General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

```
(NASA-CR-157317) AUTOMATED AGRAY ASSEMBLY
Final Report (RCA Labs., Princeton, N. J.)
163 p HC A09/MF A01 CSCL 10A

\title{
AUTOMATED ARRAY ASSEMBLY
}

\author{
R. V. D'Aiello \\ RCA Laboratories \\ Princeton, New Jersey 08540
}

FINAL REPORT

December 1977

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-100 for the Department of Energy.

The JPL Low-Cost Silicon Solar Array Project is funded by DOE and forms part of the DOE Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays.

Prepared Under Contract No. 954352 For JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 91103


This report contains informetion prepared by RCA Corporation under JPL subcontract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, the National Aeronautics and Space Administration, or the Department of Energy.

\section*{PREFAGE}

This Final Report, prepared by RCA Laboratories, Princeton, NJ 08540, describes the results of work performed from February 3, 1976 to November 2, 1977 in the Energy Systems Research Laboratory, B. F. Willıams, Director; Materials and Process Laboratory, Solid State Division, H. Veloric, Manager; and at the Advanced Technology Laboratory, Government and Commercial Systems, Camden, NJ, P. Wright, Director. The Project Scientist is R. V. D'Aiello and the Project Supervisor is D. Richman, Head, Semiconductor Materials Research. Others who participated in the research and writing of this report are:
\begin{tabular}{|c|c|c|}
\hline J. Toner & - & cost analysis \\
\hline D. Richman & - & silicon material \\
\hline D. Redfield & - & device modeling \\
\hline \multicolumn{3}{|l|}{G. Sch} \\
\hline W. Kern & - & metallization \\
\hline \multicolumn{3}{|l|}{K. Bube -} \\
\hline R. Scott & \(-1\) & panel design and fabrication \\
\hline \multicolumn{3}{|l|}{M. Crouthamel -} \\
\hline \multicolumn{3}{|l|}{H. Veloric} \\
\hline \multicolumn{3}{|l|}{F. Mayer -} \\
\hline U. Roundtree & \(-\quad\) & manufacturing \\
\hline E. Cave & - & \\
\hline L. Guarino & & \\
\hline
\end{tabular}

The JPL Task Manager is Don BickIer.

\section*{TABLE OF CONTENTS}
Section Page
I. SUMMARY ..... 1
II. GENERAL TECHNOLOGY AND COST ANALYSIS OF LARGE SCALE MANUFACTURING SEQUENCES - 1986 PRICE GOAL ..... 4
A. Introduction ..... 4
B. Array Module Manufacturing Cost ..... 4
C. Detailed Cost Estimate For Ion Implantation (C) ..... 10
1. Solar Pane1 Design ..... 10
2. Panel Installation ..... 17
3. Solar Cell Panel Assembly ..... 20
4. Panel Assembly Line Functions ..... 22
5. Process: Test ..... 29
6. Antireflection Coating, Spray-On ..... 34
7. Metallizations ..... 35
8. Junction Formation ..... 55
9. Process: 2 Wafer Cleaning ..... 56
D. Effect of Sheet Size on Menufacturing Cost ..... 60
E. Factory Level Overhead Costs ..... 62
F. Sheet Alternatives ..... 67
G. Conclusions ..... 68
III. ANALYSIS AND FACIORY DESIGN FOR 1982 ..... 70
A. Process Selection ..... 70
B. Processing Sequence for Cell Fabrication ..... 70
C. Impact of Manufacturing Volume and Polysilicon Cost ..... 99
D. Factory Layout ..... 100
E. Selifng Price ..... 100
F. Conclusions ..... 100
IV. EXPERIMENTAL PRODUCTION STUDY OF SILICON SOLAR CELL ..... 105
ARRAY MODJUES ..... 105
A. Introduction ..... 105
B. Experimental Production Study ..... 105
1. Basic Processes and Equipment ..... 105
2. Documentation and Measurements ..... 113
3. Summary and Correlation of Solar Cell Results ..... 117
C. Screen-Printed Metallization ..... 124
1. Impurity Analysis of Commercial Thick-Film Inks ..... 124
2. Specific Contact Resistance ..... 126
3. Screen Printing of Solar Cell Test Patterns ..... 126
D. Pane1 Degign and Assembly ..... 131
เ. Comparison of Glass Panel Designs Evaluated During Phase II ..... 131
2. Cell Matching Analysis ..... 140

\section*{TABLE OF CONTENTS (Continued)}
Section Page
E. Conclusions - Experimental Production Study ..... 145
1. Solar Cell Experimental Production Study ..... 146
2. Screen-Printed Thick-Film Metallization ..... 146
3. Panel Assembly ..... 147
F. Recommendations ..... 147
APPENDICES
A. Cost Analysis ..... 149
B. Glossary of Terms ..... 152
Figure Page
1. Cost analysis summary ..... 5
2. Ion implantation cost analysis ..... 6
3. Factory production analysis ..... 7
4. Material and expense definition ..... 8
5. Cost summary - spin-on \(+\mathrm{POCl}_{3}\) diffusion (C) ..... 11
6. Cost summary - screen print 2 sides (C) ..... 11
7. Cost summary - ion implantation ..... 12
8. Cost summary - spin-on \(+\mathrm{POCl}_{3}\) diffusion ..... 12
9. Cost summary - spin-on 2 sides ..... 13
10. Cost summary - screen-print 2 sides ..... 13
11. Comparison of three class (C) (advanced) process sequences ..... 14
12. Comparison of four class (B) (near future) process sequences ..... 14
13. Solar panel design ..... 16
14. Interconnector design ..... 16
15. Round cell configuration ..... 17
16. Solar cell panel system configuration ..... 19
17. Detail rear view of interconnection ..... 20
18. Production line floor plan ..... 21
19. Air-track cell transport of cells onto rotary index welding table ..... 24
20. Process parameters - interconnect step ..... 30
21. Process parameters - double glass panel assenbly ..... 31
22. Process parameters - array module packing ..... 32
23. Process parameters - test ..... 33
24. Reflection spectra: spin-on titania-silica film and \(\mathrm{Ta}_{2} \mathrm{O}_{5}\) formed by thermal oxidation of evaporated Ta ..... 35
25. Process parameters - antireflection coating, spin-on ..... 36
26. Process parameters - front metallization ..... 40
27. Process parameters - back metallization ..... 42
28. Effect of total module cost in \(\$ / W\) (plotted logarithmically) on several front metallization parameters of 7.6-cm-diam cells with screen-printed Ag lines having straight, parallel sides. The curve \((\lambda+k)\) is obtained from totals like those in Eq. (26) ..... 53

\section*{LIST OF ILLJSTRATIONS (Continued)}
Figure Page
29. Calculated penalty in \(\$ / W\) due to optimized cost per- formance contributions of combined fine grid and bus bar on cell front as a function of cell size. The penalty is shown as a change from a reference module cost of \(\$ 1 / W\) for all cell sizes with the zero arbitrarily set at the 3-in. (7.6-cm) wafer ..... 54
30. Schematic block diagram - ion implantation and junction formation ..... 56
31. Process parameters - ion implantation ..... 57
32. Process palameters - diffusion ..... 58
33. Process parameters - inspection ..... 59
34. Process parameters-Z wafer cleaning ..... 61
35. "Best case" array module manufacturing cost summary, 3- and 5-in. cells ..... 62
36. Detailed array module manufacturing cost estimate, 3- and 5-in. cells ..... 63
37. Factory cost evaluations ..... 65
38. Manufacturing cost as "anction of factory size ..... 66
39. Process parameters - Czochralski multiple pull ..... 73
40. Process parameters - wire sawing ..... 78
41. Process parameters - etch and clean ..... 80
42. Process parameters - spin-on source ..... 81
43. Process parameters \(-\mathrm{POCl}_{3}\) diffusion ..... 82
44. Process parameters - edge polish ..... 83
45. Process parameters - glass removal ..... 84
46. Process parameters - inspection ..... 85
47. Process parameters - Ag front metallization ..... 86
48. Process parameters - Ag back metallization ..... 88
49. Process parameters - AR spray coat ..... 90
50. Process parameters - test ..... 92
51. Process parameters - reflow solder interconnect ..... 93
52. Process parameters - glass - PVB pane1. ..... 95
53. Process parameters - packaging ..... 97
54. Cell processing sequence ..... 98

\section*{LIST OF ILLUSTRATIONS (Continued)}
Figure Page
55. Cost as a function of manufacturing volume with wafer preparation and polysilicon cost as parameters ..... 99
56. Factory Layout ..... 101
57. Cost summary - spin-on + POC1. 3 diffusion ..... 106
58. Cost summary - spinmon 2 sides ..... 107
59. Cost summary - ion implantation ..... 108
60. Experimental production process flow chart ..... 110
61. Metallization pattern ..... 112
62. Incoming wafer inspection sheet ..... 114
63. Solar cell travelog ..... 114
64. Solar cell buik resistivity measurement chart ..... 115
65. Solar cell sheet resistivity measurement chart ..... 115
66. Chart for recording changes ..... 116
67. Typical I-V characteristic, \(\mathrm{POCl}_{3}\) process ..... 120
68. Typical I-Ti characteristic, spin-on phosphorus ..... 120
69. Typical T- V characteristic, ion implantation (P) ..... 121
70. Typical I-V characteristic, ion implantation (As) ..... 121
71. Short-circuit current as a function of temperature ..... 122
72. Reflection and absorption properties of spin-on titaniumsilica film as a function of wavelength ..... 123
73. Solar cell mask design including diagnostic cells ..... 128
74. Junction \(I-V\) characteristic for solar cell printed with 0I-6105 Ag ink and fired at \(675^{\circ} \mathrm{C}\) ..... 129
75. Photomicrograph of 5-mil line printed with OI-6105 ink using 200-1ine/in. mesh ..... \(129^{*}\)
76. Junction \(I-V\) characteristic for solar cell printed with A-3441 Ag ink and fired at \(675^{\circ} \mathrm{C}\) illustrating shunting ..... 130
77. First 4- by 4-ft laminated panel with aluminum frame having extensive breakage and bubbles ..... 133
78. Second 4- by 4-ft Iaminated panel with aluminum frame having limited breakage and one bubble ..... 134
79. Photograph of mechanical panel model ..... 135
80. Solar panel configuration ..... 137

\section*{LIST OF ILLUSTRATIONS (Continued)}
Figure Page
81. Solar panel framing ..... 138
82. Front/rear mounting ..... 139
83. Panel interconmect detail ..... 139
84. Gaussian probability distribution of test efficiency of cells ..... 141
85. I-V characteristics of five sort regions ..... 143

\section*{LIST OF TABLES}
Table Page
1. Gost Comparison of Packaging Materials ..... 18
2. Solax-Gell Panel Assembly Equipment ..... 23
3. Pane1 Assembly Tfming Sequence ..... 26
4. Specific Contact Resistance of \(\mathrm{Ag}-\mathrm{AgPO}_{3}\) Metallization ..... 37
5. Comparison of Gost Items for Single vs Multiple PuIl and I.D. vs Wire Sawing of Ingots ..... 71
6. Cost Details for Complete Process ..... 72
7. Factory Equipment Ifst ..... 102
8. Factory Overhead Details ..... 103
9. Factory Overhead Sumary ..... 104
10. Summary of AM-1 Gell Performance for Three Junction-Formation Processes ..... 117
11. Statistical Variations in Cell Parameters ..... 119
12. Summary of Yield Data ..... 124
13. Emission Spectrographic Analysis of Four Thick-Film Silver Inks ..... 125
14. Specific Gontact Resistance, Sereen-Printed Thick Films ..... 127
15. Performance Comparison Matrix for Various Glass-Cell-Glass Panels Evaluated During Phase I ..... 132

\section*{SECTION I}

\section*{SUMMARY}

This report contains three main sections which describe a general technology assessment and manufacturing cost analysis; a near-term (1982) factory design; and the results of an experimental production study for the largescale production of flat-panel silicon solar-cell arrays.

Section II describes the results of an extensive study and detailed analysis of technologies which could be related to array module manufacturing. From this study, several manufacturing sequences emerge as candidates for satisfying the ERDA/JPL cost goal of \(\$ 0.50 / \mathrm{W}\) selling price in 1986 . We have found a minimum manufacturing cost in a highly automated line of \(\$ 0.30 / \mathrm{W}\) assuming the silicon is free. The panels are of a double-glass conetruction and are based on round wafers. Screen-printed silver has been used as the metallization with a spray-coated antireflection (AR) layer. The least expensive junction-formation technology appears to be ion implantation; however, several other technologies also may be used with very little cost penalty as described in this report.

Based on the required investment, a profit of \(\$ 0.05 \mathrm{~W}\) appears reasonable. If silicon wafers are available at a price of \(\$ 20\) to \(40 / \mathrm{M}^{2}\), a selling price for these array modules of \(\$ 0.50\) to \(0.66 / \mathrm{W}\) is projected.

An analysis of the impact of factory size in the 1986 time frame has been made. For a production level of \(500 \mathrm{MW} / \mathrm{yr}\), the price above is derived. For comparison, a factory processing \(50 \mathrm{~mW} / \mathrm{yr}\) using the same technology would sell modules for \(\$ 0.54 / \mathrm{W}\) to \(\$ 0.70 / \mathrm{W}\). An analysis of the impact of wafer size indicates that with traditional metallization and panel designs there is no advantage in increasing wafer size from 3 in. to 5 in., and, in fact, there is some penalty ( \(10 \%\) in \(\$ / W\) ) due to increased metallization costs and reduced system performance.

F'here is a premium placed on high efficiency dues to its impact, not only on array module cost, but on system cost. For the near-term goals of this program, wafers cut from single-crystal material seem the most iikely sheet configuration.

In Section III, an interim 1982 factory is described for the large-scale production of silicon solar-cell array modules, The boundary conditions for this design are the use of Czochralski silicon crystals and \(\$ 25 / \mathrm{kg}\) polycrystalIine silicon. The objective is a large-scale production facility to meet an intermediate ERDA cost goel of \(\$ 2.00 / \mathrm{W}\) in 1982.

Our approach was to first consider a panel design which could be expected to have a 20 -year life and would also meet the JPL specification on mechanical, electrical, and environmental stability. Attention was then directed to a cost analysis of the production of the elements comprising this panel. Since it was expected that wafer production would comprise a major fraction of the cost, several cost reduction schemes were considered for the Czochralski pulling and sawing of the wafers. A solar-cell processing sequence was selected on the basis of our previous cost studies and the projected availability of production equipment by 1982. These criteria resulted in the selection of \(\mathrm{POCL}_{3}\) gaseous diffusion for junction formation, thick-film Ag screen-printed metallization, spraymon \(A R\) coating, and solder reflow interconnect technology.

The economic study was made by computer analysis of the cost elements of these process sequences at production levels ranging from 3 to \(100 \mathrm{MW} / \mathrm{yr}\). With the results of this study, a \(30-\mathrm{MW} / \mathrm{yr}\) factory was designed, and a preliminary floor plan layout is given. We have projected a manufacturing cost of \(\$ 2.01 / \mathrm{W}\) and, including factory overhead and proftt, a selling price of \$2.4I/W.

Section IV describes a 6 -month experimental production study of the elements of low-cost solar-cell manufacturing sequences and is an outgrowth of our cost and manufacturing studies. This program consisted of three parts: an experimental production line study of the major variables associated with the fabrication of 3-in,-diameter silicon solar cells; a study of thick-film screen-printed silver metaliization; and panel design and assembly development.

The experimental production studies were conducted at RCA's Solid State Division under sinulated factory conditions. No automation or advanced handling techniques were used; manual handling by hourly workers with the supervision of one foreman and one engineer was used throughout this production study. Approximately 500 3-in.-diameter solar cells were fabricated
using the three junction-formation technologies of \(\mathrm{POC1}_{3}\) gaseous d¥ffusion, spin-on source and diffusion, and ion implantation. The problems encountered, some production yield statistics, and sumaries of the performance characteristics of the solar cells made by each junction technique are described.

In the screen-printed metalilization studies, commercial inise were evaluated for their impurity content and experiments were conducted to determine their suitability for contacting solar-cell surfaces. A suitable ink was identified and some of the printing and firing variables were determined.

A panel design conststing of a double-gless laminate which is expected to meet JPL specifications on mechanical, electrical, and environmental stability was completed. Preliminary studies of the Iamination technology were conducted on small ( 6 by 6 in .) panels and on two full-size ( 4 by 4 ft ) panels.

GENERAL TECHNOLOGY AND COST ANALYSIS OF
LARGE SCALE MANUFAGTURING SEQUENCES - 1986 PRICE GOAL

\section*{A. INIRODUCTION}

The purpose of this study was to assess manufacturing process sequences for silicon solar array modules which could be sold for \$0.50/peak in in 1986 assuming a yearly sales volume of 500 MW . The study has identified such process sequences. All of the relevant technologies which exist in the semiconductor manufacturing art have been analyzed in detail. The basic philosophy of this study was to identify those manufacturing processes which had the smallest cost of consumed materials and expense items (defined later) based on this comprehensive analysis. It was assumed thai the automation of these low material cost processes would result in the lowest cost array module. This philosophy has not changed.

There have been three levels of cost estimation applied to this task. Estimates of the present day costs for each of the potentially relevant processes were made as described above. For the class of processes whichseemed the most attractive from a manufacturing cost point of view, the near term (approximately 5 years for full implementation) costs were developed. Finally, for the most cost-effective sequences, the manufacturing costs in a heavily automated facility were projected. A summary of this work is presented in Fig. 1.

In this report, the most cost-effective manufacturing sequence and panel design are described in detail. Variations on this sequence are also costed out.

In subsection \(D\) we discuss the effect of wafer size on manufacturing cost. In most of the cost analysis in this report, 3 -in. wafers were used as the sheet material. Factory level overhead costs are developed in subsection E.

\section*{B. ARRAY MODULE MANUFACTURING COST}

The lowest cost manufacturing procsss sequence which we have identified is shown in Fig. 2. As can be seen in the figure, the cost for this sequence is \(\$ 0.264 /\) peak \(W\) with \(58 \%\) of the cost associated with material and expense items.

ASSUHPTIONS: 0.300 WATTS PER SOLAR CELL AND ROCESS COST ESTITRTE-STMATT


Figure 1. Cost analysis summary.

ASSUMPTIONS: 0.717 WATTS PER SOLAR CELL AND \(\$ 0.0\) FOR \(7.8 \mathrm{~cm}\left(3^{\prime \prime}\right)\) DIAMETER HAFER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline STEP & \[
\underset{(\%)}{\text { YIELD }}
\] & PROCESS & & MAT'L. & EXP. & \[
\begin{aligned}
& \text { LABOR } \\
& +0 . H .
\end{aligned}
\] & \[
\begin{aligned}
& \text { INT.\& } \\
& \text { QEPR. }
\end{aligned}
\] & TOTALS & Invest \\
\hline 1 & 99.0 & SYSTEM "Z \({ }^{19}\) WAFER CLEANING & (B) & 0.0 & 0.001 & 0.001 & 0.000 & 0.003 & 0.002 \\
\hline 2 & 99.0 & ION IMPLANTATION:2 SIDES & (c) & 0.0 & 0.005 & 0.004 & 0.020 & 0.029 & 0.084 \\
\hline 3 & 99.0 & DIFFUSION & (c) & 0.0 & 0.002 & 0.604 & 0.003 & 0.009 & 0.03 \\
\hline 4 & 99.0 & POST DIFFUSION INSPECTION 10\% & (c) & 0.0 & 0.000 & 0.000 & 0.000 & 0.001 & 0.003 \\
\hline 5 & 99.0 & THICK AG METAL-BACK:AUTO & (c) & 0.027 & 0.004 & 0.004 & 0.008 & 0.047 & 0.137 \\
\hline 6 & 99.0 & THICK Ag METAL-FRONT:AUTO & (c) & 0.021 & 0.009 & 0.010 & 0.016 & 0.060 & 0.069 \\
\hline 7 & 90.0 & TEST & (c) & 0.0 & 0.000 & 0.004 & 0.008 & 0.012 & 0.035 \\
\hline 8 & 99.0 & AR COATINGS:SPRAY-ON & (c) & 0.002 & 0.002 & 0.005 & 0.002 & 0.071 & 0.008 \\
\hline 9 & 98.0 & INTERCONNECT: GAP WELDING & (B) & 0.002 & 0.002 & 0.008 & 0.005 & 0.016 & 0.019 \\
\hline 10 & 100.0 & DOUBLE GLASS PANEL ASSEMBLY & (B) & 0.072 & 0.002 & 0.003 & 0.003 & 0.080 & 0.074 \\
\hline 11 & 100.0 & ARRAY MDDULE PACKAGIng & (A) & 0.007 & 0.0 & 0.001 & 0,000 & 0.009 & 0.000 \\
\hline & 82.2 & TOTALS & & 0.124 & 0.027 & 0.046 & 0.066 & 0.264 & 0.282 \\
\hline & & & \(\%\) & 47.22 & 10.35 & 17.12 & 25.31 & & \\
\hline
\end{tabular}

Figure 2. Ion implantation cost analysis.

This process sequence is identified as Ion Implantation (C) where the (C) denotes a heavily automated extrapolation of a near-future version, Ion Implantation (B), which will be evaluated later.

In the three class (C) cases which will be described, all of the machinery is fully automated and only the interfaces between each step.invalve people. The sheets, in this case 3-in. wafers, are transported between each step in 500wafer cassettes. As will be shown below, additional people are involved in maintenance, support, and administrative functions.

As can be seen in Fig. 3, the factory on which these cost estimates are based produces \(50 \mathrm{~mW} / \mathrm{year}\) and operates 345 days/year. At this level of production, there is only a slight projectable advantage in increasing the factory size (subsection E). Ten such factories will produce \(500 \mathrm{MW} /\) year.

For understanding Fig. 2, Fig. 4 is a listing of all the material and expense items which have appeared during the entire analysis. As.a rule, those
\# YEARS OF STUDY: 1 RUN TYPE:PRO-FORMA BASE YEAR DF RUN: 1

2ND SHIFT PREMIUM:10.00\% 3RD SHIFT PREMIUH:10.00\%
\# HORKING DAYS/YR:345 4 HOURS/SHIFT:12.00 \(\#\) SHIFTS/DAY: 2
BOOK DEPRECIATION METHOD:SL TAX DEPRECIATION HETHOD:SYD
FACTORY CONSTRUCTION COST; \(\$ / F T * * 2 ; ~ 0.0\) FACTORY DEPRECIATION LIFE-BOOK: 20 TAX: 20 INYESTMENT TAX CREDIT:YES LANO COST,S /FT**2 OF FACTORY: O. 0 (NOT A DEPRECIABLE INYESTMENT) FACTORY EXCES^ SPACE-1ST YR: D.OX
INYESTMENT TAX EREDIT RATE: 10.00天 INTEREST RATE ON DE日T: 9.00 X INTEREST RATE GROUTH PROFILE \#: O DEST RATID-INITIAL YEAR: 100.008
PURCHASED SILICON COST: D. S/SHEET. SILICON COST GRONTH PROFILE H: 0
* SOLAR CELLS/SHEET: 1 SOLAR CELLS/AFRAY MODULE: 224 AREA OF ARRAY MODULE:13564*OCM**2

HATTS PER SOLAR CELI (DEFAULT): 0.50 GATTS FER SOLAR CELL GROUTH PROFILE A: O
UT. OF SHEET: 3.960 GHAMS. AREA OF SHEET: \(97.800 C M \neq \pm 2\) FORM:3n HAFER
DEFIHITION OF SHEET: P=8 CM (3") DIAHETER UAFE

GENERAL INPUTS:LABOR TYPE DEFINITIMNS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LAABOR NAME & LABDR TYPE & yAse rate & GP \# & FRINGE BENEFITS & GP\# & EFFICIENCY \\
\hline HOURLY OPERATOR & DIRECT & S.00\$/HA & 0 & 35.07 & 0 & 85.0\% \\
\hline REHORK OPERATOR & DIRECT & 5.005/HR & 0 & 35.0\% & 0 & 65.07 \\
\hline HOUTKLY LESSECTOR & DIRECT & \(5000 \$ / \mathrm{HA}\) & 0 & 35.0\% & 0 & 85.04 \\
\hline HACH. ATTENDANY & IMD IRECT & \(5.60 \mathrm{~S} / \mathrm{HR}\) & 0 & 35.0\% & 0 & 85.0\% \\
\hline FOREMAN & I NDIRECT & 7.65\$/HR & 0 & 35.0\% & 0 & 100.0x \\
\hline ENGR. SUPPORT & IND IRECT & 11.755/H! & 0 & 35.0\% & 0 & \(100.0 \%\) \\
\hline TECHNICIA. & INDIRECT & 7.15\$/HR & 0 & 35.0\% & 0 & 100.0x \\
\hline CLERICAL & INDIREC T & 5.105/HR & 0 & 35.0\% & 0 & 100.0x \\
\hline QUALITY CONTEOL. & INOIREC'T & 5.6057 HR & 0 & 35.0\% & 0 & 100.0x \\
\hline HAINTENANCE & I MD IREC T & 5.10 \(5 / \mathrm{HR}\) & 0 & 35.0\% & 0 & 100.0\% \\
\hline handler & INOIREC \(T\) & 5.10s/HR & 0 & 35.0\% & 0 & 100.0x \\
\hline
\end{tabular}

Figure 3. Factory production analysis.


Figure 4. Material and expense definition.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline EXPENSE NAME &  & TYPE & & \(\cos 5\) & GP\# & salyage & salvage value & GP\# \\
\hline HYDRAZINE & NONE & DIRECT & EXP. & 1.23000E-015/GH. & 0 & & & \\
\hline HYOROCHLORIC ACID & NONE & DIRECT & EXP. & 8.36000E-095/GH. & 0 & & & \\
\hline HYDROFLUNRIC ACID & NONE & DIfECT & EXP. & 1.23000E-035/CH**3 & 0 & & & \\
\hline HYDROEEN & NONE & DIRECT & EXP. & 2.65000E-075/CM**3 & 0 & & & \\
\hline HYDROGEN CHLORIDE & NONE & DIAECT & EXP. & 6.60000E-035/CH**3 & 0 & & & \\
\hline HYDROGEN PEROXIDE & NONE & DIRECT & EXP. & 1.14000E-035/CH**3 & 0 & & & \\
\hline ION SOURCE GAS & NONE & dinect & ExP. & SPECIFIED IN 5 & 0 & & & \\
\hline LIME & NONE & DIRECT & EKP. & 4.65000E-05 /6H. & 0 & & & \\
\hline LIQUID MITROGEN & NONE & DIRECT & EKP. & 7.50000E-055/Cた5*3 & 0 & & & \\
\hline NITRIC ACID & NONE & DIRECT & EXP. & 1.03400E-035/6H. & 0 & & & \\
\hline NITROCELLULOSE Lacguea & NONE & DIRECT & EXP. & 1.50000E-035/CH**3 & 0 & & & \\
\hline NITROGEN & NONE & DIRECT & EXP. & 4.77000E-085/CH**3 & 0 & & & \\
\hline NITROGEN RHEIENT & NONE & DIRECT & EXP. & 4*77000E-085/CH**3 & n & & & \\
\hline NITROGEN CURTAINS & NONE & DIRECT & Exp. & \(4.77000 \mathrm{E}-0 \mathrm{E}\) / \(/ \mathrm{CM} * 3\) & 0 & & & \\
\hline O-RINGS \& FILTERS & NONE & DIRECT & ExP. & SPECIFIED IN & 0 & & & \\
\hline OUTSILEE ENGR. SERVICES & HDNE & OIRECT & EXP. & SPECIFIED IN \(\$\) & 0 & & & \\
\hline OXYGEN & NONE & DIRECT & EXP. & 1.84000E-075/CH**3 & 0 & & & \\
\hline PHOSPHINE 5\% In HYDROGEN & NONE & DIRECT & EXP* & 2.88000E-055/CH**3 & 0 & & & \\
\hline PHOSPHORUS OXYCHLORIDE & NONE & DIRECT & ExP. & 2.0t000E-025/GM. & 0 & & & \\
\hline Photoresist & NONE & DIRECT & EXP. & SPECIFIED IN \$ & 0 & & & \\
\hline QUARTZ & NONE & DIREC \({ }^{\text {T }}\) & ExP. & SPECIFIES IN S & 0 & & & \\
\hline SCREENS & NONE & DIRECT & ExP. & SPECIFIED IN \(\$\) & 0 & & & \\
\hline SILANE 100\% & NONE & DIRECT & Exp. & \(4.04000 \mathrm{E}-01 \$ / \mathrm{GN}\) & 0 & & & \\
\hline SILICON TETRACHLORIDE & NONE & DIRECT & EXP. & \(5.72000 \mathrm{E}-035 / \mathrm{GM}\). & 0 & & & \\
\hline SODIUH HYDROXIDE & NONE & DIRECT & EXP. & \(3.77000 \mathrm{E}-055 / \mathrm{GM}\). & 0 & & & \\
\hline SOLVENT & NDNE & DIRECT & ExP. & SPECIFIED IN \$ & 0 & & & \\
\hline golvent-Ink & NOME & DIRECT & EXP. & 5.27700E-045/CM**3 & 0 & & & \\
\hline SOLVENT-PASTE & NONE & DIRECT & EXP. & \(5.27700 \mathrm{E}-045 / \mathrm{CM} * * 3\) & 0 & & & \\
\hline SPRAY-ON SOURCE & NONE & DIRECT & EXP. & SPECIFIED IN \$ & 0 & & & \\
\hline Squeegees & NONE & Difect & EXP. & SPECIFIED IN 5 & 0 & & & \\
\hline SULFURIC ACIO & NONE & DIRECT & EXP. & E.82000E-045/GH. & 0 & & & \\
\hline THERMOCOUPLE, ETC. & NONE & DIRECT & EXP. & SPECIFIED IN & 0 & & & \\
\hline SUSCEPTORS & NONE & DIRECT & EKP. & SPECIFIED IN \(\$\) & 0 & & & \\
\hline TRANSDUCERS \(z\) TUBES & NONE & DIRECT & EXP. & SPECIFIED IN \$ & 0 & & & \\
\hline TRICHLOROSILANE & MONE & DIRECT & EXP. & 1.98000E-035/GH. & 0 & & & \\
\hline UATER-COOLING & NOME & direct & EXP. & 2.000000E-07*/CH** & 0 & & & \\
\hline
\end{tabular}

Figure 4. Continued.
materials which become part of the finished array module are constdered "material" and those which are used up during the process sequence are considered "expense."

Figures 5 through 10 are the remaining cost summaries for the class \(B\) and class \(C\) process sequences which are considered the most cost-effective.

Figure 1 l is a comparison of the three class (C) process sequences; linn Implantation (C), Spin-On \(+\mathrm{POCl}_{3}\) Diffusion (C), and Screen Print 2 Sides (C). All of the processes in these three cases are the same except for the junctionformation technique. In Spin-On \(+\mathrm{POCl}_{3}\) Diffusion ( C ), the back of the wafer is doped with a spin-on source during a \(\mathrm{POCl}_{3}\) diffusion of the front junction. In Screen Print 2 Sides (C), an appropriate source paste is screened onto each side of the wafer and the wafer doped in a subsequent diffusion step. The purpose of this figure is to emphasize that several cost-effective junction-formation processes are available. Performance penalties which may be experienced with the nonstandard processes such as screened-on doping sources are not considered in this cost analysis.

It is the purpose of this analysis to provide guidance as to which technologies should be developed; it suggests fon implantation and screened-on doping sources are technologies worthy of further investigation.

Figure 12 is a cost comparison of these same technologies as we have evaluated them in a near-future context. Two factors result in lower cost in the automated line. First is a direct reduction in labor and process overhead. Second, the overall yield has increased from 65\% to 80\%. A detailed evaluation of the capital costs shows an actual reduction (slight) in the automated case due to substantially higher throughput for the fully automated equipment.
C. DETAILED COST ESTIMATE FOR ION IMPLANTATION (C)

Because it is the Iowest cost sequence, a complete description of Ion Implantation (C) will be given. Recall that except for the junction-formation technology, this seçuence is identical to the other two recommended class (C) process sequences.
I. Solar Panel Design

The single largest cost component in the assembly of a solar cell panel is the material required to provide structural and environmental projection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ASSUMPTIONS:} & 0.717 HAJTS PER & PRO & CESS COS & QVERY
7.8 CH & IEH-S/ & IATT & & \multicolumn{7}{|l|}{} \\
\hline StEP & YIELD & process & & HAT \({ }^{\text {P }}\). & D. L. & EXP. & P. OH & INT. & DEPR. & SUBTOT & SALVG. & Tarats & 5 & INyEST & 7 \\
\hline 1 & 99.0\% & SYSTEM \({ }^{\text {²* }}\) ( HAFER CLEANING & (B) & 0.0 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.003 & 0.0 & 0.003 & 1.2 & 0.002 & 0.8 \\
\hline 2 & 55.07 & SPIH-GN SDURCE:I SIDE & [B] & 0.006 & 0.009 & 0.000 & 0.004 & 0.001 & 0.002 & 0.022 & 0.0 & 0.022 & 7.3 & d.015 & 7.0 \\
\hline 3 & 99,0\% & PICL3 OEPOSITIGN ANO OIFFUSION & (C) & 0.0 & 0.003 & 0.024 & 0.001 & 0.001 & 0.001 & 0.030 & 0.0 & 0.030 & 10.3 & 0.005 & 2.4 \\
\hline 4 & 95:0\% & EDGE POLISH & (B) & 0.0 & 0.002 & 0.004 & 0.001 & 0.000 & 0.001 & 0.007 & 0.0 & 0.007 & 2.5 & 0.005 & 2.5 \\
\hline 5 & 99.05 & GLASS REROVAL & (B) & 0.0 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.003 & 0.0 & 0.003 & \(1-1\) & 0.003 & 1.5 \\
\hline 6 & 99.05 & PDST DIFFUSIDN IASPECTICN: \(10 \%\) & (C) & 0.0 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.001 & 0.0 & 0.001 & 0.5 & 0.003 & 1.4 \\
\hline 7 & 99.0\% & THICK AG METAL-FRONT AUTO & [C) & 0.021 & 0.005 & 0.009 & 0.005 & 0.006 & 0.010 & 0.056 & 0.0 & 0.056 & 19.4 & 0.069 & 31.7 \\
\hline 8 & \(99.0 x\) & THICK AG METAL - EACK*AUTO & (C) & 0.021 & 0.002 & 0.004 & 0.002 & 0.003 & 0.005 & 0.037 & 0.0 & 0.037 & 12.9 & 0.037 & 17.1 \\
\hline 9 & 99.03 & AR COATING:SPRAY-ON & (8) & 0.002 & 0.004 & 0.002 & 0.001 & 3.001 & 0.001 & 0.011 & 0.0 & 0.011 & 3.6 & D. 008 & 3.9 \\
\hline \(\underline{10}\) & 90.05 & TEST & (E) & 0.0 & 0.003 & 0.000 & 0.001 & 0.003 & 0.005 & 0.012 & 0.0 & 0.012 & 4.2 & 0.035 & 16.1 \\
\hline 11 & 98.09 & INTERCONNECT: GAP WELDIAG & (8) & 0.002 & 0.006 & 0.002 & 0.002 & 0.002 & 0.003 & 0.015 & 0.0 & 0.016 & 5.6 & 0.019 & 3.9 \\
\hline 12 & 100.08 & DIUELE GLASS PANEL ASSEHBLY & (B) & 0.072 & 0.002 & 0.002 & 0.001 & 0.002 & 0.002 & 0.080 & 0.0 & 0.080 & 27.7 & 0.019 & 6.3 \\
\hline 13 & 100.08 & array houlle packaging & (A) & 0.007 & 0.001 & 0.0 & 0.000 & 0.000 & 0. 000 & 0.009 & 0.0 & 0.009 & 3.1 & 0.000 & 0.2 \\
\hline & 74*2\% & Totals & & 0.130 & 0.039 & 0.049 & 0.019 & 0.020 & 0.031 & 0.289 & 0.0 & 0.285 & 100.0 & 0.218 & 100.0 \\
\hline & & & \% & 45.18 & 13.52 & 17.12 & \(6.6{ }^{+}\) & 6.78 & 10.76 & 100.00 & & & & & 100.0 \\
\hline
\end{tabular}

Figure 5. Cost sumary - spin-on \(+\operatorname{POCl}_{3}\) diffusion (C).
```

