THE NASTRAN USER'S MANUAL
 (Level 16.0)

March 1976

Scientific and Technical Information Office
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.

$$
\begin{aligned}
& \text { \% } \\
& \text { O }
\end{aligned}
$$

INTRODUCTION

The User's Manual is one of four manuals that constitute the documentation for NASTRAN, the other three being the Theoretical Manual, the Programmer's Manual and the Demonstration Problem Manual. Although the User's Manual contains all of the information that is directly associated with the solution of problems with NASTRAN, the user will find it desirable to refer to the other manuals for assistance in the solution of specific user problems.

The Theoretical Manual is an excellent introduction to NASTRAN for those who are using NASTRAN for the first time. The User's Manual is restricted to those items related to the use of NASTRAN that are independent of the computing system being used. Computer dependent matters, such as operating system control cards, are treated in Section 5 of the Programmer's Manual. The Demonstration Problem Manual presents a discussion of the sample problems contained on the NASTRAN delivered User Master File (UMF).

NASTRAN uses a finite element structural model, wherein the distributed physical properties of a structure are represented by a finite number of structural elements which are interconnected at a finite number of grid points, to which loads are applied and for which displacements are cal-: culated. The procedures for defining and loading a structural model are described in Section 1. This section contains a functional reference for every card that is used for structural modeling.

The NASTRAN Data Deck, including the details for each of the data cards, is described in Section 2. This section also discusses the NASTRAN control cards that are associated with the use of the program.

INASTRAN contains problem solution sequences, called rigid formats. Each of these rigid formats is associated with the solution of problems for a particular type of static or dynamic analysis. Section 3 contains a general description of rigid format procedures, along with specific instructions for the use of each rigid format.

The procedures for using the NASTRAN plotting capability are described in Section 4. Both deformed and undeformed plots of the structural model are available. Response curves are also available for transient response and frequency response analyses.

In addition to the rigid format procedures, the user may choose to write his own Direct Matrix Abstraction Program (DMAP). This procedure permits the user to execute a series of matrix operations of his choice along with any utility modules or executive operations that he may need. The rules governing the creation of DFAP programs are described in Section 5.

The NASTRAN diagnostic messages are documented and explained in Section 6. The NASTRAN Dictionary, in Section 7, contains descriptions of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms.

There is a limited number of sample problems included in the User's Manual. However, a more comprehensive set of demonstration problems, at least one for each of the rigid formats, are described in the NASTRAN Demonstration Problem Manual. The data decks are available on tape, in the form of a User's Master file, for each of the computers on which NASTRAN has been implemented. Samples of the printer output and of structure plots and response plots can be obtained by executing these demonstration problems.

Section

Page No.

1. STRUCTURAL MODELING

1.2.1 Grid Point Definition ...1.2-1
1.2.2 Grid Point Sequencing ...2-2
1.2.3 Grid Point Properties ...2-6
1.3 STRUCTURAL ELEMENTS 3-1

1.3.2 Bar Element ...2a
1.3.3 Rod Element 1.4-4
1.3.4 Shear Panels and Twist Panels .. 1.3-5
1.3.5 Plate Elements ... 1.3-5
1.3.6 Axisymmetric Shell Element ... 1.3-8
1.3.7 Axisymmetric Solid Elements ..12
1.3.8 Scalar Elements ..13
1.3.9 Mass ... 1. 3 . 14
1.3.9.1 Lumped Mass ..14
1.3.9.2 Coupled Mass ... 1.3-14a
1.3.9.3 Mass Input ...14b
1.3.9.4 Output from the Grid Point Weight Generator 1.3-14c
1.3.9.5 Bulk Data Cards for Mass ...1.14d
1.3.10 Solid Polyhedron Elements ..14h
1.3.11 Isoparametric Solid Hexahedron Elements1.3-14i
1.4 CONSTRAINTS AND PARTITIONING $4-1$
1.4.1 Single-Point Constraints ..1
1.4.2 Multipoint Constraints ... 1.4-2
1.4.3 Free Body Supports .. 1.4-3
1.4.4 Partitioning .. 1.4-5
1.5 APPLIED LOADS ... 1.5-1

1.5.2 Frequency Dependent Loads .. 1.5-3

Page No.

1.5.3 Time Dependent Loads 1.5-4
1.6 DYNAMIC MATRICES 1.6-1
1.6.1 Direct Formulation 1.6-2
1.6.2 Modal Formulation 1.6-3
1.7 HYDROELASTIC MODELING 1.7-1
1.7.1 Solution of the NASTRAN Fluid Model 1.7-1
1.7.2 Hydroelastic Input Data 1.7-3
1.7.3 Rigid Formats 1.7-6
1.7.4 Hydroelastic Data Processing 1.7-8
1.7.5 Sample Hydroelastic Model 1.7-9
1.8 HEAT FLOW PROBLEMS 1.8-1
1.8.1 Introduction to NASTRAN Heat Conduction 1.8-1
1.8.2 Heat Transfer Elements 1.8-2
1.8.3 Constraints and Partitioning 1.8-3
1.8.4 Thermal Loads 1.8-4
1.8.5 Linear Static Analysis 1.8-4
1.8.6 Nonlinear Static Analysis 1.8-4
1.8.7 Transient Analysis 1.8-5
1.8.8 Compatibility with Structural Analysis 1.8-6
1.9 ACOUSTIC CAVITY MODELING 1.9-1
1.9.1 Data Card Functions 1.9-1
1.9.2 Assumptions and Limitations 1.9-2
1.9.3 Acoustic Cavity Example Problem 1.9-3
1.10 MANUAL SINGLE-STAGE SUBSTRUCTURING 1.10-1
1.10.1 Basic Manual Substructure Analysis 1.10-2
1.10.2 Loads and Boundary Conditions 1.10-15
1.10.3 Dynamic Analysis 1.10-19
1.10.4 DMAP Loops for Phase II 1.10-23
1.10.5 Identical Substructures 1.10-24

TABLE OF CONTENTS (Continued)

Section Page No.
1.11 AEROELASTIC MODELING 1.11-1
1.11.1 Introduction 1.11-1
1.11.2 Aerodynamic Modeling 1.11-1
1.11.3 The Interconnection Between Structure and Aerodynamic Models 1.11-3
1.11.4 Modal Flutter Analysis 1.11-5
1.11.5 Sample Problem 1.11-6
1.12 CYCLIC SYMMETRY 1.12-1
1.13 FULLY STRESSED DESIGN 1.13-1
1.14 AUTOMATED MULTI-STAGE SUBSTRUCTURING 1.14-7
1.14.1 Substructuring Terminology 1.14-2
1.14.1.1 Storage of Substructure Data 1.14-2
1.14.1.2 Identification of Substructure Data 1.14-7
1.14.1.3 Input Data Checking 1.14-8
1.14.2 The Substructure Operating File (S \varnothing F) 1.14-10
1.14.3 The Case Control Deck for Substructure Analyses 1.14-11
1.14.3.1 Phase 1 1.14-12
1.14.3.2 Phase 2 1.14-12
1.14.3.3 Phase 3 1.14-12
1.14.4 Example of Substructure Analysis 1.14-13
2. NASTRAN DATA DECK
2.1 GENERAL DESCRIPTION OF DATA DECK 2.1-1
2.2 EXECUTIVE CONTROL DECK 2.2-1
2.2.1 Executive Control Card Descriptions 2.2-1
2.2.2 Executive Control Deck Examples 2.2-5
2.3 CASE CONTROL DECK 2.3-1
2.3.1 Data Selection 2.3-1
2.3.2 Output Selection 2.3-2
2.3.3 Subcase Definition 2.3-3
2.3.4 Case Control Card Descriptions 2.3-6
Section Page No.
2.4 BULK DATA DECK 2.4-1
2.4.1 Format of Bulk Data Cards 2.4-1
2.4.2 Bulk Data Card Descriptions 2.4-4
2.5 USER'S MASTER FILE 2.5-1
2.5.1 Use of User's Master File 2.5-1
2.5.2 Using the User's Master File Editor 2.5-2
2.5.3 Rules for the User's Master File Editor 2.5-3
2.5.4 Examples of User's Master File Editor Usage 2.5-3
2.5.5 NASTRAN Demonstration Problems 2.5-10
2.6 USER GENERATED INPUT 2.6-1
2.6.1 Utility Module INPUT Usage 2.6-1
2.6.1.1 Laplace Circuit 2.6-2
2.6.1.2 Rectangular Frame made from BARs or $\mathrm{R} \emptyset \mathrm{D}$ 2.6-7
2.6.1.3 Rectangular Plate made from QUAD1s 2.6-10
2.6.1.4 Rectangular Plate made from TRIAls 2.6-13
2.6.1.5 N-segment String 2.6-16
2.6.1.6 N-cell Bar 2.6-19
2.6.1.7 Full Matrix with Optional Unit Load 2.6-21
2.7 SUBSTRUCTURE CONTROL DECK 2.7-1
2.7.1 Commands and Their Execution 2.7-4
2.7.2 Interface with NASTRAN DMAP 2.7-5
2.7.3 Substructure Control Card Descriptions 2.7-6
3. RIGID FORMATS
3.1 GENERAL DESCRIPTION OF RIGID FORMATS 3.1-1
3.1.1 Input File Processor 3.1-2
3.1.2 Functional Modules and Supporting DMAP Operations 3.1-4
3.1.3 Restart Procedures 3.1-5
3.1.4 Rigid Format Output 3.1-6
3.2 STATIC ANALYSIS 3.2-1
3.2.1 DMAP Sequence for Static Analysis 3.2-1
3.2.2 Description of DMAP Operations for Static Analysis 3.2-8

TABLE OF CONTENTS (Continued)

3.2.3 Case Control Deck and Parameters for Static Analysis 3.2-13
3.2.4 Automatic Alters for Automated Multi-stage Substructuring 3.2-14
3.3 STATIC ANALYSIS WITH INERTIA RELIEF 3.3-1
3.3.1 DMAP Sequence for Static Analysis with Inertia Relief 3.3-1
3.3.2 Description of DMAP Operations for Static Analysis with Inertia Relief 3.3-7
3.3.3 Case Control Deck and Parameters for Static Analysis with Inertia Relief 3.3-12
3.3.4 Automatic Alters for Automated Multi-stage Substructuring 3.3-13
3.4 NORMAL MODE ANALYSIS 3.4-1
3.4.1 DMAP Sequence for Normal Mode Analysis 3.4-1
3.4.2 Description of DMAP Operations for Normal Mode Analysis 3.4-7
3.4.3 Automatic Output for Normal Mode Analysis 3.4-12
3.4.4 Case Control Deck and Parameters for Normal Mode Analysis 3.4-13
3.4.5 Automatic Alters for Automated Multi-stage Substructuring 3.4-15
3.5 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS 3.5-1
3.5.1 DMAP Sequence for Static Analysis with Differential Stiffness 3.5-1
3.5.2 Description of DMAP Operations for Static Analysis with Differential Stiffness 3.5-10
3.5.3 Automatic Output for Static Analysis with Differential Stiffness 3.5-18
3.5.4 Case Control Deck and Parameters for Static Analysis with Differential Stiffness 3.5-19
3.6 BUCKLING ANALYSIS 3.6-1
3.6.1 DMAP Sequence for Buckling Analysis 3.6-1
3.6.2 Description of DMAP Operations for Buckiing Analysis 3.6-9
3.6.3 Automatic Output for Buckling Analysis 3.6-15
3.6.4 Case Control Deck and Parameters for Buckling Analysis 3.6-15
3.7 PIECEWISE LINEAR ANALYSIS 3.7-1
3.7.1 DMAP Sequence for Piecewise Linear Analysis 3.7-1
3.7.2 Description of DMAP Operations for Piecewise Linear Analysis 3.7-9
3.7.3 Case Control Deck and Parameters for Piecewise Linear Analysis 3.7-15
Section Page No.
3.8 DIRECT COMPLEX EIGENVALUE ANALYSIS 3.8-1
3.8.1 DMAP Sequence for Direct Complex Eigenvalue Analysis 3.8-1
3.8.2 Description of DMAP Operations for Direct Complex Eigenvalue Analysis 3.8-9
3.8.3 Automatic Output for Direct Complex Eigenvalue Analysis 3.8-15
3.8.4 Case Control Deck and Parameters for Direct Complex Eigenvalue Analysis 3.8-16
3.9 DIRECT FREQUENCY AND RANDOM RESPONSE 3.9-1
3.9.1 DMAP Sequence for Direct Frequency and Random Response 3.9-1
3.9.2 Description of DMAP Operations for Direct Frequency and Random Response 3.9-10
3.9.3 Case Control Deck and Parameters for Direct Frequency and Random Response 3.9-17
3.10 DIRECT TRANSIENT RESPONSE 3.10-1
3.10.1 DMAP Sequence for Direct Transient Response 3.10-1
3.10.2 Description of DMAP Operations for Direct Transient Response 3.10-10
3.10.3 Case Control Deck and Parameters for Direct Transient Response 3.10-16
3.11 MODAL COMPLEX EIGENVALUE ANALYSIS 3.11-1
3.11.1 DMAP Sequence for Modal Complex Eigenvalue Analysis 3.11-1
3.11.2 Description of DMAP Operations for Modal Complex Eigenvalue Analysis 3.11-8
3.11.3 Automatic Output for Modal Complex Eigenvalue Analysis 3.11-13
3.11.4 Case Control Deck and Parameters for Modal Complex Eigenvalue Analysis 3.11-13
3.12 MODAL FREQUENCY AND RANDOM RESPONSE 3.12-1
3.12.1 DMAP Sequence for Modal Frequency and Random Response 3.12-1
3.12.2 Description of DMAP Operations for Modal Frequency and Random Response 3.12-10
3.12.3 Automatic Output for Modal Frequency and Random Response 3.12-17
3.12.4 Case Control Deck and Parameters for Modal Frequency and Random Response 3.12-17
3.13 MODAL TRANSIENT RESPONSE 3.13-1
3.13.1 DMAP Sequence for Modal Transient Response 3.13-1
Section Page No.
3.13.2 Description of DMAP Operations for Modal Transient Response 3.13-10
3.13.3 Automatic Output for Modal Transient Response 3.13-17
3.13.4 Case Control Deck and Parameters for Modal Transient Response 3.13-17
3.14 NORMAL MODES WITH DIFFERENTIAL STIFFNESS 3.14-1
3.14.1 DMAP Sequence for Normal Modes with Differential Stiffness 3.14-1
3.14.2 Description of DMAP Operations for Normal Modes with Differential Stiffness 3.14-9
3.14.3 Automatic Output for Normal Modes with Differential Stiffness 3.14-17
3.14.4 Case Control Deck and Parameters for Normal Modes with Differential Stiffness 3.14-18
3.15 STATIC ANALYSIS USING CYCLIC SYMMETRY 3.15-1
3.15.1 DMAP Sequence for Static Analysis using Cyclic Symmetry 3.15-1
3.15.2 Description of DMAP Operations for Static Analysis using Cyclic Symmetry 3.15-8
3.15.3 Case Control Deck and Parameters for Static Analysis using Cyclic Symmetry 3.15-14
3.16 NORMAL MODES ANALYSIS USING CYCLIC SYMMETRY 3.16-1
3.16.1 DMAP Sequence for Normal Modes Analysis using Cyclic Symmetry 3.16-1
3.16.2 Description of DMAP Operations for Normal Modes Analysis using Cyclic Symmetry 3.16-7
3.16.3 Automatic Output for Normal Modes Analysis using Cyclic Symmetry 3.16-11
3.16.4 Case Control Deck and Parameters for Normal Modes Analysis using Cyclic Symmetry 3.16-12
3.17 STATIC HEAT TRANSFER ANALYSIS 3.17-1
3.17.1 DMAP Sequence for Static Heat Transfer Analysis 3.17-1
3.17.2 Description of DMAP Operations for Static Heat Transfer Analysis 3.17-6
3.17.3 Case Control Deck and Parameters for Static Heat Transfer Analysis 3.17-11
3.18 NONLINEAR STATIC HEAT TRANSFER ANALYSIS 3.18-1
3.18.1 DMAP Sequence for Nonlinear Static Heat Transfer Analys is 3.18-1
3.18.2 Description of DMAP Operations for Nonlinear Static Heat Transfer Analysis 3.18-5
3.18.3 Case Control Deck and Parameters for Nonlinear Static Heat Transfer Analysis 3.18-8
3.19 TRANSIENT HEAT TRANSFER ANALYSIS 3.19 .1
3.19.1 DMAP Sequence for Transient Heat Transfer Analysis 3.19-1
3.19.2 Description of DMAP Operations for Transient Heat Transfer Analysis 3.19-8
3.19.3 Case Control Deck and Parameters for Transient Heat Transfer Analysis 3.19-13
3.20 MODAL FLUTTER ANALYSIS 3.20-1
3.20.1 DMAP Sequence for Modal Flutter Analysis 3.20-1
3.20.2 Description of DMAP Operations for Modal Flutter Analysis 3.20-9
3.20.3 Output for Modal Flutter Analysis 3.20-16
3.20.4 Case Control Deck and Parameters for Modal Flutter Analysis 3.20-16
3.20.5 Modal Flutter Analysis Subsets 3.20-18
3.20.6 DMAP Sequence for Modal Flutter Analysis, Subset 4 3.20-19
3.20.7 DMAP Sequence for Modal Flutter Analysis, Subset 5 3.20-21
4. PLOTTING
4.1 PLOTTING 4.1-1
4.2 STRUCTURE PLOTTING 4.2-1
4.2.1 General Rules 4.2-2
4.2.1.1 Rules for Free-Field Card Specifications 4.2-2
4.2.1.2 Plot Request Packet Card Format 4.2-2
4.2.1.3 Plot Titles 4.2-2
4.2.2 Plot Request Packet Card Descriptions 4.2-2a
4.2.2.1 SET Definition Cards 4.2-3
4.2.2.2 Cards Defining Parameters 4.2-4
4.2.3 Summary of Structure Plot Request Packet Cards 4.2-16
$4.3 \quad X$-Y OUTPUT 4.3-1
4.3.1 X-Y Plotter Terminology 4.3-1

TABLE OF CONTENTS (Continued)
SectionPage No.
4.3.2 Parameter Definition Cards 4.3-3
4.3.2.1 Cards Pertaining to All Curves 4.3-3
4.3.2.2 Cards Pertaining Only to Whole Frame Curves 4.3-4
4.3.2.3 Cards Pertaining Only to Upper Half Frame Curves 4.3-5
4.3.2.4 Cards Pertaining Only to Lower Half Frame Curves 4.3-7
4.3.3 Command Operation Cards 4.3-9
4.3.4 Examples of X-Y Output Request Packets 4.3-17
4.3.5 Summary of $X-Y$ Output Request Packet Cards 4.3-19
5. DIRECT MATRIX ABSTRACTION
5.1 GENERAL 5.1-1
5.2 DMAP RULES 5.2-1
5.2.1 DMAP Rules for Functional Module Instructions 5.2-1
5.2.1.1 Functional Module DMAP Statements 5.2-2
5.2.1.2 Functional Module Names 5.2-2
5.2.1.3 Functional Module Input Data Blocks 5.2-2
5.2.1.4 Functional Module Output Data Blocks 5.2-2
5.2.1.5 Functional Module Parameters 5.2-2
5.2.2 DMAP Rules for Executive Operation Instructions 5.2-4
5.2.3 Techniques and Examples of Executive Module Usage 5.2-4
5.2.3.1 The REPT and FILE Instructions 5.2-5
5.2.3.2 The EQUIV Instruction 5.2-7
5.2.3.3 The PURGE Instruction 5.2-9
5.2.3.4 The CHKPNT Instruction 5.2-12
5.3 INDEX OF DMAP MODULE DESCRIPTIONS 5.3-1
5.4 MATRIX OPERATION MODULES 5.4-1
5.5 UTILITY MODULES 5.5-1
5.6 USER MODULES 5.6-7
5.7 EXECUTIVE OPERATION MODULES 5.7-1

TABLE OF CONTENTS (Continued)

Section Page No.
5.8 EXAMPLES 5.8-1
5.8.1 DMAP Example 5.8-1
5.8.2 DMAP Example 5.8-2
5.8.3 DMAP Example to Use the Structure Plotter to Generate Undeformed Plots of the Structural Model 5.8-3
5.8.4 Example of DMAP to Print Eigenvectors Associated with any of the Modal Formulation Rigid Formats 5.8-4
5.8.5 Example of DMAP Using a User-Written Module 5.8-5
5.8.6 DMAP ALTER Package for Using a User-Written Auxiliary Input File Processor 5.8-7
5.8.7 DMAP to Perform Real Eigenvalue Analysis Using Direct Input Matrices 5.8-8
5.8.8 DMAP Example to Print and Plot a Topological Picture of Two Matrices 5.8-10
5.8.9 DMAP Example to Compute the r-th Power of a Matrix [Q] 5.8 .11
5.8.10 Usage of UPARTN, VEC, and PARTN 5.8-13
5.8.11 DMAP Example 5.8-19
5.9 AUTOMATIC SUBSTRUCTURE DMAP ALTERS 5.9-1
5.9.1 Index of Substructure DMAP Alters 5.9-2
5.9.2 DMAP for Command: BRECØVER (Phase 3) 5.9-3
5.9.3 DMAP for Command: CØMBINE 5.9-4
5.9.4 DMAP for Utility Commands: DELETE, DESTRØY, EDIT, EQUIV, RENAME, S@FPRINT 5.9-5
5.9.5 DMAP for Substructure Plots: PLøT 5.9-6
5.9.6 DMAP for Command: RECØVER (Phase 2) 5.9-7
5.9.7 DMAP for Command: REDUCE 5.9-8
5.9.8 DMAP for Command: RUN 5.9-9
5.9.9 DMAP for External I/ \emptyset Commands: SØFIN, SØFØUT, RESTØRE, DUMP, CHECK 5.9-10
5.9.10 DMAP for Command: S \emptyset LVE 5.9-11
5.9.11 DMAP for Command: SUBSTRUCTURE 5.9-12

TABLE OF CONTENTS (Continued)

6. DIAGNOSTIC FiESSAGES

6.1 RIGID FORMAT DIAGNOSTIC FIESSAGES... 6.7-1
6.1.1 Displacement Approach Rigid Formats... 6.1-1
6.1.1.1 Rigid Format Error Messages for Static Analysis 6.1-1
$\begin{array}{ll}\text { 6.1.1.2 } & \begin{array}{l}\text { Rigid Format Error Messages for Static Analysis } \\ \text { with Inertia Relief ... 6.1-1 }\end{array}\end{array}$
6.1.1.3 Rigid Format Error Messages for Normal Mode Analysis . 6.1-2
6.1.1.4 $\begin{aligned} & \text { Rigid Format Error Messages for Static Analysis with } \\ & \text { Differential Stiffness .. 6.1-2 }\end{aligned}$
6.1.1.5 Rigid Format Error Messages for Buckling Analysis 6.1-3

6.1.2 Heat Approach Rigid Formats ... 6.1-8

$\begin{array}{ll}\text { 6.1.2.2 } & \begin{array}{l}\text { Rigid Format Error Messages for Nonlinear Static } \\ \text { Heat Transfer Analysis .. 6.1-8 }\end{array}\end{array}$
$\begin{array}{ll}\text { 6.1.2.3 } & \begin{array}{l}\text { Rigid Format Error Message for Transient Heat } \\ \\ \\ \text { Transfer Analysis ... } 6.1-9\end{array}\end{array}$
6.1.3 Aero Approach Rigid Format .. 6.1-9

TABLE OF CONTENTS (Continued)

Section Page No.
6.2 NASTRAN SYSTEM AND USER MESSAGES 6.2-1
6.2.1 Preface Messages 6.2-2
6.2.2 Executive Module Messages 6.2-17
6.2.3 Functional Module Messages 6.2-19
7. NASTRAN DICTIONARY
7.1 NASTRAN DICTIONARY 7.1-1

1.1 INTRODUCTION

NASTRAN embodies a lumped element approach, wherein the distributed physical properties of a structure are represented by a model consisting of a finite number of idealized substructures or elements that are interconnected at a finite number of grid points, to which loads are applied. All input and output data pertain to the idealized structural model. The major steps in the definition and loading of a structural model are indicated in Figure 1.

As indicated in Figure 1, the grid point definition forms the basic framework for the structural model. All other parts of the structural model are referenced either directly or indirectly to the grid points.

Two general types of grid points are used in defining the structural model. They are:

1. Geometric grid point - a point in three-dimensional space at which three components of translation and three components of rotation are defined. The coordinates of each grid point are specified by the user.
2. Scalar point - a point in vector space at which one degree of freedom is defined. Scalar points can be coupled to geometric grid points by means of scalar elements and by constraint relationships.

The structural element is a convenient means for specifying many of the properties of the structure, including material properties, mass distribution and some types of applied loads. In static analysis by tre displacement method, stiffness properties are input exclusively by means of structural elements. Mass properties (used in the generation of gravity and inertia loads) are input either as properties of structural elements or as properties of grid points. In dynamic analysis, mass; damping, and stiffness properties may be input either as the properties of structural elements or as the properties of grid points (direct input matrices).

Structural elements are defined on connection cards by referencing grid points, as indicated on Figure 1. In a few cases, all of the information required to generate the structural matrices for the element is given on the connection card. In most cases the conrection card refers to a property card, on which the cross-sectional properties of the element are given. The property card in turn refers to a material card which gives the material properties. If some of the material properties are stress dependent or temperature dependent, a further reference is made to tables for this information.

Various kinds of constraints can be applied to the grid points. Single-point constraints are used to specify boundary conditions, including enforced displacements of grid points.

Multipoint constraints are used to specify a linear relationship among selected degrees of freedom, including the definition of infinitely rigid elements. Omitted points are used as a tool in matrix partitioning and for reducing the number of degrees of freedom used in dynamic analysis. Free-body supports are used to remove stress-free motions in static analysis and to evaluate the free-body inertia properties of the structural model.

Static loads may be applied to the structural model by concentrated loads at grid points, pressure loads on surfaces, or indirectly, by means of the mass and thermal expansion properties of structural elements are enforced deformations of one-dimensional structural elements. Due to the great variety of possible sources for dynamic loading, only general forms of loads are provided to the user in dynamic analysis.

The following sections describe the general procedures for defining structural models. Detailed instructions for each of the bulk data cards and case control cards are given in Section 2. Additional information on the case control cards and use of parameters is given for each rigid format in Section 3.

INTRODUCTION

Figure 1. Structural model.
1.1-3

STRUCTURAL MODELING

1.2 GRID POINTS

1.2.1 Grid Point Definition

Geometric grid points are defined on GRID bulk data cards by specifying their coordinates in either the basic or a local coordinate system. The implicitly defined basic coordinate system is rectangular, except when using axisymmetric elements. Local coordinate systems may be rectangular, cylindrical, or spherical. Each local system must be related directly or indirectly to the basic coordinate system. The CØRDIC, CØRDIR and CØRDIS cards are used to define cylindrical, rectangular and spherical local coordinate systems, respectively, in terms of three geometric grid points which have been previously defined. The C $\emptyset R D 2 C, C \emptyset R D 2 R$ and CØRD2S cards are used to define cylindrical, rectangular and spherical local coordinate systems, respectively, in terms of the coordinates of three points in a previously defined coordinate system.

Six rectangular displacement components (3 translations and 3 rotations) are defined at each grid point. The local coordinate system used to define the directions of motion may be different from the local coordinate system used to locate the grid point. Both the location coordinate system and the displacement coordinate system are specified on the GRID card for each geometric grid point. The orientation of displacement components depends on the type of local coordinate system used to define the displacement components. If the defining local system is rectangular, the displacement system is parallel to the local system and is independent of the grid point location as indicated in Figure la. If the local system is cylindrical, the displacement components are in the radial, tangential and axial directions as indicated in Figure lb. If the local system is spherical, the displacement components are in the radial, meridional, and azimuthal directions as indicated in Figure 1c. Each geometric grid point may have a unique displacement coordinate system associated with it. The collection of all displacement coordinate systems is known as the global coordinate system. All matrices are formed and all displacements are output in the global coordinate system. The symbols T1, T2 and T3 on the printed output indicate translations in the 1,2 and 3 -directions, respectively, for each grid point. The symbols R1, R2 and R3 indicate rotations about the three axes.

Provision is also made on the GRID card to apply single-point constraints to any of the displacement components. Any constraints specified on the GRID card will be automatically used for all solutions. Constraints specified on the GRID card are usually restricted to those degrees of

STRUCTURAL MODELING

freedom that will not be elastically constrained and hence must be removed from the model in order to avoid singularities in the stiffness matrix.

The GROSET card is provided to avoid the necessity of repeating the specification of location coordinate systems, displacement coordinate systems, and single-point constraints, when all, or many, of the GRID cards have the same entries for these items. When any of the 3 items are specified on the GRDSET card, the entries are used to replace blank fields on the GRID card for these items. This feature is useful in the case of such problems as space trusses where one wishes to remove all of the rotational degrees of freedom or in the case of plane structures where one wishes to remove all of the out-of-plane or all of the in-plane motions.

Scalar points are defined either on an SPØINT card or by reference on a connection card for a scalar element. SPØINT cards are used primarily to define scalar points appearing in constraint equations, but to which no structural elements are connected. A scalar point is implicitly defined if it is used as a connection point for any scalar element. Special scalar points, called "extra points", may be introduced for dynamic analyses. Extra points are used in connection with transfer functions and other forms of direct matrix input used in dynamic analyses and are defined on EPDINT cards.

GRICB is a variation of the GRID card that is used to define a point on a fluid-structure interface (see Section 1.7).

1.2.2 Grid Point Sequencing

The best decomposition and equation solution times are obtained if the grid points can be sequenced in such a manner as to create matrices having small numbers of active columns (see Section 2.2 of the Theoretical Manual for a discussion of active columns and the decomposition algorithm). The decomposition time is proportional to the sum of the squares of the number of active columns in each row of the triangular factor. The equation solution time (forward/backward substitution) is proportional to the number of nonzero terms in the triangular factor.

In selecting the grid point sequencing it is not important to find the best sequence, rather it is usually quite satisfactory to find a good sequence, and to avoid bad sequences that create unreasonably large numbers of active columns. For many problems a sequence which will result in a band matrix is a reasonably good choice, but not necessarily the best. Also, sequences which result in small numbers of columns with nonzero terms are usually good but not necessarily the best.

1.2-2 (12/31/74)

A sequence with a larger number of nonzero columns will frequently have a smaller number of nonzero operations in the decomposition when significant passive regions exist within the active columns (see Section 2.2 of the Theoretical Manual).

Examples of proper grid point sequencing for one-dimensional systems are shown in Figure 2. For open loops a consecutive numbering system should be used as shown in Figure $2 a$. This sequencing will result in a narrow band matrix with no new nonzero terms created during the triangular decomposition. Generally, there is an improvement in the accumulated round off error if the grid points are sequenced from the flexible end to the stiff end.

For closed loops the grid points may be sequenced either as shown in Figure 2 b or as shown in Figure 2c. If the sequencing is as shown in Figure 2 b , the semiband will be twice that of the model shown in Figure 2a. The matrix will initially contain a number of zeroes within the band which will become nonzero as the decomposition proceeds. If the sequencing is as shown in Figure 2 c , the band portion of the matrix will be the same as that for Figure 2 a . However, the connection between grid points 1 and 8 will create a number of active columns on the right hand side of the matrix. The solution times will be the same for the sequence shown in Figure 2 b or 2 c , because the number of active columns in each sequence is the same.

Examples of grid point sequencing for surfaces are shown in Figure 3. For plain or curved surfaces with a pattern of grid points that tends to be rectangular, the sequencing shown in Figure 3a will result in a band matrix having good solution times. The semiband will be proportional to the number of grid points along the short direction of the pattern. If the pattern of grid points shown in Figure 3 a is made into a closed surface by connecting grid points 1 and 17 , 2 and 18, etc., a number of active columns equal to the semiband will be created. If the number of grid points in the circumferential direction is greater than twice the number in the axial direction, the sequencing indicated in Figure 3 a is a good one. However, if the number of grid points in the circumferential direction is less than twice the number in the axial direction, the use of consecutive numbering in the circumferential direction is more efficient. An alternate sequencing for a closed loop is shown in Figure 3 b , where the semiband is proportional to twice the number of grid points in a row. For cylindrical or similar closed surfaces, the sequencing shown in Figure 3 b has no advantage over that shown in Figure 3a, as the total number of active columns will be the same in either case.

STRUCTURAL MODELING

With the exception of the central point, sequencing considerations for the radial pattern shown in Figure 3c are similar to those for the rectangular patterns shown in Figures 3a and 3b. The central point must be sequenced last in order to limit the number of active columns associated with this point to the number of degrees of freedom at the central point. If the central point is sequenced first, the number of active columns associated with the central point will be proportional to the number of radial lines. If there are more grid points on a radial line than on a circumferential line, the consecutive numbering should extend in the circumferential direction beginning with the outermost circumferential ring. In this case, the semiband is proportional to the number of grid points on a circumferential line and there will be no active columns on the right hand side of the matrix. If the grid points form a full circular pattern, the closure will create a number of active columns proportional to the number of grid points on a radial line if the grid points are numbered as shown in Figure 3c. Proper sequencing for a full circular pattern is similar to that discussed for the rectangular arrays shown in Figures 3a and 3b for closed surfaces.

Sequencing problems for actual structural models can frequently be handled by considering the model as consisting of several substructures. Each substructure is first numbered in the most efficient manner. The substructures are then connected so as to create the minimum number of active columns. The grid points at the interface between two substructures are usually given numbers near the end of the sequence for the first substructure and as near the beginning of the sequence for the second substructure as is convenient.

Figure 4 shows a good sequence for the substructure approach. Grid points 1 thru 9 are associated with the first substructure, and grid points 10 thru 30 are associated with the second substructure. In the example, each of the substructures was sequenced for band matrices. However, other schemes could also be considered for sequencing the individual substructures. Figure 5 shows the nonzero terms in the triangular factor. The X's indicate terms which are nonzero in the original matrix. The zeros indicate nonzero terms created during the decomposition. The mazimum number of active columns for any pivotal row is only five, and this occurs in only three rows near the middle of the matrix for the second substructure. All other pivotal rows have four or less active columns.

Figure 6 indicates the grid point sequencing using substructuring techniques for a square model, and Figure 7 shows the nonzero terms in the triangular factor. If the square model were

GRID POINTS

sequenced for a band matrix, the number of nonzero terms in the triangular factor would be 129, whereas Figure 7 contains only 102 nonzero terms. The time for the forward/backward substitution operation is directly proportional to the number of nonzero terms in the triangular factor. Consequently, the time for the forward/backward substitution operation when the square array is ordered as shown in Figure 7 is only about 80% of that when the array is ordered for a band matrix. The number of multiplications for a decomposition when ordered for a band is 294 , whereas the number indicated in Figure 7 is only 177. This indicates that the time for the decomposition when ordered as shown in Figure 6 is only 60% of that when ordered for a band.

Although scalar points are defined only in vector space, the pattern of the connections is used in a manner similar to that of geometric grid points for sequencing scalar points among themselves or with geometric grid points. Since scalar points introduced for dynamic analysis (extra points) are defined in connection with direct input matrices, the sequencing of these points is determined by direct reference to the positions of the added terms in the dynamic matrices.

The external identification numbers used for grid points may be selected in any manner the user desires. However, in order to reduce the number of active columns, and, hence, to substantially reduce computing times when using the displacement method, the interna? sequencing of the grid points must not be arbitrary. In order to allow arbitrary grid point numbers and still preserve sparsity in the triangular decomposition factor to the greatest extent possible, provision is made for the user to resequence the grid point numbers for internal operations. This feature also makes it possible to easily change the sequence if a poor initial choice is made. All output associated with grid points is identified with the external grid point numbers. The SEQGP card is used to resequence geometric grid points and scalar points. The SEQEP card is used to sequence the extra points in with the previously sequenced grid points and scalar points.

1.2.3 Grid Point Properties

Some of the characteristics of the structural model are introduced as properties of grid points, rather than as properties of structural elements. Any of the various forms of direct matrix input are considered as describing the structural model in terms of properties of grid points.

Thermal fields are defined by specifying the temperatures at grid points. The TEMP card is used to specify the temperature at grid points for use in connection with thermal loading and temperature dependent material properties. The TEMPD card is used to specify a default temperature, in order to avoid a large number of duplicate entries on a TEMP card when the temperature is uniform over a large portion of the structure. The TEMPAX card is used for conical shell problems.

Mass properties may be input as properties of grid points by using the concentrated mass element (see Section 5.5 of the Theoretical Manual). The CDNM1 card is used to define a 6×6 matrix of mass coefficients at a geometric grid point in any selected coordinate system. The CDNM2 card is used to define a concentrated mass at a geometric grid point in terms of its mass, the three coordinates of its center of gravity, the three moments of inertia about its center of gravity, and its three products of inertia, referred to any selected coordinate system.

In dynamic analysis, mass, damping, and stiffness properties may be provided, in part or entirely, as properties of grid points through the use of direct input matrices. The DMIG card is used to define direct input matrices for use in dynamic analysis. These matrices may be associated with components of geometric grid points, scalar points, or extra points introduced for dynamic analysis. The TF card is used to define transfer functions that are internally converted to direct matrix input. The DMIAX card is an alternate form of direct matrix input that is used for hydroelastic problems (see Section 1.7).

GRID POINTS
(a) Rectangular

(b) Cylindrical

(c) Spherical

Figure 1. Displacement coordinate systems.

STRUCTURAL MODELING

(a)

(b)

Figure 2. Grid point sequencing for one-dimensional systems.

GRID POINTS

Figure 3. Grid point sequencing for surfaces.

Figure 4. Grid point sequencing for substructures

STRUCTURAL MODELING

$$
\begin{aligned}
& x \quad x \quad x \\
& x \quad x \quad 0 \quad x \\
& x \quad 0 \quad 0 \quad x \\
& x \times 0 \quad x \\
& x \quad x \quad 0 \quad x \\
& x 000 x \\
& x \times 0 \quad x \\
& \begin{array}{clll}
X X & 0 & X & \\
X & 0 & 0 & X
\end{array} \\
& \begin{array}{lllll}
x & x & & x & \\
& x & x & 0
\end{array} \\
& x \quad 0 \quad 0 \quad x \\
& x \quad x \quad 0 \quad x \\
& x \quad x \quad 0 \quad x \\
& x \quad 0 \quad 0 \quad x \\
& \begin{array}{llllll}
x & X & 0 & X & & 0 \\
X & X & 0 & X & 0
\end{array} \\
& \times \quad 0 \quad 0 \quad X \quad 0 \\
& x \quad 0 \quad 0 \quad x \\
& x \quad x \quad 0 \\
& x 00 \quad x \\
& x \times 0 \quad x \\
& x \times 0 \quad x \\
& x \quad 0 \quad 0 \quad x \\
& x \times 0 \quad x \\
& x \quad x \quad 0 \\
& x \quad 0 \quad 0 \quad x \\
& \times \times 0 \\
& \begin{array}{ll}
X \quad X \\
& X
\end{array}
\end{aligned}
$$

Figure 5. Matrix for substructure example

Figure 6. Grid point sequencing for square model

```
X X X
    x 0 x
        X X
            x x x
                x 0 x
            X X
            X
                    x x x
                        X 0 X
            x x
                    X
                l}\begin{array}{ll}{}&{X}\\{X}&{0}\\{X}&{0}\\{0}&{X}\\{0}&{X}
            X
                X
                0 x
                0 < 0 x
                        x
                        x 0
                                    0 0 x
                                    x x x
                                    x 0
                                    x x x
                                    0
                                    x 0 x 0 x
                                    x < 0 0
                                    X 0
                                    X 
                                    x 0}00<0000
                                    X X 0 0 0
                                    x 0 0 x
                                    X X 0
            (Symmetric)
                        X X
```

Figure 7. Matrix for square model example

1.3 STRUCTURAL ELEMENTS

1.3.1 Element Definition

Structural elements are defined on connection cards that identify the grid points to which the element is connected. The mnemonics for all such cards have a prefix of the letter "C", followed by an indication of the type of element, such as CBAR and CRDD. The order of the grid point identification defines the positive direction of the axis of a one-dimensional element and the positive surface of a plate element. The connection cards include additional orientation information when required. Except for the simplest elements, each connection card references a property definition card. If many elements have the same properties, this system of referencing eliminates a large number of duplicate entries.

The property definition cards define geometric properties such as thicknesses, cross-sectional areas, and moments of inertia. The mnemonics for all such cards have a prefix of the letter "p", followed by some, or all of the characters used on the associated connection card, such as PBAR and PROD. Other included items are the nonstructural mass and the location of points where stresses will be calculated. Except for the simplest elements, each property definition card will reference a material property card.

In some cases, the same finite element can be defined by using different bulk data cards. These alternate cards have been provided for user convenience. In the case of a rod element, the normal definition is accomplished with a connection card (CRDD) which references a property card (PRØD). However, an alternate definition uses a C $\varnothing N R \emptyset D$ card which combines connection and property information on a single card. This is more convenient if a large number of rodements all have different properties.

In the case of plate elements, a different property card is provided for each type of element, such as membrane or sandwich plates. Thus, each property card contains only the information required for a single type of plate element, and in most cases, a single card has sufficient space for all of the property information. In order to maintain uniformity in the relationship between connection cards and property cards, a number of connection card types contain the same information, such as the connection cards for the various types of triangular elements. Also, the property cards for triangular and quadrilateral elements of the same type contain the same information.

STRUCTURAL MODELING

The material property definition cards are used to define the properties for each of the materials used in the structural model. The MATl card is used to define the properties for isotropic materials. The MATl card may be referenced by any of the structural elements. The MATSI card specifies table references for isotropic material properties that are stress dependent. The TABLESI card defines a tabular stress-strain function for use in Piecewise Linear Analysis. The MATTI card specifies table references for isotropic material properties that are temperature dependent. The TABLEM1, TABLEM2, TABLEM3, and TABLEM4 cards define four different types of tabular functions for use in generating temperature-dependent material properties.

The MAT2 card is used to define the properties for anisotropic materials. The MAT2 card may only be referenced by triangular or quadrilateral membrane and bending elements. The MAT2 card specifies the relationship between the inplane stresses and strains. The material is assumed to be infinitely rigid in transverse shear. The angle between the material coordinate system and the element coordinate system is specified on the connection cards. The MATT2 card specifies table references for anisotropic material properties that are temperature dependent. This card may reference any of the TABLEM1, TABLEM2, TABLEM3, or TABLEM4 cards.

The MAT3 card is used to define the properties for orthotropic materials used in the modeling of axisymmetric shells. This card may only be referenced by CTRIARG, CTRIAAX, CTRAPRG, CTRAPAX and PTQRDRG cards. The MATT3 card specifies table references for use in generating temperaturedependent properties for this type of material.

The GENEL card is used to define general elements whose properties are defined in terms of deflection influence coefficients or stiffness matrices, and which can be connected between any number of grid points. One of the important uses of the general element is the representation of part of a structure by means of experimentally measured data. No output data is prepared for the general element. Detail information on the general element is given in Section 5.7 of the Theoretical Manual.

Dummy elements are provided in order to allow the user to investigate new structural elements with a minimum expenditure of time and money. A dummy element is defined with a CDUMi ($i=$ index of element type, $1 \leq i \leq 9$) card and its properties are defined with the PDUMi card. The ADUMi card is used to define the items on the connection and property cards. Detail instructions for coding dummy element routines are given in Section 6.8.5 of the Programmer's Manual.

STRUCTURAL ELEMENTS

1.3.2 Bar Element

The bar element is defined with a CBAR card and its properties (constant over the length) are defined with a PBAR card. The bar element includes extension, torsion, bending in two perpendicular planes, and the associated shears. The shear center is assumed to coincide with the elastic axis. Any five of the six forces at either end of the element may be set equal to zero by using the pin flags on the CBAR card. The integers 1 to 6 represent the axial force, shearing force in Plane 1, shearing force in Plane 2, axial torque, moment in Plane 2, and moment in Plane 1 , respectively. The structural and nonstructural mass of the bar are lumped at the ends of the elements, unless coupled mass is requested with the PARAM card CDUPMASS (see PARAM bulk data card). Theoretical aspects of the bar element are treated in Section 5.2 of the Theoretical Manual.

STRUCTURAL ELEMENTS

The element coordinate system is shown in Figure la. End a is offset from grid point a an amount measured by vector \vec{w}_{a} and end b is offset from grid point b an amount measured by vector \vec{w}_{b}. The vectors \vec{w}_{a} and \vec{w}_{b} are measured in the global coordinates of the connected grid point. The x-axis of the element coordinate system is defined by a line connecting end a to end b of the bar element. The orientation of the bar element is described in terms of two reference planes. The reference planes are defined with the aid of vector \vec{v}. This vector may be defined directly with three components in the global system at end a of the bar or by a line drawn from end a to a third referenced grid point. The first reference plane (Plane l) is defined by the x-axis and the vector \vec{v}. The second reference plane (Plane 2) is defined by the vector cross product $(\vec{x} \times \vec{v})$ and the x-axis. The subscripts 1 and 2 refer to forces and geometric properties associated with bending in planes 1 and 2 respectively. The reference planes are not necessarily principal planes. The coincidence of the reference planes and the principal planes is indicated by a zero product of inertia (I_{12}) on the PBAR card. If shearing deformations are included, the reference axes and the principal axes must coincide. When pin flags and offsets are used, the effect of the pin is to free the force at the end of the element x-axis of the beam, not at the grid point. The positive directions for element forces are shown in Figure lb. The following element forces, either real or complex (depending on the rigid format), are output on request:

1. Bending moments at both ends in the two reference planes.
2. Shears in the two reference planes.
3. Average axial force.
4. Torque about the bar axis.

The following real element stresses are output on request:

1. Average axial stress.
2. Extensional stress due to bending at four points on the cross-section at both ends. (Optional, calculated only if user enters stress recovery points on PBAR card.)
3. Maximum and minimum extensional stresses at both ends.
4. Margins of safety in tension and compression for the whole element. (Optional, calculated only if user enters stress limits on MATl card.)

Tensile stresses are given a positive sign and compressive stresses a negative sign. Only the average axial stress and the extensional stresses due to bending are available as complex stresses. The stress recovery coefficients on the PBAR card are used to locate points on the cross-section for stress recovery. The subscript 1 is asscciated with the distance of a stress recovery point from plane 2. The subscript 2 is associated with the distance from plane 1.

The use of the BARQR card avoids unnecessary repetition of input when a large number of bar elements either have the same property identification number or have their reference axes oriented in the same manner. This card is used to define default values on the CBAR card for the property identification number and the orientation vector for the reference axes. The default values are used only when the corresponding fields on the CBAR card are blank.

1.3.3 Rod Element

The rod element is defined with a CRDD card and its properties with a PR $\varnothing D$ card. The rod element includes extensional and torsional properties. The CØNR $\varnothing \mathrm{D}$ card is an alternate form that includes both the connection and property information on a single card. The tube element is a specialized form that is assumed to have a circular cross-section. The tube element is defined with a CTUBE card and its properties with a PTUBE card. The structural and nonstructural mass of the rod are lumped. at the adjacent grid points unless coupled mass is requested with the PARAM card CØUPMASS (see PARAM bulk data card). Theoretical aspects of the rod element are treated in Section 5.2 of the Theoretical Manual).

The x-axis, of the element coordinate system, is defined by a line connecting end a to end b as shown in Figure 2. The axial force and torque are output on request in either the real or complex form. The positive directions for these forces are indicated in Figure 2. The following real element stresses are output on request:

1. Axial stress
2. Torsional stress
3. Margin of safety for axial stress
4. Margin of safety for torsional stress.

Positive directions are the same as those indicated in Figure 2 for element forces. Only the axial stress and the torsional stress are available as complex stresses.

Another kind of rod element is the viscous damper, that has extensional and torsional viscous damping properties rather than stiffness properties. The viscous damper element is defined with a CVISC card and its properties with a PVISC card. This element is used in the direct formulation of dynamic matrices.

1.3.4 Shear Panels and Twist Panels

The shear panel is defined with a CSHEAR card and its properties with a PSHEAR card. A shear panel is a two-dimensional structural element that resists the action of tangential forces applied to its edges, but does not resist the action of normal forces. The structural and nonstructural mass of the shear panel are lumped at the connected grid points. Details of the shear panel element are discussed in Section 5.3 of the Theoretical Manual.

The element coordinate system for a shear panel is shown in Figure 3a. The integers 1, 2,3, and 4 refer to the order of the connected grid points on the CSHEAR card. The element forces are output on request in either the real or complex form. The positive directions for these forces are indicated in Figure 3 b . These forces consist of the forces applied to the element at the corners in the direction of the sides, kick forces at the corners in a direction normal to the plane formed by the two adjacent edges, and "shear flows" (force per unit length) along the four edges. The shear stresses are calculated at the corners in skewed coordinates parallel to the exterior edges. The average of the four corner stresses and the maximum stress are output on request in either the real or complex form. A margin of safety is also output when the stresses are real.

The twist panel performs the same function for bending action that the shear panel performs for membrane action. The twist panel is defined with a CTWIST card and its properties with a PTWIST card. In calculating the stiffness matrix, a twist panel is assumed to be solid. For built-up panels, the thickness in the PTWIST card must be adjusted to give the correct moment of inertia of the cross-section. If mass calculations are being made, the density will also have to be adjusted on a MATI card. The element coordinate system and directions for positive forces are shown in Figure 4. Stress recovery is similar to that for shear panels.

1.3.5 Plate Elements

NASTRAN includes two different shapes of plate elements (triangular and quadrilateral) and two different stress systems (membrane and bending) which are uncoupled. There are in all a total of eleven different forms of plate elements that are defined by connection cards as follows:

1. CTRMEM - triangular element with finite inplane stiffness and zero bending stiffness.
2. CTRBSC - basic unit from which the bending properties of the other plate elements are formed.
3. CTRPLT - triangular element with zero inplane stiffness and finite bending stiffness.
4. CTRIA1 - triangular element with both inplane and bending stiffness. It is designed for sandwich plates which can have different materials referenced for membrane, bending and transverse shear properties.

STRUCTURAL MODELING

5. CTRIA2 - triangular element with both inplane and bending stiffness that assumes a solid homogeneous cross section.
6. CQDMEM - quadrilateral element consisting of four overlapping CTRMEM elements.
7. CQDMEMI - an isoparametric quadrilateral membrane element.
8. CQDMEM2 - a quadrilateral membrane element consisting of four nonoverlapping CTRMEM elements.
9. CQDPLT - quadrilateral element with zero inplane stiffness and finite bending stiffness.
10. CQUADI - quadrilateral element with both inplane and bending stiffness. It is designed for sandwich plates which can have different materials referenced for membrane, bending and transverse shear properties.
11. CQUAD2 - quadrilateral element with both inplane and bending stiffness that assumes a solid homogeneous cross section.

Theoretical aspects of the plate elements are treated in Section 5.8 of the Theoretical Manual.

The properties for the above elements are defined on the PTRMEM, PTRBSC; PTRPLT, PTRIAI, PTRIA2, PQDMEM, PQDMEM1, PQDMEM2, PQDPLT, PQUAD1, and PQUAD2 cards respectively. Anisotropic material may be specified for all plate elements. Transverse shear flexibility may be included for all bending elements on an optional basis, except for homogeneous plates (CTRIA2 and CQUAD2), where this effect is automatically included. Structural mass is calculated only for elements that specify a membrane thickness and is based only on the membrane thickness. Nonstructural mass can be specified for all plate elements, except the basic bending triangle. Only lumped mass procedures are used for membrane elements. Coupled mass procedures may be requested for elements that include bending stiffness with the PARAM card CQUPMASS (see PARAM bulk data card). Differential stiffness matrices are generated for the following plate elements: CTRMEM, CTRIAI, CTRIA2, CQDMEM, CQUAD1, CQUAD2. The following plate elements may have nonlinear material characteristics in Piecewise Linear Analysis: CTRMEM, CTRIA1, CTRIA2, CQDMEM, CQUADI, CQUAD2.

The element coordinate systems for triangular and quadrilateral plate elements are shown in Figure 5. The integers 1, 2, 3, and 4 refer to the order of the connected grid points on the connection cards defining the elements. The angle θ is the orientation angle for anisotropic materials.

Average values of element forces are calculated for all plate elements having a finite bending stiffness. The positive directions for plate element forces in the element coordinate system are shown in Figure 6a. The following element forces per unit of length, either real or complex, are output on request:

1. Bending moments on the x and y faces.
2. Twisting moment.
3. Shear forces on the x and y faces.

The CQDMEM2 is the only membrane element for which element forces are calculated. The positive directions for these forces are shown in Figure 3b, and the force output has the same interpretation as the force output for the shear panel discussed previously.

Average values of the membrane stresses are calculated for the triangular and quadrilateral membrane elements, with the exception of the CQDMEM1 element. For the CQDMEM element, in which the stress field varies, the stresses are evaluated at the intersection of diagonals (in a mean plane if the element is warped). The positive directions for the membrane stresses are shown in Figure 6b. The stresses for the CQDMEM2 element are calculated in the material coordinate system. The material coordinate system is defined by the material orientation angle on the CQDMEM2 card. The stresses for all other membrane elements are calculated in the element coordinate system.

The following real membrane stresses are output on request:

1. Normal stresses in the x and y directions
2. Shear stress on the x face in the y direction
3. Angle between the x-axis and the major principal axis
4. Major and minor principal stresses
5. Maximum shear stress

Only the normal stresses and shearing stress are available in the complex form.
If the plate element has bending stiffness the average stresses are calculated on the two faces of the plate for homogeneous plates and at two specified points on the cross-section for other plate elements. The distances to the specified points are given on the property cards. The positive directions for these fiber distances are defined according to the right-hand sequence of the grid points specified on the connection card. These distances must be nonzero in order to obtain nonzero stress output. The same stresses are calculated for each of the faces as are calculated for membrane elements.

The quadrilateral plate elements are intended for use when the surfaces are reasonably flat and the geometry is nearly rectangular. For these conditions the quadrilateral elements eliminate the modeling bias associated with the use of triangular elements, and quadrilaterals give more accurate results for the same mesh size. If the surfaces are highly warped, curved or swept, triangular elements should be used. Under extreme conditions quadrilateral elements will give results that are considerably less accurate than triangular elements for the same mesh size. Quadrilateral elements should be kept as nearly square as practicable, as the accuracy tends to deteriorate as the aspect ratio of the quadrilateral increases. Triangular elements should be kept as nearly equilateral as practicable, as the accuracy tends to deteriorate as the triangles become obtuse and as the ratio of the longest to the shortest side increases.

1.3.6 Axisymmetric Shell Elements

The properties of axisymmetric shells can be specified with either of two elements, the conical shell (CONEAX) or the toroidal ring (TØRDRG). However, these cannot be used together in the same model. Also available for thick shells of revolution are the axisymmetric solid elements which are described in the next section.

The properties of the conical shell element are assumed to be symmetrical with respect to the axis of the shell. However, the loads and deflections need not be axisymmetric, as they are expanded in Fourier series with respect to the aximuthal coordinate. Due to symmetry, the resulting load and deformation systems for different harmonic orders are independent, a fact that results in a large time saving when the use of the conical shell element is compared with an equivalent model constructed from plate elements. Theoretical aspects of the conical shell element are treated in Section 5.9 of the Theoretical Manual.

At present the conical shell element cannot be combined with other types of elements. The existence of a conical shell problem is defined by the AXIC card. This card also indicates the number of harmonics desired in the problem formulation. Only a limited number of bulk data cards are allowed when using conical shell elements. The list of allowable cards is given on the AXIC card description in Section 2.4.2.

The geometry of a problem using the conical shell element is described with RINGAX cards instead of GRID cards. The RINGAX cards describe concentric circles about the basic z-axis, with their locations given by radii and z-coordinates as shown in Figure 7. The degrees of freedom defined by each RINGAX card are the fourier coefficients of the motion with respect to angular position around the circle. For example the radial motion, u_{r}, at any ang $\phi=, \phi$, is described by the equation:

$$
\begin{equation*}
u_{r}(\phi)=\sum_{n=0}^{N} u_{r}^{n} \cos n \phi+\sum_{n=0}^{N} u_{r}^{n^{*}} \sin n \phi, \tag{1}
\end{equation*}
$$

where u_{r}^{n} and $u_{r}^{n^{*}}$ are the fourier coefficients of radial motion for the n-harmonic. For calculation purposes the series is limited to N harmonics as defined by the AXIC card. The first sum in the above equation describes symmetric motion with respect to the $\phi=0$ plane. The second sum with the "starred" (*) superscripts describes the antisymmetric motion. Thus each RINGAX data card will produce six times $(N+1)$ degrees of freedom for each series.

$$
1.3-8(3 / 1 / 76)
$$

STRUCTURAL ELEMENTS

The selection of symmetric or antisymmetric solutions is controlled by the AXISYM card in the Case Control Deck. For general loading conditions, a combination of the symmetric and antisymmetric solutions must be made, using the SYMCøM card in the Case Control Deck (Section 2.3 of the User's Manual).

Since the user is rarely interested in applying his loads in terms of Fourier harmonics and interpreting his data by manually performing the above summations, NASTRAN is provided with special cards which automatically perform these operations. The PøINTAX card is used like a GRID card to define physical points on the structure for loading and output. Sections of the circle may be defined by a SECTAX card which defines a sector with two angles and a referenced RINGAX card. The POINTAX and SECTAX cards define six degrees of freedom each. The basic coordinate system for these points is a cylindrical system (r, ϕ, z) and their applied loads must be described in this coordinate system. Since the displacements of these points are dependent on the harmonic motions, they may not be constrained in any manner.

