General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Enosinttirschnanm

THE OPTIMIZATION OF SELF-PHASED ARRAYS FOR DIJIRNAL MOTION TRACKING OF SYNCHRONOUS SATELLITES
D.M. Theobold and D.B. Hodge

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering Columbus, Ohio 43212

Technical Report 4299-5

```
June 1977
```

```
(NASA-CR-156795) THE OPTIMIZATION OF
SELF-PHASED ARRAYS POR DIURNAL MOTION
TRACKING OF SYNCHRONOUS SATELIITES (OhiO
State Univ.. Columbus.) 22 p HC A02/MF A01 Unclas
CSCL 22A G3/15 28379
```

Prepared for National Aeronautics ard Space Administration GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

TECHNICAL REPORT STANDARD TITLE PAGE

[^0]
TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. GAIN OPTIMIZATION 3
III. NUMERICAL DESIGN 4
IV. CIRCULAR DIURNAL MOTION 6
v. STRAIGHT LINE DIURNAL MOTION 9
VI. ADDITIONAL EXAMPLES 13
VI]. SUMMARY AND RENARKS 13
REFERENCE 19

I. INTRODUCTION

The design of an earth-space communication link which utilizes a synchronous satellite at centimeter and shorter wavelengths presents the problem of choosing an antenna and tracking method. Although a synchronous satellite is considered to be "stationary" with respect to an observation point on the earth, it experiences East-West perturbations due to earth oblateness and solar radiation and North-South perturbations resulting from solar and lunar gravitational forces. These motions appear to an observer at a fixed point on the earth as a diurnal (periodic over twenty-four hours) variation in the apparent look-angle which projects on a plane normal to the propagation path as an approximate ellipse with eccentricity from zero to one or as any of a number of other closed paths. This "diurnal motion" must be tracked if narrowbeamwidth antennas are chosen for a communication link.

Narrow-beamwidth antennas offer high gain where a large system gain-bandwidth product is desired. However, their large apertures and the necessity of mechanically tracking diurnal motion impose high cost on the antenna and mount equipment. In addition, a failure in the mechanical system or the control electronics disables the communication link entirely. A single element of moderate aperture offers an alternative tracking method. Such an antenna may be fixed pointed if its beamwidth is wider than the satellite motion. However, its gain will be low compared to a large aperture tracking antenna and hence such a system would be susceptible to precipitation fading. An alternative to a single large aperture tracking antenna or a single moderate aperture fixed antenna is to utilize a large number of small aperture elements in a self-phased array. (Figure 1).

A self-phased array antenna provides high gain in a particular direction by phase coherent summing of the outputs of many small aperture elements, each having wide beanwidth. The array may be fixed pointed and non-planar, employing the cohering electronics to track diurnal motion. Although a large array eliminates the need for a tracking mount and large aperture antenna, the associated increase in the number of front ends and element processing circuitry may more than offset any savings. However, if one element fails, the signal-to-noise ratio degrades gracefully instead of catastrophically.

In contrast, this paper examines the characteristics of a selfphased array system consisting of a relativeiy small number of elements, each employing an antenna of moderately large aperture and narrow beamwidth (Figure l).

The small array is designed by choosing an elemental beamwidth which approximately covers the expected diurnal satellite motion. Adequate system margin is achieved by adding a sufficient number of such elements. This compromise design simplifies the circuitry required for an array with a large number of elements, eliminates the need for

mechanical tracking, and permits graceful deyradation in signal-to-noise ratio with the loss of an element. However, because beamwidth is on the order of the diurnal satellite motion, the amplitude of the received signal will be a function of time (with a daily period) and a function of the geometric factors determined by the stabilization and perturbations of the satellite orbit. This paper addresses the question of optimizing the choice of antenna elements and their pointing in order to achieve maximum system gain margin simultaneously with the minimization of the diurnal variation.