SSUMPTICNS: D. }717\mathrm{ HATTS PER SQLAR CELL A
1 99.0% SYSTEH mZ\# HAFER CLEANING
l 99.07 SYSTER NZM HAFER CLEANING
39.0% OIFFUSION
99.0% GL.ASS REHOVAE
99.0% POST DIFFUSION INSPECTIEN:10%
99.07 THICK AG HETAL-BACK:AUTO
99.0% THILK AG METAL-FRONI:AUTO
99.07 AR COATING:SPRAY-OH
90.07 TEST
10 9%.0% INTERCONNECT:GAP HELDING
II 100.0\& DGUBLE GLASS PANEL ASSEHBLY
2 100.ax array module packaging
81-4:4 TOTALS

```
PROCESS COST DVERVIEH-\%/HATI
ASSUMPIIGNS: D. 717 HATTS PER SOLAR CELL AND 50.0 FOR 7.B CH (3H) DIAMETER HAFER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \[
0.0 \text { FOl }
\] & \[
\begin{aligned}
& 7_{0} \\
& 0_{0}
\end{aligned}
\] & \[
\left.3^{\prime \prime}\right)
\] & ETER & HAFER IMT & DEPR. & SUBrot & SA1㫛 \\
\hline (B) & 0.0 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.003 & 0.0 \\
\hline (C) & 0.011 & 0.004 & 0.006 & 0.004 & 0.004 & 0.006 & 0.035 & 0.0 \\
\hline (t) & 0.0 & 0.003 & 0.002 & 0.001 & 0.002 & 0.002 & 0.009 & 0.0 \\
\hline (B) & 0.0 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.003 & 0.0 \\
\hline (C) & 0.0 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.001 & 0.0 \\
\hline (C) & 0.021 & 0.002 & 0.004 & 0.002 & 0.003 & 0.005 & 0.038 & 0.0 \\
\hline (C) & 0.021 & 0.005 & 0.009 & 0.005 & 0.005 & 0.010 & 0.056 & 0.0 \\
\hline (B) & 0.002 & 0.004 & 0.002 & 0.001 & 0.001 & 0.001 & 0.012 & . \(]\) \\
\hline (c) & 0.0 & 0.003 & 0.000 & \(0=001\) & 0.003 & 0.005 & 0.012 & 0.0 \\
\hline (B) & 0.002 & 0.006 & 0.002 & 0.002 & 0.002 & 0.003 & 0.016 & ). 0 \\
\hline (B) & 0.072 & 0.002 & 0.002 & 0.001 & 0.001 & 0.002 & 0.080 & C.a \\
\hline (A) & 0.007 & 0.001 & 0.0 & 0.000 & 0.000 & 0.000 & 0.009 & \(0 \cdot 0\) \\
\hline & 0.135 & 0,033 & 0.029 & 0.018 & 0.022 & 0.035 & 0.273 & 0.0 \\
\hline & , & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline totals & \% & INVEST & \\
\hline 0.003 & 1.2 & 0.002 & . 7 \\
\hline 0.035 & 12.8 & 0.040 & 16.6 \\
\hline 0.009 & 3.2 & 0.010 & 4.1 \\
\hline 0.003 & 1.2 & 0.003 & L. 3 \\
\hline 0.005. & 0.5 & 0.003 & 1.2 \\
\hline 0.038 & 13.8 & 0.037 & 15.4 \\
\hline 0.056 & 20.5 & 0.069 & 2 Bd \\
\hline 0.011 & 3.9 & 0.008 & 3.5 \\
\hline 0.012 & 4.5 & 0.035 & 14.5 \\
\hline 0.016 & 5.9 & 0.019 & B. 1 \\
\hline 0.080 & 29.2 & 0.014 & 5.7 \\
\hline D. 009 & 3.3 & D.0BC & 0.2 \\
\hline 0.273 & 100.a & 0.242 & 100.0 \\
\hline
\end{tabular}


Figure 6. Cost sumary - screen print 2 sides (c).


NOTE: (A)\#EXISTING TECHNDLQGY; (B)=NEAR FUTURE; (C)=FUTURE AMNUAL PRODUCTION: 50.O MEGAMATSS.

Figure 7. Cost sumary - ion implantation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{PROCESS COST DVERUIEH-S/HATT} \\
\hline 4550 & IPTIONS: & 0.717 Watts per jolan cell & AND 5 & 0.0 FOR & 7.8 CM & (3) \({ }^{\text {n }}\) & DIAMETER & HAFER & & \\
\hline STEP & YIELD & PROCESS & & Hat'L. & D. L. & EXP. & P. DH. & INT. & DEPR. & SUBTOT \\
\hline 1 & 99.07 & SYSTEM "2" hafer cleaning & (8) & 0.0 & 0.002 & 0.002 & 0.000 & 0.000 & 0.000 & 0.005 \\
\hline 2 & 95,07 & SPIN-DN SQUNCE: 1 SIDE & (B) & 0.007 & 0.010 & 0.000 & 0.005 & 0.002 & 0.003 & 0.026 \\
\hline 3 & 99.0\% & PQCLI 3 DEPOSITION ANG DIFFUSION & (A) & 0.0 & 0.017 & 0.028 & 0.021 & 0.003 & 0.004 & 0.073 \\
\hline 4 & 95.07 & EOGE Pat 15 SH & (8) & 0.0 & 0.002 & 0.004 & 0.001 & 0.000 & 0.001 & 0.008 \\
\hline 5 & 99.07 & glass removal & (B) & 0.0 & 0.002 & 0.001 & 0.001 & 0.000 & 0.001 & 0.005 \\
\hline 6 & 99.0t & POST DIFFUSION IASPECTICN & (a) & 0.0 & 0.003 & 0.000 & 0.003 & 0.003 & 0.004 & 0.013 \\
\hline 7 & 98.04 & thick ag metal-front:autio & (8) & 0.025 & 0.009 & 0.011 & 0.012 & 0.006 & 0.009 & 0.071 \\
\hline 日 & 98.0x & thick ag metal-backsaute & (8) & 0.024 & 0.004 & 0.005 & 0.005 & 0.93 & 0.004 & 0.044 \\
\hline 9 & 99.05 & ar ciating :spray-on & (B) & 0.002 & 0.004 & 0.002 & 0.001 & 0.101 & 0.001 & 0.011 \\
\hline 10 & 00.0\% & IEST & 18) & 0.0 & 0.004 & 0.000 & 0.003 & 0.004 & 0.006 & 0.018 \\
\hline 11 & 98.02 & INTERCONMECT:GAP HELDING & (8) & 0.002 & 0.006 & 0.002 & 0.002 & 0.002 & 0.003 & 0.016 \\
\hline 12 & 109.08 & double glass panel assehbly & (B) & 0.072 & 0.002 & 0.002 & 0.001 & 0.001 & 0.002 & 0.080 \\
\hline 13 & 100.02 & array module packaging & (A) & 0.007 & 0.001 & 0.0 & 0.000 & 0.000 & 0.000 & 0.009 \\
\hline & 64.67 & jotals & & 0.138 & 0.065 & 0.057 & 0.054 & 0.024 & 0.038 & 0.378 \\
\hline & & & \% & 36.47 & 17.46 & 15.11 & 14.37 & 6.41 & 10.10 & 100.00 \\
\hline Hate: & \((A)=E\) &  & JTURE; & [C) \(\times\) FUTURE & \multicolumn{3}{|l|}{E ANMUAL PRDDUCTION:} & \multicolumn{3}{|r|}{50.0 HEGAHATTS.} \\
\hline
\end{tabular}

Figure 8. Cost summary - spin-on \(+\mathrm{POCl}_{3}\) diffusion.



Figure 9. Cost sumary - spin-on 2 sides.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ASSU & APTICNS: & 0.717 HATIS PER SOLAR CELL & \[
\begin{gathered}
\text { PAD } \\
\hline
\end{gathered}
\] & cess cas 0.0 FaR & \[
\begin{aligned}
& \mathrm{F} \text { OVERY } \\
& \mathrm{T}=\mathrm{BCH}
\end{aligned}
\] & \[
\begin{aligned}
& E N-\$ / K \\
& (3+1)
\end{aligned}
\] & \begin{tabular}{l}
\[
\Delta \overline{I T}
\] \\
iameter
\end{tabular} & & & & & & & & \\
\hline STEP & YIELO & PROCES 5 & & hatil. & D. L. & Exp. & P. OH. & IHT. & DEPR. & SUBTOT & SALVG. & totals & 7 & Invest & * \\
\hline 1 & 99.08 & SYSTEM EZM HAFER CLEAMING & (8) & 0.0 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.003 & 0.0 & 0.003 & 1.0 & 0.002 & 0.7 \\
\hline 2 & 98.07 & SCREEH PRIAT SDURCEF2 SIDES & (8) & 0.013 & 0.008 & 0.007 & 0.007 & 0.003 & 0.004 & 0.042 & 0.0 & 0.042 & 12.7 & 0.031 & 12.0000000 \\
\hline 3 & 91.0\% & DIFFUSION & (B) & 0.0 & 0.009 & 0.002 & 0.002 & 0.001 & 0.003 & 0.016 & 0.0 & 0.016 & 5.0 & 0.012 & 4.7 \\
\hline 4 & 99.01 & GLA55 REHOVAL & (8) & 0.0 & 0.002 & 0.001 & 0.001 & 0.000 & 0.001 & 0.005 & 0.0 & 0.005 & 1.5 & 0.005 & 1.9 \\
\hline 5 & 99.0才 & POST DIFFUSION INSPECTICN & (a) & 0.0 & 0.003 & 0.000 & 0.003 & 0.003 & 0.004 & 0.013 & 0.0 & 0.013 & 4.1 & 0.030 & 11.7 \\
\hline 6 & 98.05 & THICK AG HETAL-BAGE:AUTG & (B) & 0.024 & 0.004 & 0.005 & 0.005 & 0.003 & 0.004 & 0.045 & 0.0 & 0.045 & 13.6 & 0.031 & 12.1 \\
\hline 7 & 98.05 & THICK AG METAL-FACET=AUTO & (B) & 0.024 & 0.009 & 0.011 & 0.012 & 0.006 & D. 009 & 0.070 & 0.0 & 0.070 & 21.4 & 0.062 & 24.3 \\
\hline 8 & 99.05 & AR COATIHG : Spany -in & (E) & 0.002 & 0.004 & 0.002 & 0.001 & 0. 001 & 0.001 & 0.011 & 0.0 & 0.011 & 3.3 & 0.008 & 3.3 \\
\hline 9 & 80.04 & TEST & (B) & 0.0 & 0.004 & 0.000 & 0.003 & 0.004 & 0.006 & 0.01 E & 0.0 & 0.018 & 5.4 & 0.042 & 26.4 \\
\hline 10 & 98.07 & INTERCONNECT:GAP HELDITG & 10) & 0.002 & 0.006 & 0.002 & 0.002 & 0.002 & 0.003 & 0.016 & 0.0 & 0.016 & 4.9 & 0.019 & 7.6 \\
\hline 11 & 100.0x & DUUBLE GLASS PANEL ASSEMBLY & (B) & 0.072 & 0.002 & 0.002 & 0.001 & 0.001 & 0.002 & 0.080 & 0.0 & 0.080 & 24.3 & 0.014 & 5.3 \\
\hline 12 & 100.0x & hraty module packagine & (A) & 0.007 & 0.001 & 0.0 & 0.000 & 0.000 & 0.000 & \(0=009\) & 0.0 & 0.009 & 2.7 & 0.000 & 0.2 \\
\hline & 69.52 & totals & & 0.144 & 0.054 & 0.033 & 0.037 & 0.023 & 0.038 & O. 328 & 0.0 & D.328 & 100.0 & 0.257 & 100.0 \\
\hline & & & : & 43.78 & 16.44 & 10.09 & 11.16 & 7.04 & 11.49 & 100.00 & & & & & \\
\hline
\end{tabular}


Figure 10. Cost sumary - screen print 2 sides.
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Ion } \\
\operatorname{Implant}(C) \\
(\Leftrightarrow / W) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Spln-on }+ \\
\text { POCL }_{3}(\mathrm{C}) \\
(\mathrm{c} / \mathrm{W})
\end{gathered}
\] & \[
\begin{gathered}
\text { Screen Print } \\
2 \text { Sides }(C) \\
(¢ / W) \\
\hline
\end{gathered}
\] \\
\hline Junction Formation & 4.2 & 6.6 & 5.1 \\
\hline Metallization & 9.4 & 9.4 & 9.4 \\
\hline AR Coating & 1.1 & 1.1 & 1.1 \\
\hline Test and Sort & 1.2 & 1.2 & 1.2 \\
\hline Interconnect, Encapsulation \& Packaging & 10.5 & 10.5 & 10.5 \\
\hline & 26.4 & 29.0 & 27.4 \\
\hline Labor \& Process Overhead Content & 4.6 & 5.8 & 5.1 \\
\hline
\end{tabular}

Figure 11. Gomparison of three class (C) (advanced) process sequences.
\begin{tabular}{|c|c|c|c|c|}
\hline & Ion Implant (C/W) & \[
\begin{gathered}
\text { Spin-on }+ \\
\text { POCl3 } \\
(¢ / W) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Screen Print \\
2 Sides \\
(c/W)
\end{tabular} & \begin{tabular}{l}
Spinnon \\
2 Sides \\
( \(\mathrm{C} / \mathrm{W}\) )
\end{tabular} \\
\hline Junction Formation & 9.3 & 13.0 & 7.9 & 11.5 \\
\hline Metallization & 11.5 & 11.5 & 11.5 & 11.5 \\
\hline AR Coating & 1.1 & 1.1 & 1.1 & 1.I \\
\hline Test and Sort & 1.8 & 1.8 & 1.8 & 1.8 \\
\hline Interconnect, Encapsulation & & & & \\
\hline \& Packaging & 10.5 & 10.5 & 10.5 & 10.5 \\
\hline & 34.3 & 37.8 & 32.8 & 36.3 \\
\hline Labor \& Process Overhead Content & 9.1 & 12.0 & 9.1 & 12.1 \\
\hline
\end{tabular}

Figure 12. Comparison of four class (B) (near future) process sequences. the panel design considered in the automation study in order that the assembly pricesses are consistent with the materials selected.

Figure 13 shows the panel design which is the basis for the cost analysis described in this report. The design is characterized. by several features which are worthy of comment.
- Glass is used as both substrate and window for the enclosure. We are not convinced that there is a credible alternative to glass in terms of cost and relíeble protection for environmental threats. The concept shown calls for the window and substrate to be bonded together structurally so that \(1 / 8\)-in. sheet can be used in both places and the total assembly is structurally equivalent to a 1/4-in. or greater panel.
- The eircuit is configured in a series-parallel arrangement in which four cells are connected in parallel to preserve panel performance if polnt failures occur at the cell level. The series circuit makes an odd number of traverses across the panel so that the panel interconnection terminals can occur at opposite corners on the panel diagonal. This feature permits ease of packaging for shipment and ease of system interconnection as will be discussed in a later paragraph. The interconnector design utilizes threaded terminals which are ruggedly imbedded into the panel to assure easy system assembly and maintenance (Fig. 14).
- Round cells are utilized since they are available in large quantity. As shown in Fig. 15, the cells are bonded to the substrate using a lowcost compliant bond. Compliant optical filler material is applied between the window and the cells to reduce optical losses in the photon path. By reducing the structural requirements on this material, lower cost comporads can be used. Table 1 , originally shown in Quarterly Report No. 3 [1], compares the materials cost for various panel designs. Tire panel proposed here is column II. By comparing columns \(I\) and II, it is easily seen that the elimination of the use of transparent adhesive is a cost-effective step. Note the region between cells does not contain potting compound.

The panel shown in Fig. 13 uses a nonstandard cell size of \(4.45-i n\). diameter in order to meet simultaneously tie constraints of 4-x 4-ft panel size, four-parallel-cell circuit, and diagonally opposite circuit termination. The panel has a packing factor of approximately \(83 \%\) and will deliver 15 V dc and a peak current of 13 A . We find no difficulty in specifying an odd cell size since this solar cell factory will have enough production volume to create

\footnotetext{
1. B. F.Williams, Automated Amay Assembly, quarterly Report No. 3, ERDA/JPL-954352-76/3, prepared under Contract No. 954352 for Jet Propulsion Laboratory, September 1976.
}


Figure 13. Solar panel design.


Figure 14. Interconnector design.


Figure 15. Round cell configuration.
as standard any size which meets the need of its products. A different cell size will change the panel dimensions to maintain high panel area efficiency. Detailed baseline cost estimates have been made on the basis of a 3 -in. cell as the basic building block. Almost all of the costs of the panel itself are cell size independent, the one exception being interconnection and assembly capital equipment cost which decreases linearly as cell size goes up. Since the cost of this equipment is a small fraction of the total cost and the influence of cell size on its value is small, the analysis show that the 3- to 5-in. cell size range, panel and assembly costs are almost independent of cell size (10.5 \(\mathrm{C} / \mathrm{W}\) compared with \(9.9 \mathrm{c} / \mathrm{W}\) for 5 -in. cell; see Fig. 36).

\section*{2. Panel Installation}

The proposed panel design is configured for simple and low cost installation. Figure 16 shows a system configuration of solar cell panels which is six panels wide and five panels high ( \(24 \times 20 \mathrm{ft}\) ). The configuration shows that the panels are installed using standard window glazing techniques. Each

TABIE 1. COST COMPARISON OF PACKAGING MATERTATS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Item & I & II & III & IV & \(\underline{\text { v }}\) & VI & VII \\
\hline \multicolumn{8}{|l|}{Substrate} \\
\hline 1/16 glass sheet & & & & & 0.19 & & \\
\hline 1/8 glass sheet & & 0.22 & & & & & \\
\hline 0.005 alum . foil & & & 0.05 & & & 0.05 & 0.05 \\
\hline \multicolumn{8}{|l|}{Celll Adhesive} \\
\hline RTV15/Primer & 0.41 & & & 0.41 & & & \\
\hline RTV 102 & & 0.10 & 0.10 & & 0.10 & 0.10 & 0.10 \\
\hline \multicolumn{8}{|l|}{Window} \\
\hline 1/16 glass sheet & & & & & 0.19 & & \\
\hline 1/8 glass sheet & & 0.22 & & 0.22 & & & \\
\hline 1/4 glass sheet & 0.44 & & & & & & \\
\hline 1-in.-diam R6 tubing & & & . 45 & & & & \\
\hline 1-in.-diam N51 tubing & & & & & & 0.60 & \\
\hline 2-in.-diam R6 tubing & & & & & & & 1.07 \\
\hline \multicolumn{8}{|l|}{Assembly Closure} \\
\hline Conformal coating + 3-nil metal & 0.11 & & & 0.11 & & & \\
\hline Edge seal & & 0.04 & & & 0.06 & & \\
\hline End caps & & & 0.06 & & & 0.06 & 0.03 \\
\hline Panel Connector & 0.09 & 0.09 & 0.18 & 0.36 & 0.36 & 0.18 & 0.13 \\
\hline Aluminum Structural Channel & - & - & 0.10 & - & - & 0.10 & 0.10 \\
\hline Total & 1.05 & 0.67 & 0.94 & 1.10 & 0.90 & 1.09 & 1.48 \\
\hline
\end{tabular}

\footnotetext{
Column Identification:
I - I/4 glass with conformal coating \(4 \times 4\) ft module
II - \(1 / 8\) glass window and substrate bonded together \(4 \times 4 \mathrm{ft}\) module
III - I-in.- diam R6 tubing with aluminum for siabstrate ( 48 tubes in module)
IV - \(1 / 8\) glass with conformal coating (four) \(2 \times 2 \mathrm{ft}\) panels in a \(4 \times 4 \mathrm{ft}\) module
V - 1/I6 glass window and substrate bonded together into four \(2 \times 2 \mathrm{ft}\) panels in a \(4 \times 4 \mathrm{ft}\) module
VI - 1-in.-diam N5I tubing with aluminum foil substrate ( 48 tubes in module)
VII - 2-in.-diam R6 tubing with aluminum foil substrate ( 24 tubes in module)
}


Figure 16. Solar cell panel system configuration.
panel is bedded in a compliant sealing compound and is structurally secured at the corners using a diamond-shaped retaining clip. The spaces between the panels are caulked with clear compliant sealant which give the final assembly the appearance of monolithic glass. The "I" sections of the supporting superstructure all project from the back of the system. All electrical interconnections are made at the point where the four corners of adjacent panels meet. These connections are made at every other intersection point in the panel array. Protection of the interconnection is accomplished using waterproof junction boxes on the back of the structure as shown in the detail view of Fig. 17. Termination of the entire assembly can occur wherever desired by appropriate system layout.


Figure 17. Detail rear view of interconnection.

In Fig. 16, they are shown at the top of the assembly, the assumption being that a power bus can be safely brought to this point. It should be obvious that a range of series-parallel possibilities can be achieved with the proposed construction because of the symmetry between positive and negative panel terminals. This same symmetry could, of course, cause assembly errors unless adequate coding is used.
3. Solar Cell Panel Assembly

The floor plan for a production line to assemble solar cell panels is shown in Fig. 18. This diagram indicates the process flow, equipment complement, factory floor space, and operating personnel required to accomplish


SOLAR CELL ASS'Y PRODUCTION AREA
ASS'Y AREA \(16 \times 51\) MULTIPLE LINES
WAREHOUSE A \(16 \times 31\}\) DEVELOP IN THE
INVENTORY

Figure 18. Production line floor plan.
automated assembly of solar cells. The floor plan is laid out in lines so that multiples of ita design throughput can be achieved by locating parallel lines side by side. The nominal throughput of the line shown in the figure is approximately 40,000 W per day or 15 MW per year ( 345 working days per year). As indicated on the figure the production floor space is \(16 \times 50 \mathrm{ft}\), and the associated storage and aisle space is \(16 \times 30 \mathrm{ft}\). The numbers of the drawing correspond to pieces of important capital equipment required as part of this line. A listing of this equipment and our estimate of its cost is shown in Table 2. The assembly procedure sequence is described below.
4. Panel Assembly Line Functions
a. Sowting - The input into the panel assembly area is cartridges of sorted cells. The exact nature of this sort will not be determined until the dism tribution of electrical properties versus yield of low-cost solar cells is determined. If one can presume that there will be a greater variation in the properties of a low-cost cell than now exists with space-quality products, then such sorting wiil be a crucial importance. Several sorting strategies are now being investigated to determine how to configure a panel to most closely approach the performance inherent in the individual cells.
b. CeZl Hondling - A key element of a solar module factor will be the cellhandling equipment. It is this equipment which will determine the speed and throughput of the line and be responsible for most of the physical breakage which occurs during the various processes. Ideally, it would be desirable to have a continuous process with no operator intervention until the operation is complete. For reasons of process flexibility, the need for buffering between various stations, sorting after various steps, and just the practicality of building up a production line incrementally, cartridge cell handling has been built around each process. It appears that 500-cell cartridges are feasible so that at 1000 cells per hour reasonable amounts of operator attention are possible.

The cell-handiing sequence during assembly takes the cell from the cartridge to a rotary table and then to a linear assembly table. Circuit strings

TABLE 2. SOLAR-CELL PANEL ASSEMBLY EQUIPMENT
\begin{tabular}{|c|c|c|c|}
\hline Station NO. & Equipment Description & Qty Req'd & Unit Cost \$K \\
\hline 1 & Wafer Unloader & 4 & 4 \\
\hline 2 & Linear Index Table & 2 & 10 \\
\hline 3 & Rotary Index Table & 2 & 25 \\
\hline 4 & Pick \& Place Assembly & 10 & 5 \\
\hline 5 & Parallel Gap Bonder & 18 & 5 \\
\hline 6 & Wafer Turner & 2 & 4 \\
\hline 7 & Interconnect Formation Tool & 4 & 15 \\
\hline 8 & Microprocessor Control & 1 & 15 \\
\hline 9 & Sensors \& Assembly Wiring & Lot & 20 \\
\hline 10 & Linear Inder Table & 2 & 7.5 \\
\hline 11 & Robot Arm \& Vacuum Hand & 1 & 25 \\
\hline 12 & Pulse Xenon I-V Tester & 1/2 & 80 \\
\hline 13 & String Reject Position & 1 & 2 \\
\hline 14 & Assembly Fixture & 1 & 15 \\
\hline 15 & Linear Index Table & 1 & 10 \\
\hline 16 & Adhesive Dispenser & 2 & 10 \\
\hline 17 & Sealant Bead Dispenser & 1 & 10 \\
\hline 18 & Panel Assembly Sensors & Lot & 15 \\
\hline 19 & Window Supply Fixture & 1 & 5 \\
\hline 20 & Glass Handling Robot & 2 & 17.5 \\
\hline 21 & Substrate Storage/Dispenser & 1 & 5 \\
\hline 22 & Guring Rack & 1 & 20 \\
\hline 23 & System Integration & Lot & 50 \\
\hline 24 & Repair Bench & 1 & 3 \\
\hline 25 & Repaired String Position & 1 & 6 \\
\hline 26 & Electrical Conneetor Dispenser & 2 & 6 \\
\hline 27 & Linear Index Table & 1 & 10 \\
\hline
\end{tabular}
are created on this table and combined into parallel arrangements in subsequent steps. The handling of strings from this point to final assembly is controlled by a robot arm which interfaces the circuit with a vacuum pickup hand.
(1) Airtrack Cell Transport - Figure 19 shows a cartridge of cells pneumatically unloaded onto a linear air-track cushion for transport to a vacuum chuck position on a rotary index welding table. Air transport of the cells helps to reduce physical damage to the cells during transport; it is being used increasingly in the semiconductor industry and would become more highly recommended as cell size increases. Handling rates of 1200 cells/hour are feasible with minor extrapolation from present equipment. A circular cell format is most compatible with this transport technique since edge chipping of any noncircular format has always been a problem during wafer handling.
(2) Rotary Index Table - A rotary index table is used at the first interconnect station since it permits all of the preparatory steps for string assembly to be completed off-1ine. The table in Fig. 19 has six positions, but notice


Figure 19. Air-track cell transport of cells onto rotary.
that the throughput of the Iine would not change regardless of how many positions were on the table. As presently conceived, the operations completed on the rotary table are:
- position the cell
- orient the cell with regard to angular position
- form and place interconnects
- make two front side welds
- turn over cells
- prepare contact areas for interconnection (if necessary)
- pick up position for string assembly table
(3) Series Connection Table - Series and parallel interconnections are made on a Iinear motion table. In Fig. 18, station 10 represents the interconnection assembly area. Four bonds are made at this station. Two of these are the series connections for each of the two strings being assembled at the station The others are the bonds necessary to make parallel connection between each of the cells in the two series strings.

When the strings are completed, they are advancing to a combining position indicated by the arrows at station 10. Two groups of cells. from adjacent tables are combined at a pickup point for the assembly robot at station 11.
(4) Panel Assembly Robot - After the cells are bonded together electrically, they are handled by a multiported. vacutm pickup hand which is 4 ft long and four circuit strings wide. This vacum hand will be mounted on the end of a robot arm which has 5 degrees of freedom, namely, X translation, \(Y\) translation, \(Z\) translation, rotation about the arm axis at the carrlage, and rotation about the arm axis at the vacum head. The robot arm, under computer control, can address five string positions: string piclup, string test, panel placement, string reject, and repair picktrp.

The function at each of these positions will be discussed in later paragraphs. The dell handling until the cells have been bonded to the panel substrate is by virtue of vacuum contant at the robot arm pickup hand. The total cycle time for the robot is 100 s per fourmstring placement. Since each robot has two arms each acting \(180^{\circ}\) out of phase with the other, the effective cycle rate is 50 s . The timing sequence for this position is shown in Table 3.

TABLE 3. PANEL ASSEMBLY TTMING SEQUENGE
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Step} & \multicolumn{2}{|l|}{Time Sequence (s)} \\
\hline & Arm 1 & Arm 2 \\
\hline Four-string pickup & 0-2 & 50-52 \\
\hline Transfer to test & 2-4 & 52-54 \\
\hline Test sequence & 4-6 & 54-56 \\
\hline Transfer to rejects & 6-10 & 56-60 \\
\hline ```
Drop defective part
    (if any)
``` & 10-12 & 60-62 \\
\hline Pick up replacement string (if required) & \(12-14\) & 62-64 \\
\hline Index to final bonding station & 14-16 & 64-66 \\
\hline Dwell at bonding station & 16-46 & 66-96 \\
\hline Index to panel placement & 46-66 & 96-16 \\
\hline Dwell at panel placement & 66-96 & 16-46 \\
\hline Return to pickup & 96-100 & 46-50 \\
\hline
\end{tabular}
c. Panel Materials Handling - The other panel materials are glass (substrate and window), adhesives and sealants, and electrical components. Glass and final panel handing will be accomplished using a simplified robot arm with vacuum pickup hand. Adhesive and sealant will be dispensed in dots and beads from an automatic pneumatic dispensing machine. Electrical parts will be located and placed using pick and place equipment fed from a vibrating bowl. d. Panel Assembly Processes - In addition to material handling, panel assembly involves five other significant processes, namely, electrical interconnect bonding, physical bonding of cells to substrate and window, electrical testing of circuit strings, final panel wiring, and protective envelope closure.
(1) Solar Celt Interconnection - Interconnection of solar cells can be done most quickly and reliably using parallel gap techniques in conjunction with appropriate autorated material-hendling equipment. This technique permits the metallurgical operation to proceed quickly, under close control, and with minimum consumables. The cost, thus, is low because consumed material is minimum and process yield is maximum.

There is no final conclusion on which metallurgical process is preferred since more technology input is required. with regard to application of the candidate processes applied to thick-film conductors. Our analysis shows that the cost to create the interconnect bond will not be significantly different if the bonding technique is solder reflow, welding, or ultrasonic bonding.
(2) Electrical Test - Testing of assembled solar cell strings will be accomplished using a pulsed Xenon \(I-V\) tester. Existing equipment is available to generate a detailed ImV curve in less than 1 s . Since the illuminated aperture of this tester can be large and testing time is only a fraction of string dwell at the test site, it will be possible to share a tester for two assembly lines.

Testing criteria can be established on the strings based on the input cell characteristics. Cell. changes.induced by interconnect bonding or poor quality bonds can be identified using this technique and the involved circuit strings rejected。
(3) Cell Bonding - The preferred technique for bonding solar cells to a structural substrate is through the use of a compliant silicone rubber adhesive on the backside of the cell. This allows the use of higher strength and lower cost compounds for this purpose. It will be necessary to use a transparent material between the cells and the panel window in order to reduce the optical losses caused by refractive index mismatch. By reducing the structural demand on this material, simpler and low-cost materials can ue used.

The proposed design calls for a structural epoxy bond between substrate and window. This bond will allow the load incident on the panel to be shared by both panel and substrate. This epoxy will be dispensed at the same time as the cell bonding adhesive and will be located in the spaces adjacent to every fourth cell in the panel.
(4) Final Panel Wiring - The panel design shown in Fig. 13 utilizes a corner connector bonded between the substrate and window to make electrical penetration from the protective envelope. The positive and negative connectors and associated power bus will be bonded to the appropriate string interconnectors after the cells are bonded to the substrate. Placement of these components is done automatically with pick and place equipment.
(5) Protective Envelope Closure - The final assembly operation calls for placement of the panel window onto a completely assembled circuit substrate. In this operation previously metered quantities of spacer and connector adhesives, optical matching material, and panel edge sealant are compressed to create intimate contacts with their related parts. The finished panel is positioned in a wiring rack which is kept at elevated temperature during a short cure cycle. The closure is visually examined at this point along with other physical properties of the assembly. Final packaging in a shock-isolated crate prepares the products for delivery from the plant.
e. Panel Assembly Summary - The assembly procedures and associated equipment can be divided into four groupings: string interconnection, testing, panel assembly, and final assembly. The following summary description lists the steps on the assembly procedure and by reference to Fig. 18 identifies the equipment required to perform each function.

(17. Dispense structural epory onto substrate 16
18. Dispense cell adhesive onto substrate 16
19. Advance prepared substrate to assembly position 15
20. Place quadruple string on a prepared panel substrate 14
21. Place and bond panel connectors and bus 26,5
22. Dispense optical matching material onto panel window 19
23. Lift and place window onto completed circuit assembly 20
24. Lift and place complete assembly int:acourtag rack 20
25. Place curing rack in curing oven 22
26. Remove finished assembly for final inspection and packaging-

String repair takes place at station 24. Repaired strings are placed at station 25 for automatic pickup.

The process parameters for the interconnect step, the double-glass panel assembly, and the array module packing are given in Figs. 20, 21, and 22.

\section*{5. Process: Test}

This step automatically tests the completed cells for photovoltaic performance, separates the acceptable cells from the rejects, and sorts the good cells according to efficiency in \(1 \%\) increments. The machine is. mieroprocessorcontrolled and consists of a test station and sorter. At the test station the wafer is contacted by probes and exposed to a known light source. The shape of the \(I-V\) curve is determined in the region of the knee (maximum power point) to determine the fill factor. The opencircuit voltage and short-circuit current are determined by the preset test. program, and from these results the efficiency is calculated. The sorter, which is activated by the result of the test station, automatically assigns the cell to a.cassette of the right classification. Process parameters are shown in Fig. 23.

PROCESS YIELE: \(9 \theta-0 Y\) YIELD GRENTH PRDFILE: 0
INPGT UNIT SALVAGE FACTOR: 0.0
FACTOR GPA: 0
INPGT UNIT SALVAGE FACTOR: OGO FACTOR GPA: 0 SALVAGE OPTION: VALUE INS
PERFORMANCE FACTORS \(-T(R) / I(S C): 1.000 G O E+D O\)

\begin{tabular}{|c|c|c|}
\hline INPUT UNITS: & 0. & 0. \\
\hline FLOQR SPACE;FT**2: & 0. & 0. \\
\hline
\end{tabular}

DESCRIPTIOE:INTERCONNECTIONFGAP WELEING(A)
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \multicolumn{3}{|r|}{\multirow[t]{4}{*}{TER WAFER, 12-14 MILS THICK; (100) DRJENTATION, P-TYPE; 1-5}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
1. 3 H OIAMETER HAFER; 12-14 MILS THICK:T100 ORIENTATION;P-TYPE, 1-5 OHM-CH. - KEHOKK OPERATOR fEGORKS STAING TEST REJECTS \(t=3 \%\) OF INPUT)
1. HAFER FROH CASSETTE TO AIR TRACK TO ROTARY TABLE FOR P-COMTACT BOND

3. INDIVIDUAL STAINGS ARE PRESENTED TO THE TEST STATION USING PICK AND PLACE HANDLING.
4. STRINGS ARE ILLUMINAJE WITH A PULSED XENGN LAMP AND A COMPLETE I-V CURVE IS GENEATEG. 5. ACCEPTANCE CRITERIA UILL BE PROERAMMED INTO TEST LOGIC.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline GH INTERCOMNECT E & QUIP. (B) 3800.00 c & CELLS/Ha & 100.0\% & 5271000.65 .05130. \\
\hline STRING TEST EOUIP & EENT (E) 76- 76.00 9 & retls/hr & 100.0\% & \\
\hline \multicolumn{5}{|c|}{LABOR} \\
\hline \multicolumn{5}{|c|}{(DL=DIRECT LABOR PEFSONS:TL=TOTAL LAGOR DERSONS)} \\
\hline NaME & LAEOR REOUITEAENTS BASE & \multicolumn{2}{|l|}{\# PERSONS/SHIFT/BASE UNIT} & THRUPUT/HR/PERSON E TNPUT UNITS PROCESSED \\
\hline HOURLY OPERATOR & GU INTERCOMNECT EQUIP. (B) & \multicolumn{2}{|l|}{\()\) 3.530E-01} & \\
\hline RETORK OPERATORT & GU INTERCONNEC+ EOUIP.(日) & \multicolumn{2}{|l|}{\() \quad 1.000 \mathrm{~F}+00\)} & \\
\hline HOURLY OPERATER & STRING TEST EQUIPNENT (E) & \multicolumn{2}{|r|}{2.000E-01} & \\
\hline MAINTENANCE & G日 INTEREONNECT EQUIP.(B) & \multicolumn{2}{|l|}{) \(1.000 \mathrm{E}-01\)} & \\
\hline MAINTENANCE & STEING TEST EQUIPMENT(S) & \multicolumn{2}{|r|}{\(1.000 \mathrm{E}-01\)} & \multirow[t]{2}{*}{} \\
\hline FOREMA & DL & \multicolumn{2}{|r|}{\(1.0005-01\)} & \\
\hline & ANTDEAE & \multicolumn{3}{|c|}{SUPPLIES/EXPENSES} \\
\hline EXPENSE NAME & Fix \({ }^{\text {c PaRt }}\) & Variamle part und & \multirow[t]{2}{*}{PASE} & \\
\hline ELECTRICITY & 0.0 & 8.0.00F+00 K & & \\
\hline ELECTRICITY & 0.0 & \(3.000 \mathrm{~F}+10 \mathrm{O}\) & PER AVAIL & ABLE EAUESTMEYT-HOUR OF STRING TEST EQUIPRENT: \({ }^{\text {a }}\) \\
\hline AEFPTATED CU MIRF. & 0.0 & \(1.430 \mathrm{E}-0\) ? & PER IVPUT & UNIT, \(x\) UNITS \(=100.0{ }^{\text {\% }}\) \\
\hline ELECTRODES & 0.0 & \(1.430 \mathrm{E}-03\) & DER INPUT & UNIT * URITS \(=100.0 \%\) \\
\hline
\end{tabular}

Figure 20. Process parameters - interconnect step.

\begin{tabular}{cccc}
INPUT UNITS: & 0. & 0. & 0. \\
FLOOR SPGCEFT**2\% & \(0 *\) & 0. & 0.
\end{tabular}
DESLRIPTIOHSPANELK RSSEMBLY, FINAL ASSERELY, \& TEST(BS

- AUTOMATIC PICK UP E PLRCEMENT OF NULTIPEE STRINGS ORTO SROCETRATE POSITIONED ON XCY HOTION TRELE 2. STRINGS CDMPLIANTLY BONDED TO GLASS SUBSTRATE.
t. SERIES CONNECTION TO PONER TERMINATIONS BY PARALLEL GAP HELDING.
5. FINAL ASSEMBLY:DINOON IS APQLTEO TOTHE ASSEMBLY USYNG PICK AND PLACE.
6. UINDOH IS BONDED TO THE SUBSTRATE USING A MULTIPLICITY OF EPOXY BONDED SPACERS.
B. FINAL ASSEMBLY IS TRANSFERRED TO CURING RACKS USING PICK AHD PLACE BND OF FOLTISOBUTLENE

Tigure 21. Process parameters - double glass panel assembly.

