Experimental Studies of Effects of Tilt and Structural Asymmetry on Vibration Characteristics of Thin-Wall Circular Cylinders Partly Filled With Liquid

Robert W. Herr

JULY 1978

Experimental Studies of Effects of Tilt and Structural Asymmetry on Vibration Characteristics of Thin-Wall Circular Cylinders Partly Filled With Liquid

Robert W. Herr
Langley Research Center
Hampton, Virginia

An experimental study was undertaken to determine the effects of tilt and structural asymmetry on the vibration characteristics of partly liquid-filled thin-wall cylinders. It was found that tilting the longitudinal axis of a partly filled axisymmetric cylinder from the vertical could markedly reduce its resonant frequencies and change significantly the shape of the circumferential modes. For the minimum frequency modes, vibratory motion occurred only on that side of the cylinder where the liquid was deepest. An empirical equation was derived that gives the equivalent liquid depth of an untilted cylinder having the same minimum resonant frequency as a tilted, partly filled cylinder.

Circumferential mode shapes of an untilted asymmetric cylinder were similar to those of the tilted partly filled axisymmetric cylinder. Vibratory motion in the minimum frequency modes occurred in most instances only on the side of minimum thickness. Correlation between test data and results from a reformulated NASTRAN ${ }^{1}$ hydroelastic analysis was excellent.

INTRODUCTION

Until the advent of the space shuttle, propellant tanks of typical vertical launch vehicles were generally axisymmetric with the thrust vector coincident with the longitudinal axis and the free surface of the liquid propellant normal to the longitudinal axis. Under these symmetric conditions, a number of analysis methods were available to predict propellant-tank hydroelastic modes with reasonable accuracy. For the space shuttle, however, the canted thrust axis results in the free liquid surface being inclined by as much as 13° during launch. Structural asymmetry of the propellant tanks was also introduced by the mounting of the orbiter to one side of the tanks and the nature and magnitude of the effects of such asymmetry on vibration mode shapes and frequencies of propellant tanks were unknown.

An experimental study was undertaken at Langley Research Center to ascertain the effects of these asymmetries and to provide data for analysis-test correlation studies. For these experiments, the vibration mode shapes and frequencies of an axisymmetric cylinder and a similar asymmetric cylinder whose wall thickness varied sinusoidally with circumference were measured for various conditions of tilt, liquid fill level, and internal pressure.

[^0]| b | liquid depth of untilted cylinder, m |
| :---: | :---: |
| $\overline{\mathbf{b}}$ | liquid depth at center line (average) of tilted cylinder, m |
| beqv | equivalent liquid depth of untilted cylinder, m |
| $b_{\text {max }}$ | liquid depth on "deep" side of tilted cylinder, m |
| $b_{\text {min }}$ | liquid depth on "shallow" side of tilted cylinder, m |
| f | resonant frequency of vibration, Hz |
| k | location of beqv |
| L | length of cylindrical shell, 50.8 cm |
| m | number of axial half waves in vibration mode |
| n | number of circumferential waves in vibration mode |
| n_{d} | circumference divided by wave length on "deep" side of tilted axisymmetric cylinder |
| n_{S} | circumference divided by wave length on "shallow" side of tilted axisymmetric cylinder |
| n_{1} | circumference divided by wave length at $t_{\text {max }}$ of asymmetric cylinder |
| n_{2} | circumference divided by wave length at $t_{\text {min }}$ of asymmetric cylinder |
| p | internal static air pressure, $\mathrm{N} / \mathrm{cm}^{2}$ |
| \boldsymbol{r} | radius of cylinder, 25.4 cm |
| $t_{\text {max }}$ | maximum wall thickness of asymmetric cylinder, 1.016 mm |
| $t_{\text {min }}$ | minimum wall thickness of asymmetric cylinder, 0.508 mm |
| θ | angle of tilt of cylinder from vertical, deg |

APPARATUS

Test Cylinder
Each of the two cylinders used in the experiments consisted of a circular cylindrical aluminum shell 50.8 cm in length and 50.8 cm in diameter welded to heavy aluminum end plates (figs. 1 and 2). The axisymmetric cylinder had a
constant wall thickness of 0.813 mm . The asymmetric cylinder had a wall thickness that varied sinusoidally with circumference from a maximum of 1.016 mm on one side to a minimum of 0.508 mm on the opposite side. The sinusoidal variation in wall thickness was achieved by a combination of chemical etching and hand grinding. The thickness of the completed cylinder was measured at 168 locations. Average deviation from the desired thickness was 0.0035 mm and the maximum deviation was 0.028 mm . Each of the cylinders contained one longitudinal butt weld ground down to the thickness of the wall.

