alternatives (as fancy as hooking up to a PDP 11 through a telephone line 

for nore storage) we were able to acquire a dual floppy disk drive by Intel. 

A spare line printer was attached to the system with minor hardware nodifica­

tions and 16k bytes more RAM were added in order to support DOS. The enhanced 

system had the power of a mini-conputer in software (assembler, editor, li­

brary manager, linkage editor, leader, and a sufficient file manager) at a 

speed which was slow but acceptable. The floating point package was converted 

to assenbly language, and two =re packages were developed: the I/O package 

and the matrix manipulation package. Unexpected help cane from the use of 

ICE-80 (In Circuit Etlator), designed for a different application, as a 

powerful symbolic debugger substituting for the nonitor hexadecimal debugger. 

Out of this final version of the development system only a limited 

amount of resources were used for the final run. Those define the minimal 

execution system. The disk was only used for input of data. The essential 

parts were: 

- The CPU card 

* 16k Bytes of menory 



* The console device and its interface 

" Power supply: 12V, 5V, -5V, ground 

Additionally, the line printer was used to produce a hardcopy version of 

the results. 

The actual field configuration would be the same if the machine were 

located on the ground. Some kind of comnunications equipent would be re­

quired to provide the data input and, maybe, start the run automatically. 

The configuration would be different, though, if the machine were located on 

the satellite. The requirements for the satellite configuration would be: 

" The CPU card 

* 16k bytes of menory 

An interface that can load the information in menory 

* A means to comumnicate the result to the world 

* Power supply: 12V, 5V, -5V, ground 



The Floating Point Package: 

Based on estimates of the number of operations required we were in­

clined to think that any floating point operations would have to be performed 

by hardware and not by software since estimated times became prohibitive. 

This floating point package was developed to help us count the actual number 

of operations rather than perform them in an actual situation. The final run 

proved our estimates wrong and the package gained new inportance. 

There are a nuTber of representations of floating poing numbers dif­

fering in accuracy and range as a trade off to the number of bytes required 

per number. The one used was the ANSI format for FORTRAN which happens to 

be implemented by hardware as an option in IBM computers. It consists of one 

sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa­

decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2 

decimal digits. Specific operations were not timed although a more general 

timing analysis appears in a later section. This format was chosen as opposed 

to the BCD format because the space requirements are lower for the same 

amount of precision, which in turn reduces execution time slightly. A man­

tissa of binary digits was not used because of the frequent need for normali­

zation.
 

Addition and subtraction take exactly the same time, whereas nmltipli­

cation is approximately equal to 22 addition and division is approximately 

60 additions. 

Multiplication produces a 48 bit result mantissa which is then normalized 

and rounded to 24 bits. This preserved-the number of significant digits, or, 

viewed fron a different angle, is the same as a double precision multiply if 

the two arguments wre expanded with zero fill. 

Division preserves the significant digits again by expanding the Man­

tissa of the dividend to double precision and results in full single preci­

sion result. Nbrmalization and rounding occur as in multiplication. 



Accuracy is thus preserved to true single precision throughout in a 

numerically stable manner keeping the length of the number to 4 bytes. The 

cost is expensive multiplication and, expeciallu, division. This dictates 

a programming style whereby division is avoided unless it is atsolutely neces­

sary. The benefits, on the other hand, are nunferically stable implenenta­

tions whose results match the double precision to the extent possible as 

will be seen when the results of the run are analyzed. 

The square root function was implemented by using a v riation of Heron's 

formula based on the observation that the mantissa of any floating point num­

ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first 

guess an approximation to a straight line connecting the two end points is 

made. Experimentally, six iterations were found necessary to produce an 

accurate result. A better first guess could improve that significantly, but 

time constraints did not allow us to pursue that direction. 

Finally, input and output of floating point numbers turn out a much 

more serious task than first expected. The input routine recognized numbers 

with a maximum of ten integer and ten fraction digits. This proved more 

than sufficient for our needs. The output routine produces a rigid scienti­

fic format with 10 fraction digits. When interpreting the results it should 

be kept in mind that at most only 7 are significant. The format was re­

tained in case of future expansion of the mantissa. Both the input and output 

routines could be better, but since their function is only tangential to the 

project at hand they wre kept on the bare functional level. 