CATEGORY:PROCESS DEFIHITION TECHNOLOGY LEWEL:EXISTINT

PROCESS YIELD:100.0\% YIELD GROUTH PROFILE: O
INPUT UNIT SALVAGE FACTORE D* FACTŌR GPH: 0 SALVAGE OPTION:VALUE INs
PERFORMANCE FACTORS-I (R)/I(SC): \(1.0 \mathrm{COODGE+0}\) O V(R)/V(OC): \(1.000000 E+00\)

- UESCRIPTICN: ARRA Y MODUEES.PLRCED IN DOKO CRATE .

Figure 22. Process parameters - array module packing.

Figure 23. Process parameters - test.

\section*{6. Antireflection Coating, Spray-On}

Use of conventional spin-on application of solutions for depositing the \(A R\) coating on solar cells is expensive because of the low rate of throughput and will cause problems of film uniformity because of the metallization pattern interfering with the uniform spreading of the solution.

We have examined the technical and economic feasibility of spray coating techniques as an alternative, and we are entirely convinced that spray coating is indeed the technique of choice for this particular application.

Conmercial equipment, đesigned primarily for the semiconductor industry, offers excellent control and performance of high-quality film deposits, and remarkable economy.

The heart of the machine is the vapor carrier system which uses a superheated chemically inert hydrocarbon vapor of high molecular weight as the transporting medium for the coating material. The low velocity and pressure at which the coating material is conveyed by the vapor to the target surface minimizes the problems encountered with systems based on pressurized gases as the carrier. The solar cells are transported in a 6-wafer-wide stream by a conveyor belt from the load station into the spray station. The coating is applied by a fully automated and adjustable spray gun which traverses the six 3-in.-diam wafers at a set speed and distance. Work flow proceeds at a rate of typically \(3 / 4 \mathrm{in} . / \mathrm{s}\). Under these conditions the Autocoater can process 5,400 cells per hour, or \(4.4 \times 10^{7}\) cells per year.

The thickness of the \(\mathrm{SiO}_{2}+\mathrm{TiO}_{2}\) containing AR film after drying and baking is specified to be 700 A . The control of coating thickness is within \(\pm 5 \%\). Figure 24 shows the performance of such an \(A R\) coating which was spun-on compared with thermally oxidized \(\mathrm{Ta}_{2} \mathrm{O}_{5}\). Both layers make a very good AR coating.

An additional part of the system is an infrared-heated section capable of attaining \(500^{\circ} \mathrm{C}\). Since we require only \(200^{\circ}\) and \(400^{\circ} \mathrm{C}\) for bake out (15 min each, at present), this limit is quite adequate. The rate of throughput may be a problem, however, and may require either a change in processing or the addition of heaters working in parallel.

Figure 24. Reflection spectra: spin-on titania-silica film and Ta, \(\mathrm{O}_{5}\) formed by thermal oxidation of evaporated \(T a\).

The AR coating process parameters are shown in Fig. 25.
7. Metallizations
a. Thick-Film Screen Printing - We believe that a metallization technology based on screen-printed contacts is the most cost effective. The principal problem with this technology is to combine low contact resistance with low penetration and high adhesion.

In Quarterly Report No. 3 [1] we showed that the contact resistance must be below \(0.1 \Omega-\mathrm{cm}^{2}\) to not seriously affect device performance. In an experimental evaluation of commercial \(A l, N i\), and \(A g\) inks we have not found it posstble to produce this low a contact resistance without producing excessive penetration.

Therefore, we have investigated formulating a silver metallization with the proper n-type dopant, phosphorus, which would require a low firing temperature and thereby minimize penetration and contact resistance simultaneously. \(\mathrm{AgPO}_{3}\) was selected because of its low melting point, i.e., \(485^{\circ} \mathrm{C}\). Similar \(\mathrm{Ag}-\mathrm{P}\) compounds are under study. A small amount of the material was prepared
CATEGORY:PROCESS DEFIUITION TECHNOLOGY LEVEL:NEAR FUTURE MATERIAL FORH:3" WAFER.

INPUT UNIT:SHEETS OX OUTPUT UNIT:SHEETS
PRICESS YIELO: 95.0X YIELD GRDNTH PROFILE: 0 PERFORHANCE FACTORS-I (R) CSI: 1 OODOROE GP
SALVAGE OPTION:FRACTION OF INPUT TUNIT VALU
\begin{tabular}{cccc}
IMPUT UNITS: & 0. & 0. & 0. \\
\hline FLOOR SPACE, FT \(\pm 2:\) & 0. & 0. & 0.
\end{tabular}
DESCRIPTION:SPRAY-ON ANTYREFLECTTON COATING(日)

\section*{ASSUHPTIONS:}
 2. So whrestcasactic

7. APPLIED AFTER FINAL METALLIZATION.
5. ROM REGUIREMENTS: ORY,CLEAN FILTERED AIR, 2830 LITERS/HR/SYSTEH.
1. WAFERIS ARE LOADED FROM CASSETTETO DEPOSITION ZONE
2. INERT HYDROCARBON CARRIER GAS TRANSPORTS COATING MATERIAL. 4. WAFERS ARE BAKED FOR \(1 / 2\) HR. AT 400 C. IN AIR. 5. HAFERS LOADED 1 MTO CASSETTE.

㒸

Figure 25. Process parameters - antireflection coating, spray-on.
by reacting \(\mathrm{AgNO}_{3}\) with \(\mathrm{NaPO}_{3}\)-stabilized metaphosphoric acid (\(\mathrm{HPO}_{3}\)). The precipitate was dried, crushed, and ground to pass through a 325 -mesh sieve. An "off-the-shelf" silver powder was mechanically blended with the \(\mathrm{AgPO}_{3}\) powder to yield 95 wt pet \(\mathrm{Ag}-5\) wt pct \(\mathrm{AgPO}_{3}\). This mixture was suspended in a cellulosic-type organic vehicle and screen printed using a newly designed pattern containing two rows of \(0.2-\mathrm{cm}\)-diam dots. The dots were fired onto the same silicon materlal, i.e., n-type, (100), \(5 \times 10^{19} / \mathrm{cm}^{3}\), as that used for the evaluation of the commercial inks. The lowest test firing temperature was \(500^{\circ} \mathrm{C}\), since the \(\mathrm{AgPO}_{3}\) melting point is \(485^{\circ} \mathrm{C}\) and a contact angle of \(8^{\circ}\) was found for \(\mathrm{AgPO}_{3}\) on silicon when fired for 2 min at this temperature. A summary of the results for 5 -min firings at \(500^{\circ}, 600^{\circ}\), and \(700^{\circ} \mathrm{C}\) is slown in Table 4.

TABLE 4. SPECIFIC CONTACT RESISTANGE OF Ag-AgPO 3 METALLIZATION*
\begin{tabular}{cccc}
\begin{tabular}{c}
Firing \\
Temperature \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Least Square Fit, \\
\(y=\mathrm{b}+\mathrm{mx}\)
\end{tabular} & & \(\mathrm{r}^{2}\)
\end{tabular}
*Dot-to-dot spacing ranged from 0.6 to 1.9 cm , center-to-center. Gold wire Kelvin connection was used for resistance measurements. Specific contact resistance, \(\rho_{c}\), \(=1 / 2 \mathrm{~b}\) times dot area.

Determination of the least square fit is based on at least four test points. The lowest specific contact resistance was found to be \(0.11 \Omega-\mathrm{cm}^{2}\) at \(600^{\circ} \mathrm{C}\). However, the poor correlation in each case suggested that the metal-to-silicon contacts are spotty in nature. Angle lapping and metallographic examination disclosed two contributing causes for the poor correlation: gaps In the physical contact between metallization and silicon and voids in the metal. The gap does, however, decrease with increasing temperature, and, most important at the highest temperature, there is no evidence of metallization penetration Into the silicon. The high density of voids present in the
metallization also contributes to an apparently high specific contact resism tance. Closing of the silicon-to-metal gap and reduction of voids in the fired film will result when changes are made in the silver and \(\mathrm{AgPO}_{3}\) particle size distribution and relative amounts of each.

We belleve this is an area very worthy of continued attention.
In our cost estimates we have assumed this technology has been developed, and we use ink costs as they exist today. For this metalizing step, cassettes with silicon wafers arrive on carts from the preceding test station (ine., that following n-p junction formation) and the cassettes are manually placed into the loader adjacent to the screen-printing machine. The loader automatically feeds silicon wafers into the screen printer which applies the particular metallization pattern. This sequence requires three printing and drying operations prior to fixing: first the back, then the collecting grid, and then the bus bar on the front.

Detailed evaluation of the technique using printing pastes based on silver, aluminum, and nickel have been carried out from technical and cost viewpoints. The minimum cost of typical AI and Ni pastes (\$1.90/troy ounce) is lower than that of Ag paste (\(\$ 5.42 /\) troy ounce based on the December 1976 market price for Ag). All three pastes shrink close to \(50 \%\) on drying and firing. The electrical conductivity of a fired coating depends on the paste composition and the firing conditions, and has been assumed in all calculations to be one-half of the bulk conductivity for Ag and onemthird for both Al and Ni. For comparing various metallizations, it is important to point out that simply changing metal thickness to provide equal conductivity is not the appropriate course. The metals all cost different amounts and have different conductivities, and the optimum thickness must be determined from minimizing the overall system \(\$ / \mathrm{W}\).

The cost optimization factor (F) with respect to Ag is
\[
\left.\begin{array}{l}
\begin{array}{l}
\text { Factor for } \\
\text { optimizing } \\
\text { pattern } \\
\text { thickness }
\end{array}
\end{array}\right\}=F=\frac{\left(\frac{\rho_{M}}{\rho_{A g}}\right)^{1 / 2}}{\left(\frac{\$ c m^{-3}}{\left(\frac{M}{-3}\right.}\right)^{1 / 2}}
\]
where M refers to any fired metal paste and Ag refers to the fired Ag paste.

Compared with Ag, the optimum AI thickness is 4.22 times as thick and the optimum Ni is 6,63 times as thick. The actual thickness of the optimum Ag pattern is derived below.

As can be seen in the cost summary (Fig. 2), the total cost for the metallization step is on the order of \(10 ¢ /\) W. The process parameters for the front and back metallization are shown in Figs. 26 and 27.

\section*{b. Metallizing by Mickel/Solder Deposition}
(1) Basic Process - Because of its seming cost effectiveness, a cost estimate has been completed for this alternate metallization process for the purpose of comparison with other methods. Several techniques and process combinations of metal depositions by plating are possible. The process sequence selected is based on well-established electroless plating and solder deposition technology. Essentially, a thin layer of electroless nickel is selectively deposited on both sides of the cell, followed by sintering to create a nickel silicide with good ohmic contact, electroless plating of one additional nickel layer, and, finally, deposition of molten tin-lead solder to provide an ample thickness of metal for good conductance. The entire process is an almost fully automated batch operation where unit lots of 1000 wafers are processed automatically on a continuous basis requiring a minimal amount of labor.

\section*{(2) Outline of Processing Sequence}

1 Deposition of Mask Pattern
- Screen print a reverse metallization pattern of organic masking material on the cell front side to protect \(95^{\circ}\) of area. Leave the cell backside exposed.
- Pass the wafers through a drying oven to evaporate solvent material from the masking material.

2 Surface Cleaning
- Immerse the wafers in mild oxidizing solution to remove organic impurities from the exposed surface without affecting the mask coating.
- Rinse in deionized water.
- Dry mechanicaliy.

3 Sensitization and Complexing
- Sensitize in bath of \(\mathrm{PaCl}_{2}\) (activator)- \(\mathrm{HF}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\).
- Rinse in deionized water.

PROCESS PARAMETERS:YHICK AG METAL-FRONT:AUTO
ESTIMATE DATE:01/12/77 BY:HERNER KERN, X2094, RCA LABS, 03-076
CATEGORY:PROCESS DEFINITION TECHNOLOGY LEVEL:FUTURE MATERIAL FORM:3" UAFER

PROCESS YIELD: 99.0X YIELD GROWTH PROFILE: 0
SUBPROCESS USED: SCREEN PRINT HAFER REWORK
INPUT UNIT SALVAGE FACTOR: O.0 FACTOR GP: 0 SALVAGE OPTION:VALUE INS
PERFORMANCE FACTORS-I (R)/I (SC): \(1.000000 \mathrm{E}+00\) V(R)/V(OC): \(1.000000 \mathrm{E}+00\)
\(F(R) / F: 1.000000 E+00\)

FLOOR SPACE,FT**2: 0. 0.
DESCRIPTION:SCREEN PRINTING AND SINTERING CONDUCTIVE NETHORK-FRONT
1. 3" DIAMETER WAFEKً, 12-14 HILS THICK,(100) ORIENTATION,P-TYPE, 1-5 OHH-CH.
2. BACK METALLIZATION PATTERN MUST BE SCREEN PRINTED FIRST.
3. AG PASTE: \(\$ 5.72 / T R O Y\) O2. \(=\$.1743 / G M_{0} 80 \times\) AG, WHEN AG COSTS \(\$ 4.40 / T R O Y\) OZ. DENSITY OF AG PASTE \(=3.75 \mathrm{G} / \mathrm{CM} * * 3 .(31.16=1\) TROY OZ.)
2:1 RATIO FOR INK THICKNESS TO POST FIRING AG THICKNESS.
4. FRONT AG FINE GRID: \(5 \pm\) COVERAGE, 17 MICRONS THICK AFTER FIRING.
5. FRONT BUS BAR: \(1 \times\) COVERAGE, 170 MICRONS THICK AFTER FIRING.
6. SCREEN PRINT \& DRY SYSTEM:
\(\begin{array}{lccc}\text { ITEM } & \text { COST } & \text { POUER } & \text { COMAENTS } \\ \text { LOADER } & 10.7 K & 1 K H & \text { INSERTS HAFER INTO PRINTER }\end{array}\)
\(\begin{array}{llll}\text { LOADER } & 10.7 \mathrm{~K} & \frac{1 \mathrm{KW}}{} & \text { INSERTS } \\ \text { PRINTERER INTO PRINTER }\end{array}\)
\(\begin{array}{llll}\text { PRINTER } & 24.4 \mathrm{~K} & 1 \mathrm{KW} & \text { PRINTER APPLIES PATTERN } \\ \text { COLLATOR } & 10.0 \mathrm{~K} & 1 \mathrm{KH} & \text { FORMS PARALLEL ROWS FOR DRYER. }\end{array}\)
DRYER - \(\quad 10.0 \mathrm{~K} \quad 10 \mathrm{KH}\) ORIES INK TO PREVENT SHEARING.
RELOADER \(14.7 \mathrm{~K} \quad 1 \mathrm{KH}\) RELOADS VAFERS INTO CASSETTE CASSETTES \(\quad 4.0 \mathrm{~K} \quad-\quad\) HOLDS YAFERS FOR PRINTER.
********NOTE: \(\$ 125 \mathrm{~K}\) ESTIMATED FOR ADVANCED SYSTEM.
7. SCREEN PRINT \& FIRE SYSTEH:

ITEM COST POWER CÖMAENTS
\(\begin{array}{llll}\text { LOADER } & 10.7 \mathrm{~K} & 1 \mathrm{KH} & \text { INSERTS HAFER INTO PRINTER } \\ \text { PRINTER } & 24.4 \mathrm{~K} & 1 \mathrm{KH} & \text { PRINTER APPLIES PATTERN }\end{array}\)
PRINTER \(24.4 \mathrm{~K} \quad 1 \mathrm{KH}\) PRINTER APPLIES PATTERN
COLLATOR \(10.0 \mathrm{~K} \quad 1 \mathrm{KH}\) FORHS PARALLEL ROUS FOR DRYER.
\(\begin{array}{llll}\text { DRYER } & 20.0 \mathrm{~K} & 10 \mathrm{KK} & \text { DRIES INK TO PREVENT SMEARING. } \\ \text { FURNACE } & 45.0 \mathrm{~K} & 15 K \mathrm{~K} & \text { SINTERS PATTERN AT } 550\end{array}\)
FURNACE \(\quad . \quad 45.0 \mathrm{~K} \quad 15 \mathrm{KW}\) SINTERS PATTERN AT 550 C .
\(\begin{array}{lrr}\text { RELOADEER } & 14.7 \mathrm{~K} & 1 \mathrm{KL} \\ \text { CASSETTES RELOADS WAFERS INTO CASSETTE } \\ \text { HOLOS HAFERS FOR PRINTER. }\end{array}\)
CASSETTES
4.0 K

29 KH
TOTALS 128.8 K
**********NOTE: \(\mathbf{5 2 0 0 K}\) ESTIMATED FOR ADVANCED SYSTEM.
8. BELT-PCASSETTE LOADER CAN DO 6000 HAFERS/HR.
- SCREEN AT \(\$ 23\), REPLACED 3. TIMES PER DAY FOR FIINE GRID. SCREEN IS REPLACED 2 TIMES PER OAY FOR BUS BAR SYSTEM. SQUEEGES AT \(\$.40\), REPLACED ONCE PER HOUR.

Figure 26. Process parameters - front metallization.
1. OPERATOR LOADS CASSETTE FROM BACK HETALLIZATION STEP IMTO LGADER
2. SCREEN PGINT 8 GRY SYSTEM APPLIES FINE GRID:
- GPERATOR LOÁÓS CASSETTE FOR SCREEN-ORINT \& FIRE SYSTEM.
1. SYSTEM APPLIES FADNT BUS EAR \& FIRES. (SEPAFATE PRTNT STEP NEEDED SINCE PATTERN IS THICKER THAN FINE GRID.) - OPTICAL SCANAER VAITIDATES PATTERN BEFORE FIRING. IX BUS BAR REJECTS ESTIMATED.

REJECTS ARE LOADED IWTO A CASSETTE BY 日ELTMCASSETTE STACKER FOR REHORK

Figure 26. Continued.

\(\qquad\)
OESCRIPTIONESCREEN PRINTING AND SINTERING CONDUCTIVE NETMDRK-BACK

\title{
ASSUMP TIOHS:
}
1. 3" DIAMETER HAFER 12-1 年 HLLS THICK, (100) ORIENTATIONqP-TYPE, 1 - 5 OHH-CM.
1. S"
3. AG PASTE

2:1 RATIO FOR INK THICKNESS TO POST FIRING AG THICKNESS
- NOTE: 5 NILS THINRES̃̄ LINE FOSSIELE. WIDTH GREATER THAN OR EQUAL TO 4 TIHES THICXNESS.
4. BACK AG GRID: 25\% COVERAGE, 8.5 HICRONS THICK AFTER FIRIMF.

AINT \& FIFE SYSTEM:
\(-\frac{\text { ITEM }}{\text { LOADER }}\)
\(\ldots\) PRINTER
DRYER
FURNACE
RELOADER

- -

- -
\begin{tabular}{c}
- \\
. \\
... \\
\hline
\end{tabular}
\(\qquad\)

CASSETTES
DRYER

*******NOTE: \(3200 K\) ESTIMATED FOR AOVANCED SYSTEM
S. BELT \(\rightarrow\) CASSETTE LOADFR CAN DO GOOO HAFERSAHR.

SQUEEEES AT S AD MEDIACED OMEE PER HOUR
- 5 BOST GE AT BACX RELOR TGNOR
9. FIATNG OF EACK NEERED SO THAT_PASTE IS NOT REMOVED IN CASE OF FRONT GRID REVORK.

\section*{procequre}
1. OPER ATOR LOADS CASSET FF-FROM PREVIOUS STEP INTO LOADER.
C. SCREEA PRINT A FIRE SYSTEM APFLIES BACK GRID.
- OPTICAL SCANNER VALIDATES PATTERN. 0.5\% REJECTS REWORKED. REJECTS ARE LOADED INTO A CASSETTE BY BELT SEASSETTE STACKER FDR REHORK.
- \({ }^{-1}\) CÁSSETTE TRANSFERRED TÓ FRONT METALLIZATION PROCESS.

4-REJECTS ARE REWORKED Z RECYCLEDE.

\section*{INVESTMEVTS}
\% INPUT UNITS DROCESSED FIRST COST AVAIL. AREAGFT**
\begin{tabular}{|c|c|c|c|c|}
\hline CESSED & & St cost & AVAIL: & AREA,FT**? \\
\hline 100.5* & \$ & 200000. & 80.0\% & 1606. \\
\hline 100.5\% & \$ & 50000. & 80.04 & 16. \\
\hline \(100.5 \%\) & \(\pm\) & 15000. & B0.0Y & D. \\
\hline
\end{tabular}

Figure 27. Process parameters - back metalifization.

CDL=DIRECT LABOR DABOR

T/BASE UNIT
LAGOR PERSONS

MAINTENA

\section*{LAEOR TE OUIREMENTS EASE SCREENPRINT R FIRE SYSTEM-2} OPTICAL SCANTIF OPT
DL
\(\qquad\)
\(2.000 \mathrm{E}-01\)
\(2.000 \mathrm{E}-01\)
\(1.000 \mathrm{E}-82\)
1.OODE-01

SUPPLIES/EXPENSES
UNITS BASE
ARIABLE PART
2.900E+71
\(2.900 E+\pi 1\)
\(1.000 E-01\)
\(1.0 \mathrm{COE}-01\)
\(1.920 \mathrm{E}+00\)
\(1.920 \mathrm{E}+00\)
\(1.000 \mathrm{E}-01\)
\(1.40 \mathrm{E}-01\)
E
\(\mathrm{CH**}\)
6.060E-0
\(6.060 E-0 G\)
\(1.280 E-0 ? ~\)

BASE
PER AVAILAB
PER AVAILABLE INVESTHENTHODUA OF SLAEEN PRINT 8 FINE SYSTEM-2
PER AVAILABLE INVESTHENT-HOUR OF DPTICAL SCAHMER PER AVAILABLE INVESTHENT-HOUR OF OPTICAL SCAHNER
PER AVAILABLE INUESTMENT-HDTR OF SCREEN PAINT BIRE SYSTER-2 PER AVAILABLE I NVESTHENT-HOUR OF SCREEN PRINT \& FIRE SYSTEM-2 DER IHPUT OTIT: Z UNITSE \(101.0 \%\)

OER INPUT UNIT. Y UNITSE \(0.5 \%\)

Figure 27. Continued.
 (neutralizer)-NH 4 Cl (complexant).
4 First Plating and Mask Removal
- Immerse in bath containing \(\mathrm{NiCl}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{2}, \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}, \mathrm{NH}_{4} \mathrm{Cl}\), \(\mathrm{NH}_{4} \mathrm{OH}\), and \(\mathrm{H}_{2} \mathrm{O}\).
- Plate at \(80^{\circ} \mathrm{C}\) for 45 s to deposit a P-containing Ni film of 500 to 750 A thickness.
- Rinse in deionized water.
- Remove organic mask coating by solvent extraction.

5 Sintering
- Transifer the wafers onto conveyor belt and into furnace.
- Expose to \(550^{\circ}\) to \(600^{\circ} \mathrm{C}\) in an atmosphere of \(\mathrm{N}_{2}-\mathrm{H}_{2}\) to create nickel silicide.
6 Wickel Stripping
- Immerse in \(\mathrm{HNO}_{3}\) -
- Rinse in deionized water.
- Apply light oxide etch in \(\mathrm{HF}-\mathrm{NH}_{4} \mathrm{~F}^{\mathrm{F}} \mathrm{H}_{2} \mathrm{O}\) solution.
- Rinse in deionized water.

7 Second Plating
* Re-immerse in nickel plating bath to deposit 0.3 to \(0.5 \mu \mathrm{~m}\) of Ni (P).
- Rinse in deionized water.

8 Fluxing and Solder Deposition
- Immerse in flux solution.
- Drain, dry, and preheat the wafers.
- Introduce into \(5 \% \mathrm{Sn}-95 \% \mathrm{~Pb}\) solder bath at \(350^{\circ} \mathrm{C}\).
- Hold in bath for an optimal residence time.
- Withdraw at a controlled velocity.

9 Final Cleaning
- Remove flux residue by immersion in ultrasonic cleaning bath.
- Rinse in deionized water.
- Dry mechanically.
(3) Cost Estimation - Estimates of production cost were based on the assumption that \(1 \times 10^{8}\) wafers of \(3-i n\). diameter are to be processed in a three-shift, 24 -hour operation of 345 days per year. Unit batches of 1000 wafers would be
processed automatically through the process sequence outined in the previous section. Calculation of the time requirements for each process step indicates that five separate production 1 ines operating in parallel would be required, each Inne producing \(2 \times 10^{7}\) wafers per year. Not considering the yield factor, cost per wafer has been computed as approximately \(\$ 0.30\), of which \(64 \%\) accounts for materials, \(19 \%\) for equipment, and \(17 \%\) for labor. The product yield is estimated to be no better than \(95 \%\) due to the large number of process steps. It is quite obvions from these figures that this method of metallization is considerably more expensive than the screen-printing process, as had been predicted from preliminary estimates.
c. Metal Thickness - A central goal of the analyses performed under this contract is the maximization of the cost effectiveness of every step in module fabrication. The attainment of that goal requires the simultaneous minimization of cost and maximization of power delivered within the constraints that may be imposed by the technologies used. The analytic procedure described here provides a general, quantitative framework for such optimizations. This procedure begins by the careful characterizations of the two contributing factors to the \(\$ / \mathrm{W}\) cost (a) the cost per unit area fox every "step" and (b) the power loss associated with each step. It turns out that the different characters of these two factors have a profound impact on the optimization. The notion of a succession of independent "steps" forming a complete module is vital; experience shows that many fabrication process steps are independent to the first order and that those processes which interact strongly can be grouped into a single "step" that can be analyzed as a whole. For example, the fine grid metallization pattern can be optimized without reference to the junction characteristics and the bus bar can be analyzed independently of the fine grid pattern under most conditions.

This procedure is derived and applied to the important problems of fine grid and bus bar metallizations where the effect is dramatic. It is extremely important to maximize the performance of the system, and additional costs such as adding considerable Ag to recover a few percent of system performance can be cost effective, Below we will derive the criterion.

These applications provide instructive design specifications and indicate the generality of the basic approach. Among the other "steps" that may
be amenable to this type of analysis are the quantity and quality of the 51 itself.
(1) General Derivation - The quantity to be minimized in all cases is the total cost per watt
\[
\begin{equation*}
\frac{S}{W}=\frac{K}{G_{0}} \tag{I}
\end{equation*}
\]
where \(K \equiv\) total cost per unit of module area and \(G_{0} \equiv\) output power per unit of module area. We first treat the cost factor and show the nontrivial reault that it may be expressed as
\[
\begin{equation*}
K=\sum_{j=1}^{n} C_{j} \tag{2}
\end{equation*}
\]
where there are \(\mathfrak{n}\) of the independent "steps" in the entire fabrication process including the silicon cost, and the \(C_{j}\) are a set of effective step costs per mit area that are, in general, not simply the individual step costs.

Equation (2) is proved by the following argument. Let \(D \equiv\) total cost of fabricating \(A_{p} \mathrm{~cm}^{2}\) of complete mriules that have cell coverage fraction \(\phi\) so that \(\phi A_{p}=\) total cell area. Then we separate the steps into two groups, those involving the full module area and those involving only the cell area
\[
\begin{aligned}
D= & A_{p}\left[\frac{k_{n}}{Y_{n}}+\frac{k_{n-1}}{Y_{n}} \frac{Y_{n-1}}{Y_{n}}+\cdots+\frac{k_{i}}{Y_{n} \cdots Y_{i}}\right] \text { for module steps } \\
& +\phi A_{p}\left[\frac{k_{i-1}}{Y_{n} \cdots Y_{i-1}}+\cdots+\frac{k_{1}}{Y_{n} \cdots Y_{1}}\right] \text { for cell steps }
\end{aligned}
\]
where \(k_{i} \equiv\) actual cost/unit area of performing step \(i\) and \(Y_{i} \equiv\) yield of step \(j\). This shows the well-known impact that each yield factor has on all preceding steps. Now we define
\[
C_{j} \xlongequal[=]{\frac{k_{j}}{Y_{n} \cdots Y_{j}}} \text { for all moduze steps }\left\{\begin{array}{cl}
\phi \frac{k_{j}}{Y_{n} \ldots Y_{j}} & \text { for all cell steps } \tag{3}
\end{array}\right.
\]

Since \(K=D / A_{p}\), these definitions lead to Eq . (2) and show quantitatively what the \(C_{j}\) are. To deal with any individual step \(m\), we simply subtract out its cost contribution per unit module area
\[
\begin{equation*}
\mathrm{K}^{\prime} \equiv \mathrm{K}-\mathrm{C}_{\mathrm{m}} \tag{4}
\end{equation*}
\]

Next we treat the output power density of the module \(G_{0}\) by relating it to \(G\), the porer density potentially available.
\[
\begin{equation*}
G_{0}=F G \tag{5}
\end{equation*}
\]
where \(F\) is a fraction that may exceed one, depending on the chotce that is made for \(G\); that choice is quite axbitrary and might correspond to a \(10 \%\) module efficiency or any other convenient value. The feature of major importance here is that \(F\) is generally the cumulative product (not sum) of the individual step factors
\[
\begin{equation*}
F=\mathbb{I}_{\mathrm{j}=1}^{\mathrm{I}} \mathrm{f}_{\mathrm{j}} \tag{6}
\end{equation*}
\]
where each \(f_{j}\) must \({ }^{r}\) be self-consistently defined as the fraction of potentially available power that is actually obtained after step \(j\). (These \(f_{j}\) axe the same as "performance indexes" in our first report.) To deal with an individual step m we now must separate it by dividing by its performance contribution
\[
\begin{equation*}
F^{\prime} \equiv \frac{F}{f_{\text {m }}} \tag{7}
\end{equation*}
\]

Now using these relations in Eq. (I)
\[
\begin{align*}
\frac{S}{W} & =\frac{K}{G_{0}}=\frac{K}{F G}=\frac{1}{F^{\prime} G}\left(\frac{K^{\prime}+c_{m}}{f_{m}}\right)=\frac{K^{\prime}}{F^{\top} G}\left(\frac{1+c_{m} / K^{\prime}}{f_{m}}\right) \\
& =\frac{K^{\prime}}{F^{\top} G}\left(\frac{1+K_{m}}{f_{m}}\right) \tag{8}
\end{align*}
\]
where \(K_{m} \equiv C_{m} / K^{\prime}\) is the cost fraction of step \(m\).
Equation (8) shows a result of first importance: every step-efficiency factox \(f_{m}\) has its fractional impact on the TOTAL cost per watt. This is a
direct consequence of the multiplicative roles of the \(f_{j}\) in contrast to the additive contributions of the cost terms. In physical terms it says that any loss in power must in effect be paid for by making more complete modules. It follows then that no step can be optimized properiy by considering only its own cost and performance; rather an equation of the form of Eq. (8) must be mintmized.

Next we develop the appropriate optimization conditions for Eq. (8). To aid in this we introduce the fractional power loss associated with any step \(\lambda_{j} \equiv 1-f_{j}\). Using this in Eq. (8) gives
\[
\begin{equation*}
\frac{S}{W}=\frac{K^{\prime}}{F^{\prime} G}\left[\frac{1+K_{m}}{I-\lambda_{m}}\right] \tag{9}
\end{equation*}
\]

This is the form in which we minimize the \(\$ / W\) contribution of step \(m\) by differentiating with respect to any relevant variable of step m. It is clear that when such a derivative is set equal to zero, the prefactors \(K^{1} / F^{\prime} G\) always drop out since by definition they cannot contain the variable of step \(m\). Thus only the term in brackets in Eq. (9) need be minimized. It is trivial to show that the condition for minimization is
\[
\begin{equation*}
\frac{1}{1+k_{m}} \frac{\mathrm{~d} k_{\mathrm{m}}}{\mathrm{dx}}=-\frac{1}{1-\lambda_{\mathrm{m}}} \frac{\mathrm{~d} \lambda_{\mathrm{m}}}{\mathrm{dx}} \tag{10}
\end{equation*}
\]

Where \(x\) represents any appropriate variable for step \(m\). In nearly all cases that will be acceptable we will find that \(K_{m} \ll I\) (i.e., \(C_{m} \ll K^{1}\)) and \(\lambda_{m} \ll 1\). Then we obtain the simplified approximate relation
\[
\begin{equation*}
\frac{d k_{m}}{d x}=-\frac{d \lambda_{m}}{d x} \tag{11}
\end{equation*}
\]

We note also that in this approximation
\[
\begin{equation*}
\frac{S}{W} \bumpeq \frac{K^{\prime}}{F^{\prime} G}\left[1+k_{m}+\lambda_{m}\right] \tag{12}
\end{equation*}
\]
and we can set \(K^{\prime} \simeq K\) and \(F^{\prime} \simeq F\).
This is the general procedure. It can be applied to every fabrication step for which there is information enough to evaluate both \(k\) and \(\lambda\).
(2) Application to Front Metallizations - The optimization procedure described above is now applied first to the bus bar and then to the fine grid on the front of solar cells by finding the optimum geometry for each that minjmizes the cost/W. We make use of a fortuitous result for these metallization steps: \(\phi\), the cell coverage fraction of the module, \(\simeq 0.83\) and the product of the estimated yields for all steps following metallization is \(\simeq 0.87\) so that in Eq. (3) we find that \(C_{m} \simeq k_{m}\). Furthermore, the metallization process to be evaluated, screen-printed \(A g\), has a cost that can be expressed as \(C_{m} \mathcal{Y} h+\beta v_{m}\) where the contribution \(h\) is independent of the amount of metal (it is besically machinery and handiling costs) and \(v_{m}\) ts the volume of metal used, with \(\beta\) an appropriate coefficient. So differentiating as in Eq. (11) with amount of metal as the variable, causes the term \(h\) to \(d r o p\) out and only the metal cost need be evaluated in \(C_{m}\), hence \(K_{m}\).

The metal cost \(/ \mathrm{cm}^{2}=\mathrm{pv}_{\mathrm{m}} / \mathbb{A}\) where \(p \equiv \mathrm{price} / \mathrm{cm}^{3}\) of metal in its final condition (i.e., after firing) and \(A \equiv\) cell area. But \(v_{m}=t a m=t S A\) where \(a_{m} \equiv\) area of metal, \(t \equiv\) metal thickness, and \(S \equiv\) shadow fraction of metal on cell. So
\[
\begin{align*}
& C_{m}=p S t \tag{13}\\
& K_{m}=p S t / K^{\prime} \tag{14}
\end{align*}
\]

Before proceeding to specific power loss evaluations we mote that our calculations have been revised to optimize the \(\$ / \mathrm{W}\) for perionmance averaged over a day rather than just at solar noon. This reduces all resistive Iosses by a factor of \(\pi / 4\).