Instrumentation and Test Procedure

Sinusoidal excitation of the cylinders was provided by a small servocontrolled electrodynamic exciter having a maximum force capability of 4.4 N . A force gage used to monitor the input force was installed between the exciter and the specimen. A servo control and oscillator were used to maintain a constant exciter force. The vibration response was detected by a motorized noncontacting displacement transducer capable of traversing the cylinders either circumferentially or longitudinally (fig. 1). A co-quad analyzer was used to determine the quadrature component of the displacement (90° out of phase with the input force). Resonance was determined by manually adjusting the frequency at a given level of input force until a maximum quadrature component was obtained. The mode shape was then recorded by inputting the quadrature component of the displacement into an $x-y$ plotter as the transducer traversed the cylinder. The vibration exciter was in all cases located below the liquid surface and, in cases of unsymmetric response, on the side of the cylinder having maximum response.

The cylinders, along with the mode mapping mechanism, were mounted on a common base which permitted angles of tilt up to 30° in increments of 5°. The liquid (water) depth was determined with an external sight glass (fig. 1) and was measured as indicated in figure 2(a). The level of internal static pressure was controlled by a pressure regulator valve in the air supply line.

RESULTS AND DISCUSSION

Experimental data for the axisymmetric cylinder are presented in tables I to III and figures 3 to 9 , and data for the asymmetric cylinder in tables IV to VII and figures 10 to 15.

Axisymmetric Cylinder

Vibration modes of the untilted axisymmetric cylinder are identified in table I for ratios of liquid depth b to cylinder length L of $0,1 / 8,1 / 5$, $1 / 4,1 / 3,1 / 2,2 / 3$, and 1 and internal pressures of 0 and $5.516 \mathrm{~N} / \mathrm{cm}^{2}$. The number of circumferential waves n ranged from 2 to 18 while the number of axial half waves m was either 1 or 2. Vibration modes are identified in table II for the axisymmetric cylinder at two angles of tilt ($\theta=15^{\circ}$ and 30°) and at pressures of 0 and $5.516 \mathrm{~N} / \mathrm{cm}^{2}$. Ratios of average liquid depth \bar{b}
(depth at the center line of the cylinder) to cylinder length L were $1 / 5$, $1 / 4,1 / 3,1 / 2$, and 2/3. In table III minimum resonant frequencies, for a given set of experimental conditions, are presented for the above liquid and pressure levels and for tilt angles to 30° by 5° increments.

Untilted cylinder.- Resonant vibration frequencies of the untilted axisymmetric unpressurized cylinder are plotted in figure 3(a) as a function of the number of circumferential waves n for ratios of liquid depth to cylinder length (b / L) of $0,1 / 8,1 / 5,1 / 4,1 / 3,1 / 2,2 / 3$, and 1 . Only the modes having one axial half wave ($m=1$) are plotted. The trends are similar for all liquid depths with the frequencies increasing with decreasing depth. For most depths the minimum frequency occurs at $n=7$. Frequencies for the same liquid depths are plotted in figure 3 (b) for an internal pressure of $5.516 \mathrm{~N} / \mathrm{cm}^{2}$. The trends resemble those of the unpressurized cylinder but corresponding modes are at higher frequencies and the minimum frequency modes occur at a lower value of n.

The effects of circumferential wave number on the longitudinal mode shapes of the untilted axisymmetric cylinder are shown in figures 4 (a) and $4(b)$ for $b / L=1 / 3$ and $2 / 3$, respectively. At the higher values of n, the vibration amplitude above the liquid surface was small relative to the motion below the surface. The relative amplitude of the motion above the liquid surface increases with decreasing values of n. Although these results are for an untilted and unpressurized cylinder, they are typical of the longitudinal mode shapes obtained under all test conditions. Circumferential mode shapes of the untilted axisymmetric cylinders are not presented as they were of characteristic sinusoidal wave shape about the entire circumference.