Matrix Operations: 

All matrices in the system are defined as two. dimensional, including 

vectors. The first two bytes contain the number of rows and the number of 
A 

columns in the particular matrix, respectively. This effectively limits the 

number of observations to 256. Vectors have one of their dimensions identi­

cally equal to 1. The next two bytes contain the address of the first byte 

that follows the last byte belonging to the matrix. Adjacent elenents in 

a row of the matrix are stored as adjacent floating point numbers in memory. 

rows are stored sequentially starting from the first row in the fifth byte. 

In an effort to minimize the number of address calculations in the least 

squares algorithm the APL program we were supplied with, (LSQ), was converted 

into FORTRAN. The calculations involved in the residual equations were all 

grouped together inside one big loop. The advantage of such a scheme is: that 

once an offset is calculated it can be used to address all the needed elements 

of the matrices involved in the calculation. When the time came though, to 

implement it using 8080 assembly language, it became all too apparent that 

there were too many addresses to keep track of and too few registers to help. 

Therefore, due to the limitation of addressing capabilities, routines were 

implenented for the various matrix operators in APL. This resulted in well 

structured and very efficient code, the style being. dictated by the instruc­

tion set. 

A minimum nuiber of matrix utility routines was necessary. Matrices can 

be created by specifying their dimensions, they can be filled with zeros, they 

can be read from a device, they can be ioved (copied) in storage. 

There are four classes of operations by which matrices may be altered 

involving the following argunients. 

. a constant and a matrix 

. a vector and a miatrix 



* two matrices (plus possibly a result matrix) 

- one matrix (for example, inversion) 

In our particular application there was only one inversion, of a -2 by 2 

matrix involved. A simple algorithm derived from Euler's method is imple­

iented using fixed pivots. Execution time and temporary storage are opti­

mized. 



Inplementing the Experiment: 

Having developed the tools that were discussed in previous sections the 

actual inplenentation was straight forward. For reasons already mentioned a 

routine was written to match the ISO routine* developed by Dr.4 Marini almost 

statement by statement. The correspondence is indicated in the source pro­

gram by keeping track of.the APL statement numbers. The array names were
 

kept the sane as much as possible and only one additional temporary matrix 

was required. The program was written for a maximn of 100 observations.
 

All matrix operations as well as the square root keep track of the calls to
 

the floating point routines.
 

The whole package makes limited use of two monitor routines, which can
 

easily be eliminated. The reason they are there is because software was
 

being developed in machine language and the monitor provided a lot of needed 

help. So, essentially, LSQ can be run conpletely independently. 

The space requirements for this particular run was approximately 16k 

bytes, out of which 4k could be in RoM and 12k in RAM. The exact numbers 

are as follows: 

Code: 3656 bytes
 

Data: 10365 bytes
 

Stack: 100 bytes (arbitrarily)
 

Total: 14121 bytes
 

Incorporated into the package were four counting routines that kept 

track of the number of additions, subtractions, multiplications and divisions 

required during each iteration. The results will be analyzed in the next sec­

tion. The actual implementation would not require these routines. The counting 

overhead to each arithmetic operation is approximately equal to half the tine 

of an addition.
 

* See Appendix C.
 



Interpreting the Pesults: 

The final run converged and yielded five digits of accuracy. If conver­

gence is defined as a ratio of two succesive PNS residuals being close to 1 

(in absolute) it was attained at the ninth iteration to within 0.00001. 

Conparing these results to the run at GSFC (run at double precision, or 16 

digits of accuracy) we note the 5 digit accuracy of our result. 

Numerical analysis gives us enough tools to justify the loss of two signi­

ficant digits in the course of the iterations. The main source of error ap­

pears to be the subtraction of the estimated range rates from the actuals. 

The subtraction of the average residual equations could could contribute to 

the error as well. 

The measured execution time for this particular run was 62 seconds per 

iteration. The microprocessor used was an 8080A by Intel. Adjusting for 

counting the number of operations the true time becomes 61 seconds. The 

8080A CPU has a cycle tine of 2 mtcroseconds. If this system were actually 

inplemented, the 8080A-1 CPU could be used which offers higher speed with 

cycle time of 1.3 microseconds which could bring execution time down to 40 

seconds for each iteration giving approximately 6 minutes to reach conver­

gence. This figure is derived with no modification of the software. Since­

it falls within our difinition of "real time", which was around 15 minutes, 

it is definitely a workable solution. 