First this optimization procedure is applied to the bus bar; we limit consideration to a single, central bar for simplicity. It has already been shown in Quarterly Report No. 3 [1] that when the fine grid line length : is determined (by cell size, for example), the treatment of the bus bar becomes independent of the fine grid design. For the bus bar the only sources of loss are the shadowing and resistive drop of the metal; it can be shown that there is no way of simultaneously optimizing both the metal thickness and the shadow fraction of the bus bar. This can be seen physically by the recognition that minimum loss for any metal volume would lead to zero shadow fraction (i.e.,
bar width) and infinite thickness. Therefore, one additional constraint must be imposed on the problem. We choose this constraint as a condition that will give the thickest line that seems printable. (The bus bar will have to be printed separately from the fine grid although they can be fired together.) One way of achieving this thick-bar condition is to require that its thickness \(\mathrm{t}_{2}\) always be \(1 / 4\) of the line width \(W\). (Since the thickness shrinks roughly in half during firing, this represents a thickness/width ratio of \(\sim 1 / 2\) at the printing, a reasonable upper limit on \(t_{2}\),)

The shadow fraction of the bus bar is \(S_{2}=W / l_{\text {eff }}=A / L\) with \(L \equiv\) bus bar length. Thus, since \(W=4 t_{2}\)
\[
\begin{equation*}
s_{2}=4 t_{2} / \ell_{\text {eff }} \tag{15}
\end{equation*}
\]
and from Eqs. (13) and (14)
\[
\begin{align*}
& \mathrm{C}_{\mathrm{m}}=\mathrm{ps}_{2} \mathrm{t}_{2}=4 \mathrm{pt} \mathrm{E}_{2}^{2} / \ell_{\mathrm{eff}} \tag{16}\\
& \mathrm{~K}_{\mathrm{m}}=4 \mathrm{pt}{ }_{2}^{2} / \mathrm{K}^{\prime} \ell_{\text {eff }} \tag{17}
\end{align*}
\]
so that \(\quad \frac{\mathrm{dk}}{\mathrm{m}}=\frac{8 \mathrm{pt}}{2} \mathrm{~K}^{\mathrm{R} \ell} \mathrm{eff}^{2}\)

The fractional loss is the sum of shadow and line drop
\[
\begin{equation*}
\lambda_{\mathrm{m}}=\mathrm{s}_{2}+\frac{\mathrm{J}}{\mathrm{~V}} \frac{\rho_{\mathrm{m}}}{\mathrm{~s}_{2} \mathrm{t}_{2}} \frac{\mathrm{~L}^{2}}{3}=\frac{4 \mathrm{t}_{2}}{\ell_{\text {eff }}}+\frac{\mathrm{J}}{\mathrm{~V}} \frac{\rho_{\mathrm{m}}}{4 t_{2}^{2}} \frac{\mathrm{~L}^{2}}{3} \ell_{\mathrm{eff}} \tag{19}
\end{equation*}
\]
where \(\rho_{m} \equiv\) metai resistivity. Then
\[
\begin{equation*}
\frac{d \lambda_{\text {m }}}{d t}=\frac{4}{\ell_{\text {eff }}}-\frac{I}{t^{3}} \quad\left(\frac{J}{V} \frac{\rho_{\text {m }}}{6} L^{2} \ell_{\text {eff }}\right) \tag{20}
\end{equation*}
\]

Now invoking the optimization condition (11), we obtain an equation for the optimum bar thickness \(\mathrm{t}_{\text {2opt }}\)
\[
\begin{equation*}
\frac{8 p}{K^{I} \ell_{\text {eff }}} t_{2 o p t}+\frac{4}{\ell_{\text {eff }}}-\frac{I}{t_{2 o p t}^{3}}\left(\frac{J}{V} \frac{\rho_{m}}{6} L^{2} \ell_{\text {eff }}\right)=0 \tag{21}
\end{equation*}
\]
which must be solved numerically. For a \(7.6 \rightarrow \mathrm{~cm}(3-i n\).\() wafer, I_{1}=7.6\), \(\ell\) eff \(=\) 6 cm . We take also \(\mathrm{J} / \mathrm{V}=0.05\left(\Omega-\mathrm{cm}^{2}\right)^{-1}, \mathrm{p}=\$ 1.30 / \mathrm{cm}^{3}\) and \(\rho_{\mathrm{m}}=3.2 \times 10^{-6}\) \(\Omega\)-cm for screen-printed \(A g\) and \(K^{t}=\$ 0.0125 / \mathrm{cm}^{2}(\sim \$ 1 / W)\). This leads to \(t_{20 p t}=\) \(150 \mu \mathrm{~m}\) so that \(W \underline{W} 0.60 \mathrm{~mm}\) and \(S_{2}=0.010\). The total fractional Ioss due to the bar is evaluated now by Eq. (19) giving \(\lambda_{m}=0.03\) while Eq. (17) gives \(\mathrm{K}_{\mathrm{m}}=0.015\).

Next we treat the fine grid pattern using the same basic approach, but we find the problem significantly more complicated because there are four powerIoss terms aside from the cost term. First we note that \(C_{m}\) and \(k_{m}\) are given by the same relations as for the metal of the bus bar, Eqs. (13) and (14). As shown in Quarterly Report No. 3 [1], the fractional power losses are given by
\[
\begin{equation*}
\lambda_{m}=S_{1}+\frac{J}{V}\left[\frac{\rho_{s}}{s_{1}^{2}} \frac{w^{2}}{12}+\frac{\rho_{c}}{S_{1}}+\frac{\rho_{m} e^{2}}{3 S_{I} E_{1}}\right] \tag{22}
\end{equation*}
\]
where \(w=\) the fine Iine width, \(\rho_{s_{2}} \equiv\) Si sheet resistivity (\(\left.\Omega / \operatorname{D}\right), \rho_{c} \equiv\) metal-Si specific contact resistance (\(\Omega_{4}-\mathrm{cm}^{2}\)). (We have transformed the formulas of Quarterly Report No. 3 to express all the losses in terms of \(S\) rather than the Iine spacing d.) We fix \(w=1.25 \mu \mathrm{~m}\) as the minimum printable width.

Now the minimization of \(\$ / W\) requires that we optimize both \(\mathrm{t}_{1}\) and \(\mathrm{S}_{1}\) simultaneously. (In contrast to the bus bar case, this is possible here.) To do this we use the form of \(\$ / W\) given by Eq. (12) and ninimize (\(k_{m}+\lambda_{m}\)) with respect to both variables \(t_{1}\) and \(S_{1}\). Partial differentiation of (\(k_{m}+\lambda_{m}\)) with respect to \(t_{1}\) gives, when set equal to zero, the first condition
\[
\begin{equation*}
\mathrm{t}_{\text {lopt }}=\frac{\ell}{\mathrm{S}_{1}} \sqrt{\frac{\mathrm{~K}^{\top} \mathrm{J} \rho_{m}}{3 \mathrm{pV}}} \tag{23}
\end{equation*}
\]

This has the important consequence, when substituted into \(\left(k_{m}+\lambda_{m}\right)\), that
\[
\kappa_{\mathrm{m}}(\text { cost fraction })=1 \text { ine loss Eraction }=\ell \sqrt{\frac{\mathrm{pJp}}{3 \mathrm{~K}}}
\]

They are thus independent of \(S_{1}\) and \(t_{1}\) so now differentiation of (\(k_{\text {m }}+\lambda_{m}\)) with respect to \(S_{I}\) gives the surprisingly simple equation for \(S_{\text {lopt }}\)
\[
\begin{equation*}
s_{\text {Iopt }}^{3}-\left(\frac{J}{V} \rho_{c}\right) s_{1 \text { opt }}-\left(\frac{J}{V} \frac{\rho_{S} w^{2}}{6}\right)=0 \tag{24}
\end{equation*}
\]

This is a remarkable result in that the optimum shadow fraction is independent of the metal resistivity, length, price, and the module cost. In fact, when \(\rho_{c}\) is small (\(\left.\leqslant 10^{-3} \Omega-\mathrm{cm}^{2}\right)\)
\[
\begin{equation*}
S_{\text {lopt }}=\left(\frac{J_{p} \mathrm{~s}^{2}}{6 \mathrm{~V}}\right)^{1 / 3} \tag{25}
\end{equation*}
\]
so \(S_{1}\) varies as the cube root of \(\rho_{s}\).

The metal thickness, given by Eq. (23) once \(S_{1}\) is found, is the only place where the costs and other parameters of the metal are found. Other useful consequences of these results are that varying the cell size has no effect on \(S_{\text {lopt }}\) and a simple linear effect on \(t_{\text {lopt }}\) through \(\ell\).

Taking again the example of the 7.6 cm wafer, with \(\ell=3 \mathrm{~cm}, J / \mathrm{V}=0.05\) \(\left(\Omega-\mathrm{cm}^{2}\right)^{-1}\) and \(\rho_{\mathrm{s}}=50 \Omega / \square\) for the \(\mathrm{Si}, \rho_{c}=10^{-3} \Omega-\mathrm{cm}^{2}\) and using \(\mathrm{w}=125 \mu \mathrm{~m}\), we find \(S_{I}=0.040\). Then using the other parameter values given after Eq. (21), \(\kappa_{m}=0.007\) and \(t_{\text {lopt }}=16 \mu \mathrm{~m}\). With these optimized values of \(t_{1}\) and \(S_{1}\) we can readily calculate \(\lambda_{\text {m }}=0.068\). (This entire optimization and evaluation is performed numerically with a straightforward computer program.)

Combining now the optimized contributions of the fine grid and the bus bar
\[
\begin{align*}
& \lambda_{\text {Tot }}=\lambda_{1}+\lambda_{2}=0.068+0.030=0.098 \tag{26}\\
& \kappa_{\text {Tot }}=\kappa_{1}+\kappa_{2}=0.007+0.015=0.022
\end{align*}
\]
so the performance penalties far outweigh the cost contributions. These terms are to be used in Eq. (12) to evaluate the cost/W contributions of the two metallizations under optimum conditions.

An illustration of the use of these results appears Ln Fig. 28 for 7.6 cm wafers with total module cost per \(W\) as the independent variable. The lowest curve shows the cost of the optimum amount of Ag to be used as the module or system cost changes. It an be seen that for more expensive systeme, it is worthouile to increase greatly the amount of Ag to obtain a gain in performance.

Figure 28. Effect of total module cost in \(\$ / \mathrm{W}\) (plotted logarithmically) on several front metallization parameters of 7.6 -cm-diam cells with screen-printed Ag lines having straight, parallel sides. The curve \((\lambda+k)\) is obtained from totals like those in Eq . (26).

Another use of these calculations is in connection with the question of how large should the individual cells be; this will become an important question as large-area sheets become available. Apart from any other considerations, it is clear qualitatively that as cell size increases, resistance losses will increase and the amount of Ag needed \(p e r \mathrm{~cm}^{2}\) will increase. It is necessary therefore to determine quantitatively what impact those increases will have on the \$/W because they will have to be offset by potential benefits in handing fewer cells (e.g., fewer interconnections in the module). We have calculated the variation in optimum \$/W as a function of cell size, using as reference a \(\$ 1 / W\) module with \(7.6-\mathrm{cm}\) (\(3-\mathrm{in}\).) cells. The results shown in Fig. 29 indicate, for example, that an increase from 3 - to 5 -in. (\(12.7-\mathrm{cm}\)) wafers requires that 4\% of the \$/W must be gained elsewhere in the fabrication just to compensate for the penality arising from the front metals alone; the back contact metals will undoubtedly add a few percent more penalty, but there is not sufficient information available now for the quantitative evaluation. In our cost summary we have used the same amount of metal on the back as on the front. See subsection \(D\) below for a discussion of cell size implications.

Figure 29. Calculated penalty in \(\$ / \mathrm{W}\) due to optimized cost and performance contributions of combined fine gria and bus bar on cell front as a function of cell size. The penalty is shown as a change from a reference module cost of \(\$ 1 / W\) for all cell sizes with the zero arbitrarily set at the 3-in. (7.6-cm) wafer.

\section*{8. Junction Formetion}

Ion implantation is now a well-established process in the semiconductor industry. Its application to the fabrication of solar cells has been successfully demonstrated with reported AM-1 efficiencies in the 10 to \(13 \%\) range with higher efficiency expected in the near future. The major advantages of Ion implantation applied to high-volume production of solar cells are control, reproducibility, and the elimination or reduction of wet chemicals and gases required by other junction-formation processes.

In this section, a broad outine is given of a proposed ion-implantation process capable of the high throughput required for large-scale, low-cost solar cell production.

First, it is assumed that advances in the development of ion implanters will result in implant machines capable of producing \(10-m A\) beams of both \(n\) and p-type dopants in a sequential.operation. This is not an unreasonable assumption since production machines are now available which can deliver more than 2 mA of phosphorus. A \(10-\mathrm{mA}\) machine could. process approximately \(100 \mathrm{~cm}^{2}\) of silicon area in 1 s , which approximately equals the area of both sides of a 3-in*-diam wafer, so. that 3600 wafers could theoretically be implanted in 1 h . This calculation assumes dose requirements of \(\sim 1 \times 10^{15} \mathrm{~cm}^{-2}\) of phosphorus on the top side and \(5 \times 10^{14} \mathrm{~cm}^{-2}\) boron on the back.

Since material consumption is low using an ion-implantation process, major cosi reductions can be achieved by maximum use of automation. The system described here processes 2000 -in. wafers/h, a reduction from the \(3600 / \mathrm{h}\), allowing-time for beam scanning and beam loss at edges. A schematic block diagram of one possible embodiment of such a system is shown in Fig. 30.

In this system wafers are manually moved to the implant station in two 500-wafer cartridges, and one is automatically transferred to 50-wafer cassettes. The two input chambers are air-locked and operate in "push-pul1" fashion so that no time is lost during transfer loading from cassettes to the platens. The platens are designed to hold several wafers during implant and to provide for a masked implant. (planar junction) on the active side of the cell and a full-area implant on the reverse side. It is assumed that the input chamber pump-down time is 1 min. The platens then move, belt driven, from either chamber to the beam slit and are implanted from opposite sides.

Figure 30. Schematic block diagram - ion implantation and junction formation. (Transfer to silicon boat must incIude flipping wafers so that like sides face.)

Wafer feed ean. proceed in either.direction, so that when the first 50 wafers are done, the second air-lock chamber begins to discharge wafers. Implanted wafers then move, again belt. driven, to the output chambers, where the wafers are transferred to eassettes and then to silicon boats.

After implantation, junction annealing and drive-in are required. The silicon boats ride on a continuots belt through a multizone diffusion furnace. The time and temperature requirements for annealing and drive-in will vary with the type of dopant used in the junction. formation. A typical sequence for an \(\mathrm{n} / \mathrm{p} / \mathrm{p}+\) solar cell with phosphorus and boron dopants is 15 min at \(1000^{\circ} \mathrm{C}\) with temperature gradients before and after the \(1000^{\circ} \mathrm{C}\) hot-zone to allow for slow warm-up, cooling, and annealing of the junction.

The process parameters for the ion-implantation step, diffusion step, and inspection step are shown in Figs. 31, 32, and 33.
9. Process: Z Wafer Cleaning

This process is designed to assure a clean surface on the silicon sheet before it is started through the automated array process. It consists of a
\begin{tabular}{|c|c|c|}
\hline & IHPLTT URITS: & 0. \\
\hline FLOOR & SPACE,FT**2: & 0. \\
\hline
\end{tabular}

DESCAI'PTION:ION IHPLAMTATIDN-BOTH SIOES

\section*{0.
0.}
\(\qquad\)
OIFFUSIONSTEF
2. DJUELE IMPLANTER ONE IMPLANTER FOR EACH EIDE OF KAFER
3. FRONT SIDE OF ONE SAFER IMPLANTED SIMLLLTANEOUSLY WITH BACR SIDE OF A SECOND MAFER.

> PRCCEOUR
1. CARTRIDGE FFEG SYSTEM FEEDING IMPLANTER.
2. FIRST IMPLANTER FEEDS SECDNO IMPEANTER FOA BACK SIDE IHPLANTATION
- ALTERNATE WAFERS ARE FLIPFED DURING LOAD SO THGT LTKE SIDES FACE
\begin{tabular}{l}
INVESTMENT NAME \\
ION IMPLANTERTE \\
\hline
\end{tabular}
\(\qquad\)
MAME
HOURLY OPERAJOR
MA INTEKIANCE
FDREMAN FOREMAN

\section*{OF IMPLANTER(C)}

LAEOR
CESSED FIRST COST AVAIL. AREAYFT**2

VARIARLE PART UNITSLIES/EXPENSES
BASE
LIQUIO NITROGEN-
FILAMENTS/INSULATORS
ION SOUREE GAS
\begin{tabular}{ll}
FOR GAS & 8.00 \\
& 0.0 \\
\hline
\end{tabular}
FOR NVESTMENT OR LABOR 0.0
STMENT OR LAGOR BASES

Figure 31. Process parameters - ion implantation.
 CATEGORY: PROCESS DEFINITION TECHNOLOGY LEVEL:FUTURE ZONE G MATERIAL FOKH:3n GAFER INPUTUNIT:SHEETS DUTPUT UNIT:SHEETS

PROCESS YIELD: 99.0\% YIELD GROUTH PRDFILE: O
INPUT UNIT SALVAGE FACTOR 0.0 FACTOR GP\#:
PERFLGHANCE FACTORS-I(R)/I(SC): 1.000000E+00
SALVAGE OPTION:FRACTION OF TNP
INPUT UNTT VALUE
(R)/VCOC : \(1.000000 \mathrm{E}+00 \quad \mathrm{~F}(\mathrm{R}) / F=1.000000 \mathrm{E}+00\)
.. ...
FLOOR SPPACE UNITS: \(\quad \because \frac{0}{\text { INE }}\)
DESCRIPTION:DOPANTS ARE ORIVEN INTO SILICON BY HEAT TREATHENT IN FURNACE
O) ORTENTATION ASSJMPTIONS
1. 3" DIAMETER HAFER, 12-14 MILS IHICKET100) ORIENTATION, P-TYPEg 1-5 OHM-CM 3. COIE STACK APPRDACH (MOT CONSIDERED NEEDED FOR MORE VOLATILE SOURCES

7. ALTERNATE NAFERS MUST BE FLIPPED SO THAT LIKE SIDES FACE
O. PSIDE AND A-SIOE OF WAFER MUST BE EASILY OFFFERENTIABLE:
9. IOD HAFERS IN EACH INCOHING SILICON BOAT.
1. INCOMING WAFERS WJT゙M DIFFUSION SOUKCE ÄPPLIED TO EOTH PURACEDURE

WAFERS HAVE

\section*{3. DIFFUSION FOR 40 NIN. AT 1 DOD C.}
5. LOADER GFLIPPER TRANSFER OF WAFEAS IATO 500 HAFER CASSETTE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Investmevts} \\
\hline INVESTMENT TAME & MAX - THRUPUT UNITS & *INPUT UNITS & Prócessiã & FIRST CIST & AvaIL & AREA F FT**2 \\
\hline LINDBEFG FURNACE-12" EELT & 9000.00 SH/HR & & 100.04 & 5 72000. & 95.04 & 800. \\
\hline 25012 ST SILICGN BGATS & 9000.00 SH/HR & & 100.0\% & 5 137500 & 95.07 & 0. \\
\hline CASSETTE LOADER-FLIPPEN & 3000-00 SH/HR & \(\cdots\) & 100.0\% & 5 20000. & \(95.0 \pm\) & 0. \\
\hline
\end{tabular}

\section*{LABOR}

Figure 32. Process parameters - diffusion.

ESTIMATE DATE: \(12 / 22 / 76\) BY:DADE RICHMAN, X3207, RCA LABS; E-321A
—

MATERIAL FORM:3" HAFER.
CATEGORY:PROCESS DEFINITION TECHNOLOGY LEVEL :FUTURE
TRANSPORT IN:SOQ SHEET CASSETFE TRANSPORT DUTFFOO SHEET CASSETTE
OUTPU UNIT:SHEETS
PROCESS YIELD: 99.CA YIELD GRONTH PROFILE: 0
INPUT UNIT SALYAGF FACTOR: OOD FACTOR GP\#: O VALVAGE OPTION:VALUE INS PERFORNANCE FACTORS-I(R)/I(SC): \(1.000000 E+00\) V(R)/V(OC): \(1.000000 E+00\)
\(\begin{array}{ccc}\text { INPUT UNITS: } & \text { O. } & 0 . \\ \text { FLOOR SPACE GFT** } 2:-0 . & 0 . & 0 .\end{array}\)
DESCRTPTION:POST DIFFUSSON q-POINT PRZDEE RESISTIVITY MEASUREMENT:IDX SAMPLE.
\(\qquad\) —.

SSUMPTIONS:
1: 3" DIAMETER WAFER, 12-14 MILS THICK, (100) ORIENTATION, P-TYPE, 1-5 OHM-CH. 2. 100\% NAFEK SHEET RESISTIVITY TEST.
1. OPERATOR LOADS CASSEETTE INTO MACHINE.
2. WAFERS AUTOMATICALLET FED TO TEST EQUİPMENT
3. WAFERS SORTED INTO MAGAZINES.

PROCEDURE
. WAFERS AUTOMATIĆĀLLY FEED TO TEST EQUŪ́PNENT * 3. UAFERS SORTED INTO MAGAZINES:

Figure 33. Process parameters - inspection.
hot Garo's acid inmersion followed by three cascade rinses in deionized water and spin drying.

Caxo's acid is especially effective for eliminating any organic or metallic contamination but does not remove particles such as silicon chips. This step may not be necessary depending on the condition of the incoming wafers. It is included to show what the costs of such a cleaning or etching procedure can be if the system is automated. Process parameters are shown in Fig. 34.

\section*{D. EFFECT OF SHEET SIZE ON MANUFACTURING COST}

All of the analyses have considered 3 -in. wafers since the most realistic projections could be made with equipment which exists to handle this material. In this section we will estimate the effect of increasing the wafer size to 5 ir .

In the most optimistic (and unrealistic) case, we will assume that there will be no increase in labor or capital cost per unit handled so that each of the processea produces \(25 / 9 \mathrm{~W}\) where it produced \(I \mathrm{~W}\) before. The material and expense items in terms of \(\$ / W\) in general will remain the same. However, the metallization cost will increase due to the increased current-handing requirements. We have calculated the optimum metallization pattern based on an overall system of \(\$ 1 / \mathrm{W}\). The cost of the metal increases by \$0.046/W. Figure 35; is a summary of this comparison. It is important to emphasize that the performance of these larger cells is poorer, even in the optimized case, than the 3-in. cells, and, therefore, there is a penalty to pay at the system level. The performance is \(2.3 \%\) poorer. Since the system is assumed to cost \(\$ 1 / W\), we will add this penalty, \(\$ 0.023 / W\), to the cost of the array module. In this "best case" analysis, the costs for arra; modules based on 3-in. and 5-in. wafers are almost identical.

A somewhat more detailed estimate is given in Fig. 36. In this case, we assume that the cassettes handing the larger wafers have larger spacing between cells and the wafers must be handled more slowly. It is clear that in processes such as ion implantation, the rate of which is beam limited, there is no change in the capital expenses. In each case we have estimated the reduction in labor capital; materials, and expense. Again we must add \$0.023/W

Figure 34. Process parameters - Z wafer cleaning.
\begin{tabular}{|c|c|c|}
\hline & 3-in. Cel1 (\$/W) & 5-in. Cell (\(/\) /W) \\
\hline Materials \& Expense & 0.152 & 0.198 \\
\hline \multicolumn{3}{|l|}{Labor Overhead} \\
\hline Interest Depreciation & 0.112 & 0.040 \\
\hline \multicolumn{3}{|l|}{System Ferformance} \\
\hline Degradation Cost & & 0.023 \\
\hline Final Comparison & 0.264 & 0.261 \\
\hline
\end{tabular}

Figure 35. "Best case" array module manufacturing cost summary, 3- and 5-in. cells.
for the reduction in panel performance. There is an increase of about \(10 \%\) in the manufacturing cost of array modules based on 5 -in. wafers compared with modules based on 3-in, wafers.

This result is due to the interconnect technology. In these panels, the cells are interconected with one contact at the rim of the cell. In the event that numerous contact points are made within the cell area, the optimum metallization design will change and this result can be reversed. We have not analyzed the effect on panel design, panel life, and panel performance of these contacts to crossing the face of the cell. However, because of the enormous cost of the metallization step in the present configuration, such an analysis is surely appropriate.
E. FACTORY LEVEL OVERHEAD COSTS

In none of the manufacturing cost analyses presented above are factory overhead, distribution, advertising, or profit considered. For the process sequence, Ion Implantation (C) factory Ievel overhead costs will now be estimated.
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& 3-\mathrm{in} . \\
& \mathrm{Cell} \\
& (\$ / \mathrm{W}) \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5-\mathrm{in} . \\
\mathrm{Ce} 11 \\
(\$ / \mathrm{W}) \\
\hline
\end{array}
\] & Notes \\
\hline Cleaning & 0.003 & 0.002 & Down linearly with radius \\
\hline Ion Implantation & 0.029 & 0.026 & Labor down linearly, rest same \\
\hline Diffusion & 0.009 & 0.005 & All linear decreases \\
\hline Metallization & 0.094 & 0.132 & Labor down linearly, metal up by 4.6c/w, machines same \\
\hline AR Coating & 0.011 & 0.007 & Material same, rest linear decrease \\
\hline Test & 0.012 & 0.004 & Squared reduction in all costs \\
\hline Interconnect & 0.016 & 0.010 & Linear reduction in all costs \\
\hline Panel Assembly
\& Packaging & 0.089 & & \\
\hline \& Packaging & 0.264 & \(\underline{0.089}\) & Unchanged \\
\hline
\end{tabular}
\begin{tabular}{lrr}
\begin{tabular}{l}
Penalty due to \\
System Perfor- \\
mance Degradation
\end{tabular} & & \\
TOTAL & 0.023 \\
& 0.264 & 0.298
\end{tabular}

Figure 36. Detailed array module manufacturing cost estimate, 3 - and 5 -in. cells.

We have evaluated the factory level costs for two factories, one producing \(50 \mathrm{MW} / \mathrm{ye}\) ar and the other, \(500 \mathrm{MW} / \mathrm{year}\). A summary of these evaluations, which appear as Fig. 37, is given below.
\begin{tabular}{lll}
& \(\underline{50 \mathrm{MH}}\) & \(\underline{L} / \mathrm{W}\) \\
Support Personne1 & 0.035 & 500 MW \\
Cassette Depreciation & 0.002 & 0.010 \\
Heating, Lighting, and Air-Conditioning & 0.004 & 0.002 \\
Insurance (building \& all capital) & 0.002 & 0.003 \\
Local Taxes & 0.005 & 0.002 \\
Factory Depreciation & 0.008 & 0.004 \\
Factory Interest & 0.014 & 0.006 \\
Support Equipment Depreciation & 0.002 & 0.012 \\
Support Equipment Interest & \(\underline{0.001}\) & 0.000 \\
& 0.072 & 0.000 \\
& & 0.039
\end{tabular}

The manufacturing cose as a function of factory size is shown in Fig. 38.
\begin{tabular}{lll}
These costs are & \(\frac{50 \mathrm{MN}}{0.264}\) & \(\frac{500 \mathrm{MW}}{0.253}\) \\
Total & 0.336 & 0.292
\end{tabular}

It will be noticed that this entire factory and the capital equipment are financed by debt. In order to remove considerations of debt ratio (\% of assets financed by debt) from an estimate of profit, we will assume the following relationship:
\[
\frac{\text { Net profit after taxes }+ \text { after tax interest }}{\text { Assets less accumulated depreciation }}=15 \%
\]

For this manufacturing facility, the before-tax profit in the first year of operations is then \(\$ 0.05 / \mathrm{W}\).

These estimates of the array module manufacturing cost, including factory level overhead, have been done in considerable detail. In every case the financial assumptions have been made using data from a wide variety of sources, and reasonable values reflecting the general industry have been assumed. This is RCA's estimate of the cost, not RCA's cost.

Asatrptiong:
(1) 3-in, wafarg
(2) \(15 \%\) cell efficiency, \(0.717 \mathrm{~W} /\) wafar.
(3) Overali process ytcld \(+82.2 \%\)
(4) Cafeterin run by outaide fira taing company facilitieg, but food company pergonnel. No coat to factory other than coat of faciliefes (deprectation, allocrted fritereat, and taxbs).
(5) 345 trorking daye per year
(6) Two 12-h ghifte per day* \(10 \%\) shfft premium for night shift.

Hork Schedule
Four groups of pergonnal; twa for wight ghite and two far day ahfit. Schedule is 4 working days, 3 days off, 3 working days, 4 dayn off.
Other schedules could also be Inplemented. Salaried people work a 5 -day, \(40-1 \mathbf{n e c k}\).

Figure 37. Factory cost evaluations.

Figure 38. Manufacturing cost as a function of factory size.

For purposes of illustration it is interesting to assume a price for the silicon material which has not been included in any of this analysis. We assume silicon wafers are available for \(\$ 20\) to \(\$ 40 / M^{2}\).

We would like to assure the reader that the similarity between the goals of the LSSA program and these results is completely coincidental. It periaps bespeaks the wisdom of the planners who established the goals in the first place. A selling price of \(\$ 0.50 / \mathrm{W}\) turns out to have been a very meaningful goal. As further studies are conducted, this may turn out to be a transitory coincidence as even lower costs are achieved!

\section*{F. SHEET ALTERNATIVES}

Assessing the state of the technology for preparing single-crystal silicon sheet at this time leads'to the same conclusions as we have found previously. Oniy wafers cut from czochralski-pulled ingots. will be available in the quantity and with the quality required by the near-term needs of the Automated Array Processing Task of the Low Cost Silicon Solar Array Project. There is, however, the ever-present question of cost. In the analysis above, the wafers are assumed to cost \(\$ 0.16\) to \(\$ 0.32 / \mathrm{W}\) and the resulting solar cells are \(15 \%\) efficient. The effect of lower efficiency impacts the total system cost. If we assume that the total system cost is \(\$ 1 / W_{3}\) a \(30 \%\) reduction in cell efficiency increases the system cost by \(\$ 0.40 / \mathrm{W}\). Even if the material which provided this performance were free, there is still a net increase in the system cost. At a system cost of \(\$ 0.50 / \mathrm{W}\), such free material will result in a cost saving compared with the higher assumed price of wafers. It seems that \(15 \%\) efficiency is a useful. goal. Only Czochralskirpulled material and epitaxially grown layers of single-crystal silicon have been able to demonstrate cells of this efficiency.

Ribbon techniques have made steady progress during the year. Cells in the 10 to \(12 \%\) efficiency range have been fabricated in ribbon material. However, before such material will be suitable for the Automated Array Assembly Tesk, several further advances will be required. The included particle count must be reduced or the location at which the particles appear must be controlled so that they can be removed from the active cell area. The residual strain must be reduced to the point where the mechanical stability of the ribbon will be sufficient to prevent a high yield loss due to cracking. Also, the strain should be low enough so that the ribbon does not shatter on being cut or scribed to be divided into sections of a given length.

It is the higher efficiency requirement which will be the most restrictive for any silicon sheet forming technique. Such a high efficiency will require that the silicon be prepared from a very high purity \(\mathrm{SiO}_{2}\) container or one with which it has little interaction. Any appeciable solubility of impurities is going to limit the cell efficiency either through degradation of lifetime or degradation of junction properties. Even the recently reported high efficiency cells prepared in polycrystalline silicon used a high purity grade of poly to achieve their outstanding result. Therefore, any technique in which the surface-to-volume ratio of the silicon in contact with a container is high
must be evaluated very carefully to assure that good cystallinity is not being acheived at a sacrifice to bulk electronic properties.

At this time, methods which are "containerless," i.e., ribbon-to-ribbon zone tafining, regular float zone refining, or CVD, are either not fully developed or too expensive in their present form.

Thus, only wafers sliced from ingots are presently available as starting sheet for array processing. Further, it would appear that with new wafering methods arid cheaper poly, a significant reduction in cost of this material can be achieved.
g. CONCLUSIONS - GENERAL TECHNOLOGY AND COST ANALYSIS

As a result of an extensive and detalled examination of the present day art in semiconductor manufacturing we conclude that:
(1) The goal of a selling price of \(\$ 0.50 / \mathrm{W}\) for a volume of \(500 \mathrm{MW} / \mathrm{year}\) in 1986 is attainable assuming \(\$ 20 / \mathrm{M}^{2}\) for silicon sheet.
(2) The most cost-effective panel design is a double-glass panel.
(3) The highest performance (for aging) panel design is a doublenglass panel.
(4) Automated interconnection using gap welding, uItrasonic bonding, or spot reflow soldering are all cost effective.
(5) Application of antireflection coating using automated spray-on equipment is cost effective.
(6) Screen-printed Ag metallization is cost effective although a serious cost component.
(7) Several junction-formation technologies are cost effective. Ion implantation has a slight advantage.

Principal problem areas are:
(1) Maintenance of high cell efficiency at high yield. \(15 \%\) with \(82 \%\) yield was assumed in our analysis.
(2) Achievement of high mechanical yield with automated handling equipment.
(3) Development of low-cost screening inks which reliably provide low contact resistance, stable metallization.
(4) Demonstration of reliable automated interconnect technology.
(5) Demonstration of glass encapsulation techniques sultable for 20 -year Iife.
(6) Minimizing factory level overhead. Marketing, sales, distribution, service, and warranty costs have not been considered.

\section*{SECTION III}

\section*{ANALYSIS AND FACTORY DESIGN FOR 1982}
A. PROCESS SELECTION

It was fairly obvious before we embarked on the cost analysis that the cost of preparing the silicon sheet was going to be a large fraction of the array costs. First, since it is apparent that the polycrystalline silicon cost (unyielded) is \(\$ 0.01 / \mathrm{W} / \mathrm{mil}\) thickness based on \(\$ 25 / \mathrm{kg}\), it is important to increase yield by reducing kerf loss. The second thing that is apparent Is the 1 arge expense item of quartz liners at \(\$ 190\) each, and if each is used to grow a single l0-kg boule and then discarded, it adds \$19 to the basic \(\$ 25 / \mathrm{kg}\) cost of polycrystalline. It is also important therefore to increase the use of each liner by going to multiple-ingot-puils.

The impact of these various approaches is shown in Table 5 for a \(30-\mathrm{MN}\) factory. A 0.010 -in.-thick etched wafer at \(12 \%\) efficiency is assumed. All dollar values (\(\$ / W\)) are yielded to the processes that follow.

Note that the significant savings of the multiple pull vs the single pull is in the "expense" item. This reflects the more efficient use of quartz liners. Going from an inside diameter with a 0.010-in. kerf and a 0.003-in. etch to a wire saw with a 0.008 -in. kerf only requiring a \(0.001-i n\). etch shows its most significant saving in material cost. Reducing the kerf further, however, increases the cost rather than decreasing it because the necessary saw is much slower and the wires do not last as long. Further, more machines are required, and, as a result, there is more labor cost. Thus savings in the cost of the yielded boule are more than offset by slicing costs.

The desired process is quite apparent based on the studies discussed above. It is multiple pull, 0.008 -in. wire sawing, \(\mathrm{POCl}_{3}\) diffusion, and doublenglass panel assembly. The cost details of these processes are outIined in Table 6. Process parameters are given in Figs. 39 through 53.