The conical shell element is connected to two RINGAX points with a CCDNEAX card. The properties of the conical shell element are described on the PCØNEAX card. The RINGAX points must be placed on the neutral surface of the element and the points for stress calculation must be given on the PCØNEAX card relative to the neutral surface. Up to fourteen angular positions around the element may be specified for stress and force output. These values will be calculated midway between the two connected rings.

The structure defined with RINGAX and CCØNEAX cards must be constrained in a special manner. All harmonics may be constrained for a particular degree of freedom on a ring by using permanent single-point constraints on the RINGAX cards. Specified harmonics of each degree of freedom on a ring may be constrained with a SPCAX card. This card is the same as the SPC card except that a harmonic must be specified. The MPCAX, QMITAX, and SUPAX data cards correspond the the MPC, QMIT, and SUPDRT data except that harmonics must be specified. SPCADD and MPCADD cards may be used to combine constraint sets in the usual manner.

The stiffness matrix includes five degrees of freedom per grid circle per harmonic when transverse shear flexibility is included. Since the rotation about the normal to the surface is not included, either the fourth or the sixth degree of freedom (depending upon the situation) must be constrained to zero when the angle between the meridional generators of two adjacent elements is zero. When the transverse shear flexibility is not included, only four independent degrees of

$$
1.3-9(3 / 1 / 76)
$$

STRUCTURAL MODELING

freedom are used and the fourth and sixth degrees of freedom must be constrained to zero for all rings. These constraints can be conveniently specified on the RINGAX card.

The conical shell structure may be loaded in various ways. Concentrated forces may be described by $F \emptyset R C E$ and MØMENT cards applied to PØINTAX points. Pressure loads may be input in the PRESAX data card which defines an area bounded by two rings and two angles. Temperature fields are described by a paired list of angles and temperatures around a ring as required by the TEMPAX card. Direct loads on the harmonics of a RINGAX point are given by the FORCEAX and MgMAX card. Since the basic coordinate system is cylindrical the loads are given in the r, ϕ, and z directions. The value of a harmonic load F_{n} is the total load on the whole ring of radius r. If a sinusoidal load per unit length of maximum value a_{n} is given, the value on the $F \emptyset R C E A X$ card must be

$$
\begin{array}{ll}
F_{n}=2 \pi r a_{n} & n=0, \\
F_{n}=\pi r a_{n} & n>0 . \tag{3}
\end{array}
$$

Displacements of rings and forces in conical shell elements can be requested in two ways:

1. The harmonic coefficients of displacements on a ring or forces in a conical element.
2. The displacements at specified points or the average value over a specified sector of a ring. The forces in the element at specified azimuths or average values over specified sectors of a conical element.

Harmonic output is requested by ring number for displacements and conical shell element number for element forces. The number of harmonics that will be output for any request is a constant for any single execution. This number is controlled by the HARM@NICS card in the Case Control Deck (see Section 2.3).

The following element forces per unit of width are output either as harmonic coefficients or at specified locations on request:

1. Bending moments on the u and v faces
2. Twisting moments
3. Shearing forces on the u and v faces

The following element stresses are calculated at two specified points on the cross-section of the element and output either as harmonic coefficients or at specified locations on request:

1. Normal stresses in u and v directions
2. Shearing stress on the u face in the v direction
3. Angle between the u-axis and the major principal axis
4. Major and minor principal stresses
5. Maximum shear stress

The coordinate system for the toroidal ring is shown in Figure 8. This cylindrical coordinate system is implied by the use of the toroidal element, and hence, no explicit definition is required. The toroidal element may use orthotropic materials. The axes of orthotropy are assumed to coincide with the element coordinate axes.

Deformation behavior of the toroidal element is described by five degrees of freedom for each of the two grid rings which it connects. The degrees of freedom in the implicit coordinate system are:

1. \bar{u} - radial displacement
2. Not defined for toroidal element (must be constrained)
3. \bar{w} - axial displacement
4. $w^{\prime}=\frac{\partial w}{\partial \xi}$ slope in ξ-direction
5. $u^{\prime}=\frac{\partial u}{\partial \xi}$ strain in ξ-direction
6. $w^{\prime \prime}=\frac{\partial^{2} w}{\partial \xi^{2}}$ curvature in $z \xi$-plane

The displacements \bar{u} and \bar{w} are in the basic coordinate system, and hence can be expressed in other local coordinate systems if desired. However, the quantities u^{\prime}, w^{\prime} and $w^{\prime \prime}$ are always in the element coordinate system.

The toroidal ring element connectivity is defined with a CTØRDRG card and its properties with a PTøRDRG card and, in the limit, this element becomes a cap element (see Section 5.10 of the Theoretical Manual). The integers 1 and 2 on Figure 8 refer to the order of the connected grid points on the CTØRDRG card. The grid points must lie in the $r-\bar{z}$ plane of the basic coordinate system and they must lie to the right of the axis of symmetry. The angles α_{1} and α_{2} in Figure 8 are the angles of curvature and are defined as the angle measured in degrees from the axis of symmetry to a line which is perpendicular to the tangent to the surface at grid points 1 and 2 respectively. For conic rings $\alpha_{1}=\alpha_{2}$ and for cylindrical rings $\alpha_{1}=\alpha_{2}=90$ degrees. Toroidal elements may be connected to form closed figures in the $r-\bar{z}$ plane, but slope discontinuities are not permitted at connection points.

The following forces, evaluated at each end of the toroidal element, are output on request:

1. Radial force
2. Axial force
3. Meridional moment
4. A generalized force which corresponds to the w^{\prime} degree of freedom.
5. A generalized force which corresponds to the $w^{\prime \prime}$ degree of freedom. The first three forces are referenced to the global coordinate system and the two generalized forces are referenced to the element coordinate system. For a definition of the generalized forces see Section 5.10 of the Theoretical Manual.

The following stresses, evaluated at both ends and the midspan of each element, are output on request:

1. Tangential membrane stress (Force per unit length)
2. Circumferential membrane stress (Force per unit length)
3. Tangential bending stress (Moment per unit length)
4. Circumferential bending. stress (Moment per unit length)
5. Shearing stress (Force per unit length)

The positive directions for these stresses are indicated in Figure 9.

1.3.7 Axisymmetric Solid Elements

Two sets of elements are provided for representing thick axisymmetric shell and/or solid structures (see Section 5.11 of the Theoretical Manual). The first set, the triangular ring TRIARG and trapezoidal ring TRAPRG, is restricted to axisymmetric applied loadings only. The second set is not restricted to axisymmetric loadings and, like the conical shell element, their displacements and loads are represented by coefficients of a Fourier series about the circumference. These elements, the TRIAAX and the TRAPAX, also define a triangular and a trapezoidal cross section respectively. The elements of one set may not be used together with elements of the other set nor with any other elements in NASTRAN.

The triangular and trapezoidal ring elements may be used for modeling axisymmetric thickwalled structures of arbitrary profile. In the limiting case only the TRAPRG element may become a solid core element.

The coordinate system for the triangular ring element is shown on Figure 10 . The cylindrical system is implied by the use of the triangular ring element. Hence, no explicit definition of the basic cylindrical coordinate system is required. Cylindrical anisotropy is optional for the material properties in the ring element. Orientation of the orthotropic axes in the (r, z) plane is specified by the angle θ. Deformation behavior of the element is described in terms of translations in the r and z directions at each of the 3 connected grid points. All other degrees of freedom must be constrained.

The triangular ring element is defined with a CTRIARG card. No property card is used for this element. The material property reference is given on the connection card. The integers 1, 2 and 3 on Figure 10 refer to the order of the connected grid points on the CTRIARG card. This order must be counter-clockwise around the element. The grid points must lie in the $r-z$ plane of the basic cylindrical coordinate system, and they must lie to the right of the axis of symmetry.

The radial and axial forces at each connected grid point are output on request. The positive directions for these forces are shown in Figure 10. These are apparent element forces and they include any equivalent thermal loads. The stresses at the centroid of an element are output on request. The available quantities are the normal stresses in the radial, circumferential and axial directions, and the shear stress on the radial face in the axial direction. Positive stresses are in the positive direction on the positive face.

The coordinate system for the trapezoidal ring element is shown in Figure 11. This element is similar to the triangular ring element. This element has the additional restriction that the element numbering must begin at the lower left hand corner of the element. Also, the parallel faces of the trapezoid must be perpendicular to the axis of symmetry. This element can be used in the limiting case where the r coordinates associated with grid points 1 and 4 are zero. In this special case the element is referred to as a core element.

The trapezoidal ring element is defined with a CTRAPRG card in a manner similar to that for a triangular element. The forces at the four connected grid points are provided on request in a manner similar to that for a triangular element. In addition to providing the stresses at the four connected grid points of the trapezoid, similar stresses are provided at a point of average radius and average z-distance from the four points.

STRUCTURAL MODELING

The two solid of revolution elements which are provided for representing nonaxisymmetric loadings on axisymmetric structures with thick or solid cross sections are the TRIAAX and TRAPAX elements. These define a triangle and a trapezoidal cross section of the structure. They are functionally similar to the conical shell element (see Section 1.3.6) and physically similar to the axisymmetric ring elements CTRAPRG and CTRIARG described above (see Figures 10 and 11).

The elements are connected to RINGAX points which define displacement degrees of freedom represented by coefficients of a Fourier series about the circumference. Due to symmetry, the resulting load and deformation systems for the different harmonic orders are uncoupled, resulting in large time savings compared to a general three-dimensional model. Theoretical aspects of the solid of revolution elements are treated in Section 5.11 of the Theoretical Manual. Definitions of the Fourier series representation of the structural displacements and loads are given in Section 5.9 of the Theoretical Manual. As in the conical shell formulation, no other element types may be combined with these elements.

The following special case control cards, used also with the conical shell problem, are used with the solid of revolution elements:

AXISYM - Defines whether the cosine series, sine series or combination of displacements are to be calculated.
HARMQNICS - Limits the output to all harmonics up to and including the $\mathrm{n}^{\text {th }}$ harmonic, default is 0 .

The geometry of a problem using these elements is defined by the RINGAX cards. The harmonic limit in the Fourier expansion is defined by the required AXIC card. The RINGAX card does not allow a zero radius. However, a small "hole" may be defined around the axis of revultion. To avoid inaccuracies, a warning is issued for each element whose inner radius is less than onetenth its outer radius. Property cards PTRAPAX and PTRIAAX are used to identify the material and the circumferential locations for stress output. The material type is limited to MAT1 and MAT3 definitions. The following bulk data cards, also used with the conical shell elements, are available with the solid of revolution elements:

AXIC - Defines limit of displacement Fourier series.
SPCAX - Defines single point constraints and enforced displacements on specified degrees of freedom.

MPCAX - Defines multipoint constraints connecting specified degrees of freedom.

STRUCTURAL ELEMENTS

gMITAX - Defines degrees of freedom to be removed by structural partitioning.
SUPAX - Defines free-body support points.
PØINTAX - Defines circumferential location on a RINGAX station for applied loading and/or output.

SECTAX - Defines a circumferential sector on a RINGAX station for distributed applied forces.
FØRCE - Defines a concentrated force at a PØINTAX or load per length at a SECTAX location on the structure.

FØRCEAX -: Defines a generalized force directly on a specified harmonic of a RINGAX station.
PRESAX - Defines a pressure load.
TEMPAX - Defines a temperature distribution at a RINGAX point for thermal loading and temperature-dependent matrices.

The basic coordinate system for the solid of revolution elements is a cylindrical coordinate system (r, ϕ, z). The rotational degrees of freedom (components 4, 5 and 6) must be constrained.

The output quantities for the RINGAX points are the displacement coefficients for each harmonic. The output for the PØINTAX degrees of freedom are the sum of the harmonics giving the physical displacements at the point while output for SECTAX points are the average displacements over the circumferential sector. These quantities are available only in S $S Q R T 1$ format.

The stress output for these elements is similar to that for the TRIARG and TRARPRG elements described above. However, since the stresses vary around the circumference, each element output includes the Fourier coefficients of stress for each harmonic followed by the stresses at the angular locations specified on the property card. Stresses are calculated at.the centroid of the cross section on the TRIAAX element. Stresses are calculated at the four corners as well as at a fifth "grid point" on the TRAPAX element, which is located an average radius and average length from the four corner points.

STRUCTURAL ELEMENTS

1.3.8 Scalar Elements

Scalar elements are connected between pairs of degrees of freedom (at either scalar or geometric grid points) or between one degree of freedom and ground. Scalar elements are available as springs, masses and viscous dampers. Scalar spring elements are useful for representing elastic properties that cannot be conveniently modeled with the usual metric structural elements. Scalar masses are useful for the selective representation of inertia properties, such as occurs when a concentrated mass is effectively isolated for motion in one direction only. The scalar damper is used to provide viscous damping between two selected degrees of freedom or between one degree of freedom and ground. It is possible, using only scalar elements and constraints, to construct a model for the linear behavior of any structure. However it is expected that these elements will be used only when the usual metric elements are not satisfactory. Scalar elements are useful for modeling part of a structure with its vibration modes or when trying to consider electrical or heat transfer properties as part of an overall structural analysis. The reader is referred to Sections 5.5 and 5.6 of the Theoretical Manual for further discussions on the use of scalar elements.

The most general definition of a scalar spring is given with a CELASI card. The associated properties are given on the PELAS card. The properties include the magnitude of the elastic spring, a damping coefficient, and a stress coefficient to be used in stress recovery. The CELAS2 defines a scalar spring without reference to a property card. The CELAS3 card defines a scalar spring that is connected only to scalar points and the properties are given on a PELAS card. The CELAS4 card defines a scalar spring that is connected only to scalar points and without reference to a property card. No damping coefficient or stress coefficient is available with the CELAS4 card.

Scalar elements may be connected to ground without the use of constraint cards. Grounded connections are indicated on the connection card by leaving the appropriate scalar identification number blank. Since the values for scalar elements are not functions of material properties, no references to such cards are needed.

The CDAMP1, CDAMP2, CDAMP3 and CDAMP4 cards define scalar dampers in a manner similar to the scalar spring definitions. The associated PDAMP card contains only a value for the scalar damper.

1.3.9 Mass

Inertia properties are specified directly as mass elements attached to grid points and indirectly as the properties of matrix structural elements. In addition, dynamic analysis mass matrix coefficients may be specified that are directly referred to the global coordinate system. Some portions of the mass matrix are generated automatically while other portions are not. Mass data may be assembled according to two different kinds of relationships: lumped mass assumptions or coupled mass considerations. Additional information on treatment of inertia properties is given in Section 5.5 of the Theoretical Manual.

1.3.9.1 Lumped Mass

The partitions of the lumped mass matrix are explained in Section 5.5.3 of the Theoretical Manual, but to aid the user the form is repeated here in Equation 1.

The only portion of the lumped mass matrix that is automatically generated is the scalar partition. This implies that no first moment and second moment terms for the lumped mass matrix are automatically generated. In this context, automatic generation means the calculation of the mass from the structural elements that are connected to a given grid point, solely from the information provided on the element connection and property card. All of the metric structural elements (rods, bars, shear panels, twist panels, plates, and shell elements) may have uniformly distributed structural and nonstructural mass. Structural mass is calculated from material and goemetric properties. The mass is assumed to be concentrated in the middle surface or along the neutral axis in the case of rods and bars, so that rotary inertia effects, including the torsional inertia of beams, are absent.

In the lumped mass method, the mass of an element is simply divided into equal portions and each portion is assigned to only one of the surrounding grid points. Thus, for uniform rods and bars, one-half of the mass is placed at each end; for uniform triangles, one-third of the mass is

STRUCTURAL ELEMENTS

placed at each corner; quadrilaterals are treated as two pairs of overlapping triangres (see the Theoretical Manual Sections 5.3 and 5.8). The lumped mass matrix is independent of the elastic properties of elements. There are no other automatic routines for providing mass terms for the 1 umped mass approach.

1.3.9.2 Coupled Mass

In the coupled mass approach, properties of mass pertaining to a single structural element include off-diagonal coefficients that couple action at adjacent grid points. For further amplification of the techniques used in the coupled mass approach see Section 5.5.3 of the Theoretical Manual. To invoke the automatic generation of the coupled mass matrix, the parameter CØUPMASS is indicated on the PARAM card. If selected coupled mass properties are desired only for certain element types, this is obtained by a second parameter call specifying the element. For further details see the PARAM bulk data card. When using CQUPMASS, the nonzero terms are generated in offdiagonal positions of the mass matrix corresponding generally to nonzero terms of the stiffness matrix. This implies that a mass matrix generated by the coupled mass approach will generally have a density and topology equivalent to that of the stiffness matrix.

Off-diagonal mass terms may also be created during Guyan reduction when the QMIT or ASET bulk data cards are used to condense the stiffness and mass matrices. Any mass associated with the omitted degrees of freedom will be redistributed to the remaining degrees of freedom forming a coupled mass matrix. The use of multipoint constraints (MPC cards) with mass terms on the dependent degrees of freedom produces a similar effect. The mass on the dependent coordinate will be transformed to the connected independent coordinates, thereby coupling them together. Mathematically, these operations and the element coupled mass formulations described above are closely related.

1.3.9.3 Mass Input

In many cases it may be desired to add mass terms to the structure in addition to those generated by the structural elements. For instance, in a lumped mass formulation any additional masses involving rotational degrees of freedom must be independently calculated and input manually via bulk data cards.

The concentrated mass elements CØNM1 and CØNM2 may be used to add mass terms directly to a single grid point. The C@NM2 element is used to specify a rigid body with mass and inertia properties that is connected to a single grid point (offsets are allowed). The CONM1 element has a more general input format to allow directional mass terms.

The notation on the CONMI card is explicit, that is, subscripting of each term spans the degree of freedom range from 1 through 6. On the CONM2 card, double subscripting is used only for the second moment partition. Therefore, the correspondence for symbols between CONMM entries and CDNM2 entries for the second moment partition is as follows: $\mathrm{I}_{11}, \mathrm{I}_{21}, \mathrm{I}_{22}, \mathrm{I}_{31}, \mathrm{I}_{32}$ and I_{33} on the C@NM2 card (defined in Theoretical Manual section 5.5.2.2 by the integrals of Equations 13,14 and 15) correspond to $M_{44}, M_{54}, M_{55}, M_{64}, M_{65}$ and M_{66} on C@NM1 ($M_{54}=-I_{x y}, M_{64}=-I_{x z}, M_{65}=-I_{y z}$) with sign changes on the off-diagonal terms as shown in Equation 10 of the referenced section. The program multiplies each cross product of inertia term from C@NM2 user data by (-1) before assembling this data into the mass matrix, to make it correspond to the requirements of Equation 10.

An alternative to specifying mass information for the lumped mass method is to use the CMASSi and the PMASSi cards. This allows the option of treating mass as finite elements, one degree of freedom at a time. A particularly advantageous feature of the CMASSi card is the ability to couple mass terms between grid points and/or scalar points. When dynamic rigid formats are used, the direct matrix input (DMIG) may be used to supply grid point mass data. When mass information is entered via DMIG cards, it will remain dormant until activated by a call from Case Control via the M2PP card.

When a DMAP sequence is used or a rigid format is ALTERed, another form is available for presenting mass information via the DMI card. The DMI card is not recognized as a ligitimate source of bulk data for the rigid formats, unless an ALTER is used.

In all cases a combination of mass input can be used. For instance, the translational inertias can be generated automatically by the element routines, while the first and second moment properties can be provided through C@NM2 cards. Some elements can be used to provide coupled mass properties through the CDUPMASS parameter, while other contributions to the same grid points can
be made by direct matrix input through DMIG cards. The information from these several sources will be summed in the formation of the final mass matrix.

1.3.9.4 Output from the Grid Point Weight Generator

The Grid Point Weight Generator (GPWG) module computes the rigid body mass properties of an entire structure with respect to a user specified point and with respect to the center of mass.

Output from the module is requested by a PARAM card in the Bulk Data Deck which specifies from which grid point mass computations are to be referenced. Optionally, the absence of a specific grid point automatically causes the origin of the basic coordinate system to be utilized as a reference. The mass properties are initially defined in the basic coordinate system. Subsequently, the mass properties are transformed to principal mass axes and to principal inertia axes. The actual printout is composed of several elements. These are

1. Title Mø

This is the rigid body mass matrix of the entire structure in the basic coordinate system with respect to a reference point chosen by the analyst.
2. Title S
S is the transformation from the basic coordinate system to the set of principal axes for the 3×3 scalar mass partition of the 6×6 mass matrix. The principal axes for just the scalar partition are known as the principal mass axes.
3. Title X-C.G. Y-C.G. Z-C.G.

It is possible in NASTRAN to assemble a structural model having different values of mass in each coordinate direction at a grid point. This can arise for example assembling scalar mass components or from omitting some components by means of bar element pin flggs. Consequently three distinct mass systems are assembled one in each of the three directions of the principal mass axes (the S system). This third tabulation has five columns. The first column lists the axis direction in the S coordinates. The second column lists the mass associated with the appropriate axis direction. The final three columns list the x, y and z coordinate distances from the reference point to the center of mass for each of the three mass systems.
4. Title I(S)

This is the 3×3 mass moment of inertia partition with respect to the center of gravity referred to the principal mass axes (the S system). This is not necessarily a diagonal matrix because the determination of the S system does not involve second moments. The values of
inertias at the center of gravity are found from the values at the reference point by employing the parallel axes rule.
5. Title I(Q)

The principal moments of inertia at the center of gravity are displayed in matrix form with reference to the Q system of axes. The Q system is obtained from an eigenvalue analysis of the $I(s)$ matrix.
6. Title Q

Q is the coordinate transformation between the S axes and the Q axes.

1.3.9.5 Bulk Data Cards for Mass

A summary chart is given in Table 1 to help in the selection of the method of input for a given type of mass information. Descriptions of individual cards for the entering of mass information into the bulk data are listed here:

1. Element data from the combined sources of $C(-), P(-)$, and MATi cards will automatically cause the translational mass (scalar) terms of the mass matrix to be generated, provided a density value and/or a nonstructural density factor is entered.
2. The MASSi cards define scalar masses. CMASSi cards define connections between a pair of degrees of freedom (at either scalar or geometric grid points) or between one degree of freedom and ground. Thus, $f_{1}=m\left(x_{1}-x_{2}\right)$ where x_{2} may be absent. The CMASS1 cards (i = 1 through 4) are necessary whenever scalar points are used. PMASSi cards define mass property magnitudes. Other applications include selective representations of inertia properties, such as occur in shell theory where in-plane inertia forces are often ignored.
3. The C@NM2 card defines the properties of a solid body: m, its mass, x_{1}, x_{2}, x_{3}, the three coordinates of its center of gravity offset with respect to the grid point, $\mathrm{I}_{11}, \mathrm{I}_{22}, \mathrm{I}_{33}$, its three moments of inertia and $\mathrm{I}_{12}, \mathrm{I}_{13}, \mathrm{I}_{23}$, and its three products of inertia, all with respect to any (selected) coordinate system. If a local cylindrical or a sphrical coordinate system is chosen to define the mass properties, the offset distances of the mass c.g. from the grid point are measured along the axes $(r, \theta, z$ or $\rho, \theta, \phi)$ defined at the grid point in that local system. Also note, that the mass properties of inertia are computed relative to a set axes at the mass c.g. which are parallel to those r, θ, z or ρ, θ, ϕ axes at that grid point. The CØNM2 element routine uses the parallel axis theorem to
transform inertias with respect to the center of gravity to inertias with respect to the grid point, Section 5.5.2.1 of the Theoretical Manual describes how to treat the signs of cross products of inertia terms on CONM2 cards.
4. The CØNMI card defines a 6×6 matrix of mass coefficients at a geometric grid point in any selected coordinate system. Since the only restrictions are that the matrix be real and symmetric, there are 21 possible independent coefficients. The CØNM1 card therefore permits somewhat more general inertia relationships than those of a solid body which has only 10 independent inertia properties. This should be remembered in applications requiring unique centers of gravity, such as in the calculation of centrifugal forces. See Section 5.5.2.5 of the Theoretical Manual for a discussion of inertia properties resulting from CONMI card input.
5. The DMIG (or DMIGAX for axisymmetric structures) card accomodates matrix entries by grid point and component. This is a general card that can be used for mass, stiffness, or damping matrices. It becomes particularized to mass when the name given to the matrix is called by an M2PP card in Case Control. Data defined by this card will be recognized as admissible only when used with dynamic rigid formats 7 through 12.
6. The DMI card is used to assign values according to row-column positions in a matrix. This is a general card for any kind of matrix which becomes particularlized to mass when the name given to the matrix is called from a DMAP statement. Data defined by this card will be recognized as admissible only when used in a DMAP sequence or in an ALTER to a rigid format.
7. The COUPMASS entry on the PARAM card will activate the "consistent" mass matrix algorithms in the element routines which generate mass coupling properties between grid points. There are three options available to regulate whether the coupling properties are generated for all or some types of elements (see PARAM bulk data card). A set of entries for a second PARAM card of the form CP(element name) are available for use in connection with CQUPMASS for selecting the element types for which coupling terms will be computed.
8. The ØMIT (or ØMIT1, or ØMITAX for axisymmetric structures, or ASET for obverse operations) card will cause the initially-generated mass matrix to be condensed from the omitted degrees of freedom to the remaining degrees of freedom. The condensing process generally produces a mass term in every matrix position in which there is a nonzero stiffness term in the corresponding reduced stiffness matrix.
9. The GRDPNT entry on the PARAM card will activate the Grid Point Weight Generator (GPWG) module previously discussed. It will treat the mass properties of the entire structure as though the structure were rigid and it will determine the translational (scalar) mass properties, the first and second moment properties of the rigid body structure and the center of gravity distances with respect to the user specified reference grid points. It also computes the 6×6 matrix of mass properties with respect to the center of mass and the orientation of the principal mass axes.

STRUCTURAL ELEMENTS

1.3.10 Solid Polyhedron Elements

Three types of solid polyhedron elements are provided for the general solid structures (see Section 1.3.7 for axisymmetric structures with axisymmetric loads). These elements (see Figure 12) are a tetrahedron, a wedge and a hexahedron. The theory is given in Section 5.12 of the Theoretical Manual. These elements can be used with all other NASTRAN elements, except the axisymmetric elements. Connections are made only to displacement degrees of freedom at the grid points.

The elements are defined by CTETRA, CWEDGE, CHEXAI, and CHEXA2 connection cards. The user should specify grid locations such that the quadrilateral faces are nearly planar. No special element coordinate system is required. The only properties required are material properties, thus no PID card is referenced; direct reference is made to a MID card. For thermal stress problems, the temperature is assumed to be the average of the connected grid points. Differential stiffness, buckling, and piecewise linear analyses have not been implemented.

The output stresses are given in the basic coordinate system. In addition to the six normal and shear stresses, output also includes the pressure

$$
p_{0}=-\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)
$$

and the octahedral stress

$$
\sigma_{0}=\frac{1}{3}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}+6 \tau_{y z}^{2}+6 \tau_{z x}^{2}+6 \tau_{x y}^{2}\right]^{1 / 2}
$$

The stresses in the tetrahedra are constant. The stresses in the wedge and the hexahedron are obtained as the weighted average of the stresses in the subtetrahedra. The weighting factor for each tetrahedra is proportional to its volume.

STRUCTURAL ELEMENTS

1.3.11 Isoparametric Solid Hexahedron Elements

Three types of isoparametric solid hexahedron elements are provided for general solid structures. These elements (see Figure 13) are a linear, a quadratic, and a cubic isoparametric hexahedron. The theory is given in Section 5.13 of the Theoretical Manual. These elements can be used with all other NASTRAN elements, except the axisymmetric elements. Connections are made only to the translational degrees of freedom at the grid points. The elements are defined by CIHEXI, CIHEX2, and CIHEX3 connection cards. All three of these cards reference the PIHEX property card.

The isoparametric solid hexahedron elements allow the user to accurately define a structure with fewer elements and grid points than might otherwise be necessary with simple constant strain solid elements. The linear element generally gives best results for problems involving mostly shear deformations, and the higher order elements give good results for problems involving both shearing and bending deformations. Only a coupled mass matrix is generated to retain the inherent accuracy of the elements. Temperature, temperature-dependent material properties, displacements, and stresses may vary through the volume of the elements. The values at interior points of the element are interpolated using the isoparametric shape function. For best results, the applied grid point temperatures should not have more than a "gentle" quadratic variation in each of the three dimensions of the element. If the element has non-uniform applied temperatures, or if it is not a rectangular parallelopiped, three or more integration points should be specified on the PIHEX card. Severely distorted element shapes should be avoided.

Stiffness, mass, differential stiffness, structural damping, conductance, and capacitance matrices may be generated with these elements. Piecewise linear analysis has not been implemented.

The output stresses are given in the basic coordinate system. The stresses are assumed to vary through the element. Therefore, stresses are computed at the center and at each corner grid point of these elements. For the quadratic and cubic elements, they are also computed at the midpoint of each edge of the element. In addition to the six normal and shear stresses, output also includes the principal stresses $\left(S_{x}, S_{y}\right.$, and $\left.S_{z}\right)$, the direction cosines of the principal planes, the mean stress

$$
\sigma_{n}=-\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)
$$

and the octahedral shear stress

$$
\sigma_{0}=\left\{\frac{1}{3}\left[\left(S_{x}+\sigma_{n}\right)^{2}+\left(S_{y}+\sigma_{n}\right)^{2}+\left(S_{z}+\sigma_{n}\right)^{2}\right]\right\}^{1 / 2}
$$

structural elements

(a) Element coordinate system

(b) Element
forces

Figure 1. Bar element coordinate system and element forces.

Figure 2. Rod element coordinate system and element forces.

STRUCTURAL ELEMENTS

(a) Coordinate System.

(b) Corner forces and shear flows.

Figure 3. Coordinate system and element forces for shear panel and CQDMEM2 elements.

Figure 4. Twist panel coordinate system and element forces.

STRUCTURAL ELEME!TS

(a)

(b)

Figure 5. Plate element coordinate systems.

STRUCTURAL MODELING

Figure 6. Forces and stresses in plate elements.

Figure 7. Geometry for conical shell element.

Figure 8. Toroidal ring element coordinate system.

Figure 9. Stresses for toroidal element.

Figure 10. Triangular ring element coordinate system.

Figure 11. Trapezoidal ring element coordinate system.

STRUCTURAL ELEMENTS

(a) Tetrahedron.

(b) Wedge and One of its Six Decompositions.

(c) Hexahedron and its Two Decompositions.

Figure 12. - Polyhedron elements and their subtetrahedra.

(a) Linear

(b) Ouadratic

(c) Cubic

Figure 13. Isoparametric solid hexahedron elements

1.4 CONSSTRAINTS AND PARTITIONING

Structural matrices are initially assembled in terms of all structural grid points, which excludes only the extra scalar points introduced for dynamic analysis. These matrices are generated with six degrees of freedom for each geometric grid point and a single degree of freedom for each scalar point. Various constraints are applied to these matrices in order to remove undesired singularities, provide boundary conditions, define rigid elements, and provide other desired characteristics for the structural model.

There are two basic kinds of constraints. Single-point constraints are used to constrain a degree of freedom to zero or to a prescribed value, and multipoint constraints are used to constrain a degree of freedom to be equal to a linear combination of the values of other degrees of freedom. The following four types of bulk data cards are provided for the definition of constraints:

1. Single-point constraint cards
2. Multipoint constraint cards
3. Cards to define reaction points on free bodies
4. Cards to define the omitted coordinates in matrix partitioning

The latter type does not produce constraint forces in static analysis.

1.4.1 Single-Point Constraints

A single-point constraint applies a fixed value to a translational or rotational component at a geometric grid point or to a scalar point. One of the most common uses of single-point constraints is to specify the boundary conditions of a structural model by fixing the appropriate degrees of.freedom. Multiple sets of single-point constraints can be provided in the Bulk Data Deck, with selections made at execution time by using the subcase structure in the Case Control Deck as explained in Section 2.3.3. This procedure is particularly useful in the solution of problems having one or more planes of symmetry.

The elements connected to a grid point may not provide resistance to motion in certain directions, causing the stiffness matrix to be singular. Single-point constraints are used to remove these degrees of freedom from the stiffness matrix. A typical example is a planar structure composed of membrane and extensional elements. The translations normal to the plane and all three rotational degrees of freedom must be constrained since the corresponding stiffness matrix

STRUCTURAL MODELING

terms are all zero. If a grid point has a direction of zero stiffness, the single-point constraint need not be exactly in that direction, but only needs to have a component in that direction. This allows the use of single-point constraints for the removal of such singularities regardless of the orientation of the global coordinate system. Although the displacements will depend on the direction of the constraint, the internal forces will be unaffected.

One of the tasks performed by the Structural Matrix Assembler (Section 4.27 of the Programmer's Manual) is to examine the stiffness matrix for singularities at the grid point level. Singularities remaining at this level, following the application of the single-point constraints, are listed in the Grid Point Singularity Table (GPST). This table is automatically printed following the comparison of the possible singularities tabulated by the Structural Matrix Assembler with the single-point constraints and the dependent coordinates of the multipoint constraint equations provided by the user. The GPST contains all possible combinations of single-point constraints, in the global coordinate system, that can be used to remove the singularities. These remaining singularities are treated only as warnings, because it cannot be determined at the grid point level whether or not the singularities are removed by other means, such as general elements or multipoint constraints in which these singularities are associated with independent coordinates.

Single-point constraints are defined on SPC, SPCI, SPCADD and SPCAX cards. The SPC card is the most general way of specifying single-point constraints. The SPCl card is a less general card that is more convenient when a number of grid points have the same components constrained to a zero displacement. The SPCADD card defines a union of single-point constraint sets specified with SPC or SPCI cards. The SPCAX card is used only for specifying single-point constraints in problems using conical shell elements.

Single-point constraints can also be defined on the GRID card. In this case, however, the constraints are part of the model and modifications cannot be made at the subcase level. Also, only zero displacements can be specified on the GRID card.

1.4.2 Multipoint Constraints

Each multipoint constraint is described by a single equation that specifies a linear relationship for two or more degrees of freedom. Multiple sets of multipoint constraints can be provided in the Bulk Data Deck, with selections made at execution time by using the subcase structure in the Case Control Deck as explained in Section 2.3.3. Multipoint constraints are
discussed in Sections 3.5 .1 and 5.4 of the Theoretical Manual.

Multipoint constraints are defined on MPC, MPCADD and MPCAX cards. The MPC card is the basic card for defining multipoint constraints. The first coordinate mentioned on the card is taken as the dependent degree of freedom, i.e. that degree of freedom that is removed from the equations of motion. Dependent degrees of freedom may appear as independent terms in other equations of the set, however, they may appear as dependent terms in only a single equation. The MPCADD card defines a union of multipoint constraint sets specified with MPC cards. The MPCAX card is used only for specifying multipoint constraints in problems using conical shell elements. Some uses of multipoint constraints are:

1. To enforce zero motion in directions other than those corresponding with components of the global coordinate system. In this case, the multipoint constraint will involve only the degrees of freedom at a single grid point. The constraint equation relates the displacement in the direction of zero motion to the displacement components in the global system at the grid point.
2. To describe rigid elements and mechanisms such as levers, pulleys and gear trains. In this application, the degrees of freedom associated with the rigid element that are in excess of those needed to describe rigid body motion are eliminated with multipoint constraint equations. Treatment of very stiff members as being rigid elements eliminates the ill-conditioning associated with their treatment as ordinary elastic elements.
3. To be used with scalar elements to generate nonstandard structural elements and other special effects.
4. To describe parts of a structure by local vibration modes. This application is treated in section 14.1 of the Theoretical Manual. The general idea is that the matrix of local eigenvectors represents a set of constraints relating physical coordinates to modal coordinates.

At present, the user provides the coefficients in the multipoint constraint equations.

1.4.3 Free Body Supports

In the following discussion, a free body is defined as a structure that is capable of motion without internal stress, i.e. it has one or more rigid body degrees of freedom. The stiffness matrix for a free body is singular with the defect equal to the number of stress-free, or rigid

STRUCTURAL MODELING

body modes. A solid three-dimensional body has up to six rigid body modes. Linkages and mechanisms can have a greater number. No restriction is placed in the program on the number of stress-free modes, in order to permit the analysis of mechanisms.

Free-body supports are defined with a SUP@RT card. In the case of problems using conical' shell elements, the SUPAX card is used. In either case, only a single set can be specified, and if such cards appear in the Bulk Data Deck, they are automatically used in the solution. Freebody supports must be defined in the global coordinate system.

In static analysis by the displacement method, the rigid body modes must be restrained in order to remove the singularity of the stiffness matrix. The required constraints may be supplied with single-point constraints, multipoint constraints, or free-body supports. If free-body supports are used, the rigid body characteristics will be calculated and a check will be made on the sufficiency of the supports. Such a check is obtained by calculating the rigid body error ratio as defined in the Rigid Body Matrix Generator operation in Section 3.2.2. This error ratio is automatically printed following the execution of the Rigid Body Matrix Generator. The error ratio should be zero, but may be nonzero for any of the following reasons:

1. Round-off error accumulation
2. Insufficient free-body supports have been provided
3. Redundant free-body supports have been provided

The redundancy of the supports may be caused by improper use of the free-body supports themselves, or by the presence of single-point or multipoint constraints that constrain the rigid body motions.

Static analysis with inertia relief is necessarily made on a model having at least one rigid body motion. Such rigid body motion must be constrained by the use of free-body supports. These supported degrees of freedom define a reference system, and the elastic displacements are calculated relative to the motion of the support points. The element stresses and forces will be independent of any valid set of supports.

Rigid body vibration modes are calculated by a separate procedure provided that a set of free-body supports are supplied by the user. This is done to improve efficiency and, in some cases, reliability. The determinant method, for example, has difficulty extracting zero frequency roots of high multiplicity, whereas the alternate procedure of extracting rigid body modes is both efficient and reliable. If the user does not specify free-body supports (or he specifies
an insufficient number of them) the (remaining) rigid body modes will be calculated by the method selected for the finite frequency modes, provided zero frequency is included in the range of interest. If the user does not provide free-body supports, and if zero frequency is not included in the range of interest, the rigid body modes will not be calculated.

Free-body supports must be specified if the mode acceleration method of solution improvement is used for dynamics problems having rigid body degrees of freedom (see Section 9.4 of the Theoretical Manual). This solution improvement technique involves a static solution, and although the dynamic solution can be made on a free-body, the static solution cannot be performed without removing the singularities in the stiffness matrix associated with the rigid body motions.

1.4.4 Partitioning

A two-way partitioning scheme is provided as an optional feature for the NASTRAN mode1. The partitions are defined by listing the degrees of freedom for one of the partitions on the gMIT card. These degrees of freedom are referred to as the omitted set. The remaining degrees of freedom are referred to as the analysis set. The ØMITl Card is easier to use if a large number of grid points have the same degrees of freedom in the omitted set. The ASET or ASETl cards can be used to place degrees of freedom in the analysis set with the remaining degrees of freedom being placed in the omitted set. This is easier if the omitted set is large. In the case of problems using conical shell elements, the ØMITAX card is used.

Partitioning can be used to improve the efficiency in the solution or ordinary statics problems where the bandwidth of the unpartitioned stiffness matrix is large enough to cause excessive use of secondary storage devices during the triangular decomposition of the stiffness matrix. In this application, the analysis set should be relatively small and should be selected so that the omitted set will consist of uncoupled partitions, each having a bandwidth of approximately the same size and smaller than the original matrix. The omitted set might be thought of as consisting of several substructures which are coupled to the analysis set.

Matrix partitioning also improves efficiency when solving a number of similar cases with stiffness changes in local regions of the structure. In this application, the omitted set is relatively large, and should be selected so that the structural elements that will be changed are connected only to points in the analysis set. The stiffness matrix for the omitted set is then unaffected by the structural changes, and only the smaller stiffness matrix for the analysis set

STRUCTURAL MODELING

need be decomposed for each case. In order to avoid repeating the decomposition of the stiffness matrix for the omitted set, the alter feature must be used to replace the functional module SMP1 with SMP2. The alter feature is described in section 2.2, and a similar use of SMP2 occurs near the end of the DMAP sequence used in the rigid format for Static Analysis with Differential Stiffness.

One of the more important applications of partitioning is the Guyan Reduction, described in Section 3.5.4 of the Theoretical Manual. This technique is a means for reducing the number of degrees of freedom used in dynamic analysis with minimum loss of accuracy. Its basis is that many fewer grid points are needed to describe the inertia of a structure than are needed to describe its elasticity with comparable accuracy. The error in the approximation is small provided that the set of displacements used for dynamic analysis is judiciously chosen. Its members should be uniformly dispersed throughout the structure and all large mass items should be connected to grid points that are members of the analysis set.

The user is cautioned to consider the fact that the matrix operations associated with this partitioning procedure tend to create nonzero terms and to fill what were previously very sparse matrices. The partitioning option is most effectively used if the members of the omitted set are either a very large fraction or a very small fraction of the total set. In most of the applications the omitted set is a large fraction of the total and the matrices used for analysis, while small, are usually full. If the analysis set is not a small fraction of the total, a solution using the larger, but sparser matrices, may well be more efficient. The partitioning option can also be used to make modest reductions in the order of the problem by placing a few scattered grid points in the omitted set. If the points in the omitted set are uncoupled, the sparseness in the matrices will be well preserved.

STRUCTURAL MODELING

1.5 APPLIED LOADS

1.5.1 Static Loads

In NASTRAN, static loads are applied to geometric and scalar grid points in a variety of ways, including:

1. Loads applied directly to grid points.
2. Pressure on surfaces.
3. Gravity loads (internally generated).
4. Centrifugal forces due to steady rotation.
5. Equivalent loads resulting from thermal expansion
6. Equivalent loads resulting from enforced deformations of structural elements.
7. Equivalent loads resulting from enforced displacements of grid points.

Additional information on static loads is given in Section 3.6 of the Theoretical Manual. Any number of load sets can be defined in the Bulk Data Deck. However, only those sets selected in the Case Control Deck, as described in Section 2.3, will be used in the problem solution. The manner of selecting each type of load is specified on the associated bulk data card description in Section 2.4.

The $F \emptyset R C E$ card is used to define a static load applied to a geometric grid point in terms of components defined by a local coordinate system. The orientation of the load components depends on the type of local coordinate system used to define the load. The directions of the load components are the same as those indicated on Figure 1 of Section 1.2 for displacement components. The $F \emptyset R C E 1$ card is used if the direction is determined by a vector connecting two grid points, and a FQRCE2 card is used if the direction is specified by the cross product of two such vectors. The MФMENT, MØMENT1 and MØMENT2 cards are used in a similar fashion to define the application of a concentrated moment at a geometric grid point. The SLØAD card is used to define a load at a scalar point. In this case, only the magnitude is specified, as only one component of motion exists at a scalar point.

The FØRCEAX and MøMAX cards are used to define the loading of specified harmonics on rings of conical shell elements. FØRCE and MØMENT cards may be used to apply concentrated loads or moments to conical shell elements, providing that such points have been defined with a PøINTAX card.

Pressure loads on triangular and quadrilateral elements are defined with a PL@AD2 card. The positive direction of the loading is determined by the order of the grid points on the element connection card, using the right hand rule. The magnitude and direction of the load is automatically computed from the value of the pressure and the coordinates of the connected grid points. The load is applied to the connected grid points. The PLØAD card is used in a similar fashion to define the loading of any three or four grid points regardless of whether they are connected with two-dimensional elements. The PRESAX card is used to define a pressure loading on a conical shell element.

Pressure loads on the isoparametric solid elements are defined with the PLøAD3 card. The pressure is defined positive outward from the element. The magnitude and direction of the equivalent grid point forces are automatically computed using the isoparametric shape functions of the element to which the load has been applied.

The GRAV card is used to specify a gravity load by providing the components of the gravity vector in any defined coordinate system. The gravity load is obtained from the gravity vector and the mass matrix assembled by the Structural Matrix Assembler (see Section 4.28 of the Programmer's Manual). The gravitational acceleration is not calculated at scalar points. The user is required to introduce gravity loads at scalar points directly.

The RFQRCE card is used to define a static loading condition due to a centrifugal force field. A centrifugal force load is specified by the designation of a grid point that lies on the axis of rotation and by the components of rotational velocity in any defined coordinate system. In the calculation of the centrifugal force, the mass matrix is regarded as pertaining to a set of distinct rigid bodies connected to grid points. Deviations from this viewpoint, such as the use of scalar points or the use of mass coupling between grid points, can result in errors.

Temperatures may be specified for selected elements. The temperatures for a R $\emptyset D, B A R, C \emptyset N R \emptyset D$ or TUBE element are specified on the TEMPRB data card. This card specifies the average temperature on both ends and, in the case of the BAR element, is used to define temperature gradients over the cross section. Temperatures for two dimensional plate and membrane elements are specified on a TEMPP1, TEMPP2, or TEMPP3 data card. The user defined average temperature over the volume is used to produce in-plane loads and stresses. Thermal gradients over the depth of the bending elements, or the resulting moments, may be used to produce bending loads and stresses.

If no thermal element data is given for an element, the temperatures of the connected grid points given on the TEMP, TEMPD or TEMPAX cards are simply averaged to produce an average temperature for the element. The thermal expansion coefficients are defined on the material definition cards. Regardless of the type of thermal data, if the material coefficients for an element are temperature-dependent by use of the MATTi card, they are always calculated from the "average" temperature of the element. The mere presence of a thermal field does not imply the application of a thermal load. A thermal load will not be applied unless the user makes a specific request in the Case Control Deck.

Enforced axial deformations can be applied to rod and bar elements. They are useful in the simulation of misfit and misalignment in engineering structures. As in the case of thermal expansion, the equivalent loads are calculated by separate subroutines for each type of structural element, and are applied to the connected grid points. The magnitude of the axial deformation is specified on a DEFØRM card.

Zero enforced displacements may be specified on GRID, SPC or SPC1 cards. Zero displacements which result in nonzero forces of constraint are usually specified on SPC or SPCl cards. If GRID cards are used, the constraints become part of the structural model and modifications cannot be made at the subcase level.

Nonzero enforced displacements may be specified on SPC or SPCD cards. The SPC card specifies both the component to be constrained and the magnitude of the enforced displacement. The SFCD card specifies only the magnitude of the enforced displacement. When an SPCD card is used, the component to be constrained must be specified on either an SPC or SPC1 card. The use of the SPCD card avoids

APPLIED LOADS

the decomposition of the stiffness matrix when changes are only made in the magnitudes of the enforced displacements.

The equivalent loads resulting from enforced displacments of grid points are calculated by the program and added to the other applied loads. The magnitudes of the enforced displacements are specified on SPC cards (SPCAX in the case of conical shell problems) in the global coordinate system. The application of the load is automatic when the user selects the associated SPC set in the Case Control Deck.

The LØAD card in the Bulk Data Deck defines a static loading condition that is a linear combination of load sets consisting of loads applied directly to grid points, pressure loads, gravity loads and centrifugal forces. This card must be used if gravity loads are to be used in combination with loads applied directly to grid points, pressure loads or centrifugal forces. The application of the combined loading condition is requested in the Case Control Deck by selecting the set number of the LQAD combination.

It should be noted that the equivalent loads (thermal, enforced deformation and enforced displacement) must have unique set identification numbers and be separately selected in the Case Control Deck. For any particular solution, the total static load will be the sum of the applied loads (grid point loading, pressure loading, gravity loading and centrifugal forces) and the equivalent loads.

1.5.2 Frequency Dependent Loads

A discussion of frequency response calculations is given in Section 12.1 of the Theoretical Manual. The DLØAD card is used to define linear combinations of frequency dependent loads that are defined on RLØAD1 or RLØAD2 cards. The RLØAD1 card defines a frequency dependent load of the form

$$
\begin{equation*}
\{P(f)\}=\left\{A[C(f)+i D(f)] e^{i(\theta-2 \pi f \tau)}\right\}, \tag{1}
\end{equation*}
$$

where A is defined on a DAREA card, $C(f)$ and $D(f)$ are defined on TABLEDi cards, θ is defined on a DPHASE card and τ is defined on a DELAY card. The RLØAD2 card defines a frequency dependent load of the form

$$
\begin{equation*}
\{P(f)\}=\left\{A B(f) e^{i\{\phi(f)+\theta-2 \pi f \tau\}}\right\} \tag{2}
\end{equation*}
$$

where A is defined on a DAREA card, $B(f)$ and $\phi(f)$ are defined on TABLEDi cards, θ is defined on a

STRUCTURAL MODELING

DPHASE card, and τ is defined on a DELAY card. The coefficients on the DAREA, DELAY and DPHASE cards may be different for each loaded degree of freedom. The loads are applied to the specified components in the global coordinate system.

A discussion of random response calculations is given in Section 12.2 of the Theoretical Manua1. The RANDPS card defines load set power spectral density factors for use in random analysis of the form

$$
\begin{equation*}
S_{j k}(f)=(x+i Y) G(f) \tag{3}
\end{equation*}
$$

where $G(f)$ is defined on a TABRNDi card. The subscripts j and k define the subcase numbers of the load definitions. If the applied loads are independent, only the diagonal terms ($j=k$) need be defined. The RANDTl card is used to specify the time lag constants for use in the computation of the autocorrelation functions.

1.5.3 Time Dependent Loads

A discussion of transient response calculations is given in Section 11 of the Theoretical Manual. The DLøAD card is used to define linear combinations of time dependent loads that are defined on TL $\emptyset A D 1$ and $T L \emptyset A D 2$ cards. The TLøAD1 card defines a time dependent load of the form

$$
\begin{equation*}
\{P(t)\}=\{A F(t-\tau)\}, \tag{4}
\end{equation*}
$$

where A is defined on a DAREA card, τ is defined on a DELAY card, and $F(t-\tau)$ is defined on a TABLEDi card. The TLQAD2 card defines a time dependent load of the form

$$
\{P(t)\}=\left\{\begin{array}{c}
\{0\}, \tilde{t}<0 \text { or } \tilde{t}>T_{2}-T_{1} \tag{5}\\
\left\{A \tilde{t}^{B} e^{C \hat{t}} \cos (2 \pi \tilde{f t}+P)\right\}, 0<\tilde{t}<T_{2}-T_{1}
\end{array}\right.
$$

where $\tilde{t}=t-T_{1}-\tau$ and A and τ are defined as above. The coefficients on the DAREA and DELAY cards may be different for each loaded degree of freedom. The loads are applied to the specified components in the global coordinate system.

Nonlinear effects are treated as an additional applied load vector, for which the components are functions of the degrees of freedom. This additional load vector is added to the right side of the equations of motion and treated along with the applied load vector during numerical inte-
gration. It is required that the points to which the nonlinear loads are applied and the degrees of freedom on which they depend be members of the solution set, i.e., that they cannot be degrees of freedom eliminated by constraints. It is further required, that if a modal formulation is user the points referenced by the nonlinear loads be members of the set of extra scalar points introduced for dynamic analysis.

At present, NASTRAN includes four different types of nonlinear elements. For a discussion o nonlinear elements see Section 11.2 of the Theoretical Manual. The NQLIN1 card defines a nonline, load of the form

$$
\begin{equation*}
P_{i}(t)=S_{i} T\left(u_{j}\right) \tag{6}
\end{equation*}
$$

where P_{i} is the load applied to u_{i}, S_{i} is a scale factor, $T\left(u_{j}\right)$ is a tabulated function defined with a TABLEDi card, and u_{j} is any permissible displacement component. The NøLIN2 card defines a nonlinear load of the form

$$
\begin{equation*}
P_{i}(t)=S_{i} u_{j} u_{k} \tag{7}
\end{equation*}
$$

where u_{j} and u_{k} are any permissible pair of displacement components. They may be the same. The N $\emptyset L I N 3$ card defines a nonlinear load of the form

$$
P_{i}(t)= \begin{cases}s_{i}\left(u_{j}\right)^{A}, & u_{j}>0 \tag{8}\\ 0, & u_{j} \leq 0\end{cases}
$$

where A is an exponent. The NØLIN4 card defines a nonlinear load of the form

$$
P_{j}(t)=\left\{\begin{array}{ccc}
-S_{i}\left(-u_{j}\right)^{A}, & u_{j}<0 \tag{9}\\
0 & , & u_{j} \geq 0
\end{array}\right.
$$

Nonlinear loads applied to a massless system without damping will not converge to a steady state solution. Use of DIAG 10 (Section 2.2.1) will cause the nonlinear term $\left\{N_{n+1}\right\}$ to be replac by $1 / 3\left\{N_{n+1}+N_{n}+N_{n-1}\right\}$ where N_{n+1}, N_{n} and N_{n-1} are the values of the nonlinear loads at time steps preceding the solution time step. Section 11.3 of the Theoretical Manual discusses the integration equations.

1.6 DYNAMIC MATRICES

The dynamic matrices are defined as the stiffness, mass and damping matrices used in either the direct or modal formulation of dynamics problems. The assembly of dynamics matrices is discussed in Section 9.3 of the Theoretical Manual. There are three general sources for the elements of the dynamic matrices.
-1. Matrices generated by the Structural Matrix Assembler.
2. Direct input matrices.
3. Modal matrices obtained from real eigenvalue analysis.

The Structural Matrix Assembler generates stiffness terms from the following sources:

1. Structural elements defined on connection cards, e.g., CBAR and CRDD.
2. General eTements defined on GENEL cards.
3. Scalar springs defined on CELASi cards.

The Structural Matrix Assembler generates mass terms from the following sources:

1. A 6×6 matrix of mass coefficients at a grid point defined on a CØNM1 card.
2. A concentrated mass element defined on a CØNM2 card in terms of its mass and moments of inertia about its center of gravity.
3. Structural mass for all elements, except plate elements without membrane stiffness, using the mass density on the material definition card.
4. Nonstructural mass for all elements specifying a value on the property card.
5. Scalar masses defined on CMASSi cards.

A discussion of inertia properties, including the Lumped Mass method and the Coupled Mass method are given in Section 5.5 of the Theoretical Manual. The Structural Matrix Assembler will use the Lumped Mass method for bars, rods and plates unless the PARAM card CØUPMASS (see PARAR bulk data card) used to request the Coupled Mass method.

The Structural Matrix Assembler generates damping terms from the following sources:

1. Viscous rod elements defined on CVISC cards.
2. Scalar viscous dampers defined on CDAMPi cards.
3. Element structural damping by multiplying the stiffness matrix of an individual structural element by a damping factor obtained from the material properties (MATi) card for the element.

In addition, uniform structural damping is provided by multiplying the stiffness matrix generated
in Structural Matrix Assembler by a damping factor that is specified by the user on the PARAM card G (see PARAM bulk data card). This form of damping is not recommended for hydroelastic problems.

The direct input matrices are generated by transfer functions (TF cards) or they are supplied directly by the user (DMIG or DMIAX cards). The terms of the direct input matrices may be associated either with grid points or with extra points introduced for dynamic analysis.

The modal matrices are obtained from real eigenvalue analysis using the stiffness and mass matrices generated by the Structural Matrix Assembler.

1.6.1 Direct Formulation

In the direct method of dynamic problem formulation, the degrees of freedom are simply the displacements at grid points. The dynamic matrices are assembled from the direct input matrices and the stiffness, mass and damping matrices generated by the Structural Matrix Assembler. The direct input matrices are generated by transfer functions (TF cards) or they are supplied directly lby the user (DMIG or DMIAX cards).

For frequency response analysis and complex eigenvalue analysis the complete dynamic matrices are:

$$
\begin{align*}
& {\left[K_{d d}\right]=(1+i g)\left[K_{d d}^{1}\right]+\left[K_{d d}^{2}\right]+i\left[K_{d d}^{4}\right],} \tag{1}\\
& {\left[B_{d d}\right]=\left[B_{d d}^{1}\right]+\left[B_{d d}^{2}\right],} \tag{2}\\
& {\left[M_{d d}\right]=\left[M_{d d}^{1}\right]+\left[M_{d d}^{2}\right],} \tag{3}
\end{align*}
$$

where the subscripts dd indicate the solution set composed of the degrees of freedom remaining after all constraints have been applied and the extra scalar points introduced for dynamic analysis. The matrices K, B and M are the stiffness, damping and mass matrices respectively. The superscript 1 indicates the matrices generated by the Structural Matrix Assembler. The superscript 2 indicates the direct input matrices. The matrix $\left[K_{d d}^{4}\right]$ is a structural damping matrix obtained by multiplying the stiffness matrix of an individual structural element by a damping factor obtained from the material properties (MATi) card for the element. The matrix [$K_{d d}^{1}$] is multiplied by the damping factor (g) to provide for uniform structural damping in cases where it is appropriate. The constant g is specified by the user on a PARAM card (see PARAM bulk data card).

dYNAMIC MATRICES

For transient response analysis the complete dynamic matrices are:

$$
\begin{align*}
& {\left[K_{d d}\right]=\left[K_{d d}^{1}\right]+\left[K_{d d}^{2}\right]} \tag{4}\\
& {\left[B_{d d}\right]=\left[B_{d d}^{1}\right]+\left[B_{d d}^{2}\right]+\frac{g}{\omega_{3}}\left[K_{d d}^{1}\right]+\frac{1}{\omega_{4}}\left[K_{d d}^{4}\right],} \tag{5}\\
& {\left[M_{d d}\right]=\left[M_{d d}^{1}\right]+\left[M_{d d}^{2}\right],} \tag{6}
\end{align*}
$$

where ω_{3} is the radian frequency at which the term $\frac{g}{\omega_{3}}\left[K_{d d}^{]}\right]$produces the same magnitude of damping as the term ig[$\left.K_{d d}^{1}\right]$ in frequency response analysis, and ω_{4} is the radian frequency at which the term $\frac{1}{\omega_{4}}\left[K_{d d}^{4}\right]$ produces the same magnitude of damping as the term $i\left[K_{d d}^{4}\right]$ in frequency response analysis. The equivalent viscous damping is only an approximation to the structural damping as the viscous damping forces are larger at higher frequencies and smaller at lower frequencies. Therefore, the quantities ω_{3} and ω_{4} are frequently selected by the user to be at the center of the frequency range of interest. A small value of $\mathrm{g} / \mathrm{\omega}_{3}$ is frequently useful to insure stability of higher modes in nonlinear transient analysis. The user specifies the values of ω_{3} and ω_{4} on PARAM cards W3 and W4 (see PARAl: bulk data card). If ω_{3} and ω_{4} are omitted, the corresponding terms are ignored.