Another alternative is, -pf course, to use hardware floating point units. 

Two units that we are familiar with indicate a disparity in execution times 

of several orders of magnitude. Their specifications appear in Appendix B 

for the purposes of the following analysis, 'typical' execution times for -8 

digits of precision of the North Star Coftputers, Inc. FPB unit were used. 

Our system indicated the following frequency of floating point operations 

for each iteration:
 

Additions - 3137
 



Subtractions - 672
 

Multiplications - 2382 

Divisions - 940
 

When trying to conpute the tine it would take to execute 'those instruc­

tions we noticed that the time it takes to access hardware floating point 

unit is rrore than twice than the time it takes to do the calculations. Namely, 

we came up with the following numbers: 

TIME (SC) 	 PURPOSE 

0.35 	 perform the operations 

0.825 	 input and output the number form 
FPB (8080A-1) 

1.175 	 total time required 

Therefore, use of hardware units make it possible to decrease the execu­

tion time by one order of magnitude. 



Future Research: 

The parameters that have to be optimized in the search and rescue 

mission consist of the accuracy of the position estimation and the time in 

which it is performed. Proving'the feasibility of a microprocessor 

implementation is far fran devising an optimal algorithm. 

If the nonlinear regression method is utilized there is a lot of
 

room for inprovement in the inital estimate, a quantity that can affect 

the whole outcome of the iterations. Several methods that are, suggested 

in Dr. Marini's paper can be explored. Furthermore, since the data 

collection takes an appreciable amount of time an algorithm should be devised 
in which an estimate is upgraded with each incoming datum. If that algorithm 

is good enough then the estimate could be, the result itself. 

A further enhancement on the calculation tiem can be achieved through 

parallelism. It can appear on two levels:
 
" The implementation of the least squares algorithm 

• The grouping of data 

The least squares algorithm may be broken into parallel subtasks that 

can be performed by different processors in parallel, especially floating 

point operations. 

The data may be grouped in clusters on which the least squares 

algorithm is applied. The estimate provided by each cluster is then processed 

through least squares estimation itself. This method could be applied at 

data coilection_ tine too. 



Appendix A 

* Sample run at GSFC 

* Sample run at Columbia 
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Appendix B 

Two typical hardware floating point units 

" 
FPB by North Star Corputers, Inc.
 

* FPU by Cyberuetic Micro Systems 



FPB DATA SHEET 

EXECUTION TIMES 1,2,3. 

PRECISION DIGITS: 2 4 6 8 10 12 14 

ADD best 
typical 
worst 

1 
8 

10 

1 
8 

10 

1 
9 

10 

1 
9 

11 

1" 
10 
11 

1 
10 
12: 

1 
11 
12 

SUBTRACTbest 
typical 
worst 

4 
8 
15 

4 
8 
16 

4 
9 
17 

4 
9 

18 

4 
10 
19 

4 
10 
20 

4 
11 
21 

MULTIPLY best 
typical 
worst 

5 
18 
51 

5 
34 

125 

5 
55 

228 

5 
80 

382 

5 
111 
527 

5 
146 
720 

5 
186 
933 

DIVIDE best 
typical 
worst 

7 
39 
62 

7 
70 

139 

• 7 
109 
229 

7 
156 
340 

7 
211 
470 

7 
274 
621 

7 
370 
779 

1. Times given in microseconds 
2. Execution times are a function of the input values 
3. Times listed do not include transmission of input values and result 

Board dimensions: 
Model A: 5 in. by 10 in. 
Model B: 6% in. by 12 in. 

Power requirements: 
Model A: 8 V (unregulated) @1.7 A 
Model B: 5 V. (regulated) @1.7 A 

Board Construction: 
FR4 material, gold plated edge connectors 

Floating point number representation: 
Byte 1: bit 7=sign (1=negative number, O=positive number) 

bits 6-0 = exponent in excess 64 binary repreentation 
bits 7-0 = zero represents the zero value 

Byte 2: bits 3-0 = least significant digit of valte in BCD coding 
bits 7-4 = next least significant digit of value 

Byte n: bits 7-4 = most significant digit of valde in BCD coding 
bits 3-0 = next most significant digit of value 

All values are nomalized. 