\section*{B. PROCESSING SEQUENCE FOR CELL FABRICATION}

A matrix of processing sequences and factory production levels has been cost-analyzed as follows. All processes were constant with respect to screenprinted silver metallization, spray-on \(A R\) coating, and double-glass panel

TABLE 5. COMPARISON OF COST ITEMS FOR SINGLE VS MULTIPLE PULL AND I.D. VS WIRE SAWING OF INGOTS

\section*{Material}

Expense
Labor and Overhead Interest and Depreciation Subtotal

TOTAL
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Single Pull} & \multicolumn{2}{|l|}{Multiple Pull} \\
\hline I.D. S & 0.010 & 0.00 & Etch \\
\hline Pull & Slice & Pu11 & Slice \\
\hline \multicolumn{2}{|c|}{(\$/w)} & \multicolumn{2}{|c|}{(\%/W)} \\
\hline 0.522 & 0 & 0.503 & 0 \\
\hline 0.457 & 0.105 & 0.208 & 0.105 \\
\hline 0.268 & 0.253 & 0.237 & 0.253 \\
\hline 0.071 & 0.10 & 0.066 & 0.10 \\
\hline 1.317 & 0.458 & 1.012 & 0.458 \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Multiple Pull and Wire Saw 0.008-in. Kerf} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 0.001-in. Etch } \\
& 0.004 \text {-in. Kerf }
\end{aligned}
\]} \\
\hline PuII & Slice & Pull. & Slice \\
\hline \multicolumn{2}{|c|}{(\$/W)} & \multicolumn{2}{|c|}{(\$/w)} \\
\hline 0.390 & 0 & 0.308 & 0 \\
\hline 0.161 & 0.231 & 0.127 & 0.366 \\
\hline 0.185 & 0.261 & 0.146 & 0.559 \\
\hline 0.053 & 0.058 & 0.041 & 0.186 \\
\hline 0.789 & 0.550 & 0.621 & 1.111 \\
\hline
\end{tabular}

\section*{TABLE 6. COST DETAILS FOR COMPLETE PROCESS (Assume \(12 \%\) efficiency, 3.4-in.-diam, 0.010-in.-thick wafer)}
(\$/W)

ESTIHATE CATE:OT/2B/77 BY: BAVE RICHMANr X3207, RCA LABSp E-321A
 INPUT UNITEKG. DUTPUT UNITEKG.
PRELESS YIELD: B3. OT YIELD GROHTH PRDFILE: 0 IMPUT UNIT SALVAGE FACTOR: 0.0 FACTCR GPR: 0
\begin{tabular}{|c|c|c|}
\hline INPUT UNITS: & 0. & 0. \\
\hline SPACE*FT**2: & 0. & 0. \\
\hline
\end{tabular}

DESCRIPT ION:CZOCHRALSKI CRYSTAL GROKTH OF 34" CRYSTAL, 3-40* DIAMETER*
ASSUHPTIONS:

2. PCLYSILICOM AT 5.025/GRAM.
3. POT SIZE :AN BE IMCREASED TO ACCEMCCATE A IS KG. CHARGE.
4. 3.45" DIAHETER INGOT GRDKN, THEN GRCUAD TO 3.4C\%
5. ARGON FARH COST NET I NLLUEEE.
G. POLYSILICEN INVENTCRY OF 1 HONTH PER PULIER RECUTREC
\(=1.000 \mathrm{KG} / \mathrm{HR} \times 0.85 \mathrm{AVATL} . \mathrm{X} 24 \times\) Z Z HRS/MONTH
\(=600 \mathrm{KG}\) IAVEATCRY PER PULLER AT \(\$ 25 / \mathrm{KG}\)
\(=600\) KG IKVEAMCRY PE
\(=\$ 15, G 00\) PER PG:ER.
7. PROCESS YIELD CEFINED AS MATERIAL YIELD FOR PRDCESS. GROHTH TIHING ESTIMATE:
MELT DOHN
SEED SET
ULL TTME 4 4 HA
COOL DOWN
\(\begin{array}{ll}\text { TURN ARCUNC } & \text { 日.5 HRS. } \\ & 1.0 \text { HRS. }\end{array}\)
TOTAL 12.5 HRS.
MATERIAL USED(EASEC UPDN \(3.45^{\mathrm{N}}\) [[AMETER BEFORE GRINOINGI:
LET \(\mathrm{F}=1 / 4\) * PI * (2.54 \(\mathrm{C} \mathrm{\mu} / \mathrm{m}) * * 3\) * (2.33G/C \({ }^{\mu * * 3 \text {) }) ~}\)

POT LOSS (ESTIMATE
total material used per ingot
\[
\text { MATEFIAL YIELE }=10400 / 12475=0.83
\]
- QUART 2 LIAEREI LINER NEEDEO EVERY 12.5 HRS. \(\mathrm{C}=8.0 \mathrm{OE}-02\) ENITSAHR. 1

PROCEOURE
1. PRE-HEIGHED CFARGE OF SILICCN AND DCPANT PLACEO IN GUARIZ CRUCIBLE. 2. Stlicen charge e cofant heated tc proper grohth tehperature.
3. ROD HITH SEED PLACEG IN CCNTACT MITH MELT.
4. FCC ROTATED UNTIL BELT COMES TO EQUILIBRIUM.
5. RGTATIAG RCD SLCNLY HITYCRANN, CAUSIAG SILICEN TC FREEZE ONID SEED.
t. INGOT IS REMDVED FRCH CRYSTAL GRCHER HHEN GRCHTH STEPS.
7. INGCT ENDS ARE CUT DFF YIELDING A 30' CRYSTAL.
- INGDT IS GRDUAD JC PROPER DIAMETER.

ORIGINAL PAGE I: OR ROOR QUATBN
Figure 39. Process parameters - Czochralski multiple pull.

INVESTHENTS
INVESTMENT NAME
SILTEC CRYSTAL PULLFA-860 CPYSTAL PLLIER SPARE PARTS ARECA EAS INSTALLATICN 4-FOIMT PRCBE CEATERLESS GRINOER CUTOFF SAh
hater rectirculator
LIFETIME TEST SET
ANNEAL ING FURNACE
REICPERT NICRCSCEPE
NIKON COHPARATCR
prlysilicen iaveatcry

MAX. Thruput units
\(1.00 \mathrm{KG} / \mathrm{HR}\) \(1.00 \mathrm{KG} / \mathrm{FR}\) \(10.00 \mathrm{KG} / \mathrm{HR}\) \(10.00 \mathrm{KG} / \mathrm{FR}\)
\(10.0 \mathrm{KG} / \mathrm{KB}\) 10.0 C
\(\mathbf{0 . 0 C}\)
\(\mathrm{KG} / \mathrm{HR}\) \(0.0 \mathrm{CKG} / \mathrm{HR}\)
\(4.00 \mathrm{KG} / \mathrm{HR}\) \(4.00 \mathrm{KG} / \mathrm{HR}\) E.CC KG/HR 4.OC' KG/HA \(10.00 \mathrm{KG} / \mathrm{HR}\) \(10.00 \mathrm{KG} / \mathrm{H}\) \(i 0 . \mathrm{GC} \mathrm{KG} / \mathrm{HR}\) \(1.00 \mathrm{kG} / \mathrm{HR}\)

LaECR
(DL=DIAECT LABOR PERSCAS; TL=TCTAL LAROR PERSCNS 1
NANE LABCA PEGUTREMENTS EASE SILTEC CRYSTAL PLLLER-8G0 SILTEC CRYSTAL PULLER-EGG SILTEC CRYSTAL PULIER-EGG SILTEC CRYSTAL PULIER-860 SILTEC CRYSTAL PULLER-860 SILTEC CRYSTAL. PULLER-860 CL matnt Enance ENGR. SUPPDR TECREICIAN QUALITY CCNTREL
\&ACH. ATTEMDANI clerical foreman
- "ERSONS/SHIFT/GASE UNIT

LAROR PERSCNS 1
\(4.000 \mathrm{E}-01\)
1. 5CCE-C1
\(0.000 \mathrm{E}-02\)
1. \(8.000 \mathrm{E}-02\)
\(6.0 \mathrm{COE}-02\)
\(2.500 E-01\)
\(2.500 \mathrm{E}-01\)
\(9.300 \mathrm{EE}-02\)
\(9.300 E-02\)
\(1.000 E-01\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{annual} \\
\hline fixel part & VARIGfite Part \\
\hline 0.0 & 1.000E+03 \\
\hline C. 0 & 5.88 CE -02 \\
\hline 2.0 & 3.270E-03 \\
\hline C. 0 & 6.000 Etal \\
\hline C. 0 & 6. CCCEFOC \\
\hline 0.0 & 6.000E +00 \\
\hline 0.0 & 3. CCCE +00 \\
\hline 0.0 & 4.OCCEFOC \\
\hline 0.0 & \(1.000 ¢+00\) \\
\hline C. 0 & 1.5COE+01 \\
\hline 0.0 & 1.000E +00 \\
\hline 0.0 & \(5.000 E+00\) \\
\hline 0.0 & 8. OCCE-02 \\
\hline 0.0 & \(4.900 \mathrm{E}-03\) \\
\hline 0.0 & 2.27CE+06 \\
\hline 0.0 & 6.500E-01 \\
\hline 0.0 & \(6.500 \mathrm{E}-01\) \\
\hline 0.0 & \(1.39 \mathrm{CE}+00\) \\
\hline
\end{tabular}

Figure 39. Continued.

GTEGORY: PROLESS DEFINITION TECFADLCGY LEVEL:NEAR FUTURE MATERIAL FORH: 3.4OH GAFER
INPUT UNIT:KG.
OUTPUT UNIIEKG.
INPUT UNTT SALVAGE FACTOR: 0.0 FACTCR GPA: 0
\begin{tabular}{llll}
INPUT UNITS: & 0. & C. & 0. \\
SPACE,FT**2: & 0. & 0. & 0.
\end{tabular}

OESCRIPTION:CZOCHRALSKI CRYSTAL GROWTH: \(34{ }^{\prime \prime}\) CRYSTAL. 3.40 D DIAMETER. 4 PULLS.
ASSUMPTIONS:
1. 3.40" DIANETER KAFEP, (IDOO CRIENTATICA,F-TYPE, 1-5 CHM-CA.
2. QUARTZ LINER: I LINER MEEDED EVERY 44 HRS. \(t=2.27 E-02\) UNITS/HR.
3. PELYSILICEA AT \(5.025 / G R A M-15\) ACECMCEATE A 15 KG. CHARGE.

POT CAN BE REFILIEC HITHDUT COOLING DONN.
\(434^{\circ}\) PULLS FPCH POT BEFCRE COOLIAG DCHA
5. 3.45" CIAMETER INGDT GRDHN, THEA GRCUAD TC 3.40 \({ }^{\text {M. }}\)
. ARGCN FARH COST NOT INCLUDED.
1. PGL YSILICON IRVENTCRY OF 1 HONTH FER fULLER REQUIREE:
\(=1.090 \mathrm{KG} / \mathrm{HR} \times\) U. 85 AVAIL. X \(24 \times 30\) HRS/MCNTH
\(=670 \mathrm{~kg}\) IAVEATS FY FER PULLER AT \$3E/KG
E 516,750 PER PLLLER.
8. PRDCESS YIELD CEFINED AS haterial yield for process.

GRONTH TIMIAG ESTIMATE:
MELT OOHN
SEED SET
PULL TIME a \(41 /\) HR 1.0 HRS
TURN AROUND 8.5 FRS.
SEED SET 1.0 HRS
PULL IIHE a \(4 \% / H R \quad 8.5\) HRS.
TURN ARDUND
SEED SET
PULL TIME a \(q^{n / H R}\)
PULL TIME
TURN AROUND
TURN AROU
SEED SET
Pule time a \(\mathrm{q}^{\mathrm{m} / \mathrm{ha}}\)
CCCL DEHN
TUAN AROLNE
TCTAL trfo hRS.
HATERIAL LSED (EASEC UPON 3-45" CTAMETER BEFORE GRINLTMG1:
LET F=1/4 *PI * (2.53 CH,
30n CEATEF PAPT: (3.45*)**2* (30") *F=1C7C8 6.i y 4= 429320

POT LOS5 EST MMATES
TOTAL MATERIAL LSED PER 4 INGOTS
 GCOD HATEPIAL AFTER GRINDING TO 3.4OM OIAMETER \& REMOVING TAPERS

AVG. GROHTH RATE \(=48.025 \mathrm{KG} . / 44.0 \mathrm{HRS} .=1.090 \mathrm{KG} / \mathrm{HR}\).
OKIGINAL PAGE TE
OF POOR GTMTMS

Figure 39. Continued.

PROCEDURE
1. PRE-WEIGHED CHARGE OF SILICON AND DCPANT PLACED IN GUARTZ CRUCIELE. 2. SILICCN CFARGE \(\varepsilon\) DOPANT HEATED TO PROPER GROWT: TEMPERATURE.
3. ROD WITH SEED PLACEC IA CONTACT WITF MELT.
4. ROD ROTATED UNTIL MELT COMES TO EQUILIBRIUN.
6. INGOT IS REMOVED FRCM CRYSTAL GRCWER hIEN GRCKTH STOPS.
. INGOT ENDS ARE CUT DFF YIELDING A 3C" CRYSTAL.
8. INÉST IS GRCUND TR PRCPER DIAMETER.

Figure 39. Continued.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & AnNEAL & & Sup & 5/EX & Apenses & & & & \\
\hline Expense mame & fixeo fart & VARtable part & UNITS & gase & & & & & \\
\hline POLYSILICOM & 0.0 & 1. CCOE 03 & GH. & PER & infut untt & . \% UNITS \(=300\). & & & \\
\hline CLPF CELL & 0.0 & 5. EECE 02 & UNITS & PER & availlable & INVESTHENT-HOUR & CF & SILTEC & Crystal pullep-860 \\
\hline SEED & 0.0 & 3,2705-03 & UNITS & PER & AVAILAgLE & InvESTMENT-HOUR & OF & SILTEC & CAYstal puller-860 \\
\hline electificity & 0.0 & E.CGCE +01 & KkH. & PER & available & INVESTHENT-HAUR & OF S & SILTEC & CRYSTAL PULLER-BEC \\
\hline SLECTRICITY & 0.0 & \(6.000 \mathrm{E}+00\) & KHH. & PER & AVAILABLE & 1 NVE STMENT-HDUR & CF & CENTER & GRIADER \\
\hline ELECTASCITY & 0.0 & \(6.000 E+00\) & KHH. & PER & AVAILABLE & INVESTMFNT-HOUR & OF & CENTERLE & ESS GRIMDER \\
\hline ELfETPICETY & 0.0 & \(3.00 C E+0 C\) & \(\mathrm{KHH}\). & PER & AVAfLABLE & INVESTHEAT-HCUR & CF & CUT OFF & \\
\hline ELECTPICITY & 0.0 & 4.000 E 400 & KHH . & PER & available & INVESTMENT-HCUR & CF & HATER RE & E-CIRCULATCR \\
\hline ELEETSICITY & 0.0 & 1. OCCEtaC & K HH . & Per & ayallable & INVESTHENT-FDUR & Of & LIfETIME & E TEST SET \\
\hline ELECTRICtIY & 0.0 & 1-5CCE+01 & \(\mathrm{KhH}\). & PER & Avallable & I NVESTMENT-HEUA & cF & ANEEALIN & NG FURABCE \\
\hline ElECTR TCITY & 0.0 & 1. \(000 \mathrm{E}+00\) & KWH. & PER & Avarlable & INVESTMENT-HOUR & OF & 4-POINT & prabe \\
\hline ELEETPICITY & 0.0 & 5. COCE + 00 & K WH . & PER & AVAILABLE & INVESTMENT - HDUR & of & MISCELLA & anequs \(E P\) \\
\hline QUARIL LINER & 0.0 & 2.270E-az & UNITS & PER & AVATLABLE & INVESTMENT-HDUA & LF & SILTEC & Caystal puller-860 \\
\hline graphite crutible helder & 0.0 & \(4.9005-03\) & units & PER & AVAILABLE & INVESTEENT-HOUR & of & SILTEC & Caystal pullea-86C \\
\hline ARGCN & C. 0 & 2. \(2765+06\) & C \({ }^{\text {+** }}\) & PER & AVATLARLE & IAVESTPENT-HCUR & cF & SILTEC & CRYSTAL PULLER-8GE \\
\hline ShCP SUPPLIES & 0.0 & 6.500E-01 & 5 & PER & AVAILABLE & INEESTMENT-HOUR & cf & SILIEC & CPYSIAL PULLER-860 \\
\hline MISCELLANEOUS SUPPLIES & 0.0 & c. 50CE-01 & 5 & PFR & available & TNUESTMENT-HOUR & CF & \$TLTEC & CRYSTAL PULLER-EEC \\
\hline Mi stellaneols crystal grchtr & 0.6 & 1.39CEFOC & \(\pm\) & PER & Avallable & INVESTMENT-HCUR & CF & Sthtec & crystal puller-860 \\
\hline
\end{tabular}

Figure 39. Continued.

ESTIMATE DATE:09/2C/77 BY:DAVE RICHMAM ; K3207, RCA LABS, E-321A
PRDCESS YITKG: giog YIELO GROUTH PRCESEET alue
CELL THICKNESS:IC.C MILS. CEIL ETCH LCSS: I.0 HILS GALVAGE OPIIONFFRACTICN OF
\begin{tabular}{llll}
INPUT UNITS: & C. & C. & \(0_{0}\) \\
FLCCR SPASE,FT*Z: & 0. & \(0_{0}\) & 0.
\end{tabular}

DESCRIPTION: SLIC ING OF 15" CRYSTAL INTC 3.4C" DIAMETER MAFERS
1. 3.40" DIAMETER KAFER, (100) CRIEATATICA, F-TYPE, \(1-5\) OHL-CM
2. 15 I' IONG CRYSTAL. 19 MIES PER SLICE.
(30' CRYSTAL IS ASSUMEO TC BE SAMED INTO THO 15" CRYSTALS.)
15 MILS* 10 MILS FINAL HAFER + 1 MILS ETCH LCSS + OB MILS KERF.
LLACED INTO CASSETTE AUTOHATICAIEY AFTER 5ALING。
4. DTHER IAVESTMERTS

GRAPHITE STICK CRYSTAL MOUATIAG FEATURE:\$36G. 7 YR. LIFE.
CRYSTAL MLUNT ING BLDCK: \(\$ 85_{7}\) I YR. LIFE.
GRAPHITE PLLG:52, 1 YR. EIFE*
ALUMINGM BLOCK: 58,7 YR. LIFE.
5. EXPENSE ITEHS:

\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
IAVESTMENT NAME \\
varian hul ifblade sah \\
CISFING GAUCE \\
GRAPHITE STICK CRYSTAL MCUAT \\
CRYSTAL MDUNTING BLOCK \\
graphitf plue \\
ALUMINUM BLOCK
\end{tabular}} \\
\hline \end{tabular}
HAX. THRUPUT UNITS

INUESTMERTS
IAVESTPENT NAME CISFING GAUGE
gRapite stick caystal rcunt GRAPHITF PLUE GLUMINUM BLEC

4 HE
HOURLY GPERATOR NAINTENAMCE MACH. ATTENDANT FCPFMAN
\begin{tabular}{|c|c|c|c|c|}
\hline CESSED & \multicolumn{2}{|l|}{FIRST CCSt} & avall. & AREA, FT\#\#2 \\
\hline 100.02 & 8 & 20000. & 85.08 & 60. \\
\hline 100.0\% & \$ & 150. & 85.01 & 0. \\
\hline 100.08 & \$ & 360. & 85.08 & 0. \\
\hline \(100.0 \%\) & \$ & 85. & 85.02 & 0. \\
\hline 100.0\% & \$ & 2. & 85.0\% & 0. \\
\hline 100.0.03 & \$ & 6. & 85. 0 \% & 0. \\
\hline
\end{tabular}

LABCR REQUIREMENTS GASE VARIAN MULTIBLADE SAh WARIAN NULTHLAD SAH [l

Aecr
* PERSONS/SHIFT/BASE UNIT
1. ODDE-01
\(1.5 \mathrm{COE}-01\)
\(6.300 E-02\)
\(2.0 c 0 E-01\)

EXPFNSE NAME SAh BLADES-YARIAA SLUPRY
ncunting haterlal
ELECTRTCITY
WATER-CNOL ING
5lldge remeval
\begin{tabular}{|c|c|c|}
\hline arbual & & SUPPL 1 \\
\hline FIXED PART & variable part & UnITS \\
\hline 0.0 & 1.460E +00 & 5 \\
\hline 0.0 & \(1.040 \mathrm{E}+00\) & \$ \\
\hline 0.0 & 6.960E-02 & 5 \\
\hline 0.0 & \(4.400 \mathrm{E}+00\) & KHH. \\
\hline 0.0 & 3. 80CE+04 & CH**3 \\
\hline 0.0 & 7.000E-03 & 5 \\
\hline
\end{tabular}

AS
PERE AVAFLABLE INVESTMENF-HOUR OF VARIAA MULTIELADE 5 Ah PER AVAILABLE INVESTMENT-HOUR GF VARIAN HLLTIBLADE SAK PER AVAILABLE INVESTHEMT-HCUR [F VARIAN HULTIELADE SA! PER AVAILABLE INVESTHENT-HOUR GF VARIAA MULITIELADE SAM per availabe investment-hour of varian hultiblade sal PER INPLI UKIT. F UNITS= 100.0\%

Ftgure 40. Process paramete:s - wire sawing.

FSTINATE OATF:OG/20/T7 BY:DAVE RTCHMAN. X3Z07. RCA LABS, E-321A
CATFGORY \(\ddagger\) PROCESS DEFINITICM TECHNOLOGY LEVEL:NEAR FUTURE MATERIAL FDRK; 3.40M HAFER INPUT UNIT:KG. OUTPUT UNETESHEETS transpcrt 1hzacx
 CELL THICKNESS:10.0 HLLS. CELL ETCH LOSS: 1.0 HILS. CEEL KERF LESS: 4.0 HILS.
INPUT UAITS:
0.
0.
0.
0.
C.

DESGRIPTICNFSLTCIAE CF L5" CRYSTAL INTO 3.40 OIAMETER HAFERS

2. 15H LONG CRYSTAL, 15 MILS PER SLICE.

15 HILS =
WAFERS PLACED IATC CASSETTE AUTEMATTCALLY AFTER SAHING
4. OTHER INVES?RENTS:

GRAPHITE STICK CRYSTAL MDUNT TAG FEATURE: \(536 C, 7\) YR. LIFE.
CRYSTAL HCLATING BLCCK:5B5: 1 YR. LIFE.
CRAFHITE PLUG: \(\pm 2\), \(\ddagger\) YR. LIFE.
CRAFHITE PLUG:E2, \({ }^{*} 7\) YR. LIFE.
5. EXPENSE ITEMS:

BLADE COST: 526012000 HAFERS \(=\$.13 / 14 B F E R\).
\(5-13 / H A F E R \times 11\) HAFERS/HR \(=\$ 1.43 / F R\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{INV ESTHEMSTS} \\
\hline INVESTHENT NAME & max. thruput & UNITS & 9 Input & units prccessed & Figst & \% ccst & Avall. & AREA, FT**2 \\
\hline Yastinag lime sah & 21.00 & Strir & & 100.07 & \$ & 30000. & 85.07 & 50. \\
\hline DISHING GAUGE & 77.00 & SH/HE & & 100.08 & 5 & 150. & 85.08 & 0. \\
\hline graphite stick crystal hount & 11.00 & SH/HR & & 100.08 & \$ & 360. & 85.0\% & 0. \\
\hline CRYSTAL MOUNTIMG BLOCK & 11.00 & SH/ヶA & & 100.0\% & 5 & 85. & 85.0\% & 0. \\
\hline graphite plug & 11.00 & SH/HR & & 100.0\% & 5 & 2. & B5.0\% & 0. \\
\hline ALUMINUM BLOCK & 11.00 & SH/HR & & 100.0\% & \$ & 8. & 85.05 & 0. \\
\hline
\end{tabular}

NAME
HEUP LY OPERATCR
HAI NTE RANCE
ACH. ATTENOAN
FOFEMAN
abod reduirenemts ease
YASUNAGI HIRE SAH
YASUNAGI HIRE SAH
Yasunagi hire sah
\(\underset{\mathrm{CE}}{\mathrm{CE}}\)

EXPENSE NAME SAH BLADES-YASUNAGI
LURRY
mLUNT ING Material
ELECTRICITY
HATER-CDOL ING
LUDDGE REMOVAL

ARBUAL
FIXED PART
\begin{tabular}{lr}
FIXED PART & YARIABLE PART \\
0.0 & \(1.430 E+0 \mathrm{C}\) \\
0.0 & \(4.800 E-01\) \\
0.0 & \(6.960 E-02\) \\
0.0 & \(6.000 E=01\) \\
0.0 & \(3.800 E+04\)
\end{tabular}

\section*{0.0} 0.0 0.0 0.0
0.0

Figure 40. Continued.

ESTIMATE CATE:08/02/77 BY:DAVE RICHMANF X3207? RCA LABS. E-32LA
CLASS: ETCH
CATEGORY:PROCESS DEFIATTIDN \(\qquad\) TECHMOLCGY LEVEL:NEAR FUTURE MATERIAL FDRH:3.40N KAFER PRCGESS YIESHEETS O Y OUTELT UBIT:SHEETS PRCGESS YIELC: 99.0 Y YIELD ERONTH PREFILE:
INPUT UNIT SALVAGE FACJGR: C. 0 FACTER GPH: 0

INPUT UNITS: \(\quad 0 . \quad\) C. \(C\).

DESCRIPTION:HAFERS ARE ETCHED L. 5 MILS PER SIQE TO REMEYE SAN CAMAGE

2. 500 HAFERS/TEFLON CASSETTE
3. I TEFLCh BCAT PER TAAK; 2 TANKS PER SYSTEM.
4. 7.5CYLES/HR X 2 BDATS/CYCLE \(x 500\) HAFERSJECAT=7500 HAFERS/AR.
(B HIN. RINSE CYCLE IS LIMITING FACTOR.)
6. NOTE: S"STEH COST ESTIMATED TO BE \(\$ 30\) \%OOO. \(\$ 15.000\) FDR EACKUP.
7. ACIO HITAL SYSTEM COSTFi45,000 WITH BACKUP.
 RECYCLE OF ACID SAYES 30:. THEREFORE. S.C7/HAFER.
1. TEFLON CASSETIE MANLALLY INSERTEC IA TAAK fl FIA.I
2. 3 MINUTES IN FOT HF/ACETIC/NITR IC ACIO MIXTURE, HITH AGITATICA.
3. AUTOMATIC TRANSFER TD IST CASCADE RINSE, B MIAUTE RISSE.
4. AUTCMATIC TRANSFER TO 2ND \& 3RD RINSES, EACH ABGET 3 HINUTES
5. AUTGMATIC TRAASFER TL HOT ATR TUNNEL. GRY FCR B FINUTES.

Figure 41. Process parameters - etch and clean.

DESCRIPTICN:LIGUTD DIFFUSICN SCURCE E SILICA SPUN CATO EACK SICE OF WAFER
ASSU*PTIEAS:
1. 3.40" CIAMETEF haFEE, (100) GRIERTATICN.P-TYPE. 1-5 OHM-CM
3. EACH MACHINE LAST 3 TRACKS: EACH TRACK HANOLES \(24 C\) WAFER/HR
4. ERE GPERATOR PER 3 SPINRERS
5. NJTE: UNIFDRHITY DF DIFFUSION FRCN SFIA-CA MEEDS STUCY.
5. NDTE: IM-HCUSE SCURCE NEEDS TD EE DEVFIOPED.

SPIR-CN SOURCE AT \(\$ 6.00 / L I T E R\). O BCN**3 AEECEC FCR EACK SICE.
SIL ICA AT \$6.COALITEP * 1. GCM** 3 NEEDED FCR BACK SIDE,
-CONTROLLED BUFFER STERAGE TO BALANCE l.CAD
9. RTOM REOUIREAENTS: DRY,CIEAN FILTERED AIR, 2830 LITERS/HR/SYSTEM. EXHAUST WITH FUME SCRUBBER TO REMOVE TOXIC IASI VCLATILES.
prCcedlem
1. Wafers are loadec ffic cassette tc track tc spincle.
2. CAPILLARY OISPENSES C. 7-0.B LM**3 GF SCURCE \(1+0.2\) CN**3 SPILLAGEI. 15 SECOND SPIN CYCEE.
3. HAFERS UNLDADEC INTO EAKE OVEN CONNECTED TO SPINNER.
4. WAFERS MOYED YC SECERD SPINAER.
5. CAPILLARY DISPENSES 0.7-0.8 CM** 3 CF SILITAf40. 2 CH**3 5PILLAGEI. 15 SECCND SPIN CYCLE
6. HAFERS UNLEADED IATC EAKE CVEN CCNNECTEC TO SPINNER.
7. HAFERS MOVFD TC THI RD SPIMAER.
G. CAPILLARY CISPENSES \(0.7-0.8\) CM**3 OF SILICAl*0.2 CM**3 SPILLAGEI. 15 SECOND SPIM CYCLE
9. HAFERS UNLGADED int EAKE OVEN CCAMECIEE TC SPINNER.

WAFERS UNLOADED INTO SILICON ERAT.

Figure 42. Process parameters - spin-on source

ASSUMPTIENS:
P-TYPE: 1-5 LH \({ }^{\mu-C N}\)
3. \(4-T U B E\) POCL3 FURMACE CDSTS \(\$ 7 O K\), IRCLUDIVG FURKACE LINERS E COILS PADOLES NEEDED TO LOAD E UNLOAD FURNALE.
135 FT**2 FCR FURNACE \(\&\) 140FT\#\#2 FOR OPERATOR NEEEED PER SYSTEH.
4. \(2530^{\prime \prime}\) SILICOR BOATS NEEDED FOR EACH 4 TUBE POCL3 FURMACE.

BCATS CEST 45 PER INCF.
1. INCOMING WAFER 5 LOADED IN STLICCA BEATS CRATAIMIAG 500 PRDCEDURE
2. EDATS LQADED into furnace via paddles.
3. 1 HR CYCLE
3. 1 HR CYCLE.
4. EUAFS UNLIADED FROM FURNACE VIA PADDLES.
5. hafers loadeg inta 500 hafer cassette for gransfer to next step USING CLAM SHELL UNLCADER ARD EASSETTE SIAEKER.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{INVESTMENT NAME} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{POCL 3 DIFFUSION FURNACETEI}} \\
\hline & & PCCL 3 FURKACE LINERS (B) \\
\hline \multicolumn{3}{|l|}{PCCL3 FURNACE PACDLEStBI} \\
\hline \multicolumn{3}{|l|}{POCL 3 FURNACE COILS(8)} \\
\hline \multicolumn{3}{|l|}{CLAM-SHELL UNLCA} \\
\hline \multicolumn{3}{|l|}{CASSETTE STACKER} \\
\hline \multicolumn{3}{|l|}{25 30\%-SILICON BOATS} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{MAX} & thruput & UN:T \\
\hline & 2000.00 & SH/HR \\
\hline & 2CCL.OC & Sth/HR \\
\hline & 2000.00 & SH/H \\
\hline & 2060.00 & SH/HR \\
\hline & 2000.00 & SH/HR \\
\hline & 2000.00 & \(\mathbf{S H / ヶ R}\) \\
\hline & 200c.ct & SH/H \\
\hline
\end{tabular}
c INPUT UNVESTMENTS
\begin{tabular}{rrrrr}
OCESSED & FIRST COST & AVAIL. & AREATFT**2 \\
100.07 & \(\$\) & 66600. & 85.07 & 275. \\
100.68 & 5 & 5600. & \(85.0 \%\) & 0. \\
\(100.0 \%\) & \(\$\) & 8000. & \(85.0 \%\) & \(0 \%\) \\
\(100.0 \%\) & \(\$\) & 8000. & \(85.0 \%\) & \(0 \%\) \\
100.04 & \(\$\) & 3000. & \(85.0 \%\) & 0. \\
100.07 & \(\$\) & 15000. & \(85.0 \%\) & 0. \\
\(100.0 \%\) & \(\$\) & 33750. & \(85.0 \%\) & 0. \\
& & & & 0.
\end{tabular}
\{CL=EIREET LABRR PERSONS:TL=TGTAL LABOR PERSON 5)
LABIR REQUIREMENTS BASE
PCCL 3 DIFFUS ION FURNACE(EI
POCL 3 DIFFUSIDN FURNACEIB:
POCL 3 DIFFUSION FURNACEIB PBC
* PERSONS/SHIFT/BASE UNET
al
\begin{tabular}{lr}
ANNUAL & \\
FIXED PART & VARIABEE PART \\
0.0 & \(4-C C C E+01\) \\
0.0 & \(2.940 E-01\) \\
0.0 & \(1.900 E+03\) \\
0.0 & \(4.68 C E+01\)
\end{tabular}

Figure 43. Process parameters - \(\mathrm{POCl}_{3}\) diffusion.
```

ESTIMATE DATE=0B/01/7T BY:FRED MAYER, X6334, SLAERYILLE, 2CNE
GTEGQRY =PROCESS DEFITITITON
OUTPUTECHNOLOGY

```


```

IAFUT UNIT SALVAGE FACTOR: 0.0 FACTOR GP\#: 0 SALVAGE OPTION:VALUE IAS
INPUT UNITS:
descriptich: hafen goee is pclished to mave p-n junctidn dff edge.
ASSUMPTIDNS:

1. 3.4ON DIAMETFA HAFER + ILCOI ORIENTATION,P-TYPE, 1-E CHM-CN.
2. 500 HAFERS/CASSETTE. HACHINE HOLDS 1 CASSETT
NOTE: HEADHAY CONTOUR GRINDER HOLOS 10 CASSETTES, 25 WAFERS PER GASSETTE. SIMILAR COST ASSUMED FOR ABOVE SYSTEM.
3. 1 EPERATOR REQUIREC FDR 4 MACHINES.
4. N EPERATIOR REQUIREC FOR 4 MACHINES OE VERIFIEL
5. NOTE: CLEANLINESS HAS TO BE VERIFIED.
6. HAFERS ARE RDURE IAC FLATSI.
```

```

8. Water centains rust inhigitgr and is contingolsly filtered hith diatoracices earth filter.
9. operator loads machine hith 1 cassefte
10. (5 TRACK) MACHINE EXTRACTS 5 HAFERS FROM CASSETTE
11. I WAFER PLACED QN EACH TRACK (PARALLEL. IA HATER)
12. HAFER HELE AGAINST FLEXIBLE PLASTIC DISK HEAVILY LOADED WITH DIAGOND DUST. RIM PCLISHED RFF.
13. HAFERS RIASED ANC SPUK CRY.
14. MACHINE LCADS hAFERS INTD CASSEITE.
15. SEGUENGE GEPEATEE 100 acoliticnal times per cassetie.
INVESTHENT NAME
MAX. THRUPLT LNIIS $2700.00 \mathrm{SH} / \mathrm{HR}$
TAVESTMERTS
I IAPUT
ITS PRCCES
he admay gentcur gainder
OO. 0 SIRST COST AVAIL.
7*
NAME
HOURLY OPERATOR
EAGR. SUPPCRT
MAGH. ATTENDANT FOREMAN
LABCR REQUTREMENTS EASE HEADWAY CONTCUR GRIMDE heachay contour grinder fFAOMAY CChteur grinee DL
```


Figure 44. Process parameters - edge polish.

Figure 45. Process parameters - glass removal.

ESTIPATE DATES07/2G/77 BY:DAVE RICHMAN, X3207, RCA LABS, E-321A
CATEGGRYGPROCESS DEFINTTION OUTPUTECHRELCGY LEVEL:NEAR FUTURE HATERIAL FQRM=3-4OM MAFER PROCESS YIELE: \(99.0 \pi\) YIELD GRDYT \(F\) PRRFILE: 0 INPLT UNIT SALYAGE FACTOR: 0.0 FACTCR GPI: 0 SALVAGE OPTION:VALUE IN: FLCOR SPACE UNITS:
0.
0.

DESCRIPTION:POST DIFFLSION 4-PGINT PRCGE RESISTIVITY HEASUREKEMT
ASSLMPTICNS:

2. 100 \% WAFER SHEET RESISTIVITY TEST.
1. OPERATOR LOAOS CASSETTE INTO PACHIME.
2. WAFERS AUTCMAT ICALIY FED tG TEST EQEIPMENT
3. hafers sorteo fate macazitaes.
INVESTMENT NAME
SILTEC HAFER SOR

NAME
FGURLY CPERATCR
MAINTENANCE
FOREMAN
EXPENSE MAME
ELECIRICITY

MAX. ThRUPUT UNITS I INPUT UNVESTMENTS PREE \(1450.00 \mathrm{Sh} / \mathrm{PR}\)

PROCEDURE

CL=DIRECT LABOR PERSONS;TL=TCTAC LABGR PERSCMS LABCR REOUTREMENTS EASE \#PERSCAS/SHIFT/EASE UNIT THRUPUT/HR/PERSNA \# INPUT UNITS PRCCESSED SILTEC HAFER SORTER-PROBE SILTEC HAFER SORTER-PRCEE DL
2. \(5 \mathrm{CCE}-01\)
\(2.0 \mathrm{CCE}-\mathrm{Cl}\)
1.000F-01

Annual
FIXED PART
0.0

ELECIRICITY
SUPPLIESAEXPENSES
NITS BASE

KHH PER AVAILABLE INVESTMENT-HOUR OF SILTEC HAFER SORTER-PROBE

Figure 46. Process parameters - inspection.