1.6.2 Modal Formulation

In the modal method of dynamic problem formulation, the vibration modes of the structure in a selected frequency range are used as degrees of freedom, thereby reducing the number of degrees of freedom while maintaining accuracy in the selected frequency range. The frequency range is specified on PARAM cards by either selecting the number of lowest modes obtained from a real eigenvalue analysis or selecting all of the modes in a given frequency range (see PARAM bulk data card).

It is important to have both direct and modal methods of dynamic problem formulation, in order to maximize efficiency in different situations. The modal method will usually be more efficient in problems where a small fraction of all of the modes are sufficient to produce the desired accuracy, provided that the bandwidth of the direct stiffness matrix is large. The bandwidth may be large due either to a compact structural arrangement or to dynamic coupling effects. The direct method will usually be more efficient for problems in which the bandwidth of the direct stiffness matrix is small and for problems with dynamic coupling in which a large
fraction of the vibration modes are required to produce the desired accuracy. For problems without dynamic coupling, i.e., for problems in which the matrices of the modal formulation are diagonal, the modal method will frequently be more efficient, even though a large fraction of the modes are needed.

The complete dynamic matrices used in dynamic analysis by the modal method include the direct input mass, damping and stiffness matrices $\left[M_{d d}^{2}\right],\left[B_{d d}^{2}\right],\left[K_{d d}^{2}\right]$, and the modal matrices $\left[m_{i}\right]$, $\left[b_{i}\right]$ and $\left[k_{i}\right]$, obtained from real eigenvalue analysis. The matrix $\left[m_{i}\right]$ is the modal mass matrix with off-diagonal terms (which should be zero) omitted. The modal damping matrix $\left[b_{i}\right]$ and stiffness matrix $\left[k_{i}\right]$ are obtained from $\left[m_{i}\right]$ by:

$$
\begin{align*}
& {\left[b_{i}\right]=\left[2 \pi f_{i} g\left(f_{i}\right) m_{i}\right]} \tag{7}\\
& {\left[k_{i}\right]=\left[4 \pi^{2} f_{i}^{2} m_{i}\right]} \tag{8}
\end{align*}
$$

where f_{i} is the frequency of the $i^{\text {th }}$ normal mode and $g\left(f_{i}\right)$ is obtained by interpolation of a table supplied by the user to represent the variation of structural damping with frequency. This table is defined with a TABDMPI card. Structural damping will not be used in the modal formulation unless an SDAMPING card is used in the Case Control Deck to select a particular TABDMP1 card. The specification of damping properties for the modal method is somewhat less general than it is for the direct method, in that viscous dampers and nonuniform structural damping are not used.

The mode acceleration method of data recovery is optional when using the modal formulation for transient response and frequency response problems, see Section 9.4 of the Theoretical Manual for details. In this procedure, the inertia and damping forces are computed from the modal solution. These forces are then added to the applied forces and the combination is used to obtain a more accurate displacement vector for the structure by static analysis. This improved displacement vector is used in the stress recovery operation. The mode acceleration method is selected with the PARAM card MQDACC (see PARAM bulk data card).

STRUCTURAL MODELING

1.7 HYDROELASTIC MODELING

1.7.1 Solution of the NASTRAN Fluid Model

The NASTRAN hydroelastic option allows the user to solve a wide variety of fluid problems having structural interfaces, compressibility, and gravity effects. A complete derivation of the NASTRAN model and an explanation of the assumptions are given in the Theoretical Manual, Section 16.1. The input data and the solution logic have many similarities to a structural model. The standard normal modes analysis, transient analysis, complex eigenvalue analysis, and frequency response solutions are available with minor restrictions. The differences between a NASTRAN fluid model and an ordinary structural problem are due to the physical properties of a fluid, and are:

1. The independent degrees of freedom for a fluid are the Fourier coefficients of the pressure function (i.e. "harmonic pressures") in an axisymmetric coordinate system. The independent degrees of freedom for a structure are typically displacements and rotations at a physical point in space.
2. Much like the structural model, the fluid data will produce "stiffness" and "mass" matrices. Because they now relate pressures and flow instead of displacement and force, their physical meaning is quite different. The user may not apply loads, constraints, sequencing, or omitted coordinates "directly" on the fluid points involved. Instead, the user supplies information related to the boundaries and NASTRAN internally generates the correct constraints, sequencing, and matrix terms. Indirect methods, however, are available to the user for utilizing the internally generated points as normal grid or scalar points. See Section 1.7.4 for the identification code.
3. When a physical structure is to be connected to the fluid, the user supplies a list of fluid points and a related list of special structural grid points. NASTRAN will produce unsymmetric matrix terms which define the actual physical relations. A special provision is included in NASTRAN in the event that the structure has planes of symmetry. The user may, if he wishes, define only a section of the boundary and solve his problem with symmetric or antisymmetric constraints. The fluid-structure interface will take the missing sections of structural boundary into account.
4. Because of the special nature of the fluid problems, various user convenience options are absent. The fluid elements and harmonic pressures may not be included in the structural plots at present. Plotting the harmonic pressures versus frequency or time may not be "directly" requested. Because mass matrix terms are automatically generated if compressibility or free surface effects are present, the weight and C.G. calculations with fluid elements present may not be correct and should be avoided. Also, the inertia relief rigid format uses the mass matrix to produce internal loads and if fluids are included, these special fluid terms in the mass matrix may produce erroneous results.

In spite of the numerous differences between a NASTRAN structural model and a NASTRAN fluid model, the similarities allow the user to formulate a model with a minimum of data preparation and obtain efficient solutions to large order problems. The similarities of the fluid model to the NASTRAN structural model are:

1. The fluid is described by points in space and finite element connections. The locations of the axisymmetric fluid points are described by rings (RINGFL) about a polar axis, much like the axisymmetric conical shell. The rings are connected by elements (CFLUIDi) which have the properties of density and bulk modulus of compressibility. Each fluid ring produces, internally, a series of NASTRAN scalar points, P^{n} and $P^{n *}$ (i.e. "harmonic pressures"), describing the pressure function, $P(\phi)$, in the following equation:

$$
P(\phi)=P^{0}+\sum_{n=1}^{N} P^{n} \cos n \phi+\sum_{n=1}^{N} P^{n *} \sin n \phi \quad 0<N<100
$$

where the set of harmonics $0, n$ and $n *$ are selected by the user. If the user desires the output of pressure at specific points on the circular ring, he may specify them as "pressure points" (PRESPT) by giving a point number and an angle on a specified fluid ring. The output data will have the values of pressure at the angle, ϕ, given in the above equation. The output of free surface displacements normal to the surface (FREEPT) are also available at specified angles, ϕ. The case control card option "AXISYM=FLUID" is necessary when any harmonic fluid degrees of freedom are included.
2. The input data to NASTRAN may include all of the existing options except the axisymmetric structural element data. All of the existing case control options may be included with some additional fluid case control requests. All of the structural element and constraint

HYDROELASTIC MODELING

data may be used (but not connected to RINGFL, PRESPT, or FREEPT fluid points). The structure-fluid boundary is defined with the aid of special grid points (GRIDB) which may be used for any purpose that a structural grid point is presently used.
3. The output data options for the structural part of a hydroelastic model are unchanged from the existing NASTRAN options. The output values for the fluid will be produced in the same form as the displacement vectors but with format modifications for the harmonic data. Printed values for the fluid may include both real and complex values. Pressures and free surface displacements, and their velocities and accelerations, may be printed with the same request (the case control request $\operatorname{PRESSURE}=$ SET is equivalent to $D I S P=S E T$) as structural displacements, velocities and accelerations. Structural plots are restricted to GRID and GRIDB points and any elements connected to them. X-Y plot and Random Analysis capability are available for FREEPT and PRESPT points if they are treated as scalar points. The RINGFL point identification numbers may not be used in any plot request, instead the special internally generated points used for harmonics may be requested in $X-Y$ plots and Random Analysis. See Section 1.7 .4 for the identification number code. No element stress or force data is produced for the fluid elements. As in the axisymmetric conical shell problem the case control request HARM@NICS $=N$ is used to select up to the Nth harmonic for output.

1.7.2 Hydroelastic Input Data

A number of special NASTRAN data cards are required for fluid analysis problems. These cards are compatible with structural NASTRAN data. The NASTRAN RESTART feature will be available in Rigid Format Series M for changes in these data cards. A brief description of the uses for each bulk data card follows.

AXIF

This card controls the formulation of the axisymmetric fluid problem. It is a required card if any of the subsequent fluid related cards are present. The data references a fluid related coordinate system to define the axis of symmetry. The gravity. parameter is included on the card rather than on the GRAV card because the direction of gravity must be parallel to the axis of symmetry. The values of density and bulk elastic modulus are conveniences in the event that these properties are constant throughout the fluid. A list of harmonics and the request for the nonsym-
metric (sine) coefficients are included on this card to allow the user to select any of the harmonics without producing extra matrix terms for the missing harmonics. A change in this list, however, will require a RESTART at the beginning of the problem.

RINGFL

The geometry of the fluid model about the axis of symmetry is defined with the aid of these data cards. The RINGFL data cards serve somewhat the same function for the fluid as the GRID cards serve in the structural model. In fact, each RINGFL card will produce, internally, a special grid point for each of the various harmonics selected on the AXIF data card. They may not, however, be connected directly to normal NASTRAN structural elements (see GRIDB and BDYLIST data cards). No constraints may be applied directly to RINGFL fluid points.

CFLUIDi

The data on these cards are used to define a volume of fluid bounded by the referenced RINGFL points. The volume is called an element and logically serves the same purpose as a structural finite element. The physical properties (density and bulk modulus) of the fluid element may be defined on this card if they are variables with respect to the geometry. If a property is not defined, the default value on the AXIF card is assumed. Two connected circles (RINGFL) must be used to define fluid elements adjacent to the axis of symmetry. A choice of three or four points is available in the remainder of the fluid.

GRIDB

This card provides an alternate to the GRID card for the definition of structural grid points. It also identifies the structural grid point with a particular RINGFL fluid point for hydroelastic problems. The particular purpose for this card is to force the user to place structural boundary points in exactly the same locations as the fluid points on the boundary. The format of the GRIDB card is identical to the format of the GRID card except that one additional field is used to identify the RINGFL point. The GRDSET card, however, is not used for GRIDB data.

If the user desires, he may use GRIDB cards without a fluid model. This is convenient in case the user wished to solve his structural problem first and to add the fluid effects later without converting GRID cards to GRIDB cards. The referenced RINGFL point must still be included in a boundary list (BDYLIST), see below, and the AXIF card must always be present when GRIDB cards are used. (The fluid effects are eliminated by specifying no harmonics.)

FREEPT, PRESPT

These cards are used to define points on a free surface for surface displacement output and points in the fluid for pressure output. No constraints may be applied to these points. Scalar elements and direct matrix data may be connected to these points, but the physical meaning of the elements will be different than in the structural sense.

FSLIST, BDYLIST

The purpose for these cards is to allow the user to define the boundaries of the fluid with a complete freedom of choice.. The FSLIST card defines a list of fluid points which lie on a free surface. The BDYLIST data is a list of fluid points to which structural GRIDB points are connected. Points on the boundary of the fluid for which BDYLIST or FSLIST data are not defined are assumed to be rigidly restrained from motion in a direction normal to the surface.

With both of these lists the sequence of the listed points determines the nature of the boundary. The following directions will aid the user in producing a list.

1. Draw the z axis upward and the r axis to the right. Plot the locations of the fluid points on the right hand side of 2 .
2. If one imagines himself traveling along the free surface or boundary with the fluid on his right side the sequence of points encountered is used for the list. If the surface or boundary touches the axis, the word "AXIS" is placed in the list. "AXIS" may be used only for the first and/or last point in the list.
3. The free surface must be consistent with static equilibrium. With no gravity field, any free surface consistent with axial symmetry is allowed. With gravity, the free surface must be a plane perpendicular to the z axis of the fluid coordinate system.
4. Multiple free surface lists and boundary lists are allowed. A fluid point may be included in any number of lists.

Figure 1.7-1 illustrates a typical application of the free surface and structural boundary lists.

FLSYM
This card allows the user to optionally model a portion of the structure with planes of symmetry containing the polar axis of the fluid. The first plane of symmetry is assumed at
$\phi=0.0$ and the second $p l a n e$ of symmetry is assumed at $\phi=360^{\circ} / M$ where M is an integer specified on the card. Also specified are the types of symmetry for each plane, symmetric (S) or antisymmetric (A). The user must also supply the relevant constraint data for the structure. The solution is performed correctly only for those harmonic coefficients that are compatible with the symmetry conditions as illustrated in the following example for quarter symmetry, $M=4$.

Series	$\begin{gathered} \text { Plane } \\ 1 \end{gathered}$	Plane 2	
		S	A
Cosine	$\begin{aligned} & S \\ & A \end{aligned}$	$\begin{gathered} 0,2,4, \ldots \\ \text { none } \end{gathered}$	$1,3,5, \ldots$ none
$\begin{aligned} & \text { Sine } \\ & (*) \end{aligned}$	S	$\begin{gathered} \text { none } \\ 1,3,5, \ldots \end{gathered}$	$\begin{gathered} \text { none } \\ 2,4,6, \ldots \end{gathered}$

DMIAX

These cards are used for Direct Matrix Input for special purposes such as surface friction effects. They are equivalent to the DMIG cards, the only difference being the capability to specify the harmonic numbers for the degrees of freedom. A matrix may be defined with either DMIG or DMIAX cards, but not with both.

1.7.3 Rigid Formats

The characteristics of the fluid analysis problems which cause restrictions on the type of solution are:

1. The fluid-structure interface is mathematically described by a set of unsymmetric matrices. Since the first six Rigid Formats are restricted to the use of symmetric matrices, the fluid-structure boundary is ignored. Thus, for any of these Rigid Formats the program solves the problem for a fluid in a rigid container with an optional free surface and an uncoupled elastic structure with no fluid present.
2. No means are provided for the direct input of applied loads on the fluid. The only direct means of exciting the fluid is through the structure-fluid boundary. The fluid problem may be formulated in any rigid format. However, only some will provide nontrivial solutions.

The suggested Rigid Formats for the axisymmetric fluid and the restrictions on each are described below:

Rigid Format No. 3 - Normal Modes Analysis

The modes of a fluid in a rigid container may be extracted with a conventional solution request. Free surface effects with or without gravity may be accounted for. Any structure data in the deck will be treated as a disjoint problem. (The structure may also produce normal modes.) Normalization of the eigenvectors using the PØINT option will cause a fatal error.

Rigid Format No. 7 - Direct Complex Eigenvalue Analysis
The coupled modes of the fluid and structure must be solved with this rigid format. If no damping or direct input matrices are added, the resulting complex roots will be purely imaginary numbers, whose values are the natural frequencies of the system. The mode shape of the combination may be normalized to the maximum quantity (harmonic pressure or structural displacement) or to a specified structural point displacement.

Rigid Format No. 8 - Direct Frequency and Random Response
This solution may be used directly if the loads are applied only to the structural points. The use of overall structural damping (parameter g) is not recommended since the fluid matrices will be affected incorrectly. Output restrictions are listed on page 1.7-3.

Rigid Format No. 9-Direct Transient Response
Transient analysis may be performed directly on the fluid-structure system if the following rules apply.

1. Applied loads and initial conditions are only given to the structural points.
2. All quantities are measured relative to static equilibrium. The initial values of the pressures are assumed to be at equilibrium.
3. Overall structural damping (parameters ω_{3} and g) must not be used.
4. Output restrictions are listed on page 1.7-3.

Rigid Formats 10, 11, and 12 - Modal Formulations
Although these rigid formats may be used in a fluid dynamics problem, their practicality is limited. The modal coordinates used to formulate the dynamic matrices will be the normal modes of both the fluid and the structure solved as uncoupled systems. Even though the range of natural frequencies would be typically very different for the fluid than for the structure, NASTRAN will select both sets of modes from a given fixed frequency range. The safest method with the present system is the extraction of all modes for both systems with the Tridiagonalization Method. This procedure, however, results in a dynamic system with large full matrices. The Direct Formulation would be more efficient in that case. At present, the capability for fluid-structure boundary coupling is not provided with Rigid Formats 10,11 and 12 . However the capability may be provided by means of an ALTER using the same logic as in the direct formulations.

1.7.4 Hydroelastic Data Processing

The fluid related data cards submitted by the user are processed by the NASTRAN preface module to produce equivalent grid point, scalar point, element connection, and constraint data card images. Each specified harmonic, N, of the Fourier series solution produces a complete set of special grid and connection card images. In order to retain unique identification numbers the user identification numbers are encoded by the algorithm below:

RINGFL points:

NASTRAN grid Id. $=$ User ring Id. $+1,000,000 \times \mathrm{I}_{\mathrm{N}}$
where

$$
\begin{array}{ll}
I_{N}=N+1 & \text { cosine series } \\
I_{N}=N+1 / 2 & \text { sine series }
\end{array}
$$

CFLUIDi connection cards:

NASTRAN element Id. = User element Id. $\times 1000+\mathrm{I}_{\mathrm{N}}$
where I_{N} is defined above for each harmonic N.
For example, if the user requested all harmonics from zero to two, including the sine(*) series, each RINGFL card will produce five special grid cards internally. If the user's Identifi-

HYDROELASTIC MODELING

cation number (in field 2 of the RINGFL data card) were 37, the internally generated grid points would have the following identification numbers:

Harmonic		Id.
0		Id.
1*		$1,000,037$
1		
2*		
2, 000,037		
2		
		$3,500,037$
		$3,000,037$

These equivalent grid points are resequenced automatically by NASTRAN to be adjacent to the original RINGFL identification number. A RINGFL point may not be resequenced by the user.

The output from matrix printout, table printout, and error messages will have the fluid points labeled in this form. If the user wishes, he may use these numbers as scalar points for Random Analysis, X-Y plotting, or for any other purpose.

In addition to the multiple sets of points and connection cards, the NASTRAN preface also may generate constraint sets. For example if a free surface (FSLIST) is specified in a zero-gravity field, the pressures are constrained by NASTRAN to zero. For this case the internally generated set of single point constraints are internally combined with any user defined structural constraints and will always be automatically selected.

If pressures at points in the fluid (PRESPT) or gravity dependent normal displacements on the free surface (FREEPT) are requested, the program will convert them to scalar points and create a set of multipoint constraints with the scalar points as dependent variables. The constraint set will be internally combined with any user defined sets and will be selected automatically.

The PRESPT and FREEPT scalar points may be used as normal scalar points for purposes such as plotting versus frequency or time. Although the FREEPT values are displacements, scalar elements Connected to them will have a different meaning than in the structural sense.

1.7.5 Sample Hydroelastic Model

Table 1.7-1 contains a list of the data deck for a sample hydroelastic problem. Figure 1.7-2 describes the problem and lists the parameters. The relatively small number of grid points were chosen for purposes of simplicity, and not accuracy. The special cards for hydroelastic analysis are flagged with the symbol (\dagger). The symbols for the fields in the hydroelastic data cards are
placed above each group. Structural data cards are included in their standard formats. The explanations for the data are given in the following notes:

1. The "AXISYM=FLUID" card is necessary to control the constraint set selections and the output formats for a fluid problem. It must appear above the subcase level.
2. "DISPLACEMENT=" and "PRESSURE=" case control cards are pseudonyms. "DISP=ALL" will produce all structure displacements, free surface displacements, and all fluid pressure values in the output. The "HARMĐNICS=" control is a limit on the harmonic data and has the same function as in an axisymmetrical conical shell problem.
3. The AXIF card defines the existence of a hydroelastic problem. It is used to define overall parameters and control the harmonic degrees of freedom.
4. The RINGFL cards included will define the five points on the fluid cross section.
5. The CFLUIDi cards are used to define the volume of the fluid as finite elements connected by the RINGFL points. Since parameters ρ and B are missing, the default values on the AXIF card will be used.
6. The FSLIST card is used to define the free surface at $z=10.0$. The density factor, ρ, is placed on the card in this case. If blank, the default value on the AXIF card is used.
7. The fluid-structure boundary is defined on the BDYLIST card. The AXIF default density is used.
8. The GRIDB cards define the structure points on the fluid boundary. Points \#3 through \#6 are connected to the \#2 fluid ring. The rotation in the r direction ("4" in field 8) is constrained.
9. The fact that one-quarter symmetry was used for the structure requires the use of the FLSYM card. Symmetric-Antisymmetric boundaries indicate that only the cosine terms for the odd harmonics will interact with the structure. If Symmetric-Symmetric boundary conditions were chosen on the FLSYM data card, only the even harmonics of the cosine series would interact with the structure.

FSLIST: $\quad 36,37,38,39,40$
BDYLIST \#1: AXIS, 22, 23, 29, 36
BDYLIST \#2: $40,35,28,21,14 ; 7,6,5,4,3,2,1$, AXIS

Figure 1.7-1 Examples of boundary lists.

Fluid: Density, $\rho=0.03$
Bulk Modulus, $B=\infty$
Gravity, $\mathrm{g}=32.2$

Structure: Thickness, $t=0.5$
Density, $\rho=0.05$

Figure 1.7-2 Sample hydroelastic problem.

Table 1.7-1 Sample hydroelastic problem.

```
ID HYDR\emptyset, USER
APP DISP
S\emptysetL 7,0
TIME 2
CEND
TITLE = SAMPLE HYDR\emptysetELASTIC PR\emptysetBLEM.
SUBTITLE = EIGENVALUE ANALYSIS WITH FLEXIBLE B\emptysetUNDARY.
( }\dagger\mathrm{ )AXISYM=FLUID
SPC = 3
CMETH\emptysetD = 1
@UTPUT
\[
\begin{aligned}
& \text { DISP }=\text { ALL } \\
& \text { HARM@NICS }=\text { ALL } \\
& \text { ELFØRCE }=A L L
\end{aligned}
\]
DISP = ALL
HARMONICS = ALL
ELFORCE = ALL
BEGIN BULK
```

BULK DATA FIELD

	1	2	3	4	5	6	7	8	9	10
(\dagger)	AXIF	$\begin{gathered} \text { (CID) } \\ 2 \end{gathered}$	$\begin{aligned} & (\mathrm{g}) \\ & 32.2 \end{aligned}$	$\begin{aligned} & (\rho) \\ & 0.03 \end{aligned}$	(B)	$\begin{gathered} (* \text { SERIES?) } \\ N \emptyset \end{gathered}$				+AX
	+AX	$\begin{gathered} \left(N_{1}\right) \\ 1 \end{gathered}$	$\begin{gathered} \left(N_{2}\right) \\ 3 \end{gathered}$							
	$\begin{aligned} & \text { CøRD2C } \\ & +C \emptyset \end{aligned}$	$\begin{gathered} 2 \\ 1.0 \end{gathered}$	0.	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	0.	0.	0.	0.	1.0	+Cø
$\begin{aligned} & (t) \\ & (t) \\ & (t) \end{aligned}$	RINGFL RINGFL RINGFL	$\begin{gathered} \text { (Id) } \\ 1 \\ 7 \\ 13 \end{gathered}$	$\begin{aligned} & (r) \\ & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$		$\begin{array}{r} (z) \\ 10.0 \\ 5.0 \\ 0.0 \end{array}$	$\begin{gathered} \text { (Id) } \\ 2 \\ 8 \end{gathered}$	$\begin{aligned} & (r) \\ & 8.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & (z) \\ & 10.0 \\ & 5.0 \end{aligned}$	
$\begin{aligned} & (t) \\ & (t) \\ & (t) \\ & (t) \end{aligned}$	CFLUID2 CFLUID2 CFLUID3 CFLUID4	$\begin{gathered} \text { (Id) } \\ 101 \\ 102 \\ 103 \\ 104 \end{gathered}$	$\begin{gathered} \left(f_{1}\right) \\ 1 \\ 7 \\ 7 \\ 1 \end{gathered}$	$\begin{gathered} \left(f_{2}\right) \\ 7 \\ 13 \\ 8 \\ 2 \end{gathered}$	$\left\langle f_{3}\right\rangle$ 13 7	$\left(f_{4}\right)$ 8	(o)	(B)		
(\dagger)	FSLIST	$\begin{aligned} & (\rho) \\ & 0.03 \end{aligned}$	$\left(\mathrm{Id}_{1}\right)$ AXIS	$\begin{gathered} \left(\mathrm{Id}_{2}\right) \\ 1 \end{gathered}$	$\begin{gathered} \left(\mathrm{Id}_{3}\right) \\ 2 \end{gathered}$					
(t)	BDYLIST	(o)	$\begin{gathered} \left(\mathrm{Id}_{7}\right) \\ 2 \end{gathered}$	$\begin{gathered} \left(\mathrm{Id}_{2}\right) \\ 8 \end{gathered}$	$\begin{gathered} \left(\mathrm{Id}_{3}\right) \\ 13 \end{gathered}$					

(3)
(4)
(5)
(6)
(7)
(Continued)

(\dagger) Hydroelastic cards

1.8 HEAT TRANSFER PROBLEMS

1.8.1 Introduction to NASTRAN Heat Transfer

NASTRAN heat flow capability may be used either as a separate analysis to determine temperatures and fluxes, or to determine temperature inputs for structural problems. Steady and transient problems can be solved, including heat conduction (with variable conductivity for static analysis), film heat transfer, and nonlinear (fourth power law) radiation.

The heat flow problem is similar, in many ways, to structural analysis. The same grid points, coordinate systems, elements, constraints, and sequencing can be used for both problems. There are several differences, such as the number of degrees of freedom per grid point, the methods of specifying loads, boundary film heat conduction, and the nonlinear elements. For heat flow problems, the only unknown at a grid point is the temperature (cf. structural analysis with three translations and three rotations), and hence, there is one degree of freedom per grid point. Additional grid or scalar points are introduced for ambient temperatures in film heat transfer. If the conductivity of an element is temperature dependent, the problem becomes nonlinear (cf. structural analysis with temperature dependent materials which only requires looking up material properties and computing thermal loads).

The heat conduction analysis of NASTRAN is compatible with structural analysis. If the same finite elements are appropriate, then the same grid and connection cards can be used for both problems. As in structural analysis, the choice of a finite element model is left to the analyst. Temperature distributions can be output in a format which can be input into structural problems. Heat flow analysis uses many structural NASTRAN bulk data cards. These include (where i means there is more than one type): CBAR, CDAMPi. CELASi, CHEXAi, CØNRØD, CØRDii, CQDMEM, CQDPLT, CQUADi, CRØD, CTETRA, CTRAPRG, CTRIAi, CTRIARG, CTRMEM, CTUBE, CVISC, CWEDGE, DAREA, DELAY, DLØAD, DMI, DMIG, EPØINT, GRDSET, GRID, LØAD, MPC, MPCADD, NØLINi, ØMITi, PARAM, Piii (for elements requiring properties), PLøTEL, SEQiP, SLØAD, SPCi, SPCADD,SPØINT, TABLEDi, TABLEMi, TEMPii, TF, TLØADi, and TSTEP.

1.8.2 Heat Transfer Elements

The basic heat conduction elements are the same as NASTRAN structural elements. These elements are shown in the following table:

Heat Conduction Elements	
Type	Elements
Linear	BAR, RQD, C@NRØD, TUBE
Membrane	TRMEM, TRIAI, TRIA2, QDMEM,
Solid of Revolution	TRIARG, TRAPRG
Solid	TETRA, WEDGE, HEXA1, HEXA2

A connection card ($C x x x$) and, if applicable, a property card ($P x x x$) is defined for each of these elements. Linear elements have a constant cross-sectional area. The offset on the BAR is treated as a perfect conductor (no temperature drop). For the membrane elements, the heat conduction thickness is the membrane thickness. The bending characteristics of the elements do not enter into heat conduction problems. The solid of revolution element, TRAPRG, has been generalized to accept general quadrilateral rings (i.e., the top and bottom need not be perpendicular to the z-axis for heat conduction). These heat conduction elements are composed of constant gradient lines, triangles, and tetrahedra. The quadrilaterals are composed of overlapping triangles, and the wedges and hexahedra from subtetrahedra. Gradients and fluxes may be output by requesting ELFØRCE.

Thermal material conductivities and heat capacities are given on MAT4 (isotropic) and MAT5 (anisotropic) bulk data cards. Temperature dependent conductivities are given on MATT4 and MATT5 bulk data cards, which can only be used for nonlinear static analysis. The heat capacity per unit volume is specified, which is the product of density and heat capacity per unit mass $\left(\rho C_{p}\right)$.

A special element (HBDY) defines an area for boundary conditions. There are five basic types, called PØINT, LINE, REV, AREA3, and AREA4 (the sixth type, ELCYL, is for use only with QVECT radiation). The HBDY is considered an element, since it can add terms to the conduction and heat capacity matrices. There is a CHBDY connection and PHBDY property card. When a film heat transfer condition is desired, film conductivity and heat capacity per unit area are specified on MAT4
data cards. The ambient temperature is specified with additional points (GRID or SPØINT) listed on the CHBDY connection card. See Figure 1 for geometry.

Radiation heat exchange may be included between HBDY elements. A list of HBDY elements must be specified on a RADLST bulk data card. The emissivities are specified on the PHBDY cards. The Stefan-Boltzmann constant (SIGMA) and absolute reference temperature (TABS) are specified on PARAM bulk data cards. Radiation exchange coefficients (default is zero) are specified on RADMTX bulk data cards.

The several types of power input to the HBDY elements can be output by requesting "ELFØRCE".

1.8.3 Constraints and Partitioning

Constraints are applied to provide boundary conditions, represent "perfect" conductors, and provide other desired characteristics for the heat transfer model.

Single point constraints are used to specify the temperature at a point. The grid or scalar points are listed on SPC or SPC bulk data cards. The component on the data card can be "0" or "1". This declares the degree of freedom to be in the u_{s} set. The method of specifying temperature is dependent upon the problem type.

Algorithm	Value of u_{s} Used
Linear statics	Values defined on selected SPC cards.
Transient	Values of the selected TEMP (MATERIAL) set.
$u_{s}=0.0$ (special modeling techniques, 'such as a good conductor with a large power specified, can be used to enforce $u(t))$.	

Multipoint constraints are linear relationships between temperatures at several grid points, and are specified on MPC cards. The first entry on an MPC card will be in the u_{m} set. The type of constraint is limited if nonlinear elements are present. If a member of set u_{m} touches a nonlinear (conduction or radiation) element, the constraint relationship is restricted to be an "equivalence". The term "equivalence" means that the value of the member of the u_{m} set will be
equal to one of the members of the u_{n} set (a point not multipoint constrained). Those points not touching nonlinear elements are not so limited. The user will be responsible to satisfy the equivalence requirement, by having only two entries on the MPC data card, with equal (but opposite in sign) coefficients.

1.8.4 Thermal Loads

Thermal "loads" may be boundary heat fluxes or volume heat addition. As in the case of structural analysis, the method of specifying loads is different for static and transient analysis. The HBDY element is used for boundaries of conducting regions. Surface heat flux input can be specified for HBDY elements with QBDY 1 and QBDY2 data cards. These two cards are for constant and (spatially) variable flux, respectively. Flux can be specified without reference to an HBDY element with the QHBDY data card. Vector flux, such as solar radiation, depends upon the angle between the flux and the element normal, and is specified for HBDY elements with the QVECT data card. This requires that the orientation of the HBDY element be defined. Volume heat addition into a conduction element is specified on a QVQL data card.

Static thermal loads are requested in case control with "LøAD" card. All of the above load types plus SLøAD's can be requested. Transient loads are requested in case control with a "DLøAD" card, which selects TLøAD time functions. Transient thermal loads may use DAREA (as in structural transient), and the QBDY1, QBDY2, QHBDY, QVECT, QVØL, and SLØAD cards.

1.8.5 Linear Static Analysis

Linear static analysis uses APProach HEAT, SøLution 1. The rigid format is the same as that used for static structural analysis. This implies that several loading conditions and constraint sets can be solved in one job, by using subcases in the Case Control Deck.

1.8.6 Nonlinear Static Analysis

Nonlinear static analysis uses APProach HEAT, SQLution 3. This rigid format will allow temperature dependent conductivities of the elements, nonlinear radiation exchange, and a limited use of multipoint constraints. There is no looping for load and constraints. The solution is iterative. The user can supply values on PARAM bulk data cards for:

HEAT TRANSFER PROBLEMS

MAXIT (integer)	Maximum number of iterations (default 4).
EPSHT (real)	ε convergence parameter (default .001).
TABS (real)	Absolute reference temperature (default 0.0).
SIGMA (real)	Stefan-Boltzmann radiation constant (default 0.0).
IRES (integer)	Request residual vector output if positive (default -1).

The user must supply an estimate of the temperature distribution vector $\left\{u^{l}\right\}$. This estimate is used to calculate the reference conductivity plus radiation matrix needed for the iteration. $\left\{u^{l}\right\}$ is also used at all points in the u_{s} set to specify a boundary temperature. The values of $\left\{u^{1}\right\}$ are given on TEMP bulk data cards, and they are selected by TEMP(MATERIAL) in case control.

Iteration may stop for the following reasons:

1. Normal convergency: $\varepsilon_{\top}<E P S H T$, where ε_{\top} is the per unit error estimate of the temperatures calculated.
2. Number of iterations > MAXIT.
3. Unstable: $\left|\lambda_{1}\right|<1$ and the number of iterations >3, where λ_{1} is a stability estimator.
4. Insufficient time to perform another iteration and output data.

The precise definitions are given in the NASTRAN Theoretical Manual, Section 8.4. Error estimates $\varepsilon_{p}, \lambda_{1}$, and ε_{T} for all iterations may be output with the Executive Control Card DIAG 18 , where ε_{p} is the ratio of the Euclidian norms of the residual (error) loads to the applied loads on the unconstrained degrees of freedom.

1.8.7 Transient Analysis

Transient analysis uses APProach HEAT, SQLution 9. This rigid format may include conduction, film heat transfer, nonlinear radiation, and NASTRAN nonlinear elements. Extra points are used as in structural transient analysis. All points associated with nonlinear loads must be in the solution set. Loads may be applied with TLØAD and DAREA cards as in structural analysis. Also, the thermal static load cards can be modified by a function of time for use in transient analysis. Loads are requested in case control with DLQAD. Initial temperatures are specified on TEMP bulk data cards and are requested by IC. Previous static or transient solutions can be easily used as initial conditions, since they can be punched in the correct format. An estimate of the temperature $\left\{u^{l}\right\}$ is specified on TEMP bulk data cards for transient with radiation, and is requested by TEMP(MATERIAL). The parameters available are:

TABS (real) Absolute reference temperature (default 0.0).
SIGMA (real) Stefan-Boltzmann radiation constant (default 0.0).
BETA (real) Foreward difference integration factor (default .55).
RADLIN (integer) Radiation is linearized if positive (default -1).
Time steps are specified on TSTEP data cards.

1.8.8 Compatibility with Structural Analysis

Grid point temperatures for thermal stress analysis (static structural analysis) are specified on TEMP bulk data cards. If punched output is requested in a heat conduction analysis, the format of the punched card is exactly that of a double field TEMP* data card. Thus, if the heat conduction model is the same as the structural model, the same grid, connection, and property cards can be used for both, and the temperature cards for the structural analysis are produced by the heat conduction analysis. The output request in case control is THERMAL(PUNCH).

Type $=$ PØINT

The unit normal vector is given by $\bar{n}=\bar{V} /|\bar{V}|$, where \bar{V} is given in the basic system at the referenced grid point (see CHBDY data card, fields 16-18).

Type $=$ LINE

The unit normal lies in the plane of $\overline{\mathrm{V}}$ and $\overline{\mathrm{T}}$, is perpendicular to $\overline{\mathrm{T}}$, and is given by $\bar{n}=(\bar{T} \times(\bar{V} \times \bar{T})) /|\bar{T} \times(\bar{V} \times \bar{T})|$.

Type $=$ ELCYL

The same logic is used to determine \bar{n} as for type $=$ LINE. The "radius" R_{1} is in the \bar{n} direction, and R_{2} is perpendicular to \bar{n} and \bar{T} (see fields 7 and 8 of PHBDY card).

Type $=$ REV

The unit normal lies in the $x-z$ plane, and is given by $\bar{n}=\left(\bar{e}_{y} \times \bar{T}\right) /\left|\bar{e}_{y} \times \overline{\mathrm{T}}\right| \cdot \bar{e}_{y}$ is the unit
vector in the y direction.

Type $=$ AREA3 or AREA4

The unit normal vector is given by $\bar{n}=\left(\bar{T}_{12} \times \bar{T}_{1 x}\right) /\left|\bar{T}_{12} \times \bar{T}_{1 x}\right|$, where $x=3$ for triangles and $x=4$ for quadrilaterals.

Figure 1. HBDY Element Orientation (for QVECT flux).

1.9 ACOUSTIC CAVITY MODELING

1.9.1 Data Card Functions

The NASTRAN structural analysis system is used as the basis for acoustic cavity analysis. Many of the structural analysis options such as selecting boundary conditions, applying loading conditions, and selecting output data are also available for acoustics.

The data cards specifically used for acoustic cavity analysis are described below. The card formats are exhibited in Section 2.4. Their purposes are analogous to the use of structural data cards. A gridwork of points is distributed over the longitudinal cross section of an acoustic cavity and finite elements are connected between these points to define the enclosed volume.

The points are defined by GRIDF data cards for the axisymmetric central fluid cavity and by GRIDS data cards for the radial slots. The GRIDF points are interconnected by finite elements via the CAXIF2, CAXIF3, and CAXIF4 data cards to define a cross sectional area of the body of rotation. The CAXIF2 element data card defines the area of the cross section between the axis and two points off the axis (the GRIDF points may not have a zero radius). The CAXIF3 and CAXIF4 data cards define triangular or quadrilateral cross sections and connect three or four GRIDF points respectively. The density and/or bulk modulus at each location of the enclosed fluid may also be defined on these cards.

The GRIDS points in the slot region are interconnected by finite elements via the CSL $\emptyset T 3$ and CSLøT4 data cards. These define finite elements with triangular and quadrilateral cross-sectional shapes respectively. The width of the slot and the number of slots may be defined by default values on the $A X S L \emptyset T$ data card. If the width of the slots is a variable, the value is specified on the GRIDS cards at each point. The number of slots, the density, and/or the bulk modulus of the fluid may also be defined individually, for each element on the CSLØT3 and CSLøT4 cards.

The AXSLQT data card is used to define the overall parameters for the system. Some of these parameters are called the "default" values and may be selectively changed at particular cross sections of the structure. The values given on the $A X S L \emptyset T$ card will be used if a corresponding value on the GRIDS, CAXIFi, or CSL $\emptyset T i$ is left blank. The parameters ρ (density) and B (bulk modulus) are properties of the fluid. If the value given for Bulk Modulus is zero the fluid is considered incompressible to the program. The parameters M (Number of slots) and W (slot width) are properties of the geometry. The parameter M defines the number of equally spaced slots

STRUCTURAL MODELING

around the circumference with the first slot located at $\phi=0^{\circ}$. The parameter N (harmonic number) is selected by the user to analyze a particular set of acoustic modes. The pressure is assumed to have the following distribution

$$
p(r, z, \phi)=p(r, z) \cos N \phi
$$

If $N=0$ the breathing and longitudinal modes will result. If $N=1$ the pressure at $\phi=180^{\circ}$ will be the negative of the pressure at $\phi=0^{\circ}$. If $N=2$, the pressures at $\phi=90^{\circ}$ and $\phi=270^{\circ}$ will be the negative of that at $\phi=0^{\circ}$. Values of N larger than $M / 2$ have no significance.

The interface between the central cavity and the slots is defined with the SLBDY data cards. The data for each card consists of the density of the fluid at the interface, the number of radial slots around the circumference, and a list of GRIDS points that are listed in the sequence in which they occur as the boundary is traversed. In order to ensure continuity between GRIDF and GRIDS points at the interface, the GRIDF points on the boundary between the cylindrical cavity and the slots are identified on the corresponding GRIDS data cards rather than on GRIDF cards. Thus, the locations of the GRIDF points will be exactly the same as the locations of the corresponding GRIDS points.

Various standard NASTRAN data cards may be used for special purposes in acoustic analysis. The SPCl data card may be used to constrain the pressures to zero at specified points such as at a free boundary. The formats for these cards are included in Section 2.4. Dynamic load cards, direct input matrices, and scalar elements may be introduced to account for special effects. The reader is referred to Sections 1.4 and 1.5 for instruction in the use of these cards.

1.9.2 Assumptions and Limitations

The accuracy of the acoustic model will be dependent on the selection of the mesh of finite elements. The assumption for each element is that the pressure field has a linear variation over the cross section and a sinusoidal variation around the axis in the circumferential direction. In areas where the pressure gradient changes are large, such as near a sharp corner, the points in the mesh should be placed closer together so that large changes in flow may be defined accurately by the finite elements.

The shape of the finite elements play an important part in the accuracy of the results. It has been observed that long narrow elements produce disproportionate errors. Cutting a large

ACOUSTIC CAVITY MODELING

square into two rectangles will not improve the results whereas dividing the square into four smaller squares may decrease the local error by as much as a factor of ten.

The slot portion of the cavity is limited to certain shapes because of basic assumptions in the algorithms. The cross section of the cavity normal to the axis must have a shape that is reasonably well defined by a central circular cavity having equally spaced, narrow slots. Various shapes are shown in Figure 1 in the order of increasing expected error.

It is recommended that shapes such as the cloverleaf and square cross section be analyzed with a full three dimensional technique. The assumption of negligible pressure gradient in the circumferential direction within a slot is not valid in these cases.

The harmonic orders of the solutions are also limited by the width of the slots. The harmonic number, N, should be no greater than the number of slots divided by two. The response of the higher harmonics is approximated by the slot width correction terms discussed in the NASTRAN Theoretical Manual, Section 17.1.

The output data for the acoustic analysis consists of the values of pressure in the displacement vector selected via the case control card "PRESSURE $=\boldsymbol{i}$ ". The velocity vector components corresponding to each mode may be optionally requested by the case control card "STRESS = \mathbf{i} ", where i is the set number indicating the element numbers to be used for output, or by the words "STRESS = ALL". The "SET =" card lists the element or point numbers to be output.

Plots of the finite element model and/or of the pressure field may be requested with the NASTRAN plot request data cards. The central cavity cross section will be positioned in the XY plane of the Basic Coordinate System of NASTRAN. The slot elements are offset from the XY plane by the width of the slot in the $+Z$ direction. The radial direction corresponds to X and the axial direction corresponds to the Y direction. Pressures will be plotted in the Z direction for both the slot points and the central cavity points. The case control data cards for plotting are documented in the User's Manual. The PL $\emptyset T E L$ elements are used for plotting the acoustic cavity shape. The plot request card "SET n INCLUDE PLØTEL" must be used where n is a set number.

1.9.3 Acoustic Cavity Example Problem

Table 1 contains a listing of the data cards used as a simple example of acoustic cavity analysis. The problem to be solved is illustrated in Figure 2. The model was subdivided into
only ten finite elements in order to limit the number of data cards. For reasonable engineering accuracy, this model should be subdivided into at least four times that number of elements.

Each data card in Table 1 is given a number on the left side. The format for each type of bulk data card is given in parentheses above the group of that type. The following is a brief description of each card:

Card(s)
1-5 Each data card in the Executive Control deck has the format of a request word and a selection separated by blanks or a comma. The ID card is first, the CEND card is last, but the intermediate cards may appear in any order. The user may put any pair of words on the ID card for identification purposes. In this particular case Rigid Format number 3 ($\mathrm{S} \emptyset \mathrm{L} 3,0$) was chosen which is Normal Modes analysis. A limit of 2 minutes CPU time was set (TIME 2).

6-7 The TITLE = and SUBTITLE= cards may contain any list of letters and numbers following the (=) sign. This list will appear on the first two lines of each output page.

8 The method of eigenvalue extraction is selected with the METH \varnothing = data card. The number 11 refers to the identification number of an EIGR bulk data card which appears below as card 32 and 33.

9-11 A simple output request is illustrated with these cards. PRES=ALL will result in printout of all pressures at the GRIDF and GRIDS points. STRESS=ALL will result in the printout of all velocities in the elements. This printout will occur for all extracted eigenvectors. Selected points or elements can be printed via the SET card described in the User's Manual.

The BEGIN BULK card denotes the beginning of the bulk data deck. The Bulk Data Deck cards may occur in any order. Putting these cards in alphabetic sort will save NASTRAN sorting time in large problems, however:

13 : In this problem all the parameters except slot width w_{d} are constant throughout the volume. The data values on the AXSLøT card will be used whenever a corresponding entry in the following cards is blank.

ACOUSTIC CAVITY MODELING

14-20 The location of points on the slot are defined with these cards. Cards $14,16,18$ and 20 serve a dual purpose by defining a GRIDS point identification number in field 2 and a GRIDF point identification number in field 6. The two types of points thereby are forced to have the same locations at the interface.

21,22
35. The location of points within the axisymmetric fluid cavity are described by the GRIDF card. No points are allowed to have a zero or negative radius.

These cards describe the elements shown in Figure 2. Each element is given a unique identification number and a list of the connected GRIDS or GRIDF points. Since the parameters ρ and B are constants, these fields are left blank so the values on the AXSLøT card will be used.

The EIGR card is used to define parameters for eigenvalue extraction (resonant frequencies). More than one of these cards may appear. The method to be used is selected with the METH $\emptyset D=$ data card in the Case Control Deck (card 8). With this particular card we selected the Givens Tridiagonalization method (GIV) with a desired number of three ($N d=3$) output mode shapes. The modes will be normalized such that the maximum pressure is 1.0 ($\mathrm{N} \varnothing \mathrm{RM}=\mathrm{MAX}$). These two cards illustrate a continuation card.

The SLBDY card defines the boundary between the slot and the central cavity. Both the density (ρ) and the number of radial slots (M) are blank so the AXSL $\emptyset T$ defaults are used, i.e. $\rho=1.2 \times 10^{-7}$ and $M=4$. Only four GRIDS points are on the boundary so a continuation card is not necessary. Field 8 being blank signifies the last entry.

The ENDDATA card is required to denote the end of the bulk data. Any following cards will be ignored by NASTRAN.

STRUCTURAL MODELING

Table 1. Example problem data cards.

$\begin{gathered} \text { Card } \\ \text { No. } \end{gathered}$		
1	ID ACDUS, MSC	
2	APP DISP	
3	S $\emptyset \mathrm{L}$ 3,0	
4	TIME 2	Executive Control Cards
5	CEND	
6	TITLE $=$ ACøUSTIC CAVITY EXAMPLE PR@BLEM	
7	SUBTITLE = FIRST HARMDNIC	
8	METHDD $=11$	
9	ØUTPUT	Case Control Data Cards
10	PRES $=$ ALL	
11	STRESS = ALL	
12	BEGIN BULK	

(Continued)

Card
No.

STRUCTURAL MODELING

Figure 1. Modeling errors for various shapes.

Section A-A

Parameters:

$$
\text { Density: } \quad \rho=1.1463 \times 10^{-7} 1 \mathrm{~b}-\sec ^{2} / \mathrm{in}^{4}
$$

Bulk Modulus: $\quad B=\rho a^{2}=\gamma R T=20.59 \mathrm{lb} / \mathrm{in}^{2}$
Harmonic: $\quad N=1$
Number of slots: $M=4$
Note: Consistent Dimensional Units must be used.

FINITE ELEMENT MODEL:

© GRIDS points
© GRIDF points
(I) Element Id's

Figure 2. Description of example problem.

STRUCTURAL MODELING

1.10 MANUAL SINGLE-STAGE SUBSTRUCTURING

The theoretical basis for NASTRAN manual substructuring is given in Section 4.3 of the Theoretical llanual. The NASTRAN Substructuring technique may be used with any of the rigid formats, except Piecewise Linear Analysis. The following sections present instructions, including suggested Series N DMAP alters; for use with the rigid formats for Static Analysis and Normal Modes Analysis.

Substructure analysis, as here defined, is a procedure in which the structural model is divided into separate parts which are then processed in separate computer executions to the point where the data blocks required to join each part to the whole are generated. The subsequent operations of merging the data for the substructures and of obtaining solutions for the combined problem are performed in one or more subsequent executions, after which detailed information for each substructure is obtained by additional separate executions.

Substructure analysis by the manual substructuring technique is logically performed in at least three phases as follows:

Phase I - Analysis of each individual substructure by NASTRAN to produce a description, in matrix terms, of its properties as seen at the boundary degrees of freedom, u_{a}.

Phase II - Combination of the matrix properties from Phase I and the inclusion, if desired, of additional terms to form a "pseudostructure," which is then analyzed by NASTRAN.

Phase III - Completion of the analysis of individual substructures using the $\left\{u_{a}\right\}$ vector produced in Phase II.

The NASTRAN Data Deck for each of the substructures is constructed in the same manner as for a NASTRAN analysis without substructuring. The following restrictions must be considered when forming the NASTRAN Data Deck for each of the substructures:

1. All points on boundaries between substructures which are to be joined must have their free degrees of freedom placed in the a-set.
2. The sequence of internal grid point identification numbers aloig the boundary between any two substructures must be the same. The internal sequence is the external sequence modified by any SEQGP cards. For example, if one substructure had boundary grid point internal identification numbers of $3,4,9,27$, and 31 , the adjoining substructure could have a corresponding set of internal grid point identification numbers of $7,11,21,22$, and 41 , but not $7,11,22,21$, and 41. This restriction is automatically satisfied if the same grid point numbers, without SEQGP cards, are used on the boundaries for connected substructures.

STRUCTURAL MODELING

3. The displacement coordinate system for each group of connected grid points on the boundaries between substructures must be the same.
4. Elements located on the boundary may be placed in either adjacent substructure.
5. The loads applied to boundary points may be arbitrarily distributed between the adjoining substructures. Care should be exercised not to duplicate the loads by placing the entire load on each substructure.
6. The constrained stiffness matrix, $\left[\mathrm{K}_{00}\right]$, for each substructure must be nonsingular. This requirement is automatically satisfied in most cases, since usually there are enough degrees of freedom on the boundary of the substructure to account for its rigid body motions. In exceptional cases, such as when the substructure is a hinged appendage, it may be necessary for the user to assign additional degrees of freedom to u_{a}, rather than u_{0}.

Although the following discussion is limited to single-stage substructuring, there is no inherent restriction on the use of multi-stage substructures in NASTRAN. In nuiti-stiage sudstructuring, some of the substructures are precombined in Phase II to form intermediate substructures. The final combination in Phase II then consists of joining two or more intermediate substructures. This procedure will be useful if there are several substructures in the model, and changes are made in only one or a few substructures. In this case, the amount of effort and computer time required for changes in the model can be substantially reduced if the unchanged substructures are initially combined into a single intermediate substructure.

1.10.1 Basic Manual Substructure Analysis

Basic manual substructure analysis will be described with reference to the simple beam structure shown in Figure 1. The beam is arbitrarily separated into two substructures, referred to as substructure 1 and substructure 2, with a single boundary point being located at grid point 3 . The beam is supported at grid points 1 and 6 . No loads are applied to substructure 1. A single load is applied to substructure 2 at grid point 4 , and a single load is applied at the boundary to grid point 3.

The complete NASTRAN Data Decks for all three phases of a substructure analysis for the beam shown in Figure 1 will be presented with comments for each card. The integers in the left-hand column will be used to relate the discussion to the cards in the NASTRAN Data Deck.

Comments are as follows:

101 ID card is first card of NASTRAN Data Deck.
102 TIME card is required in Executive Control Deck.
103 This run will be checkpointed, so that a restart can be made for Phase III. The user must arrange to have a physical tape mounted for the New Problem Tape (NPTP).

104 One of the rigid formats will be used for this problem.
105 Rigid Format 1 (Series N), Static Analysis, will be used for this problem without property optimization.

106 Insert the following statement after DMAP statement No. 100.
107 Jump around the Rigid Body Matrix Generator modules. The solution for $\left\{u_{a}\right\}$ will be performed in Phase II.

108 Insert the following three statements after DMAP statement No. 118.
109 Use the module FBS to solve for $\left\{u_{0}^{0}\right\}$ the displacement of the o-set points relative to the a-set points.

110 Write displacement vector UØØV on the New Problem Tape.
111 Use the module QUTPUT1 to write the DMI matrix given on cards 121 and 122 , along with the stiffness matrix KLL, and the load vector PL on User Tape 1 (USERTP1). The user must arrange to have a physical tape mounted for User Tape 1 (INPT). The details of the call for DMAP module ØUTPUT1 and other DMAP information are given in Section 5.

112 Delete the data recovery modules.
113 End of the ALTER package.
114 Last card of Executive Control Deck.
115 Title information for Phase I substructure 1 printed output.
116 Select single-point constraint set 101.
117 Indicates the beginning of the Bulk Data Deck.
118 Defines grid point 3 as a boundary point between substructures.
$\left.\begin{array}{l}119 \\ 120\end{array}\right\}$ Connection cards defining bar elements in substructure 1.
121 Direct Matrix Input cards that define the partitioning vector for use in Phase II. The
122 entries on these cards are discussed below.
$\left.\begin{array}{l}123 \\ 125\end{array}\right\}$ These cards define the grid points in substructure 1.

126 Defines the material for the elements in substructure 1.
127 Defines the properties of the elements in substructure 1.
128 Defines single-point constraint set 101. Components 1 and 2 are constrained at grid point 1 in substructure 1.

129 End of NASTRAN Data Deck.

It should be noted that no output has been requested in the Case Control Deck for substructure 1. If the user wishes to have a plot of the undeformed structure for checking the model, a Plot Package can be inserted in the Case Control Deck in the usual way, as described in Section 4.2 .

The partitioning matrix gives the relationship between the internal indices associated with the a-set matrices generated in Phase I and the external grid point component definition given on the grid cards that are input to Phase I as modified by any SEQGP cards. The same internal indices in Phase I for the a-set are redefined in Phase II as the indices for the g-set. The word pseudostructure is associated with the g-size matrices used in Phase II.

The partitioning matrix for the problem under consideration is given as follows:

PARTITIONING MATRIX

External Grid-Component

Internal Index
1
2
3

Substructure 1
3-1
3-2
3-6

Substructure 2
3-1
3-2
3-6

The procedure for constructing a partitioning matrix is as follows:

1. Select any one of the substructures and list the components of the a-set in sequence by grid point and component number as modified by any SEQGP cards (internal sequence). These are the nonzero entries in the partitioning vector for the first substructure.
2. Build the second column of the partitioning matrix by selecting any connected substructure and entering the connected components in the same row as the associated components in the first substructure.
3. Enter all unconnected a-set components in unoccupied rows of the partitioning matrix according to their internal sequence numbers. Unconnected members of the a-set having
internal sequence numbers in the range of the connected components will create new intermediate rows in the previously formed columns of the matrix.
4. Build the remaining columns of the partitioning matrix, one for each substructure, by following a similar procedure for all remaining substructures. In each case, first enter all components that are connected to the previously selected substructure or substructures, followed by the remaining unconnected components in their internal sequence.
5. The rows of the partitioning matrix are associated with the sequence of the internal indices for the scalar points in the pseudostructure. Any sequential set of integers may be used to identify these scalar points in Phase II.
6. The columns of the partitioning matrix (one vector for each substructure) are input with Direct Matrix Input (DMI) cards. The input matrix contains real l's in all locations in the partitioning matrix having grid point-component entries. See Section 2.4 for DMI card format.

The DMI cards (121 and 122) in the sample problem give the name El to the partitioning vector for substructure 1. The first card defines the partitioning vector as being rectangular and consisting of real single-precision entries. The next to the last entry on the first card indicates there are three rows in the g-set matrices input to Phase II. The second integer 1 on the second card indicates that the first internal index is associated with one of the components in substructure 1 ; in this case, grid point 3 , component 1 . The three real 1.0 's indicate the first three internal indices are associated with components in substructure 1 ; in this case, grid point 3, components 1, 2, and 6. In this particular case, only the initial two steps are required to construct the partitioning matrix and the partitioning vector for substructure 2 will be identical to that for substructure 1 . This results from the fact that the single boundary point in this problem is a part of both substructures.

The partitioning vectors are not needed until Phase II. They were arbitrarily input to Phase I so they could be included on the User Tape, along with the output matrices from Phase I.

The NASTRAN Data Deck for substructure 2 is given below. For identification purposes, the cards are arbitrarily numbered beginning with 150.

150	ID	PHASE ØNE \$ SUBSTRUCTURE 2							
151	TIME	2							
152	CHKPNT	YES							
153	APP	DISP							
154	S@L	1,9							
155	ALTER	100							
156	JUMP	LBL7. \$							
157	ALTER	118							
158	FBS								
159	CHKPNT	uøgv \$							
160	Qutputi	E2,KLL, PL, ,//C, $\mathrm{N},-1 / \mathrm{C}, \mathrm{N}, 0 / \mathrm{C}, \mathrm{N}$, USERTP2 \$							
161	ALTER	119, 164							
162	ENDALTER								
163	CEND								
164	TITLE $=$ PHASE QNE - SUBSTRUCTURE 2								
165	SPC $=201$								
166	LØAD $=202$								
167	BEGIN BULK								
168	ASET	. 3126							
169	CBAR	3	10	3	4		1.0		1
170	CBAR	4	10	4	5		1.0		1
171	CBAR	5	10	5	6		1.0		1
172	DMI	E2	0	2	1	1		3	1
173	DMI	E2	1	1	1.0	1.0	1.0		
174	FORCE	202	3		1000.		-7.0		
175	FOFCE	202	4		1000.		-7.0		
176	GRID	3		480.				345	
177	GRID	4		720.				345	
178	GRID	5		960.				345	
179	GRID	6		1200.				345	
180	MATI	11	30.+6						
181	PBAR	10	11	60.	500.				