11. GAIN OPTIMIZATION

Array directive gain is defined as

$$
\begin{equation*}
G_{D}=\frac{\text { maximum radiation intensity }}{\text { average radiation intensity }} \tag{1}
\end{equation*}
$$

for the array phase-locked to a source within the angular limits of acquisition of the artenna-receiver system. As the satellite undergoes its diurnal motion, G_{D} will vary with time as the array electronically tracks the satellite. Consider a typical diurnal gain variation as shown in Figure 2 and define minimum directive gain as

$$
G_{M}=\operatorname{Min}_{24 \text { hrs }}\left\{G_{D}(T)\right\}
$$

Fix the number of antenna elements at N and define the half-power elemental beanwidth in elevation as "e and in azimuth as se. Let the beamwidths be equal and nomalize to the largest angular variation of the satellite motion, (refer to Figure 3):

$$
\begin{equation*}
\frac{\theta e}{a}=\frac{e}{a}=B \tag{2}
\end{equation*}
$$

With N fixed, G_{M} may be plotted as a function of B in order to find the maximum of G_{M}. For the optimization problem, G_{M} will also be a function of the pointing of each element axis in elevation and azimuth (θ_{i} and ${ }^{\prime}$ for the $i^{\text {th }}$ element). The maximum of G_{M} will be called the optimum mirimum directive gain. GM:

$$
G_{M}^{\prime}\left(B, N, \bar{त}_{i}, \vec{q}_{i}\right)=\operatorname{Max} G_{M}\left(B, N, \tilde{U}_{i}, \bar{\psi}_{j}\right)
$$

A numerical technique was used to detemine B and the $\bar{\gamma}_{i}$ and $\bar{\phi}_{i}$ for various closed-path models of satellite motion.

Figure 2. Minimum directive gain G_{M}.

111. NUMERICAL DESIGN

Diurnal motion may be approximately modelled by an ellipse with a major axis of a degrees and eccentricity E between zero and one. where

$$
\begin{equation*}
E=\frac{\text { Minor }}{\text { Major } \frac{A x i s}{A x i s}} \tag{3}
\end{equation*}
$$

A Gaussian antenna pattern $P_{i}(0, i)$ for the $i^{\text {th }}$ element, defined as

$$
\begin{equation*}
P_{i}(v, a)=-3\left[\frac{\left(a-\bar{n}_{i}\right)^{2}}{\left(\frac{a B}{2}\right)^{2}}+\frac{\left(n-\bar{n}_{i}\right)^{2}}{\left(\frac{n B}{2}\right)^{2}}\right] \tag{dB}
\end{equation*}
$$

is used as an acceptable representation of a realizable narrow-beam element pattern. The directive gain for a single element may be shown to be, approximately,

Figure 3. Geometric definitions.

$$
\begin{equation*}
G_{D_{e}}=\frac{41253}{v_{e}{ }^{\phi} \mathrm{e}} \quad[1] \tag{5}
\end{equation*}
$$

where the half-power beanwidths, "e and ${ }_{e}$, are given in degrees.
For N fixed and the diurnal motion restricted to an ellipse of eccentricity E and major axis a degrees in the direction, a set of $G_{M}(B$, $\left.N, \bar{\theta}_{i}, \|_{i}\right)$ was evaluated for a given beamwidth B. The evaluation was performed at five minute time increments along the ellipse in order to find the minimum directive gain $G_{M}\left(B, N, \bar{\theta}_{j}, q_{i}\right)$. The optimum G_{M} was obtained as the pointing of all element axes (si_{i} and O_{i}) was varied. The examples which follow show GM plotted versus B, which varies from 0.2 to 2.0 in 0.1 unit increments. The same plots also present the corresponding optimum element axis angles $\overrightarrow{0}_{i}$ and \vec{j}_{i} as a function of B. Also noted on all plots is MaxiGh\} which is the highest gain realizable for a particular ellipse E and number of elements N.
IV. CIRCULAR DIURNAL MOTION

Figures 4 and 5 illustrate the optimization of G_{M}^{\prime} for two and four antenna elements, respectively, where the diurnal motion is described by a c...le ($E=1$). For $N=2$ (Figure 4) both elements must be pointed at the center of the circle and have beanwidth 0.85 a in order to achieve the maximum G'. Similarly, maximum G' for four elements (Figure 5) is achieved with center pointed elements of beamwidth 0.85.. A tentative conclusion from the numerical model for circular diurnal motion is that maximum optimal directive gain is achieved with center pointed elements of beamwidth 0.85 , independent of N. The proof is easily shown.