Other representations of BCD floating point numbers require a change in microcode and are available on 
special order. 



*Sample use of the North Star FPB for a divide operation with 8 digit precision 
*Inthis example assume arguments are in memory in form: 

Most significant byte (msb) digit pair 
* Susequent digit pairs follow the msb 
* Exponent/sign byte follows Isb digit pair. 
* Pointer addresses the exponent/sign byte 
*BC has left arg pointer 
*DE has right arg pointer 
*HL has result pointer 

*The FPB receives its arguments by "peeking" at the 8080 bus 
*when the argument values are loaded to accumulator. 
*Two jumperable "harcwired" addresses are required for signaling the FPB 

*This routine may be generalized to perform any operation, at any precision. 

FDIV LOA RSTRT This "hardwired" reference signals FPB to "wake up" 
MVI A,8*16+DIVOP Specify precision and operation code to FPB 
LDAX D Exponent/sign byte of right arg 
DCX D Advance pointer to next byte 
LDAX D Least significant digit pair of right arg 

DCX D Advance pointer to next byte 
LDAX D 
DCX D 
LDAX D 
DCX D
 
LDAX D Most significant digit pair of right arg 
LDAX B Exponent/sign byte of left arg 
DCX B 
LDAX B Least significant digit pair of left arg 
DCX B 
LDAX B 
DCX B 
LDAX B 
DCX B 
LDAX B Most significant digit pair of left arg 
Now the Floating Point Board is performing the operation 
LXI D,FPDIN "Hardwired" address for receiving value from FPB 

FDIV1 LDAX D 't, Loop waiting for completion signal (sign bit) 
ORA A 
JP FDlV1 
ANI EBITS 
LDAX D 

MOV M,A 
DCX H 
LDAX D 
MOV M,A 
DCX H 
LDAX D 
MOV M,A 
DCX H 
LDAX D 
MOV M,A 
DCX H 
LDAX D 
MOV M,A 
RZ 
JMP ERROR 

The FPB is done when the sign bit becomes "1" 
Loop if sign bit is still "0" 
Check for error, condition tested at end 
Exponent/sign of result 
Store exponent/sign of result 
Advance pointer. 
Least signifidant'digit pair of result 

msb byte of result 
Store it 
Return if no error was detected 
Go report error (i.e. underflow or divide by 0) 



FLOATING POINT UNIT
 

PRICE LIST
 

MODEL QUANTITY
 

1 25 
 100
 

#1 $5§5.00 $535.00 $475.00
 

#2 470.00 425.00 375.00
 

#3 345.00 315.00 275.00
 

All sales FOB Palo Alto
 

EXECUTION TIMES
 

FUNCTION TIME INMILISECONDS (approximate)
 

ADD, SUB 110
 

MUL, DIV, SQRT 225
 

TAN 846
 

LN, SIN, COS,-*POL 1250
 

POWER 1720
 

Ct BERi'ilETaC LARBO SWSTEmS
 
2460 EMBARCAbERO WAY 

PALO ALTO, CA 94303 
(415) 321-0410 



Appendix C 

The APL least squares program 
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Microprocessor Utilization in Search & Pescue Missions 

FINAL REPORT 

Introduction: 

The position of an energency transmitter nmay be determined by measuring 

the Doppler shift of the distress signal as received by an orbiting satellite. 

This requires the ccmputation of an initial estimate and refinement of this 

estimate through an iterative, nonlinear, least-squares estimation. 

A version of the above algorithm was implemented at Goddard Space Flight 

Center (GSFC) and tested by locating a transmitter on the premises and obtaining 

observations from a satellite. The conputer used was an IBM 360/95. The po­

sition was determined within the desired 10 km radius accuracy. 

The purpose of this project is to determine the feasibility of performing 

the sane task in real tine using microprocessor technology. The least square 

algorithm was inplemnted on an Intel 8080 microprocessor and the same experi­

ment was run as at GSFC. 

The results indicate that a microprocessor can easily match the IBM im­

plementation in accuracy and be performed inside the time limitations set. 
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Why Microprocessors: 

Time is an implicit restriction in any search and rescue mission. The 

use of satellites and conuters is dictated, by that time limit. The use of 

a 'big conrputer to determine the position presupposes connication between the 

satellite and the computer. This onmunication introduces a time delay since 

the satellite is not always within radio visibility of an installation that 

possesses both the communication and ccaputing power for this problem. Fur­

thermore the result has to be forwarded to a connand center to do the dispatching. 