STRUCTURAL MODELING

182 SPC $201 \quad 6$
183 ENDDATA

Comments are given only for those cards which are different from those given in substructure 1.

150 The ID card contains the comment following the dollar sign indicating the deck is for substructure 2.

The partitioning vector for substructure 2 is written on User Tape 2 and is named E2. The user must arrange to mount a second physical tape for INPT. It is possible to change the QUTPUT1 statement and write the results for substructure 2 on the same tape as for substructure 1 , if desired.

164 The printed output will indicate this run is for substructure 2.
165 Selects single-point constraint set 201.
166 Selects load set 202.
$\left.\begin{array}{l}172 \\ 173\end{array}\right\}$ other than the name E2, the partitioning vector is identical to that for substructure 1 .
174 Defines the external loads in load set 202. The load applied to grid point 3 has
175 arbitrarily been placed in substructure 2.
182 Defines single-point constraint set 201 at grid point 6 , component 2.

The Phase II operations are concerned with merging the a-set matrices generated in Phase I which define the g-size pseudostructure in Phase II. The NASTRAN Data Deck for Phase II is given below. The cards are arbitrarily numbered beginning with 201.

201	ID	PHASE TW \emptyset
202	TIME	2
203	APP	DISP
204	SØL	1,9
205	ALTER	1
206	PARAM	$/ / C, N, N \emptyset P / V, N, T R U E=-1 \$$
207	ALTER	7,22
208	ALTER	25,64
$2 C 9$	INPUTT 1	$/ E 01, K G G 01, P G 01,, / C, N,-1 / C, N, 1 / C, N, U S E R T P 1 ~ \$$
210	MERGE,	$,,, K G G 01, E 01, / K G G T 01 \$$

21]	ADD	KGG,KGGT01/KT01 \$
212	EQUIV	KT01, KGG/TRUE \$
213	MERGE,	,PG01, ,, ,E01/PGTO1/C,N,1 \$
214	ADD	PGT,PGT01/PTO1 \$
215	EQUIV	PTO1, PGT/TRUE \$
216	INPUTTI	/E02,KGG02,PG02, ,/C, $\mathrm{N},-1 / \mathrm{C}, \mathrm{N}, 2 / \mathrm{C}, \mathrm{N}$, USERTP2 \$
217	MERGE,	,, ,KGG02,E02,/KGGTO2 \$
218	ADD	KGG,KGGT02/KT02 \$
219	EQUIV	KT02,KGG/TRUE \$
220	MERGE,	,PG02, , , E02/PGT02/C,N,1 \$
221	ADD	PGT,PGT02/PT02 \$
222	EQUIV	PT02,PGT/TRUE \$
223	ALTER	73,78
224	ALTER	111,111
225	SSG1	SLT, BGPDT, CSTM, SIL , MPT, ,EDT, ,CASECC, DIT/PG/V,N,LUSET/V,N,NSKIP \$
226	ADD	PGT, PG/PGX \$
227	EQUIV	PGX, PG/TRUE \$
228	ALTER	137,141
229	QUTPUTI,	, , , ,//C,, , -1/C,N,0/C, , USERTP3 \$
230	PARTN	UGV, ,E01/,ULV01, /C, $\mathrm{N}, 1$ \$
231	QUTPUTI	ULV0T, , , ,//C,N,0/C,N,O/C, N, USERTP3 \$
232	PARTN	UGV, ,E02/, ULV02, ,/C,N,1 \$
233	QUTPUTI	ULV02, , ,//C,N,0/C,, ,0/C, , USERTP3 \$
234	SDR2	
235	9FP	ØUGV1, $¢$ PG1, QQG1, , ,//V,N,CARDN¢ \$
236	ALTER	154,156
237	ALTER	158,164
238	ALTER	168,169
	ALTER	172,173
239	ENDALTER	
240	CEND	
241	TITLE $=$ PHASE TWø	
242	BEGIN BUL	K

243	DMI	KGG	0	6	1	2	3	3
244	DMI	KGG	1	1	0.0			
245	DMI	PGT	0	2	1	2		
246	DMI	PGT	1	1	0.0			
247	SPØINT	1	THRU	3				
248	ENDDATA							

Comments for each of the cards are as follows:
201 The ID card is the first card of the NASTRAN Data Deck.
202 The TIME card is required in the Executive Control Deck.
203 One of the rigid formats will be used to solve this problem.
204 Rigid Format 1 (Series N), Static Analysis, will be used for this problem.
205 Insert the following statement after DMAP statement No. 1.
206 Define the parameter TRUE $=-1$.
207 Delete the DMAP statements associated with the preparation of the Element Connection Table and structure plots.

208 Delete the DMAP statements associated with matrix assembly.
209. Insert the DMAP module. INPUTT1 to read the partitioning vector, the stiffness matrix, and the load vector from User Tape 1. These matrices have been renamed E01, KGG01, and PG01, respectively. The user must arrange to have the tape mounted that was prepared during the Phase I run of substructure 1. This tape should be designated as INPI.

210 Insert the module MERGE to change the a-set size of the stiffness matrix from Phase I to g-size for Phase II, and designate the output as KGGTOl. In this particular case, no change will take place, since the a-size from Phase I is the same as the g-size in Phase II.

211 Insert the module ADD to add the null matrix KGG, defined in the Bulk Data Deck, to KGGTO1, and designate the output as KTO1.

212 Insert the module EQUIV to equivalence KTO1 to KGG.
213 Insert the module MERGE to change the a-size of the load vector from Phase I to g size for Phase II, and designate the output as PGT01. In this case, no change in size will take place.

214 Insert the module ADD to add the null matrix PGT, defined in the Bulk Data Deck, to PGT01, and designate the output as PTOI.

215 Insert the module EQUIV to equivalence PTO1 to PGT.
216 Insert the module INPUTTI to read the partitioning vector, the stiffness matrix, and the load vector from User Tape 2. These matrices which were generated for substructure 2 in Phase I are redesignated as E02, KGG02, and PG02, respectively.

217 Insert the module MERGE to change the stiffness matrix for substructure 2 from a-size in Phase I to g-size in Phase II and designate the output as KGGTO2.

218 Insert the module ADD to add the stiffness matrix for substructure 2 to the stiffness matrix for substructure 1, and designate the output as KT02.

219 Insert module EQUIV to equivalence KTO2 to KGG. The matrix KGG now represents the stiffness matrix for the pseudostructure, and will be used for input to Phase II.

220 Insert the module MERGE to change the load vector from a-size in Phase I to g-size in Phase II.
221 Insert the module ADD to add the loads applied to substructure 2 to the load vector for substructure 1, and designate the output as PTO2.

222 Insert the module EQUIV to equivalence PT02 to PGT.
223 Delete the DMAP statements associated with the Grid Point Singularity Processor.
224 Delete the module SSGl as given in Rigid Format 1.
Insert the module SSG1 with the calling sequence modified to remove parts not associated with directly applied loads. Since, for this particular problem, all loads were applied in Phase I, there will be no output from SSG1.

Insert the module ADD to combine the load vector from Phase II with the load vectors generated in Phase I, and designate the output as PGX.

227 Insert the module EQUIV to equivalence PGX to PG. The data block PG now includes all loads from both Phase I and Phase II, and will be used as input to Phase III.
228 Remove SDR2 and פFP as given in Rigid Format 1.
Insert the module QUTPUT1 to rewind User Tape 3 and place the label USERTP3 on this tape. The user must arrange to have a physical tape mounted and designated as INPT.

Insert the module PARTN to separate that part of the solution vector UGV associated with substructure 1 , and designate the output as ULVO1.

231 Insert the module QUTPUTl to write the partition of the solution vector associated with substructure 1 on User Tape 3.

232 Insert the module PARTN to separate that part of the solution vector associated with substructure 2, and designate the output as ULV02.

STRUCTURAL MODELING

233 ture 2 on User Tape 3. This will place the solution vectors for both substructures on User Tape 3. A second tape could be used for the solution vector for substructure 2 by changing the DMAP statement for QUTPUTI.

Insert the module $\emptyset F P$ with the calling sequence modified to remove those parts associated with element output.

236 Remove ØFP. as given in Rigid Format 1.
237 Remove the DMAP statements associated with the preparation of the deformed structure plots.
238 Remove the statements associated with ERR@R2 and ERR@R4.
239 End of ALTER package.
240 End of Executive Control Deck.
241 Title information for Phase II printed output.
242 Beginning of the Bulk Data Deck.

DMI cards used to define the null matrix PGT.

247 Definition of the three scalar points for the pseudostructure.
248 End of NASTRAN Data Deck.

Although the data deck shown above is prepared for two substructures, it was constructed in such a manner that it could be easily extended to more than two substructures. If there are more than two substructures, cards similar to 216 to 222,232 , and 233 need to be added to the NASTRAN data deck for each additional substructure.

The final part of a substructure analysis is to perform data recovery for each substructure of interest. These runs are made as a restart of the Phase I runs. Any of the normal rigid format output can be requested, including both undeformed and deformed structure plots. All of the output will be in terms of the elements and grid points defined in the Phase I Bulk Data Decks. The NASTRAN Data Deck for the Phase III analysis of substructure 1 is given as follows:

301 ID PHASE THREE \$ SUBSTRUCTURE 1

| 302 | TIME | 2 |
| :--- | :--- | :--- | :--- |
| 303 | APP | DISP |
| 304 | S $\emptyset L$ | 1,9 |
| 305 | ALTER | 23,125 |
| 306 | INPUTT | $/,,,, / C, N,-1 / C, N, 0 / C, N, U S E R T P 3$ |

Comments for each of the cards are as follows:

301 ID card is first card of the NASTRAN Data Deck.
302 TIME card is required in the Executive Control Deck.
303 One of the rigid formats will be used for this problem.
304 Rigid Format 1 (Series N), Static Analysis, will be used for this problem.
305 Delete all parts of the rigid format, except the data recovery modules.
306 Insert module INPUTT1 to rewind and check the label on User Tape 3 . The user must arrange to have User Tape 3 mounted and designated as INPT.

307 Insert module INPUTT1 to read the solution vector for substructure 1 from User Tape 3. The solution vector is designated as ULV for input to module SDRI.
$\left.\begin{array}{l}308 \\ 309\end{array}\right\}$ Remove additional DMAP statements not associated with data recovery operations.

310 End of ALTER package.
311 Insert the Restart Dictionary punched during the Phase I run of substructure 1.
312 End of Executive Control Deck.
313 Title information for printed output for Phase III.
314 Request printed output for all displacements of substructure 1.
315 Request printed output of forces for all elements in substructure 1.
316 Request printed output of the load vector for substructure 1. In this particular case, no output will result because no loads were applied to substructure 1.

317 Request printed output for all nonzero single-point forces of constraint on substructure 1.
318 Beginning of Bulk Data Deck.
319 No bulk data cards should be included in the Phase III run. However, the BEGIN BULK and ENDDATA cards must be present.

320 End of NASTRAN Data Deck.

The NASTRAN data deck for the Phase III analysis of substructure 2 is given below.
Comments are restricted to cards that are different from those presented for the Phase III run of substructure 1 .

350 ID PHASE THREE \$ SUBSTRUCTURE 2
351 TIME 2
352 APP DISP
353 SØL 1,9
354 ALTER 23,125
355 INPUTT1 /,,,,/C,N,-1/C,N,O/C,N,USERTP3 \$
356 INPUTTI /ULV,,,,/C,N,1 \$
357 ALTER 128,133
358 ALTER 165,176
359 ENDALTER
360 (Include Restart Dictionary from Phase I)
361 CEND
362 TITLE = PHASE THREE - SUBSTRUCTURE 2
363 DISP $=$ ALL
364 ELFØRCE = ALL
$365 \emptyset L \emptyset A D=A L L$

366 SPCFØRCE = ALL
367 BEGIN BULK
368 (No Bulk Data)
ENDDATA
Comments are as follows:
The comment following the dollar sign indicates this analysis is for substructure 2. Insert module INPUTT1 to rewind User Tape 3. The user must arrange to mount User Tape 3, if it is not already mounted as a result of the previous run on substructure 1. Insert module INPUTTI to skip over the solution vector for substructure 1 on User Tape 3, and read the solution vector for substructure 2 .

The request for printed output of the load vectors will show nonzero loads applied to grid points 3 and 4.

1.10.2 Loads and Boundary Conditions

The single load and the single boundary condition for the sample problem in Section 1.10.1 were introduced in Phase I. It is also possible to introduce loads and boundary conditions in Phase II. In this case, the loaded and/or constrained degrees of freedom must be included in the a-set for Phase I, so they will be a part of the pseudostructure in Phase II. Loads are applied to the pseudostructure in Phase II with the SLøAD card. This limits the type of load that can be applied in Phase II to directly applied loads. Other loading conditions depending on element properties or connection data, such as thermal loads, gravity loads, and pressure loads, must be applied in Phase I. Loads may be introduced in both Phases I and II, as the suggested DMAP sequence will add contributions to the load vector from both phases. The lack of generality for the application of loads in Phase II will often dictate that static loads be applied in Phase I.

The loads and boundary conditions for the sample problem can be applied in Phase II if the following modifications are made to the NASTRAN Data Decks presented in Section 1.10.1.

1. Remove card 116, SPC set selection for Phase I substructure 1.
2. Replace card 118 as shown below to redefine the a-set for substructure 1 .

STRUCTURAL MODELING

3. Replace cards 121 and 122 with cards 121,122 , and 122a shown below to redefine the partitioning vectors for substructure 1.
4. Card 128 is not required, SPC set definition for substructure 1.
5. Remove cards 165 and 166, SPC and load set selection for Phase I, substructure 2.
6. Replace card 168 as shown below to redefine the a-set for substructure 2 .
7. Replace cards 172 and 173 with cards 172,173 , and 173a shown below to redefine the partitioning vectors for substructure 2.
8. Cards 174, 175, and 182 are not required, load definition and SPC definition for substructure 2.
9. Insert cards 241 a and 241 b as shown below after card 241 in the Case Control Deck for Phase II for the selection of the boundary conditions and loading condition.
10. Replace cards 243 and 245 as shown below to conform to new size for pseudostructure.
11. Insert the cards 246a and 246b as shown below in the Bulk Data Deck for Phase II for definition of the loading condition and boundary condition.
12. Replace card 247 as shown below to modify the definition of the pseudostructure to contain 12 scalar points.

118	ASETI	126	1	3						
121	DMI	E1	0	2	1	1		12	1	
122	DMI	E1	1	1	1.0	1.0	1.0	1.0	1.0	+E11
1.22a	+E11	E1	1.0							
168	ASETI	126	3	4	6					
172	DMI	E2	0	2	1	1		12	1	
173	DMI	E2	1	4	1.0	1.0	1.0	1.0	1.0	+E21
173a	+E21	E2	1.0	1.0	1.0	1.0				
241a	SPC $=$									
241b	$\underline{\square}$ AD $=$									
243	DMI	KGG	0	6	1	2		12	12	
245	DMI	PGT	0	2	1	2		12	1	
246a	SLøAD	202	5	1000.	8	1000.				
246b	SPC1	201		1	2	11				
247	SPOINT	1	THRU	12						

The modified partitioning matrix with grid points $1,3,4$, and 6 in the a-set is shown below.

MANUAL SINGLE-STAGE SUBSTRUCTURING

PARTITIONING MATRIX

External Grid_Component

Internal Index	Substructure 1	Substructure 2
1	$1-1$	
2	$1-2$	
3	$1-6$	$3-1$
4	$3-1$	$3-2$
5	$3-2$	$3-6$
6	$3-6$	$4-1$
7		$4-2$
9		$4-6$
10		$6-1$
11		$6-2$
12		$6-6$

The modified partitioning matrix contains twelve scalar points, with six in substructure 1, nine in substructure 2, and three common to both substructures. The loads are now located at scalar points 5 and 8, as indicated on card 2400 . The single-point constraints are located at scalar points 1,2 , and 11, as indicated on card 246b. The modified partitioning vector for substructure 1 indicates there are twelve degrees of freedom in the pseudostructure, and that, beginning with the first scalar point, there are six scalar points associated with substructure 1. The modified partitioning vector for substructure 2 indicates the first entry is associated with scalar point 4, and that there are a total of nine scalar points associated with substructure 2.

If multiple loading conditions are used in the solution, the subcase structure must be established in Phase I. In order to perform the matrix operations in Phase II, the same case control structure must be used for all substructures. This means that the same number of subcases must be defined for each substructure, even though some of the subcases will not contain a load selection or any other entries. NASTRAN will generate a null column in the load matrix for all subcases for which no load set is selected. If any loads are applied in Phase II, the same subcase structure must be used in Phase II. In any event, the subcase structure established in Phase I must be used in Phase III. The contents of each subcase in Phase III will relate to

STRUCTURAL MODELING

output selections, rather than load and boundary condition selections.
Consider adding two additional loading conditions to the sample problem in Section 1.10.1. If one additional loading condition were applied to substructure 1 , identified as 202 , and one additional loading to substructure 2, identified as 203 , the subcase structure established in Phase I would appear as follows:

Substructure 1	Substructure 2
SPC = 101	SPC $=201$
SUBCASE 1	SUBCASE 1
SUAD $=201$	
LØAD $=202$	SUBCASE 2
SUBCASE 3	
	SUBCASE 3
LØAD $=203$	

Load case 202 would have to be defined with some form of static loading in the Bulk Data Deck for Phase I of substructure 1. In addition, load set 203 would have to be defined with some form of static loading in the Bulk Data Deck for Phase I of substructure 2.

The suggested DMAP sequence for the sample problem in Section 1.10 .1 will not support multiple boundary conditions in Phase I. If multiple boundary conditions are introduced in Phase I, it is necessary to generate a separate partitioning vector for use in Phase II for each of the unique boundary conditions. In some sense, this results in the definition of a number of separate problems equal to the number of unique boundary conditions. Although a DMAP sequence could be developed to support multiple boundary conditions in Phase I, it is not recommended that multiple boundary conditions be introduced into Phase I.

Multiple boundary conditions may be introduced in Phase II without any difficulty. However, in order to handle the internal looping for each boundary condition, it is more convenient if the loads are also introduced in Phase II. As indicated earlier, the introduction of loads in Phase II does limit the manner in which the static loads can be defined. If the loads and boundary conditions are introduced in Phase II, all of the case control options for combining subcases, including symmetry combinations, may be used in the usual manner.

It is possible to introduce the loads in Phase I and multiple boundary conditions in Phase II. However, provision must be made to generate all loading conditions in Phase I, which will automatically take place if one subcase is defined for each loading condition and no boundary conditions are mentioned in the Phase I Case Control Deck. It is then necessary in Phase II to partition out the proper columns of the loading matrix for each loop or boundary condition in Phase II. This requires that the user construct the proper partitioning vector for each boundary condition. Also, appropriate modifications would have to be made to the suggested DMAP sequence for Phase II.

1.10.3 Dynamic Analysis

Substructuring for dynamic analysis is performed in much the same way as that for static analysis. A suggested NASTRAN Data Deck for use in Phase I of a Normal Modes Analysis (Rigid Format 3) is shown below:

ID	PHASE \emptyset NE $\$$ N $\emptyset R M A L ~ M \emptyset D E S$
TIME	2
CHKPNT	YES
APP	DISP
S $\emptyset L$	3,0
ALTER	86,126
ØUTPUTI	$E 10, K A A, M A A,, / / C, N,-1 / C, N, 0 / C, N, U S E R T P 1 \$$
ENDALTER	
CEND	
(Case Control Deck)	

BEGIN BULK
(Bulk Data Deck)

ENDDATA

Note that the gUTPUTl module writes the mass matrix, as well as the stiffness matrix and partitioning vector on User Tape 1. The Case Control Deck is similar to the Phase I deck for static analysis. It must include a constraint selection if the boundary conditions are applied in Phase I. The Bulk Data Deck is also similar to that used in Phase I for static analysis. In general, it includes all the cards associated with the definition of the model and the DMI cards for the definition of the partitioning vector. It will also include cards for the definition of
the a-set and other constraint cards if the boundary conditions are applied in Phase I. As in static analysis, one such deck must be prepared for each substructure.

The suggested NASTRAN Data Deck for Phase II of Normal Modes Analysis with two substructures is shown below:

ID	PHASE TWØ \$ NØRMAL MØDES
TIME	2
APP	DISP
S $\emptyset \mathrm{L}$	3,0
ALTER	1
PARAM	$/ / C, N, N \oplus P / V, N, T R U E=-1 \$$
ALTER	6,49
INPUTTI	/E01,KGG01,MGG01, /C, $\mathrm{N},-\mathrm{I} / \mathrm{C}, \mathrm{N}, \mathrm{I} / \mathrm{C}, \mathrm{N}$, USERTP1 \$
MERGE,	, , ,KGGO1, E01,/KGGT01 \$
ADD	KGG,KGGT01/KT01 \$
EQUIV	KTO1, KGG/TRUE \$
MERGE,	,,,MGGO1,E01,/MGGTO1 \$
ADD	MGG,MGGT01/MT01 \$
EQUIV	MTOI,MGG/TRUE \$
INPUTT 1	/E02,KGG02,MGG02, /C, $\mathrm{N},-1 / \mathrm{C}, \mathrm{N}, 2 / \mathrm{C}, \mathrm{N}$, USERTP2 \$
MERGE,	, , , KGG02,E02,/KGGT02 \$
ADD	KGG, KGGT02/KT02 \$
EQUIV	KT02,KGG/TRUE \$
MERGE,	, ,,MGG02,E02,/MGGT02 \$
ADD	MGG,MGGT02/MT02 \$
EQUIV	MT02,MGG/TRUE \$
ALTER	57,62
ALTER	119,120
Qutputi	LAMA , , , //C, $\mathrm{N},-\mathrm{T} / \mathrm{C}, \mathrm{N}, 0 / \mathrm{C}, \mathrm{N}$, USERTP3 \$
PARTN	PHIG, ,E01/, PHIAO1, ,/C,N,1 \$
gutputi	PHIAOT, , , //C,N,0/C,N,O/C,N,USERTP3 \$
PARTN	Prilt, ex̂2/, PHInC2, ,/C, $\mathrm{N}, 1$ \$

QUTPUT1 PHIA02,,, ,//C,N,O/C,N,O/C,N,USERTP3 \$
SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,,,BGPDT,LAMA,QG,PHIG,,/,ØQG1,ØPHIG,,,/C,N,REIG \$
$\emptyset F P \quad \emptyset P H I G, \emptyset Q G 1,,,, / / V, N, C A R D N \emptyset \$$
ALTER 122,126
ALTER 128,129
ENDALTER
CEND
(Case Control Deck)
BEGIN BULK
(Bulk Data Deck)
ENDDATA
The Phase II NASTRAN Data Deck for Normal Modes Analysis is similar to that used for Static Analysis. The following comments are related to differences in the two decks:

1. Since there are no loads associated with a normal modes analysis, the module GP3 is not executed.
2. The same operations are performed on the mass matrix as are performed for the stiffness matrix.
3. The data block LAMA (Eigenvalue Summary) is written as the first data block on User Tape 3. This is followed by the appropriate partitions of the eigenvectors for each of the substructures.
4. The Case Control Deck must include a method selection for eigenvalue extraction.
5. The Bulk Data Deck is similar to that used in static analysis, except that a null matrix must be defined for the mass matrix, instead of the load matrix, and an EIGR card must be included.

In dynamic analysis, the a-set will include, in addition to all points on the boundary of the substructure, a number of points within each substructure sufficient to define the dynamic response. Since all active degrees of freedom along interior boundaries must be included in u_{a}, the a-set will contain more degrees of freedom than are needed in dynamic analysis, with a large resulting inefficiency for a very small gain in accuracy. This is a serious consideration because, due to the high density of $K_{a a}$, the time to perform most of the significant matrix operations in Phase II increases nearly as the cube of the number of degrees of freedom in u_{a}. The situation can be greatly improved by a second stiffness reduction in Phase II, in which u_{a} is partitioned into a set, u_{c}, that will be retained in dynamic analysis, and a set, u_{b}, that will be eliminated. The u_{b} set includes the excess degrees of freedom on the interior boundaries.

STRUCTURAL MODELING

The second stiffness reduction in Phase II is defined by listing the members of the u_{b} set that will be eliminated on ØMIT cards. These omitted degrees of freedom must reference the scalar points associated with the pseudostructure.

In Phase III for dynamics, each NASTRAN substructure is restarted with the partition of the Phase II solution vector, or eigenvector, for each substructure. All normal data reduction procedures may then be applied. In dynamic analysis, Phase III can be omitted if output requests are restricted to the response quantities for the scalar points of the pseudostructure. In this case, the output and partition modules can be omitted from the Phase II runs, as their only purpose is to serve as input for the Phase III runs.

If output is desired for dependent response quantities or element stresses and forces, a Phase III run must be made for each substructure of interest. The suggested NASTRAN Data Deck is given below for a Phase III dynamics run:

ID PHASE THREE \$ NøRMAL MøDES
TIME 2
APP DISP
SOL $\quad 3,0$
ALTER 22,107
INPUTT1 /LAMA,,, ,/C,N,-1/C,N,0/C,N,USERTP3 \$
INPUTT1 /PHIA,,,,/C,N,0 \$
ALTER 127,134
ENDALTER
(Include Restart Dictionary from Phase I)
CEND
(Case Control Deck)
BEGIN BULK
(No Bulk Data)
ENDDATA
The Phase III data deck for Normal Modes Analysis is similar to that used for Static Analysis. The first reference to module INPUTTI is to read the data block LAMA, which is the first data block on User Tape 3. The second reference to INPUTT1 is to read the proper partition of the eigenvectors. The zero parameter at the end of the statement should be
incremented one for each substructure in order to point to the proper eigenvector partition.
Substructuring may be used with any of the other dynamics rigid formats. The NASTRAN Data Decks will be similar to those used for Normal Modes Analysis. Ail dynamic loads must be applied in Phase II. If the SUPØRT card is needed to define free body motions for the structure as a whole, it must be included in Phase II.

1.10.4 DMAP Loops for Phase II

The suggested DMAP sequences for the substructure example in Section 1.10 .1 uses repeated blocks of code for each substructure. Cards 209 through 215 are associated with input for substructure 1. Cards 216 through 222 perform the same operations for substructure 2. Likewise, cards 230 and 231 are associated with output for substructure 1, and cards 232 and 233 are associated with output for substructure 2. If a large number of substructures are used, it is more convenient to use a DMAP loop, rather than repeating blocks of code. DMAP loops are constructed by placing a LABEL statement at the beginning of the loop and an REPT statement at the end of the loop. The number of times the REPT statement must be executed is set by an integer constant.

The series of statements represented by cards 209 through 222 can be replaced with the following sequence of DMAP operations:

```
PARAM // C,N,N\emptysetP / V,N,INP=1 $
LABEL BL\emptysetCKI $
INPUTT1 / E,KGGA,PGA,, / C,N,-3 / V,N,INP $
MERGE, ,,,KGGA,E, / KGGTA $
ADD KGG,KGGTA / KTA $
EQUIV KTA,KGG / TRUE $
MERGE, ,PGA,,,,E / PGTA / C,N,l $
ADD PGT,PGTA / PTA $
EQUIV PTA,PGT / TRUE $
PARAM // C,N,ADD / V,N,INP / V,N,INP / C,N,1 $
REPT BL\emptysetCKI,1 $
```

The LABEL, BLØCK1, is shown at the beginning of the loop, and the REPT statement is shown at the end. The integer in the REPT statement is set to one less than the number of substructures,
which in this case is one. The PARAM statement preceding the REPT statement is used to increment the second parameter of INPUTTI by one each time through the loop. This causes the information to be read from a different tape each time through the loop. This DMAP loop does not check the label before reading the information on the input tape. The fact that the same names are used for the matrices each time through the loop does not cause any difficulty, as the matrices are located by their position on the tape, rather than by name.

If a DMAP loop is used for the input sequence, consideration must be given to its effect on the output sequence. Since the partitioning vectors were not saved on each pass through the DMAP loop for the input sequence, it is necessary to recover this information for use in the output sequence. This might be done by rerunning INPUTTI to reread the partitioning vectors as needed, or perhaps by inserting the DMI cards for the partitioning vectors in the Bulk Data Deck for Phase II. If phase III runs are not required, no output sequence is necessary.

1.10.5 Identical Substructures

In the case of identical substructures, the substructuring procedures can be organized to take full advantage of the repetitive parts. The substructures only have to appear identical in Phase I. The loading conditions and boundary conditions used in Phase II may be quite different for the otherwise identical substructures. The Phase I substructures must have identical geometry, including the global coordinate systems used on the boundary grid points.

Only a single Phase I run is made for each group of identical substructures. Since the identical substructures will be coupled in different ways during Phase II, a different partitioning vector must be generated for each use of the identical substructures in Phase II. These multiple partitioning vectors can be placed on the same output tape from Phase I, which also contains the single set of structural and loading matrices for the group of identical substructures.

The user may choose to make one or more Phase III runs for the members of a group of identical substructures. If the loading conditions and boundary conditions are also identical for the group of identical substructures, a single Phase III run will give all information of interest. However, if the boundary conditions and/or loading conditions are different for the various members of the group of identical substructures, it will probably be desirable to make a separate Phase III run for each of the substructures used in the complete structural model.

The use of identical substructures not only saves time in computer runs for Phase I and perhaps for Phase III, but also substantially reduces the effort associated with the preparation of the structural model in the Bulk Data Deck. In some sense, substructuring procedures with identical substructures can be thought of as being a form of data generation. Although substructuring is usually used because of problem size, it may be desirable, in some cases, to use substructuring because of the repetitive nature of the structure, and a consequent saving in data generation effort.

Substructure 2

(2) Srid Point Numbers

3 Element Numbers
$E=30 \times i 0^{6} \mathrm{mi}$
$1=500 \mathrm{in}^{4}$
$==1000 \mathrm{lbs}$

Fimite 1. Substructure Frotlem

1.11 AEROELASTIC MODELING

1.11.1 Introduction

The NASTRAN aeroelastic capability is compatible with the general structural capability. It is not designed for use with other special capabilities such as conical shell elements, hydroelastic option, and acoustic cavity analysis. The structural part of the problem will be modeled as described in other sections of this manual. This section deals with the new data, which is entirely aerodynamic, and with the connection between structural and aerodynamic elements.

Section 1.11 .2 deals with the aerodynamic data. The selection of a good aerodynamic model will depend upon a knowledge of the theory (see Section 17 of the Theoretical Manual). At the present time, only the Doublet Lattice method has been implemented. This method can be used for small sinusoidal motions of subsonic lifting surfaces of general configurations.

Section 1.11.3 deals with the interconnection between aerodynamic and structural degrees of freedom. The interpolation methods include both linear and surface splines. These methods are superior to high order polynomials since they tend to give smooth interpolation. They are based upon the theory of uniform beams and plates of infinite extent (see Section 17.2 of the Theoretical Manual).

Section 1.11.4 explains how to do modal flutter analysis by the k-method. Further details are given in the Rigid Format description (Section 3.20.).

Section 1.11 .5 is a sample problem which shows how to analyze a simple structure for flutter using the Doublet Lattice theory and the k-method of flutter analysis.

1.11.2 Aerodynamic Modeling

The lifting surfaces must be idealized as planes parallel to the flow. The configuration is divided into plane panels, each of constant dihedral. These panels are further subdivided into "boxes" (see Figure 1), which are really trapezoids with parallel sides in the airflow direction. If an airfoil lies in (or nearly in) the wake of another, then the spanwise divisions should lie along the same streamline. The boxes should be arranged so that any fold or hinge lines lie along the box boundaries. The aspect ratio of the boxes should be roughly one or less. The size of the boxes will depend upon the basic wavelength. An approximate rule is that the number of boxes per reference chord is greater than eight times the reduced frequency.

Figure 1. An aerodynamic panel subdivided into boxes.

Boxes should be concentrated near wing edges and hinge lines or any other place where downwash is discontinuous. A further discussion of the choice of models is found in Reference 1. Aerodynamic panels are assigned to groups. All panels within a group have aerodynamic interaction. The purpose of the groups is to reduce the time to compute aerodynamic matrices when it is known that aerodynamic coupling is unimportant, or to allow the analyst to investigate the effects of aerodynamic coupling.

The basic aerodynamic parameters are given on the AERD bulk data card. A rectangular aerodynamic coordinate must be identified. The flow is in the $+x$ direction of this system. The use of symmetry (or antisymmetry) is recommended to analyze symmetric structures, simulate

AEROELASTIC MODELING

ground effects, or simulate wind tunnel walls. Any consistent set of units can be used for the dimensional quantities.

The panel is described by a bulk data CAER $\emptyset 1$ card. A property card PAERØ1 may be used to move the center of pressure, a procedure not generally recommended. The box divisions along the span can be determined either by specifying the number of equal boxes (NSPAN) or the identity (LSPAN) of an AEFACT data card which gives a list of division points in terms of percent span. A similar arrangement can be used in the chord direction. The locations of the two leading edge points may be specified in any coordinate system (CP) defined by the user (including BASIC). The lengths of the sides are specified by the user, and they are in the airstream direction, assuring that the panel is parallel to the flow. Every panel must be assigned to some group (IGID), which is usually 1 if all panels interact.

There will be many degrees of freedom associated with each aerodynamic panel. There is an aerodynamic grid point associated with each box within a given panel. These points are located at the center of each box, and are automatically numbered and sequenced by the program. The lowest aerodynamic grid point number for a given panel is assigned the same number the program user specifies for the panel designation. The grid point numbers increase in increments of 1 (see CAERD data card figure) over all boxes in the panel. The user must be aware of these internally generated grids and ensure that their numbers are distinct from structural grids. These aerodynamic points will be used for output including displacements, plotting, matrix prints, etc. The local displacement coordinate system will have component Tl in the flow direction, and component T 3 in the direction normal to the panel (the element coordinate system of CAER 1).

1.11.3 The Interconnection Between Structure and Aerodynamic Models

The basis for interpolation to the aerodynamic degrees of freedom is based upon the theory of splines (Figure 2). High aspect ratio wings, or other beamlike structures, should use linear splines. Low aspect ratio wings, where the structural grid points are spread over an area, should use surface splines. Several splines can be used to interpolate the boxes on a panel; however, each box can refer to only one spline. Any box not referenced by a spline will be "fixed" and have no motion.

For both types of splines, the user must specify the structural degrees of freedom and the aerodynamic boxes involved. The structural points, called the g-set, can be specified by a list or by specifying a volume in space and determining all the grid points in the volume. The degrees

STRUCTURAL MODELING

Figure 2. Splines and their coordinate systems.

AEROELASTIC MODELING

of freedom at the grid points include only the normal displacements for surface splines. For linear splines, the normal displacement is always used and, by user option, rotations in torsion or slopes may be included.

The SPLINEl data card defines a surface spline. This can interpolate for any "rectangular" subarray of boxes on a panel. For example, one spline can be used for the inboard end of a panel and another for the outboard end. The interpolated grid points (set k) are specified by naming the lowest and highest elements in the area to be splined. The two methods for specifying the grid points use SET1 and SET2 data cards. A parameter $D Z$ is used to allow some smoothing of the spline fit. If $D Z=0$ (the usual value), the spline will pass through all deflected grid points. If $D Z>0$, then the $s p l i n e$ (a plate) is attached to the grid deflections via springs, which produce a smoother interpolation that does not necessarily pass exactly through all points.

The SPLINE2 data card defines a linear spline. As can be seen from Figure 2, this is really a generalization of a simple spline to allow for interpolation over an area. It is similar to the method often used by aeronautical engineers who assume that there is no curvature perpendicular to the elastic axis. The portion of a panel to be interpolated and the set of structural points are determined in the same manner as a SPLINEI. A NASTRAN coordinate system must be supplied to determine the axis of the spline. Since the spline has torsion as well as bending flexibility, the user may specify the ratio; the usual value is 1.0 . The attachment flexibilities, $D_{z}, D_{\theta x}$, and $D_{\theta y}$ allow for smoothing, where usually all are taken to be zero. An exception would occur if the structural model does not have slopes defined, in which case the flexibility DTHX must be infinite.

1.11.4 Modal Flutter Analysis

A prerequisite to modal flutter analysis is the calculation of an aerodynamic matrix and the transformation to modal coordinates. This operation is often very costly and care should be taken to avoid unnecessary work. One method is to compute the modal aerodynamic matrix at a few Mach numbers and reduced frequencies and interpolate to others. Matrix interpolation is an automatic feature of Rigid Format 10. The MKAER $\emptyset 1$ and MKAER $\emptyset 2$ data cards allow the selection of parameters for matrix calculation. On restart, additional MKAERØi cards will cause the new matrix terms to be appended (if no other data cards are added to invalidate previous ly computed matrices).

The method of flutter analysis is specified on the FLUTTER bulk data card. The FLUTTER card is selected in case control by an $F M E T H \emptyset D$ card. At the present time, only the k-method of flutter

STRUCTURAL MODELING

analysis is available. This allows looping through three sets of parameters: density ratio ($\rho / \rho_{\text {ref }}, \rho_{\text {ref }}$ is given on an AERD data card); Mach number (m); and reduced frequency, k. For example, if the user specifies two values of each, there will be eight loops in the following order.

LQ $\emptyset \mathrm{P}$	DENS	MACH	RFREQ
1	1	1	1
2	2	1	1
3	1	1	2
4	2	1	2
5	1	2	1
6	2	2	1
7	1	2	2
8	2	2	2

Values for the parameters are listed on FLFACT bulk data cards. Usually, one or two of the parameters will have only a single value.

A parameter VREF may be used to scale the output velocity. This can be used to convert from consistent units (e.g., in/sec) to any units the user may desire (e.g., mph), determined from $V_{\text {out }}=V / V_{R E F}$. Another use of this parameter is to compute flutter index, by choosing $V_{R E F}=b \omega_{\theta} \sqrt{\mu}$.

If physical output (grid point deflections or element forces, plots, etc.) is desired rather than modal amplitudes, this data recovery can be made upon a user selected subset of the cases. The selection is based upon the velocity; the method is discussed in Section 3.20.3.

Subsets of flutter analysis for checking data are discussed in Section 3.20.5.

1.11.5 Sample Problem

A sample problem (see Figure 3) has been chosen to illustrate flutter analysis. This model has been tested in a wind tunnel and analyzed using strip theory aerodynamics (see Reference 2). The analysis showed that "uncoupled" modes fortuitously provide a good result. This analysis has not included the bending-torsion elastic coupling at the root or the mass coupling at the tip. The NASTRAN deck (Figure 4) will be discussed to illustrate how to solve for flutter conditions using the k-method.

The structure will be modeled as a ten cell beam. A swept back coordinate system will be introduced to make it easier to model this beam. The global (i.e., local displacement) coordinate

Figure 3. Fifteen dearee sweep model.

Figure 4. NASTRAN deck for fifteen degree sweep model.

AEROELASTIC MODELING

\$ AEROOYNAMIC ELEMENTS									
CAEROI	101	1	1	6	4			1	+CA101
+CAl01	-1.	-. 26795	0.	2.0706	-1.	5.45205	0 。	2.0706	
PAERU1	1								
SPLINE 2	100	101	101	124	100	0 -	1.	1	+SP
+SP	0.	0.							
SETI	100	1	THRU	11					
\$									
\$ CONTHOL data									
EIGR	10	GIV	. 3	-1		6			+ER
-ER	MAX								
PARAM	LMODES	3							
AERO	0	1.3+4	2.0706	1.145-7					
MKAEROI	. 45								- MK
+MK	0.	$\cdot 1$. 2						
FLUTTER	30	K	1	2	3	L	3		
FLFACT	1	. 967							
FLFACT	2	. 45							
FLFACT	3	. 2	. 16667	.14286	.125	.11111	. 1		
EIGC	20	HESS	max						-EC
+EC							3		
ENDDATA									

Figure 4. NASTRAN deck for fifteen degree sweep model (continued).

STRUCTURAL MODELING

system for the grid points will be in the swept back system. Twenty-four aerodynamic boxes will be used. The deflections of the aerodynamic boxes will be interpolated using a linear spline.

The Executive Control Deck (from ID to CEND) selects the modal flutter analysis, e.g., APP and $5 \emptyset L$ cards. A time estimate (CPU min.) is required. The three card ALTER package (not required) will print the nonzero components of the mode shapes of the structure; the mode frequencies are an automatic output of this Rigid Format. If desired, the problem can be checkpointed using modal analysis (Rigid Format 3), and then restarted in flutter analysis (Rigid Format l0), allowing better output format of mode shapes.

The Case Control Deck is used to select constraints, methods, and output. In this problem, SPC set 1 is used to cantilever the root of the beam, and no MPC's are used. A METHØD card must be used to select an EIGR data card for real eigenvalue extraction. An FMETHQD card must select a FLUTTER data card for flutter analysis. A CMETHøD card must select an EIGC control for complex eigenvalue analysis. If desired solution set (SDISP gives modal quantities) or physical set (DISP, STRESS, etc.) output may be requested, but this is not usually done. An automatic flutter summary is printed unless parameter PRINT is set to $N \emptyset$. The XYøUT request shown will plot $\mathrm{V}-\mathrm{g}$ and V-f split frame "plots" on the printer output. To produce plots, it is necessary to specify a plotter, request a plot tape, and specify XYPLøT VG. The "curves" (e.g., 1 through 6 in the example) refer to the loops of flutter analysis.

The geometry and constraint bulk data is discussed in previous sections of this manual, and there are no special rules for aeroelastic problems. The structural elements are BAR elements with MASS2 used for torsional inertia. The CØUPMASS option is used to provide a nonsingular mass matrix so that the Given's method of eigenvalue extraction can be used. The bending moment of inertia and torsional rigidity (on the PBAR data card) have been adjusted to match experimental mode frequencies.

The aerodynamic boxes are defined by the CAERØ1 data card. The element number (e.g., 101) becomes the ID of the lowest numbered box. Other boxes are numbered as shown in Figure 3 . A property card must be referenced. The leading edge corners of the panel will be specified in coordinate system 1 for this example; however, any defined system may be used. Since equal box sizes are desired, the NSPAN and NCHØRD options are used to specify the numbers. If unequal divisions were desired, LSPAN and LCH@RD would be used to specify lists referenced on AEFACT data cards.

The interpolation is specified by a SPLINE2 (linear spline) data card. This must have an element number. For aerodynamic boxes, the lowest and highest numbered boxes in a rectangular array must be specified. In this case, all are desired from 101 through 124 . In order to provide data for the spline, the user must determine which box numbers will be assigned to the boxes. All grid points are used in this example, as specified in SET 100.

An EIGR data card will usually use either the INV or GIV method of eigenvalue extraction. In the example, six mode shapes are found, and a parameter LMळDES is used to limit the modal formulation to three. Usually, these numbers agree unless one is interested in checkpointing more modes for possible use in restart, examining shapes of neglected modes, or some other special reason. The AER \emptyset data card specifies aerodynamic coordinate system (for this example, BASIC), velocity of sound (not used), reference length, and density. The MKAER $\emptyset 1$ data card will cause the aerodynamic matrix to be computed for Mach number 0.45 and reduced frequencies of $0.0,0.1$, and 0.2 .

The FLUTTER data card requests the k-method (the only one now implemented) and selects FLFACT cards specifying density ratios, Mach numbers, and reduced frequencies. The analysis will loop through all combinations, with density on the inner loop and Mach number on the outermost loop. This arrangement also allows, for example, plots of V-g versus density. In the example given, probably typical, only one density and Mach number were specified. Both linear and surface splines are available for interpolation of aerodynamic matrices to intermediate values of M (Mach number) and k (reduced frequency). The linear, L, method is used when the matrix has been computed at the desired Mach numbers. The EIGC data card is required, and the HESS method is recommended. The number of vectors must be specified and will usually agree with the number of modes saved for output specified on the FLUTTER data card.

Results are presented in the Demonstration Problems Manual.

REFERENCES

1. Giesing, J. P., T. P. Kalman and W. P. Rodden, "Subsonic Unsteady Aerodynamics for General Configurations," Part II; Volume I, Application of the Doublet-Lattice Method and the Method of Images to Lifting-Surface/Body Interference; AFFDL-TR-71-5; April 1972.
2. Yates, E. C. and R. M. Bennett, "Use of Aerodynamic Parameters From Nonlinear Theory in Modified-Strip-Analysis Flutter Calculations for Finite-Span Wings at Supersonic Speeds; NASA TN D-1824, July 1963.

1.12 CYCLIC SYMMETRY

Many structures, including pressure vessels, rotating machines and antennae for space communications, are made up of virtually identical segments that are symmetrically arranged with respect to an axis. There are two types of cyclic symmetry as shown in Figures 1 and 2: simple rotational symmetry, in which the segments do not have planes of reflective symmetry and the boundaries between segments may be general doubly-curved surfaces; and dihedral symmetry, in which each segment has a plane of reflective symmetry and the boundaries between segments are planar. The use of cyclic symmetry allows the user to model only one of the identical substructures. There will also be a large saving of computer time for most problems. The theoretical treatment for cyclic symmetry is given in Section 4.5 of the Theoretical Manual.

The total model consists of N identical segments which are numbered consecutively from 1 to N. The user supplies a NASTRAN model for one segment, using regular elements and standard modeling techniques, except grid points are not permitted on the polar axis. All other segments and their coordinate systems are automatically rotated to equally spaced positions about the polar axis by the program. The boundaries must be conformable, i.e., the segments must coincide. This is easiest to insure if a cylindrical or spherical coordinate system is used, but such is not required. The PARAM card, CTYPE, is used to specify either rotational symmetry or dihedral symmetry and the number of segments, N, in the structural model is specified on the PARAM card, NSEGS. As indicated in Figure 2, dihedral symmetry provides solutions for each segment and its reflected image. This requires application of both symmetric and antisymmetric boundary conditions.

In rotational symmetry the basic transformation equation between the structure segments $n=1$, 2, etc. and the harmonic indices $k=0,1,2$, etc. is

$$
\begin{equation*}
u^{n}=\bar{u}^{-0}+\sum_{k=1}^{\text {KMAX }}\left[\bar{u}^{-k c} \cos (n-1) k a+\bar{u}^{k s} \sin (n-1) k a\right] \tag{1}
\end{equation*}
$$

where
u^{n} is any displacement, load, stress, etc., on the $n^{\text {th }}$ segment ($n=1,2 \ldots$ NSEGS), $\bar{u}^{o}, \bar{u}^{k c}, \bar{u}^{k s}$ are the corresponding cyclic coefficients used in the solution which define the entire structure,
k is the cyclic index (i.e., KINDEX),
KMAX is the limit ($K M A X \leq \frac{N}{2}$) of k. (If all values of k are used, the transformation is exact),
and
$a=\frac{2 \bar{u}}{\text { NSEGS }}$ is the circumferential angle for each segment.

In dihedral symmetry the repeated request may be divided into two half segments divided by a plane of symmetry. The solution is obtained for symmetric motions (S) and antisymmetric motions (A) of the right half segment modeled by the user. Thus, for each cyclic index, K, four coefficients are obtained defining the variable, n, i.e., $\bar{u}^{-k s}, S, \bar{u}^{-k c, S}, \bar{u}^{-k s, A}$ and $\bar{u}^{-k c, A}$. In the right hand segment the terms are added

Right side: $\quad u^{-k s}=u^{-k s}, S+u^{-k s}, A$
In the left hand mirror image the antisymmetric solution is subtracted.
Left Side:

$$
\begin{equation*}
\bar{u}^{-k s}=\bar{u}^{-k s, S}-\bar{u}^{-k s, A} \tag{3}
\end{equation*}
$$

The reason for using dihedral symmetry is to reduce the size of the model by one half. However in static analysis, this procedure requires twice as many solutions as in rotational cyclic symmetry. In normal modes analysis only the modes for the symmetrical components $\mathrm{u}^{\mathrm{kc}, \mathrm{S}}$ and $\mathrm{u}^{\mathrm{ks}}, \mathrm{A}$ are obtained. The modes for the other two terms are identical and correspond to a one segment rotation of the structure.

The two boundaries are called sides 1 and 2. In the case of rotational symmetry, side 2 of segment n is connected to side 1 of segment $n+1$, as shown in Figure 1. In the case of dihedral symmetry, side 1 is on the boundary of the segment and side 2 is on the plane of symmetry for the segment, as shown in Figure 2. In either case the grid point numbers on sides 1 and 2 must be specified on the bulk data card, CYJ $\emptyset I N$.

As indicated in the Theoretical Manual Section 4.5, the cyclic symmetry analysis uses a finite Fourier transformation. Hence, the use of cyclic symmetry procedures does not introduce any additional approximations beyond those normally associated with finite element analysis. In the case of static analysis, a shortened approximate method may be used where the maximum value of the harmonic index is specified on the PARAM card, KMAX. The default procedure is to include all harmonic indices. The use of a smaller number of harmonic indices is similar to truncating a Fourier series. The stiffness associated with the higher harmonic indices tends to be large, so that these components of displacements tend to be small. In the case of vibration analysis, the solutions are performed separately for each harmonic index. The harmonic index for each solution is specified on the PARAM card, KINDEX. The standard restart procedures can be used to calculate vibration modes for additional harmonic indices.

No restrictions are placed on the use of the single point constraint, the multipoint constraint, or the GMIT feature of NASTRAN, other than that the constraints must be the same for each segment. Constraints between segments are automatically applied to the degrees of freedom

$$
1.12-2 \quad(3 / 1 / 76)
$$

at grid points specified on CYJøIN bulk data cards which are not otherwise constrained. The SPCD bulk data card may be used to vary the magnitude of enforced displacements for each of the segments. In the case of static analysis, the gMIT feature may be used to remove all degrees of freedom at internal grid points without any loss of accuracy. Since this reduction is applied to a single segment prior to the symmetry transformations, it can greatly reduce the amount of subsequent calculation. In the case of vibration analysis, the ØMIT feature is used in the usual way to reduce the size of the analysis set and involves the usual approximations. The SUP@RT card for free bodies cannot be used with cyclic symmetry.

Static loads are applied to the structural model in the usual way. A separate subcase is defined for each segment (half segment for dihedral symmetry) and loading condition. The subcases for static loading must be ordered sequentially, according to the segment numbers. Multiple loading conditions for each segment must be in consecutive subcases. In the case of rotational symmetry, there will be a number of subcases equal to the number of segments in the structural model for each loading condition. In the case of dihedral symmetry, there will be twice as many subcases as for rotational symmetry because of the two symmetric components. If there is more than a single loading condition, the number of loading conditions must be specified on the PARAM card, NLDAD.

An alternate procedure for specifying the static loads may be used if the transform values of the forcing functions are known. In this case, the transform values of the loads are specified directly on the usual loading cards. The PARAM card, CYCID, must be included in the Bulk Data Deck to indicate that cyclic transform representation rather than physical segment representation is being used for the static loads. If this option is used, the subcases must be ordered according to the symmetrical components with the cosine cases preceding the sine cases for each symmetrical component. The output quantities will also be prepared in terms of the symmetric components.

If the loading is specified in terms of the physical segments, the data reduction will also be done in terms of the physical variables. All of the normal output, including structure plots, are available. No provision is made to recover physical segment data in vibration analysis. The available output data does, however, include the symmetrical components of dependent displacements, internal forces and stresses.

For purposes of minimizing matrix bandwidth, the equations of the solution set are normally sequenced with the cosine terms alternating with the sine terms. The user may request an alternate sequence on the PARAM card, CYCSEQ, which orders all cosine terms before all sine terms. The latter may improve efficiency when all of the interior points have been omitted.

1. The user models one segment.
2. Each segment has its own coordinate system which rotates with the segment.
3. Segrient boundaries may be curved surfaces. The local displacement coordinate systems must confcrm at the joining points. The user gives a paired list of points on Side l and Side ? which are to be joined.

Figure 1. Rotational symmetry

1. The user models one-half segment (an R segment). The L half segments are mirror images of the R half segments.
2. Each half segment has its own coordinate system which rotates with the scgent. The L half segments use left hand coordinate systems.
3. Segment boundaries must be planar. Local displacement systems axes, assuciuted with inter-segnent boundaries, must be in the plane or nomal to the plane. The user lists the points on Side 1 and Side 2 which are to be joined.

Figure 2. Dihedral symmetry

1.13 FULLY STRESSED DESIGN

The fully stressed design option is part of the static analysis rigid format for structural analysis. Functional modules ($9 P T P R 1$ and $\emptyset P T P R 2$) are provided to automatically adjust the properties based on maximum stress levels, and to control the number of design iterations based on user-supplied convergence criteria. All elements using a common property are sized together, i.e., a plate with uniform thickness remains uniform. If the user wishes to scale the properties for each element separately, each element must have its own property card. After a sufficient number of iterations, the element properties will be adjusted to the minimum values necessary to carry the prescribed loads.

The process begins by performing a static analysis for all loading conditions using the initial values for all element properties. A new property, P_{2}, will be scaled such that

$$
\begin{equation*}
P_{2}=P_{1}\left[\frac{\alpha}{\alpha+(1-\alpha) \gamma}\right] \tag{1}
\end{equation*}
$$

where P_{1} is the current property value and γ is an iteration factor with a default value of unity. The scale factor, α, is defined as follows:

$$
\begin{equation*}
\alpha=\operatorname{Max}\left(\frac{\sigma}{\sigma_{\ell}}\right) \tag{2}
\end{equation*}
$$

where σ is a stress value and σ_{ℓ} is a stress limit. The maximum value of α is taken for all loading conditions. Values of γ smaller than unity limit the property change in a single iteration, and thereby tend to improve the stability of the process. The maximum change in any property is limited by

$$
\begin{equation*}
K_{\min }<\frac{P_{2}}{P_{i}}<K_{\max }, \tag{3}
\end{equation*}
$$

where P_{i} is the initial value of the property and $K_{\min }$ and $K_{\max }$ are user-supplied limits.
Convergence is achieved by completing the user-specified number of iterations, by having all selected element properties reach the user-specified limits, or by satisfying the following convergence criteria:

$$
\begin{equation*}
\frac{\left|\sigma-\sigma_{\ell}\right|}{\sigma_{\ell}}<\varepsilon, \tag{4}
\end{equation*}
$$

where ε is a user-supplied convergence limit.

The following actions are required by the user in order to utilize the fully stressed design capability:

1. The user must select stress output in the Case Control Deck for all elements that will participate in the fully stressed design.
2. All required stress limits must be specified on the structural material cards associated with element properties that will participate in the fully stressed design.
3. The property optimization parameters must be specified on the bulk data card P@PT. This card contains user-specified values for the maximum number of iterations, the convergence criteria (ε), the iteration factor (γ), and output options to print and/or punch the calculated values of the element properties.
4. The property optimization limits ($K_{\min }$ and $K_{\max }$) must be specified on the PLIMIT bulk data card if the user wishes to limit the maximum and minimum values of the element properties.

The detailed definitions of the scale factors for each of the element types are given in Table 1. The symbols σ_{t}, σ_{c} and σ_{s} represent the limiting stress values in tension, compression and shear, given on the structural material cards. All of the properties listed for each element are scaled in the same way, i.e., both the area and torsional constant for the R $\emptyset D$ are modified using the same scale factor.

FULLY STRESSED DESIGN

Table 1. Scale Factors for Fully Stressed Design

Element	Stress Value Used	Scale Factor (α)	Properties Changed
$\begin{aligned} & \text { R@D } \\ & \text { TUBE } \end{aligned}$	Axial Tension (σ_{1}) Axial Compression (σ_{2}) Torsion (τ)	$\cdot \operatorname{Max}\left(\frac{\sigma_{1}}{\sigma_{t}}, \frac{\sigma_{2}}{\sigma_{c}}, \frac{\tau}{\sigma_{s}}\right)$	Area (A) Torsional Constant (J)
BAR	$\left.\begin{array}{l}\text { Fiber Stress } \\ \text { Tension }\end{array} \begin{array}{lll}\text { End } & \left(\sigma_{a 1}\right) \\ \text { End } & b & \left(\sigma_{b}\right)\end{array}\right)$	$\begin{array}{r} \operatorname{Max}\left(\frac{\sigma_{a l}}{\sigma_{t}}, \frac{\sigma_{b 1}}{\sigma_{t}},\right. \\ \left.\frac{\sigma_{a 2}}{\sigma_{c}}, \frac{\sigma_{b 2}}{\sigma_{c}}\right) \end{array}$	Area (A) Torsional Constant (J) Moments of Inertia $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{12}\right)$
TRMEM QDMEM	Principal Tension (σ_{1}) Principal Compression (σ_{2}) Maximum Shear (τ_{m})	$\operatorname{Max}\left(\frac{\sigma_{1}}{\sigma_{t}}, \frac{\sigma_{2}}{\sigma_{c}}, \frac{\tau_{m}}{\sigma_{s}}\right)$	Thickness (t)
TRPLT QDPLT TRBSC	Same as Above (Fiber Distances $z_{1} \& z_{2}$)	Same as Above	Moment of Inertia (I)
TRIA1 QUAD1	Same as Above	Same as Above	Moment of Inertia (I) Membrane Thickness ($\mathrm{t}_{\boldsymbol{1}}$)
TRIA2. QUAD2	Same as Above	Same as Above	Thickness (t)
SHEAR	Maximum Shear (τ_{m})	$\frac{\tau_{m}}{\sigma_{s}}$	Thickness (t)

1.14 AUTOMATED MULTI-STAGE SUBSTRUCTURING

Large and complex structural analysis problems can be solved for static and/or normal modes response using the automated multi-stage substructuring features of NASTRAN. The user subdivides the intended model into a set of smaller more elementary partitions called basic substructures. These components of the whole structure can be modeled independently, checked for accuracy and then assembled automatically to form a composite model representing the whole structure for final solution. This approach offers the following advantages:

1. Each component model of the overall structure (e.g., wing, fuselage, engine nacelles, landing gear, etc.) may be developed independently.
2. Larger component substructures may themselves be assembled from yet smaller component substructures for multi-stage substructure analyses.
3. Each component substructure may be validated independently, plotted and analyzed prior to assembly and solution of the integrated whole model.
4. Changes due to errors, model modifications, andjor design alterations may be effected for any basic substructure and reintegrated into the overall structure at a minimum cost.
5. Via matrix reduction of the stiffness and mass matrices of neighboring substructures (see Theoretical Manual, Section 4.6), their interaction effects on any given component can be economically included in the separate analysis of that particular component.