Tilted cylinder.- Typical circumferential mode shapes of a tilted, partly filled axisymmetric cylinder are shown in figure 5. The circumferential traverses were made in each case at the longitudinal station of maximum response. The first 11 circumferential modes are plotted for $\bar{b} / L=1 / 3$ and $\theta=150$. The two vertical dashed lines indicated those points on the circumference of the cylinder where the liquid depth is a maximum or minimum. The lower frequency modes exhibited unusual behavior in that the vibratory motion occurred only on the "deep" side of the cylinder. As the frequency of the mode increased, vibratory motion extended progressively farther around the circumference until, at sufficiently high frequency, vibratory motion of relatively uniform amplitude occurred around the entire circumference. The wave length of the vibratory motion was generally shorter on the deep side of the cylinder as compared to the shallow side and may be noted in table II by comparing the entries in the columns under the heading n_{d} and n_{s}. The quantities n_{d} and n_{s} were obtained by dividing the circumference of the cylinder by the wave lengths measured on the deep and shallow sides of the cylinder, respectively.

Minimum-frequency circumferential mode shapes are relatively insensitive to large variations of liquid depth and tilt angle as illustrated in figure 6. For average liquid depths of one-third the cylinder length (or less), the mode shapes are nearly identical for $\theta=5^{\circ}, 15^{\circ}$, and 30°. The frequencies, however, vary appreciably with the angle of tilt for a given liquid depth. Since most of the motion occurs on the deep side of the cylinder, the liquid depth on this side should have a controlling influence on the resonant frequency.

In figure 7, the minimum resonant frequency is plotted as a function of \bar{b} / L for several angles of tilt of the unpressurized cylinder. For $\bar{b} / L>2 / 3$, tilt has only a minor effect on the resonant frequencies. At a value $\overline{\mathrm{b}} / \mathrm{L}=1 / 5$, however, tilting the tank 30° reduces the resonant frequency by nearly a half. For an internal pressure of $5.516 \mathrm{~N} / \mathrm{cm}^{2}$, resonant frequencies were appreciably higher than these for no internal pressure but otherwise the trends were similar to those shown in figure 7.

To provide a simple way to estimate the effect of tilt on resonant frequencies, an equivalent water depth for an untilted cylinder beqv has been identified which gives the same frequency as a tilted cylinder. The quantity beqv lies at some fraction k of the distance between the average water depth and the maximum water depth of the tilted cylinder (see sketch (a)). In equation form

$$
b_{\text {eqv }}=\bar{b}+k\left(b_{\max }-\bar{b}\right)
$$

where k is an experimentally determined factor. From the geometry involved it is seen that

$$
b_{\max }=\bar{b}+r \tan \theta
$$

therefore,

$$
b_{e q v}=\bar{b}+k r \tan \theta
$$

or

Sketch (a)

From the data presented in figure 7, it may be seen that the minimum resonant frequency of a cylinder tilted 30° with a depth-length ratio \bar{b} / L of $1 / 5$ was the same as that of an untilted tank ($\theta=0^{\circ}$ and $b=\bar{b}$) with $\bar{b} / L=0.42$. Substituting $r / L=1 / 2, \bar{b} / L=1 / 5, \theta=30^{\circ}$, and $b_{e q v} / L=0.42$ into equation (1) and solving for k yields a value of 0.76 .

Similar substitution of several data sets from figure 7 into equation (l) results in an average value of k of 0.71 . In figure 8 , the frequencies presented in figure 7 have been replotted as a function of the equivalent liquid depth ($k=0.71$) rather than the average liquid depth with the result that the data for all tilt angles are superimposed on the curve for the untilted, unpressurized cylinder. Results were equally as good for an internal pressure of $5.516 \mathrm{~N} / \mathrm{cm}^{2}$. It should be possible, therefore, using any of several proven computational methods, to predict the minimum resonant frequency of a tilted,
partly filled cylinder by computing the resonant frequencies of an untilted cylinder of "equivalent" liquid depth beqv*