Microprocessor utilization can alleviate this situation in two ways: 

by giving cheap computing power to comunication facilities or by incorporating 

the computing power in the satellite itself thus eliminating this omunication 

completely. 

Microprocessors offer light weight, small volum, low power processing. 

Their speed is ixrproving rapidly and their cost is going down. They are the 

logical choice for a satellite search and rescue system if they can perform. 
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Machine Configuration: 

Strictly speaking there are three microprocessor configurations in 

this project which we are going to discuss individually. 

- Development system 

* Minimal execution system 

* Actual field configuration 

Initially our development system consisted of an NDS-80 Intellec micro­

coputer by Intel with 16k bytes of RAM memory and a resident tOM monitor. 

Mst of the floating point package was developed in machine language on that 

system using the monitor's limited hexadecimal editor and debugger. The need 

for more sophistication became apparent. After several failures in exploring 

alternatives (as fancy as hooking up to a PDP 11 through a telephone line 

for more storage) we were able to acquire a dual floppy disk drive by Intel. 

A spare line printer was attached to the system with minor hardware modifica­

tions and 16k bytes more RAM were added in order to support DOS. The enhanced 

system had the power of a mini-computer in software (assembler,-editor, li­

brary manager, linkage editor, leader, and a sufficient file manager) at a 

speed which was slow but acceptable. The floating point package was converted 

to assembly language, and two more packages were developed: the I/O package 

and the matrix manipulation package. Unexpected help cane from the use of 

ICE-80 (In Circuit Emulator), designed for a different application, as a 

powerful symbolic debugger substituting for the monitor hexadecimal debugger. 

Out of this final version of the development system only a limited 

amount of resources were used for the final run. Those define the minimal 

execution system. The disk was only used for input of data. The essential 

parts were: 

The CPU card 

16k Bytes of memory 
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" The console device and its interface 

* Power supply: 12V, 5V, -5V, ground 

Additionally, the line printer was used to produce a hardcopy version of 

the results. 

The actual field configuration wuld be the sane if the machine were 

located on the ground. Soe kind of communications equipment wOuld be re­

quired to provide the data input and, maybe, start the run automatically. 

The configuration vnuld be different, though, if the machine were located on 

the satellite. The requirements for the satellite configuration would be: 

* The CPU card 

* 16k bytes of menory 

An interface that can load the information an enory 

"A means to communicate the result to the world 

"Power supply: 12V, 5V, 75V, ground 
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The Floating Point Package: 

Based on estimates of the number of operations required we were in­

clined to think that any floating point operations would have to be performed 

by hardware and not by software since estimated times became prohibitive. 

This floating point package was developed to help us count the actual number 

of operations rather than perform them in an actual situation. The final run 

proved our estimates wrong and the package gained new inportance. 

There are a number of representations of floating poing numbers dif­

fering in accuracy and range as a trade off to the number of bytes required 

per number. The one used was the ANSI format for FORTRAN which happens to 

be implemented by hardware as an option in IBM conputers. It consists of one 

sign bit, a seven bit exponent (excess 64), and a 24 bit mantissa of hexa­

decimal digits. The accuracy is 6 hexadecimal digits or approximately 7.2 

decimal digits. Specific operations were not timed although a more general 

timing analysis appears in a later section. This format was chosen as opposed 

to the BCD format because the space requirements are lower for the sane 

amount of precision, which in turn reduces execution time slightly. A man­

tissa of binary digits was not used because of the frequent need for normali­

zation. 

Addition and subtraction take exactly the sane time, whereas multipli­

cation is approximately equal to 22 addition and division is approximately 

60 additions. 

Multiplication produces a 48 bit result mantissa which is then normalized 

and rounded to 24 bits. This preserved-the number of significant digits, or, 

viewed from a different angle, is the same as a double precision multiply if 

the two arguments were expanded with zero fill. 