In effect, the concept of multi-stage substructuring is analogous to the elementary finite element theory whereby simple beam, plate, and solid elements are replaced by more complex elements each of which, in turn, may represent an assemblage of simple or complex elements.

In order to effectively employ this automated substructuring capability of NASTRAN for static and normal modes analyses, the user should gain an overall understanding of the basic program design concepts, the data base on which it operates, and the control functions provided. These are outlined in the next section which is then followed by a more detailed description of how to use the features of the program including examples of the input data flow. A detail description of each substructuring control card and a summary of the associated bulk data cards is provided in Section 2.7. The detailed definition of each of these bulk data cards is included with the alphabetical listing of all the other bulk data cards in Section 2.3.

1.14.1 Substructuring Terminology

This section summarizes the basic concepts of operation provided in NASTRAN for executing an automated multi-stage substructure analysis. Definitions are given in Table 1 for the specialized terminology used in describing the operation and control of each execution step.

A static or normal modes analysis using substructuring techniques can be divided into three basic phases of operation:

Phase 1: Initial generation of individual basic substructure matrices.
Phase 2: Substructure matrix reduction and assembly, solution of the assembled substructure, and recovery of substructure displacements and reaction forces.

Phase 3: Completion of the analysis with conventional selective output for each individual basic substructure.

Each of these three phases of operation can be performed using Rigid Formats 1, 2, or 3 of NASTRAN according to the results desired. Control of the individual execution steps is provided via the Substructure Control Deck. Section 2.7 presents detailed descriptions of each command and summarizes the special Bulk Data cards provided for substructuring. The Substructure Control Deck is input as shown in Figure 1 between the standard Executive Control and Case Control Decks now used by NASTRAN. Each substructure control command is automatically translated into appropriate DMAP ALTER cards to augment the specified Rigid Format sequence. The user may also include his own DMAP ALTER conmands or he may modify a previously defined DMAP sequence as described in Section 2.7.2.

1.14.1.1 Storage of Substructure Data

The data required for each basic substructure and for subsequent combinations of substructures is stored on a Substructure Operating File (S $\wp F$). The $\varsigma \emptyset F$ data are stored in direct access format on disk or drum during a NASTRAN execution. These data may also be stored on tape between runs for backup storage or for subsequent input to other computers. A schematic diagram of data flow is given in Figure 2.

The $S \emptyset F$ file which contains the data items listed in Table 2 is used to communicate between each phase of operation and between each step of the Phase 2 operation. Thus, the user is allowed to develop his analysis in separate steps as he builds his final solution structure without use of the checkpoint/restart feature of NASTRAN. He may execute a series of Phase 1 runs to build

$$
1.14-2(3 / 1 / 76)
$$

AUTOMATED MULTI-STAGE SUBSTRUCTURING

Figure 1. Substructuring input data deck.

STRUCTURAL MODELING

Note: If all processing is performed on the same computer, $S \emptyset F$ tape output is not required. All communication may be carried out using the same $S \emptyset F$ disk/drum throughout.

Figure 2. Data file organization for NASTRAN multi-stage substructuring.

AUTOMATED MULTI-STAGE SUBSTRUCTURING

Table 1. Definitions of Substructire Terminology.

Boundary Set	- A structure formulated from finite elements in Phase 1. - Set of degrees of freedom to be retained in a Phase 2 reduce operation.
Combine Operation	- Merge two or more structures by connecting related degrees of freedom. The matrix elements for connected degrees of freedom are added to produce the combined structure matrices, and the substructure load vectors are processed and stored for subsequent combination at solution time.
Component Substructure	- Any basic or pseudostructure comprising a part of an assembled substructure.
Connection Set	- Set of grid points and their component degrees of freedom to be connected in adjoining structures.
Equivalence Operation	- The creation of an image substructure equivalent to a primary substructure.
Phase (1, 2, or 3)	- Basic sẗeps required for multi-stage substructure processing with NASTRAN - creation, combination, reduction, solution and recovery, and detail data recovery.
Primary Substructure	- Any basic substructure or any substructure resulting from a combine or reduce operation.
Pseudostructure	- A combination of component substructures.
Reduce Operation	- Structural matrix and load vector reduction process to obtain smaller matrices.
Secondary Substructure	- An image substructure created from an equivalence operation.
S¢F	- Substructure Operating File. Contains all data necessary to define a structure at any stage, including solutions.
Solution Structure	- The resulting substructure to be used in the solve operation.
Solve Operation	- To obtain solutions using the present structural matrices and user-defined input data.

STRUCTURAL MODELING

Table 2. Substructure Item Descriptions.

Description

EQSS External grid point and internal point equivalence data
Basic grid point coordinates
CSTM Local coordinate system transformation matrices
LØDS Load set identification numbers
LDAP Load set identification numbers for appended load vectors
PLTS Plot sets and other data required for Phase 2 plotting
KMTX Stiffness matrix
LMTX Decomposition product of REDUCE operation
MMTX Mass matrix
PAPP Appended load vectors
PVEC Load vectors
P@AP Appended load vectors on omitted points
PØVE Load vectors on points omitted during matrix reduction
UPRT Partitioning vector used in matrix reduction
H@RG $\quad H$ or G transformation matrix
UVEC Displacement vectors or eigenvectors
QVEC Reaction force vectors
SOLN Load vectors or eigenvalues used in a solution

AUTOMATED MULTI-STAGE SUBSTRUCTURING

all basic substructures prior to any reduction or combination in Phase 2, or he may build component pseudostructures from a few basic substructures and return later to add other basic substructures to his $S D F$ file as required.

Once the final solution model is established, the user may solve his problem and recover results for any level of component pseudo- or basic substructure. Detail element stresses and element forces or support reactions specified with the basic substructure can be recovered in Phase 3. These results in Phase 3 may be recovered using the original data deck or by restarting from a checkpointed Phase 1 execution.

The physical characteristics of the $S \emptyset F$ and the procedures for managing the data on the $S \emptyset F$ are described in Section 1.14.2.

1.14.1.2 Identification of Substructure Data

The user controls each step in the analysis by specifying the substructure commands to be executed and the names, such as HUB, WING, RПQT, etc., of each substructure to be used in that step. Automatically the program retrieves all the relevant data for the named substructures from the $S \emptyset F$, performs the matrix operations requested, and stores the results on the $S \emptyset F$. Thus, the user is freed from the tedious task of bookkeeping. Additional commands have also been provided to facilitate the examination of any data item stored on the $S \varphi F_{\text {and }}$ to eliminate any data no longer needed or incorrectly specified due to input data errors.

All specific references to grid points for connection or boundary sets, releases, and loads, etc. are made with respect to the basic substructure name. The names of any component substructure can be used for the combine, reduce, equivalence, solve, and recover operations. However, no component substructure name may be used more than once while building the solution structure. If the same component substructure is to be used more than once, e.g., identical components are to be used to create the full model, the equivalence operation should be used to assign unique names for all substructures comprising that component. The data for the equivalent or secondary image substructures will be automatically stored on the $S \emptyset F$ for future reference. New names will be created for each lower level component of the equivalenced substructure simply by adding a user specified prefix to the old names. The user can then reference the prefixed name to obtain results for the secondary structure during the recovery operations in Phase 2 or in Phase 3.

STRUCTURAL MODELING

1.14.1.3 Input Data Checking

Several features have been provided for input data checking. Principal among these is the DRY run option. This option allows the user to submit his run to have the program validate the consistency of his command structure and his data without actually performing the more time consuming matrix operations. Assuming his input is found to be consistent, the run may be resubmitted with the $G \emptyset$ option to complete the matrix processing.

Also available is a STEP option which first checks the data and then executes the matrix operations one step at a time. If errors are detected in the data, the matrix operations are skipped and the remainder of the processing sequence is executed as a DRY run only.

A second feature is also provided which allows the user to process only selected matrix data. For example, if the user finds that after having assembled his solution structure he wishes to add new loading conditions, or he wishes to obtain normal modes but did not have the mass matrix, he may re-execute the sequence of matrix operations to process only the load or mass matrix. First, however, the user must remove (EDIT or DELETE) the old loading data from the S $\emptyset F$ to free that space for the new matrix data to be stored.

A third feature is available for displaying all the relevant substructuring data generated by the program. A description of the $\varsigma \emptyset F$ data items for each substructure is given in Section 1.14.2, Table 2. Both the combine and reduce operations involve specification of grid point and degree of freedom data related to the basic substructures involved. The automatic generated or manually specified connectivities are critical to the combine operation. Using the output options provided, the user can verify explicitly each and every connectivity. The reduce operation requires the user specify the degrees of freedom to be retained. These are also identified by basic substructure grid point numbers. If desired, the user may also obtain lists of all the retained degrees of freedom of the resulting pseudostructure to verify the completeness and accuracy of his input.

Examples of the output generated are given in Figure 3 . Two items in these examples require explanation to assist in their interpretation. The columns labeled "DEGREES ØF FREED@M" and "CØMPONENT DQF" show entries containing six digit integers of "1" through "6". These represent the components of displacement and rotation at the grid point in question. These are read from right to left in the usual convention of NASTRAN such that the integer " 23 " represents displacement components 2 and 3 or y and z displacements, respectively.
summary of pseudostructure connectivities
pseudostructije names

Figure 3. Sample of output options for reduce and combine operations.

STRUCTURAL MODELING

The column heading "INTERNAL PØINT NØ" references the internally generated "grid points" of the resulting pseudostructure. In the example showing pseudostructure connectivities, the internal point number 4 represents the connectivity of components 2 and 3 at grid point 28 in basic substructure :UINGOO1 to components 2 and 3 at grid point 28 in basic substructure WINGOO2.

The printout of the EQSS item in Figure 3 for pseudostructure WING (which comprises the two basic substructures WING001 and WING002) shows again which degrees of freedom are retained in the substructure from the basic substructure WINGOO1. Note that these degrees of freedom correlate exactly to the connectivities already discussed. That correlation can be found by looking up the internal point number.

The BGSS item displays all the internal point numbers for the pseudostructure WING along with its coordinates in that pseudostructure basic system. The "CSTM ID ND." column indicates the existence (if any) of local coordinate systems associated with those internal points. If the entry is "0", the displacement components will be in that pseudostructure basic system. Otherwise, they will be in a local system which may be checked by requesting the optional printout of the "CSTM" item from the $\varsigma \emptyset F$ for that pseudostructure.

1.14.2 The Substructure Operating File (S@F)

The Substructure Operating File (SøF) is a single logical file used to store all data necessary for a complete multi-level substructuring analysis. The S@F may actually reside on one to ten physical files. However, these physical files are chained together to form a single logical file for use in the analysis of larger problems. See Figure 4 showing the basic arrangement of the S $\mathrm{S} \emptyset \mathrm{F}$ of disk or drum.

Each physical file comprising the S $\varnothing \mathcal{F}$ is a direct access disk file. These disk files are not used by NASTRAN GIN \emptyset operations. NASTRAN treats them as external user files. In a substructure analysis, NASTRAN stores data on the SפF which must be saved from run to run. Therefore, it is the user's responsibility to maintain the physical disk files comprising the S $\mathrm{S} \varnothing \mathrm{F}$ from one execution to the next.

The $S \emptyset F$ declaration in the Substructure Control Deck is used to define the physical files which make up the $S \emptyset F$. See Section 2.7 for a complete description of the $S \emptyset F$ declaration. An $S \emptyset F$ composed of only one physical file which already exists, might be declared as follows:

$$
S \emptyset F(1)=S \emptyset F 1,200, \emptyset L D
$$

AUTOMATED MUTLI-STAGE SUBSTRUCTURING

A new SØF composed of five physical files would be declared as follows:

$$
\begin{aligned}
& \operatorname{S\emptyset F}(1)=S \emptyset F 1,200, \text { NEW } \\
& \operatorname{S\emptyset F}(2)=S \emptyset F 2,200 \\
& S \emptyset F(3)=S \emptyset F 3,400 \\
& S \emptyset F(4)=S \emptyset F 4,600 \\
& S \emptyset F(5)=S \emptyset F 5,700
\end{aligned}
$$

All data stored on the $S \emptyset F$ is accessed via the substructure name. For each substructure, various types of $S \emptyset F$ data may be stored. These types of data are called items and are accessed via their item names. Thus, the substructure name and item name are all that is required to access any block of data on the S $\wp \mathscr{F}$. The items which can be stored for any substructure are described in Table 2. The program automatically keeps track of the data, stores the data as it is created, and retrieves these data when required. The user's only responsibility is to maintain the file. It must be accessible by the system when needed. The user must remove items already created in the event input errors were detected during processing or if that data is no longer needed for subsequent analyses.

Figure 4. Substructure Operating File (S \varnothing F).

1.14.3 The Case Control Deck for Substructuring Analyses

The Case Control Deck controls loading conditions, constraint set selection, output requests, and so forth in a substructuring analysis just as in a non-substructuring analysis. However, in a substructuring analysis, there are very important relationships among the Case Control Decks to be input for the three Phases of a substructuring analysis. Compatibility among the substructuring Phases must be maintained for load sets, constraint sets, and subcase definitions. This section will describe how the Case Control Deck should be used for each of the three Phases.

STRUCTURAL MODELING

1.14.3.1 Phase 1

The following requirements must be satisfied by the Case Control Deck in Phase 1 :

1. Constraint set selections (MPC, SPC) must be above the subcase level. That is, only one set of constraints is allowed in Phase 1 for all loading conditions.
2. One subcase must be defined for each loading condition which is to be saved on the SøF. The loading condition may consist of any combination of external static loads, thermal loads, element deformation loads, or enforced displacements. Loading conditions which are not saved on the SøF in Phase 1 cannot be used in any solution in Phase 2.

1.14.3.2 Phase 2

The Phase 2 Case Control Deck is exactly like the Case Control used in a non-substructuring analysis. It is only needed, however, if plots are requested or when there is a SøLVE command in the Substructure Control Deck. In this latter case, the subcase definitions, load and constraint set selections, etc. are used in the usual fashion to control the solution process.

Case Control output requests are honored only if there.is a PRINT or SAVE subcommand under the RECDVER command in the Substructure Control Deck. If a RECDVER command with a PRINT or SAVE subcommand is used for a solution obtained in a previous execution, the Case Control should be identical (except for output requests) to that used to obtain that solution.

1.14.3.3 Phase 3

The following requirements must be satisfied by the Case Control Deck in Phase 3:

1. Constraint sets (MPC, SPC) must be identical to those used in Phase 1 for this substructure.
2. The subcase definitions must be identical to those used in Phase 2 for the Phase 2 SøLVE operation. That is, they must conform in number.

Load set selections are not required in Phase 3 unless there is an $\emptyset L \emptyset A D$ output request and the problem is not a Phase 1 restart. If there is such a request, the load set selected for each subcase should be the component of the load used in the Phase 2 solution which originated in this substructure. Note that if the load was scaled in Phase 2, it should be scaled again in Phase 3 (use the 'LøAD' Bulk Data card). Temperature loads should not be scaled in any event, due to limitations in the stress calculation logic.

1.14.4 Example of Substructure Analysis

This example illustrates a simple substructuring analysis. Figure 5 a shows two basic substructures, TABLE and LEGS. Note that these structures have different basic coordinate systems as shown in the figure. Figure 5 b shows a combined structure which is assembled from the basic substructures. The entire data decks to generate and analyze this structure are listed in Tables 3-6. These include the data for the generating of the basic substructures in Phase 1 , the assembly of the complete structure, solution, and data recovery in Phase 2 , and the data recovery in Phase 3. The remainder of this section is devoted to a detailed description of each of the data decks used in this analysis.

STRUCTURAL MODELING

a. Phase 1 basic substructures.

b. Phase 2 combined substructure.

Figure 5. Substructure example problem.

AUTOMATED MULTI-STAGE SUBSTRUCTURING

Table 3. Phase 1 Data Deck for Substructure TABLE.

Card
No.
ID TABLE,BASIC
APP DISP,SUBS
SDL 2,0
TIME 1
CHKPNT YES
CEND
7 SUBSTRUCTURE PHASEI
PASSWQRD=PRDJECTX
SØF (1)=S@F1,250,NEW
NAME=TABLE
11 SAVEPLDT=1
12 SøFPRINT TØC
13 ENDSUBS
14 TITLE=TABLE, PHASE ØNE
15 LøAD=2
16 QUTPUT(PLDT)
17 SET 1=ALL
18 PLDT
19 BEGIN BULK

	1		3		5	6	7	8	9	10
20	CQUAD2	3	2	5	6	4	3			
21	CTRIA2	1	1	1	2	4				
22	CTRIA2	2	1	3	4	1				
23	FIRCE	2	3		10.0	-1.0				
24	FgRCE	2	4		10.0	-1.0				
25	GRID	1		0.0	0.0	5.				
26	GRID	2		0.0	7.	5.				
27	GRID	3		0.0	0.0	0.0				
28	GRID	4		0.0	7.	0.0				
29	GRID	5		0.0	0.0	-5.				
30	GRID	6		0.0	7.	-5.				
31	GRID	7						123456		
32	MAT1	1	$3 .+7$. 3	4.3				
33	PQUAD2	2	1	. 1						
34	PTRIA2	1	1	. 1						
35	ENDDATA									

Table 4. Phase 1 Data Deck for Substructure LEGS.

Card
No.

```
ID LEGS,BASIC
APP DISP,SUBS
S@L 2,0
TIME 1
CHKPNT YES
CEND
SUBSTRUCTURE PHASEI
PASSWQRD=PR\JECTY
S@F(1)=S@F4,7500
NAME=LEGS
SAVEPL }\emptysetT=
S@FQUT INP3
        P\emptysetSITI\emptysetN=REWIND
        NAME=LEGS
EDIT(32) LEGS
ENDSUBS
7 TITLE=LEGS PHASE QNE
LQAD=1
19 ØUTPUT(PLØT)
    SET 1=ALL
    PL\emptysetT
BEGIN BULK
```

	1		3	4	5	6	7	8		10
23	CBAR	1	1	1	2	5			2	
24	CBAR	2	1	3	2	5			2	
25	CBAR	3	1	4	3	5			2	
26	FORCE	1	1		2.0	3.0	. 0	4.0		
27	FORCE	1	4		2.0	3.0	. 0	4.0		
28	GRID	1		0.0	10.	0.0				
29	GRID	2		5.	10.	0.0				
30	GRID	3		5.	0.0	0.0				
31	GRID	4		0.0	0.0	0.0				
32	GRID	5		100.	100.	0.0		123456		
33	MAT 1	1	$3 .+7$. 3	4.3				
34	PBAR	1	1	1.0	50.	100.	10.			
35	ENDDATA									

AUTOMATED MULTI-STAGE SUBSTRUCTURING

Table 5. Phase 2 Data Deck.

```
Card
    No.
    ID SUBSTR,PHASE2
    APP DISP,SUBS
S0L 1,0
TIME 1
DIAG 23
CEND
SUBSTRUCTURE PHASE2
PASSW\emptysetRD=PR\emptysetJECTX
S@F(1)=S@F1,250
@PTIQNS=K,M,P
SQFIN INP3,TAPE
    P\emptysetSITION=REWIND
    NAME=LEGS
SOFPRINT TOC
C@MBINE LEGS,TABLE
    NAME=SIDEA
        T\emptysetLER=0.001
        \emptysetUTPUT=1,2,7,11,12,13,14,15,16,17
        C@MPQNENT LEGS
            TRANS=10
EQUIV SIDEA,SIDEB
        PREFIX=B
CDMBINE SIDEA,SIDEB
        NAME=BIGTABLE
        T\emptysetLER=0.001
        \emptysetUTPUT=1,2,7,11,12,13,14,15,16,17
        COMPONENT SIDEB
            SYMT=Y
REDUCE BIGTABLE
        NAME=SMALTABL
        B\emptysetUNDARY = 100
        QUTPUT=1,2,3,4,5,6,7,8
SOFPRINT TQC
PL\emptysetT SMALTABL
S\emptysetLVE SMALTABL
RECOVER SMALTABL
    PRINT BIGTABLE
    SAVE BTABLE
SOFPRINT TOC
ENDSUBS
TITLE=PHASE TW\emptyset SUBSTRUCTURE
DISP=ALL
SPCF=ALL
\L\emptysetAD=ALL
SPC=10
SUBCASE I
    L\emptysetAD=10
SUBCASE 2
    L\emptysetAD=20
QUTPUT(PLOT)
    SET 1=ALL
    PL\emptysetT
BEGIN BULK
```

Table 5. Phase 2 Data Deck (continued)

Card
No.

	1	2	3	4	5	6	7	8	9	10
54	BDYC	100	LEGS	20	BLEGS	20				+A
55	+A		TABLE	10	BTABLE	10				
56	BDYS 1	1 C		1		4	5			
57	BDYS 1	1 C	123456	2	6					
58	BDYS $]$	20	123456	2	3					
59	LOADC	10	1.0	LEGS	1	1.0	BLEGS	1	1.0	
60	LOADC	20	1.0	TABLE	2	1.0	BTABLE	2	1.0	
61	SPCSI	10	BLEGS	123456	2	3				
62	SPCS 1	10	BTABLE		1	3	4	5		
63	SPCS 1	10	LEGS	123456	2	3				
64	SPCS 1	10	TABLE					5		
65	TRANS	10		. 0	7.0	-5.0	3.0	11.0	-5.0	+B
66	+B	0.0	8.0	-5.0						
67	ENDDATA									

AUTOMATED MULTI-STAGE SUBSTRUCTURING

Table 6. Phase 3 Data Deck.

Card
-No.
1 ID TABLE,BASIC
2 APP DISP,SUBS
3 SøL 1,0
4 TIME 1
5 RESTART TABLE,BASIC (Restart deck)
6 CEND
7 SUBSTRUCTURE PHASE3
8 PASSW@RD=PRØJECTX
$9 \mathrm{~S} \mathrm{\emptyset F}(1)=\mathrm{S} \emptyset \mathrm{F} 1,250$
10 BRECØVER BTABLE
11 ENDSUBS
12 TITLE=PHASE THREE F \emptyset R REFLECTED TABLE
13 DISP=ALL
14 ØL@AD=ALL
15 SPCF=ALL
16 STRESS=ALL
17 SUBCASE 1
18 SUBCASE 2
19 L $\emptyset A D=2$
20 BEGIN BULK
21 ENDDATA

```
    Card
    No. Refer to Table 3 for input cards described below.
    1-6 Standard NASTRAN Executive Control Deck except the 'SUBS' option is selected on the APP
        card.
    7 First card of Substructure Control Deck. Phase 1 is selected.
    8 Password protection on the S\emptysetF is 'PR\emptysetJECTX'.
    9 The SOF consists of one physical file with an index of one. (Indices must begin with one
        and increase sequentially.) The name of the file is 'S\emptysetFl' and it has a maximum size of
        250,000 words. The file is to be initialized. (Internal pointers will be set to indicate
        that the S\emptysetF contains no data.)
    10 The basic substructure to be generated will be identified by the name TABLE.
    11 Plot set 1 will be saved on the S\emptysetF for performing plots of the combined structure in
        Phase 2.
    12 Print a table of contents for the S\varrhoF. This includes a list of all substructures and
        their data items.
    13 End of Substructure Control Deck
    15 Selects the load to be saved on the S\emptysetF for use in Phase 2. Note that multiple loads may
        be saved by using multiple subcases. In addition to external static loads, thermal loads
        and element deformation loads may be selected.
16-18 Plot control cards are required if the SAVEPL\emptysetT subcommand is used in the Substructure
        Control Deck. These cards are used to define the plot sets for Phase 2 plotting. It is
        not necessary that a plot tape be set up in Phase 1.
19-35 Standard NASTRAN Bulk Data Deck. These cards define the mathematical model of the basic
        substructure.
```


Phase 1 Data Deck for Substructure LEGS

Card

No. Refer to Table 4 for input cards described below.
1-6 Standard NASTRAN Executive Control Deck except the 'SUBS' option is selected on the APP card.

7 First card of the Substructure Control Deck. Phase 1 is selected.
8 Password protection on the S $\varnothing F$ is 'PRØJECTY'.
9 The S $\emptyset F$ consists of one physical file with an index of one. (Indices must begin with one and increase sequentially.) The name of the file is 'S@F4' and it has a maximum size of $7,500,000$ words. The file has been used previousty as an SØF.

10 The basic substructure to be generated will be identified by the name LEGS.
11 Plot set 1 will be saved on the S $\emptyset F$ for performing plots of the combined structure.in Phase 2.

12-14 After substructure LEGS has been generated and saved on the S \varnothing, it is copied out to user tape INP3.

$$
1.14-20(3 / 1 / 76)
$$

Card
No.

All data items for substructure LEGS are removed from the S $\emptyset F$. (The substructure name remains in the S@F directory, however.)

End of Substructure Control Deck
Selects the load to be saved on the S \wp F for use in Phase 2. Note that multiple loads may be saved by using multiple subcases. In addition to external static loads, thermal loads, and element deformation loads may be selected.

19-21 Plot control cards are required if the SAVEPL \varnothing T subcommand is used in the Substructure Control Deck. These cards are used to define the plot sets for Phase 2 plotting. It is not necessary that a plot tape be set up in Phase 1.

Standard NASTRAN Bulk Data Deck. These cards define the mathematical model of the basic substructure.

Phase 2 Data Deck

Card
No.
1-6 Standard NASTRAN Executive Control Deck except the 'SUBS' option is selected on the APP card. DIAG 23 requests an echo of the automatic DMAP alters generated.

8,9 These cards specify the same S@F used in Phase 1 for substructure TABLE.
The card causes matrix operations to be performed on stiffness, mass, and load matrices. The default for Rigid Format 1 is stiffness and loads only. However, Rigid Format 2 was selected in the Phase 1 decks. This caused all three matrix types to be generated in Phase 1.

11-13 Basic substructure LEGS is copied to the SøF from user tape INP3.

15-20 Perform an automatic combination of substructures TABLE and LEGS. The resultant combined pseudostructure will be named SIDEA. The tolerance for conenctions is 0.001 units. Detailed output is requested (see Substructure Command CQMBINE). The basic coordinate system for substructure LEGS is transformed according to transformation set 10 in the Bulk Data.

21,22 Create a new secondary substructure SIDEB which is equivalent to SIDEA. This operation causes image substructures BLEGS and BTABLE to be generated.

23-28 Perform an automatic combination of substructures SIDEA and SIDEB. The resultant combined pseudostructure will be named BIGTABLE. The tolerance for connections is 0.001 units. Detailed output is requested. The basic coordinate system for pseudostructure SIDEB is symmetrically transformed about the $X Z$ plane, identified by Y, the axis normal to the plane (sign change for all ' γ ' degrees of freedom).

29-32 Perform a matrix reduction on the matrices of substructure BIGTABLE. The resultant reduced pseudostructure will be named SMALTABL. The retained degrees of freedom are selected in boundary set 100 in the Bulk Data. Detailed output is requested.

Print the S $\$ \emptyset$ table of contents.
Plot pseudostructure SMALTABL. The plot control cards in the Case Control Deck are referenced.

35 Perform a static solution of pseudostructure SMALTABL. The constraint sets anc selected in the Case Control Deck are used.

36-38 Recover the displacements of substructures BIGTABLE and BTABLE from the solution of SMALTABL and save then on the S $\varnothing \mathrm{F}$. Also, print the results for substructure BIGTABL The output requests in the Case Control Deck are referenced when the PRINT subcomman invoked.

39 Print the $S \emptyset F$ table of contents.
40 End of the Substructure Control Deck
Case Control output requests. Referenced by the PRINT subcommand of the REC $\emptyset V E R$ commi
45-49 Constraint and load set selections are referenced by the SøLVE command.
50-52 Plot control cards are referenced by the PLDT command.
54-58 These Bulk Data cards define the boundary set of retained degrees of freedom which was selected in the REDUCE operation (cards 29-32).

59-64 These cards define the loads and constraints selected in the Case Control Deck for the substructure SØLVE operation.
65.,66 These cards define the transformation which is applied to the basic coordinate system (substructure LEGS in the first CDMBINE operation (cards 15-20).

Phase 3 Data Deck for Substructure BTABLE

Card
No. Refer to Table 6 for input cards described below.
1-6 Standard NASTRAN Executive Control Deck except the 'SUBS' option is selected on the AP card. "Card" 5 is actually the Restart deck punched out in Phase 1 for substructure T

7 First card of the Substructure Control Deck. Phase 3 is selected.
8,9 These cards specify the same S $\emptyset F$ used in Phase 2.
10 This card causes the data for the image basic substructure BTABLE to be copied from tl $S \emptyset F$ to GIN \emptyset data blocks. The data can then be used for data recovery operations, i.e deformed structure plots, stresses, etc.
11. End of Substructure Control Deck.

13-16 Output requests for Phase 3 data recovery.
17-19 The subcase definitions in Phase 3 must be identical to those used in the SQLVE opere in Phase 2. SPC and MPC constraints in Phase 3 must be the same as those used in Phi Load sets selected in Phase 3 must correspond to those selected in Phase 2 for each: case. However, load sets selected in Phase 2 which do not exist for this particular basic substructure can not be selected in Phase 3. See Section 1.14.4 for a more de discussion of the Phase 3 Case Control Deck.

NASTRAN DATA DECK

2.1 GENERAL DESCRIPTION OF DATA DECK

The input deck begins with the required resident operating system control cards. The type and number of these cards will vary with the installation. Instructions for the preparation of these control cards should be obtained from the programming staff at each installation.

The operating system control cards are followed by the NASTRAN Data Deck (see Figure 1), which is constructed in the following order (depending on the particular job requirements):

1. The NASTRAN Card
2. The Executive Control Deck
3. The Substructure Control Deck
4. The Case Control Deck
5. The Bulk Data Deck
6. The INPUT Module Data Card(s)

The NASTRAN card is used to change the default values for certain operational parameters, such as buffer size and machine model number. The NASTRAN card is optional, but, if present, it must be the first card of the NASTRAN Data Deck. The NASTRAN card is a free-field card (similar to cards in the Executive Control Deck). Its format is as follows:

$$
\text { NASTRAN }^{\text {keyword }} 1=\text { value, } \text { keyword }_{2}=\text { value, } .
$$

The most frequently used keywords are as follows:

1. BUFFSIZE - Defines the number of words in a GINØ buffer. Usually this value is standardized at any particular installation. However, the desired value may be different from the default value of 1803 (IBM), 1183 (CDC) and 871 (UNIVAC). In any event, related runs, such as restarts and User Master File runs, must use the same BUFFSIZE for all parts of the runs.
2. CØNFIG - Defines the model number of the configuration for use in timing equations for matrix operations. Entries exist for the following configurations:

MACHINE IBM 360/370

CONFIG
0 (default)
3
4
5
6
7
9

MgDEL NØ.
91, 95
50
65
65
75
85
195
155

MACHINE	CØNFIG	MQDEL NØ.
CDC 6000	0 (default)	6600
UNIVAC 1100	6 (default)	6400
	0 (d)	

The machine type is automatically determined by NASTRAN. If the model number is the default, the CONFIG keyword is not needed on the NASTRAN card. It is important to indicate the proper configuration; otherwise, all time-dependent matrix decisions will be incorrect
3. K $\emptyset N 360$ - Defines the number of 32 -bit words to release for IBM $360 \emptyset$ S routines and FØRTRAN buffers. The default is 4096.
4. $M \emptyset D C \emptyset M(i)$ - Defines a nine-word array for module communications. Currently, only $\operatorname{M\emptyset DC\emptyset M(1)~is~supported.~When~} \operatorname{M\emptyset DC\emptyset M(1)=999999,~optimization~of~passive~columns~}$ in the symmetric decomposition routine is not used. If $\operatorname{M\emptyset DC\emptyset M(1)=1,~diagnostic~}$ statistics from subroutine SDCØMP are printed.
5. HICDRE - Defines the amount of open core available to the user on the UNIVAC 1100 series machines. The user area default is nominally 65 K decimal words. The ability to increase this value may be installation limited.
6. FILES - Establishes NASTRAN permanent files as being disk files rather than tape files. The FILES are Pø冃L, $\emptyset P T P$, NPTP, UMF, NUMF, PLT1, PLT2, INPT, INP1, INP9. Multiple file names must be enclosed with parentheses such as FILES = (UMF,NPTP). Additional information for all NASTRAN card options is given in Section 6.3.1 of the Programmer's Manual.

The Executive Control Deck begins with the NASTRAN ID card and ends with the CEND card, as indicated in Figure 1. It identifies the job and the type of solution to be performed. It also declares the general conditions under which the job is to be executed, such as, maximum time allowed, type of system diagnostics desired, restart conditions, and whether or not the job is to be checkpointed. If the job is to be executed with a rigid format, the number of the rigid format is declared along with any alterations to the rigid format that may be desired. If Direct Matrix Abstraction is used, the complete DMAP sequence must appear in the Executive Control Deck. The executive control cards and examples of their use are described in Section 2.2.

The Substructure Control Deck begins with the SUBSTRUCTURE card and terminates with the ENDSUBS card. It defines the general attributes of the Automated Multi-stage Substructuring capability and establishes the control of the Substructure Operating File (SOF). The command cards are illustrated in Section 2.7.

When Automated Multi-stage Substructuring is not included, then the Case Control Deck begins with the first card following CEND and ends with the card, BEGIN BULK. It defines the subcase structure for the problem, makes selections from the Bulk Data Deck, and makes output requests for printing, punching and plotting. A general discussion of the functions of the Case Control Deck and a detailed description of the cards used in this deck are given in Section 2.3. The special requirements of the Case Control Deck for each rigid format are discussed in Section 3.

The Bulk Data Deck begins with the card following BEGIN BULK and ends with the card preceeding ENDDATA. It contains all of the details of the structural model and the conditions for the solution. The BEGIN BULK and ENDDATA cards must be present even though no new bulk data is being introduced into the problem or all of the bulk data is coming from an alternate source, such as User's Master File or user generated input. The format of the BEGIN BULK card is free field. The ENDDATA card must begin in column 1 or 2 . Generally speaking, only one structural model can be defined in the Bulk Data Deck. However, some of the bulk data, such as cards associated with loading conditions, constraints, direct input matrices, transfer functions and thermal fields may exist in multiple sets. All types of data that are available in multiple sets are discussed in Section 2.3.1. Only sets selected in the Case Control Deck will be used in any particular solution.

If the INPUT module is employed, one or two additional FØRTRAN data cards are required following the ENDDATA card. For specific cases, see Section 2.6.

Comment cards may be inserted in any of the parts of the NASTRAN Data Deck. These cards are identified by a $\$$ in column one. Columns 2-72 may contain any desired text.

Except for the IBM $360 / 370$ series, all NASTRAN data cards must be punched using the character set shown in the table below. The EBCDIC character set may be used on the IBM $360 / 370$ series. Any EBCDIC characters are automatically translated into the character set shown in the table below. The EBCDIC character card punch configurations are shown in parenthesis for the five characters that differ from the standard character set.

Character	Card Punch(s)	Character	Card Punch(s)	EBCDIC Punch(s)
blank	blank	N	11-5	
0	0	\emptyset	11-6	
1	1	P	11-7	
2	2	Q	11-8	
3	3	R	11-9	
4	4	S	0-2	
5	5	T	0-3	
6	6	U	0-4	
7	7	V	0-5	
8	8	W	0-6	
9	9	X	0-7	
A	12-1	Y	0-8	
B	12-2	Z	0-9	
C	12-3	\$	11-3-8	
D	12-4	1	0-1	
E	12-5	+	12	(12-6-8)*
F	12-6	-	11	
G	12-7	$($	0-4-8	(12-5-8)*
H	12-8)	12-4-8	(11-5-8)*
I	12-9	1	4-8	(5-8)*
J	11-1	$=$	3-8	(6-8)*
K	11-2	,	0-3-8	
L	11-3	-	12-3-8	
M	11-4	*	11-4-8	

[^0]

Figure 1. General construction of NASTRAN data deck.

2.2 EXECUTIVE CONTROL DECK

The format of the Executive control cards is free field. The name of the operation (e.a., CHKPNT) is separated from the operand by one or more blanks. The fields in the operand are separated by commas, and may be up to 8 integers (Ki) or alphanumeric (Ai) as indicated in the following control card descriptions. The first character of an alphanumeric field must be alphabetic followed by up to 7 additional alphanumeric characters. Blank characters may be placed adjacent to separating commas if desired. The individual cards are described in Section 2.2.1 and examples follow in Section 2.2.2.

2.2.1 Executive Control Card Descriptions

ID A1, A2 Required.
Al, A2 -- Any legal alphanumeric fields chosen by the user for problem identification.

RESTART A1, A2, K1/K2/K3, K4, Required for Restart.
A1, A2 -- Fields taken from ID card of previously checkpointed problem.
K1/K2/K3 -- Month/Day/Year that Problem Tape was generated.
K4 -- Number of seconds after midnight at which XCSA begins execution.
The complete restart dictionary consists of this card followed by one card for each file checkpointed. The restart dictionary is automatically punched when operating in the checkpoint mode. All subsequent cards are continuations of this logical card.

Each continuation card begins with a sequence number. Each type of continuation card will be documented separately.

1. Basic continuation card

$$
N O, D A T A B L \emptyset C K, F L A G=Y, R E E L=Z, F I L E=W
$$

where: NO is the sequence number of the card. The entire dictionary must be in sequence by this number.

DATABL $\emptyset C K$ is the name of the data block referenced by this card.
FLAG=Y defines the status of the data block where $Y=0$ is the normal case and $Y=4$ implies this data block is equivalenced to another data block. In this case ($F L A G=4$) the file number points to a previous data block which is the "actual" copy of the data.

REEL $=Z$ specifies the reel number as the Problem Tape can be a multi-reel tape. $Z=1$ is the normal case.

FILE=W specifies the GINØ (internal) file number of the data block on the Problem Tape. A zero value indicates the data block is purged. For example:
$1, G P L, F L A G S=0$, REEL=1,FILE=7 says data block GPL occupies file 7 of ree 1.
$2, K G G, F L A G S=4$, REEL $=1$, FILE $=20$ says $K G G$ is equivalenced to the data block which occupies file 20. (Note that FLAGS=4 cards usually occur in at least pairs as the equivalenced operation is at least binary).

3,USETD,FLAGS=0,REEL=1,FILE=0 implies USETD is purged.
2. Reentry point card:

NO, REENTER AT DMAP SEQUENCE NUMBER N
where: NO is the sequence number of the card.
\underline{N} is the sequence number associated with the DMAP instruction at which the problem will restart. This value may be changed by adding a final such card (i.e., only the last such card is operative). This may be necessary when restarting from a Rigid Format to a DMAP sequence (to print a matrix for example).

There are four types of restarts Unmodified Restart, Modified Restart, Rigid Format Switch and Pseudo Modified Restart. The function of the reentry point is different in each case. On an unmodified restart the program continues from the reentry point. On a modified restart modules which must be run to process the modified data but which are ahead of the reentry point are executed first. The program then continues from the reentry point. On a Rigid Format Switch (going from a Rigid Format to another) the reentry point is meaningless in that it was determined for another DMAP sequence. In this case the data blocks available are consulted to determine the proper sequence of modules to run. A Pseudo modified restart (defined by the existence of only changes to output producing data such as plotter requests) is treated like a modified restart. The type of restart is implied by the changes made in the NASTRAN Data Deck. No explicit request for a particular kind of restart is required. See Section 3.1 for additional information.
3. End of dictionary card

\$ END ØF CHECKPØINT DICTIØNARY

This card is simply a comment card but is punched to signal the end of the dictionary for user convenience. The program does not need such a card. Terminations associated with non-NASTRAN failures (operator intervention, maximum time etc.) will not have such a card punched.

NLIMF K1, K2 Required when creating a User's Master File.
K1 -- User specified tape identification number assigned during the creation of a User's Master File.

K2 -- User specified problem identification number assigned during the creation of a User's Master File.

UMF K1, K2 Required when using a User's Master File.
K1 -- Previously assianed tape identification number to sccess a Bulk Data Deck when using a User's Master File.

K2 -- Previously assigned problem identification number to access a Bulk Data Deck when using a User's Master File.

CHKPNT Al or CHKPNT A1, A2 Optional.
A1 -- YES if problem is to be checkpointed, $N \varnothing$ if problem is not to be checkpointed - default is $N \varnothing$.

A2 -- DISK if checkpoint file is on direct access device. If the DISK option is used, the user must instruct the resident operating system to permanently catalog the checkpoint file.

APP A Required.
A -- DISPLACEMENT indicates one of the Displacement Approach riaid formats.
A -- HEAT indicates one of the Heat Transfer Approach riaid formats.
A -- AER \boldsymbol{n} indicates the Aeroelastic Approach riaid formats.
A -- DMAP indicates Direct Matrix Abstraction Approach (DMAP).

ALTER K1, K2 Optional.
K1, K2 -- First and last DMAP instructions of series to be deleted and replaced with any following DMAP instructions.

ALTER K Optional.
K -- Input any following DMAP instructions after statement K.

ENDALTER Required when using ALTER.
Indicates end of DMAP alterations.

TIME K Required.
K -- Maximum allowable execution time in minutes.
$S \underline{S} K 1[, \mathrm{Ki}]$ or $S \emptyset L A n[, \mathrm{Ki}]$ Required when using a rigid format (see Section 3.1 for available options).

K1 -- Solution number of Rigid Format (see table below and Section 3.1).
Ki -- Subset numbers for solution $K 1$, default value $=0$. Multiple subsets may be selected by using multiple integers separated by commas.

An -- Name of Rigid Format (see table below)
Displacement Approach Rigid Formats

K1.	An
1	STATICS
2	INERTIA RELIEF
3	MøDES or NØRMAL MøDES or REAL EIGENVALUES
4	DIFFERENTIAL STIFFNESS
5	BUCKLING
6	PIECEWISE LINEAR
7	DIRECT CØMPLEX EIGENVALUES
8	DIRECT FREQUENCY RESPQNSE
9	DIRECT TRANSIENT RESP@NSE
10	MgDAL CØMPLEX EIGENVALUES
11	M@DAL FREQUENCY RESP@NSE
12	MDDAL TRANSIENT RESP@NSE
13	NøRMAL MøDES ANALYSIS WITH DIFFERENTIAL STIFFNESS
14	STATICS CYCLIC SYMMETRY
15	MĐDES CYCLIC SYMMETRY

Heat Transfer Approach Rigid Formats

K1

$\xrightarrow{\mathrm{An}}$

1 STATICS
3 STEADY STATE
9 TRANSIENT
Aeroelastic Approach Rigid Format

KI

An
10
MøDAL FLUTTER ANALYSIS
Subset Numbers

1. Delete loop control.
2. Delete mode acceleration method of data recovery (modal transient and modal frequency response).
3. Combine subsets 1 and 2.
4. Check all structural and aerodynamic data without execution of the aeroelastic problem.
5. Check only the aerodynamic data without execution of the aeroelastic problem.
6. Delete checkpoint instructions.
7. Delete structure plotting and $X-Y$ plotting.
8. Delete Grid Point Weight Generator.
9. Delete fully stressed design (static analysis).

$$
2.2-3 a(3 / 1 / 76)
$$

DIAG K Optional request for diagnostic output.
$K=1 \quad$ Dump memory when fatal message is generated.
$K=2 \quad$ Print File Allocation Table (FIAT) following each call to the File Allocator.
$K=3$ Print status of the Data Pool Dictionary (DPD) following each call to the Data Poo Housekeeper.
$K=4 \quad$ Print the Operation Sequence Control Array (ดSCAR).
$K=5 \quad$ Print BEGIN time on-line for each functional module.
$K=6 \quad$ Print END time on-line for each functional module.
$K=7 \quad$ Print eigenvalue extraction diagnostics for real and complex determinant methods.
$K=$
$K=9$ Print matrix and table data block trailers as they are generated.
$K=10$
Suppress echo of checkpoint dictionary.
$K=11$
$K=12$
$K=13$
Use alternate nonlinear loading in TRD. (Replace $\left\{N_{n+1}\right\}$ by $\frac{1}{3}\left\{N_{n+1}+N_{n}+N_{n-1}\right\}$)
$K=14$
Print the Rigid Format (NASTRAN SØURCE PRØGRAM CØMPILATIØN)
$K=15 \quad$ Trace GIN $\emptyset P E N / C L \emptyset S E$ operations.
$K=16$ Trace real inverse power eigenvalue extraction operations.
$K=17$ Punch the DMAP sequence that is compiled.
$K=18$. Trace Heat Transfer iterations (APP HEAT) or print grid point ID conversions from SET card (APP AERD).
$K=19$
$K=20 \quad$ Generate de-bug printout (For NASTRAN programmers who include CALL BUG in their subroutines).
$K=21 \quad$ Print GP4 set definition.
$K=22$ Print GP4 degree of freedom definition.
$K=23$ Print the DMAP alters generated during Automated Multi-stage Substructuring.
$K=24$ Punch the DMAP alters generated during Automated Multi-stage Substructuring.
$K=25$
$K=26$
K $=27$ Input File Processor (IFP) table dump.
$K=28$ Punch the link specification table (Deck XBSBD).
$K=29$ Process link specification table update deck.

EXECUTIVE CONTROL DECK
$K=30 \quad$ Punch alters to the XSEMi decks (i set via DIAG 1-15).
$K=31 \quad$ Print link specification table and module properties list data.
Multiple options may be selected by using multiple integers separated by commas.
Other options and other rules associated with the DIAG card which primarily concern the programmer can be found in Section 6.11.3 of the Programmer's Manual.

BEGIN $\$$ Required when using DMAP approach.
Indicates beginning of DMAP sequence. This card is supplied as part of a Rigid Format.
END\$ Required when using DMAP approach.
Indicates end of DMAP sequence. This card is supplied as part of a Rigid Format.
UMFEDIT Required when using User's Master File Editor (see Section 2.5)
\$ Comment flag in column 1. Commentary text may appear in columns 2-80.

CEND Required
Indicates end of Executive control cards.

The ID card must appear first and CEND must be the last card of the Executive Control Deck. Otherwise the Executive Control card groups (RESTART dictionary, DMAP sequence, ALTER packet) can be in any order.

2.2.2 Executive Control Deck Examples

1. Cold start, no checkpoint, rigid format, diagnostic output.

ID	MYNAME, BRIDGE23
APP	DISPLACEMENT
SØL	2,0
TIME	5
DIAG	1,2
CEND	

2. Cold start, checkpoint, rigid format.

ID	PERS@NZZ, SPACECFT
CHKPNT	YES
APP	DISPLACEMENT
SØL	1,3
TIME	15
CEND	

3. Restart, no checkpoint, rigid format. The restart dictionary indicated by the brace is automatically punched on previous run in which the CHKPNT option was selected by the user.

ID JØESHMดE, PRDJECTX
RESTART PERS \cap NZZ, SPACECFT, 05/13/67,
1, XVPS, FLAGS $=0$, REEL=1, FILE=6
2, REENTER AT DMAP SEQUENCE NUMBER 7
3, GPL, FLAGS=0 REEL=1, FILE=7
\$ END OF CHECKPØINT DICTIØNARY
APP
DISPLACEMENT
S \wp L
3,3
TIME
10
CEND
4. Cold start, no checkpoint, DMAP. User-written DMAP program is indicated by braces.

ID	IAM007, TRYIT
APP	DMAP
BEGIN	$\$$
\{DMAP	statements go here $\}$
END $\$$	
TIME CEND	8

5. Restart, checkpoint, altered rigid format, diagnostic output.

ID GOQDGUY, NEATDEAL
RESTART BADGUY, NØSH@W, 05/09/68,
1, XVPS, FLAGS $=0$, REEL=1, FILE $=6$
2, REENTER AT DMAP SEQUENCE NUMBER 7
3, GPL, FLAGS=0, REEL=1, FILE=7
$\$$ END $\emptyset F$ CHECKPØINT DICTIØNARY
CHKPNT YES
DIAG 2,4
APP DISPLACEMENT
SOL 3,3
TIME 15
ALTER 20
MATPRN KGGX,,,,// \$
TABPT
GPST,,,,// \$ ENDALTER CEND

NASTRAN DATA DECK

2.3 CASE CONTROL DECK

2.3.1 Data Selection

The case control cards that are used for selecting items from the Bulk Data Deck are listed below in functional groups. A detailed description of each card is given in Section 2.3.4. The first four characters of the mnemonic are sufficient if unique.

The following case control cards are associated with the selection of applied loads for both static and dynamic analysis:

1. DEFORM - selects element deformation set.
2. $\mathrm{DL} \emptyset A \mathrm{D}$ - selects dynamic loading condition.
3. DSCØEFFICIENT - selects loading increments for static analysis with differential stiffness.
4. LØAD - selects static loading condition.
5. NQNLINEAR - selects nonlinear loading condition for transient response.
6. PLCØEFFICIENT - selects loading increments for piecewise linear analysis.

The following case control cards are used for the selection of constraints:

1. AXISYMMETRIC - selects boundary conditions for conical shell and axisymetric solid elements or specifies the existence of fluid harmonics for a hydroelastic problem.
2. MPC - selects set of multipoint constraints.
3. SPC - selects set of single-point constraints.

The following case control cards are used for the selection of direct input matrices:

1. B2PP - selects direct input damping matrices.
2. K2PP - selects direct input stiffness matrices.
3. M2PP - selects direct input mass matrices.
4. TFL - selects transfer functions.

The following case control cards specify the conditions for dynamic analyses:

1. CMETHØD - selects the conditions for complex eigenvalue extraction.
2. $\frac{\text { FREQUENCY }}{\text { tions. }}$ - selects the frequencies to be used for frequency and random response calcula-
3. IC - selects the initial conditions for direct transient response.
4. METH $\emptyset D$ - selects the conditions for real eigenvalue analysis.
5. RAND $9 M$ - selects the power spectral density functions to be used in random analysis.

NASTRAN DATA DECK

6. SDAMPING - selects table to be used for determination of modal damping.
7. TSTEP- selects time steps to be used for integration in transient response problems.
8. FMETHØD - selects method to be used in aerooelastic flutter analysis.

The following case control cards are associated with the use of thermal fields:

1. $\frac{\text { TEMPERATURE (LGAD) }}{\text { loads. }}$ - selects thermal field to be used for determining equivalent static
2. TEMPERATURE (MATERIAL) - selects thermal field to be used for determining material pro-
3. TEMPERATURE - selects themal field for determining both equivalent static loads and material properties.

2.3.2 Output Selection

Printer output requests may be grouped in packets following ØUTPUT cards or the individual requests may be placed anywhere in the Case Control Deck ahead of any structure plotter or curve plotter requests. Plotter requests are described in Section 4. The case control cards that are used for output selection are listed below in functional groups. A detailed description of each card is given in Section 2.3.4.

The following cards are associated with output control, titling and bulk data echoes:

1. TITLE - defines a text to be printed on first line of each page of output.
2. SUBTITLE - defines a text to be printed on second line of each page of output.
3. LABEL - defines a text to be printed on third line of each page of output.
4. LINE - sets the number of data lines per printed page, default is 50 for 11-inch paper.
5. MAXLINES - sets the maximum number of output lines, default is 20,000 .
6. ECH - selects echo options for Bulk Data Deck, default is a sorted bulk data echo.

The following cards are used in connection with some of the specific output requests for calculated quantities:

1. $\frac{\text { SET }}{\text { requests. defines lists of point numbers, elements numbers, or frequencies for use in output }}$
2. $\emptyset F R E Q U E N C Y$ - selects a set of frequencies to be used for output requests in frequency response problems; default is all frequencies used in the calculations.
3. TSTEP - selects a set of time steps to be used for output requests in transient response probTems.

The following cards are used to make output requests for the calculated response of components in the SØLUTIØN set (components in the direct or modal formulation of the general K system) for dynamics problems:

1. SACCELERATIQN - requests the acceleration of the independent components for a selected set of points or modal coordinates.
2. SDISPLACEMENT - requests the displacements of the independent components for a selected set of points or modal coordinates or the temperatures of the independent components for a selected set of points in heat transfer.
3. SVELOCITY - requests the velocities of the independent components for a selected set of points or modal coordinates or the change in temperature with respect to time of the independent components for a selected set of points in heat transfer.
4. NLLØAD - requests the nonlinear loads for a selected set of physical points (grid points and extra points introduced for dynamic analysis) intransient response problems.

The following cards are used to make output requests for stresses and forces, as well as the calculated response of degrees of freedom used in the model:

1. ELFORCE - requests the forces in a set of structural elements or the temperature gradients and fluxes in a set of structural or heat elements in heat transfer.
2. STRESS - requests the stresses in a set of structural elements or the velocity components in a fluid element in acoustic cavity analysis.
3. SPCFQRCES - requests the single-point forces of constraint at a set of points or the thermal power transmitted at a selected set of points in heat transfer.
4. $\underline{\emptyset L \emptyset A D}$ - selects a set of applied loads for output.
5. ACCELERATIØN - requests the accelerations for a selected set of PHYSICAL points (grid, scalar and fluid points plus extra points introduced for dynamic analysis).
6. DISPLACEMENT - requests the displacements for a selected set of PHYSICAL points or the temperatures for a selected set of PHYSICAL points in heat transfer or the pressures for a selected set of PHYSICAL points in hydroelasticity.
7. VELOCITY - requests the velocities for a selected set of PHYSICAL points or the change in temperatures with respect to time for a selected set of PHYSICAL points in heat transfer.
8. HARMQNICS - controls the number of harmonics that will be output for requests associated with the conical shell, axisymmetric solids and hydroelastic problems.
9. ESE - requests structural element strain energies in Rigid Format 1.
10. GPFQRCE - requests grid point force balance due to element forces, forces of single point constraint, and applied loads in Rigid Format 1.
11. THERMAL-- requests temperatures for a set of PHYSICAL points in heat transfer.
12. PRESSURE - requests pressures for a set of PHYSICAL points in hydroelasticity.

2.3.3 Subcase Definition

In general, a separate subcase is defined for each loading condition. In statics problems separate subcases are also defined for each set of constraints. In complex eigenvalue analysis

$$
2.3-3(3 / 1 / 76)
$$

NASTRAN DATA DECK

and frequency response separate subcases are defined for each unique set of direct input matrices. Subcases may be used in connection with output requests, such as in requesting different output for each mode in a real eigenvalue problem.

The Case Control Deck is structured so that a minimum amount of repetition is required. Only one level of subcase definition is provided. All items placed above the subcase level (ahead of the first subcase) will be used for all following subcases, unless overridden within the individual subcase.

NASTRAN DATA DECK

In static problems, provision has been made for the combination of the results of several subcases. This is convenient for studying various combinations of individual loading conditions and for the superposition of solutions for symmetrical and antisymmetrical boundaries.

Typical examples of subcase definition are given following a brief description of the cards used in subcase definitions.

The following case control cards are associated with subcase definition:

1. SUBCASE - defines the beginning of a subcase that is terminated by the next subcase delimiters encountered.
2. SUBC Q M - defines a combination of two or more immediately preceeding subcases in statics problems. Output requests above the subcase level are used.
3. SUBSEQ - must appear in a subcase defined by SUBCOM to give the coefficients for making the linear combination of the preceeding subcases.
4. SYM - defines a subcase in statics problems for which only output requests within the subcase will be honored. Primarily for use with symmetry problems where the individual parts of the solution may not be of interest.
5. SYMC \quad - defines a combination of two or more immediately preceeding SYM subcases in static problems. Output requests above the subcase level are used.
6. SYMSEQ - may appear in a subcase defined by SYMC $Q M$ to give the coefficient for making the linear combination of the preceeding SYM subcases. A default value of 1.0 is used if no SYMSEQ card appears.
7. REPCASE - defines a subcase in statics problems that is used to make additional output requests for the previous real subcase. This card is required because multiple output requests for the same item are not permitted in the same subcase. Output requests above the subcase level are still used.
8. MØDES - repeats the subcase in which it appears MØDES times for eigenvalue problems. Used to repeat the same output request for several consecutive modes.