The resonant frequencies of the unpressurized cylinder filled to a depth of $1 / 5$ the cylinder length are plotted in figure 9 as a function of circumferential wave number for tilt angles of $0^{\circ}, 15^{\circ}$, and 30°. The vibratory motion of the cylinder did not always extend completely around the cylinder; thus, an integer value of n did not exist for each resonance. In such cases, n_{d} (circumference divided by wave length on the deep side of the cylinder) from table II was used in plotting these data. The results indicate that tilt affects not only the minimum-frequency modes ($n * 7$) but also the frequency of modes occurring at other values of n. It was found that the equation for equivalent liquid depth is applicable for these other values of n as well. Use of the equivalent-depth equation indicates a value of $b_{\text {eqv }} / L$ for the untilted cylinder of 0.30 for $\theta=150$ and 0.40 for $\theta=30^{\circ}$. The frequencies of the untilted cylinder filled to these levels were found for each integer value of n from cross plots of figure 3(a) and are indicated in figure 9 by the dashed curves. Although the fit is excellent, as it was for all combinations of fill level, tilt, and internal pressure, these equivalent-depth curves cannot be used to predict the discrete frequencies of the tilted cylinder as it is not known a priori at what values of n_{d} (noninteger) the tilted cylinder resonates.

Asymmetric Cylinder

Vibration modes of the asymmetric cylinder are identified in tables IV to VII for depth-length ratios of $0,1 / 8,1 / 5,1 / 4,1 / 3,1 / 2$, and 1 , internal pressures of 0 and $5.516 \mathrm{~N} / \mathrm{cm}^{2}$, and tilt angles of 0° and 15°. Modes for m > 1 were not recorded.

Modes of empty and full cylinder.- The first five circumferential modes for the empty, unpressurized cylinder are shown in figure $10(a)$ and are similar to the mode shapes of the tilted, partly filled symmetric cylinder (fig. 5). For the first mode, vibratory motion is present only on the side of the cylinder of minimum thickness. For the higher modes, vibratory motion of nearly uniform amplitude occurs around the entire circumference; however, the wave length of the motion is generally shorter on the thinner side of the cylinder. This may be noted in tables IV and VII by comparing the values of n_{1} and n_{2}. The quantities n_{1} and n_{2} were derived by dividing the circumference of the cylinder by the wave lengths measured at $t_{\text {max }}$ and $t_{\text {min }}$ respectively.

The circumferential modes of the empty cylinder with an internal pressure of $5.516 \mathrm{~N} / \mathrm{cm}^{2}$ are given in figure $10(\mathrm{~b})$ and display an anomalous behavior. The maximum response in the first mode occurs at $t_{\max }$ while, for the higher modes, the maximum wave length occurs at $t_{\text {min }}\left(n_{1}>n_{2}\right.$ in table V). For all other test conditions of the untilted asymmetric cylinder, the opposite is true.

Circumferential modes for the unpressurized liquid-filled cylinder are shown in figure 11 (a). These modes resemble the empty-cylinder modes but occur at much lower frequencies. The number of circumferential waves is the same in
the second and third modes but the wave motion of the third mode is symmetric about $t_{\text {min }}$ and antisymmetric for the second mode. The first five modes of the pressurized liquid-filled cylinder are given in figure 11 (b).

Modes of partly filled cylinder.- Circumferential sweeps of the partly filled asymmetric cylinder were made with the displacement probe at nine equally spaced stations along the length of the cylinder. The resulting mode shapes for the untilted cylinder are shown in figure 12 for $p=0$ and $5.516 \mathrm{~N} / \mathrm{cm}^{2}$ and $b / L=1 / 5$ and $1 / 2$. The maximum response in the first mode in all cases occurred circumferentially at $t_{\text {min }}$. Longitudinally the major response generally occurred below the liquid surface. For the pressurized cylinder, the decrease in response above the liquid surface became more abrupt with increasing frequency as typified by the fifth and sixth modes of figure $12(d)$.

The modes shown in figure 13 were obtained under conditions identical to those of figure 12 with the exception that the cylinder was tilted 15° toward the side of maximum thickness. The intersection of the liquid surface with the cylinder wall is denoted in the figures by the sinusoidal dashed line. In most cases the maximum response in the first mode now occurs on the side of the cylinder where the liquid is deepest rather than the thinner side. In the fifth and sixth modes of figure $13(a)(p=0$ and $\bar{b} / L=1 / 5)$, there appears to be a strong coupling of the response below the liquid surface on the deep side with the response above the liquid surface on the shallow side. It is likely that the strong response on the side of $t_{\text {min }}$ corresponds to the lower frequency modes of the empty cylinder (fig. $10(\mathrm{a})$) as the resonant frequencies are comparable and the liquid depth is very shallow. The results obtained for $p=5.516 \mathrm{~N} / \mathrm{cm}^{2}$ and $\bar{b} / \mathrm{L}=1 / 5$ (fig. $13(\mathrm{c})$) are somewhat different in that no response was obtained at $t_{\text {min }}$ throughout the first six modes.