Given the elemental pattern of (4) and directive gain of (5), let N beams be centered on the diurnal motion path $\left(\bar{r}_{i}=\hat{\sigma}_{j}=0\right)$. The i th element voltage is

$$
\begin{equation*}
v_{i}=10^{P_{i} / 20} \tag{6}
\end{equation*}
$$

and the array coherent output is

$$
\begin{equation*}
P_{A}=10 \log _{10}\left[\left(v_{1}+v_{2}+\cdots+v_{N}\right)\left(v_{1}+v_{2}+\cdots+v_{N}\right)\right] \tag{7}
\end{equation*}
$$

For the circular case, the minimum directive gain is constant at any point in time, so let

$$
\begin{equation*}
\theta=0 \text { and } \phi=a / 2 \tag{8}
\end{equation*}
$$

Figure 4. Array optimization for $N=2$ and $E=1$.

Figure 5. Array optimization for $N=4$ and $E=1$.
so that

$$
\begin{equation*}
P_{A}=10 \log _{10}\left[\left(\sum_{i=1}^{N} 10^{-3 / 208^{2}}\right) \cdot\left(\sum_{i=1}^{N} 10^{-3 / 20 B^{2}}\right)\right] . \tag{9}
\end{equation*}
$$

The minimum (constant) directive array gain is then

$$
\begin{equation*}
G_{M}=10 \log _{10}\left(\frac{41253}{B^{2}}\right)+10 \log _{10}\left(N^{2} \cdot 10^{-3 / 10 B^{2}}\right) \tag{10}
\end{equation*}
$$

Find the maximum G and the corresponding B by differentiating (10) with respect to B and equating to zero

$$
\begin{equation*}
\frac{d G_{M}}{d B}=0=-10 \log _{10} e \cdot \frac{2}{B}+\frac{6}{B} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
8 \div 0.83113 \tag{12}
\end{equation*}
$$

and is independent of the number of elements. This value compares quite weli with that obtained by numerical tichniques for a circular diurnal motion path.

V. STRAIGHT LINE DIURMAL MCTION

The limiting case of straight line ($E=0$) optimization is presented in Figures 6 and 7 for $N=2$ and 4. respectively. The maximum $G M$ for the axes remaining center pointed is obtained with $8=0.85$ a in both figures. This breakpoint for the straight line cases is simply a specialized case of the proof for a circle. Equation (8) still describes Min:Go: because, for the straight line case with center pointing, G_{D} is always greater than or equal to that value found for a circular path of diameter a. Hence, (12) holds for straight line diurnal motion with N elements center pointed.

For the straight line cases with the axis pointing optimized, the maximum G_{M}^{\prime} is obtained for the element axes separated and having beamwidths of the order a / N. For $N=4$ (Figure 7), it appears that the four axes are equally spaced along the diurnal path.

To obtail a more quantitative description of these cases, let the
 Restrict N to an even number and assume that the F_{i} correspondine to the maximum optimal G_{M} are distributed symetrically about $\geqslant=0$

Figure 6. Array optimization for $N=2$ and $E=0$.