The following examples of Case Control Decks indicate typical ways of defining subcases:

1. Static analysis with multiple loads.
```
QUTPUT
    DISPLACEMENT = ALL
MPC = 3
    SUBCASE 1
        SPC = 2
        TEMPERATURE (LDAD) = 101
        L@AD = 11
    SUBCASE 2
        SPC = 2
        DEFQRM = 52
        L\emptysetAD = 12
    SUBCASE 3
        SPC = 4
        L\emptysetAD = 12
    SUBCASE 4
        MPC = 4
        SPC = 4
```

Four subcases are defined in this example. The displacements at all grid points will be printed for all four subcases. MPC $=3$ will be used for the first three subcases and will be overridden by MPC $=4$ in the last subcase. Since the constraints are the same for subcases 1 and 2 and the subcases are contiguous, the static solutions will be performed simultaneously. In subcase l, thermal load 101 and external load 11 are internally superimposed, as are the external and deformation loads in subcase 2. In subcase 4 the static loading will result entirely from enforced displacements of grid points.
2. Linear combination of subcases.

```
\(S P C=2\)
gUTPUT
    SET \(1=1\) THRU \(10,20,30\)
    DISPLACEMENT \(=\) ALL
    STRESS \(=1\)
SUBCASE 1
    LØAD = 101
    \(\emptyset L Q A D=A L L\)
SUBCASE 2
    LØAD = 201
    \(\emptyset L \emptyset A D=A L L\)
SUBCDM 51
    SUBSEQ \(=1.0,1.0\)
SUBCDM 52
    SUBSEQ \(=2.5,1.5\)
```

Two static loading conditions are defined in subcases 1 and 2. SUBCQM 51 defines the sum of subcases 1 and 2. SUBCQM 52 defines a linear combination consisting of 2.5 times subcase 1 plus 1.5 times subcase 2. The displacements at all grid points and the stresses for the elements numbers in SET will be printed for all four subcases. In addition, the nonzero components of the static load vectors will be printed for subcases 1 and 2.
3. Statics problem with one plane of symmetry.

```
QUTPUT
    SET 1 = 1,11,21,31,51
    SET 2 = 1 THRU 10, 101 THRU 110
    DISPLACEMENT = 1
    ELF\emptysetRCE = 2
    SYM }
        SPC = 11
        L@AD = 21
        \emptysetL\emptysetAD = ALL
    SYM 2
        SPC = 12
        L@AD = 22
    SYMCDM 3
    SYMCOM 4
        SYMSEQ 1.0,-1.0
```

Two SYM subcases are defined in subcases 1 and 2. SYMCQM 3 defines the sum and SYMCQM 4 the
difference of the two SYM subcases. The nonzero components of the static load will be printed for subcase 1 and no output is requested for subcase 2 . The displacements for the grid point numbers in set 1 and the forces for elements in set 2 will be printed for subcases 3 and 4.
4. Use of REPCASE in statics problems.

```
SET \(1=1\) THRU 10, 101 THRU 110, 201 THRU 210
SET \(2=21\) THRU 30,121 THRU 130, 221 THRU 230
SET 3 = 31 THRU 40,131 THRU 140, 231 THRU 240
    SUBCASE 1
        L@AD \(=10\)
        \(S P C=11\)
        DISPLACEMENT = ALL
        SPCFØRCE = 1
        ELFQRCE \(=1\)
    REPCASE 2
        ELFORCE \(=2\)
    REPCASE 3
        ELFQRCE \(=3\)
```

This example defines one subcase for solution and two subcases for output control. The displacements at all grid points and the nonzero components of the single-point forces of constraint along with forces for the elements in SET 1 will be printed for SUBCASE 1. The forces for elements in SET 2 will be printed for REPCASE 2 and the forces for elements in SET 3 will be printed for REPCASE 3.
5. Use of $M \not \subset D E S$ in eigenvalue problems

```
    METHOD = 2
    SPC = 10
SUBCASE 1
    DISPLACEMENT = ALL
    STRESS = ALL
    M\emptysetDES = 2
SUBCASE 3
    DISPLACEMENT = ALL
```

In this example the displacements at all grid points will be printed for all modes. The stresses in all elements will be printed for the first two modes.

2.3.4 Case Control Card Descriptions

The format of the case control cards is free-field. In presenting general formats for each card embodying all options, the following conventions are used:

1. Upper-case letters and parentheses must be punched as shown.
2. Lower-case letters indicate that a substitution must be made.
3. Braces $\}$ indicate that a choice of contents is mandatory.

CASE CONTROL DECK

4. Brackets [] contain an option that may be omitted or included by the user.
5. Underlined options or values are the default values.
6. Physical card consists of information punched in columns 1 thru 72 of a card. Most case control cards are limited to a single physical card.
7. Logical card may have more than 72 columns with the use of continuation cards. A continuation card is honored by ending the preceeding card with a comma.

The structure plotter output request packet and the $x-y$ output request packet, while part of the Case Control Deck, are treated separately in Sections 4.2 and 4.3 , respectively.

NASTRAN DATA DECK

Case Control Data Card - ACCELERATIQN - Acceleration Output Request.

Description: Requests form and type of acceleration vector output.
Format and Example(s):
ACCELERATIØN $\left[\left(\frac{\text { S@RT1 }}{S \emptyset R T 2}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\right.\right.$ PHASE $\left.)\right]=\left\{\begin{array}{c}A L L \\ n \\ N \emptyset N E\end{array}\right\}$
ACCELERATION $=5$
ACCELERATIØN(SØRT2, PHASE) = ALL
ACCELERATI@N(S@RT1, PRINT, PUNCH, PHASE) $=17$

Option
SøRT1
1
S@RT2

PRINT The printer will be the output media.
PUNCH
REAL or
IMAG
PHASE Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Frequency Response problems.

ALL Accelerations for all points will be output.
n

NQNE
Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SQRTl is not available in Transient problems (where the default is SØRT2).

Output will be presented as a tabular listing of frequency or time for each grid point. SØRT2 is available only in Transient and Frequency Response problems.

The card punch will be the output media.
Requests real and imaginary output on Frequency Response problems.

Set identification of a previously appearing SET card. Only accelerations of points whose identification numbers appear on this SET card will be output (Integer >0).

Accelerations for no points will be output.

Remarks: 1. Both PRINT and PUNCH may be requested.
2. A: vutput request. for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a $S \equiv T$ of interest.
3. Acceleration output is only available for Transient and Frequency Response problems.
4. In a frequency Response problem any request for SORT2 output causes all output to be S@RT2.
5. $\operatorname{ACCELERATI\emptyset N}=$ NØNE allows overriding an overall output request.

Case Control Data Card AXISYMMETRIC - Boundary Conditions or Hydroelastic Harmonics.

Description: Selects boundary conditons for problems containing CCDNEAX, CTRAPAX or CTRIAAX elements or specifies the existence of fluid harmonics for hydroelastic problems.

Format and Example(s):
AXISYMMETRIC $=\left\{\begin{array}{l}\text { SINE } \\ \text { CDSINE } \\ \text { FLUID }\end{array}\right\}$
AXISYMMETRIC $=$ CDSINE

Option
Meaning
SINE Sine boundary conditions will be used.
COSINE Cosine boundary conditions will be used.
FLUID Existence of fluid harmonics.

Remarks: 1. This card is required for problems containing the elements named above.
2. If this card is used for hydroelastic problems, at least one harmonic must be specified on the AXIF card.
3. See Section 1.3.6 of User's Manual for a discussion of the conical shell problem.
4. See Section 1.3 .7 of User's Manual for a discussion of the axisymmetric solid problem.
5. See Section 1.7.1 of User's Manual for a discussion of the hydroelastic formulation.
6. The sine boundary condition will constrain components 1,3 and 5 at every ring for the zero harmonic.
7. The consine boundary condition will constrain components 2, 4 and 6 at every ring for for the zero harmonic.
8. SPC and MPC case control cards may also be used to effect additional constraints.

Case Control Data Card B2PP - Direct Input Damping Matrix Selection.

Description: Selects a direct input damping matrix.

Format and Example(s):
B2PP = name
$B 2 P P=B D M I G$
$B 2 P P=B 2 P P$

Option
Meaning
name
BCD name of $\left[\mathrm{B}_{\mathrm{pp}}^{2}\right]$ matrix that is input on the DMIG or DMIAX bulk data card.
Remarks: 1. B2PP is used only in dynamics problems.
2. DMIG and DMIAX matrices will not be used unless selected.

Case Control Data Card CMETHØD - Complex Eigenvalue Extraction Method Selection.

Description: Selects complex eigenvalue extraction data to be used by module CEAD.

Format and Example(s):
CMETHØD $=n$
CMETHQD $=77$

Option

Meaning

n Set identification of EIGC (and EIGP) card (Integer >0).

Remarks: Eigenvalue extraction data must be selected when extracting complex eigenvalues using Functional Module CEAD.

NASTRAN DATA DECK

Case Control Data Card DEFQRM - Element Deformation Static Load.

Description: Selects the Element Deformation Set to be applied to the structural model.

Format and Example(s):
DEFQRM $=n$
DEFØRM = 27

Option

Meaning

$n \quad$ Set identification of $D E F D R M$ cards (Integer >0).

Remarks: 1. DEFQRM bulk data cards will not be used unless selected in the Case Control Deck.
2. DEFQRM is only applicable in statics, inertia relief, differential stiffness, and buckling problems.
3. The total load applied will be the sum of external, ($\llcorner\emptyset A D$), thermal (TEMP (LØAD)), element deformation (DEFØRM) and constrained displacement loads (SPC).
4. Static, thermal and element deformation loads should have unique identification numbers.

Case Control Data Card DISPLACEMENT - Displacement Output Request.

Description: Requests form and type of displacement vector output.

Format and Example(s):
$\left.\left.\begin{array}{l}\text { DISPLACEMENT }\left[\left(\frac{\text { SØRT1 }}{\text { SØRT2 } 2}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }} \text { PHASE }\right.\right.\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ N \emptyset N E\end{array}\right\}$

Option Meaning
S@RT1 Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SŋRTl is not available in Transient problems (where the default is S@RT2).

S@RT2 Output will be presented as a tabular listing of load, frequency, or time for each grid polnt. SøRT2 is available only in Static Analysis, Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or \quad Requests real and imaginary output on Complex Eigenvalue or Frequency Response IMAG

PHASE \quad Requests magnitude and phase ($0.0^{\circ} \leq$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

ALL Displacements for all points will be output.
NDNE
Displacements for no points will be output.
Set identification of previously appearing SET card. Only displacements of points whose identification numbers appear on this SET card will be output (Integer > 0).

Remarks: 1. Both PRINT AND PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any request for SøRT2 causes all output to be S@RT2.
4. VECTØR, PRESSURE and THERMAL are alternate forms and are entirely equivalent to DISPLACEMENT.
5. DISPLACEMENT $=$ N@NE allows overriding an overall output request.

Case Control Data Card DL@AD - Dynamic Load Set Selection.

Description: Selects the dynamic load to be applied in a Transient or Frequency Response problem.

Format and Example(s):
DLQAD $=n$
$D L \emptyset A D=73$

Option

Meaning

Set identification of a DLØAD, RLØAD1, RLØAD2, TLØAD1, or TLØAD2 card (Integer > 0).

Remarks: 1. The above loads will not be used by NASTRAN unless selected in Case Control.
2. RL $\emptyset A D 1$ and RL@AD2 may only be selected.in a Frequency Response problem.
3. TLØAD1 and TLØAD2 may only be selected in a Transient Response problem.

CASE CONTROL DECK

Case Control Data Card DSCøEFFICIENT - Differential Stiffness Coefficient Set.

Description: Selects the coefficient set for a Differential Stiffness problem.

Format and Example(s):

```
DSC\emptysetEFFICIENT ={ DEFAULT
DSCØEF = 15
DSCØEF = DEFAULT
```

Option Meaning

DEFAULT	A single default coefficient of value 1.0.
\mathbf{n}	Set identification of DSFACT card (Integer >0).

Remarks: 1. DSFACT cards will not be used unless selected.
2. DSCØEFFICIENT must appear in the 2nd Subcase of a differential stiffness problem.

Case Control Data Card ECHØ - Bulk Data Echo Request.
Description: Requests echo of bulk data deck.
Format and Example(s):

1
S \wp QRT UNSØRT
ЕСНの $=$ B DTH
N@NE
NDNE
PUNCH
$\mathrm{ECH} \emptyset=\mathrm{B}$ ВТН
$\mathrm{ECH} \emptyset=\mathrm{PUNCH}, \mathrm{S}$ QRT

Option
Meaning
S@RT Sorted echo will be printed.
UNSØRT Unsorted echo will be printed.
BØTH \quad Both sorted and unsorted echo will be printed.
NØNE No echo will be printed.
PUNCH The sorted bulk data deck will be punched onto cards.

REMARKS: 1. If no ECH \emptyset card appears a sorted echo will be printed.
2. If CHKPNT YES a sorted echo will be printed unless $E C H \emptyset=N \neq N E$.
3. Unrecognizable options will be treated as SŋRT.
4. Any option overrides the default. Thus, for example, if both print and punch are desired, both S@RT and PUNCH must be requested on the same card.

Case Control Data Card ELFØRCE - Element Force Output Request.

Description: Requests form and type of element force output.

Option	Meaning
SQRT1	Output will be presented as a tabular listing of elements for each load, frequency, eigenvalue, or time, depending on the rigid format. SØRT1 is not available in Transient problems (where the default is S \emptyset RT2).
S@RT2	Output will be presented as a tabular listing of load, frequency, or time for each element type. SøRT2 is available only in Static Analysis, Transient and Frequency Response problems.
PRINT	The printer will be the output media.
PUNCH	The card punch will be the output media.
REAL or IMAG	Requests real and imaginary output on Complex Eigenvalue or Frequency Response problems.
PHASE	Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.
ALL	Forces for all elements will be output.
NONE	Forces for no elements will be output.
n	Set identification of a previously appearing SET card. Only forces of elements whose identification numbers appear on this SET card will be output (Integer >0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any request for S@RT2 output causes all output to be S@RT2.
4. $F \emptyset R C E$ is an alternate form and is entirely equivalent to ELF@RCE.
5. ELF ($\mathrm{RCE}=$ NØNE allows overriding an overall request.

Description: Requests form and type of element stress output.

Option	Meaning
S@RTI	Output will be presented as a tabular listing of elements for each load, frequency, eigenvalue, or time, depending on the rigid format. SŋRT1 is not available in Transient problems (where the default is SQRT2).
S@RT2	Output will be presented as a tabular listing of load, frequency, or time for each element type. SøRT2 is available only in Static Analysis, Transient and Frequency Response problems.
PRINT	The printer will be the output media.
PUNCH	The card punch will be the output media.
REAL or IMAG	Requests real and imaginary printout on Complex Eigenvalue or Frequency Response problems.
PHASE	Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.
ALL	Stresses for all elements will be output.
n	Set lidentification of a previously appearing SET card (Integer > 0). Only stresses for elements whose identification numbers appear on this SET card will be output.
NQNE	Stress for no elements will be output.

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any request for $\$ \varnothing R T 2$ output causes all output to be SøRT2.
4. STRESS is an alternate form and is entirely equivalent to ELSTRESS.
5. ELSTRESS $=$ NQNE allows overriding an overall output request.

CASE CONTROL DECK

Case Control Data Card ESE - Element Strain Energy Output Request

Description: Requests strain energy output and per cent of total strain energy with respect to all elements.

Format and Example(s):
ESE $\left[\left(\frac{\text { PRINT }}{\text { PUNCH }}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { n@NE }\end{array}\right\}$
ESE (PUNCH) $=5$
ESE (PRINT,PUNCH) = ALL

Option

Meaning

PRINT
The printer will be the output media.
PUNCH \quad The card punch will be the output media.
ALL Strain energies will be output for all elements for which stiffness matrices exist.

NQNE
Strain energies for no elements will be output.
Set identification of previously appearing SET card (Integer >0). Only strain energies for elements whose identification numbers appear on this SET card will be output.

Remarks: 1. Element strain energies are output from Static Analysis (Rigid Format 1) only.
2. The output will be in S \oint RT 1 format.
3. Both PRINT and PUNCH may be requested.
4. $E S E=$ NQNE allows overriding an overall output request.

NASTRAN DATA DECK

Case Control Data Card FMETH@D -Flutter Analysis Method

Description: Selects the FLUTTER parameters to be used by the flutter module (FAl).

Format and Example(s):

FMETH $\emptyset D=n$
FMETH@D $=72$

Option

Meaning

n

Set identification number of a FLUTTER card (integer >0).

Remarks:

A FMETH@D card is required for flutter analysis.

Case Control Data Card F@RCE - Element Force Output Request.

Description: Requests form and type of element force output.

Format and Example(s):
FØRCE $\quad\left[\left(\frac{\text { SØRTI }}{\text { SØRT2 }}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\right.\right.$ PHASE $\left.)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { N } \cap \mathrm{NE}\end{array}\right\}$

FDRCE $=A L L$
FORCE(REAL, PUNCH, PRINT) $=17$
FØRCE $=25$

Option Meaning
SØRT1 Output will be presented as a tabular listing of elements for each load, frequency, eigenvalue, or time, depending on the rigid format. SQRT1 is not available ir Transient problems (where the default is SQRT2).

S@RT2 Output will be presented as a tabular listing of load, frequency, or time for each element type. S@RT2 is available only in Static Analysis, Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or \quad Requests real and imaginary printout on Complex Eigenvalue or Frequency Response IMAG

PHASE \quad Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

ALL Forces for ALL elements will be output.
$n \quad$ Set identification of a previously appearing SET card. Only forces whose element identification numbers appear on this SET card will be output (Integer >0).

N@NE
Forces for no elements will be output.

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any request for SøRT2 output causes all output to be S@RT2.
4. ELFØRCE is an alternate form and is entirely equivalent to FØRCE.
5. $F \emptyset R C E=N \nsupseteq N E$ allows overriding an overall request.

NASTRAN DATA DECK

Case Control Data Card FREQUENCY - Frequency Set Selection

Description: Selects the set of frequencies to be solved in Frequency Response problems.

Format and Example(s):
FREQUENCY $=n$
FREQUENCY $=17$

Option
Meaning
n
Set identification of a FREQ, FREQ1 or FREQ2 type card (Integer > 0).

Remarks: 1. The FREQ, FREQl or FREQ2 cards will not be used unless selected in Case Control. 2. A frequency set selection is required for a Frequency Response problem.

CASE CONTROL DECK

Case Control Data Card GPFQRCE - Grid Point Force Balance Output Request

Description: Requests grid point force balance output from applied loads, single-point constraints, and element contraints.

Format and Example (s):
GPFØ $=\left[\binom{\right.$ PRINT }{ PUWCH }$]=\left(\begin{array}{c}\text { ALL } \\ n \\ \text { NQNE }\end{array}\right)$

Option
Meaning
PRINT
PUNCH
ALL
Force balance will be output for all elements connected to grid points or scalar points.

N@NE
Force balance for no grid points will be output.
Set identification of previously appearing SET card (Integer >0). Only force balance for points whose identification numbers appear on this SET card will be output.

Remarks: 1. Grid point force balance is output from Statics Analysis (Rigid Format 1) only.
2. The output will be in SQRT 1 format.
3. Both PRINT and PUNCH may be requested.
4. $\operatorname{GPFD}=$ NQNE allows overriding an overall output request.

CASE CONTROL DECK.

Case Control Data Card HARMQNICS - Harmonic Printout Control.

Description: Controls number of harmonics output for problems containing CCøNEAX, CTRAPAX or CTRIAAX elements.

Format and Example(s):

HARMONICS =
$\left\{\begin{array}{c}\text { ALL } \\ \text { N@NE } \\ n \\ 0\end{array}\right\}$

Option

Meaning

ALL All Harmonics will be output.
NØNE No Harmonics will be output.
n Available harmonics up to and including n will be output (Integer ≥ 0).

Remarks: If no HARMøNICS card appears in Case Control, only 0 harmonic output will be printed.

Case Control Data Card IC - Transient Initial Condition Set Selection.

Description: To select the initial conditions for Direct Transient problems.

Format and Example(s):
$I C=n$
IC = 17

Option
Meaning
n
Set identification of TIC card (Integer > 0).

Remarks: 1. TIC cards will not be used (hence no initial conditions) unless selected in Case Control.
2. Initial conditions are not allowed in a Modal Transient problem.

CASE CONTROL DECK

Case Control Data Card K2PP - Direct Input Stiffness Matrix Selection.

Description: Selects a direct input stiffness matrix.

Format and Example(s):
$\mathrm{K} 2 \mathrm{PP}=$ name
K2PP $=$ KDMIG
$K 2 P P=K 2 P P$

Option

Meaning

name
BCD name of a $\left[K_{p p}^{2 d}\right]$ matrix that is input on the DMIG or DMIAX bulk data card.

Remarks: 1. K2PP is used only in dynamics problems.
2. DMIG and DMIAX matrices will not be used unless selected.

Case Control Data Card LABEL - Output Label.

Description: Defines a BCD label which will appear on the third heading line of each page of NASTRAN printer output.

Format and Example(s):
LABEL $=\{$ Any BCD data \}
LABEL = STEVEN E. WALL'S PRØBLEM

Remarks: 1. LABEL appearing at the subcase level will label output for that subcase only.
2. LABEL appearing before all subcases will label any outputs which are not subcase dependent.
3. If no LABEL card is supplied, the label line will be blank.
4. LABEL information is also placed on NASTRAN plotter output as applicable.

Case Control Data Card LINE - Data Lines Per Page.
Description: Defines the number of data lines per printed page.
Format and Example(s):
LINE $=\left\{\frac{50}{n}\right\}$ IBM or CDC
LINE $=\left\{\frac{45}{n}\right\}$ UNIVAC
LINE $=35$
Option

Meaning

$n \quad$ Number of data lines per page (Integer >0).
Remarks: 1. If no LINE card appears, the appropriate default is used.
2. For 11 inch paper, 50 is the recommended number; for $8-1 / 2$ paper, 35 is the recommended number.

Case Control Data Card LØAD - External Static Load Set Selection.

Description: Selects the external static load set to be applied to the structural model.

Format and Example(s):

LQAD $=n$
$L \emptyset A D=15$

Option

Meaning
$\mathrm{n} \quad$ Set identification of at least one external load card and hence must appear on at least one $F \emptyset R C E, F \emptyset R C E 1, F \emptyset R C E 2, M \emptyset M E N T, M \emptyset M E N T 1, ~ M \emptyset M E N T 2, ~ G R A V, ~ P L \emptyset A D, ~ P L \emptyset A D 2$, PLØAD3, RFØRCE, PRESAX, FØRCEAX, MØMAX, SLØAD, or LØAD card (Integer >0).

Remarks: 1. The above static load cards will not be used by NASTRAN unless selected in Case Control.
2. A GRAV card cannot have the same set identification number as any of the other loading card types. If it is desired to apply a gravity load along with other static loads, a LØAD bulk data card must be used.
3. LØAD is only applicable in statics, inertia relief, differential stiffness, buckling, and piecewise linear problems.
4. The total load applied will be the sum of external ($\llcorner\emptyset A D$), thermal (TEMP (L@AD)), element deformation (DEFQRM) and constrained displacement (SPC) Loads.
5. Static, thermal and element deformation loads should have unique set identification numbers.

Case Control Data Card M2PP - Direct Input Mass Matrix Selection.

Description: Selects a direct input mass matrix.

Format and Example(s):
M2PP = name
M2PP $=$ MDMIG
M2PP $=$ M2PP

Option

Meaning

name BCD name of a $\left[M_{p p}^{2 d}\right]$ matrix that is input on the DMIG or DMIAX bulk data card.

Remarks: 1. M2PP is supported only in dynamics problems.
2. DMIG and DMIAX matrices will not be used unless selected.

NASTRAN DATA DECK

Case Control Data Card MAXLINES - Maximum Number of Output Lines.

Description: Sets the maximum number of output lines to a given value.

Format and Example(s):
MAXLINES $=\left\{\frac{20000}{n}\right\}$
MAXLINES $=50000$

Option

Meaning

n
Maximum number of output lines which the user wishes to allow (Integer >0).

Remarks:

1. Any time this number is exceeded, NASTRAN will terminate thru PEXIT.
2. This card may or may not override system operating control cards. Users should check with the local operations staff.

CASE CONTROL DECK

Case Control Data Card METHQD - Real Eigenvalue Extraction Method Selection.

Description: Selects the Real Eigenvalue Parameters to be used by the READ module.

Format and Example(s):
METHЮD $=n$
METHØD $=33$

Option

Meaning

$\mathrm{n} \quad$ Set identification number of an EIGR card (normal modes or modal formulation) or an EIGB card (buckling). (Integer > 0)

Remarks: An eigenvalue extraction method must be selected when extracting real eigenvalues using Functional Module READ.

Case Control Data Card MøDES - Duplicate Case Control.

Description: Repeats case control MQDES times - to allow control of output in eigenvalue problems.

Format and Example(s):
MЮDES $=n$
MDDES $=1$

Option

Meaning

$n \quad$ Number of modes, starting with the first and proceeding sequentially upward, for which the case control or subcase control is to apply. (Integer >0).

Remarks: 1. This card can be illustrated by an example. Suppose stress output is desired for the first five modes only and Displacements only thereafter. The following example would accomplish this:

```
SUBCASE 1
MODES = 5
OUTPUT
STRESS = ALL
SUBCASE 6
gUTPUT
DISPLACEMENTS = ALL
BEGIN BULK
```

2. The $M \emptyset D E S$ card causes the results for each eigenvalue to be considered as a separate, successively numbered subcase, beginning with the subcase number containing the MøDES card.
3. If the MØDES card is not used, eigenvalue results are considered to be a part of a single subcase. Hence, any output requests for the single subcase will apply for all eigenvalues.
4. All eigenvectors with mode numbers greater than the number of records in Case Control are printed with the descriptors of the last Case Control record. For example, to suppress all printout for modes beyond the first three, the following Case Control deck could be used:
```
SUBCASE 1
MODES \(=3\)
DISPLACEMENTS = ALL
SUBCASE 4
DISPLACEMENTS \(=\) N@NE
BEGIN BULK
```

Case Control Data Card MPC - Multipoint Constraint Set Selection.

Description: Selects the multipoint constraint set to be applied to the structural model.

Format and Example(s):
MPC $=n$
$M P C=17$

Option

Meaning

$n \quad$ " n " is the set identification of a Multipoint-Constraint Set and hence must appear on at least one MPC or MPCADD card. (Integer > 0).

Remarks: MPC or MPCADD cards will not be used by NASTRAN unless selected in Case Control.

NASTRAN DATA DECK

Case Control Data Card NLLØAD - Nonlinear Load Output Request.

Description: Requests form and type of nonlinear load output for Transient problems.

Format and Example(s):
$N L L \emptyset A D\left[\left(\frac{\text { PRINT }}{\text { PUNCH }}\right)\right]=\left\{\begin{array}{l}\text { ALL } \\ n \\ \text { NØNE }\end{array}\right\}$
NLLØAD $=A L L$

Option

Meaning

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
ALL Nonlinear loads for all solution points will be output.
NのNE Nonlinear loads will not be output.
n
Set identification of previously appearing SET card. (Integer > 0). Only nonlinear loads for points whose identification numbers appear on this SET card will be output.

Remarks: 1. Both PRIITT and PUNCH may be used.
2. Nonlinear loads are output only in the solution (D or H) set.
3. The output format will be SøRT2.
4. An output request for ALL in Transient response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
5. THERMAL = NANE allows overriding an overall output request.

CASE CONTROL DECK

Case Control Data Card NøNLINEAR - Nonlinear Load Set Selection.

Description: Selects nonlinear load for transient problems.

Format and Example(s):
NONLINEAR $=\mathbf{n}$
NØNLINEAR LØAD SET $=75$

Option
Meaning
n
Set identification of NQLINi cards (Integer > 0).

Remarks: N@LINi cards will not be used unless selected in Case Control.

Case Control Data Card $\underline{\text { GFREQUENCY - Output Frequency Set. }}$

Description: Selects from the solution set of frequencies a subset for output requests. In flutter analysis, it selects a subset of velocities.

Format and Example(s):

ØFREQUENCY $=\left\{\frac{A L L}{n}\right\}$
\emptyset FREQUENCY $=$ ALL
\emptyset FREQUENCY SET $=15$

Option Meaning
ALL Output for all frequencies will be printed out.
n Set identification of previously appearing SET card. (Integer > 0). Output for frequencies closest to those given on this SET card will be output.

Remarks:

1. \emptyset FREQUENCY is defaulted to ALL if it is not supplied.
2. In flutter analysis, the selected set lists velocities in input units. If there are n velocities in the list, the n points with velocities closest to those in the list will be selected for output.

Case Control Data Card @L@AD - Applied Load Output Request

Description: Requests form and type of applied load vector output.

Format and Example(s):
$\emptyset L \emptyset A D \quad\left[\left(\frac{S \emptyset R T 1}{S \emptyset R T 2}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ N \emptyset N E\end{array}\right\}$
$\emptyset L \emptyset A D=A L L$
$\emptyset L \emptyset A D(S \emptyset R T 1$, PHASE $)=5$

Option

Meaning

S@RT1 Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SQRTI is not available in Transient problems (where the default is SORT2).

SORT2 . Output will be presented as a tabular listing of load, frequency, or time for each grid point. SøRT2 is available only in Static Analysis, Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or Requests real and imaginary output on Complex Eigenvalue or Frequency Response IMAG problems.

PHASE \quad Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

ALL Applied loads for all points will be output. (S@RTl will only output nonzero values).

N@NE
Applied loads for no points will be output.
Set identification of previously appearing SET card. Only loads on points whose identification numbers appear on this SET card will be output (Integer >0).

Remarks: 1. Both PRINT and PUNCH may be requester'.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any request for S $\$$ RT2 output causes all output to be SDRT2.
4. A request for SØRT2 causes loads (zero and nonzero) to be output.
5. $\emptyset L \emptyset A D=N \varrho N E$ allows overriding an overall output request.

NASTRAN DATA DECK

Case Control Data Card gUTPUT - Output Packet Delimiter.

Description: Delimits the various output packets, structure plotter, curve plotter, and printer/punch.

Format and Example(s):
ØUTPUT $\left[\left(\begin{array}{l}\text { PLQT } \\ \text { XYøUT } \\ \text { XYPLØT }\end{array}\right)\right]$
QUTPUT
DUTPUT (PLDT)
ØUTPUT (XYØUT)

Option

Meaning
No qualifier
PLØT Beginning of structure plotter packet. This card must preceed all structure plotter control cards.

XYOUT or XYPLøT

Beginning of curve plotter packet. This card must precede all curve plotter control cards. XYPLØT and XYØUT are entirely equivalent.

Remarks:

1. The structure plotter packet and the curve plotter packet must be at the end of the Case Control Deck. Either may come first.
2. The delimiting of a printer packet is completely optional.

CASE CONTROL DECK

Case Control Data Card PLCØEFFICIENT - Piecewise Linear Coefficient Set.

Description: Selects the coefficient set for Piecewise Linear problems.

Format and Example(s):
PLCDEFFICIENT $=\left\{\begin{array}{c}\text { DEFAULT } \\ n\end{array}\right\}$
PLCDEFFICIENT = DEFAULT
PLCØEFFICIENT $=25$

Option
Meaning
DEFAULT A single default coefficient of value 1.0 .
n
Set identification of PLFACT card (Integer >0).

Remarks: PLFACT cards will not be used unless selected.

Case Control Data Card PLøTID - Plotter Identification.

Description: Defines $B C D$ identification which will appear on the first frame of any NASTRAN plotter output.

Format and Example(s):
PLØTID $=$ \{ Any BCD data \}
PLØTID = MSC - BLDG. 125 B $\emptyset X 91-$ - RETURN TØ MACNEAL-SCHWENDLER CØRP.

Remarks: 1. PLØTID must appear before the ØUTPUT(PLØT) or $\emptyset U T P U T(X Y \emptyset U T)$ cards.
2. The presence of PLØTID causes a special header frame to be plotted with the supplied identification plotted several times. This allows easy identification of NASTRAN plotter output.
3. If no PLØTID card appears, no ID frame will be plotted.
4. The PL $\emptyset T I D$ header frame will not be generated for the table plotters.

Case Control Data Card PRESSURE - Hydroelastic Pressure Output Request.

Description: Requests form and type of displacement and hydroelastic pressure vector output.

Format and Example(s):

PRESSURE $\left[\left(\frac{\text { SQRTI }}{\text { SØRT2 }}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\right.\right.$ PHASE $\left.)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { N } \emptyset E E\end{array}\right\}$
PRESSURE = 5
PRESSURE (IMAG) = ALL
PRESSURE(S \emptyset RT2, PUNCH, REAL) $=$ ALL

Option	Meaning
S@RTI	Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. S $\emptyset R T 1$ is not available in Transient problems problems (where the default is S@RT2).
S¢RT2	Output will be presented as a tabular listing of frequency or time for each grid point. SØRT2 is available only in Transient and Frequency Response problems.
PRINT	The printer will be the output media.
PUNCH	The card punch will be the output media.
REAL or IMAG	Requests real and imaginary output on Complex Eigenvalue or Frequency Response problems.
PHASE	Requests magnitude and phase ($0.0^{\circ} \leq$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.
ALL	Displacements and pressures for all points will be output.
NQNE	Displacements and pressures for no points will be output.
n	Set identification of previously appearing SET card. Only displacements and pressures of points whose identification numbers appear on this SET card will be output (Integer >0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In a Frequency Response problen any request for $S \emptyset R T 2$ causes all output to be SØRT2.
4. DISPLACEMENT and VECTDR are alternate forms and are entirely equivelent to PRESSURE.
5. $\operatorname{PRESSURE}=$ NØNE allows overriding an overall output request.

CASE CONTROL DECK

Case Control Data Card RANDQM - Random Analysis Set Selection
Description: Selects the RANDPS and RANDTi cards to be used in Random Analysis.

Format and Example(s):

RANDOM $=n$
RANDOM $=177$

Option

Meaning

n Set identification of RANDPS and RANDTi cards to be used in RANDOM analysis (Integer > 0).

Remarks:

1. RANDPS cards must be selected to do Random Analysis.
2. RANDPS must be selected in the first subcase of the current loop. RANDPS may not reference subcases in a different loop.

Case Control Data Card REPCASE - Repeat Case Subcase Delimiter.

Description: Delimits and identifies a repeated subcase.

Format and Example(s):
REPCASE n
REPCASE 137

Option

Meaning

$\mathrm{n} \quad$ Subcase number (Integer >1).

Remarks: 1. "n" must be strictly increasing (i.e. greater than all previous subcase set identification numbers).
2. This case will only re-output the previous real case. This allows additional set specification.
3. REPCASE may only be used in Statics or Inertia Relief.
4. One or more repeated subcases (REPCASEs) must immediately follow the subcase (SUBCASE) to which they refer. (See example 4 in Section 2.3.3).

Case Control Data Card SACCELERATIDN - Solution Set Acceleration Output Request

Description: Requests form and type of solution set acceleration output.

Format and Example(s):
SACCELERATIØN $\left[\left(\frac{S \emptyset R T 1}{S \emptyset R T 2}, \quad \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }} \begin{array}{ll}\text { PHASE }\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { NØNE }\end{array}\right\}$
SACCELERATIQN = ALL
SACCELERATIØN(PUNCH, IMAG) $=142$

Option	Meaning
S@RTI	Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. S@RTI is not available in Transient problems (where the default is S@RT2).
S@RT2	Output will be presented as a tabular listing of frequency or time for each grid point (or mode number). S@RT2 is available only in Transient and Frequency Response problems.
PRINT	The printer will be the output media.
PUNCH	The card punch will be the output media.
REAL or IMAG	Requests real and imaginary output on Frequency Response problems.
PHASE	Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Frequency Response problems.
ALL	Acceleration for all solution points (modes) will be output.
NQNE	Acceleration for no solution points (modes) will be output.
n	Set identification of a previously appearing SET card. Only accelerations of points whose identification numbers appear on this SET card will be output (Integer >0)

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. Acceleration output is only available for Transient and Frequency Response problems.
4. In a Frequency Response problem any request for $S \emptyset R T 2$ output causes all output to be SøRT2.
5. \quad SACCELERATION $=$ N@NE allows overriding an overall output request.

NASTRAN DATA DECK

Case Control Data Card SDAMPING - Structural Damping.

Description: Selects table which defines damping as a function of frequency in Modal Formulation problems.

Format and Example(s):
SDAMPING $=\mathbf{n}$
SDAMPING $=77$

Option

Meaning

n
Set identification of a TABDMP1 table (Integer >0).

Remarks: If SDAMPING is not used $B H H=[0]$.

Case Control Data Card S.DISPLACEMENT - Solution Set Displacement Output Request.

Description: Requests form and type of solution set displacement output.

Format and Example(s):
SDISPLACEMENT $\left[\left(\frac{\text { SØRT1 }}{\text { SØRT2 }}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }} \begin{array}{l}\text { PHASE }\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { NØNE }\end{array}\right\}$
SDISPLACEMENT = ALL
SDISPLACEMENT(S@RT2, PUNCH, PHASE) = N@NE

Option
SQRTl Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SØRTI is not available in Transient problems (where the default is SØRT2).

S@RT2

PRINT
PUNCH
REAL or IMAG

PHASE

ALL
N@NE
n
Output will be presented as a tabular listing of frequency or time for each grid point (or mode number). SøRT2 is available only in Transient and Frequency Response problems.

The printer will be the output media.
The card punch will be the output media.
Requests real and imaginary output on Complex Eigenvalue or Frequency Response problems.

Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

Displacements for all points (modes) will be output.
Displacements for no points (modes) witl be output.
Set identification of previously appearing SET card. Only displacements of points whose identification numbers appear on this SET card will be output (Integer > 0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Trequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In a Frequency Response problem any request for $S \emptyset R T 2$ causes all output to be $S \emptyset R T 2$.
4. SVECTOR is an alternate form which is entirely equivalent to SDISPLACEMENT.
5. SDISPLACEMENT $=$ N@NE allows overriding an overall output request.

Case Control Data Card SET - Set Definition Card.

Description: 1) Lists identification numbers (point or element) for output requests.
2) Lists the frequencies for which output will be printed in Frequency Response Problems.

Format and Example(s):

1) $\operatorname{SET} n=\left\{i_{1}\left[, i_{2}, i_{3}\right.\right.$ THRU $\left.\left.i_{4} \operatorname{EXCEPT} i_{5}, i_{6}, i_{7}, i_{8} \operatorname{THRU} i_{9}\right]\right\}$

SET $77=5$
SET $88=5,6,7,8,9,10$ THRU 55 EXCEPT 15, 16, 77 , $78,79,100$ THRU 300

SET $99=1$ THRU 100000

```
2) SET n = {r, [, r}, , \mp@subsup{r}{3}{},\mp@subsup{r}{4}{}]
    SET 101 = 1.0, 2.0, 3.0
    SET 105 = 1.009, 10.2, 13.4,
```

Option

Meaning

$n \quad$ Set identification (Integer >0). Any set may be redefined by reassigning its identification number. Sets inside SUBCASE delimiters are local to the SUBCASE.
\mathbf{i}_{1}, i_{2} etc. Element or point identification number at which output is requested. (Integer >0) If no such identification number exists, the request is ignored.
\mathbf{i}_{3} THRU $\mathbf{i}_{4} \quad$ Output at set identification numbers i_{3} thru $i_{4}\left(i_{4}>i_{3}\right)$.
EXCEPT Set identification numbers following EXCEPT will be deleted from output list as long as they are in the range of the set defined by the immediately preceding THRU.
r_{1}, r_{2} etc. Frequencies for output (Real >0.0). The nearest solution frequency will be output. EXCEPT and THRU cannot be used.

Remarks:

1. A SET card may be more than one physical card. A comma (,) at the end of a physical card signifies a continuation card. Commas may not end a set.
2. Set identification numbers following EXCEPT within the range of the THRU must be in ascending order.

CASE CONTROL DECK

Case Control Data Card SPC - Single-Point Constraint Set Selection.

Description : Selects the single-point constraint set to be applied to the structural model.

Format and Example(s):
$S P C=n$
$S P C=10$

Option
Meaning
$n \quad$ Set identification of a single-point constraint set and hence must appear on a SPC, SPCl or SPCADD card (Integer > 0).

Remarks: SPC, SPCl or SPCADD cards will not be used by NASTRAN unless selected in Case Control.

Case Control Data Card SPCFØRCES - Single-Point Forces of Constraint Output Request.

Description: Requests form and type of Single-Point Force of constraint vector output.

```
Format and Example(s):
SPCFØRCES \(\quad\left[\left(\frac{S \emptyset R T 1}{S \emptyset R T 2}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }} \begin{array}{l}\text { PHASE }\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ N \emptyset N E\end{array}\right\}\)
SPCFØRCES \(=5\)
SPCFØRCES(SØRT2, PUNCH, PRINT, IMAG) = ALL
SPCFØRCES(PHASE) = N@NE
```

Option
SØRT1 Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SØRT1 is not available in Transient problems (where the default is SØRT2).

SORT2 Output will be presented as a tabular listing of load, frequency, or time for each grid point. SØRT2 is available only in Static Analysis, Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or Requests real and imaginary output on Complex Eigenvalue or Frequency Response IMAG

PHASE Requests magnitude and phase (0.0° < phase < 360.0°) on Complex Eigenvalue or Frequency Response problems.

ALL Single-Point forces of constraint for all points will be output. (S@RTl will only output nonzero values.)

NQNE \quad Single point forces of constraint for no points will be output.
$n \quad$ Set identification of previously appearing SET card. Only single-point forces constraint for points whose identification numbers appear on this SET card will be output (Integer >0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any request for $S \emptyset R T 2$ output causes all output to be S@RT2.
4. A request for $\$ \emptyset R T 2$ causes loads (zero and nonzero) to be output.
5. $\operatorname{SPCF} \emptyset R C E S=$ N@NE allows overriding an overall output request.

Case Control Data Card STRESS - Element Stress Output Request.

Description: Requests form and type of element stress output.

Format and Example(s):

```
STRESS \(\quad\left[\left(\frac{\text { SQRT } 1}{\text { SQRT2 }}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }} \begin{array}{l}\text { PHASE }\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { N@NE }\end{array}\right\}\)
STRESS \(=5\)
STRESS = ALL
STRESS(S@RTI, PRINT, PUNCH, PHASE) \(=15\)
```

Option Meaning
SøRT1 Output will be presented as a tabular listing of elements for each load, frequency, eigenvalue, or time, depending on the rigid tormat. S $\emptyset R T 1$ is not available in Transient problems (where the default is SØRT2).

SøRT2 Output will be presented as a tabular listing of load, frequency, or time for each element type. S@RT2 is available only in Static Analvsis, Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or \quad Requests real and imaginary printout on Complex Eigenvalue or Frequency Response IMAG

PHASE Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

ALL Stresses for all elements will be output.
$n \quad$ Set identification of a previously appearing SET card (Integer >0). Only stresses for elements whose identification numbers appear on this SET card will be output.

NQNE
Stresses for no points will be output.

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. In Static Analysis or Frequency Response problems, any recuest for S $\operatorname{SQRT2}$ output causes all output to be SøRT2.
4. ELSTRESS is an alternate form and is entirely equivalent to STRESS.
5. \quad STRESS $=$ NQNE allows overriding an overall output request.

NASTRAN DATA DECK

Case Control Data Card SUBCASE - Subcase Delimiter.

Description: Delimits and identifies a subcase.

Format and Example(s):
SUBCASE n
SUBCASE 101

Option

Meaning

$n \quad$ Subcase identification number (Integer >0).

Remarks: 1. The subcase identification number, n, must be strictly increasing (i.e., greater than all previous subcase identification numbers).
2. Plot requests and RANDQM requests refer to n.

CASE CONTROL DECK

Case Control Data Card SUBCDM - Combination Subcase Delimiter.

Description: Delimits and identifies a combination subcase.

Format and Example(s):

SUBCDM n
SUBCQM 125

Option

Meaning

n Subcase identification number (Integer >2).

Remarks: 1. The subcase identification number, n, must be strictly increasing (i.e., greater than all previous subcase identification numbers).
2. A SUBSEQ card must appear in this subcase.
3. SUBCØM may only be used in Statics or Inertia Relief problems.
4. Output requests above the subcase level will be utilized.

NASTRAN DATA DECK

Case Control Data Card SUBSEQ - Subcase Sequence Coefficients.

Description: Gives the coefficients for forming a linear combination of the previous subcases.

Format and Example(s):
SUBSEQ $=R_{1}\left[, R_{2}, R_{3}, \ldots, R_{N}\right]$
SUBSEQ $=1.0,-1.0,0.0,2.0$

Option

Meaning

R_{1} to $R_{N} \quad$ Coefficients of the previously occuring subcases (Real).

Remarks: 1. A SUBSEQ card must only appear in a SUBC@M subcase.
2. A SUBSEQ card may be more than one phyṣical card. A comma at the end signifies a continuation card.
3. SUBSEQ may only be used in Statics or Inertia Relief problems.

Case Control Data Card SUBTITLE - Output Subtitle.

Description: Defines a BCD subtitle which will appear on the second heading line of each page of NASTRAN printer output.

Format and Example(s):
SUBTITLE $=$ \{ Any BCD data \}
SUBTITLE $=$ NASTRAN PRØBLEM NØ. 5-1A

Remarks: 1. SUBTITLE appearing at the subcase level will title output for that subcase only.
2. SUBTITLE appearing before all subcases will title any outputs which are not subcase dependent.
3. If no SUBTITLE card is supplied, the subtitle line will be blank.
4. SUBTITLE information is also placed on NASTRAN plotter output as applicable.

NASTRAN DATA DECK

Case Control Data Card SVECTØR - Solution Set Displacement Output Request.

Description: Requests form and type of solution set displacement output.

Format and Example(s):

SVECTØR $\quad\left[\left(\frac{\text { S } \emptyset \text { RT1 } 1}{S \emptyset R T 2}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\right.\right.$ PHASE $\left.)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ N \emptyset N E\end{array}\right\}$

SVECTØR = ALL
SVECTOR(SØRT2, PUNCH, PHASE) = NQNE

Option
 Meaning

S@RTl Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SØRT1 is not available in Transient problems (where the default is SØRT2).

S@RT2 Output will be presented as a tabular listing of frequency or time for each grid point (or mode number). SøRT2 is available only in Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or \quad Requests real and imaginary output on Complex Eigenvalue or Frequency Response IMAG problems.

PHASE Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

ALL Displacements for all points (modes) will be output.
NØNE Displacements for no points (modes) will be output.
n
Set identification of previously appearing SET card. Only displacements of points whose identification numbers appear on this SET card will be output (Integer >0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. Air Outpuit requesi for ALL in Transient and Frequency response problems generally produces large amcunts of printout. An alternative to this would be to define a SET of interest.
3. In a frequency response problem any request for $S \emptyset R T 2$ causes all output to be SøRT2.
4. SDISPLACEMENT is an alternate form and is entirely equivalent to SVECTØR.
5. SVECTQR $=$ NQNE allows overriding an overall output request.

Case Control Data Card SVELØCITY - Solution Set Velocity Output Request

Description: Requests form and type of solution set velocity output

Format and Example(s):

SVELØCITY = 5
SVELØCITY (SØRT2, PUNCH, PRINT, PHASE) = ALL

Option
S@RT1 Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. S@RTI is not available in Transient problems (where the default is SØRT2).

SØRT2 Output will be presented as a tabular listing of frequency or time for each grid point (or mode number). SØRT2 is available only in Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or Requests real and imaginary output on Frequency Response problems.
IMAG
PHASE Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Frequency Response problems.

ALL Velocity for all solution points (modes) will be output.
NQNE Velocity for no solution points (modes) will be output.
$n \quad$ Set identification of a previously appearing SET card. Only velocities of points whose identification numbers appear on this SET card will be output (Integer > 0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response problems generally pruiuces large amounts of printout. An alternative to this would be to define a SET of interest.
3. Velncity oufput is only available for Transient and Frequency Response problems.
4. In a Frequency Response problem any request for $S \emptyset R T 2$ output causes all output to be S@RT2.
5. SVELØCITY = NØNE allows overriding an overall output request.

Case Control Data Card SYM - Symmetry Subcase Delimiter.

Description: Delimits and identifies a symmetry subcase.

Format and Example(s):
SYM n
SYM 123

Option

Meaning

$\mathrm{n} \quad$ Subcase identification number (Integer >0).

Remarks: 1. The subcase identification number, n, must be strictly increasing (i.e., greater than all previous subcase identification numbers).
2. Plot requests and RANDDM requests should refer to n.
3. Overall output requests will not propagate into a SYM subcase (i.e. any output desired must be requested within the subcase).
4. SYM may only be used in Statics or Inertia Relief.

CASE CONTROL DECK

Case Control Data Card SYMCØM - Symmetry Combination Subcase Delimiter.

Description: Delimits and identifies a symmetry combination subcase.

Format and Example(s):
SYMCDM n
SYMCQM 123

Option

Meaning

n Subcase identification number (Integer > 2).

Remarks: 1. The subcase identification number, n, must be strictly increasing (i.e., greater than all previous subcase identification numbers).
2. SYMCØM may only be used in Statics or Inertia Relief problems.

NASTRAN DATA DECK

Case Control Data Card SYMSEQ - Symmetry Sequence Coefficients.

Description: Gives the coefficients for combining the symmetry subcases into the total structure.

Format and Example(s):
SYMSEQ $=R_{1}\left[, R_{2}, R_{3} \ldots R_{n}\right]$
SYMSEQ $=1.0,-2.0,3.0,4.0$

Option
Meaning
R_{1} to $R_{N} \quad$ Coefficients of the previously occurring N SYM subcases (Real).

Remarks: 1. A SYMSEQ card may only appear in a SYMCDM subcase.
2. The default value for the coefficients is 1.0 if no SYMSEQ card appears.
3. A SYMSEQ card may consist of more than one physical card.
4. SYMSEQ may only be used in Statics or Inertia Relief.

Case Control Data Card TEMPERATURE - Thermal Properties Set Selection.

Description: Selects the temperature set to be used in either material property calculation or thermal loading.

Format and Example(s):
TEMPERATURE $\left[\left(\begin{array}{l}\text { MATERIAL } \\ \text { LØAD } \\ \text { BØTH }\end{array}\right)\right]=n$

TEMPERATURE $($ L@AD $)=15$
TEMPERATURE(MATERIAL) $=7$
TEMPERATURE = 7

Option

Meaning

MATERIAL The selected temperature table will be used to determine temperature-dependent material properties indicated on the MATIi type cards.

L@AD The selected temperature table will be used to determine an equivalent static load.

Both options, MATERIAL and LøAD will use the same temperature table.
Set identification number of TEMP, TEMPD, TEMPP1, TEMPP2, TEMPP3, TEMPRB, or TEMPAX cards (Integer > 0).

Remarks: 1. Only one temperature-dependent material request may be made in any problem and must be above the subcase level.
2. Thermal loading may only be used in Statics, Inertia Relief, Differential Stiffness, and Buckling problems.
3. Temperature-dependent materials may not be used in Piecewise Linear problems.
4. The total load applied will be the sum of external (LØAD), thermal (TEMP(LØAD)), element deformation (DEFØRM) and constrained displacement (SPC) loads.
5. Static, thermal and element deformation loads should have unique set identification numbers.

Case Control Data Card TFL - Transfer Function Set Selection.

Description: Selects the Transfer function set to be added to the direct input matrices.

Format and Example(s):

TFL $=n$
$\mathrm{TFL}=77$

Option

Meaning

n
Set identification of a TF card (Integer > 0).

Remarks: 1. Transfer functions will not be used unless selected in the Case Control Deck.
2. Transfer functions are supported on dynamics problems only.
3. Transfer functions are simply another form of direct matrix input.

Case Control Data Card THERMAL - Temperature Output Request.

Description: Requests form and type of temperature vector output.

Format and Example(s):

THERMAL $\left[\left(\frac{\text { PRINT }}{\text { PUNCH }}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { NØNE }\end{array}\right\}$

THERMAL $=5$
THER(PRINT, PUNCH) $=$ ALL

Option

Meaning

PRINT
PUNCH
ALL
NQNE
n

The printer will be the output media. The card punch will be the output media. Temperatures for all points will be output. Temperatures for no points will be output. Set identification of previously appearing SET card. Only temperatures of points whose identification numbers appear on this SET card will be output (Integer >0).

Remarks:

1. Both PRINT and PUNCH may be requested.
2. THERMAL output request is designed for use with the Heat Transfer option. The printed output will have temperature headings and the punched output will be TEMP bulk data cards. The SID on a bulk data card will be the subcase number (= 1 if no defined subcases). The output format will be S@RT1 for Static problems and S $\emptyset R T 2$ for Transient problems.
3. An output request for ALL in Transient response problems aenerally produces large amounts of printout. An alternative to this would be to define a SET of interest.
4. DISPLACEMENT and VECTOR are alternate forms and are entirely equivalent to THERMAL.
5. THERMAL $=$ NQNE allows overriding an overall output request.

CASE CONTROL DECK

Case Control Data Card TITLE - Output Title.

Description: Defines a $B C D$ title which will appear on the first heading line of each page of NASTRAN printer output.

Format and Example(s):
TITLE $=\{$ Any BCD data $\}$
TITLE $=* * \$ / /$ ABCDEFGHI....$\$$

Remarks: 1. TITLE appearing at the subcase level will title output for that subcase only.
2. TITLE appearing before all subcases will title any outputs which are not subcase dependent.
3. If no TITLE card is supplied, the title line will contain data and page numbers only.
4. TITLE information is also placed on NASTRAN plotter output as applicable.

Case Control Data Card TSTEP - Transient Time Step Set Selection.

Description: Selects integration and output time steps for Transient problems.

Format and Example(s):
TSTEP = n
TSTEP = 731

Option
Meaning
n
Set identification of a selected TSTEP bulk data card (Integer >0).

Remarks: 1. A TSTEP card must be selected to execute a Transient problem.
2. Only one TSTEP card may have this value of n.

Case Control Data Card VECTDR - Displacement Output Request.

Description: Requests form and type of displacement vector output.

Format and Example(s):
$\operatorname{VECT\emptyset R}\left[\left(\frac{\text { SØRT } 1}{S \emptyset R T 2}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\left(\begin{array}{ll}\text { PHASE }\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { N@NE }\end{array}\right\}\right.$
VECTDR $=5$
$\operatorname{VECTDR}($ REAL $)=A L L$
$\operatorname{VECT\emptyset R}(S \emptyset R T 2, P U N C H, R E A L)=A L L$

Option

Meaning

SORTI Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. S $\emptyset R T 1$ is not available on Transient problems (where the default is S@RT2).

SORT2 Output will be presented as a tabular listing of frequency or time for each grid point. SØRT2 is available only in Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or Requests real and imaginary output on Complex Eigenvalue or Frequency Response IMAG problems.

PHASE \quad Requests magnitude and phase ($0.0^{\circ} \leq$ phase $<360.0^{\circ}$) on Complex Eigenvalue or Frequency Response problems.

ALL Displacements for all points will be output.
NØNE Displacements for no points will be output.
$n \quad$ Set identification of a previously appearing SET card. Only displacements of points whose identification numbers appear on this SET card will be output (Integer > 0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. On a Frequency Response problem any request for S@RT2 causes all output to be S@RT2.
3. DISPLACEMENT and PRESSURE are alternate forms and are entirely equivalent to VECTQR.
4. VECTØR = NØNE allows overriding an overall output request.

Case Control Data Card VELØCITY - Velocity Output Request.

Description: Requests form and type of velocity vector output.

Format and Example(s):

$\left.\left.\begin{array}{l}\text { VELØCITY }\left[\left(\frac{\text { SØRT1 }}{\text { SØRT2 }}, \frac{\text { PRINT }}{\text { PUNCH }}, \frac{\text { REAL }}{\text { IMAG }}\right.\right. \\ \text { PHASE }\end{array}\right)\right]=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { NØNE }\end{array}\right\}$

Option Meaning
S@RT1 Output will be presented as a tabular listing of grid points for each load, frequency, eigenvalue, or time, depending on the rigid format. SØRTI is not

S@RT2 Output will be presented as a tabular listing of frequency or time for each grid point. S@RT2 is available only in Transient and Frequency Response problems.

PRINT The printer will be the output media.
PUNCH The card punch will be the output media.
REAL or Requests real and imaginary output on Frequency Response problems.
IMAG
PHASE Requests magnitude and phase ($0.0^{\circ}<$ phase $<360.0^{\circ}$) on Frequency Response problems.

ALL Velocity for all solution points will be ouptut.
NQNE Velocity for no solution points will be output.
n Set identification of a previously appearing SET card. Only velocities of points whose identification numbers appear on this SET card will be output (Integer >0).

Remarks: 1. Both PRINT and PUNCH may be requested.
2. An output request for ALL in Transient and Frequency response proble.ns generally produces large amounts of printout. An alternative to this would be to define a SET of interest.
3. Velocity output is only available for Transient and Frequency Response problems.
4. In a Frequency Response problem any request for $S \emptyset R T 2$ output causes all output to be SØRT2.
5. VELøCITY $=$ N $\varnothing N E$ allows overriding an overall output request.

Case Control Data Card \$ - Comment Card.
Description: Defines a comment card by specifying a $\$$ in column one with commentary text appearing in columns 2-80.

Format and Example(s):
$\$\{$ Any BCD data
\$---THIS IS AN EXAMPLE OF A COMMENT CARD.
Remarks: Unlike other Case Control cards which are free field, the comment card must have the $\$$ in column 1.

2.4 BULK DATA DECK

The primary NASTRAN input medium is the Bulk Data card. These cards are used to define the structural model and various pools of data which may be selected by Case Control at execution time.

For large problems the Bulk Data Deck may consist of several thousand cards. In order to minimize the handling of large numbers of cards, provision has been made in NASTRAN to store the bulk data on the Problem Tape, from which it may be modified on subsequent runs. A User's Master File (Section 2.5) is also provided for the storage of Bulk Data Decks.