Because of the complexity of the space shuttle vehicle and deficiencies in computational economy of available hydroelastic analysis methods, Coppolino has reformulated the NASTRAN hydroelastic analysis (ref. 1). The unusual character of the mode shapes of the asymmetric cylinder made it attractive as a test vehicle to verify the adequacy of his analysis. In figures 14 (a) and 14 (b) the first two analytical mode shapes are compared with test results for the halffull cylinder with internal pressures of 0 . Similar results are shown in figure 15 for an internal pressure of $5.516 \mathrm{~N} / \mathrm{cm}^{2}$. The excellent correlation of analysis and test lends credence to the analysis and the unusual observed vibration modes.

CONCLUSIONS

Experimental studies were undertaken to determine the effects of tilt and structural asymmetry on the vibration characteristics of thin-wall cylinders partly filled with liquid. Tests were made using axisymmetric and asymmetric cylinders with various levels of fill and tilt in both pressurized and unpressurized conditions.

Tests with a partly filled axisymmetric cylinder indicated that tilting the cylinder from the vertical resulted in the following conclusions:

1. Resonant frequencies were markedly reduced at the lower fill levels.
2. Mode shapes were unusual in that the vibratory motion of the minimumfrequency modes occurred only on that side of the cylinder where the liquid was deepest.
3. Vibratory motion extended progressively farther around the circumference as the frequency of the mode increased until vibratory motion of relatively uniform amplitude occurred around the entire circumference. For these higher frequency modes the wave length of the vibratory motion was generally shorter on the deep side of the cylinder.
4. Resonant frequencies for an internal pressure of $5.516 \mathrm{~N} / \mathrm{cm}^{2}$ were appreciably higher than those for no internal pressure but otherwise trends were similar.

An empirical equation was derived that gives the equivalent liquid depth of an untilted cylinder having the same minimum resonant frequency as a tilted, partly filled cylinder.

For the asymmetric cylinder tested, the following conclusions can be made:

1. Circumferential mode shapes of the untilted asymmetric cylinder were similar for all fill conditions to those of the tilted, partly filled axisymmetric cylinder.
2. In most instances vibratory motion in the first mode of the untilted, partly filled asymmetric cylinder was present only on the side of minimum thickness.
3. For the higher modes of the untilted cylinder, vibratory motion of nearly uniform amplitude was present around the entire circumference, the wave length being generally shorter on the thinner side of the cylinder.

Excellent correlation was obtained between test data and results from a reformulated NASTRAN hydroelastic analysis.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
May 4, 1978

REFERENCE

1. Coppolino, Robert N.: Numerically Efficient Finite Element Hydroelastic Analysis. Volume 1: Theory and Results. NASA CR-2662, 1976.