Division preserves the significant digits again by expanding the man­

tissa of the dividend to double precision and results in full single preci­

sion result. Normalization and rounding occur as in multiplication. 
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Accuracy is thus preserved to true single precision throughout in a 

nunerically stable manner keeping the length of the number to 4 bytes. The 

cost is expensive multiplication and, expeciallu, division. This dictates 

a prograxning style whereby division is avoided unless it is absolutely neces­

sary. The benefits, on the other hand, are nunerically stable iplenenta­

tions whose results match the double precision to the extent possible as 

will be seeh when the results of the run are analyzed. 

The square root function was inplenented by using a variation of Heron's 

formula based on the observation that the mantissa of any floating point num­

ber will have a value of 1/16 to 1 (interpreted as a fraction). As a first 

guess an approximation to a straight line connecting the two end points is 

made. Experimentally, six iterations were found necessary to produce an 

accurate result. A better first guess could improve that significantly, but 

tine constraints did not allow us to pursue that direction. 

Finally, input and output of floating point numbers turn out a Rmuch 

more serious task than first expected. The input routine recognized numbers 

with a maximum of ten integer and ten fraction digits. This proved more 

than sufficient for our needs. The output routine produces a rigid scienti­

fic format with 10 fraction digits. When interpreting the results it should 

be kept in mind that at most only 7 are significant. The format was re­

tained in case of future expansion of the mantissa. Both the input and output 

routines could be better, but since their function is only tangential to the 

project at hand they were kept on the bare functional level. 
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Matrix Operations: 

All matrices in the system are defined as two diensional, including 

vectors. The first two bytes contain the number of rows and the number of 

columns in the particular matrix, respectively. This effectively limits the 

number of observations to 256. Vectors have one of their dimensions identi­

cally equal to 1. The next two bytes contain the address of the first byte 

that follows the last byte belonging to the matrix. Adjacent elenents in 

a row of the matrix are stored as adjacent floating point nuTbers in memory. 

Rows are stored sequentially starting from the first row in the fifth byte. 

In an effort to minimize the number of address calculations in the least 

squares algorithm the APL program we were supplied with, (LSQ), was converted 

into FORTRAN. The calculations involved in the residual equations were all 

grouped together inside one big loop. The advantage of such a scheme is that 

once an offset is calculated it can be used to address all the needed elements 

of the matrices involved in the calculation. When the time came though, to 

implement it using 8080 assembly language, it became all too. apparent that 

there were too many addresses to keep track of and too few registers to help. 

Therefore, due to the limitation of addressing capabilities, routines were 

implemented for the various matrix operators in APL. This resulted in well 

structured and very efficient code, the style being dictated by the instruc­

tion set. 

A minirmm number of matrix utility routines was necessary. Matrices can 

be created by specifying their dimensions, they can be filled with zeros, they 

can be read from a device, they can be imoved (copied) in storage. 

There are four classes of operations by which matrices may be altered 

involving the following arguments. 

" a constant and a matrix 

- a vector and a matrix 
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- two matrices (plus possibly a result matrix) 

- one matrix (for example, inversion) 

In our particular application there was only one inversion of a 2 by 2 

matrix involved. A sinple algorithm derived from Euler's nethod is irrple­

nented using fixed pivots. Execution tine and teporary storage are opti­

mized. 
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Implementing the Experiment: 

Having developed the tools that were discussed in previous sections the 

actual implementation was straight forward. For reasons already mentioned a 

routine was written to match the ISO routine* developed by Dr. Marini almost 

statement by statemrent. The correspondence is indicated in the source pro­

gram by keeping track of the APL statement numbers. The array names were 

kept the same -as much as possible and only one additional teWorary matrix 

was required. The program was written for a imaximum of 100 observations. 

All matrix operations as well as the square root keep track of the calls to 

the floating point routines. 

The whole package makes limited use of two monitor routines, which can 

easily be eliminated. The reason they are there is because software was 

being developed in machine language and the monitor provided a lot of needed 

help. So, essentially, LSQ can be run completely independently. 

The space requirements for this particular run was approximately 16k 

bytes, out of which 4k could be in ROM and 12k in RAM. The exact numbers 

are as follows: 

Code: 3656 bytes 

Data: 10365 bytes 

Stack: 100 bytes (arbitrarily) 

Ttal: 14121 bytes 

Incorporated into the package were four counting routines that kept 

track of the nutber of additions, subtractions, multiplications and divisions 

required during each iteration. The results will be analyzed in the next sec­

tion. The actual implementation would not require these routines. The counting 

overhead to each arithmetic operation is approximately equal to half the time 

of an addition. 