For any cold start, the entire Bulk Data Deck must be submitted. Thereafter, if the original run was checkpointed, the Bulk Data Deck exists on the Problem Tape in sorted form where it may be modified and reused on restart. On restart the bulk data cards contained in the Bulk Data Deck are added to the bulk data contained on the 01d Problem Tape. Cards are removed from the 01d Problem Tape (or the User's Master File) by the use of a delete card. Cards to be deleted are indicated by inserting a bulk data card with a / in column one and the sorted bulk data sequence numbers in fields two and three. All bulk data cards in the range of the sequence numbers in fields two and three will be deleted. In the case where only a single card is deleted, field three may be left blank.

The Bulk Data Deck may be submitted with the cards in any order as a sort is performed prior to the execution of the Input File Processor. It should be noted that the machine time to perform this is minimized for a deck that is already sorted. The sort time for a badly sorted deck will become significant for large decks. The user may obtain a printed copy of either the unsorted or sorted bulk data by selection in the Case Control Deck. A sorted echo is necessary in order to make modifications on a secondary execution using the Problem Tape. This echo is automatically provided unless specifically suppressed by the user.

2.4.1 Format of Bulk Data Cards

The bulk data card format is variable to the extent that any quantity except the mnemonic can be punched anywhere within a specified 8 or 16 -column field. The normal card uses an 8 -column field as indicated in the following diagram:

The mnemonic is punched in field 1 beginning in column 1. Fields 2-9 are for data items. The only limitations in data items are that they must lie completely within the designated field, have no imbedded blanks, and must be of the proper type, i.e., blank, integer, real, double precision, or BCD*. All real numbers, including zero, must contain a decimal point. A blank will be interpreted as a real zero or integer zero as required. Real numbers may be encoded in various ways. For example, the real number 7.0 may, be encoded as $7.0, .7 \mathrm{El}, 0.7+1,70 .-1, .70+1$, etc. A double precision number must contain both a decimal point and an exponent with the character D such as 7.ODO. Double precision data values are only allowed in a few situations, such as on the PARAM card. BCD data values consist of one to eight alphanumeric characters, the first of which must be alphabetic.

Normally field 10 is reserved for optional user identification. However, in the case of continuation cards field 10 (except column 73 which is not referenced) is used in conjunction with field 1 of the continuation card as an identifier and hence must contain a unique entry. The continuation card contains the symbol + in column 1 followed by the same seven characters that appeared in columns $74-80$ of field 10 of the card that is being continued. This allows the data to be submitted as an unsorted deck.

The small field data card should be more than adequate for the kinds of data normally associated with structural engineering problems. Since abbreviated forms of floating point numbers are allowed, up to seven significant decimal digits may be used in an eight-character field. Occasionally, however, the input is generated by another computer program or is available in a form where a wider field would be desirable. For this case, the larger field format with a 16-character data field is provided. Each logica, card consists of two physical cards as indicated in the following diagram:
*See SEQGP and SEQEP for exceptions.

Large Field Bulk Data Card

The large field card is denoted by placing the symbol * after the memonic in field la and some unique character configuation in the last 7 columns of field 10a. The second physical card contains the symbol * in column 1 followed by the same seven characters that appeared after column 73 in field 10 a of the first card. The second card may in turn be used to point to a large or small field continuation card, depending on whether the continuation card contains the symbol * or the symbol + in column 1. The use of multiple and large field cards are illustrated in the following examples:

Small, Field Card with Small Field Continuation Card.

TYPE									QED123
$+E D 123$									

Lạge Field Card

TYPE*					
\star ED124					

Large Field Card with Large Field Continuation Card

TYPE*					QED301
*ED301					QED302
*ED302					QED305
*ED305					

Large Field Card Followed by a Small Field Continuation Card and a Large Field Continuation Card

TYPE*						QED462	
$\star E D 462$							QED421
$+E D 421$							
*ED361						QED361	
*ED291						QED291	

2.4-3

Small Field Card with Large Field Continuation Card

TYPE								
*ED632							QED632	
*ED204								

In the above examples column 73 arbitrarily contains the symbol Q in all cases where field 10 is used as a pointer. However, column 73 could have been left blank or the same symbol used in column 1 of the following card could have been used (i.e., the symbols * or +).

2.4.2 Bulk Data Card Descriptions

The detailed descriptions of the bulk data cards are contained in this section in alphabetical order. For details pertaining to the use of each card and for a discussion of the cards in functional groups, the user is referred to Section 1 - Structural Modeling. Small field examples are given for each card along with a description of the contents of each field. In the Format and Example section of each card description, both a symbolic card format description and an example of an actual card are shown. Literal constants are shown in the card format section enclosed in quotes (e.g., "0"). Fields that are required to be blank are indicated in the card format section by whenever they are followed by nonblank fields or whenever such notation will clarify the card description.

The Input File Processor will produce error messages for any cards that do not have the proper format or which contain illegal data.

Continuation cards need not be present unless they contain required data. In the case of multiple continuation cards, the intermediate cards must be present (even though fields 2-9 are blank) if one of the following cards contains data in fields 2-9. In addition, a double field format requires at least two cards (or subsequent multiples of two) so that 10 data fields are included. Thus one or more double field cards may contain no data.

Description: For user convenience in inserting commentary material into the unsorted echo of his input Bulk Data Deck. The $\$$ card is otherwise ignored by the program. These cards will not appear in a sorted echo nor will they exist on the New Problem Tape.

Format and Example:

NASTRAN DATA DECK

Description: Delete cards are used to remove cards from either the 01d Problem Tape on restart or the User's Master File.

Format and Example:

Field

Contents

K1 Sorted sequence number of first card in sequence to be removed
K2
Sorted sequence number of last card in sequence to be removed

Remarks: 1. The delete card causes bulk data cards having sort sequence numbers Kl thru K 2 to be removed from the Bulk Data Deck.
2. If K 2 is blank, only card K 1 is removed from the Bulk Data Deck.
3. If neither an 01d Problem Tape nor a User's Master File are used in the current execution, the delete cards are ignored.

NASTRAN DATA DECK

Description: Defines attributes of the dummy elements ($1 \leq \mathbf{i} \leq 9)$.

Format and Example:

1	2	3	4	5	6	7	8	9	10
ADUMi	NG	NC	NP	ND					
ADUM2	8	2	1	3					

Field

NG
NC
NP
ND

Number of grid points connected by DUMi dummy element (Integer >0)
Number of additional entries on CDUMi connection card (Integer ≥ 0)
Number of additional entries on PDUMi property card (Integer ≥ 0)
Number of displacement components at each grid point used in generation of differential stiffness matrix (Integer 3 or 6)

NASTRAN DATA DECK
Input Data Card AEFACT Aerodynamic Spanwise Divisions

Description: Used to specify box division points for flutter analysis.

Format and Example:

Set identification number (unique Integer >0).
Di
Division point (Real).

Remarks:

1. These factors must be selected by a CAERD data card to be used by NASTRAN.
2. Imbedded blank fields are forbidden.
3. There is one more division point than the number of boxes.

BULK DATA DECK

Input Data Card AERD Aerodynamic Physical Data

Description: Gives basic aerodynamic parameters.

Format and Examples:

1	2	3	4	5	6	7	8	9	10
AERD	ACSID	VSØUND	REFC	RHOREF	SYMXZ	SYMXY			
AERD	3	1.3+4	100.	1.-5		1			

Field

Contents

ACSID	Aerodynamic coordinate system identification (Integer ≥ 0). See Remark 2,
VSØUND	Speed of sound (Real).
REFC	Reference length (for reduced frequency) (Real).
RHØREF	Reference density (Real).
SYMXZ	Symmetry key for aero coordinate $X-Z$ plane (Integer) (+1 for sym, $=0$ for no sym, -1 for anti-sym). SYMXYSymmetry key for aero coordinate $X-Y$ plane can be used to simulate ground effects (Integer), same code as SYMXZ.

Remarks:

1. This card is required for aerodynamic problems. Only one AER \emptyset card is allowed.
2. The ACSID must be a rectangular coordinate system. Flow is in the positive x direction.

NASTRAN DATA DECK

Description: Defines coordinates (degrees of freedom) that the user desires to place in the analysis set. Used to define the number of independent degrees of freedom.

Format and Example:

1	2	3	4	5	6	7	8	9	10
ASET	ID	C	ID	C	ID	C	ID	C	
ASET	16	2	23	3516			1	4	

Field

Contents

Grid or scalar point identification number (Integer >0)
Component number, zero or blank for scalar points, any unique combination of the digits 1-6 for grid points

Remarks: 1. Coordinates specified on ASET cards may not be specified on QMIT, QMIT1, ASETI, SUPDRT, SPC or SPCI cards nor may they appear as dependent coordinates in multipoint constraint relations (MPC) or as permanent single-point constraints on a GRID card.
2. As many as 24 coordinates may be placed in the analysis set by a single card.
3. When ASET and/or ASETI cards are present, all degrees of freedom not otherwise constrained will be placed in the \emptyset-set.

Description: Defines coordinates (degrees of freedom) that the user desires to place in the analysis set. Used to define the number of independent degrees of freedom.

Format and Example:

1	2	3	4	5	6	7	8	9	10
ASETI	C	G	$a b c$						
ASETI	345	2	1	3	10	9	6	5	$A B C$

$+b c$	G	G	G	-etc.					
$+B C$	7	8							

Alternate Form -etc.-

ASET1	C	ID1	"THRU"	ID2			
ASET1	123456	7	THRU	109			

Field

Contents

C

G,IDI,ID2 Grid or scalar point identification numbers (Integer > 0, IDI < ID2)

Remarks: 1. A coordinate referenced on this card may not appear as a dependent coordinate in a multi-point constraint relation (MPC card), nor may it be referenced on an SPC, SPC1, ØMIT, ØMIT1, ASET, or SUPØRT card or on a GRID card as permanent singlepoint constraints.
2. When ASET and/or ASETl cards are present, all degrees of freedom not otherwise constrained will be placed in the \emptyset-set.
3. If the alternate form is used, all of the grid (or scalar) points ID1 thru ID2 are assumed.

NASTRAN DATA DECK

Input Data Card AXIC
 Axisymmetric Problem "Flag"

Description: Defines the existence of a model containing CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

Field

Contents
H
Highest harmonic defined for the problem ($0 \leq$ Integer ≤ 998)

Remarks: 1. Only one (1) AXIC card is allowed. When the AXIC card is present, most other cards are not allowed. The types which are allowed with the AXIC card are listed below.

CCDNEAX	GRAV	RL@AD1
CTRAPAX	LøAD	RLøAD2
CTRIAAX	MATI	SECTAX
DAREA	MATTI	SPCADD
DELAY	M M MAX	SPCAX
DL@AD	MgMENT	SUPAX
DMI	MPCADD	TABDMP1
DMIG	MPCAX	TABLED1
DPHASE	NQLIN1	TABLED2
DSFACT	NQLIN2	TABLED3
EIGB	NQLIN3	TABLED4
EIGC	N \quad LIN4	TABLEM1
EIGP	gMITAX	TABLEM2
EIGR	PARAM	TABLEM3
EPOINT	PCØNEAX	TABLEM4
FgRCE	POINTAX	TEMPAX
Fgrceax	PRESAX	TF
FREQ	PTRAPAX	TIC
FREQ1	PTRIAAX	TLøAD1
FREQ2	RINGAX	TLøAD2
		TSTEP

2. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
3. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

Description: Defines basic parameters and the existence of an axisymmetric fluid analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
AXIF	CID	G	DRH \emptyset	DB	NØSYM	F			
AXIF	2	32.2	0.12	$2.5+5$	YES				CABC

$+b C$	N1	N2	N3	N4	N5	N6	N7	N8	def
+ARD-1	1	2	3		4		7	10	

Alternate form of continuation card:

+Bc	NT	"THRU"	Ni				
+ARD-1	0	THRU	10				

Alternate form of continuation card:

+bc	$\mathrm{N}]$	"THRU"	Ni	"STEP"	NS			
+ ARD-1	0	THRU	9	STEP	3			

Field

Contents

CID
G
DRHD
DB
NのSYM
F
Nn

NS
,

Fluid Coordinate System identification number (Integer >0)
Value of gravity for fluid elements in axial direction (Real)
Default mass density for fluid elements (Real > 0.0 or blank)
Default bulk modulus for fluid elements (Real)
Request for nonsymmetric (sine) terms of series (BCD: "YES" or "NO")
Flag specifing harmonics (Blank - harmonic specified, or BCD - "NØNE")
Harmonic numbers for solution, an increasing sequence of integers. On the standard continuation card blanks are ignored. On the alternate form continuation cards, "THRU" implies all numbers including upper and lower integer (Blank, or integer, $0 \leq N n<100$, or BCD: "THRU" or "STEP")
Every NSth step of the harmonic numbers specified in the "THRU" range is used for solution (Integer if field 5 is "STEP", Ni $=I \cdot N S+N 1$ where I is an integer)

Remarks: 1. Only one (1) AXIF card is allowed.
2. CID must reference a cylindrical or spherical coordinate system.
3. Positive gravity ($+G$) implies that the direction of free fall is in the $-Z$ direction of the Fluid Coordinate System.
4. The DRH \emptyset value replaces blank values of RH \emptyset on the FSLIST, BDYLIST and CFLUIDi cards.
5. The $D B$ value replaces blank values of B on the CFLUIDi cards. If the CFLUIDi entry is blank and $D B$ is zero or blank, the fluid is incompressible.
6. If $N \emptyset S Y M=Y E S$, both sine and cosine terms are specified. If $N \emptyset S Y M=N \varnothing$, only cosine terms are specified.

(Continued)

NASTRAN DATA DECK

AXIF (cont.)

7. If $F=N \not N E$, no harmonics are specified, no fluid elements are necessary, and no continuation cards may be present.

Example:

1	2	3	4	5	6	7	8	9	10
AXIF	100	-386.0		0.0	Nø				$+1$
$+1$	0	THRU	50	STEP	5				$+2$
+2	52								$+3$
$+3$	54	THRU	57						$+4$
+4	61	THRU	65						$+5$
+5	68		71		72	75			$+6$
$+6$	81	92							END

Description: Defines the harmonic index and the default values for acoustic analysis cards.

Format and Example:

11	2	3	4	5	6	7	8	9	10
AXSLDT	RHDD	BD	N	WD	MD				
AXSL \varnothing T	0.003	1.5+2	3	0.75	6				

Field
RHøD
BD
N
WD
MD

Contents

```
    Default density of fluid-mass/volume (Real }\not=0.0\mathrm{ or blank)
    Default bulk modulus of fluid = (force/volume ratio change) (Real \geq0.0 or blank)
    Harmonic index number (Integer \geq 0)
    Default slot width (Real \geq0.0 or blank)
    Default number of slots (Integer \geq 0 or blank)
```

Remarks: 1. No more than one AXSLDT card is permitted.
2. The default values are used on the GRIDS, SLBDY, CAXIFi, and CSLøTi data cards and must be nonzero as noted if these cards use the default.
3. The harmonic index number N must be entered on this card.
4. If the number of slots, M, is different in different regions or the cavity, this fact may be indicated on the CSLøTi and SLBDY cards. If the number of slots is zero, no matrices for CSLDTi elements are generated.
5. A zero entry for bulk modulus is treated as if the fluid was incompressible.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card BARQR Simple Beam Orientation Default

Description: Defines default values for fields 3 and 6-9 of the CBAR card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
BARDR	,	PID			X1, GO	X2	$\times 3$	F	
BARØR		39			0.6	2.9	-5.87	1	

Field
Contents
PID Identification number of PBAR property card (Integer > 0 or blank)
X1, X2, X3 Vector components measured in displacement coordinate system at GA to determine (with the vector from end A to end B) the orientation of the element coordinate system for the bar element (Real or blank; see below)
GO Grid point identification number (Integer > 0 ; see below)
F
Flag to specify the nature of fields $6-8$ as follows:

	6	7	8
$F=1$	$X 1$	$X 2$	$X 3$
$F=2$	$G 0$	blank	blank

Remarks: 1. The contents of fields on this card will be assumed for any CBAR card whose corresponding fields are blank.
2. Only one BARQR card may appear in the user's Bulk Data Deck.
3. For an explanation of bar element geometry, see Section 1.3.2.

NASTRAN DATA DECK

Input Data Card BDYC Combination of Substructure Boundary Sets

Description: Defines a combination of boundary sets by basic substructure to define a set of grid points and components which may be used in a REDUCE operation.

Format and Example:

1	2	3	4	5	6	7	8	9	10
BDYC	ID	NAME1	SID1	NAME2	SID2	NAME3	SID3		ghi
BDYC	157	WINGRT	7	MIDNG	15	FUSELAGE	32		GHI

+hi	$>$	NAME	SIDi	etc.					
+HI		PODI	175	WINGRT	15	CABIN	16		

Field

ID
NAMEi Name of basic substructure which contains the grid points defined by boundary set SIDi (BCD)
Identification number of the boundary set associated with basic substructure NAME (Integer >0)

Remarks: 1. Boundary sets must be selected in the Substructure Control Deck (BøUNDARY=ID) to be used by NASTRAN. Note that 'BQUNDARY' is a subcommand of the substructure REDUCE command.
2. The same substructure name may appear more than once per set.
3. The SIDi numbers need not be unique. The same number could appear for different component structures.
4. The SIDi numbers reference the set ID's of BDYS and BDYS1 cards.
5. The ID number must be unique with respect to all other BDYC data cards.
6. After two or more basic substructures are combined, the connected degrees of freedom are actually the same and may be referenced with any one of the substructure names. Redundant specification is allowed.

NASTRAN DATA DECK

Description: Defines the boundary between a fluid and a structure.

Format and Example:

1	2	3	4	5	6	7	8	9	10
BDYLIST	RH \emptyset	IDF1	IDF2	IDF3	IDF4	IDF5	IDF6	IDF7	abc
BDYLIST	.037	432	325	416	203	256	175	153	$345 A$

+bc	IDF8	etc.							def
+45 A	101	105	AXIS						

Field
Contents
Fluid mass density at boundary (Real ≥ 0.0 or blank. Default on AXIF card is used if blank)
IDFi Identification number of a RINGFL point (Integer > 0 or BCD. "AXIS" may be first and/or last entry on the logical card)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. Each logical card defines a boundary if RH $\emptyset \neq 0.0$. The order of the points must be sequential with the fluid on the right with respect to the direction of travel.
3. The BCD word, AXIS, defines an intersection with the polar axis of the fluid coordinate system.
4. There may be as many BDYLIST cards as the user requires. If the fluid density varies along the boundary there must be one BDYLIST card for each interval between fluid points.
5. The BDYLIST card is not required and should not be used to specify a rigid boundary where structural points are not defined. Such a boundary is automatically implied by the omission of a BDYLIST.
6. If RH \emptyset is 0.0 , no boundary matrix terms will be generated to connect the GRIDB points to the fluid. This option is a convenience for structural plotting purposes. GRIDB points may be located on a fluid ring (RINGFL) only if the rings are included in a BDYLIST.

NASTRAN DATA DECK

Description: This card is used to define a boundary set of grid points and degrees of freedom for a basic substructure. The boundary set is used in the substructure REDUCE operation.

Format and Example:

1	2	3	4	5	6	7	8	9	10
BDYS	SID	G1	C1	G2	C2	G3	C3		
BDYS	7	13	123456	15	123	17	123456		

Field

Contents

SID Identification number of BDYS set (Integer >0)
$\mathrm{F}_{\mathrm{i}} \mathrm{Grid}$ or scalar point identification number of a basic substructure (Integer >0)
Ci Component number - Any unique combination of the digits 1 - 6 (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points.

Remarks: 1. The set of boundary points defines the degrees of freedom which are to be retained in the matrices after the substructure REDUCE operation has been performed. An alternate input format is provided by the BDYS1 card.
2. The SID need not be unique.
3. The BDYS card must be referenced by the BDYC card in order to attach the basic substructure name to the boundary set specified on the BDYS card. Note that the same BDYS boundary set may be attached to more than one basic substructure name.

BULK DATA DECK

Input Data Card BDYS1 Boundary Set Definition

Description: This card is used to define a boundary set of grid points and degrees of freedom for a basic substructure. The boundary set is used in the substructure REDUCE operation.

Format and Examples:

1	2	3	4	5	6	7	8	9	10
BDYS 1	SID	C	G1	G2	G3	64	G5	G6	abc
BDYSI	15	123456	275	276	THRU	457	589	102	ABC
+bc	G7	G8	etc.		GN				
+BC	103	105			1275				

Field

Contents

SID Identification number of BDYSI set (Integer >0)
$\mathrm{Ci} \quad$ Component number - Any unique combination of the digits $1-6$ (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points.
Gi Grid or scalar point identification number of a basic substructure (Integer >0)

Remarks: 1. The set of boundary points defines the degrees of freedom which are to be retained in the matrices after the substructure REDUCE operation has been performed. An alternate format is provided by the BDYS card.
2. The "THRU" may appear in any field other than 2 and 9.
3. The SID need not be unique.
4. The BDYSI card must be referenced by the BDYC card in order to attach the basic substructure name to the boundary set specified on the BDYS card. Note that the same BDYS boundary set may be attached to more than one basic substructure name.

Description: Defines an aerodynamic macro element (panel) in terms of two leading edge locations and side chords.

Format and Example:

1	2		4		6	7	8	9	10
CAERD1	EID	PID	CP	NSPAN	NCH@RD	LSPAN	LCH@RD	IGID	ABC
CAERO1	1000	1		3			2	1	ABC
+BC	X1	Y1	Z1	X12	X4	Y4	24	$\times 43$	
$+8 \mathrm{C}$	0.0	0.0	0.0	1.0	0.2	1.0	0.0	0.8	

Field
Contents

EID Element identification number (unique Integer >0).
PID Identification number of property card (Integer >0).
CP Coordinate system for locating points 1 and 4 (Integer ≥ 0).
NSPAN Number of spanwise boxes; if a positive value is given, equal divisions are assumed; if zero or blank, a list of division points follows (Integer ≥ 0).

NCH@RD Number of chordwise boxes (same rule as for NSPAN).
LSPAN ID of an AEFACT data card containing a list of division points for spanwise boxes. Used only if field 5 is zero or blank (Integer >0 if NSPAN is zero or blank).

LCH@RD ID of an AEFACT data card containing a list of division points for chordwise boxes. Used only if field 6 is zero or blank (Integer > 0 if NCH@RD is zero or blank).

IGID Interference group identification (aerodynamic elements with different IGID's are uncoupled) (Integer >0).
$X 1, Y 1, Z 1 ; X 4, Y 4, Z 4$ Location of points 1 and 4 , in coordinate system CP (Real).
X12; X43 Edge chord (in aerodynamic coordinate system) (Real ≤ 0, and not both zero).

CAERØ1 (Cont.)

Remarks:

1. The boxes are numbered sequentially, beginning with EID. The user should be careful to ensure that all box numbers are unique, and different from structural grid ID's.
2. The number of division points is one greater than the number of boxes. Thus, if NSPAN $=3$, the division points are $0.0,0.333,0.667,1.000$. If the user supplies division points, the first and last points need not be 0 . and 1. (in which the corners of the panel would not be at the reference points).
3. A triangular element is formed if X 12 or $\mathrm{X} 43=0$.
4. The element coordinate system (right-handed) is shown in the sketch.
5. The continuation card is required.

Description: Defines an axisymmetric fluid element which connects $\mathbf{i}=2$, $i=3$, or $\mathbf{i}=4$ fluid points.

Formats and Examples:

1	2	3	4	5	6	7	8	9	10	
CAXIF2	EID	IDF1	IDF2					RH \emptyset	B	
CAXIF2	11	23	25			$.25 \mathrm{E}-03$				

CAXIF3	EID	IDF1	IDF2	IDF3		RH \emptyset	B		
CAXIF3	105	31	32	33			6.7 E 4		

CAXIF4	EID	IDF1	IDF2	IDF3	IDF4	RH \varnothing	B		
CAXIF4	524	421	425	424	422	$.5-3$	$2.5+3$		

Field

Contents

EID
Element identification number (Integer >0)
IDFj
RH \emptyset
B Fluid density in mass units (Real > 0.0 or blank)
Fluid bulk modulus (Real ≥ 0.0 or blank)

Identification numbers of connected GRIDF points, $j=1,2, \ldots i$ (Integer >0)

Remarks: 1. This card is allowed only if an AXSLØT card is also present.
2. The element identification number (EID) must be unique with respect to all other fluid or structural elements.
3. If RH \emptyset, or B are "blank" the corresponding values on the $A X S L \emptyset T$ data card are used, in which case the default must not be blank (undefined).
4. Plot elements are generated for these elements. Because each plot element connects two points, one is generated for the CAXIF2 element, three are generated for the CAXIF3 element, and four plot elements are generated for the CAXIF4 element. In the last case the elements connect the pairs of points (1-2), (2-3), (3-4) and (4-1).
5. If $B=0.0$, the fluid is considered to be incompressible.

NASTRAN DATA DECK

Description: Defines a simple beam element (BAR) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CBAR	$E I D$	PID	GA	GB	$X 1, G 0$	$X 2$	$X 3$	F	$a b c$
CBAR	2	39	7	3	13			2	123
+bc	PA	PB	Z1A	Z2A	Z3A	Z1B	Z2B	Z3B	
+23		513							

Field
EID
PID

GA, GB
X1, X2, X3

GO

F

PA, PB

Z1A, Z2A, Z3A
Z1B,Z2B,Z3B

Contents
Unique element identification number (Integer >0)
Identification number of a PBAR property card (Default is EID unless BAR@R card has nonzero entry in field 3) (Integer > 0 or blank*)

Grid point identification numbers of connection points (Integer $>0 ; \mathrm{GA} \neq \mathrm{GB}$)
Components of vector \vec{v}, at end a, (figure $1(a)$ on page $1.3-15$) measured at end a, parallel to the components of the displacement coordinate system for GA, to determine (with the vector from end a to end b) the orientation of the element coordinate system for the bar element (Real, X1 ${ }^{2}+X 2^{2}+X 3^{2}>0$ or blank*, see below).

Grid point identification number to optionally supply XI, X2, X3 (integer >0 or blank*) (see below)

Flag to specify the nature of fields $6-8$ as follows:

	6	7	8
$F=$ blank*			
$F=1$	X1	$X 2$	$X 3$
$F=2$	G0	blank $/ 0$	blank $/ 0$

Pin flags for bar ends a and b, respectively, that are used to insure that the bar cannot resist a force or moment corresponding to the pin flag at that respective end of the bar. (Up to 5 of the unique digits 1-6 anywhere in the field with no imbedded blanks; integer >0) (These degree of freedom codes refer to the element forces and not global forces. The bar must have stiffness associated with the pin flag. For example, if pin flag 4 is specified, the bar must have a value for J, the torsional constant.)

Components of offset vectors \vec{w}_{a} and \vec{W}_{b}, respectively, (see figure $1(a)$, page 1.3-15) in displacement coordinate systems at points GA and GB, respectively. (Real or blank)

[^1]
NASTRAN DATA DECK

CBAR (Cont.)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. For an explanation of bar element geometry, see Section 1.3.2.
3. Zero (0) must be used in fields 7 and 8 in order to override entries in these fields associated with $F=1$ in field 9 on a BAR $\emptyset R$ card.
4. If there are no pin flags or offsets, the continuation card may be omitted.
Input Data Card CCONEAX Axisymmetric Shell Element Connection

Description: Defines the connection of a conical shell element.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CCONEAX	ID	PID	RA	RB					
CCONEAX	1	2	3	4					

Field

Contents

EID	Unique element identification number (Integer >0)
PID	Identification number of a PCONEAX card (Default is EID) (Integer >0)
RA	Identification number of a RINGAX card (Integer $>0 ; R A \neq R B$)
$R B$	Identification number of a RINGAX card (Integer $>0 ; R A \neq R B$)

Remarks: 1: This card is allowed if and only if an AXIC card is also present.
2. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.

NASTRAN DATA DECK

Input Data Card CDAMP1

Scalar Damper Connection

Description: Defines a scalar damper element of the structural model.

Format and Example:

1	2	3	4	6	7	8			
CDAMP1	EID	PID	G1	C1	G2	C2			
CDAMP1	19	6	0		23	2			

Field

Contents

EID	Unique element identification number (Integer >0)
PID	Identification number of a PDAMP property card (Default is EID) (Integer $>0)$
G1, G2	Geometric grid point identification number (Integer ≥ 0)
C1, C2	Component number $(6 \geq$ Integer $\geq 0)$

Remarks: .1. Scalar points may be used for G1 and/or G2 in which case the corresponding Cl and/or C2 must be zero or blank. Zero or blank may be used to indicate a grounded* terminal G1 or G2 with a corresponding blank or zero C1 or C2. If only scalar points and/or ground are involved, it is more efficient to use the CDAMP3 card.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. The two connection points, (G1, C1) and (G2, C2), must be distinct.
4. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

* A grounded terminal is a scalar point or coordinate of. a geometric grid point whose displacement is constrained to zero.

NASTRAN DATA DECK

Input Data Card CDAMP2 Scalar Damper Property and Connection

Description: Defines a scalar damper element of the structural model without reference to a property value.

Format and Example:

1	2	3	4	5	6	7	8		
CDAMP2	EID	B	G1	C1	G2	C2			
CDAMP2	16	-2.98	32	1					

Field

Contents

EID	Unique element identification number (Integer >0)
B	The value of the scalar damper (Real)
G1, G2	Geometric grid point identification number (Integer ≥ 0)
C1, C2	Component number $(6 \geq$ Integer $\geq 0)$

Remarks: 1. Scalar points may be used for G1 and/or G2 in which case the corresponding C1 and/or C2 must be zero or blank. Zero or blank may be used to indicate a grounded* terminal G1 or G2 with a corresponding blank or zero C1 or C2. If only scalar points and/or ground are involved, it is mare efficient to use the CDAMP4 card.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. This single card completely defines the element since no material or geometric properties are required.
4. The two connection points, (G1, C1) and (G2, C2), must be distinct.
5. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

[^2]NASTRAN DATA DECK

Description: Defines a scalar damper element of the structural model which is connected only to scalar points.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CDAMP3	EID	PID	S1	S2	EID	PID	S1	S2	
CDAMP3	16	978	24	36	17	978	24	37	

Field

Contents

EID Unique element identification number (Integer >0)
PID Identification number of a PDAMP property card (Default is EID) (Integer >0)
S1, S2
Scalar point identification numbers (Integer ≥ 0; SI \neq S2)

Remarks: 1. S1 or S2 may be blank or zero indicating a constrained coordinate.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. One or two scalar damper elements may be defined on a sinale card.
4. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines a scalar damper element of the structural model which is connected only to scalar points.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CDAMP4	EID	B	S1	S2	EID	B	S1	S2	
CDAMP4	16	-2.6	4	9	17	+8.6	3	7	

Field

Contents

EID
B
S1, S2
Unique element identification number (Integer >0)
The scalar damper value (Real)
Scalar point identification numbers (Integer $\geq 0 ; \mathrm{S} 1 \neq \mathrm{S} 2$)

Remarks: 1. S1 or $\$ 2$ may be blank or zero indicating a constrained coordinate.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. This card completely defines the element since no material or geometric properties are required.
4. One or two scalar damper elements may be defined on a single card.
5. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CDUMi Dummy Element Connection

Description: Defines a dummy element (1 $\leq i \leq 9$).

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CDUMi | EID | PID | G1 | G2 | G3 | G4 | -etc.- | GN | abc |
| CDUM2 | 114 | 108 | 2 | 5 | 6 | 8 | | 11 | ABC |
| +bc | A1 | A2 | -etc. - | | | AN | | | |
| +BC | 2.4 | | $3 . E 4$ | 2 | | 50 | | | |

Field
Contents
EID
PID
GI... GN

AI...AN

Remarks: 1. The user must code the associated element routines for matrix generation, stress recovery, etc., and perform a link edit to replace the dummy routines.
2. If no property card is required, field 3 may contain the material identification number.
3. Additional entries are defined in the user written element routines.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CELAS1 Scalar Spring Connection

Description: Defines a scalar spring element of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	10	
CELAS 1	EID	PID	G1	C1	G2	C2			
CELAS 1	2	6			8	1			

Field
Contents
EID Unique element identification number (Integer >0)
PID Identification number of a PELAS property card (Default is EID) (Integer >0)
GI, G2 Geometric grid point identification number (Integer >0)
$\mathrm{C} 1, \mathrm{C} 2 \quad$ Component number ($6 \geq$ Integer ≥ 0)

Remarks: 1. Scalar points may be used for G1 and/or G2 in which case the corresponding Cl and/or C2 must be zero or blank. Zero or blank may be used to indicate a grounded* terminal G1 or G2 with a corresponding blank or zero C1 or C2. If only scalar points and/or ground are involved, it is more efficient to use the CELAS3 card.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. The two connection points, (G1, C1) and (G2, C2), must be distinct.
4. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

* A grounded terminal is a scalar point or coordinate of a geometric grid point whose displacement is constrained to zero.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CELAS2 Scalar Spring Property and Connection

Description: Defines a scalar spring element of the structural model without reference to a property value.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CELAS2	EID	K	G1	C1	G2	C2	GE	S	
CELAS2	28	$6.2+3$	32		19	4			

Field

Contents

EID Unique element identification number (Integer >0)
$K \quad$ The value of the scalar spring (Real)
G1, G2 Geometric grid point identification number (Integer ≥ 0)
C1, C2 Components number ($6 \geq$ Integer ≥ 0)
GE Damping coefficient (Real)
S
Stress coefficient (Real)

Remarks: 1. Scalar points may be used for Gl and/or G2 in which case the corresponding C1 and/or C2 must be zero or blank. Zero or blank may be used to indicate a grounded* terminal G1 or G2 with a corresponding blank or zero C1 or C2. If only scalar points and/or ground are involved, it is more efficient to use the CELAS4 card.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. This single card completely defines the element since no material or geometric properties are required.
4. The two connection points, (G1, C1) and (G2, C2), must be distinct.
5. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

[^3]NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CELAS3
Scalar Spring Connection

Description: Defines a scalar spring element of the structural model which is connected only to scalar points.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CELAS3	EID	PID	S1	S2	EID	PID	S1	S2	
CELAS3	19	2	14	15	2	3	0	28	

Field
Contents

EID	Unique element identification number (Integer >0)
PID	Identification number of a PELAS property card (Default is EID) (Integer >0)
S1, S2	Scalar point identification numbers (Integer $\geq 0 ; S 1 \neq S 2)$

Remarks: 1. S1 or S2 may be blank or zero indicating a constrained coordinate.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. One or two scalar springs may be defined on a single card.
4. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CELAS4
Scalar Spring Property and Connection

Description: Defines a scalar element of the structural model which is connected only to scalar points without reference to a property value.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CELAS4	EID	K	S1	S2	EID	K	S1	S2	
CELAS4	42	6.2-3	2		13	6.2-3	0	2	

Field

Contents

EID	Unique element identification number (Integer >0)
K	The scalar spring value (Real)
S1, S2	Scalar point identification numbers (Integer $\geq 0 ;$ S] \neq S2)

Remarks: 1. Sl or S2 but not both may be blank or zero indicating a constrained coordinate.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. This card completely defines the element since no material or geometric properties are required.
4. No damping coefficient is available with this form. (Assumed to be 0.0)
5. No stress coefficient is available with this form.
6. One or two scalar springs may be defined on a single card.
7. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines three types of fluid elements for axisymmetric fluid model.

Format and Example:

1	2	5	6	6	7	8	9	10	
CFLUID2	EID	IDF1	IDF2				RH \varnothing	B	
CFLUID2	100	11	14			.025	0.0		

CFLUID3	EID	IDF1	IDF2	IDF3		RH \emptyset	B		
CFLUID3	110	15	13	12		1.2			

CFLUID4	EID	IDF1	IDF2	IDF3	IDF4	RH \varnothing	B		
CFLUID4	120	11	15	12	14				

Field
EID
IDFi
RHø
B

Contents

Element identification number (Integer, $0<\mathrm{Id}_{\mathrm{c}}<10^{5}$)
Identification number of RINGFL card (Integer >0; IDF1 \neq IDF2 \neq IDF3 \neq IDF4) Mass density (Real > 0.0 or blank; If blank, the AXIF default value is used) Bulk modulus, nressure per volume ratio (Real or blank. Default value on AXIF card is used if blank)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. Element identification number must be unique with respect to all other fluid, scalar and structural elements.
3. The volume defined by IDFi is a body of revolution about the polar axis of the Fluid Coordinate System defined by AXIF. CFLUID2 defines a thick disk with IDF1 and IDF2 defining the outer corners as in the sketch.

4. All interior angles must be less than 180°.
5. The order of connected RINGFL points is arbitrary.
6. If the bulk modulus value is zero the fluid is assumed incompressible.

NASTRAN DATA DECK

Description: Defines a boundary element for heat transfer analysis which is used for heat flux, thermal vector flux, convection and/or radiation.

Format and Example:

1	2	3	4	5	6	7	8		
CHBDY	EID	PID	TYPE	G1	G2	G3	G4		
CHBDY	721	100	LINE	101	98				
+abc	GA1	GA2	GA3	GA4	V1	V2	V3		
+BD721	102	102			1.00	0.0	0.0		

Field	Contents
EID	Element identification number (Integer >0)
PID	Property identification number (Integer > 0)
TYPE	Type of area involved (must be one of "PøINT", "LINE", "REV", "AREA3", "AREA4" or "ELCYL")
G1,G2,G3,G4	Grid point identification numbers of primary connected points (Integer >0 or blank)
GA1,GA2, GA3, GA4	Grid or scalar point identification numbers of associated ambient points (Integer > 0 or blank)
V1, V2, V3	Vector (in the basic coordinate system) used for element orientation (real or blank)

Remarks:

1. The continuation card is not required.
2. The six types have the following characteristics:
a. The "PØINT" type has one primary grid point, requires a property card, and the normal vector $\{V 1, V 2, V 3\}$ must be given if thermal vector flux is to be used.
b. The "LINE" type has two primary grid points, requires a property card, and the vector is required if thermal vector flux is to be used.
c. The "REV" type has two primary grid points which must lie in the $x-z$ plane of the basic coordinate system with $x>0$. The defined area is a conical section with z as the axis of symmetry. A property card is required for convection, radiation, or thermal vector flux.
d. The "AREA3" and "AREA4" types have three and four primary grid points, respectively. These points define a triangular or quadrilateral surface and must be ordered to go around the boundary. A property card is required for convection, radiation, or thermal vector flux.
e. The "ELCYL" type (elliptic cylinder) has two connected primary grid points, it requires a property card, and if thermal vector flux is used, the vector must be nonzero.

NASTRAN DATA DECK

CHBDY (Cont.)
3. A property card, PHBDY, is used to define the associated area factors, the emissivity, the absorbtivity, and the principal radii of the elliptic cylinder. The material coefficients used for convection and thermal capacity are referenced by the PHBDY card. See this card description for details.
4. The associated points, GA1, GA2, etc., may be either grid or scalar points, and are used to define the ambient temperature for a convection field. These points correspond to the primary points G1, G2, etc., and the number of them depends on the TYPE option, but they need not be unique. Their values may be set in statics with an SPC card, or they may be connected to other elements. If any field is blank, the ambient temperature associated with that grid point is assumed to be zero.
5. Heat flux may be applied to this element with QBDY1 or QBDY2 cards.
6. Thermal vector flux from a directional source may be applied to this element with a QVECT card. See Figure 1 on page 1.8-7 for the definition of the normal vector for each element type.

Description: Defines two types of hexahedron elements (3 dimensional solid with 8 vertices and 6 quadrilateral faces, HEXAi) of the structural model.

Format and Example:

1	2	3	4	5	6	6	8	10	
CHEXAi	EID	MID	G1	G2	G3	G4	G5	G6	abc
CHEXA2	15	2	7	8	9	10	15	16	ABC

+bc	$\mathrm{G7}$	GB							
+BC	17	18							

Field

Contents

CHEXAi
CHEXAI or CHEXA2 (see Remark 7)
EID Element identification number (Integer >0)
MID Material identification number (Integer >0)
G1,..., G8 Grid point identification numbers of connection points (Integers >0, G1 $\neq \mathrm{G} 2 \neq \ldots \neq \mathrm{GB}$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. The order at the grid points is: G1, G2, G3, G4 in order around one quadrilateral face. G5, G6, G7, G8 are in order in the same direction around the opposite quadrilateral, with G1 and G5 along the same edge.
3. The quadrilateral faces must be nearly planar.
4. There is no nonstructural mass.
5. For structural problems, material must be defined by MAT1 card.
6. Stresses are given in the basic coordinate system.
7. CHEXA1 represents the element as 5 tetrahedra, CHEXA2 represents the element as 10 overlapping tetrahedra.
8. For heat transfer problems, material may be defined with either a MAT4 or MAT5 card.

Input Data Card CIHEXI Linear Isoparametric Hexahedron Element Connection

Description: Defines a linear isoparametric hexahedron element of the structural model.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIHEXI | EID | PID | G1 | G2 | G3 | G4 | G5 | G6 | abc |
| CIHEXI | 137 | 5 | 3 | 8 | 5 | 4 | 9 | 14 | ABC |
| +bC | G7 | G8 | | | | | | | |
| +BC | 11 | 10 | | | | | | | |

Field

Contents

EID Element identification number (Integer >0)
PID Identification number of a PIHEX property card (Integer >0)
G1,..., G8 Grid point identification numbers of connection points (Integer >0, G1 \neq G2 $\neq \ldots \neq \mathrm{G} 8$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1, G2, G3, G4 must be given in counter-clockwise order about one quadrilateral face when viewed from inside the element. G5, G6, G7, G8 are in order in the same direction around the opposite quadrilateral, with G1 and G5 along the same edge.
3. There is no non-structural mass.
4. The quadrilateral faces need not be planar.
5. Stresses are given in the basic coordinate system.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CIHEX2 Quadratic Isoparametric Hexahedron Element Connection

Description: Defines a quadratic isoparametric hexahedron element of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	G	3
CIHEX2	EID	PID	G1	G2	G3	G4	G5	G6	abc	
CIHEX2	110	7	3	8	12	13	14	9	ABC	

+bc	G 7	G 8	G9	G10	G11	G12	G13	G14	def
+BC	5	4	16	19	20	17	23	27	DEF

+ Gef	G15	G16	G17	G18	G19	, G20			
+ EF	31	32	33	28	25	24			

Field
Contents
EID Element identification number (Integer >0)
PID Identification number of a PIHEX property card (Integer >0)
G1,..., G20 Grid point identification numbers of connection points (Integer >0, $\mathrm{G} 1 \neq \mathrm{G} 2 \neq \ldots \neq \mathrm{G} 20$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points Gl,..., G8 must be given in counter-clockwise order about one quadrilateral face when viewed from inside the element. G9,...,G12 and G13,...,G20 are in the same direction with GI, G9 and G13 along the same edge.
3. There is no nonstructural mass.
4. The quadrilateral faces need not be planar.
5. Stresses are given in the basic coordinate system.

NASTRAN DATA DECK
2.4-28j (12/31/74)

Description: Defines a cubic isoparametric hexahedron element of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CIHEX3	EID	PID	G1	G2	G3	G4	G5	G6	abc
CIHEX3	15	3	4	9	12	17	18	19	ABC

+bc	G7	G8	G9	G10	G11	G12	G13	G14	def
$+B C$	20	13	10	7	6	5	22	25	DEF

+ ef	G15	G16	G17	G18	G19	G20	G21	G22	ghi
$+E F$	26	23	28	31	32	29	36	41	GHI

+hi	G23	G24	G25	G26	G27	G28	G29	G30	jk1
+HI	44	49	50	51	52	45	42	39	JKL

+KI	G31	G32							
+KL	38	37							

Field

Contents

EID
PID
Element identification number (Integer >0)
Identification number of a PIHEX property card (Integer >0)
Grid point identification number of connection points (Integer >0, G1 $\neq \mathrm{G} 2 \neq \ldots \neq \mathrm{G} 32$)

NASTRAN DATA DECK
 CIHEX3 (Cont.)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points Gl,..., G12 must be given in counter-clockwise order about one quadrilateral face when viewed from inside the element. G13,...,G16; G17,...,G20; and G21,..., G32 are in the same direction with G1, G13, G17, G21 along the same edge.
3. There is no nonstructural mass.
4. The quadrilateral faces need not be planar.
5. Stresses are given in the basic coordinate system.

BULK DATA DECK

Input Data Card CMASSI
Scalar Mass Connection

Description: Defines a scalar mass element of the structural model.

Format and Example:

1	2	3		4	6	7	8		
CMASS 1	EID	PID	G1	C1	G2	C2			
CMASS1	32	6	2	1	2	3			

Field

Contents

EID	Unique element identification number (Integer $>0)$.
PID	Identification number of a PMASS property card (Default is EID) (Integer $>0)$
G1, G2	Geometric grid point identification number (Integer $\geq 0)$
C1, C2	Component number $(6 \geq$ Integer $\geq 0)$

Remarks: 1. Scalar points may be used for G1 and/or G2 in which case the corresponding C1 and/or C2 must be zero or blank. Zero or blank may be used to indicate a grounded* terminal G1 or G2 with a corresponding blank or zero C1 or C2. If only scalar points and/or ground are involved, it is more efficient to use the CMASS3 card.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. The two connection points, (G1, C1) and (G2, C2), must be distinct.
4. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

* A grounded terminal is a scalar point or coordinate of a geometric grid point whose displacement is constrained to zero.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CMASS2
Scalar Mass Property and Connection

Description: Defines a scalar mass element of the structural model without reference to a property value.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CMASS2	EID	M	G1	C1	G2	C2			
CMASS2	32	9.25	6	1	7				

Field

Contents

EID
Unique element identification number (Integer >0)
M
The value of the scalar mass (Real)
G1, G2
Geometric grid point identification number (Integer ≥ 0)
C1, C2
Component number ($6 \geq$ Integer ≥ 0)

Remarks: 1. Scalar points may be used for G1 and/or G2 in which case the corresponding C1 and/or C2 must be zero or blank. Zero or blank may be used to indicate a grounded* terminal G1 or G2 with a corresponding blank or zero C1 or C2. If only scalar points and/or ground are involved, it is more efficient to use the CMASS4 card.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. This card completely defines the element since no material or geometric properties are required.
4. The two connection points, (G1, C1) and (G2, C2), must be distinct.
5. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

[^4]NASTRAN DATA DECK

Description: Defines a scalar mass element of the structural model which is connected only to scalar points.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CMASS 3	EID	PID	S1	S2	EID	PID	S1	S2	
CMASS3	13	42	62	1					

Field
Contents

EID	Unique element identification number (Integer >0)
PID	Identification number of a PMASS property card (Default is EID) (Integer >0)
S1, S2	Scalar point identification numbers (Integer $\geq 0 ; S 1 \neq S 2)$

Remarks: 1. S1 or $\$ 2$ may be blank or zero indicating a constrained coordinate.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. One or two scalar masses may be defined on a single card.
4. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CMASS4
Scalar Mass Property and Connection

Description: Defines a scalar mass element of the structural model which is connected only to scalar points without reference to a property value.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CMASS4	EID	M	S1	S2	EID	M	S1	S2	
CMASS4	23	14.92	6	23	2	-16.3	0	29	

Field

Contents

Unique element identification number (Integer >0)
The scalar mass value (Real)
Scalar point identification numbers (Integer $\geq 0 ; \mathrm{S} 1 \neq \mathrm{S} 2$)

Remarks: 1. S1 or S2 may be blank or zero indicating a constrained coordinate.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. This card completely defines the element since no material or geometric properties are required.
4. One or two scalar masses may be defined on a single card.
5. For a discussion of the scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CNGRNT
Identical Elements Indicator

Description: Designates secondary element(s) identical to a primary element.

Format and Example:

1	2	4	4	6	7	8	9	10	
CNGRNT	PRID	SECID1	SECID2	SECID3	SECID4	SECID5	SECID6	SECID7	abc
CNGRNT	11	2	17	34	35	36			

Alternate Form

CNGRNT	PRID	SECID1	"THRU".	SECID2					
CNGRNT	7	2	THRU	55					

Field

Contents

PRID Identification number of the primary element (not necessarily the lowest number) for which the stiffness, mass and damping matrices will be calculated.

SECIDi Identification number(s) of secondary element(s) whose matrices will be identical to the primary element.

Remarks: 1. Orientation, geometry, etc. must be truly identical such that the same stiffness, mass and damping matrices are generated in the global coordinate system.
2. This feature is automatically used by the INPUT module.
3. An element that has been listed as a primary element on any CNGRNT card cannot be listed as a secondary element either on that card or on any other CNGRNT card.
4. The CNGRNT feature cannot be used when an AXIC card is present in the bulk data deck.

Description: Defines the grid point and degree of freedom connectivities between two substructures for a manual CDMBINE operation.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CONCT	SID	C	SUBA	SUBB	-				def
CQNCT	307	1236	WINGRT	FUSELAGE					DEF
+ef	GA1	GB1	GA2	GB2	GA3	GB3	GA4	GB4	hij
+EF	201	207	958	214	971	216	982		HIJ

Field
SID
C
SUBA, SUBB
GA i, GBi

Contents

Identification number of connectivity set (Integer >0)
Component number - Any unique combination of the digits $1-6$ (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points.
Names of basic substructures being connected (BCD).
Grid or scalar point identification numbers GAi from SUBA connects to GBi from SUBB by the degrees of freedom specified in C (Integer >0)

Remarks: 1. At least one continuation card must be present.
2. Components specified on a CØNCT card will be overridden by RELES cards.
3. Several CØNCT and CØNCTI cards may be input with the same value of SID.
4. An alternate format is given by the CONCTl data card.
5. Connectivity sets must be selected in the Substructure Control Deck (CØNNECT=SID) to be used by NASTRAN. Note that 'CØNNECT' is a subcommand of the substructure C $\mathrm{C}_{\mathrm{MBI}}$ INE command.
6. SUBA and SUBB must be component basic substructures of the pseudostructures being combined as specified on the substructure CDMBINE command card. SUBA and SUBB must not be components of the same pseudostructure.
In the figure below, a substructure "tree" and a set of substructure command cards are shown. The CØNNECT subcommand references the example CØNCT card above. In this example, pseudostructure PSUB1 and PSUB2 are combined and connected only at points in their respective basic component substructures WINGRT and FUSELAGE.

NASTRAN DATA DECK

CøNCT (Cont'd)

CøMBINE(MANUAL) PSUB1,PSUB2

NAME $=$ PPSUB
$T \emptyset L E R=0.01$
CONNECT $=307$.

Description: Defines the grid point and degree of freedom connectivities between two or more substructures for a manual C9MBINE operation.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| CONCT1 | SID | NAME1 | NAME2 | NAME3 | NAME4 | NAME5 | NAME6 | NAME7 | def |
| CQNCT1 | 805 | WINGRT | FUSELAGE | MIDWG | PØD | | | | DEF |

+ef	Cl	G11	G12	G13	G14	G15	G16	G17	hij
$+E F$	123	528	17	32	106				HIJ

+ij	C2	G21	G22	G23	G24	G25	G26	G27	
+IJ	46	518							etc.

Field
Contents

SID
NAME ${ }^{i}$
Ci

Gij

$$
\text { Identification number of connectivity set (Integer }>0 \text {) }
$$

Basic substructure name (BCD)
Component number - Any unique combination of the digits 1 - 6 (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points.
Grid or scalar point identification number in substructure namei with components Ci (Integer >0)

Remarks: 1. As least one continuation card must be present.
2. Components specified on CØNCTI card will not be overridden by RELES cards.
3. Several C@NCT and CøNCTl cards may be input with the same value of SID.
4. An alternate format is given by the CøNCT card.
5. Connectivity sets must be selected in the Substructure Control Deck (CめNNECT=SID) to be used by NASTRAN. Note that 'CQNNECT' is a subcommand of the substructure CØMBINE command.
6. The NAMEi's must be the names of basic substructure components of the pseudostructures named on the CDMBINE card in the Substructure Control Deck. See the CØNCT card for a more complete discussion related to the combination of two substructures.

NASTRAN DATA DECK

Description: Defines a 6×6 symmetric mass matrix at a geometric grid point of the structural mode1.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CDNM1	EID	G	CID	M11	M21	M22	M31	M32	abc
CDNM1	2	22	2	2.9		6.3			+1

+bc	M33	M41	M42	M43	M44	M51	M52	M53	def
+1	4.8				28.6				+2

+ef	M54	M55	M61	M62	M63	M64	M65	M66	
+2		28.6						28.6	

Field

Contents

EID	Unique element identification number (Integer >0)
G	Grid point identification number (Integer >0)
CID	Coordinate system identification number for the mass matrix (Integer ≥ 0)
Mij	Mass matrix values (Real)

Remarks: 1. For a less general means of defining concentrated mass at grid points, see C@NM2.
2. Element identification numbers must be unique with respect to all other element identification numbers.

NASTRAN DATA DECK

Description: Defines a concentrated mass at a grid point of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CONM2	EID	G	CID	M	$X 1$	$X 2$	$X 3$		abc
C@NM2	2	15	6	49.7					123

$+b c$	$I 11$	$I 21$	$I 22$	$I 31$	$I 32$	$I 33$			
+23	16.2		16.2			7.8			

Field
Contents
EID
G
Ement identification number (integer >0)
Grid point identification number (Integer >0)
CID Coordinate system identification number (Integer ≥ 0)
M
Mass Value (Real)
X1, X2, X3
Iij
Offset distances for the mass in the coordinate system defined in field 4 (Real) Mass moments of inertia measured at the mass c.g. in coordinate system defined by field 4 (Real)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. For a more general means of defining concentrated mass at grid points, see CØNMT.
3. The continuation card may be omitted.
4. The form of the inertia matrix about its c.g. is taken as:

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card C C NRดD
Rod Element Property and Connection

Description: Defines a rod element of the structural model without reference to a property card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQNROD	EID	G1	G2	MID	A	J	C	NSM	
CQNR $\emptyset D$	2	16	17	23	2.69				

Field	Contents
EID	Unique element identification number (Integer >0)
G1, G2	Grid point identification numbers of connection points (Integer $>0 ; \mathrm{G1} \neq \mathrm{G} 2$)
MID	Material identification number (Integer >0)
A	Area of rod (Real)
J	Torsional constant (Real)
C	Coefficient for torsional stress determination (Real)
NSM	Nonstructural mass per unit length (Real)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. For structural problems, CØNRØD cards may only reference MATl material cards.
3. For heat transfer problems, CØNRDD cards may only reference MAT4 or MAT5 material cards.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CQRDIC

Cylindrical Coordinate System Definition

Description: Defines a cylindrical coordinate system by reference to three grid points. These points must be defined in coordinate systems whose definition does not involve the coordinate system being defined. The first point is the origin, the second lies on the z-axis, and the third; lies in the plane of the azimuthal origin.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CaRDIC	CID	G1	G2	G3	CID	G1	G2	G3	
CORDIC	3	16	32	19					

Field
Contents
CID
Coordinate system identification number (Integer >0)
G1, G2, G3
Grid point identification numbers (Integer $>0 ; \mathrm{G} 1 \neq \mathrm{G} 2 \neq \mathrm{G} 3$)

Remarks: 1. Coordinaté system identification numbers on all C@RD1R, CØRD1C, CØRD1S, CØRD2R, CDRD2C, and C@RD2S cards must all be unique.
2. The three points $G 1, G 2, G 3$ must be noncollinear.
3. The location of a grid point (P in the sketch) in this coordinate system is given by (R, θ, Z) where θ is measured in degrees.
4. The displacement coordinate directions at P are dependent on the location of P as shown above by (u_{r}, u_{θ}, u_{z}).
5. Points on the z-axis may not have their displacement directions defined in this coordinate system since an ambiguity results.
6. One or two coordinate systems may be defined on a single card.

NASTRAN DATA DECK

Description: Defines a rectangular coordinate system by reference to three grid points. These points mus \bar{t} be defined in coordinate systems whose definition does not involve the coordinate system being defined. The first point is the origin, the second lies on the z-axis, and the third lies in the $x-z$ plane. i

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQRD1R	CID	G1	G2	G3	CID	G1	G2	G3	
CORD1R	3	16	32	19					

Field

Contents
CID.
Coordinate system identification number (Integer >0)
G1, G2, G3
Grid point identification numbers (Integer $>0 ; G 1 \neq G 2 \neq G 3$)

Remarks: 1. Coordinate system identification numbers on all CØRD1R, CØRD1C, CØRD1S, CØRD2R, C@RD2C, and CØRD2S cards must all be unique.
2. The three points G1, G2, G3 must be noncollinear.
3. The location of a grid point (P in the sketch) in this coordinate system is given by (X, Y, Z).
4. The displacement coordinate directions at P are shown above by (u_{x}, u_{y}, u_{z}).
/5. One or two coordinate systems may be defined on a single card.

NASTRAN DATA DECK

BULK DATA DECK

Description: Defines a spherical coordinate system by reference to three grid points. These points must be defined in coordinate systems whose definition does not involve the coordinate system being defined: The first point is the origin, the second lies on the z-axis, and the third lies in the plane of the azimuthal origin.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CaRDIS	CID	G1	G2	G3	CID	G1	G2	G3	
CORDIS	3	16	32	19					

Field
Contents
CID Coordinate system identification number (Integer >0)
G1, G2, G3 Grid point identification numbers (Integer >0; G1 $\neq G 2 \neq G 3$)
Remarks: 1. Coordinate system identification numbers on all CØRD1R, CØRD1C, CØRD1S, CØRD2R, C@RD2C, and CQRD2S cards must all be unique.
2. The three points GI, G2, G3 must be noncollinear.
3. The location of a grid point (P in the sketch) in this coordinate system is given by (R, θ, Φ) where θ and Φ are measured in degrees.
4. The displacement coordinate directions at P are dependent on the location of P as shown above by ($u_{r}, u_{\theta}, u_{\phi}$).
5. Points on the polar axis may not have their displacement directions defined in this coordinate system since an ambiguity results.
6. One or two coordinate systems may be defined on a single card.