TABLE I.- RESONANT FREQUENCIES OF UNTILTED AXISYMMETRIC CYLINDER

m	b/L	f, Hz, for n of -																
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\mathrm{p}=0 \mathrm{~N} / \mathrm{cm}^{2}$																		
1	0			417	317	268	246	253	280	324	376	447		598				
	1/8			359	289	247	230	239	264	298	329							
	1/5			273	222	195	186	189	202	215	231	249	269	298				
	1/4	385	294	226	186	163	154	157	167	179	194	213	236	264	296	332	372	416
	1/3			171	138	122	116	120	129	142	159	179	203	232	265	300	345	
	1/2			121	97.6	87.4	84.2	89.3	99.5	114	133	156	182	213	248	286	328	374
1	2/3		129	97.0	78.7	71.0	69.5	75.0	86.0	102	122	146	174	205	240			
7	1		107	83.0		62.9		69.5	80.2	96.6	117	142	169	201	236			
2	1/8						414	382			398							
	1/4					404	349		324	339	382	440						
	1/3					390	339	313		318	331		356	372	395			
	1/2					292		234	223	221	229	240	255	280	309	342	379	
1	2/3						189	172	165	167	177	194	217	242				
γ	1					160	143	132	128	134	147	165	188	218				
$\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2}$																		
1	0			447		392	414	466	521	590		760	833					
,	1/8			384			365	384	406	423	442	464	491	521	556	594	638	690
	1/5		363	293		267	271	278	290	304	323	346	375	406	441			575
	1/4			244		216	223	232	244	260	281	306	328	367	408	446	486	
	1/3		226	181		167	173	185	201	219	243	270	301	336	375	418	465	516
-	1/2	227	160	129	119	122	133	148	167	190	216	246	280	317	358	401	449	
1	2/3		128	104	97.0	102	115	132	153	178	206	238	272	311	352	396	445	496
\dagger	1		110	90.7	86.6	92.7	106	124	146	172	201	233	268	309	348	393	441	492

aUndefinable due to irregularities in mode shape.

TABLE III.- MINIMUM RESONANT FREQUENCIES OF
AXISYMMETRIC CYLINDER

$\overline{\mathrm{b}} / \mathrm{L}$	θ, deg	$\mathrm{b}_{\text {eqv }} / \mathrm{L}$	f, Hz	n_{d}	f, Hz	n_{d}
			$\mathrm{p}=0 \mathrm{~N} / \mathrm{cm}^{2}$		$\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2}$	
1/5	0	0.200	186	7	267	6
	5	. 231	167	7.6	230	6.5
	10	. 262	147	7.6	204	6.5
	15	. 295	132	7.7	183	6.5
	20	. 329	117	7.6	165	6.5
	25	. 365	106	7.6	150	6.2
	30	. 404	97.2	7.7	138	6.1
1/4	0	. 250	154	7	216	6
	5	. 281	140	7.4	194	6.2
	10	. 312	126	7.5	176	6.2
	15	. 345	115	7.5	162	6.2
	20	. 379	104	7.7	148	6.1
	25	. 415	95.5	7.4	137	6.0
	30	. 454	88.7	7.3	127	5.9
1/3	0	. 333	116	7	167	6
	5	. 364	109	7.1	153	5.9
	10	. 395	101	7.4	143	5.9
	15	. 428	94.0	7.2	134	5.9
	20	. 462	87.8	7.2	127	5.9
	25	. 498	82.7	7.1	119	5.7
	30	. 537	78.1	7.1	112	5.5
1/2	0	. 500	84.2	7	119	5
	5	. 531	81.1	7.0	117	5.5
	10	. 562	78.8	7.1	113	5.5
	15	. 595	75.6	7.0	107	5.5
	20	. 629	73.0	6.9	104	5.5
	25	. 665	70.7	6.9	101	5.5
\checkmark	30	. 704	68.8	6.9	98.0	5.5
2/3	0	. 667	69.5	7	97.0	5
	5	. 697	68.7	6.9	98.0	5.2
	10	. 729	67.9	6.8	96.0	5.2
	15	. 762	66.4	6.7	94.3	5.2
	20	. 796	66.0	6.7	93.0	5.2
	25	. 832	65.4	6.7	92.0	5.2
	30	. 871	64.9	6.7	91.0	5.2

TABLE IV.- RESONANT FREQUENCIES OF UNTILTED, UNPRESSURIZED ASYMMETRIC CYLINDER

aUndefinable due to irregularities in mode shape.

TABLE V.- RESONANT FREQUENCIES OF UNTILTED, PRESSURIZED ASYMMETRIC CYLINDER

$$
\left[\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2}\right]
$$

aUndefinable due to irregularities in mode shape.