* See Appendix C. 
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Interpreting the Results:
 

The final run converged and yielded five digits of accuracy. If conver­

gence is defined as a ratio of two succesive EMS residuals being close to 1 

(in absolute) it was attained at the ninth iteration to within 0.00001. 

Conparing these results to the run at GSFC (run at double precision, or 16 

,digits of accuracy) we note the 5 digit accuracy of our result. 

Numerical analysis gives us enough tools to justify the loss of two signi­

ficant digits in the course of the iterations. The main source of error ap­

pears to be the subtraction of the estimated range rates, from the actuals. 

The subtraction of the average residual equations could could contribute to 

the error as well. 

The measured execution time for this particular run was 62 seconds per 

iteration. The microprocessor used was an 8080A by Intel. Adjusting for 

counting the number of operations the true time becomes 61 seconds. The 

8080A CPU has a cycle time of 2 microseconds. If this system were actually 

inplemented, the 8080A-1 CPU could be used which offers higher speed with 

cycle time of 1.3 microseconds which could bring execution tine down to 40 

seconds for each iteration giving approximately 6 minutes to reach conver­

gence. This figure is derived with no modification of the software. Since 

it falls within our difinition of "real time", which was around 15 minutes, 

it is definitely a workable solution. 

Another alternative is, of course, to use hardware floating point units. 

Two units that we are familiar with indicate a disparity in execution times 

of several orders of magnitude. Their specifications appear in Appendix B 

for the purposes of the following analysis, 'typical' execution tines for 8 

digits of precision of the North Star Computers, Inc. FPB unit were used. 

Our system indicated the following frequency of floating point operations 

for each iteration:
 

Additions - 3137 
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Subtractions - 672
 

Multiplications - 2382 

Divisions - 940
 

When trying to conpute the time it would take to execute those instruc­

tions we noticed that the time it takes to access hardware floating point 

unit is more than twice than the tine it takes to do the calculations. Namely, 

we came up with the following numbers: 

TIm (SEC) 	 PURPOSE 

0.35 	 perform the operations 

0.825 	 input and output the number form 
FPB (8080A-I) 

1.175 	 total time required 

Therefore, use of hardware units make it possible to decrease the execu­

tion tine by one order of magnitude. 
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Future Research: 

The parameters that have to be optimized in the search and rescue 

mission consist of the accuracy of the position estimation and the time in 

which it is performed. Proving the feasibility of a microprocessor 

iffplamentation is far fraxn devising an optimal algorithm. 

If the nonlinear regression method is utilized there is a lot of 

room for inprovement in the inital estimate, a quantity that can affect 

the whole outcome of the iterations. Several methods that are, suggested 

in Dr. Marini's paper can be explored. Furthermore, since the data 

collection takes an appreciable amount of tine an algorithn should be devised 

in which an estimate is upgraded with each incoming datum. If that algorithm 

is good enough then the estimate could be the result itself. 

A further enhancement on the calculation tiem can be achieved through 

parallelism. It can appear on two levels: 
* The implementation of the least squares algorithm 
" The grouping of data 

The least s.quares algorithm nay be broken into parallel subtasks that 

can be performed by different processors in parallel, especially floating 

point operations. 

The data may be grouped in clusters on which the least squares 

algorithm is applied. The estimate provided by each cluster is then processed 

through least squares estimation itself. This method could be applied at 

data collection time too. 
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Appendix A 

* Sample run at GSFC 

* Sample run at Columbia 
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Appendix B 

Two typical hardware floating point units 

" FPB by North Star Computers, Inc. 

" FPU by Cyberuetic Micro Systems 
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FPB DATA SHEET 

EXECUTION TIMES 1,2,3 

PRECISION DIGITS: 2 4 6 8 10 12 14 

ADD best 
typical 
worst 

1 
8 

10 

.1 
8 

10 

1 
9 

10 

1 
9 

11 

1 
10 
11 

1 
10 
12 

1 
11 
12 

SUBTRACT best 
typical 
worst 

4 
8 

15 

4 
8 

16 

4 
9 

17 

4 
9 

18 

4 
10 
19 

4 
10 
20 

4 
11 
21 

MULTIPLY best 
typical 
worst 

5 
18 
51 

5 
34 

125 

5 
55 

228 

5 
80 

382 

5 
111 
527 

5 
146 
720 

5 
186 
933 

DIVIDE best 
typical 
worst 

7 
39 
62 

7. 
70 
139 

7 
109 
229 

7 
156 
340 

7 
211 
470 

7 
274 
621 

7 
370 
779 

1.Times given in microseconds 
2. Execution times are afunction of the input values 
3.Times listed do not include transmission of input values and result 

Board dimensions: 
Model A: 5 in. by 10 in. 
Model B: 6%in. by 12 in. 