ESTIMATE DATE：O8／CI／77 BY：YERNER KERN，X20G4，RCA LABS，03－076

PRCCESS YIELDE 9 O YIELD GROUT ONFFSEETS
SUAPROCESS USED：SCRFEN PRINT HAFER REKCRK

\(\begin{array}{llll}\text { INPUT UNLTS：} & \text { O．} & \text { 0．} & 0 . \\ \text { SPACE，FT＊＊2：} & \text { O．} & \text { C．} & \text { C．}\end{array}\)
dESCRIPTICh：SCREEA PRIATING AND SINTERING CONDUCTIVE NETHORK－FRONT
1．3－40＂EIAMETER WAFER，（100）ORIENTATION．P－TYPE，L－S CHM－ASSUMPT TONS：
2．BACK pETALLIZATICA FATTERA MUST BE SCREER PRENTED FHM－C：

2：1 RATIO FOR INK THICKNESS TO PEST FRING GG THICKNESS．
NOTE： 5 MILS THINNEST LINE POSSIBLE－MEDTH GREATER THAN OR EGUAL TC 4 TIMES THICKNESS．
4．FRCNT AG FINE GAICF 48 COVERAGE 23 HRCRONG
5．FRINT BUS BAR：IT CCVERAGE，
6．SCREEN PRINT E ERY SYSTEM：
\begin{tabular}{|c|c|c|c|}
\hline ITEN & CtST & POner & Cchments \\
\hline coater & 1C．7K & 1 KW & INSERTS HAFER IMTC PRIMIEP \\
\hline PFIATEP & 24.4 K & 1KH & PR INTER APPLIES PATTERN \\
\hline collator & 10．0k & \(\ddagger \mathrm{KH}\) & Fefrs peralle mens for cryer． \\
\hline CRYEP & 25.0 K & 1 KW & dries Ink ti prevent smeartug． \\
\hline melcader & 14．7K & IKH & RELGACS hafers into cassette． \\
\hline CASSETTES & \(4 . \mathrm{CK}\) & \(\rightarrow\) & HCLOS kAFERS FCF PPIATER． \\
\hline tctals & 8日．8K & 15\％W & \\
\hline SCREEM PRIAT E & fire srs & N： & \\
\hline IT EM & cost & POHER & cenmenis \\
\hline LCACER & \(10.7 \%\) & IKH & INSERTS HAFER 1MTO PRINTER \\
\hline PRINTER & 24.4 K & 1 KW & PRINTER APPIIES PATTEPN \\
\hline collator & 10.0 K & 1KW & FORMS PARALLEL PChS For dryer． \\
\hline DRYER & 25.0 K & 11 KH & DRIES IMK TO PREVENT SMEARTNG． \\
\hline FUR NACE & 50．ck & 17KW & SIATERS PATTERA AT 550 C． \\
\hline relcaler & 14.78 & 1кН & RELDADS MAFERS IMTC CASSEITE． \\
\hline CASSETTES & 4.0 K & － & rclos hafers fca Printer． \\
\hline
\end{tabular}
fOTALS \(1 \geqslant 0\) 最
\[
32 \mathrm{KH}
\]

日．BELT－＞CASSETTE LOACER CAN DC GOOO HAFERS／tR．
 SCREEN IS REPLACED 2 TIMES PER DAY FOR GLS BAR SYSTEM． SQLEEGES AT \(\$\)－40，REPLACEE CNCE PER HOUR．

Tigure 47．Process parameters－Ag front metallization．
- aperator loads caseette from gack

SCREEN PRINF E ERY SYSTEM APPLIES FINE GRID
aptical sCanner yalioates pattera. 20\% reject estimbte
4. SYSTEN APPLIES FRCAT BUS BAR E FIRES. [SEPARATE PRINT STEP MEEDED SINCE PATTERN IS THICKER THAK FINE GRID. DPTICAL SCARNER VALIOATES PATTERA BEFCRE FIRIAG. LE EUS EAR REJELTS ESTIMATED.
RFJECTS ARE LOACEC INTO A CASSETTE EY BELT- XCASsEtTf STACKEf FCf REWCAK

O
ELECTRICITY
ELFCTRICITY
ELECTRICTTY
SCREENS
SOUEEGEE
sQuekgers
SOLVENT-IMK
SOLVENT-INK
TFERMCCOJPLE, ETC
THERMDCDUPLE:ETC
IHK AG FACNT FINE GRID
IAK AG-FRCNT FINE GRID LCST
IAK AC-FRONT BUS BAR
iAK AG-FRENT BUS RAR LCST
ANAUAL
FIXEC PART
0.0
0.0
0.0
0.0
0.0
0.0
C. 0
0.0
0.0
C.0
\(C .0\)
0.0
0.0
G.0
0.0
 3. 20GE+OI KhH. PER AVAILABLE INVESTNENT-FCUR CF SCREEN PRINT G FIRE SYSTEH

 \(2.88 C E+00\) P 5 PR AYAILABLE INYESTHENT-HOUR OF SCREEN PRINT E ORY SYSTE*
 PER AYAI LABLE INYESTPENT-HDUR CF SCREEN PR INT G FIRE SYSTEN
 PEQ AVAILABLE INVESTHENT-HDUR DF SCREEN PRINT E DRY SYSTEM
 PER AVAILABLE INYESTMENT-HOUR OF SCREEN PRINT E FIRE SYSTEM
 4. CCCE-01
I.580E-01
 \(1.580 \mathrm{E}-01\)
 \(\mathrm{I} .580 \mathrm{E}-01\)
\(\mathrm{E} . \mathrm{C} 6 \mathrm{CE}-\mathrm{C4}\)
 E. C6GE-C4
6.060E-04
 \(6.060 \mathrm{E}-04\)
 6. \(740 \mathrm{~F}-02\)
 \(2.820 E-03\)
\(1.460 E-02\)
 C. \(150 \mathrm{EF}-03\)

CH**3
\(\mathrm{CH}_{5} \mathrm{H}=3\)

PER IPPLT UNIT, \(\%\) UNTIS= 121.05

PER INPUT UNIT. 7 UNITS= 121.09
PER INPUT UNIT. 7 UNITS \(=101 . C E\)
PER INPLT UNIT.
\begin{tabular}{ll}
PER INPLT UNIT. T UNITS \(=\) & \(100=07\) \\
PER INPUT UNIT. \\
\hline
\end{tabular}
PER INPUT UNIT: E UNITS= \(100 . \mathrm{CS}\)
PER INPUT UAIT. \(\boldsymbol{E}\) UNITS: LOD

Figure 47. Continued.

OESCRIPTICA：SCREEN PRIATING ANE SINTERING CCNDUCTIVE NETHORK－BACK

1．3．40＂［IAHETER HAFER，（100）［RIENTAT ION；P－TYPE；1－E OHM－CH．
2．BACK METALLIZATICN PATTERN HUST 日E SCREEA PRINTEC FIRST

DEASITY OF AG PASTE＝3．75G／CM＊＊3．T31．1G＝1 TROY OL．1
2：L RATIO FOR INK IHTCKNES5 TO POST FIRTRG AG THICKAESS．DR EQUAL TO 4 TIMES THICKRESS．
5．BACK AG GRID＝25\％CCVERAGE，12．HICRCAS THICK AFTER FIRING－
5．SCREEN PRINT \＆FIRE SYSTEM：
\begin{tabular}{|c|c|c|c|}
\hline ［YEN & CCST & POHER & CCHMENTS \\
\hline Loader & 10.7 K & 1 KH & IASERTS HAFER thto printer \\
\hline PR INTER & 24.4 K & 1KH & PRINTER APPLIES PAtTERA \\
\hline chllater & 10．0x & 1 KH & FQRMS PARALLEL ROHS FOR DRYER． \\
\hline gRYER & 25．ck & 11 KH & DRIES Ihk tc frevent smearinc． \\
\hline Furnace & 50．0K & 17KH & SINTER P PATtERN AT 550 C ． \\
\hline RElcader & 14．7K & 1 KH & PELCAES hafers intc cassette． \\
\hline CASSETTES & 4．EK & － & hClds hafers fer priater． \\
\hline retals & 138．日к & з2k & \\
\hline
\end{tabular}

9．BELT TCASSETTE LCADER CAN DC 6000 HAFEAS／RR－
－SCREEN AT \＄23，REPLACED 2 TIHES PER OAY．
scuebges at \＄a4c，beplaced chce fer hicup．
－O．E年 BACK REHORK ESTIMATED．
9．Firing cf eack heeced so that pasfe is mot removed in iase gf fromt grio rekerk．

1．OPERATCR LCADS CASSETTE FROA PREVIOLS §IEP INTO LCADER．
2．SCREEA PRINT G FIRE SYSTEP APPLIES EACK GRIU
TPTICAL SCANNER VALIDATES PAJTERA．O－5 R REJECTS FEHCRKEC．
REJECTS ARE LOACEC INTO A CASSETTE GY BELT－SCASSETTE STAGKER FOR REGORK．
－CASSETTE TRANSFERREC TC FRCAT METALLIZATICA FRCCESS．
4．REJECTS ARE RFHORKED \＆RECYCLED．

INGFSTMENT NAHE
SCREEN PRINT \＆FIRE SYSTEM
CPTICAL SCANMER－EXCELLCA
GELT－＞CASSEJIE SIACKER
max．thaufut units of input units proces
I INPUT UNITS PROCESSE
（100．54
\(1625.0 \mathrm{C} 5 \mathrm{~F} / \mathrm{HR}\) \(1625.00 \mathrm{SH} / \mathrm{HR}\)

10C． \(5 \%\)
100．5\％

RSt COST
AVAIL． 80.07 80.05

EA，FT＊＊2
1600.
16.

Figure 48．Process parameters－Ag back metallization．

\section*{LAECE}

Figure 48. Continued.

APUT UNIT:SHEETS OUTPUT UNITESHEETS

\begin{tabular}{llll}
INPGT UNITS: & 0. & 0. & 0. \\
SPACE,FTH2: & \(0_{0}\) & \(0_{0}\) & 0.
\end{tabular}

CESCR TPT ION:SPRAY-CN ANTIREFLECTION COATING(BI
ASSUMPTIONS
- 500 hafers/Cassett.
3. NOTE: IN-HDUSE AR CCAJ: MG NEEDS TC EE CEVELCPEC.
 APPLIEC AFTER FINAL METALLI2ATICH:
4. RDOM REQUIREMENTS : CRY,CLEAA FILTEAED AIR, 2830 LITERS/HR/SYSTEM
5. \(0.5 \mathrm{FT} * * 3 / \mathrm{MI}\) IN DF NITRDGEN NEEDEDT \(=\mathrm{E} .5 \mathrm{CE}+\mathrm{C} 5\) CM**3/HR.1
- ZICCN HCDEL \(11 C C O\) ALTCCCATER SYSTEM (\$185K) INCEUDES:
* CASER
* hapar pachion ala

MICROCDHP
OO DEG CCAVECTICN CONTRCLLER
OO DEG. C. CCAVECTICN OVEN: \(4 C O\) CEC. C. CENYECTION OVEK.
GASSETTE LQAEER (IISK
5. AUTCHATIC SANGLE EJECT (NEEDS CEVELCPMEAT, AECUT \(\$ 10 K\)
6. THICKNESS MCNITOR (\$10K)
7. CASSETTE FELOAEER (FOR SAMPLESJ (SI5K)

TOTAL SYSTEN PRICE: 5185K
7. NEED SPECS FGR AR COATING STRIP FOR REKCRK. 7??7?7??
- hafers are loaded facy cassette tc comyeyor belt in rohs of s

- HAFERS ARE SPRAYEE HITH 3OOOA OF TITANIA-SILICA PRODUCIRG LIOUIG SOURCE PATERIAL KITF FRESSURIZED CRY AITRCEEN AS CARRIER GAS.
3. HAFERS ARE AIR-FLASHED TE REMDVE BUBBLES AMD TC SETTLE CCATIAG HATERIAL -
. AFTER DEPOSIT ICN, HAFER TRANSPORTED VIA BELT TO IMFRARED DRYING ZDNE TO PERHIT CASSETTE HAACLING.
5. AFTER PRE-DRY, HAFERS LDADED IATC CASSETTE.
6. EVERY LOTF OR 15 TH GAFEA IS EJECTED AUTOMAIICALLY FCR THICKAESS TESTING BY ELLIPSCMETER; DATA IS FEC TD MICROCOHPUTERIZEO SERVO HECHANI SM AT SPRAY BOCTH.
7. HAFERS KITHIN SPEC ARE RELOADED IN A SEPARATE CASSETTE; FAILED HAFERS HILL BE STRIPPED IN DI LUTE AHHCNIUM FLURRICE SOLUTIEN ANC COLLECTED FOR REPROCESSING.
g. HAFERS ARE BAKEC FCR 15 HIN. AT 200 C . IN AIR.

WAFERS ARE BAKED FOR 15 HIN. AT 400 C. IA AIR. CASSETTES TRANSFERRED TO NEXT PROCESS STEP.

Figure 49. Process parameters - AR spray coat.

Figure 49. Continued.
```

ESTIMATE DATE:G9/20/77 BY:DAVE RICHHAN, X3ZOT, RCA LABS; E-32IA , CLASS:TEST
CNGOM

```

```

TNPUT unITS: O. O. O
FLQUR SPACE:FT*** % O. O. O.
0.
DESCRIPTIEN:WAFER ELECTRICAL TEST AND SORT.

```
1. 3.40 DIAMETER KAFER (IICGI ORIENTATICA,F-TYPE, 1-5 CHN-CM.
2. TEST FCR: OPEA CIRCUIT VOLTAGE;SHORT CIRCUIT CLRRENT;REVERSE BIAS LEAKAGE; FILL FACTOR3. HiNICDMPUTER-CChTACLLED NEASUAENEAT OF 12 PGINTS ALCNG KNEE DF I-V CURVE FDR KNDHN LIGHIING4. HAFERS BELDH IO\& EFFICIENCY ARE REJECTED. SCS YIELD ESTIMATED.

PROCEDURE
1. DPERATER LCADS EASSETTE iATC machIME.
2. Hafers mutchat ically feo to test equiphent and measerements made.
3. Hafers sorted intc magazines using griteaia tc ee definec.
4. DPERATOR REMDVES CASSETTES AS THEY ARE FILLED.

Figure 50. Process parameters - test.
\(\square\)
\begin{tabular}{llll}
INPUT LNITS: & 0. & 0. & 0. \\
FLCOR \\
SPACE,FI*F2: & 0. & \(C_{0}\) & \(C_{0}\)
\end{tabular}

OESCRIPTICA:PEFLCH SCLEER INTERCCNNECTIONIE)

\section*{assumpr Ions:}
- 3.40' 0 IAMETER HAFER, (LCOI ORIENTATIDA,P-TYPE, 1-5 CHM-CH.

ARRAY PANEL RFHCRK GPERATORS REHORK 15 CF PAAELS AT RATE OF 2 PER \(t\) R.
- EACH PANEL COMTAINS 15 STRINGS DF 12 CELLS EACH.
prccequpe
- FIRST INTERCONNECTIUN STATICN:ROTARY INCEX TABLE
A. CASSETTE LCAOED HITH EACK DF CELL FACE UP.

 O. AT STATIEA \#3, SCLCER PASTE COT IS APPLIEC TC SILVEREC AREA (BOTTOM FACEJ
E. AT STATION 34, INSLLATED IAB IS GURASHED. FCSITICNED ANC SCLCEREC ON SCLCER TAB.

CACE SCLDERED, T\&E IS THEN CUT TD LENGTH.
F. AT STATIDN \#5, CELL IS FLIPPED CVEP- VACUUM STLL FOLOS CELL IN POSITION. SOLOER PAStE COJ iS APPLIED TD TOP FACE OF CELL.

2. SECOND INTERC CNNECT STATION E CCHPLETE STAIMG ELECTPICAL CFECK.
A. VACUUM LINE IS ATTACFED TO STRTNG TRAY HOLDING CELLS IN PCSITICA
B. AT SECCND INTERCCANECT STATICN, ARH SHINES TC WIPE TAB OUER SOLDER DOT.

TAB IS THEN SRLDERED CN TOP FACE EF GELL.
C. AT NEXT STATIEN, AUTCHATIC TEST pROEE PERFGRHS EARK I/V STRING TEST.

IF STRING IS CK. IT CENTINUES TC STERAEF RACK.
IF STRING FAILS, STRING TRAY IS REJECTED AMO REFCVED FRCH BELT.
FAILED STRINGS ARE HANUALLY REHORKEC AND THEN OLACED IN STORAGE RACK.
- SOLAR PANEL INTERCONNECT TECHNIGLE.
a. PREDIS

COMPI ETE STRTMG OF CEINTERFALES IKTG HCLEER ANL VACUUH PTCKS UP COMPLETE STRING OF CELLSE STRING PICK UP TRAY THEN HITHCRAKS GUT vaciul is and plsit ICRS cVer array trayo
ARPAY TRAY TNDEXED INTO OOSITION FOR EACH IMTC ARRAY TRAY
D. TAB IS HIPED CYES CATC IATERCCNNECT BUS.
E. INTERCONNECT TABS ARE SOLOEREDI2 PLACES FCR EACH STRIKG [F CELLSI
F. CARK I/V ELECTRICAL TEST PERFORHED FOR COMPLETE ARRAY PANEL.

IF PANEL PASSES TEST, FGLDER HITH PANEL PLACEC IA STGRAGE RACK.
IF PANEL FAILS TEST, PANEL IS HANUALLY REWCRKEC ABB THEN PLACED IAN STCRAGE RACK.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline IMVESTHENT MAHE & PAX. & THRUFUT & UNITS & 7 & IfPUT & \begin{tabular}{l}
INVES \\
UNITS
\end{tabular} & TMENTS PROCESSEO & & RST & C Cost & Avalt. & T** \\
\hline ROTARy Index table syster & & 1200.0c & CELLS/HR & & & & 100.09 & F & & 27500. & 90.07 & 24 \\
\hline RS STAING INTERCCNAECT EQUIP & & 240.0.00 & CELIS/相 & & & & 100.0\% & 5 & & 19000. & 90.07 & 36. \\
\hline PANEL INTEREDNNECT STATION & & 3600.00 & CELLS/HR & & & & 100.0x & s & & 80000. & 90.0\% & 120 \\
\hline
\end{tabular}

Figure 51. Process parameters - reflow solder interconnect.

Figure 51. Continued.

SSTINATE LATE：07／29／77 BY：DICK SCDTT，PC 4971，CAMDEN，BLDG．IC－
\(\qquad\) ECHACLEGY LEVEL：NEAR FUTURE MATERIAL FCRM：3．40＇HAFER ghy unitisolar celes output unitiarray fodlles transpcrt inapickup table

salvage cptidntvalue tns
\begin{tabular}{llll}
INPUT UNTTS： & 0. & 0. & \(C_{0}\) \\
SPACEFFT＊ \(2:\) & 0. & 0. & 0.
\end{tabular}

CESGR LPTIIEN：CLASS／PVB／CELL ARRAY ASSEPBLY
ASSLMPTICNS：
1．3．40＂DIANETER MAFER，（ICD）CRIEMYATICAFF－TYFE，I－5 EHN－CN．
2．EACH PANEL CONTAINS 15 STR INGS OF 12 CELLS EACH．
\begin{tabular}{|c|c|}
\hline 1．FRAME： & \＄6．8B／I80＝\＄3．日2E－02／CELL \\
\hline 2．GLASS： & \＄7．04／L日C \(=\$ 3.51 \mathrm{~F}-02 / \mathrm{CFLL}\) \\
\hline 3．PVB： & \＄6．40／180 \(=\$ 3.56 \mathrm{EF-02/CELL}\) \\
\hline 4．PANFL CONNECTOR＝ & 55．CC／IEC \(=\) \＄2．7日E－02／CEL \\
\hline
\end{tabular}
prccecure
class hastee ane caiee thrn storeo in clean stcrage area．
．Glass is placec ch alr tarle．pve is tren placed cn glass． RELLER TRANSVERSESy PVB ADHERING TE GLASS．
glass witt pye placed in cleam storage area．
3．GLASS frof stcrage rack placed pyb side up．
array tray flipped guer，vaclur holding cell string asserely uhtil placed cn pva． array tray is alignec with gettch elass plate．
arRay tray IS flifped cVER CNTO PVB．
4．SECOND SHEET OF BOTH PVB E GLASS ALIGNED hITH botion glass cver String assembly cf cells． ARRAY ASSENGLY EACLESED IN VACUUH EAG E SENT TO STORAGE OR AUTOCLAVE．
5．FRAME PIECES CLT，ASSEFBLED，ANC SFCT hEECEC．
－GRAMES SENT TC GLASS ASSEHBLY LINE VIA COAVEYER．
－GLASS PANEL ASSENELY RENCVED FRCH AUTCCLAVE VACUUM BAG e POSITIONED ON ROTATIMG TABLE． GLASS PANEL ASSENELY REFCVED FRCN AUTLCLAVE TAPE IS APLIED AUTOPATICAILY CVER EDEES ANC RCTF SICES OF GLASS． ALUMINIZEC TAPE IS APPLIED AUJGHATICALLY CVER
TAPE IS HIPED DVER AND FEAT SEALED TO GLASS．
R RUBEER GAEKET PLACED ARCUND GEASS ASSENELY G ASSEMBLY PLACEC IN FRAME．
GIASS RETAINING FRAME INSERTEO ANO MODULE CEMPLETEG USTNG PRESS
B．AFTER FINAL IASPECTICA ANG TEST；ARFAY HODLLE SENT TO PACKAGING AREA．

Figure 52．Process parameters－giass－PVB panel．

\section*{LABER}

OL=DIRECT LABOR PERSONSFTL=TOTAL LABOR PERSCNSI
Abcr requirements base - PERSGAS/SHIFT/EASE UNI
* INPUT UNITS PRCCESSED

NA INTENANCE MAIATENANCE FGREMAN FRAME ASSEMBLY EQUIPAENT acceol FIAAL ASSEMgLY EQUIPMENTIR EL

EXPENSE NAME ELECTRICIFY
\begin{tabular}{|c|c|}
\hline ANNUAL & \\
\hline FIXED PART & variagle part \\
\hline C. 0 & C. 0 \\
\hline 0.0 & C. 0 \\
\hline 0.0 & 0.0 \\
\hline 0.0 & 3.8zCE-02 \\
\hline 0.0 & 3-910E-02 \\
\hline C. 0 & 3. 56CE-02 \\
\hline 0.0 & 2.780E-02 \\
\hline & 5. \\
\hline
\end{tabular}

Figure 52. Continued.

ESTIMATE OATE:OT/2日/77 BY:DICH SCOTT, PC4C71; CAMDEA, BLDG. 10-6
CATEGORY:PRCCESS DEFINITION TECFNOLOGY LEVEL:EXISTING MATERIAL FORM:3. GON HAFER IAPUT UNIT:ARRAY MDDULES OUTPUY LNIT:ARRAY MRDULES TRANSPCRT IN:CURIHG RACK FRCCESS YIELC: 100 . 0 男 YIELD GROWTH PROFILE: IAFLT UNIY SALVAGE FACTOR: 0.0 FACTCR GPH: 0

SALVAGE OPTION: value INS

\section*{INPUT UNITS:}

FLECN SPACE,FT**2:
C.
C.
0.
0.
0.
\(c\).
descripitginarray hedules placed in hece ceate.
1. 16.0 FT**2 PAMEL.
2. Le. 0 FT**2 of woin crate needed at s.og pep fi** 2 df panel
3. I CFERATOR CAN PACKAGE 50 HODULES/HR USING PACKAGINE EOUIPMENT
4. H. THE NUPBER CF PAAELS PER HCCC CRATE. IS TC EE EETERMINEC.
1. DPFRATCR PLACES \(A\) PANELS FRCM STGRAGE RACK INTO A BOX
2. BOX STAPLED.

MAX. THRUPUT UNITS SO.OC A.M. /HR

IHVESTHENT NAME
PACKAGING EQUIPMENT

NAME
hOURLY OPERATOR
FCREMAN
EXPENSE NANE
BEX FCA MCDULF
- FCA MEDUL

Labor ageulrements base PACKAGIAG EQUIPNEAT
DL

INVESTMENTS
THITS PRDCE
(DL=DIPECT LABQR PERSCNS;TL=TQTAL LABCR PERSONS
\% PERSONS/SHIFT/GASE UNIT THRUPUT/HRJPERSCN I IAPUT UNITS PROCESSED
\(1.300 E+00\)
1.000E-01

SUPPLIES/EXPENSES
ANNUAL
FIXED PAPT C. 0

SUPPL
UNITS
PASE
PER INPUT UKIT. T UNITS: \(100.0 \%\)

\title{
PRCCEDURE
}

ASSLRPTICAS:

\section*{}

CESSED FIRST COST AVAIL* AREA,FT**2 25000. 100.0\%

Figure 53. Process parameters - packaging.
assembly. The process step that was changed was junction formation and back diffusion. All cases were analyzed at \(1,3,10,30,50\), and \(100 \mathrm{MW} / \mathrm{year}\). Case I was ion-implantation on both sides, Case II was spin-on source on the backside and \(\mathrm{POCl}_{3}\) in front, Case III was spin-on source on both sides, and Case IV was print-on source on both sides. The processing tree for these sequences is shown in Fig. 54. The matrix was run ignoring wafer costs since all process sequences saturate in cost at a \(30 \mathrm{MW} / \mathrm{yr}\) production level, a \(30-\mathrm{MW}\) factory design is our goal. The spread in cost was about \(20 \%\) with the lowest cost being print-on source on both sides (Case IV) closely followed by ion implantation on both sides (Case I) while the highest was spin-on back and \(\mathrm{POCl}_{3}\) front (Case II). We chose the \(\mathrm{POC1}_{3}\) junction formation due to proven cell efficiency and rejected ion implantation for the near term because present machine throughput is inadequate, and increased throughputs to the required level are not anticipated by 1982.

Figure 54. Cell processing sequence.

\section*{C. TMPACT OF MANUFACTURING VOLUME AND POLYSILICON COST}

It is important to determine the level of production for which volume cost reductions saturate for each of the sheet preparation cases considered. The results of such a calculation are given here assuming that the processes which follow the various sheet preparations are the same as shown in Table 6. We have considered production levels ranging frnm 3 to \(100 \mathrm{mN} / \mathrm{yr}\) and have shown the impact of single versus multiple pulling of crystal, i.d. sawing versus wire sawing, and have also considered the limiting case of \(\$ 0 / \mathrm{kg}\) polycrystalifine cost. The results of these calculations are shown in Fig. 55. The cost reduction with increased volume reflects more efficient use of capital and labor, while the cost reduction as a function of sheet preparation reflects cost reduction in materials and expense items.

Figure 55. Cost as a function of manufacturing volume with wafer preparation and polysilicon cost as paramezers.

Since volume cost reutctions are saturated for production levels beyond \(30 \mathrm{~mW} / \mathrm{yr}\), we have based our preliminary factory design at that production 1evel.

\section*{D. FACTORY LAYOUT}

The final factory layout is shown in Fig. 56. The factory area is \(100,000 \mathrm{ft}^{2}\) with provision for office space, cafeteria, storage, receiving, and warehousing. There also is provision for buffering between critical processing steps. The equipment required for this factory is 1isted in Table 7.

\section*{E. SELLING PRICE}

We have used the criteria described in Section II in order to arrive at the final selling price. The procedure requires an estimate of factory overhead, such as plant, land, equipment (other than manufacturing equipment), support personnel, materials in storage or in process, and an estimate of the difference between receivables and payables. The itemized list of these components is given in Tables 8 and 9. The manufacturing costs are \(\$ 2.011 / W\) so that total cost is \(\$ 2.145 / \mathrm{W}\).

We have assumed that the entire factory and capital equipment are financed by debt. In order to remove consideration of debit ratio (\% of assets financed by debt) from an estimate of profit, we will assume the following relationship.

\section*{\(\frac{\text { Net profit after taxes }+ \text { after-tax interest }}{\text { First cost of assets }}=0.15\)}

The before-tax interest on the factory is \(\$ 0.039 / W\) (factory investment) and the before-tax interest on manufacturing equipment investment is \(\$ 0.074 / \mathrm{W}\). Equipment assets are \(\$ 0.824 / \mathrm{W}\) and factory assets are \(\$ 0.430 / \mathrm{W}\). The beforetax profit is \(\$ 0.263 / \mathrm{W}\). Thus, the total price is \(\$ 2.41 / \mathrm{W}\).

\section*{F. CONCLUSIONS - ANALYSIS AND FACTORY DESIGN FOR \(198 ?\)}

From the cost production analyses conducted here, it can be concluded that that the interim 1982 goal of \(\$ 2 / W\) array cost can be achieved in a largescale (\(\sim 30 \mathrm{MW} / \mathrm{yr}\)) factory. The analysis clearly shows that the largest cost centers and therefore the areas needing the greatest attention are the crystal pulling and wafer sawing operations. Conventional Czochralski singleingot pulling and i.d. wafer sawing are too wasteful of materials and result \(^{\text {a }}\) in a total cost of about \(\$ 2.50 /\) W. By considering multiple-ingot pulling and high-yield wire sawing of wafers, we have shown that the cost is reduced to

Figure 56. Factory layout.

TABLE 7. FACTORY EQUTPMENY LIST
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INYESTHENT INVE & STMENT UNITS & SUMMARY \$TCTAL & \$/HATT & \$DEPR. & \$/WATT & \$INTEREST & \$/KATT & FT**2. \\
\hline ALUM INUM BLOCK & 363. & 2964. & 0.000 & 415. & 0.000 & 261. & 0.000 & 0. \\
\hline ANAEALING FUPRACE & 16. & 72000. & 0.002 & 10286. & 0.000 & 6480 & 0.000 & 0. \\
\hline ARGON GAS INSJALLATICA & 13. & 195000. & 0.006 & 27857. & 0.001 & 17550 & 0.001 & 0. \\
\hline BELT \(\rightarrow\) CASSETTE STACKER & 16. & 240000. & C.CCB & 34286. & 0.001 & 21600. & 0.001 & 0. \\
\hline CASSETTE STACKER & 4. & 60000. & 0.002 & 8571. & C. 000 & \(540^{4}\) & 0.000 & 0. \\
\hline CENTER GRINDER & 7. & 126000. & 0.004 & 18000. & 0.001 & 11340. & 0.000 & 0. \\
\hline CERTEREESS GRINDER & 7. & 168000. & 0.0ce & 24 CCC . & 0.001 & 15120. & 0.001 & 0. \\
\hline CLAH-SHELL UHLOADER & 4. & 12000. & 0.000 & 1714. & 0.000 & 1080 & 0.000 & 0 \\
\hline CRYSTAL MOUNTING BLOCK & 363. & 3c855. & C-CCI & 30855. & 0.001 & 2777. & 0.000 & 0. \\
\hline CRYSTAL PULLER SPARE PARTS & 61. & 35075C. & \(0.61 \bar{c}\) & C. & 0.0 & 31567 & 0.001 & 0. \\
\hline CUTDFF SAW & 16. & 38400. & 0.001 & 5486. & 0.000 & 3456. & 0.000 & 0. \\
\hline DISHING GAUGE & 52. & 78 CC & 0.060 & 1114* & 0.000 & 702 * & 0.000 & 0. \\
\hline FIHAL ASSEHBLY EGUIFHEAT (E) & 1. & 27500. & 0.001 & 3929. & 0.000 & 2475. & 0.000 & 275 \\
\hline FRAME ASSEMBLY EQUIPHENT & 1. & 75200. & 0.003 & 10743. & 0.000 & 6768* & 0.000 & 225. \\
\hline GRAPHITE PLUG & 363. & 726. & 0.000 & \(1 \mathrm{C4}\). & 0. 000 & 65. & 0.000 & 0 \\
\hline GRAPHITE STICK CRYSTAL NCUNT & 363 . & 130680. & 0.004 & 18669. & 0.001 & 11761. & 0.000 & 0. \\
\hline -FACHAY CONTOUR GR INDER & 3. & 162 CCC . & C. CC5 & 23143. & 0.001 & 14580. & 0.000 & 180 \\
\hline III MODEL 3 SPINAER-3 TRACKS & 36. & 1440000. & 0.648 & 2C5714* & 0.007 & 129600. & 0.004 & 2160. \\
\hline III MODEL 3 EVEN-3 TRACKS IN & 36. & 720000. & 0.024 & 102857. & 0.003 & 64800. & 0.002 & 2160. \\
\hline LIFETIME TEST SET & 7. & 35 CCC . & C.CCl & 5000. & 0.000 & 3150. & 0.000 & 0. \\
\hline MECHANICAL STACKER & 1. & 15000. & 0.000 & 2143. & 0.000 & 1350 & 0.000 & - \\
\hline MISCEL LANEOUS CP & 7. & 126000. & 0.004 & 18000. & 0.601 & 11340. & 0.000 & 0. \\
\hline AIKCN COMPARATOR & 7. & 4550 C & \(0 . C C 2\) & E5C. & 0.0 co & 4095. & 0.000 & 0. \\
\hline OPTICAL SCANNER-EXCELLCN & 16. & 240000. & 0.008 & 34296. & 0.00: & 21600. & 0.001 & 256. \\
\hline OPTICAL SCANNER-EXCELLCN RED & 1. & 35 Cc C. & C.CCl & 5000. & \(0.0 r 0\) & 3150. & 0.000 & 0. \\
\hline GXIDE STRIP STATICA/B) & 2. & 160ccc. & 0.065 & 22957. & C. 001 & 14400. & 0.000 & 192. \\
\hline PACKAGING EQULPMENT & 1. & 25000. & 0.001 & 3571. & 0.000 & 2250 & 0.000 & 100. \\
\hline CLASS/PVB/PANEL ASM. STATION & 1. & 5E2CCC. & 0.019 & 83143. & 0.003 & 52380. & 0.002 & 900. \\
\hline PANEL INTERCCANECT STATICN & 2. & 360000. & 0.012 & 51429. & 0.002 & 32400. & 0.001 & 240 \\
\hline PDCL 3 DIFFUSION FURNACE(B) & 4. & 266400. & 0.009 & 38057. & 0.001 & 23976. & 0.001 & 1100. \\
\hline POCLS FURNACE LINERS (E) & 4. & \(224 \mathrm{CC}\). & \(0.0 c 1\) & 56 CC & C. 000 & 2016. & 0.000 & 0. \\
\hline PGCL 3 FURNACE COILS \({ }^{\text {C }}\) S & 4. & 32000. & 0.001 & 8000. & 0.000 & 2880. & 0.000 & 0. \\
\hline POCL3 FURNACE PADDLES(B) & 4. & 32CCC. & \(0 . \mathrm{CCl}\) & 4571. & 0.000 & 2880* & 0.000 & . \\
\hline PCLYSILICCM INVENTCRYIES & 61. & 1021756 & 0.034 & 0. & 0.0 & 91957 & 0.003 & 0. \\
\hline POT REFILLER & 61. & 305000. & 0.010 & 43571. & 0.001 & 27450* & 0.001 & 0 \\
\hline REICFERT \({ }^{\text {NICRESCCPE }}\) & 7. & 63C65. & 0.0 Cz & 90cc. & 0.000 & 5670* & 0.000 & \({ }^{0 .}\) \\
\hline RETARY INDEX TABLE SYSTEA & 5. & 137500. & 0.005 & 15643. & 6.001 & 12375 & 0.000 & 120. \\
\hline RS STRING IATERCONNECT EQUIP & 3. & 357000. & 0.612 & 51000. & 0.002 & 32130 & 0.801 & 1108.
4800 \\
\hline SCREEN PRINT \& DRY SYSTEM & 6. & 5 こ28CC. & O.cic & \(76114=\) & 0.003 & 47952 & 0.002 & \\
\hline SCREEN PRIMT E FIRE SYSTEH & 10. & 1388000. & 0.045 & 198286. & 0.007 & 124920 & 0.004 & 27450 \\
\hline SILTEC CRYSTAL PULLER-960 & 61. & 488 CCC 5 & C. 163 & 697143. & 0.023 & 439200. & 0.015 & 27450.
1200 \\
\hline SILTEC HAFER SCRTER-FREEE & 6. & 900000. & 0.030 & 128571. & 0.004 & 81000. & 0.003 & 1200. \\
\hline SILTEC WAFER SQRTER-K.E.T. & 7. & 1225000. & 0.041 & 175000. & 0.006 & 140250. & 0.004 & 1400. \\
\hline ULTRASCNIC HAFER CLEANER & 1. & 60600. & 0.0C2 & 8571. & 0.000 & 5400.
653400 & 0.000 & 21780. \\
\hline VARIAN MULTIBLADE SAH & 363. & 7260000. & 0.242
\(\mathrm{C} . \mathrm{CC} 3\) & 1037143. & 0.035
0.000 & 653400.
8100. & 0.022
0.000 & 21780. \\
\hline HAFER ETCHING STATION(B) & 2 & scecc. & C.CC3 & 12857** & 0.000 0.001 & 11880. & 0. 000 & 0. \\
\hline WATER RE-CIRCULATOR & 11. & 1320cc. & C.OC4 & 18857. & 0.001 & 11880. & 0. 0 00 & \\
\hline
\end{tabular}