TABLE VI.- RESONANT FREQUENCIES OF UNPRESSURIZED ASYMMETRIC
CYLINDER TILTED 15°

$\overline{\mathrm{b}} / \mathrm{L}$	f, Hz	n	n_{1}	n_{2}	$\overline{\mathrm{b}} / \mathrm{L}$	f, Hz	n	n7	n2
1/8	188	---	7.4	-	1/3	101	--	5.9	-
1	209	8	8.0	8.0		113	8	8.0	8.0
	243	10	10.0	10.0		129	9	8.9	7.9
	262	5	(a)	(a)		137	10	10.0	10.0
	300	12	13.2	11.7		149	11	10.0	11.4
	327	4	(a)	(a)		163	12	10.5	13.9
,	374	14	16.1	17.6		185	13	11.1	15.0
1/5	146	---	7.1	----		206	14	11.6	15.9
	163	--	9.0	----		222	3	(a)	(a)
	180	-	10.4	----	1	238	15	12.5	17.9
	197	9	10.9	7.4	\checkmark	266	16	13.9	18.5
	209	10	11.4	8.6	1/2	74	7	6.3	8.0
	250	12	12.5	10.5		83	8	6.7	9.6
1	277	13	13.5	12.5		90	9	7.6	10.2
1	305	14	14.3	13.5		96	5	(a)	(a)
1/4	130	---	6.7	----		102	10	8.3	11.8
	143	---	9.4	----		115	4	(a)	(a)
	158	---	8.9	----		117	11	9.3	12.8
	171	9	11.1	6.8		137	12	10.0	14.7
	184	10	11.1	8.9		151	3	(a)	(a)
	203	11	11.6	8.8		162	13	10.0	15.4
	222	12	12.3	10.8		185	14	11.6	16.7
	244	13	13.0	13.0	\dagger	246	16	12.5	18.5
	265	14	13.2	13.2					
	324	16	12.8	15.6					
	352	17	14.7	17.9					
7	389	18	14.7	20.8					

aUndefinable due to irregularities in mode shape.

CYLINDER TILTED 15°

$$
\left[\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2}\right]
$$

$\overline{\mathrm{b}} / \mathrm{L}$	f, Hz	n	n1	n_{2}	$\overline{\mathrm{b}} / \mathrm{L}$	f. Hz	n	n 1	n_{2}
1/8	275	--	10.0	-m--	1/3	744	---	5.7	----
	304	\cdots	10.6	---		160	---	8.3	----
	342	---	11.1	---		174	---	8.8	-
	373	---	12.5	---		191	---	9.3	-
	402	9	13.5	4.8		194	-ー-	9.3	----
	427	10	14.3	5.7		207	---	10.2	----
	452	11	14.3	6.0		224	9	10.5	6.3
1/5	189	--	6.3	---		236	10	10.9	7.9
	214	---	8.5	----		256	11	11.5	9.4
	240	---	9.4	---		278	12	12.0	11.4
	263	--	10.4	----		307	13	13.0	13.0
	285	--	11.4	---		339	14	14.0	14.0
	293	--	11.6	---		372	15	13.9	15.6
	315	--	12.2	----		409	16	14.3	16.7
	321	--	12.5	----		459	17	14.7	17.9
	344	---	12.8	----	1/2	112	---	5.0	----
	373	---	13.6	----		122	6	7.1	5.2
	392	11	14.5	---		130	6	7.7	4.0
	417	12	14.8	5.1		136	7	7.9	5.7
	443	13	15.4	6.5		149	8	8.3	7.5
	473	14	15.9	7.7		160	3	(a)	(a)
1/4	167	--	6.2	----		168	9	9.0	9.0
	190	--	8.3	----		188	10	10.0	10.0
	210	--	10.2	---		214	11	10.5	11.1
	228	--	10.0	----		241	12	11.6	12.5
	231	-	10.0	----		273	13	13.0	13.0
	248	---	10.6	----		485	18	16.0	19.2
	272	--	11.1	---					
	295	---	11.9	----					
	312	---	12.5	----					
	330	---	13.3	----					
	345	--	13.9	---					
	388	13	15.0	11.4					
	419	14	15.0	12.5					
	455	15	16.7	14.3					
	492	16	17.2	15.6					

aUndefinable due to irregularities in mode shape.

Figure 1.- Photograph of test apparatus.

(a) Axisymmetric cylinder.

Note: Wall thickness is exaggerated for clarity.
(b) Cross section of asymmetric cylinder. Figure 2.- Construction details of test cylinders. Material: 6061 aluminum.

Figure 3.- Resonant frequencies of untilted axisymmetric cylinder as a function of the number of circumferential waves for several liquid depths. $m=1$.

(b) $p=5.516 \mathrm{~N} / \mathrm{cm}^{2}$.

Figure 3.- Concluded.