Power requirements: 
Model A: 8 V (unregulated) @1.7 A 
Model B: 5 V. (regulated) @1.7 A 

Board Construction: 
FR4 material, gold plated edge connectois 

Floating point number representation: 
Byte 1: bit 7=sign (1=negative number, O=positive number) 

bits 6-0 = exponent in excess 64 binary reprepentation 
bits 7-0 = zero represents the zero value 

Byte 2: bits 3-0 = least significant digit of value in BCD coding 
bits 7-4 = next least significant digit of value 

Byte n: bits 7-4 = most significant digit of valule in BCD coding 
bits 3-0 = next most significant digit of value 

All values are nomalized. 

Other representations of BCD floating point numbers require a change inmicrocode and are available on 
special order. 
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*Sample use of the North Star FPB for a divide opetation with 8 digit precision 
*Inthis example assume arguments ate in memory in form: 
* Most significant byte (nsb)digit pair 
* Susequent digit pairs follow the rush 
* Exponent/sign byte follows Isb digit pair. 
* Pointer addresses the exponent/sign byte 
*BC has left arg pointer 
*DE has right arg pointer 
*HL has result pointer 

*The FPB receives its arguments by "peeking" at the 8080 bus 
*when the argument values are loaded to accumulator. 
*Two jumperable "hardwired" addresses are required for signaling the FPB 

*This routine may be generalized to perform any operation, at any precision" 

FDIV LDA RSTRT This "hardwired" reference signals FPB to "wake up" 
MVI A,8*16+DIVOP Specify precision and operation code to FPB 
LDAX D Exponent/sign byte of right arg 
DCX D Advance pointer to next byte
 
LDAX D Least significant digit pair of right arg
 
DCX D Advance pointer to next byte
 
LDAX D 
DCX D 
LDAX D 
DCX D 
LDAX D Most significant digit pair of right arg 
LDAX B Exponent/sign byte of left arg 
DCX B 
LDAX B Least significant digit pair of left arg 
DCX B 
LDAX B 
DCX B 
LDAX B 
DCX B 
LDAX B Most significant digit pair of left arg 
Now the Floating Point Board is performing the operation 
LXI D,FPDIN "Hardwired" address for receiving value from FPB 

FDIVI LDAX D Loop waiting for completion signal (sign bit) 
ORA A The FPB is done when the sign bit becomes "1" 
JP FDIV1 Loop if sign bit is still "0" 
ANI EBITS Check for error, condition tested at end 
LDAX D Exponent/sign of result 
MOV M,A Store exponent/sign of result 
DCX H Advance pointer. 
LDAX D Least significant'digit pair of result 
MOV M,A
 
DCX H
 
LDAX D
 
MOV M,A
 
DCX H
 
LDAX D
 
MOV M,A
 
DCX H 
LDAX D nisb byte of result 
MOV MA Store it 
RZ Return if no error was detected 
JMP ERROR Go report error (i.e. underflow or divide by 0) 
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FLOATING POINT UNIT
 

PRICE LIST
 

MODEL QUANTITY
 

1 25 100
 

#1 $595.00 $535.00 $475.00
 

#2 470.00 425.00 375.00
 

#3 345.00 315.00 275.00
 

All sales FOB Palo Alto
 

EXECUTION TIMES
 

FUNCTION TIME IN MILISECONDS (approximate)
 

ADD, SUB 110
 

MUL, DIV, SQRT 225
 

TAN 846
 

LN, SIN, COS,-*POL 1250
 

POWER 1720
 

CV6EflfUETIC =110i S'ISTESS5 
2460 EMBARCADERO WAY 

PALO ALTO, CA 94303 
(415) 321-0410
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Appendix C 

The APL least squares program 
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