TABLE 8. FACTORY OVERHEAD DETAILS
\begin{tabular}{|c|c|c|c|}
\hline INVESTMENT & \(\mathrm{Ft}{ }^{2}\) & S & \$/W \\
\hline \multicolumn{4}{|l|}{Plant:} \\
\hline Process & 72,800 & 7.28m & 0.242 \\
\hline Offices & 9,460 & 0.56 M & 0.018 \\
\hline Cafeteria & 2,300 & 0.14 M & 0.005 \\
\hline Array Storage & 4,000 & 0.24 M & 0.008 \\
\hline Wafer Storage & 3,300 & 0.2 M & 0.007 \\
\hline Ingot Storage & 800 & 0.05 M & 0.002 \\
\hline Chem. Storage & 3,000 & 0.18 M & 0.006 \\
\hline Maint Shops & 2,000 & 0.12 M & 0.004 \\
\hline Receiving & 2,300 & 0.14 M & 0.005 \\
\hline Total Plant & 99,900 & 8.91 M & 0.297 \\
\hline LAND & 160,000 & 0.04M & 0.001 \\
\hline Parking \& Receiving & 60,000 & 0.06 M & 0.002 \\
\hline Office Equipment & & 0.02M & 0.001 \\
\hline Purchased Material for Inspection and Quality Control & & 0.5 M & 0.017 \\
\hline Minicomputers for Payroll and MIS & (2) & 0.25M & 0.008 \\
\hline Cassettes & (2100) & 0.21 M & 0.007 \\
\hline SUPPORT PERSONNEL & Number & \$/Year & \$/W \\
\hline \multicolumn{4}{|l|}{PLANT ADMINISTRATION} \\
\hline Factory Mgr & 1 & 50K & 0.002 \\
\hline Asst Mgr & 1 & 40K & 0.001 \\
\hline Secretaries & 1 & 10k & 0.000 \\
\hline Receptionist & 1 & 10K & 0.000 \\
\hline Industrial Relations & 1 & 18K & 0.000 \\
\hline Secretaries & 1 & 10K & 0.000 \\
\hline Financial Services & 2 & 60 K & 0.002 \\
\hline Secretaries & 1 & 10K & 0.000 \\
\hline Accounting Services & 2 & 45K & 0.002 \\
\hline Secretaries/Clerks & 4 & 40K & 0.001 \\
\hline Computer Service & 2 & 40K & 0.001 \\
\hline Computer Operators & 1/shift & 48K & 0.002 \\
\hline Purchasing & 2 & 45k & 0.002 \\
\hline Secretaries & 1 & 10K & 0.000 \\
\hline \multicolumn{4}{|l|}{FACILITIES} \\
\hline Guards & 3/shift & 144K & 0.005 \\
\hline Maintenance & 3/shift & 200K & 0.007 \\
\hline Janitors & 3/shift & 100k & 0.003 \\
\hline Warehouse & 1 & 25K & 0.001 \\
\hline Material Handlers & 3/shift & 144K & 0.005 \\
\hline Dispensary & 1/shift & 60K & 0.002 \\
\hline Industrial Engineering & 10 & 250K & 0.008 \\
\hline Quality Control \& Purchased Material Inspection & 5/shift & 360K & 0.012 \\
\hline Support People (Total) & 107 & 1719K & 0.057 \\
\hline
\end{tabular}