Figure 7. Array optimization for $N=4$ and $E=0$.

$$
\begin{equation*}
=-N / 2=4 N / i={ }^{-1}-N+1 \quad+N-1, \cdots,-i 1 \quad+1 \tag{1i1}
\end{equation*}
$$

From the numerical model, dsambe that the dis?aties between adidernt elements are egual for the optimal iase
 symmetry. from the assumpthon that beatheldth whll be at :he mater w/ N. the main contorbution to i at $v=0$ comes from the sherent sum ot the two adiatent beams (1: 1). Usimy (i) t'rough (?).

$$
\begin{aligned}
& G_{M}(=0): 10 \log 0\binom{+1.53}{8}
\end{aligned}
$$

 condition

$$
\binom{8}{1}^{2}=50 \frac{1}{\log 10^{2}} 10.3454
$$

 Again, assume that the array amtrobtion to bia , whis folmt is promill

 obtains

$$
\begin{equation*}
\therefore\left(2 N^{2}-4 N+1\right)+.1(4-4 N) \because-1 \tag{1:i}
\end{equation*}
$$

The smaller root of (18) represents the distance between the axes of two adjacent elements. For example, if $\mathrm{N}=2, \Delta=0.59$ a and if $N=4, \Delta=0.27$ a. Figure 6 indicates that maximum G_{M}^{j} occurs when $2 \bar{j}=\Delta=.65 \alpha$ and Figure 7 gives $2 \neq 2=\Delta=.30 a$. Using (16) and $\Delta=0.59$ a, one obtains $B=0.35 a$ and for $\Delta=0.27 \mathrm{a}, \mathrm{B}=.16 \mathrm{a}$. This agrees reasonably well with the numerical model results of 0.4α and $0.2 a$ beamwidths for $\mathrm{N}=2$ and 4 , respectively.

VI. ADDITIONAL EXAMPLES

Two cases of elliptical model results are presented in Figures 8 and 9 for $\mathrm{N}=2$ and diurnal motion eccentricities $\mathrm{E}=0.75$ and 0.25 , respectively. Both indicate that the optimal Gid for center pointing is still obtained with $B=0.85 a$ since, as in the straight line case, G_{D} is always greater than or equal to that value obtained for a circular path of radius a/2 with all elements center pointed. However, maximum optimum gain occurs with the element axes separated and having narrower beamwidths.

Similar results for $N=4$ are shown in Figures 10 and 11. Here, note that θ_{i} separation is also required for $E=0.75$ and B less than 0.45α. The behavior is very similar to that of the elliptical cases for $\mathrm{N}=2$. Center pointing of all elements requires $B=0.85$ and maximum optimum gain is achieved with axis separation and narrower beamwidths.

VII. SUMMARY AND REMARKS

An elliptical model of the diurnal motion of a synchronous satellite has been presented. A self-phased, fixed pointed array of a small number of antenna elements with parabolic gain patterns was proposed as a means of tracking this motion. An optimization criterion of maximizing array directive gain with the simultaneous minimization of diurnal gain variation was defined and applied to the model. Numerical techniques lead to the conclusion that if all element axes are fixed pointed at the center of the satellite path, the optimization criteria are met with element beamwidths chosen to be 0.83 times the maximum angular extent of the diurnal motion. Higher gain is possible with narrower beamwidths and axis separation, but the design requires that the satellite's diurnal path eccentricity and inclination of the major axis remain fixed.

A summary of the design results for $\mathrm{E}=0$ and 1 is presented in Figure 12. Minimum directive gain is plotted versus $\sqrt{\pi} x$ angular extent of satellite motion in radians x diameter of equivalent total aperture in wavelengths. Using this common definition, a comparison may be made with the cases of a single antenna element using mechanical tracking or a single element fixed pointing at the center of diurnal motion. For a given equivalent total aperture, a larger number of elements results in a directive gain closer to the mechanical tracking case and always

$$
\begin{aligned}
& N=2 \\
& E=0.75
\end{aligned}
$$

Figure 8. Array optimization for $N=2$ and $E=0.75$.

Figure 9. Array optimization for $N=2$ and $E=0.25$.

Figure 10. Array optimiza+ion for $N=4$ and $E=0.75$.

Figure 11. Array optimization for $N=4$ and $E=0.25$.

Figure 12. Comparison of mechanical tracking, fixed pointing, and small self-phased arrays.

[^0]: *For sale by the Cleariagheuse for Federal Scienific and Techniral Intormation, Spingfield, Viginia 2181 .