(a) $b / L=1 / 3$.

Figure 4.- Effect of circumferential wave number n on the longitudinal mode shape of axisymmetric cylinder. $\quad \theta=0^{\circ} ; \quad \mathrm{p}=0$ 。

(b) $b / L=2 / 3$.

Figure 4. - Concluded.
12

Figure 5.- Typical circumferential mode shapes of tilted, partly filled axisymmetric cylinder. $\bar{b} / L=1 / 3 ; \theta=15^{\circ} ; \quad \mathrm{p}=0$.
b/L

(a) $\theta=5^{\circ}$.

Figure 6.- Comparison of minimum-frequency circumferential mode shapes of axisymmetric cylınder for several depths of liquid and angles of tilt. $p=0 ; m=1$.

Figure 7.- Minimum resonant frequency of axisymmetric cylinder as a function of average liquid depth for various angles of tilt. $p=0$.

Figure 8.- Minimum resonant frequency of axisymmetric cylinder as a function of equivalent liquid depth for various angles of tilt. $k=0.71 ; p=0$.

Figure 9.- Variation of resonant frequency of partly filled axisymmetric cylinders with circumferential wave number. $\overline{\mathrm{b}} / \mathrm{L}=1 / 5 ; \mathrm{p}=0$.

First mode; $\mathrm{f}=220 \mathrm{~Hz}$

Fourth mode; $\mathrm{f}=298 \mathrm{~Hz}$

(a) $\mathrm{p}=0$.

First mode; $\mathrm{f}=381 \mathrm{~Hz}$

Second mode; $\mathrm{f}=399 \mathrm{~Hz}$

Fourth mode; $f=448 \mathrm{~Hz}$

(b) $\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2}$.

Figure 10.- Circumferential mode shapes of empty asymmetric cylinders. $\theta=0^{\circ}$.

Figure 11.- Circumferential mode shapes of liquid-filled asymmetric cylinder. $\theta=00$.

(a) $\mathrm{p}=0 ; \mathrm{b} / \mathrm{L}=1 / 5$.

Figure 12.- Mode shapes of untilted, partly filled asymmetric cylinder at several longitudinal stations.

(b) $p=0 ; b / L=1 / 2$.

Figure 12.- Continued.

(d) $p=5.516 \mathrm{~N} / \mathrm{cm}^{2} ; \quad \mathrm{b} / \mathrm{L}=1 / 2$.

Figure 12.- Concluded.

Figure 13.- Mode shapes of tilted, partly filled asymmetric cylinder at several longitudinal stations. $\theta=15^{\circ} \quad$ (toward side of maximum thickness).

(c) $\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2} ; \quad \overline{\mathrm{b}} / \mathrm{L}=1 / 5$.

Figure 13.- Continued.

(d) $\mathrm{p}=5.516 \mathrm{~N} / \mathrm{cm}^{2} ; \quad \overline{\mathrm{b}} / \mathrm{L}=1 / 2$.

Figure 13.- Concluded.

(a) First mode; $f_{\text {analysis }}=67.4 \mathrm{~Hz} ; f_{\text {test }}=66.0 \mathrm{~Hz}$.

Radial response

(b) Second mode; $f_{\text {analysis }}=78.5 \mathrm{~Hz} ; f_{\text {test }}=74.0 \mathrm{~Hz}$.

Figure 14.- Comparison of analytical and test modes of unpressurized asymmetric cylinder. $b / L=1 / 2 ; \quad \theta=0^{\circ}$.

(b) Second mode; $f_{\text {analysis }}=128 \mathrm{~Hz} ; f_{\text {test }}=118 \mathrm{~Hz}$.

Figure 15.- Comparison of analytical and test modes of pressurized asymmetric cylinder. $p=5.516 \mathrm{~N} / \mathrm{cm}^{2} ; \quad \mathrm{b} / \mathrm{L}=1 / 2 ; \quad \theta=0^{\circ}$.

[^1]National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
$4110, D, 062378$ S00903DS
DEPT OF THE ATR FORCE
AF WEAPONS LABORATORY
ATTN: TECHNICAL LIBRARY (SUL)
KIRTLAND AFB NM 87117

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

n/s

[^0]: 1NASTRAN: Registered trademark of the National Aeronautics and Space Administration.

[^1]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