TABLE 9. FACTORY OVERHEAD SUMMARY
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Quantity & Cost (\$) & Arnual Gost (\$) & \$/W \\
\hline Support PersonneI. & 107 & 1719K & 1719K & 0.057 \\
\hline Cassette (4-yI Iife) & 2100 & 210K & 52.5K & 0.002 \\
\hline Heating, Lighting, and AC & & & 188K & 0.006 \\
\hline Insurance & & & 11.5 K & 0.004 \\
\hline Local Taxes & & & 230K & 0.008 \\
\hline ```
Factory Deprectation
 (20-yr life)
``` & \(\because\) & 8970K & 448 K & 0.015 \\
\hline Factory Interest (9\%) & & 9010K & 81.1 K & 0.027 \\
\hline Support Equipment Depreciation (7-yr Iife) & & 770k & 110K & 0.003 \\
\hline Support Equipment Interest (9\%) & & 770K & 69K & 0.002 \\
\hline Receivables (30 days) (9\%) & & 5000k & 450K & 0.015 \\
\hline Payables (30 days) (9\%) & & (1750K) & (158K) & (0.005) \\
\hline & & & Total & 0.134 \\
\hline
\end{tabular}
\(\$ 2.01 / \mathrm{W}\), which points out the need for the full development of these techniques by 1982. But even in this case, the cost of wafer preparation couprises \(2 / 3\) of the total panel cost, so that additional cost reductions will heve great impact on achieving the \(\$ 2 / \mathrm{W}\) goal by 1982.

An optinistic view can be taken for the costs of the remaining process sequences of junction formation, metallization, AR coating, and panel assembly as their costs remain within acceptable limits after repeated analysis and some redesign of the panel.

\section*{SECTION IV}

\section*{EXPERTMENTAL PRODUCTION STUDY OF SILICON SOLAR CEI.L ARRAY MODULES}

\section*{A. INTRODUCTION}

As reported in Section \(I I\), conceptual studies were made of manufacturing process sequences for the large-scale production silicon solar array modules which could be sold for \(\$ 0.50 /\) peal \(W\) in 1986 . As a result of that study, the major elements of the most cost-effective manufacturing sequence were identified and described in detail. Those results are sumarized in Figs. 57, 58, and 59 for three such sequences which differ only in the junction-formation process. The purpose of the work conducted over a 6 -month period and reported here was to evaluate the sensitivity of these processes to changes in the primary variables and to identify the critical variables relating to cost and performance.

The work consisted of three phases: a experimental production study; screen-printed metallization development; and panel design and assembly. The purpose of the experimental production is to produce a statistically significant quantity of solar cells in order to assess the process parameters which affect cell performance. Subsection \(B\) of this report describes the results of operating that experimental line for the three junction-formation processes of Figs. 57, 58, and 59. Screen printing of the contact patterns onto the solar cells is an essential element of the low-cost manufacturing; however, it is not now a highly reproducible process. Subsection \(C\) describes the development conducted in assessing \(A g\) and A1 inks and experimental results obtained in screen printing these inks on test structures and solar cells. Subsection D discusses a double-glass panel designed to meet presently expected electrical and environmental conditions. Preliminary results of a lamination technique used to construct such a pane1 are also described.

\section*{B. EXPERIMENTAL PRODUCIION STUDY}
1. Basic Processes and Equipment

The three manufacturing sequences of \(\mathrm{Figs} .57,58\), and 59 were simulated in an experimental production line located at the RCA Solid State Division,


Figure 57. Cost sumary - spin-on \(+\mathrm{POCl}_{3}\) diffusion


Figure 58. Cost summary - spin-on 2 sides.

\section*{aSSURPTICNS: O. 717 HATTS PER SOLAR CELL ANO PROCESS COST OVERVIEK-S/NATT} 0.0 FOR 3.8 CH \{3n] DIAMETER KAFER 1 g9.0\% 5YSIEH "Z® WAFER CLEANING 98.0\% IOM IHPLAMTATIDA:2 SIOES

3 98.08 DIFFUSION
§ 99.0. POST DIFFUSIOK INSPECTICN
5 98.04 THICK AG METAL-BACK:AUTG
8 98.OT THICK AG METAL-FRDNT:AUTO 7 Gq.OF AR COATING:SPRAY- CH 80.01 TEST
98.0X IHTERCONHECT:GAP HELDIMG
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & NAT* & 0. L. & EXP. & P. OH. & 1 MT. & DEPR. & SUBTaT & SALTMA & TOTALS & 7 & INYEST & \% \\
\hline (B) & 0.0 & 0.001 & 0.001 & 0.000 & 0.000 & 0.000 & 0.003 & 0.0 & 0.003 & 1.0 & 0.002 & 0.5 \\
\hline (B) & 0.0 & 0.010 & 0.010 & 0.009 & 0.013 & 0.020 & 0.061 & 0.0 & 0.061 & 17.9 & 0.140 & 38.8 \\
\hline (B) & 0.0 & 0.009 & 0.002 & 0.002 & 0.001 & 0.003 & 0.016 & 0.0 & 0.016 & 4.8 & 0.012 & 3.3 \\
\hline (B) & 0.0 & 0.003 & 0. 000 & 0.003 & 0.003 & 0. 004 & 0.013 & 0.0 & 0.013 & 3.9 & 0.030 & 8.3 \\
\hline (B) & 0.024 & 0.004 & 0.005 & 0.005 & 0.003 & 0.004 & 0.045 & \(00_{0} 0\) & 0.045 & 13.0 & 0.031 & 8.6 \\
\hline (8) & 0.024 & 0.009 & 0.011 & 0.012 & 0.006 & 0.009 & 0.070 & 0.0 & 0.070 & 20.5 & 0.062 & 17.2 \\
\hline (8) & 0.002 & 0.004 & 0.002 & 0.001 & 0.001 & 0.001 & 0.011 & 0.0 & 0.011 & 3.1 & 0.008 & 2.3 \\
\hline (8) & 0.0 & 0.004 & 0,000 & 0.003 & 0.004 & 0.006 & 0.016 & 0.0 & 0.018 & 5.1 & 0.042 & 11.6 \\
\hline (B) & 0.002 & 0.006 & 0.002 & 0.002 & 0.002 & 0.003 & 0.016 & 0.0 & 0.016 & 4.7 & 0.019 & 5.4 \\
\hline (B) & 0.072 & 0.002 & 0.002 & 0.001 & 0.001 & 0.002 & 0.080 & 0.0 & 0.080 & 23.3 & 0.014 & 3.8 \\
\hline (a) & 0.007 & 0.001 & 0.0 & 0.000 & 0.000 & 0.000 & 0.009 & 0.0 & 0.009 & 2.6 & 0.000 & 0.1 \\
\hline & 0.132 & 0.053 & 0.035 & 0.038 & 0.032 & 0.053 & 0.343 & 0.0 & D. 343 & 100.0 & 0.361 & 100.0 \\
\hline \(\pm\) & 38.21 & 15.54 & 10.31 & 11.09 & 9.48 & 15.36 & 100.00 & & & & & \\
\hline
\end{tabular}

MOTE: \(\{A J=E X I S T I M G\) TECHMOLDGY; (B]FHEAR FUTURE: \([C 〕=F U T U R E\) ANNUAL PRODUCTIGM: 50.O MEGAHATTS.

Figure 59. Cost summary - ion implantation.

Somerville, NJ. A process flow chart showing the sequence of steps used in the fabrication of 3-in.-diameter solar cells is given in Fig. 60. The basic processes and equipment are described below.
a. Silicon Wafers - The solar cell substrates used in this project are obtained from RCA, Mountaintop, PA, and from Siltec Corp., Menlo Park, GA. The solar cell substrates are 3-in., p-type silicon waFers with <100> crybtal orientation. Those wafers prepared by RCA Mountafntop from a boule purchased from Monsanto are front-surface polished and have a saw/etched back surface. Wafer thickness is 0.020 in., nominal, and the bulk resistivity ranges from 5 to 10 ohm-cm. The wafers supplied by Siltec Corp. are frontsurface polished and back-surface etched. Wafer thickness is 0.015 in., nominal; bulk resistivity ranges from 1 to 2 ohm-cm.
3. Process Descriptions
(1) Junction Formation - Three methods were tested: ion-implantation of phosphorus and arsenic, a spin-on phosphorus source, and gaseous diffusion from phosphorus oxychloride. In all cases the back contact is made through a high-concentration boron diffusiom.

Ion Implantation - The Somerville Extrion 200-1000 implant machine uses a gaseous source of phosphine or arsine for the n-type implant and boron trichloride for the p-type implant. The machine is capable of delivering up. to \(3-\mathrm{mA}\) beam current in the range of 5 to 200 keV .

The implanter can accommodate 26 3-in.-diameter wafers at a time. Junction implant times are on the order of 10 minutes depending on species and experimental requirements. Holders have been designed which are capable of masking the surface peripherally so that a planar structure results which does not require further etching to define the junction.

Typical doses were \(1 \times 10^{15}\) phosphorus and \(1.5 \times 10^{15}\) arsenic atoms per \(\mathrm{cm}^{2}\). Boron was implanted into the back of the wafers at a dose of \(\sim 1 \times 10^{15}\) atoms per cn \({ }^{2}\) and simultaneously driven-in in the junction anneal step,

Spin-on Diffusion Source - A Headway \({ }^{*}\) EC 100 spinner is used to apply spinmon diffusion source, dispensed from a hypodermic syringe. A variety of proprietary solutions made by Emulsitone Co., Whippany, WJ, has been used to "Headway, Corp, Garland, TX.


Figure 60. Experimental production process flow chart.
obtain phosphorus and boron films. Care is taken to ensure proper ventilation and safety precautions in handling the toxic solutions.

Phosphorus Oxychloride Deposition and Diffusion - A Thernico* SPARTAN furnace is used, fitted with flowmeters, bubblex, and exhaust. Deposition and diffusion occur simultaneously. A typical cycle is 10 minutes preheat in nitrogen to reach thermal equilibrium, 45 minutes at temperature with oxychlow ride flowing, 10 minutes in nitrogen- \(10 \%\) oxygen while the wafers are slowly withdrawn at about 50 mm per minute by a progranmed puller.

A1I furnaces are monitored weelcly, and the data are recorded together with information on any adjustments. The absolute calibration is maintained by the in-house standards department, which carries out periodic checks on all instruments and refers these to National Bureat of Standards traceable standards.
(2) CZeaning, Etching, and PhotoZithography - These operations are performed in laminar flow stations using procedures which are standardized for semiconductor device fabrication. All reagents are "Electronic Grade"; the rinse water is deionized, filtered, and monitored to ensure that its resistivity is over 18 Mohm-cm.

Wafers are "Standard Gleaned" first in SC-I, a I:I:5 mixture of ammonia, hydrogen peroxide, and water, then in hydrofluoric acid, and finally in SC-2 which is hydrochloric acid, hydrogen peroxide, and water again in a \(1: 1: 5 \mathrm{mix}\) ture at 85 to \(95^{\circ} \mathrm{C}\) for over 15 minutes. This cleaning technique is specially designed to remove films that inhibit wetting, and to remove the thin native oxide; finally, \(S C-2\) removes virtually all metallic contaminants that may reduce the carrier Iifetime in the finished device. For preimplant cleaning, an equally good alternative method has been used, based on a mixture of equal volumes of sulphuric acid and hydrogen peroxide at over \(80^{\circ} \mathrm{C}\). A standard photolithographic technique is used, based on Shipley A21350J, to produce the fine-Iine metal patterns used in the experimental stage. Wafers are stored and transported in fluorocarbon carriers with dust-tight lids and transferred to quartz boats wherever required. Oxides and glasses such as the spinmon dopant source are removed by etching in hydrofluoric acid, followed by rinsing in deionized water and drying.

\footnotetext{
*Thermco Instrument Go., Laporte, IN.
}
(3) Edive Contouring - When a spin-on source or phosphorus oxychloride is used to produce the junction, and in the case of ion inmlants when the edge mask wafer holder is not used, it is necessary to either lap, grind, or etch the junction on the wafer periphery to separate the heavily doped n- and p-type regions from each other. This can be done conveniently by either an edge or contour grinder or by lapping the edge with a slurry of garnet* in water and then cleaning.
(4) Merallization - During the initial phase of this work while the details of screen mpinting metallization are being investigated, the metal pattern is either evaporated through a metal mask or photolithographically defined.

The pattern is shown in Fig. 61. The back contact metal is not patterned. The metal is evaporated in a Veeco 775 equipped with an Airco-Temescal electron gun and planetary mechanism that permits uniform evaporation of 21 wafers at a


Figure 61. Metallization pattern

\footnotetext{
*The garnet used was Corundum \#1600 (9.5 \(\mu \mathrm{m}\) ), Bendix Abrasives Div., Westfield, MA.
}
time. The usual metallization is \(0.2 \mu \mathrm{~m}\) of titanium followed by \(3 \mu \mathrm{~m}\) of silver, and it is monitored by an Airco-Temescal XMS-3 thickness gage, A fraction of cells will continue to be metallized in this fashion for control purposes. (5) Antireflection (AR) Coating - Emulsion titaniumsilica film* is applied using a Headway spinner to obtain a layer of about 70 to 80 nm . This is baked at an average temperature of \(450^{\circ} \mathrm{C}\) in a Watkins-Johnson variable-speed belt furnace having six-heat-zone controls, in air. The wafers pass through the hot zone, which peaks at \(500^{\circ} \mathrm{C}\), in 10 minutes. The metallization is sintered at the same time.

\section*{2. Documentation and Measurements}
a. Frocess Measurements and Travelog - Incoming wafers are inspected and measured at the receiving station and the data entered into the record (Fig. 62) together with the ordering details, vendor, lot numbers, and receiving dates. When wafers are draw from the inventory, they are marked with the solar cell lot number by diamond scribing in small figures near the reference flat, and an entry is made into the solar cell travelog (Fig. 63). A process lot number is assigned and subsequent measurements and observations are entered onto the travelog. A copy of the shipped cell travelog is then filed. Individual measurements on each wafer are recorded at the various checkpoints on log sheets like those shown in Figs. 64 and 65. New experimental runs or changes in scheduling are recorded on the form shown in Fig. 66.
(1) Resistivity and Sheet Resistance - A collinear Fells probe head in conjunction with a Keithley** "Type-A1I" instrument is used for both measurements. Bulk resistivity is measured with tungsten carbide, 40 - \(\mu \mathrm{m}\) radius probe tips, loaded with 50 g , while the sheet resistance of the very thin junction layers is measured with "blunt" probe tips having \(100-\mu \mathrm{m}\) radius, loaded with 40 g . The procedures outlined in ASTM F-84-73 and FF 374-74 are followed. Uniformity is checked by reading the sheet resistance in five places on each selected wafer.

\footnotetext{
*Titaniumsilica film Type-C, purchased from Emulsitone Co., Whippany, N.J. **Keithley Instruments, Cleveland, OH.
}


Figure 62. Incoming wafer inspection sheet.


Figure 63. Solar cell travelog.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Bulk Resistivity Measurements} & \\
\hline SC Lot = & \multicolumn{3}{|c|}{Date} & \multicolumn{3}{|c|}{Oper.} & Process Lot \(=\) \\
\hline & Thickness & Factor & \(\mathrm{V}_{\text {FWD }}\) & \(\mathrm{V}_{\mathrm{RcU}}\) & Factor & Bulk \(P\) & \\
\hline SN & (mil) & 0.00254 & (mV) & (mV) & 4.53 & ( Chm -cm) & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Figure 64. Solar cell bulk resistivity measurement chart.


Figure 65. Solar cell sheet resistivity measurement chart.

Date


Figure 66. Chart for recording changes.
(2) Junction Depth - To obtain a junction depth measurement a Philtec Instrument Co.* 2015 D groover: is used, followed by staining the \(\mathrm{p}-\mathrm{n}\) junction with the silver stain described in ASTM F 110-72, reagent 6.6. Since this is a destructive measurement, only one wafer per lot of 25 is checked for junction depth routinely. However, some batches are sampled in more detail to obtain statistical data.
(3) Wafer Thickness - Thickness is measured on each incoming wafer in five places with a Bausch and Lomb** Microline DR Optical Gage 25 B. The instrument is calibrated periodically against National Bureau of Standards thickness gages.
(4) Antireflection Coating and Metallization Thickness - After the antireflection coating is baked, a wafer is coated with an etch mask such as wax or etchresistant tape in a way that permits a straight edge to be defined. This is done by etching in hydrofluoric acid; then the mask is removed. The step height or metal thickness is determined by a surface profilometer such as a Talysurf made by Engis Equipment Corp, \(\boldsymbol{*}\) * A set of wafers with a known AR coating thickness has been collected and is used for visual comparison, as routine process control.

\footnotetext{
*Philtec Instrument Co., Philadelphia, PA.
**Bausch and Lomb, New York, NY. ***Engis Engineering Corp., Mortongrove, IL.
}
b. Solar CelZ Electrical Tests - All completed cells are electrically characterized by a simulated AM-1 illuminated I-V and power output measurement. This measurement is accomplished using an ELH photoflood lamp and dynamic electronic load. The calibration and measurement procedure followed that specified by NASA-Lewis in their publication NASA TM X-71771.

A set of cells from the extremes of the performance distribution were selected for detailed diagnostic measurements. These measurements included spectral response, junction \(I-V\) characterization, and lifetime (diffusion length).
3. Sunmary and Correlation of Solar Cell Results
a. Comparison of Cell Performanae
(1) Junction Formation - A sumary of the average AM-1 parameters for solar cells fabricated by the three junction-formation processes is given in Table 10. The data are divided into high and low resistivity categories, with nine lots ( 25 wafers/lot) run with 7 to 8 ohm-cm ( 20 -mil-thick) wafers and eleven lots rum with 1 to 2 ohm-cm ( \(15-m i 1\)-thick) wafers. The illuminated solar cell parameters listed are average values for each set of lots.

\section*{TABLE 10. SUMMARY OF AM-1 CELL PERFORMANCE FOR THREE JUNCTION-FORMATION PROCESSES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{7 to 8 ohm-cm} & \multicolumn{5}{|c|}{1 to 2 ohm-cm} \\
\hline \begin{tabular}{l}
Junction \\
Formation
\end{tabular} & \[
\begin{aligned}
& \bar{I}_{\text {SC }} \\
& \text { (A) }
\end{aligned}
\] & \[
\begin{aligned}
& \overline{V_{o c}} \\
& \text { (V) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \bar{\eta} \\
& (\%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { No. } \\
& \text { Lots }
\end{aligned}
\] & \[
\bar{I}_{s c}
\]
(A) & \[
\begin{aligned}
& \overline{\mathrm{VOC}_{0}} \\
& (\mathrm{~V}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \bar{\eta} \\
& (\%) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { No. } \\
& \text { Lots }
\end{aligned}
\] \\
\hline Gaseous ( \(\mathrm{POCI}_{3}\) ) & 1.37 & 0.560 & 11.9 & 3 & 1.20 & 0.560 & 10.2 & 2 \\
\hline Spin -0 On (P) & 1.25 & 0.530 & 10.6 & 4 & 0.97 & 0.52 & 7.8 & 3 \\
\hline Ion Implantation (P) & 1.20 & 0.520 & 9.9 & 2 & 1.11 & 0.535 & 9.5 & 2 \\
\hline Ion Implantation (As) & - & - & - & 0 & 1.01 & 0.500 & 9.1 & 4 \\
\hline
\end{tabular}

Some conclusions which can be drawn from these data are:
(a) The gaseous ( \(\mathrm{POCl}_{3}\) ) diffusion junction-formation process yielded the best cells overall.
(b) Cells made from 1- to 2 -ohm-cm wafers had considerably lower shortcircuit current than those made from the 7 - to 8 -ohm-cm wafers. This conclusion should not be taken as a general result since the silicon vendor was different for each of the two resistivity ranges, and examination of the wafers by preferential chemical etching (Wright etch) revealed that the Iower resistivity wafers had a considerably higher defect density than the 7 - to 8 -ohm-cm wafers. This does, however, point out the importance of starting wafer quality in obtaining good solar cell performance.
(c) The ion-implantation process yielded lower values of short-circuit and open-circuit voltage than the other two junction-formation processes. The arsentc-implanted junctions were generally slightly poorex than phosphorus-implanted junctions. Spectral response data and pulsed recovery measurements show that the minority carrier lifetimes for cells with ion-implanted junctions are low ( \(\sim 1 \mu \mathrm{~s}\) ), resulting in diminished quantum efficiency at long wavelengths.
(d) The results for the spin-on phosphorus diffusion are encouraging; however, more work is needed to assure stability of the liquid spinon source and reproducibility of this process.

\section*{(2) Variations in Cell Characteristics and Junction Parameters - In most} categories an insufficient number of cells were completed to determine the nature of the statistical distribution of cell efficiencies. However, assessments were made of the spread in cell parameters for each jumetion-formation technology. The mean and standard deviations in measured cell parameters and sheet resistance of the junction layer for typical sets of cells are given in Table 11.

Although these data include the effects of a "learning curve" associated with the start-up of the experimental line, some preliminary conclusions and observations can be made.
(a) The tightest distribution in cell parameters (except fill factox) was obtained from cells fabricated using \(\mathrm{POCl}_{3}\) gaseous diffusion for junction formation.
(b) The deviation ( \(\mathbf{n} 16 \%\) ) in sheet resistance for the spin-on phosphorus source is larger than all others, but does not result in abnormally large variations in cell parameters.

TABLE 11. STATISTICAL VARIATIONS IN CELL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{AM \(\rightarrow 1\) Cel1 Parameters} & \multicolumn{2}{|l|}{Sheet Resistance} \\
\hline Jumetion Formation & \[
\bar{n}
\] & \[
\begin{gathered}
S_{n}^{*} \\
\hline
\end{gathered}
\] & \[
\overline{\mathrm{I}}_{\mathrm{Bc}}
\] & \(\mathrm{Stse}^{\text {dse }}\) & \(\overline{F F}\) & \(S_{\text {EF }}\) & \(\bar{V}_{\text {oc }}\) & \(\mathrm{S}_{\text {voe }}\) & \(\overline{\mathrm{R}}_{\square}\) & \({ }^{5} \square\) \\
\hline \(\mathrm{POCl}_{3}\) & 11.86 & 0.68 & I. 41 & 0.028 & 0.640 & 0.04 & 0.560 & 0.012 & 50.6 & 4.2 \\
\hline Spin-On (P) & 9.46 & 0.71 & 1.26 & 0.042 & 0.610 & 0.03 & 0.530 & 0.012 & 97.9 & 15.6 \\
\hline Ion Implantation (P) & 8.04 & 1. 02 & 1.09 & 0.056 & 0.590 & 0.04 & 0.540 & 0.020 & 218.1 & 11.1 \\
\hline Ion Implantation (As) & 7.81 & 1.09 & 0.938 & 0.098 & 0.701 & 0.02 & 0.510 & 0.020 & 89.4 & 4.1 \\
\hline
\end{tabular}
(c) The large deviations in cell parameters (primarily \(I_{s c}\) ) for the ionimplanted cells do not correlate with the very small variations in sheet resistance obtained with this process. This is consistent with the earlier observation of low minority carrier lifetime in the base of ion-implanted cells. Low lifetime also relates to the low value ( 0.510 V ) of average open-circuit voltage ( \(\mathrm{V}_{\mathrm{oc}}\) ) in the case of arsenic-implanted cells.

Another observation not shown by the above data is that low values of fill-factor and \(V_{o c}\) were traced in some cases to poor ohmic contacts on the back of the cells. This was especially true for processes using diffusion temperatures less than \(900^{\circ} \mathrm{C}\), because it was found that very little boron diffuses into the back at these temperatures making it more difficult to form a good low-resistance back contact.

Also of importance is the junction quality as reflected in the \(I-V\) characteristics and related shunt-leakage resistance. Typical I-V characteristics for each junction process measured under illuminated conditions are shown in Figs. 67, 68, 69, and 70. In these flgures, the junction or diode n -factors, saturation current density ( \(J_{0}\) ), and shunt resistance ( \(\mathrm{RSH}_{\mathrm{SH}}\) ) typical of each process are listed.

Examination of the completed cells revealed that the shunt leakage is due mostly to physical damage on the front surface of the cells incurred in handing the wafers. This problem would be reduced considerably in an automated line where wafers are moved in cassettes or by air tracks.


Figure 67. Typical I-V characteristic, \(\mathrm{POCl}_{3}\) process.


Figure 68. Typical I-V characteristic, spin-on phosphorus.


Figure 69. Typical I-V characteristic, ion implantation (P).


Figure 70. Typical I-V characteristic, ion implantation (As).
(3) Diffusion Temperature - Diffusion temperatures ranging from 800 to \(1000^{\circ} \mathrm{C}\) were used in the junction-formation processes. Examination of the average short-circuit current for lots diffused at different temperatures revealed a general trend toward Iower short-circuit current for higher diffusion temperature. Data illustrating this trend are shown in Fig. 71. This result is in agreement with other work in this field indicating that lower diffusion temperatures are preferred for solar cell processing.


Figure 71. Short-circuit current as a function of temperature.
(4) Performance and Characteristics of Spin-on AR Coatings - The titaniumsilica film, type-C has a reported index of refraction of 1.96 . The reflection and absorption properties of this product when applied to a polished silicon wafer in accordance with the procedures outlined in subsection IV.B.1.b above were measured and are show in Fig. 72. The low reflection and absorption properties combined with the-ease of application (non-vacuum process) make this spinon film technique an attractive candidate for a low-cost antireflection process.


Figure 72. Reflection and absorption properties of spin-on titaniumsilica film as a function of wavelength.

Some of the properties and problems encountered in its use on metallized, 3-in.diameter solar cells are:
(a) From experience with small ( 2 by 2 cm ) cells, an increase in shortcircuit current of \(42 \%\) is normally achieved when spin-on titaniumsilica film is applied to the polished surface. For the 3-in.diameter cells this factor averaged \(36 \%\). This reduction is due mostly to nonuniformities caused by interaction of the spin-on liquid with the metal pattern as discussed below.
(b) Nonuniform film thickness was encountered when this liquid is spun onto cells having metallization thicker than \(\sim 4 \mu \mathrm{~m}\). This becomes extremely severe for thick-film ( \(>10 \mu \mathrm{~m}\) ) screen-printed metal.
b. Summary of Yield Analysis - A yield survey was made. The survey included material handing from the incoming inspection station to final electrical testing. No yield data are included for electrical testing of completed cells
since there were no specificaions on cell performance. Deviations from standard processing requested for engineering purposes are not included. The yield data were collected from 22 lots and spanned approximately 500 solar cells. Every process variation is included in the sumary of yield data given in Table 12.

TABLE 12. SUMMARY OF YIELD. DATA

\section*{Erocess}

Wafer Cleaning
Spin-On Process
\(\mathrm{POCI}_{3}\) Diffusion
Ion Implantation
Junction Depth and Sheet Resistance Test

Metallization and Photoresist
Contour Edging

Overall Yield (Typical)

\section*{Yield \%}

98
959695

95 (Junction depth measurement is destructive)

90 (Evaporated Ti/Ag only) 92

67

These process yield figures are for a small (three hourly workers and one foreman) experimental production line. Also, the yield loss in most cases was due to breakage in handiing since manual transfers w. se used throughout. Gassette or air-track automated handling systems should increase these yield figures.
C. SGREEN-PRINTED METALLIZATION
I. Impurity Analysis of CommerciaI Thick-Film Inks

Four commercial silver-based inks were purchased from two vendors* and analyzed by spark source emission spectrography. The results of that analysis are giveil in Table 13. The high phosphorus content in the 0I-6I05 and A-3441

\footnotetext{
*Engelhard Industries, East Newark, NJ. Owens-Illinois, Inc., Toledo, OH .
}

TABLE 13. EMTSSION SPECTROGRAPHIC ANALYSIS OF FOUR THICK-FILM SILVER TNKS (ppm by wt)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Element} & \multicolumn{2}{|c|}{OWENS ILLINOIS FORMULATIONS} & \multicolumn{2}{|c|}{ENGELHARD FORMULATIONS} \\
\hline & 01-6103 & 0x -6105 & A-3233 & A-3441 \\
\hline Cu & 300-3000 & 50-500 & 20-200 & 10-100 \\
\hline AI & 15-150 & 30-300 & 100-1000 & 1000-10,000 \\
\hline Fe & 3-30 & 10-100 & 10-100 & 10-100 \\
\hline Mg & 1-10 & 3-30 & 1-10 & 50-500 \\
\hline Si & 500-5000 & 60-600 & 100-1000 & 600-6000 \\
\hline Pb & 2000-20,000 & 1-10 & S* & s \\
\hline Bg & ND** & ND & 1-10 & 30-300 \\
\hline B & 600-6000 & ND & s & 1000, 10,000 \\
\hline Sb & ND & ND & 300-3000 & 100-1000 \\
\hline Bi & ND & ND & 3-30 & ND \\
\hline Ti & ND & ND & 3-30 & 30-300 \\
\hline Zn & ND & ND & 300-3000 & 150-1500 \\
\hline Na & 50-500 & 100-1000 & 30-3000 & 30-300 \\
\hline Ni & ND & - & ND & 10-100 \\
\hline Mn & ND & 0.6-6 & ND & I-10 \\
\hline Ga & ND & - & ND & ND \\
\hline Ag & S & s & S & S \\
\hline P & ND & 1000-10,000 & ND & 600-6000 \\
\hline Au & 10-100 & ND & ND & 10-100 \\
\hline Pd & 3-30 & ND & ND & 15-150 \\
\hline Ca & ND & ND & ND & 3-30 \\
\hline Cr & ND & ND & ND & ND \\
\hline
\end{tabular}

\footnotetext{
*S = element concentration is large. **ND \(=\) not detected.
}
inks arises because of the intentional addition of phosphated grit for a rer duction of contact resistance in the case of n-type silicon surfaces, but the high aluminum content in A-3441 is undesirable from this point of view.

\section*{2. Specific Contact Resistance}

Dot patterns suitable for the determination of contact resistance were screen-printed on 0.01 ohnmen, buIk \(n\) and \(p\) słlicon, and fired at temperatures ranging from 600 to \(700^{\circ} \mathrm{C}\). Firing was done in a belt furnace, with furnace profile and belt-feed adjusted so that the wafers are at temperature for 10 minutes.

The specific contact resistivities determined by this method are listed in Table 14. From these data, it appears that (except for A-3233) a firing temperature of greater than \(650^{\circ} \mathrm{C}\) is required to achieve a sufficiently low contact resistance.

Physlcal (angle polish and stain) examinations were conducted to determine substrface penetration of silver. No evidence of silver "spiking" was found; however, tests on actual solar cell structures did reveal differences in the amount of junctinn shunting for the different inks. These results are described below.

\section*{3. Screen Printing of Solar Cell Test Patterns}

Tests of the four Ag inks described above were conducted by printing the solar cell pattern shown in Fig. 73 on wafers containing a typical jurtion formed by the \(\mathrm{POCl}_{3}\) process.

This test pattern consists of one 2.1 - by \(2.1-\mathrm{cm}\) cell, two \(0.4-\mathrm{cm}^{2}\) cells, ten diodes, and structures \(A\) and \(B\) for measurement of the contact and sheet resistance of the printed metallization.

Solar cell wafers were selected for screen printing from the experimental production line; these wafers had junctions formed by POC1 \({ }_{3}\) gaseous diffusion with sheet resistance of 40 to 50 ohm/square and junction depth of \(20.25 \mu \mathrm{~m}\). After the wafers were cleaned, the four inks (Owens I11inois OI-6103, OI-6105, Englehard A-3233, and A-3441) were printed onto the junction side of the wafers. The printing was done with an Aremco Accu-Coat Model 3100 screen printer and all inks were printed through a 200 -Iine/in. mesh with the pattern of Fig. 73 defined in the emulsion. The samples were fired in a belt furnace in air at

TABLE 14. SPECIFIC CONTACT RESISTANGE, SCREEN-PRINTED THICK FILMS
\begin{tabular}{|c|c|c|}
\hline & n-type & p-type \\
\hline Ink & \[
\begin{aligned}
& \text { (111)-plane } \\
& 1.0 \times 10^{19} / \mathrm{cc} \\
& 0.01 \mathrm{ohm}^{2}-\mathrm{cin} \\
& \left(\mathrm{ohm}-\mathrm{cm}^{2}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { (100)-plane } \\
& 1.1 \times 10^{1.9} / \mathrm{cc} \\
& 0.01 \mathrm{ohm}^{2} \mathrm{~cm} \\
& \left(\mathrm{ohm}-\mathrm{cm}^{2}\right)
\end{aligned}
\] \\
\hline A-3441 & & \\
\hline 10 m at \(700^{\circ} \mathrm{C}\) & 0.08 & 0.12 \\
\hline \(650^{\circ} \mathrm{C}\) & 1.64 & 1.08 \\
\hline \(600^{\circ} \mathrm{C}\) & 3.54 & 1.57 \\
\hline A-3233 & & \\
\hline 10 m at \(700^{\circ} \mathrm{C}\) & 0.01 & 0.11 \\
\hline \(650^{\circ} \mathrm{C}\) & 0.4 & 0.15 \\
\hline \(600^{\circ} \mathrm{C}\) & 0.76 & 0.28 \\
\hline 01-6103 & & \\
\hline 10 m at \(700^{\circ} \mathrm{C}\) & 1.21 & 0.12 \\
\hline \(650^{\circ} \mathrm{C}\) & 1.0 & 0.38 \\
\hline \(600^{\circ} \mathrm{C}\) & 1.95 & 2.47 \\
\hline OI-6105 & & \\
\hline 10 m at \(700^{\circ} \mathrm{C}\) & 0.27 & 0.44 \\
\hline \(650^{\circ} \mathrm{C}\) & 2.19 & 0.39 \\
\hline \(600^{\circ} \mathrm{C}\) & 5.01 & 7.20 \\
\hline
\end{tabular}
temperatures ranging from 675 to \(725^{\circ} \mathrm{C}\) for 10 min at peak temperature. OnIy the front side grid was screen-printed; the back contact was made after firing by evaporated and sintered ( \(500^{\circ} \mathrm{C}\) ) aluminum. The individual devices of Fig. 73 were then defined by mesa etching using wax as a mask. After etching, the area of the large cell is \(4.4 \mathrm{~cm}^{2}\).


All dimensions in mil.
Figure 73. Solar cell mask design including diagnostic cells.

From measurements of solar cell performance and the junction I-V characteristics, the following observations were made concerning the properties of the screen-printed inks:
(1) For all inks, firing temperatures of \(700^{\circ} \mathrm{C}\) or greater caused excessive metal penetration resulting in extensive shorting of the junction.
(2) The best results were obtained at a firing temperature of \(675^{\circ} \mathrm{C}\), with OI-6105 ink. This ink and firing temperature resulted in low contact resistivity ( 0.05 to 0.08 ohm \(-\mathrm{cm}^{2}\) ) and 1ittle or no evidence of shunting (see Fig. 74). The major limitation was in printing the \(5-\) mil-wide line over a \(2-\mathrm{cm}\) length. The 1 ine obtained had a repetitive "hour-glass" shape with some discontinuities in the "neckeddown" regions (Fig. 75). Line widths of 10 mil or greater printed well and had a height of \(\sim 20 \mu \mathrm{~m}\). The measured lateral resistivity of these lines is 4 to \(6 \mu \mathrm{ohm}-\mathrm{cm}\). The discontinuities in the \(5-\mathrm{mil}-\) wide lines caused excessive series resistance in the \(2-\) by \(2-\mathrm{cm}\) cells,


Figure 74. Junction I-V characteristic for solar cell printed with OI-6105 Ag ink and fired at \(675^{\circ} \mathrm{C}\).


Figure 75. Photomicrograph of 5-mil line printed with OI-6105 ink using 200-line/in. mesh.
limiting the fill factor to 0.45 at one sun illumination. The small cells ( \(0.4 \mathrm{~cm}^{2}\) ) performed well, having a \(7.8 \%\) efficiency (no \(A R\) coating) with a fill factor of 0.77 .
(3) At \(675^{\circ} \mathrm{C}\) firing temperature, the three remaining ink samples had high contact resistivities, \(\gtrsim_{0} .2\) ohm-cm \({ }^{2}\), and all showed evidence of junction shunting in the electrical \(I-V\) measurements. The effect of shunting on the junction characteristics is illustrated in Fig. 76.
(4) The Englehard inks printed the best geometric \(5-\mathrm{mil}\) line width at a thickness of \(n 13 \mu \mathrm{~m}\).
(5) Spin-on AR coating could not be successfully applied to the screenprinted samples, The metal scatters the liquid upon spinning, causing a very nonuniform coating.


Figure 76. Junction I-V characteristic for solar cell printed with A-3441 Ag ink and fired at \(675^{\circ} \mathrm{C}\) illustrating shunting.

\section*{D. PANEL DESIGN AND ASSEMBE Y}
1. Comparison of Glase Panel Designs Evaluated During Phase II
a. Introduction - RCA is convinced that a glass/cell/glass sandwich construction is required to achieve the JPL life and cost goals. During this period we evaluated, by process analysis and experimental fabrication of panels, several ways to achieve double-glass construction. Basically, there were three classes of designs considered: adhesive bonding between cells, adhesive bonding on cells, and safety glass lamination.

The receipt of the JPL proposed specification 5101-16 "Silicon Solar Cell Module Design, Performance, and Acceptance Test Requirements" had a significant impact on the panel design. The primary effect was due to the provision of a two-edge rather than the previously assumed fuur-edge support substructure, requiring the incorporation of an aluminum U-channel frame to resist the wind loads. The safety glass lamination technique housed in an alumium frame appears to meet all JPL specifications and is cost effective. A comparison matrix of the various panel techniques evaluated during this phase is shown in Table 15. Photographs of full-size panels containing dumny cells are shown in Figs. 77 and 78.
b. Adhesive Bonding Between Cells - This panel design used 165 3.6-in.diameter cells in an 11 by 15 array. The space between cells is used to hold a matrix of epoxy dots with spacer discs to form a honeycomb-like structure. To function effectively as a honeycomb structure the two cover sheets should be of equal thickness. Under these conditions the shear stress on the epoxy dots can be determined from the beam equations on the neutral axis. The shear stress at \(50-\mathrm{ps} f\) loading for two \(1 / 8-\mathrm{in}\). sheets is 50 psi at the center and 100 psi at the outer edges. Assuming a \(5 \%\) area coverage for the dots, we have a 2000 -psi bond stress. Typical epoxies can provide a bond strength of 3000 psi.

There are several options available on the optical coupling method. The two-surface front glass panel reflection can be reduced from approximately 8 to \(3 \%\) by an etching process which selectively leaches material out of the glass surface. The porous surface layer created has an effective index less

TABLE 15. PERFORMANCE COMPARISON MATRIX FOR VARIOUS GLASS/CELI/GLASS
PANELS EVALUATED DURING PHASE II



Figure 77. First 4- by 4-ft laminated panel with aluminum frame having extensive breakage and bubbles.


Figure 78. Second 4- by 4-ft laminated panel with aluminum frame having limited breakage and one bubble.

ORIGINAL PAGE K
OI ROOZ QUALIK
than solid glass. This porous layer, however, is susceptible to body oils and other environmental impurities which tend to destroy the antireflection (AR) character of the surface. With this etch-formed AR coating in mind, the adhesive band between cells approach can be implemented optically through the following options:
(1) AR/No AR/oil
(2) \(\mathrm{AR} / \mathrm{AR} / \mathrm{Air}\)
(3) No AR/No AR/Air

The performance of the various choices is summarized on 1 ine 1 of Table 15. In addition to the variation of optical coupling, the air film adds a thermal resistance which causes an additional \(2.9 \%\) power loss due to higher cell temperature.

In light of the JPL specification for 10,000 wind load cycles this panel was judged as very likely to fail at the bond dots. A \(2-\) by \(2-\mathrm{ft}\) mechanical panel model was constructed using this technique and is shown in Fig. 79. The area required for epoxy dots decreases panel packing density particularly when sheet-grown rectangular cells become available. Therefore, this tech\({ }_{t}\) nique would not have long-term applicability.


Figure 79. Photograph of mechanical panel model.
c. Adhesive Bonding on Cells - The technique of putting epoxy dots on each cell so that the dots spread over the cell by displacement was considered. This technique would leave air spaces between cells if the epoxy quantity and final gap were closely controlled. The major advantage of this technique is that the bond area could be increased 15 to 20 times, thus largely solving the laminate fatique problem. However, there is nonuniform radial flow caused by finger geometry and wettability variations. These effects always cause air bubble entrapment, and as the bond thickness is decreased to its final value around 0.010 In ., the percentage of voids in front of the cells can easily approach \(50 \%\).

The fabrication process for this technique would be the implacement of multiple dots of premeasured epoxy on the glass sheet on the cell centers. Then the glass sheet would be lowered on the cell array causing the radlal outflow of all dots simultaneously. The subassembly would be turned over, and the same process would be repeated on the other side. A few preliminary tests with this technique using single cells were performed. The resulting burble patterns and their optical/thermal effects caused this technique to be tbandoned.
d. Safety Glass Lamination - This is the preferred panel technique, and all results to date have been quite encouraging. The basic approach is to encapsulate the cells in the same polyvinyl butyral (PVB) resin that is used for safety glass. The technology of laminating two sheets of untempered glass with a 0.015-in. sheet of PVB is widely used for automotive and architectural applications. Current production rates of PVB are equivalent to more than \(1000 \mathrm{~mW} / \mathrm{yr}\); thus the midterm requirements for PVB would not have an impact on cost and supply. The refractive index of PVB is 1.48 which is an excellent match to the index of soda lime of 1.50 . There are various grades of PVB with UV absorbing compounds added to protect fabrics from yellowing. However, above 0.40 JV transmission tests indicate no detectable interface refiectance between PVB and glass. In the PVB compounds without wV absorbing materials there has never been a report of UV yellowing. Since PVB has been in service for more than 20 years, it appears that this material will definitely achieve the JPL life goals.

The PVB is supplied as sheet stock at \(0.015-i n\). thickness with a carefully controlled moisture content that affects stretchability. To control the moisture content the PVB must be stored at \(50^{\circ} \mathrm{F}\) or below at all times in a protective bag. The blanking and layup room must be controlled at \(65^{\circ} \mathrm{F}\) and 18 to \(22 \%\) relative humidity. The assembly layup is from top to bottom:
(1) Glass sheet
(2) \(0.015-\) in. PVB sheet
(3) Interconnected cell array
(4) 0.015-in. PVB sheet
(5) Glass sheet

Then the assembly is placed in a rubber bag and the bag is placed in an autoclave (pressure/temperature chamber). Then the bag is evacuated to withdraw most of the air from the interface region. The temperature is then increased to a maximum of \(140^{\circ} \mathrm{C}\) and the autoclave pressurized to 50 to 100 psig to cause the PVB to flow intimately around all the cells and interconnects (Fig. 80). The hydrostatic pressure in the PVB (which is equal to the autoclave pressure) causes all the tiny air bubbles to dissolve in the bulk of the PVB. Thus when the process is properly adjusted, a void-free, optically perfect interface is created.


Figure 80. Solar panel configuration.

A 6- by \(6-i n\). laminate with four active series-connected solar cells was fabricated. Over the cell area there were no bubbles, but several small ones were visible between cells. A dark I-V curve was taken before and after laminating with no change. Then the lamination was cycled through 50 cycles from -45 to \(95^{\circ} \mathrm{C}\) with no change in the dark I-V curve. The laminating industry states that any visible bubble will grow through peeling caused by temperatureinduced pressure changes within the bubble. This fact was seen to occur with the four-cell laminate where most bubbles approximately doubled in diameter. Thus, it is important that any laminate be entirely bubble-free.

A cross-sectional view of the solar panel frame is shown in Fig. 81. The two frame sections will be a custom-designed aluminum extrusion. Two rubber gaskets are used to cushion the glass against differential thermal expansion and wind-1oad damping. A foil seal is used on the vertical edge of the laminate to prevent liquid water from contacting the PVB, which swells upon contact with water. Figures 82 and 83 show the details for on-site mounting and panel electrical interconnects.


Figure 81. Solar panel framing.


Figure 82. Front/rear mounting.


Figure 83. Panel interconnect detail.

At the end of this phase two Full-size panels containing interconnected dummy cells were laminated and assembled into frames. The first laminating procedure used too much pressure and broke around every cell and had numerous internal air bubbles (Fig. 77). The second panel laminated has only one air bubble ( 1 mm ) and initially two short cracks. Several additional cracks were caused in handing for assembly into the frame (Fig. 78).

\section*{2. Gell Matching Analysis}

This analysis is beting conducted to determine whether any cell measuring and sorting strategy can increase assembled panel generation capability compared with random cell selection for the panel. It is expected that \(100 \%\) acceptance testing of cells will be required to avoid the possible use of inactive cells. This effort is directed to the issue of whether there should be sorting of good cells into performance categories.

It is still not possible to characterize the product distribution of a low-cost solar cell production line. This study is based on certain simplifying assumptions concerning cell property variability produced by such a Iine. Therefore, the results of this study should not be regarded as definitive. The computer models and techniques used in this study can be used for more exacting studies as product variability becomes better defined.
a. Assumptions - It is assumed that the only cell test to be performed will be a measurement of a test current ( \(I_{\text {test }}\) ) at \(A M-1\) flux and at a preselected test voltage ( \(V_{\text {test }}\) ). The selected test voltage is in the middle of the range of voltages where \(P_{\max }\) will occur; typically this is 460 mV . Since the AM-1 flux is know, then this test actually measures efficiency ( \(\eta_{\text {test }}\) ) at \(V_{\text {test }}\)

In order to compute the panel output power with various cell combinations, a closed form function describing the cell \(I-V\) characteristic is required. Basically, there is a choice between two different expressions. The simplest function uses one exponential term to represent junction current leakage while the more complicated function uses two exponential terms. The on -term function requires knowledge of shortmcircuit current \(\left(I_{s c}\right)\), open-cireuit voltage ( \(V_{o c}\) ), and one point near the \(P_{\max }\) point, \(i . e .,\left(I_{\text {test }}\right)\) at ( \(V_{\text {test }}\) ) to solve for the constants (A, \(I_{0}\) ) that will pass the characteristic equation through all three
points. In contrast, the two-term \(1-V\) characteristic requires one additional point ( \(I, V\) ) to find three constants ( \(A, I_{o 1}, I_{o 2}\) ) that will pass the characterisic curve through all four points. In order to use the one-tern characteristic, the following assumptions have been made.
(1) All usable cells have the same open-circuit voltage, \(\nabla_{o c}\).
(2) The ratio of short-circuit current \(I_{s c}\) to test current ( \(I_{\text {test }}\) ) is the same for all cells at a value of \(I_{\text {rat }} 0^{\circ}\)
Some assumptions must also be made about the distribution of ceils produced. The most logical assumption is that the measured test efficiencies \(\eta_{\text {test }}\) fit a normal (Gaussian) probability distribution; that is, that the probability of a cell having a given efficiency fits the curve in Fig. 84.


Figure 84. Gaussian probability distribution of test efficiency of cells.

The requirement of this curve is that the integral under a normalized curve over all values of \(X\) is equal to 1 . This simply states that all cells measured have a measurable test efficiency. It is assumed that all cells between \(\pm 3 \sigma\) (standard deviations) will be accepted for panel fabrication, which would consume \(99.8 \%\) of all cell production. The final results will show that even if this "window" were narrowed, the conclusions would be unaffected.

It is assumed that all test efficiencies falling in arbitrarily defined ranges of test efficiencies will be separated into different bins. Thus any cell falling within the efficiency range defined by region I in Fig. 84 would be put in box \(I\) and so forth. For the purpose of this analysis, it is assumed that all cells in box I can be represented by the efficiency at the middle of the range \(I\) and so forth. For the purpose of this analysis, it is assumed deviations defining the various ranges have been picked; the analytical relationship of the Gaussian distribution can be used to find the cell populations of each box.
b. Analytical Model - The basic analytical relationship used in this circuit model is the well-known single exponential relationship between cell voltage and current. The key circuit relationships data processing steps used will be described in the logical sequence used in the model. For the particular case analyzed, the test efficiency points were:
\[
\begin{array}{ll}
\eta_{\max }=18 \% & +3 \sigma \\
\eta_{\text {avg }}=15 \% & \text { mean } \\
\eta_{\min }=12 \% & -3 \sigma
\end{array}
\]

Five sort regions were chosen with the average efficiency in each bin being:
\[
\begin{aligned}
& \eta[1]=12.62 \% \\
& \eta[2]=13.87 \% \\
& \eta[3]=15.0 \% \\
& \eta[4]=16.12 \% \\
& \eta[5]=17.38 \%
\end{aligned}
\]
\[
\mathrm{v}_{o c}=0.545 \text { open-circuit voltage }
\]
\[
I_{\text {ratio }}=0.75 \text { ratio of short-circuit to test current. }
\]

The value of \(I_{\text {ratio }}\) used is representative of terrestrial cells in use today. Further investigations can accommodate value in the range of 0.55 to 0.85 , probably due to variations in series resistance.
\[
\begin{equation*}
\mathrm{AM}-1=0.097 \mathrm{~W} / \mathrm{cm}^{2}(\mathrm{AM}-1 \mathrm{f} 1 \mathrm{ux}) \tag{27}
\end{equation*}
\]

The characteristic I-V expression referred to earlier is
\[
\begin{equation*}
I_{L}=I_{s c}-I_{o}\left(e^{\lambda / A V_{L}}-I\right)=I_{L_{1}}\left(V_{L}\right) \tag{28}
\end{equation*}
\]
where \(\lambda=e / k T-38.647\), a known constant. For reference, the \(I-V\) characteristics for the five regions are shown in fig. 85. By placing the points ( \(I_{\text {test }}, V_{\text {test }}\) ), ( \(0, V_{o c}\) ) along with \(I_{s c}=I_{\text {test }} / I_{\text {ratio }}\) in Eq. (28), two simultaneous equations are generated that define the \(A\) and \(I_{0}\) for the particular cell's characteristic curve.


Figure 85. I-V characteristics of five sort regions.
\(A\) and \(I_{o}\) are found by a Newton-Rapheson technique. In this manner, the constants for all cell bins are found \(A[J]\), \(I_{0}[J]\) for \(J=1\) to 5 .

The fraction of production (Frac) that falls in equal regions found by numerical fit to the Gaussian distribution is

Fracil] \(=0.047\)
Frac[2] \(=0.264\)
Frac [3] \(=0.378\)
\(\operatorname{Frac}[4]=0.264\)
Frac[5] \(=0.047\)

The calculation which must be made is to compare the maximum performance of a circuit with the distribution of cells shown above, all operating at maximum efficiency with the same circuit operating at the design terminal voltage and each cell at the same current.
(1) Operation at Maximum Cincuit Efficiency - The power produced by a \(\mathrm{P}_{\mathrm{I}}\) is given by
\[
\begin{equation*}
P_{L}=V_{L} \frac{I_{L}}{}\left(V_{L}\right) \tag{29}
\end{equation*}
\]
where \(I_{L}\left(V_{L}\right)\) is given by Eq. (28). To find the maximum power, the derivative \(\frac{\mathrm{d}\left(\mathrm{P}_{\mathrm{L}}\right)}{\mathrm{d}\left(\mathrm{V}_{\mathrm{L}}\right)}\) of Eq . (29) can be found readily in closed form. Then by using the Newton-Rapheson method, the value of voltage \(V_{p m a x}[J]\) in Eq. (29), the values of \(P_{\text {max }}[J]\) per \(\mathrm{cm}^{2}\) of cell for all regions can be found. Each of the values of power must be multiplied by the appropriate area Frac[J] to get the actual. power. Therefore, the maximum total produced is given by
\[
\begin{equation*}
P_{\text {mi }}=\sum_{J=1}^{J=5} \operatorname{Frac}[J] P_{\text {max }}[J] \tag{30}
\end{equation*}
\]

In other words, \(P_{m i}\) is the maximum power that could be produced if the cells were sorted and assembled into five different panel types.
(2) String Operation - When power is produced by a string of cells, they must all have the same current density. However, the power to the panel is contributed in proportion to the areas Frac[J]. Thus, the expression for the string power as a function of current. \(I_{L}\) is given by
\[
\begin{equation*}
P_{s \operatorname{tring}}\left(I_{L}\right)=\sum \operatorname{Frac}[J] \quad P_{L}\left(I_{L}\right) \tag{31}
\end{equation*}
\]

Here the power as a function of current \(I_{L}\) is needed which can be found by solving Eq. (28) for \(V_{L}\left(I_{L}\right)\), and, therefore, \(P_{I_{1}}\left(I_{L}\right)=I_{L} * V_{L}\left(I_{L}\right)\). Here again the derivative of string power with respect to current \(d\left(P_{\text {string }}\right) / d\left(I_{L}\right)\)
can be found in closed form. Then the value of \(I_{L}\) for maximum string power is found, \(I_{p m s}\). In this manner, the maximum string power found is
\[
\begin{equation*}
P_{\text {ms }}=V_{\text {string }}\left(I_{p m s}\right) \tag{32}
\end{equation*}
\]

Thus, the value of \(P_{m s}\) corresponds to the panel power produced if the panel were composed of the appropriate fractions of production Frac[J] for the normal distribution, That is, \(P_{m s}\) represents the typical panel with no sorting.
(3) Results - The result of all these calculations is that
\[
\begin{aligned}
& P_{m i}=16.4 \mathrm{~mW} / \mathrm{cm}^{2}-\text { independent optimized operation } \\
& \mathrm{P}_{\mathrm{ms}}=15.9 \mathrm{~mW} / \mathrm{cm}^{2}-\text { string optimized operation }
\end{aligned}
\]

Thus there is only a \(2.95 \%\) gain in the power produced due to the sorting and selective assembly postulated in this analysis. For \(100 \%\) test of wafers in an automated facility, we have shown that the test cost is \(\$ 0.012 / W\). If the installed power supply costs \(\$ 1 / W\), this \(n 3 \%\) increase in output power saves \(1.8 ¢ / W\), and, therefore, the implementation of this procedure is costeffective. It is recognized that many assumptions had to be made to conduct this analysis. It is possible that other distributions of cells or a distribution of different cell characteristics could change the concIusions somewhat. It will probably not be worthwhile to pursue this issue further until the low-cost parameters are more completely characterized.

\section*{E. CONCLUSIONS - EXPERIMENTAL PRODUCTION STUDY}

The work reported here represents a 6 -month experimental production study of the elements of low-cost manufacturing sequences previously identified. In starting any production line, a "learning-curve" process is inevitably experienced, so that the conclusions drawn are to be considered preliminary, and should be weighted accordingly.
1. Solar Cell Experimental Production Study

The major process variable studied, that of junction formation, included \(\mathrm{POCI}_{3}\) gaseous diffusion, spin-on source ( P ) diffusion, and ion inplantation ( \(P\) and As). The major conclusions concerning these are:
- \(\mathrm{POCl}_{3}\) gaseous diffusion resulted in the best cell performance.
- Spin-on phosphorus sources resulted in reasonably good junctions and cell performance. Reproducibility, stability of the source, and unfformity all need further verification.
- The ion-implanted junction-formation process for both arsenic and phosphorus generally resulted in poor cell performance. The shortcircuit currents obtained from cells made by ion implantation were lowest of the three junctions processes and exhibited the largest in-1ot and lot-to-lot varfations. Generally poorer junction quality and low values af lifetime characterized this process.
- Individual process step yields exceeded \(90 \%\) even though manual handling was used. Wafer breakage was the major factor in yield loss.
- High temperature processing ( \(>900^{\circ} \mathrm{C}\) ) resulted in lower short-circuit current.
- Litttle correlation was noted between measured junction sheet resistance and cell performance in that wide variations of sheet resistance did not result in similar variations in electrical cell parameters.

\section*{2. Screen-Printed Thick-Film Metallization}
- Of the four commercial inks studied, the Owens-IIlinois 6105 phosphated ink exhibited the best electrical characteristics.
- Inks which do not contain phosphates were fomd to yield unacceptably high values of contact resistance and generally resulted in shunted junctions.
- A firing temperature of \(675^{\circ} \mathrm{G}\) was found adequate to obtain a contact resistivity of \(\mathbf{2 0 . 0 5}\) to 0.08 ohm-cm to \(\mathrm{n}^{+}\)junction layers having 30to 50-ohm/square sheet resistance and junction depth of \(0.25 \mu \mathrm{~m}\).
- Screen meshes of 200 lines/in. and emulsion thickness of 1 mil were foud to result in poor dimensional control in the printing of 5-min-wide lines.
- The thickness of the fired Iines ranged from 15 to \(20 \mu \mathrm{~m}\) and had sheet resistivity of 4 to 6 pohm-cm. These values were foum adequate for the front grid of solar cells.
3. Panel Assembly

A preferred panel design and assembly technique has been determined. This design incorporates features directed towards satisfying JPL specifications on electrical performance and acceptance test requirements. The panel is a doubleglass laminate structure, 4 by 4 ft in size, containing \(11 \times 15\) array of 3.6 -in.diameter cells. The construction makes use of a well-established safety glass lamination technique by laminating two 1/8-in.-thick sheets of untempered glass with two 0.015-in.-thick sheets of polyvinyl butyral (PVB) which encapulate the cells and bond the glass. Some preliminary conclusions derived from initial tests of this lamine:ing procedure are:
- It is important that the laminate be entirely bubblemfree since even small bubbles will eventually cause delamination during thermal cycling.
- Small, 6- by 6-in. panels were successfully constructed containing active cells. No change in cell characteristics was noted after 50 cycles of -45 to \(+95^{\circ} \mathrm{C}\) thermal testing.
- The lamination procedures required for full-size ( 4 by 4 ft) panels have not been determined. In initial tests, lamination of 4-by 4-ft panels resulted in cracking of the glass.

\section*{F. RECOMMENDATIONS}

In order to more fully verify those process steps which are currently acceptable and to develop and bring to a state of readiness the processes needed for a complete cost-effective manufacturing sequence, the folicwing recommendations are made:
(1) Economic analysis and experimental production data are required on silicon wafers having saw/etched surfaces.
(2) The details of the limits on input/output requirements of the \(\mathrm{POCl}_{3}\) gaseous diffusion junction-formation technique in conjunction with the requirements for screen-printed contacts should be determined by experimental production of a sufficient quantity of cells.
(3) While spin-on source dopants seem econonically viable, further work is required on the relationship of the liquid source composition to its stability and the resultant junction properties. Specifically, water-based dopant sources should be evaluated.
(4) The ion implantation and thermal activation and anneal process requite a thorough evaluation to determine the processing steps necessary to achieve higher efficiencies in cells fabricated by this method.
(5) A complete procedure for front-grid and back surface screenprinted metalilization requires development. Specific attention should be directed toward compatibility of the metaliization With interconnect technology (solderability), back surface ohmic contacting, wafer breakage, and development of performance and cost-effective inks.

APPENDICES

\section*{A. COST ANALYSIS PROCEDURE}

For purposes of cost analysis, the manufacture of solar array modules has been represented by a series of technological process. (See Appendix B for definition of terms.) Each technological process must be described in terms of the following:
(1) Incoming material requirements.
(2) Value added - material, labor, overhead.
(3) Equipment requirements as a function of production levels.
(4) Process yield - ratio of output units to input units. (Note that this is a measure of physical flow, not product quality.)
After these parameters have been provided, alternative manufacturing processes can be defined in terms of a subset of these technological processes. For a specified level of output (measured in megawatts), cost data will be provided for each technological process and the total manufacturing process.

The following problems arise even in this simple cost model:
(1) The electrical characteristics of the output of two alternative technological processes may differ.
(2) The quality of two alternative processes may differ.
(3) Synergistic effects of combining various processes may need consideration.

In the initial model implementation, the material input to any technological process \(i\) will be \(M_{i}\) units. If \(y_{i}\) is the process yield and \(r_{i}\) is the number of input units constituting one output unit (e.g., 7.35 g per wafer), then the output \(M_{i}\) of this process will be \(\left(M_{i} / x_{i}\right) y_{i}\). The number of input units scrapped in the process will be \(M_{i}-M_{i}^{1}{ }_{i}=M_{i}\left(1-y_{i}\right)\).

Figure A-1 depicts a technological process used in the manufacture of solar array modules. \(M_{i}\) incoming units valued at \(\$ X_{i}\) per unit are processed. Direct material, direct labor, and overhead increase the value of each untt to \(\$ X_{i}{ }^{\prime}\). \(M_{i}^{\prime}\) units leave the process and enter the next step; the remaining input units are scrapped, with the salvage value being used to reduce process overhead. The average output unit cost \(X_{i}{ }^{\prime}\) is determined from process cost information.


Figure A-1. Technological process representation.

It is important to note that the number of units entering a process normally will be greater than the number leaving the process. Hence, the capacity requirements of various processes may differ. This simple model assumes that flow is from one process to the next; no feedback of units to an earlier stage is currently permitted. Therefore, for a given megawatt requirement, the processing requirements of each technological process can be determined and then the cost of processing a unit computed.

Once a description of each technological process has been made, the user of the model must specify the output requirenients (megawatts), the technological processes to be used, and the electrical characteristics of the final solar cells (electrical characteristics will be dependent upon the processes used). The model will then compute the cost of output requirements and provide detailed cost estimates on a process basis. Alternative strategies can be explored. Also sensitivity of cost to various parameters can be studied by varying the individual parameters.

Once a small number of feasible alternatives have been selected, a detailed financial analysis could be made of each alternative. This analysis could use a simulation approach in order to incorporate uncertainty rather than the deterministic approach utilized in the initial screening process in order to estimate the risk involved in each alternative scheme.

This model facilitates the analysis of alternative manufacturing approaches. It is only a first approximation, however, whose primary purpose is to systematize
the financial analysis and permit comparisons with current state-of-the-art cost estimates. This initial model will need enhancements to incorporate some os all of the following items:
(1) MuIti-year analysis capability utilizing discounted cash flow techniques.
(2) Distribution of electrical characteristics to represent the "quality" of individual processeg. This would be based upon the performance approach described in Quarterly Report No. 1 [A-1].
(3) Synergistic effects of combining certain processes.

The selection of those features to be implemented will depend upon the number of different process combinations to be analyzed and the accuracy to which process parameters can be estimated.

The cost estimates provided by the model incIude:
(1) Processing cost, expressed in \(\$ / W\)
(2) Floor area requirements for manufacturing area
(3) Direct and indirect labor personnel required
(4) Material and direct expense sumary

In order to estimate selling price, wafer cost, factory investment, interest and depreciation on this investment, and salaries of support personnel. must be determined. (Support personnel inciudes administration, warehouse personnel, finance, quality control, etc.)

That is,
Wafer cost, \(\$ / W\)
+ Processing cost, \$/W
+ Heating, cooling, 1ighting, \$/W
+ Insurance, \(\$ / \mathrm{W}\)
+ Factory interest \& depreciation, \$/W
+ Administrative \& support salaries, \$/W
+ Profit, \$/W
\(=\) Selling price, \(\$ / W\)

A-1. B. F. Williams, Automated Array Assembly, Quarterly Report No. 1, ERDA/JPL-954352/1, prepared under Contract No. 954352 for Jet Propulsions Laboratory, March 1976.

\section*{A. GENERAL INPUT PARAMETERS}
1. Growth profile - not used currently
2. Shift premium - 2nd or 3rd shift bonus rate
3. Depreciation method: \(S L=\) straightline; \(S Y D=\) sum-of-the-year-digits
4. Interest rate on debt - interest rate on borrowed funds
5. Debt ratio - \% of fixed assets financed by debt
6. Sheet - 7.8-cm (3.07)-diameter wafer
7. Solar cell - a "sheet" after electrical test
8. Array module - a \(14.6 \mathrm{ft}^{2}\) panel containing 224 solar cells
9. Purchased silicon cost; \$/W - not used currently
B. GENERAL INPUTS: INVESTMENT TYPE DEFINITIONS
1. Name - investment name
2. Type - process or factory
3. Availability \(-\%\) of time investment is available for use. Remainder of time consists of preventive maintenance, unscheduled maintenance, or idle time due to lack of availability of related investments
4. Cost - first cost + delivery charges + taxes + installation costs
5. Book life - estimated life for depreciation purposes
6. Area - area, in \(f t^{2}\), occupied by investment and associated operators

\section*{G. GENERAL INPUTS: LABOR TYPE DEFINITIONS}
1. Labor name - labor category
2. Labor type - direct: labor which varies directly with the level of production; indirect: labor which is constant over a range of production
3. Wage rate \(=\$ / \mathrm{hr}\) base pay
4. GP非 - not used
5. Fringe benefits - cost of employee fringe benefits expressed as a \% of wage rate
6. Efficiency - ratio of labor required to actual labor (allows for rest periods, lunch periods, absences, etc.)
D. GENERAL INPUTS: EXPENSE TYPE DEFINTTIONS
1. Expense name - material or direct expense name
2. Type - material: items which become an integral part of solar cell or array module; direct expense: items consumed in cell or array manufacture which do not become an integral part of assembly
3. Cost - (a) cost of item, in \(\$ / \mathrm{cm}^{3}\), \$/gram, \(\$ / \mathrm{kwh}\) (process expenses will be expressed in units specified); (b) "specified in \$" if process expense will be expressed in \$
4. Salvage value - not used currently

\section*{E. PROCESS PARAMETERS}
1. Process - group of operations associated with a specific technology step
2. Subprocess - a group of operations shared by one or more processes
3. Input unit, output unit - "sheet," "solar cell," or "array module"
4. Transport In, Transport Out - method of transferring units into and out of the process area
5. Process yield ("YIELD") - ratio of output units to input units. This is a measure of physical flow, not process quality
6. Input unit salvage value ("SALVAGE VALUE") - estimated recovery value of a scrapped imput unit. At this moment, all values are zero
7. Production area floor space requirements - estimate of floor area needed, excluding area occupied by investments. "Floor space" is calculated using the "AREA (SQ.FT.)" value associated with the largest "INPUT UNITS" Volume less than or equal to current production volume. The area associated with investments is added to this base area amount to determine the "estimated floor area" of the process
8. Description - brief process description
9. Assumptions - list of assumptions made in preparing cost estimate
10. Procedure - description of process major steps
11. Investments - (a) name: investment name, defined in \(B\) above; (b) maximum throughput units; throughput of investment (sheets/h, solar cell/h, or array module/h. Effective rate = maximum throughput \(x\) availability. (If both sides of an input wafer are to be processed separately, either adjust the throughput rate or adjust the "fraction of input units processea" parameter.) (c) \% input units processed: used to adjust input volume for rework and for processing both sides of a wafer separately. It may also be used for "rework only" investments to specify fraction of input units requiring reworic. NOTE: If two or more different investments are part of a set, the effective throughput rates must be the same.
12. Labor - (a) name: defined in \(C\) above; (b) labor requirements base: (1) investment name or (2) "fixed" - \#persons/shift fixed (3) "DL" base is \(\#\) of direct labor persons; (4) "TL" - base is \(\#\) fo labor persons associated with process (c) \# of persons/shift/base unit - ratio of persons of specified labor type to \(\#\) units of specified base or (d) throughput/h/person - \# of input units per hour handled by specified labor type
\% input units processed - \% of input units for which this type of labor is required. If an input unit is processed more than once (both sides and/or rework), this factor may be greater than \(100 \%\). If only reworked units or units passing some internal test are processed, this factor may be less than \(100 \%\).
\# operators/shift \(=\frac{\text { \# input units } / y r \times \% \text { input units processed } / 100}{\text { throughput } / \mathrm{h} \times \text { hours y year } \times \text { effitiency }}\)
13. Supplies/expenses - (a) name - see D above; (b) annual fixed part fixed part of expense (multiplied by \# labor persons or investment units for labor or investment bases). Must be specified in same units as espense name. (c) variable part - units - variable part of expense; (d) base - (1) per input unit, \% input units processed (2) per available investment/hr of specified investment
\(\$\) Cost \(=\) (Annual fixed part + variable part \(x\) base units) \(x\) (\$/unit)
F. COST ANALYSIS: PROCESS AND OTHER COST ESTTMATES
1. Material - material cost, \(\$ / \mathrm{W}\)
2. D.L. - direct labor cost, including fringe benefits, \(\$ / W\)
3. EXP. - direct expense cost, \$/W
4. P.oH. - process overhead cost, \$/W (indirect labor cost)
5. INT. - interest cost, \(\$ / \mathrm{W}\)
6. DEPR. - depreciation cost, \$/W
7. TOTALS - total of items \(1 .-6\), above
8. INVEST - investment required, \(\$ / \mathrm{W}\)
G. COSt analysis: manufacturing sequence name
1. Material, etc. - as in \(F\) above
2. SALVG. - estimated recovery value of scrap, \$/W```