NASTRAN DATA DECK

Description: Defines a cylindrical coordinate system by reference to the coordinates of three points. The first point defines the origin. The second point defines the direction of the z-axis. The third lies in the plane of the azimuthal origin. The reference coordinate must be independently defined.

Format and Example:

1	2	3	4	5	6	7	8	10	
CaRD2C	CID	RID	A1	A2	A3	B1	B2	B3	ABC
CดRD2C	3	17	-2.9	1.0	0.0	3.6	0.0	1.0	123

$+B C$	$C 1$	$C 2$	$C 3$						
+23	5.2	1.0	-2.9						

Field

CID
RID
A1, A2, A3
B1, B2, B3
C1,C2,C3

Contents

Coordinate system identification number (Integer >0)
Reference to a coordinate system which is defined independently of new coordinate system (Integer ≥ 0 or blank)

Coordinates of three points in coordinate system defined in field 3 (Real)

CØRD2C (Cont.)

Remarks: 1. Continuation card must be present.
2. The three points ($A 1, A 2, A 3$), ($B 1, B 2, B 3$), ($C 1, C 2, C 3$) must be unique and noncollinear. Noncollinearity is checked by the geometry processor.
3. Coordinate system identification numbers on all CØRDIR, CØRDIC, CØRD1S, CØRD2R, CDRD2C, and C@RD2S cards must all be unique.
4. An RID of zero references the basic coordinate system.
5. The location of a grid point (P in the sketch) in this coordinate system is given by (R, θ, Z) where θ is measured in degrees.
6. The displacement coordinate directions at P are dependent on the location of P as shown above by (u_{r}, u_{θ}, u_{z}).
7. Points on the z-axis may not have their displacement direction defined in this coordinate system since an ambiguity results.

BULK DATA DECK

Input Data Card CDRD2R
Rectangular Coordinate System Definition

Description: Defines a rectangular coordinate system by reference to the coordinates of three points. The first point defines the origin. The second point defines the direction of the z-axis. The third point defines a vector which, with the z-axis, defines the $x-z$ plane. The reference coordinate must be independently defined.

Format and Example:

1	2	3	4	5	6	7	8	9	
C@RD2R	CID	RID	A1	A2	A3	B1	B2	B3	ABC
C@RD2R	3	17	-2.9	1.0	0.0	3.6	0.0	1.0	123

$+B C$	$C 1$	$C 2$	$C 3$						
+23	5.2	1.0	-2.9						

Field
CID
Coordinate system identification number (Integer >0)
RID

A1,A2,A3
B1, B2, B3
C1,C2,C3

Contents

Reference to a coordinate system which is defined independently of new coordinate system (Integer ≥ 0 or blank)

Remarks: 1. Continuation card must be present.
2. The three points $(A 1, A 2, A 3),(B 1, B 2, B 3),(C 1, C 2, C 3)$ must be unique and noncollinear. Noncollinearity is checked by the geometry processor.
3. Coordinate system identification numbers on all CØRD1R, CØRD1C, CØRD1S, CØRD2R, C@RD2C, and C $\emptyset R D 2 S$ cards must all be unique.
4. An RID of zero references the basic coordinate system.
5. The location of a grid point (P in the sketch) in this coordinate system is given by (X, Y, Z).
6. The displacement coordinate directions at P are shown by $\left(u_{x}, u_{y}, u_{z}\right)$.

2.4-51 (3/1/70)

BULK DATA DECK

Input Data Card CoRD2S

Spherical Coordinate System Definition

Description: Defines a spherical coordinate system by reference to the coordinates of three points. The first point defines the origin. The second point defines the direction of the z-axis. The third lies in the plane of the azimuthal origin. The reference coordinate must be independently defined.

Format and Example:

1	2	3	4	5	6	7	8	10	
CQRD2S	CID	RID	A1	A2	A3	B1	B2	B3	ABC
C@RD2S	3	17	-2.9	1.0	0.0	3.6	0.0	1.0	123

+BC	C 1	C 2	C 3						
+23	5.2	1.0	-2.9						

Field

Contents
CID
Coordinate system identification number (Integer >0)
RID Reference to a coordinate system which is defined independently of new coordinate system (Integer ≥ 0 or blank)
A1, A2,A3
B1, B2, B3
C1,C2,C3
Coordinates of three points in coordinate system defined in field 3 (Real)
(Continued)

NASTRAN DATA DECK

CØRD2S (Cont.)

Remarks: 1. Continuation card must be present.
2. The three points ($A 1, A 2, A 3$), ($B 1, B 2, B 3$), ($C 1, C 2, C 3$) must be unique and noncollinear. Noncollinearity is checked by the geometry processor.
3. Coordinate system identification numbers on all CØRDIR, CØRDIC, C@RDIS, CØRD2R, C@RD2C, and CØRD2S cards must all be unique.
4. An RID of zero references the basic coordinate system.
5. The location of a grid point (P in the sketch) in this coordinate system is given by (R, Θ, Φ) where θ and Φ are measured in degrees.
6. The displacement coordinate directions at P are shown above by ($u_{r}, u_{\theta}, u_{\phi}$).
7. Points on the polar axis may not have their displacement directions defined in this coordinate system since an ambiguity results.

Description: Defines a quadrilateral membrane element (QDMEM) of the structural model consisting of four overlapping TRMEM elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQDMEM	EID	PID	G1	G2	G3	G4	TH		
CQDMEM	72	13	13	14	15	16	29.2		

Field

Contents

EID
Element identification number (Integer >0)
PID Identification number of a PQDMEM property card (Default is ĖID) (Integer >0)
G1,G2,G3,G4

TH Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)
Material property orientation angle in degrees (Real) The sketch below gives the sign convention for TH .

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 thru G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180°.

Description: Defines an isoparametric quadrilateral membrane element (QDMEMI) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQDMEM 1	EID	PID	G1	G2	G3	G4	TH		
CQDMEM1	72	13	13	14	15	16	29.2		

Field
EID Element identification number (Integer >0)
PID Identification number of a PQDMEM1 property card (Default is EID) (Integer > 0)
G1,G2,G3,G4 Grid point identification numbers of connection points (Integer >0); $\mathrm{G} 1 \neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)

TH
Material property orientation angle in degrees (Real) The sketch below gives the sign convention for TH

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 through G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180 degrees.

NASTRAN DATA DECK

Description: Defines a quadrilateral membrane element (QDMEM2) of the structural model consisting of four nonoverlapping TRMEM elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQDMEM2	EID	PID	G1	G2	G3	G4	TH		
CQDMEM2	72	13	13	14	15	16	29.2		

Field

Contents

EID Element identification number (Integer >0)
PID
Identification number of a PQDMEM2 property card (Default is EID) (Integer >0)
G1,G2,G3,G4
Grid point identification numbers of connection points (Integer >0; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4)$
TH Material property orientation angle in degrees (Real) The sketch below gives the sign convention for TH

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 through G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180 degrees.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CQDPLT Quadrilateral Element Connection

Description: Defines a quadrilateral bending element (QDPLT) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQDPLT	EID	PID	G1	G2	G3	G4	TH		
CQDPLT	72	13	13	14	15	16	29.2		

Field

EID
PID
G1,G2,G3,G4
TH

Contents
Element identification number (Integer > 0)
Identification number of a PQDPLT property card (Default is EID) (Integer >0) Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)
Material property orientation angle in degrees (Real)
The sketch below gives the sign convention for TH .

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 thru G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180°.
4. No structural mass is generated by this element.

NASTRAN DATA DECK

Description: Defines a quadrilateral membrane and bending element (QUAD1) of the structural model.

Format and Example:

1	2	3	4	5	6	7		8	9
CQUAD1	EID	PID	G1	G2	G3	G4	TH		
CQUAD1	72	13	13	14	15	16	29.2		

Field
EID
PID
G1,G2,G3,G4

TH
Element identification number (Integer > 0)
Identification number of a PQUAD1 property card (Default is EID) (Integer >0)
Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)
Material property orientation angle in degrees (Real) The sketch below gives the sign convention for TH.

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 thru G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180°.

NASTRAN DATA DECK

Description: Defines a homogeneous quadrilateral membrane and bending element (QUAD2) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CQUAD2	EID	PID	G1	G2	G3	G4	TH		
CQUAD2	72	13	13	14	15	16	29.2		

Field

Contents

EID

PID
G1,G2,G3,G4

TH
Element identification number (Integer >0)
Identification number of a PQUAD2 property card (Default is EID) (Integer >0)
Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)
Material property orientation angle in degrees (Real) The sketch below gives the sign convention for TH.

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 thru G4 must be crdered consecutively around the perimeter of the element.
3. All interior angles must be less than 180°.

NASTRAN DATA DECK

Input Data Card CRIGDI Rigid Element Connection

Description: Defines a rigid element where all degrees of freedom of the selected dependent grid points are coupled to the degrees of freedom of the reference grid point.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CRIGD1	EID		IG	G1	G2	G3	G4	G5	abc
CRIGDI	101		18	43	9	26	35	41	123

+bc	G6	G7	etc.						
+23	8	63							

Field
EID Unique element identification number (Integer >0)
IG

G1, G2, etc. Identification numbers of the dependent grid points.

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. The reference grid point must appear before any of the dependent grid points.
3. Any number of dependent grid points may be associated with a rigid element but only one reference grid point is allowed per rigid element.
4. Dependent degrees of freedom defined in a rigid element may not appear on MPC, ØMIT, QMIT1 or SUP@RT cards.
5. In order to use this element, a Rigid Format ALTER must be made to replace GP4 and MCE1 with ZGP4 and ZMCEI respectively. The input and output data blocks and parameters remain the same.

NASTRAN DATA DECK

Rigid Element Connection

Description: Defines a rigid element where selected degrees of freedom of the dependent grid points are coupled to the degrees of freedom of the reference grid point.

Format and Example:

1	2	3		4	5	6	7	8	9
CRIGD2	EID		IG		G1	IC1	G2	IC2	abc
CRIGD2	I02		9		45	123	53	135	123

$+b c$	G3	IC3	etc.						
+23	27	456							

Field

 ContentsEID
Unique element identification number (Integer >0).
IG
Identification number of the reference grid point.
G1, G2, etc.
IC1, IC2, etc.
Identification numbers of the dependent grid points.
List of dependent degrees of freedom associated with the preceeding dependent grid point (any of the digits $1-6$ with no imbedded blanks).

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. The reference grid point must appear before any of the dependent grid points. If any grid point of a rigid element has less than six coupled degrees of freedom, the reference grid point may not be connected to any other structural elements or rigid elements. Multiple numbering of a grid point may be used for this purpose.
3. Any number of dependent grid points may be associated with a rigid element but only one reference grid point is allowed per rigid element.
4. Dependent degrees of freedom defined in a rigid element may not appear on MPC, ØMIT, ØMIT1 or SUPØRT cards.
5. In order to use this element, a Rigid Format ALTER must be made to replace GP4 and MCE1 with ZGP4 and ZMCE1 respectively. The input and output data blocks and parameters remain the same.

NASTRAN DATA DECK

Description: Defines a tension-compression-torsion element (RQD) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CRDD	EID	PID	G1	G2	EID	PID	G]	G2	
CRQD	12	13	21	23	3	12	24	5	

Field
Contents
EID Element identification number (Integer >0)
PID
Identification number of a PRQD property card (Default is EID) (Integer >0)
Grid point identification numbers of connection points (Integer $>0 ; \mathrm{G} 1 \neq \mathrm{G} 2$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. See C $C \cap N R \emptyset D$ for alternative method of rod definition.
3. One or two ROD elements may be defined on a single card.

NASTRAN DATA DECK

Input Data Card CSHEAR
Shear Panel Element Connection

Description: Defines a shear panel element (SHEAR) of the structural model.

Format and Example:

1	2	3		4	5	6	7	8	9
CSHEAR	EID	PID	G1	G2	G3	G4			
CSHEAR	3	6	1	5	3	7			

Field

Contents

EID Element identification number (Integer >0)
PID Identification number of a PSHEAR property card (Default is EID) (Integer >0)
G1, G2, G3, G4 Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 thru G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180°.

NASTRAN DATA DECK

Description: Defines an element connecting $\mathbf{i}=3$ or $\mathbf{i}=4$ points which solves the wave equation in two dimensions. Used in the acoustic cavity analysis for the definition of evenly spaced radial slots.

Formats and Examples:

1	2	3	4	5	6	7	8	9	10
CSLQT3	EID	IDS 1	IDS2	IDS3		RHø	B	M	
CSLDT3	100	1	3	2		3.E-3		6	
CSLØT4	EID	IDS 1	IDS2	IDS3	IDS4	RHØ	B	M	
CSLØT4	101	1	3	2	4		$6.2+4$	3	

Field
Contents

```
EID Element identification number (Integer > 0)
IDSj Identification number of connected GRIDS points, j = 1,2,\ldots.J (Integer > 0)
RH\emptyset Fluid density in mass units (Real > 0.0 or "blank")
B
M
Fluid bulk modulus (Real \geq0.0 or blank)
Number of slots in circumferential direction (Integer \geq 0, or "blank")
```

Remarks: 1. This card is allowed only if an AXSLøT card is also present.
2. The element identification number (IDF) must be unique with respect to all other fluid or structural elements:
3. If RHD, B, or M are blank, the corresponding values on the AXSL $\emptyset T$ data card are used, in which case the default value must not be blank (undefined).
4. Plot elements connecting two points at a time are generated for these elements. The CSL $\emptyset T 3$ element generates 3 plot elements. The CSL $\emptyset T 4$ element generates four plot elements, connecting points 1-2, 2-3, 3-4, and 4-1.
5. If $B=0.0$, the slot is considered to be an incompressible fluid.
6. If $M=0$ no matrices for CSLØTi elements are generated.

NASTRAN DATA DECK

Description: Defines a tetrahedron element (3 dimensional solid with 4 vertices and 4 triangular faces, TETRA) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTETRA	EID	MID	G1	G2	G3	G4			
CTETRA	15	2	4	7	9	11			

Field

EID
MID
G1,G2,G3,G4

Contents
Element identification number (Integer >0)
Material identification number (Integer >0)
Grid point identification numbers of connection points (Integers >0, G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. There is no nonstructural mass.
3. For structural problems, material must be defined by MAT1 card.
4. Output stresses are given in basic coordinate system.
5. For heat transfer problems, material may be defined with either a MAT4 or MAT5 card.

NASTRAN DATA DECK

Description: Defines an axisymmetric toroidal cross-section ring element (T@RDRG) of the structural model.

Format and Example:

1	2	4	4	6	7	8	9	10	
CTØRDRG	EID	PID	G1	G2	A1	A2			
CTØRDRG	25	2	47	48	30.0	60.0			

Field
EID Element identification number (Integer >0) PID Property identification number (Default is EID) (Integer >0)
G1, G2
A1
A2
Contents Grid Point identification numbers of connection points (Integer >0; G1 $\neq \mathrm{G} 2$) Angle of curvature at grid point 1 in degrees (Real; $0^{\circ} \leq A 1 \leq 180^{\circ} ; A 2 \geq A 1$) Angle of curvature at grid point 2 in degrees (Real; $0^{\circ} \leq A 2 \leq 180^{\circ} ; A 2 \geq A 1$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points G1 and G2 must lie in the $x-z$ plane of the basic coordinate system and to the right of the axis of symmetry (the z-axis).
3. If $A 1=0$, the element is assumed to be a shell cap.
4. Only elements of zero or positive Gaussian curvatire may be used.

Input Data Card CTRAPAX Trapezoidal Ring Element Connection

Description: Defines an axisymmetric trapezoidal cross-section ring element with nonaxisymmetric deformation of the structural model with reference to property card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRAPAX	EID	PID	R1	R2	R3	R4	TH		
CTRAPAX	15	5	10	11	12	13	30.0		

Field

EID
PID
R1,R2,R3,R4
TH

Contents

Element identification number (Integer >0)
Identification number of a PTRAPAX card (Integer >0)
Identification numbers of RINGAX cards (Integer >0; R $1 \neq R 2 \neq R 3 \neq R 4$)
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH .

Remarks: 1. CTRAPAX card is allowed if and only if an AXIC card is also present.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. RINGAX identification numbers R1, R2, R3 and R4 must be ordered counterclockwise around the perimeter.
4. For a discussion of the axisymmetric ring problem, see Section 5.1.1 of the Theoretical Manual.
5. The lines connecting $R 1$ to $R 2$ and $R 4$ to $R 3$ must be parallel to the r axis.
6. This element cannot be modeled with a grid point on the axis of symmetry.

NASTRAN DATA DECK

Description: Defines an axisymmetric trapezoidal cross-section ring element (TRAPRG) of the structural model without reference to a property card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRAPRG	EID	G7	G2	G3	G4	TH	MID		
CTRAPRG	72	13	14	15	16	29.2	13		

Field

Contents

EID
G1,G2,G3,G4
TH

MID

Element identification number (Integer >0)
Grid point identification number of connection points (Integers >0; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3 \neq \mathrm{G} 4$)
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH.
Material property identification number (Integer >0)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. The four grid points must lie in the $x-z$ plane of both the basic and any local coordinate systems and to the right of the axis of symmetry (the z-axis).
3. Grid points G1, G2, G3 and G4 must be ordered counterclockwise around the perimeter of the element as in the above sketch.
4. The line connecting grid points G1 and G2 and the line connecting grid points G3 and G4 must both be parallel to the x-axis.
5. ATl interior angles must be less than 180°.
6. For structural problems, the material property identification number must reference only a MAT1 or MAT3 card.
7. For heat transfer problems, the material property identification number must reference only a MAT4 or MAT5 card.

NASTRAN DATA DECK

Input Data Card CTRBSC Triangular Element Connection

Description: Defines a basic triangular bending element (TRBSC) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRBSC	EID	PID	G1	G2	G3	TH			
CTRBSC	16	2	12	1	3	16.2			

Field

EID
PID
G1,G2,G3
TH

Contents
Element identification number (Integer >0)
Identification number of a PTRBSC property card (Default is EID) (Integer >0) Grid point identification numbers of connection points (Integer >0; G1 $\neq G 2 \neq G 3$)
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for $T H$.

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Interior angles must be less than 180°.
3. No structural mass is generated by this element.

NASTRAN DATA DECK

Description: Defines an axisymmetric triangular cross-section ring element with nonaxisymmetric deformation of the structural model with reference to property card.

Format and Example:

1	2		4			J	8	9	10
CTRIAAX	EID	PID	R1	R2	R3	TH			
CTRIAAX	20	15	42	43	52	60.0			

Field

EID
PID
R1,R2,R3
TH

Contents
Element identification number (Integer >0)
Identification number of a PTRIAAX card (Integer >0)
Identification numbers of RINGAX cards (Integer $>0 ; R 1 \neq R 2 \neq R 3$)
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH.

Remarks: 1. CTRIAAX card is allowed if and only if an AXIC card is also present.
2. Element identification numbers must be unique with respect to all other element identification numbers.
3. RINGAX identification numbers RT,R2 and R3 must be ordered counterclockwise around the perimeter.
4. For a discussion of the axisymmetric ring problem, see Section 5.11 of the Theoretical Manual.

Description: Defines an axisymmetric triangular cross section ring element (TRIARG) of the structural model without reference to a property card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRIARG	EID	G1	G2	G3	TH	MID			
CTRIARG	16	12	13	14	29.2	17			

Field

Contents

EID Element identification number (Integer >0)
G1, G2, G3 Grid point identification numbers of connection points (Integers > 0; $\mathrm{G} 1 \neq \mathrm{G} 2 \neq \mathrm{G} 3$)

TH Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for the TH.
MID Material identification number (Integer >0)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. The grid points must lie in the $x-z$ plane of both the basic and any local coordinate systems and to the right of the axis of symmetry (the z-axis).
3. Grid points G1, G2 and G3 must be ordered counterclockwise around the perimeter of the element as shown in the above sketch.
4. For structural problems, the material property identification number must reference only a MATl or MAT3 card.
5. For heat transfer problems, the material property identification number must reference only a MAT4 or MAT5 card.

NASTRAN DATA DECK

Description: Defines a triangular membrane and bending element (TRIAI) of the structural model.

Format and Example:

1	2	13	4	5	6	7	8	9	10
CTRIA1	EID	PID	G1	G2	G3	TH			
CTRIA1	16	2	12	1	3	16.2			

Field

Contents
EID
PID
G1,G2,G3
Identification number of a PTRIA1 property card (Default is EID) (Integer >0)
Grid point identification numbers of connection points (Integer >0; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3$)
TH
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH .

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Interior angles must be less than 180°.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CTRIA2 Triangular Element Connection

Description: Defines a triangular membrane and bending element (TRIA2) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRIA2	EID	PID	G1	G2	G3	TH			
CTRIA2	16	2	12	1	3	16.2			

Field
Contents
EID
Element identification number (Integer > 0)
PID Identification number of a PTRIA2 property card (Default is EID) (Integer >0)
G1,G2,G3

TH Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3$) Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH .

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Interior angles must be less than 180°.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CTRMEM Triangular Element Connection

Description: Defines a triangular membrane element (TRMEM) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRMEM	EID	PID	G1	G2	G3	TH			
CTRMEM	16	2	12	1	3	16.3			

Field

Contents

EID
PID
G1,G2,G3

TH

Element identification number (Integer > 0)
Identification number of a PTRMEM property card (Default is EID) (Integer >0) Grid point identification numbers of connection points (Integer >0; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3$)
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH .

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Interior angles must be less than 180°.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CTRPLT Triangular Element Connection

Description: Defines a triangular bending element (TRPLT) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTRPLT	EID	PID	G1	G2	G3	TH			
CTRPLT	16	2	12	1	3	16.2			

Field

EID
PID
G1,G2,G3
TH

Element identification number (Integer >0)
Identification number of a PTRPLT property card (Default is EID) (Integer >0) Grid point identification numbers of connection points (Integer > 0 ; G1 $\neq \mathrm{G} 2 \neq \mathrm{G} 3$)
Material property orientation angle in degrees (Real) - The sketch below gives the sign convention for TH .

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Interior angles must be less than 180°.
3. No structural mass is generated by this element.

NASTRAN DATA DECK

Input Data Card CTUBE Tube Element Connection

Description: Defines a tension-compression-torsion element (TUBE) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTUBE	EID	PID	G1	G2	EID	PID	G1	G2	
CTUBE	12	13	21	23	3	12	24	5	

Field
Contents

EID	Element identification number (Integer >0)
PID	Identification number of a PTUBE property card (Default is EID) (Integer >0)
G1, G2	Grid point identification numbers of connection points (Integer $>0 ; G 1 \neq G 2$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. One or two TUBE elements may be defined on a single card.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card CTWIST Twist Panel Element Connection

Description: Defines a twist panel element (TWIST) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CTWIST	EID	PID	G1	G2	G3	G4			
CTWIST	2	6	1	5	3	7			

Field
Contents

EID	Element identification number (Integer >0)
PID	Identification number of a PTWIST property card (Default is EID) (Integer >0)
G1,G2,G3,G4	Grid point identification numbers of connection points (Integer $>0 ;$
	G1 $\neq G 2 \neq G 3 \neq G 4)$

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. Grid points GI thru G4 must be ordered consecutively around the perimeter of the element.
3. All interior angles must be less than 180°.

NASTRAN DATA DECK

Input Data Card CVISC Viscous Damper Connection

Description: Defines a viscous damper element (VISC) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CVISC	EID	PID	G1	G2	EID	PID	G1	G2	
CVISC	21	6327	29	31	22	6527	35	33	

Field	Contents
EID	Element identification number (Integer >0)
PID	Identification number of PVISC property card (Default is EID) (Integer >0)
G1, G2	Grid point identification numbers of connection points (Integer $>0 ; \mathrm{G1} \neq \mathrm{G} 2$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. One or two VISC elements may be defined on a single card.

BULK DATA DECK

Input Data Card CWEDGE
Wedge Element Connection

Description: Defines a wedge element (3 dimensional solid, with three quadrilateral faces and two opposing triangular faces, WEDGE) of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CWEDGE	EID	MID	G1	G2	G3	G4	G5	G6	
CWEDGE	15	2	3	6	9	12	15	18	

Field

Contents
EID
MID
Element identification number (Integer >0)

G],...,G6
Material identification number (Integer >0)
Grid point identification numbers of connection points (Integers >0, GI $\neq G 2 \neq \ldots \neq G 6$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. The order of the grid points is: G1, G2, G3 on one triangular face, G4, G5, G6 at the other triangular face. G1, G4 on a common edge, G2, G5 on a common edge.
3. The quadrilateral faces must be nearly planar.
4. There is no nonstructural mass.
5. For structural problems, material must be defined by MAT1 card.
6. Output stresses are given in the basic coordinate system.
7. For heat transfer problems, material may be defined with either a MAT4 or MAT5 card.

NASTRAN DATA DECK

Input Data Card CYJQIN

Description: Defines the boundary points of a seament for cyclic symmetry structural molds.

Format and Example:

1	2	3	4	5	6	7	8	9	10
CYJØIN	SIDE	C	G1	G2	G3	G4	G5	G6	abc
CYJØIN	1		7	9	16	25	33	64	ABC

$+b c$	$G 7$	$G 8$	$G 9$	-etc.-					
$+B C$	72								

Alternate Form

| CYJØIN | SIDE | C | GID1 | "THRU" | GID2 | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CYJØIN | 2 | S | 6 | THRU | 32 | | | |

Contents

Side identification (Integer 1 or 2)
C
Coordinate System (BCD value R,C or S or blank)
Grid or scalar point identification numbers (Integer >0)

Remarks: 1. CYJØIN bulk data cards are only used for cyclic symmetry problems. A parameter (CTYPE) must specify rotational or dihedral symmetry.
2. For rotational symmetry problems there must be one logical card for side 1 and one for side 2. The two lists specify grid points to be connected, hence both lists must have the same length.
3. For dihedral symetry problems, side 1 refers to the boundary between segments and side 2 refers to the middle of a segment. A coordinate system must be referenced in field 3 , where $R=$ rectangular $C=c y l i n d r i c a l$ and $S=$ spherical.
4. All components of displacement at boundary points are connected to adjacent segments, except those constrained by SPC, MPC or ØMIT.

NASTRAN DATA DECK

Description: This card is used in conjunction with the RLøAD1, RL@AD2, TLøAD1, and TLøAD2 data cards and defines the point where the dynamic load is to be applied with the scale (area) factor A.

Format and Example:

1	2	3	4	5	6	7	8	9	10
DAREA	SID	P	C	A	P	C	A		
DAREA	3	6	2	8.2	15	1	10.1		

Field
Contents

SID	Identification number of DAREA set (Integer >0)
P	Grid or scalar point identification number (Integer >0)
C	Component number ($1-6$ for grid point; blank or 0 for scalar point)
A	Scale (area) factor A for the designated coordinate (Real)

Remarks: One or two scale factors may be defined on a single card.

BULK DATA DECK

Input Data Card DEFQRM
Element Deformation

Description: Defines enforced axial deformation for one-dimensional elements for use in statics problems.

Format and Example:

1	2	$3{ }^{3}$		5 - ${ }_{5}$		7 - 8		9	10
DEF@RM	SID	EID	D	EID	D	EID	D	,	
DEFORM	1	535	. 05	536	-. 10				

Field
Contents

SID	Deformation set identification number (Integer >0)
EID	Element number (Integer $>0)$
D	Deformation $(+=$ elongation) (Real)

Remarks: 1. The referenced element must be one-dimensional (i.e., a R $\varnothing \mathrm{D}$ (including C $\varnothing \mathrm{NR} \emptyset \mathrm{D}$), TUBE or BAR).
2. Deformation sets must be selected in the Case Control Deck (DEFØRM=SID) to be used by NASTRAN.
3. From one to three enforced element deformations may be defined on a single card.

NASTRAN DATA DECK

Description: This card is used in conjunction with the RLøAD1, RLøAD2, TL@AD1 and TLØAD2 data cards and defines the time delay term τ in the equations of the loading function.

Format and Example:

1	2	3	4	5	6	7	8	9	10
DELAY	SID	P	C	T	P	C	T		
DELAY	5	21	6	4.25	7	6	8.1		

Field

SID	Identification number of DELAY set (Integer >0)
P	Grid or scalar point identification number (Integer >0)
C	Component number ($1-6$ for grid point, blank or 0 for scalar point)
T	Time delay τ for designated coordinate (Real)

Remarks: One or two dynamic load time delays may be defined on a single card.

BULK DATA DECK

Input Data Card DLQAD Dynamic Load Combination (Superposition)

Description: Defines a dynamic loading condition for frequency response or transient response problems as a linear combination of load sets defined via RLØAD1 or RLøAD2 cards (for frequency response) or TLØAD1 or TLØAD2 cards (for transient response).

Format and Example:

1	2	3	4	5	6	7	8	9	10
DLøAD	SID	S	$S 1$	$L 1$	$S 2$	$L 2$	$S 3$	$L 3$	$+a b c$
DLQAD	17	1.0	2.0	6	-2.0	7	2.0	8	$+A$

$+a b c$	$S 4$	$L 4$		-etc. -					
$+A$	-2.0	9							

Field

SID

Li

Contents

Load set identification number (Integer >0)
Scale Factor (Real)
Scale Factors (Real)
Load set identification numbers defined via card types enumerated above (Integer >0)

Remarks: 1. The load vector being defined by this card is given by

$$
\{P\}=S \sum_{i} \operatorname{Si}\left\{P_{L i}\right\}
$$

2. The Li must be unique.
3. SID must be unique from all Li.
4. Nonlinear transient loads may not be included; they are selected separately in the Case Control Deck.
5. Linear load sets must be selected in the Case Control Deck (DLQAD=SID) to be used by NASTRAN.
6. A $D L \emptyset A D$ card may not reference a set identification number defined by another $D L \emptyset A D$ card.
7. TLØAD1 and TLØAD2 loads may be combined only thru the use of the DLØAD card.
8. RLØAD1 and RLØAD2 loads may be combined only thru the use of the DL@AD card.
9. SID must be unique for all TLøAD1, TLØAD2, RLØAD1, and RL@AD2 cards.

NASTRAN DATA DECK

Description: Used to define matrix data blocks directly. Generates a matrix of the form

$$
\left.[A]=\left[\begin{array}{ccccc}
A_{11} & A_{12} & \ldots \ldots \ldots \ldots & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & \ldots & \ldots
\end{array}\right] A_{2 n}\right]
$$

where the elements $A_{i j}$ may be real or complex single-precision or double precision numbers.

Formats and Example: (The first logical card is a header card.)

1	2	3	4	5	6	7	8	9	10
D. 11	NAME	"0"	FQRM	TIN	TOUT	7	M	N	
DMI	QQQ	0	2	3	3		4	2	
DMI	NAME	J	I]	$A(11, J)$	A($11+1, \mathrm{~J}$		etc	I2	$+a b c$
DMI	QQQ	1	1	1.0	2.0	3.0	4.0	3	+1
+abc	A($12, \mathrm{~J}$)		etc.						
$+1$	5.0	6.0							
DMI	QQQ	2	2	6.0	7.0	4	8.0	9.0	

Field	Contents
NAME	Any NASTRAN BCD value (1-8 alphnumeric characters, the first of which must be alphabetic) which will be used in the DMAP sequence to reference the data block
$F \emptyset \mathrm{RM}$	1 Square matrix (not symmetric) 2 General rectangular matrix 6 Symmetric matrix
TIN	Type of matrix being input as follows: 1 Real, single-precision (One field is used per element) 2 Real, double-precision (One field is used per element) 3 Complex, single-precision (Two fields are used per element) 4 Complex, double-precision (Two fields are used per element)
TøUT	Type of matrix which will be created 1 Real, single-precision 2 Real, double-precision
M	Number of rows in A (Integer > 0)
N	Number of columns in A (Integer >0)
J	Column number of A (Integer >0)
I1, 12, etc.	Row number of A (Integer >0)
A (Ix, J)	Element of A (See TIN) (Real)

NASTRAN DATA DECK

DMI (Cont.)

Remarks: 1. The user must write a DMAP (or make alterations to a rigid format) in order to use the DMI feature since he is defining a data block. All of the rules governing the use of data blocks in DMAP sequences apply. In the example shown above, the data block $Q Q Q$ is defined to be the complex, single-precision rectangular $4 x 2$ matrix

$$
[\mathrm{QQQ}]=\left[\begin{array}{ll}
(1.0,2.0) & (0.0,0.0) \\
(3.0,4.0) & (6.0,7.0) \\
(5.0,6.0) & (0.0,0.0) \\
(0.0,0.0) & (8.0,9.0)
\end{array}\right]
$$

The DMAP data block NAME (QQQ in the example) will appear in the initial FIAT and the data block will initially appear on the Data Pool File (PD日L).
2. A limit to the number of DMI's which may be defined is set by the size of the Data Pool Dictionary. The total number of DMI's may not exceed this size.
3. There are a number of reserved words which may not be used for DMI names. Among these are P@冃L, NPTP, ØPTP, UMF, NUMF, PLT1, PLT2, INPT, GEØM1, GEØM2, GEดM3, GEØM4 GEØM5, EDT, MPT, EPT, DIT; DYNAMICS, IFPFILE, AXIC, FØRCE, MATPØضL, PCDB, XYCDB, CASECC, any DTI names, and SCRATCH1 thru SCRATCH9.
4. Field 3 of the header card must contain an integer 0 .
5. For symmetric matrices, the entire matrix must be input.
6. Only nonzero terms need be entered.
7. A blank field on this card is not equivalent to a zero. If zero input is desired, the appropriate type zero must be punched (i.e., 0.0 or 0.0D0).
8. Complex input must have both the real and imaginary parts punched if either part is nonzero.
9. A new column requires a new card be started.

Description: Defines axisymmetric (fluid or structure) related direct input matrix terms.

Format and Example:

1	2	3	4	5	6	7	8	9	10
DMIAX	NAME	"0"	1 F ¢	TIN	TOUT				
DMIAX	B2PP	0	1	3	4				

DMIAX	NAME	GJ	CJ	NJ				+abc
DMIAX	B2PP	32						+BG27

+abc	GI	CI	NI	$X_{i j}$	$Y_{i j}$		
$+B G 27$	1027	3		$4.35+6$	$2.27+3$		

-etc. for each column and row containing nonzero terms-

Field
NAME

IFØ

TIN

TOUT

GJ, GI
CJ, CI
NJ, NI
$X_{i j}, y_{i j}$

Contents
BCD name of matrix (one to eight alphanumeric characters the first of which is alphabetic)
1 Square matrix
$\left.\begin{array}{ll}2 & \text { General rectangular matrix } \\ 6 & \text { Symmetric matrix }\end{array}\right\}$ Identification of Matrix Form
Type of matrix being input as follows:
1 Real, single-precision (One field is used per element)
3 Complex, single-precision (Two fields are used per element)
Type of matrix which will be created
1 Real, single-precision 3 Complex, single-precision
2 Real, double precision 4 Complex, double-precision
Grid, scalar, RINGFL fluid point, PRESPT pressure point, FREEPT free surface displacement, or extra point identification number (Integer > 0)
Component number for GJ or GI grid point ($0 \leq$ Integer ≤ 6; Blank or zero if GJ or GI is a scalar, fluid, or extra point)
Harmonic number of RINGFL point. Must be blank if a point type other than RINGFL is used. Negative number implies the "sine" series, positive implies the "cosine" series. (Integer)
Real and Imaginary parts of matrix element; row (GI, CI, NI) column (Gu,CJ, NJ)
(Continued)

```
DMIAX (Cont.)
```

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. Matrices defined on this card may be used in dynamics by selection in the Case Control Deck by K2PP=NAME, B2PP=NAME, or M2PP=NAME for $\left[K_{p p}^{2}\right],\left[B_{p p}^{2}\right]$, or $\left[M_{p p}^{2}\right]$ respectively.
3. In addition to the header card containing IFQ, TIN and TØUT, a logical card consisting of two or more physical cards is needed for each nonnull column of the matrix.
4. If TIN $=1, Y_{i j}$ must be blank.
5. Field 3 of the header card must contain an integer 0 .
6. For symmetric matrices, the entire matrix must be input.
7. Only nonzero terms need be entered.

Description: Defines structure-related direct input matrices.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PMIG	NAME	"0"	IFD	TIN	TØUT				
DMIG	STIF	0	1	3	4				

DMIG	NAME	GJ	CJ			$G I$	$C I$	$X_{\mathbf{i j}}$	$Y_{\mathbf{i j}}$
XMIG	STIF	27	1		2	3	$3 .+5$	$3 .+3$	EKGI

$+a b c$	$G I$	$C I$	$X_{i j}$	$Y_{i j}$	$G I$	$C I$	$X_{i j}$	$Y_{i j}$	$X c e f$
$+K G I$	2	4	$2.5+10$	0.	50		1.0	0.	

Field
NAME

IFØ

TIN

TøUT

GJ, GI
CJ, CI
$X_{i j}, Y_{i j}$

BCD name of matrix (one to eight alphanumeric characters the first of which is alphabetic)
1 Square matrix
2 General rectangular matrix
6 Symmetric matrix
Type of matrix being input as follows:
1 Real, single-precision (One field is used per element)
3 Complex, single-precision (Two fields are used per element)
Type of matrix which will be created
1 Real, single-precision 3 Complex, single-precision
2 Real, double-precision 4 Complex, double-precision
Grid or scalar or extra point identification number (Integer > 0)
Component number for GJ a grid point ($0<\mathrm{CJ} \leq 6$) ; blank or zero for GJ a scalar or extra point
Real and imaginary parts of matrix element

Remarks: 1. Matrices defined on this card may be used in dynamics by selection in the Case Control Deck by K2PP=NAME, B2PP=NAME, or M2PP=NAME for $\left[K_{p p}^{2}\right]$, $\left[B_{p p}^{2}\right]$, or $\left[M_{p p}^{2}\right]$, respectively.
2. In addition to the header card containing IFQ, TIN and TดUT, a logical card consisting of one or more physical cards is needed for each nonnull column of the matrix.
3. If TIN $=1, Y_{i j}$ must be blank.
4. Field 3 of the header card must contain an integer 0 .
5. For symmetric matrices, the entire matrix must be input.
6. Only nonzero terms need be entered.
7. The matrix names must be unique among all DMIG's.

NASTRAN DATA DECK

Input Data Card DPHASE

Dynamic Load Phase Lead

Description: This card is used in conjunction with the RLØAD1 and RLØAD2 data cards to define the phase lead term θ in the equation of the loading function.

Format and Example:

1	2	3	4	5	6	7	8	9	10
DPHASE	SID	P	C	TH	P	C	TH		
DPHASE	4	21	6	2.1	8	6	7.2		

Field

Contents

SID
$P \quad$ Grid or scalar point identification number (Integer >0)
C Component number (1-6 for grid point, 0 or blank for scalar point)
TH
Phase lead θ (in degrees) for designated coordinate (Real)

Remarks: One or two dynamic load phase lead terms may be defined on a single card

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card DSFACT

Differential Stiffness Factors

Description: Used to define scale factors for applied loads and stiffness matrices in a Differential Stiffness Analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
DSFACT	SID	B1	B2	B3	B4	B5	B6	B7	abc
DSFACT	97	-1.0	-2.0	-4.0					
+bc	B8	B9	-etc.-						

Field
Contents
$\begin{array}{ll}\text { SID } & \text { Set identification number (Unique Integer }>0 \text {) } \\ \mathrm{Bi} & \text { Scale factor (Real) }\end{array}$

Remarks: 1. Load sets must be selected in the Case Control Deck ($D S C \varnothing=S I D$) to be used by NASTRAN.
2. All fields following the last entry must be blank.
3. An error is detected if any continuation cards follow the last entry.

NASTRAN DATA DECK

BULK DATA DECK

Direct Table Input

Description: Used to define table data blocks directly.

Format and Example: (The first logical card is a header card)

1	2	3	4	5	6	7	8	9	10
DTI	NAME	$" 0 "$	$T 1$	$T 2$	$T 3$	T4	T5	T6	+00
DTI	XXX	0	3	4	4096	32768	1	0	

+00	V	V		- etc. -	ENDREC				

-etc.-

$D T I$	NAME	IREC	V	V	V	V	V	V	+11
$D T I$	$X X X$	1	2.0	-6	$A B C$	$6.0 D 0$	-1	2	+11

+11	V	V	V	V	$-e t 申 .-$	ENDREC		+12	
+11	4	-6.2	2.9	1	DEF	-1	ENDREC		

Field

Contents

NAME

Ti
IREC Record Number (sequential integer beginning with 1)

V

ENDREC
Any NASTRAN BCD value ($1-8$ alphanumeric characters, the first of which must be alphabetic) which will be used in the DMAP sequence to reference the data block

Trailer values ($65535 \geq$ Integer ≥ 0)

Value (blank, integer, real, BCD (except "ENDREC"), double precision)
The BCD value ENDREC which flags the end of the string of values that constitute logical record IREC

Remarks:

1. Records may be made as long as desired via continuation cards.
2. Values may be of any type (blank, integer, real, $B C D$, double precision) with the exception that a $B C D$ value may not be "ENDREC".
3. All fields following ENDREC must be blank.
4. The user must write a DMAP (or make alterations to a rigid format) in order to use the DTI feature since he is defining a data block. All of the rules governing the use of data blocks in DMAP sequences apply.
5. The DMAP data block NAME (XXX in the example) will appear in the initial FIAT and the data block will initially appear on the PØØL.
6. If trailer is not specified, $\mathrm{T} 1=$ number of records, T 2 thru $\mathrm{T} 6=0$.
7. In addition to the header card, there must be one logical card for each record in the table.

NASTRAN DATA DECK

Description: Defines data needed to perform buckling analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
EIGB	SID	METHDD	L. 1	L2	NEP	NDP	NON	E	+abc
EIGB	13	DET	0.1	2.5	2	1	1	0.0	ABC
+abc	NØRM	G	C						
+BC	MAX								

Field

NEP
NDP, NDN

E

N@RM

G
Grid or scalar point identification number (Integer >0) (Required if and onTy if NQRM = "PØINT")

C
Component number (One of the integers 1-6) (Required if and only if $N \nsupseteq \mathrm{RM}=$ "PØINT" and G is a geometric grid point)

Remarks:

1. Buckling analysis root extraction data sets must be selected in the Case Control Deck (METH $\emptyset D=$ SID) to be used by NASTRAN.

NASTRAN DATA DECK
 EIGB (Cont.)

2. The quantities L1 and L2 are dimensionless and specify a range in which the eigenvalues are to be found. An eigenvalue is a factor by which the prebuckling state of stress (first subcase) is multiplied to produce buckling.
3. The continuation card is required.
4. See Sections 10.3.6 and 10.4.2.2 of the Theoretical Manual for a discussion of convergence criteria.
5. If $M E T H \emptyset D=D E T$, Ll must be greater than or equal to 0.0 .
6. If $N \emptyset R M=M A X$, components that are not in the analysis set may have values larger than unity.
7. If $N \emptyset R M=P \emptyset I N T$, the selected component must be in the analysis set.

Input Data Card EIGC
Complex Eigenvalue Extraction Data

Description: Defines data needed to perform complex eigenvalue analysis.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EIGC | SID | METH $\emptyset D$ | NØRM | G | C | E | | 8 | +abC |
| EIGC | 14 | DET | PØINT | 27 | | $1 .-8$ | | | $A B C$ |

+abc	$\alpha_{\mathrm{a} 1}$	$\omega_{\mathrm{a} 1}$	$\alpha_{\mathrm{b} 1}$	ω_{bl}	ℓ_{1}	$N_{\mathrm{e} 1}$	$N_{\mathrm{d}]}$	8	+def
+BC	2.0	5.6	2.0	-3.4	2.0	4	4		DEF

+ def	$\alpha_{a 2}$	$\omega_{a 2}$	$\alpha_{b 2}$	$\omega_{b 2}$	ℓ_{2}	$N_{e 2}$	$N_{d 2}$	
$+E F$	-5.5	-5.5	5.6	5.6	1.5	6	3	

Field

SID
METH@D

Contents

Set identification number (Unique integer >0)
Method of complex eigenvalue extraction, one of the BCD values, "INV" "DET" or "HESS"

INV - Inverse power method
DET - Determinant method
HESS - Upper Hessenburg method

NASTRAN DATA DECK

EICG (Cont.)

NØRM	Method for normalizing eigenvectors, one of the BCD values "MAX" or "PøINT"
	MAX - Normalize to a unit value for the real part and a zero value for the imaginary part, the component having the largest magnitude
	PØINT - Normalize to a unit value for the real part and a zero value for the imaginary part the component defined in fields 5 and 6 defaults to "MAX" if the magnitude of the defined component is zero.
G	Grid or scalar point identification number (Required if and only if NØRM=PØINT) (Integer >0)
C	Component number (Required if and only if NØRM="PØINT" and G is a geometric grid point) ($0 \leq$ integer ≥ 6)
E	Convergence criterion (optional) (Real ≥ 0.0)
$\left.\begin{array}{ll} \left(\alpha_{a j},\right. & \left.\omega_{a j}\right) \\ \left(\alpha_{b j},\right. & \left.\omega_{b j}\right) \end{array}\right\}$	Two complex points defining a line in the complex plane (Real)
2j	Width of region in complex plane (Real > 0.0)
N_{ej}	Estimated number of roots in each region (Integer > 0)
$N_{\text {dj }}$	Desired number of roots in each region (Default is $3 \mathrm{~N}_{\text {ej }}$) (Integer >0)

Remarks: 1. Each continuation card defines a rectangular search region. Any number of regions may be used and they may overlap. Roots in overlapping regions will not be extracted more than once.
2. Complex eigenvalue extraction data sets must be selected in the Case Control Deck (CMETH $D=S I D$) to be used by NASTRAN.
3. The units of α, ω and ℓ are radians per unit time.
4. At least one continuation card is required.
5. For the determinant method with no damping matrix, complex conjugates of the roots found are not printed.
6. See Section 10.4.4.5 of the Theoretical Manual for a discussion of convergence criteria.
7. For the Upper Hessenberg method, N controls the number of vectors computed. Only one continuation card is considered and the (α, ω) pairs, along with the parameters ℓ_{1} and $N_{e l}$, are ignored. Insufficient storage for HESS will cause the program to switen to INV.

BULK DATA DECK

Input Data Card EIGP
Poles in Complex Plane

Description: Defines poles that are used in complex eigenvalue extraction.

Format and Example:

Field
Contents
SID
(α, ω)
M
Set identification number (Integer >0)
Coordinates of point in complex plane (Real)
Multiplicity of complex root at pole defined by $(\alpha, \omega) \quad$ (Integer >0)

Remarks: 1. Defines poles in complex plane that are used with associated EIGC card having same set number.
2. The units of α, w are radians per unit time.
3. Poles are used only in the Determinant Method.
4. One or two poles may be defined on a single card.

NASTRAN DATA DECK

Description: Defines data needed to perform real eigenvalue analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
EIGR	SIO	METHØD	F1	F2	NE	ND	NZ	E	+abe.
EIGR	13	DET	1.9	15.6	10	12	0	1.-3	ABC
+abc	NgRM	f	C						
+BC	PØINT	32	4						

Field

SID
METH@D

F1,F2

NE

ND

NZ
E

NORM

Set identification number (Unique integer >0)
Method of eigenvalue extraction, one of the BCD values "INV", "DET", "GIV", "UINV", or "UDET".

INV - Inverse power method, symmetric matrix operations.
DET - Determinant method, symmetric matrix operations.
GIV - Givens method of tridiagonalization.
UINV - Inverse power method, unsymmetric matrix operations.
UDET - Determinant method, unsymmetric matrix operations.
Frequency range of interest (Required for METHQD = "DET", "INV", "UDET", or "UINV") (Real $\geq 0.0 ; \mathrm{Fl}<\mathrm{F} 2$). Frequency range over which eigenvectors are desired for $\operatorname{METH} \emptyset D=$ "GIV". The frequency range is ignored if ND >0, in which case the eigenvectors for the first ND positive roots are found. (Real, F1 < F2).

Estimate of number of roots in range (Required for METH@D = "DET", "INV", "UDET", or "UINV") (Integer >0)

Desired number of roots for METH@D = "DET", "INV", "UDET", or "UINV" (Default is 3 NE) (Integer >0). Desired number of eigenvectors for METH $\emptyset \mathrm{D}=$ "GIV" (Default is zero) (Integer ≥ 0)

Number of free body modes (Optional - used only if METH@D = "DET" or "UDET") (Integer ≥ 0)

Mass orthogonality test parameter (Default is 0.0 which means no test will be made) (Real ≥ 0.0)

Method for normalizing eigenvectors, one of the BCD values "MASS", "MAX" or "PØINT"

MASS - Normalize to unit value of the generalized mass
MAX - Normalize to unit value of the largest component in the analysis set
PØINT - Normalize to unit value of the component defined in fields 3 and 4 defaults to "MAX" if defined component is zero
Grid or scalar point identification number (Required if and only if N@RM="PØINT")
(Integer ≥ 0)
Component number (One of the integers 1-6) (Required if and only if N@RM="PØINT"
and G is a geometric grid point)

Remarks:

1. Real eigenvalue extraction data sets must be selected in the Case Control Deck (METHØD = SID) to be used by NASTRAN.
2. The units of F1 and F2 are cycles per unit time.
3. The continuation card is required.
4. If METH $\emptyset=$ "GIV", all eigenvalues are found.
5. If $M E T H \emptyset D=$ "GIV", the mass matrix for the analysis set must be positive definite. This means that all degrees of freedom, including rotations, must have mass properties. ØMIT cards may be used to remove massless degrees of freedom.
6. A nonzero value of E in field 9 also modifies the convergence criteria. See Sections 10.3.6 and 10.4.2.2 of the Theoretical Manual for a discussion of convergence criteria.
7. If $N \emptyset R M=M A X$, components that are not in the analysis set may have values larger than unity.
8. If $N \emptyset R M=P \emptyset I N T$, the selected component must be in the analysis set.
9. If METHØD = "GIV" and rigid body modes are present, Fl should be set to zero if the rigid body eigenvectors are desired.
10. The desired number of roots (ND) includes all roots previously found, such as rigid body modes determined with the use of the SUPØRT card, or the number of roots found on the previous run when restarting and APPENDing the eigenvector file.

BULK DATA DECK

Input Data Card EPøINT Extra Point

Description: Defines extra points of the structural model for use in dynamics problems.

Format and Example:

1	2	3	4	5	6	7	8	9	10
$E P \emptyset I N T$	$I D$								
$E P \emptyset I N T$	3	18	1	4	16	2			

Alternate Form

EPQINT	ID1	"THRU"	$I D 2$				
EPØINT	17	THRU	43				

Field
Contents
ID,IDI,ID2 Extra point identification number (Integer > 0; ID1 < ID2)

Remarks: 1. All extra point identification numbers must be unique with respect to all other structural, scalar, and fluid points.
2. This card is used to define coordinates used in transfer function definitions (see TF card).
3. If the alternate form is used, extra points ID1 thru ID2 are defined.

NASTRAN DATA DECK

Description: Used to specify densities, Mach numbers, and reduced frequencies for flutter analysis.

Format and Example:

1	2		4		6		8		
FLFACT	SID	F1	F2	F3	F4	F5	F6	F7	ABC
FLFACT	97	. 3	. 7	3.5					
$+8 C$	F8	F9	--e						

Field

Contents

SID	Set identification number (unique integer >0).
Fi	Aerodynamic factor (real).

Remarks:

1. These factors must be selected by a FLUTTER data card to be used by NASTRAN.
2. Imbedded blank fields are forbidden.
3. Parameters must be listed in the order in which they are to be used within the looping of flutter analysis.

NASTRAN DATA DECK

Description: Defines the relationship between the axisymmetric fluid and a structural boundary having symmetric constraints. The purpose is to allow fluid boundary matrices to conform to structural symmetry definitions.

Format and Example:

1	2	3	4	5	6	7	8	9	10
FLSYM	M	S1	S2						
FLSYM	12	S	A						

Field

Contents

M Number of symmetric sections of structural boundary around circumference of fluid being modeled by the set of structural elements (Integer ≥ 2, even)
S1, S2 Description of boundary constraints used on structure at first and second planes of symmetry. (BCD: "S" \Rightarrow symmetric, "A" \Rightarrow antisymmetric)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. Only one (1) FLSYM card is allowed.
3. The card is not required if no planes of symmetry are involved.
4. First plane of symmetry is assumed to be at $\phi=0$. Second plane of symmetry is assumed to be at $\phi=360^{\circ} / \mathrm{M}$.
5. Symmetric and antisymmetric constraints for the structure must, in addition, be provided by the user.
6. The solution is performed for those harmonic indices listed on the AXIF card that are compatible with the symmetry conditions.

Example: If a quarter section of structure is used to model the boundary, $M=4$. If the boundary constraints are $S-S$, the compatible cosine harmonics are: $0,2,4$, etc. If $S-A$ is used the compatible cosine harmonics are $1,3,5, \ldots$, etc.

Description: Defines data needed to perform flutter analysis.

Format and Example:

1	2		4		6	7	8	9	10
FLUTTER	SID	METHØD	DENS	MACH	RFREQ	IMETH	NVALUE		
FLUTTER	19	K	119	219	319	S	5		

Field

SID
METHЮD

DENS Identification number of an FLFACT data card specifying density ratios to be used in flutter analysis (integer ≥ 0).

MACH Identification number of an FLFACT data card specifying Mach numbers (m) to be used in flutter analysis (integer ≥ 0).

RFREQ Identification number of an FLFACT data card specifying reduced frequencies (k) to be used in flutter analysis (integer ≥ 0).

IMETH Choice of interpolation method for matrix interpolation (BCD: L = linear, $S=$ surface, default is S).

Number of eigenvalues for output and plots (integer >0).

Remarks:

1. The FLUTTER data card must be selected in Case Control Deck (FMETH $\emptyset D=$ SID).
2. The density is given by ρ. RH@REF where ρ is the density ratio given on the FLFACT data card and RHØREF is the reference density given on the AER \varnothing data card.
3. The reduced frequency is given by $k=(R E F C \cdot \omega / 2 \cdot V)$, where REFC is given on the AER \emptyset data card, ω is the circular frequency and V is the velocity.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card F@RCE Static Load

Description: Defines a static load at a grid point by specifying a vector.

Format and Example:

1	2	3	4	5	6	7	8	9	
FQRCE	SID	G	CID	F	N1	N2	N3		
FQRCE	2	5	6	2.9	0.0	1.0	0.0		

Field

Contents

SID	Load set identification number (Integer >0)
G	Grid point identification number (Integer >0)
CID	Coordinate system identification number (Integer ≥ 0)
F	Scale factor (Real)
N1, N2, N3	Components of Vector measured in coordinate system defined by CID (Real;
	$\left.\mathrm{N1}^{2}+N 2^{2}+N 3^{2}>0.0\right)$

Remarks: 1. The static load applied to grid point G is given by

$$
\vec{f}=F \vec{N}
$$

where \vec{N} is the vector defined in fields 6,7 and 8 .
2. Load sets must be selected in the Case Control Deck ($L O A D=S I D$) to be used by NASTRAN.
3. A CID of zero references the basic coordinate system.

NASTRAN DATA DECK

Input Data Card FQRCE1

 Static LoadDescription: Used to define a static load by specification of a value and two grid points which determine the direction.

Format and Example:

1	2	3	4	5	6	7	8	9	10
FDRCE 1	SID	G	F	G1	G2				
FQRCE1	6	13	-2.93	16	13				

Field

Contents

SID	Load set identification number (Integer >0)
G	Grid point identification number (Integer >0)
F	Value of load (Real)
G1, G2	Grid point identification numbers (Integer $>0 ; G 1 \neq G 2$)

Remarks: 1. The direction of the force is determined by the vector from G1 to G2.
2. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.

NASTRAN DATA DECK

Input Data Card FQRCE2
Static Load

Description: Used to define a static load by specification of a value and four grid points which determine the direction.

Format and Example:

1	2	3	4	5	6	7	8	10	
FQRCE2	SID	G	F	G1	G2	G3	G4		
FORCE2	6	13	-2.93	16	13	17	13		

Field

Contents

SID	Load set identification number (Integer >0)
G	Grid point identification number (Integer >0)
F	Value of load (Real)
G1, G2,G3,G4	Grid point identification numbers (Integer $>0 ; G 1 \neq G 2 ; G 3 \neq G 4)$

Remarks: 1. The direction of the force is determined by the vector product whose factors are vectors from G1 to G2 and G3 to G4 respectively.
2. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.

NASTRAN DATA DECK

Description: Defines a static loading for a model containing CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
FQRCEAX	SID	RID	HID	S	FR	FP	FZ		
FQRCEAX	1	2	3	2.0	0.1	0.2	0.3		

Field

Contents

SID

RID
HID
S
$\left.\begin{array}{l}\mathrm{FR} \\ \mathrm{FP}\end{array}\right\}$ $\left.\begin{array}{l}\text { FP } \\ \text { FZ }\end{array}\right\}$

Load set identification number (Integer >0)
Ring identification number (see RINGAX) (Integer >0) Harmonic identification number (Integer ≥ 0 or a sequence of harmonics, see note 5) Scale factor for load (Real)

Load components in r, ϕ, z directions (Real)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. Axisymmetric loads must be selected in the Case Control Deck (LøAD=SID) to be used by NASTRAN.
3. A separate card is needed for the definition of the force associated with each harmonic.
4. If a sequence of harmonics is to be placed in HID the form is as follows: "SnlTn2" where $n 7$ is the start of the sequence and $n 2$ is the end of the sequence. i.e., harnonics 0 through 10, the field would contain "SOT10".
5. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
6. For a discussion of the axisymmetric solid problem see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines the location of points on the surface of a fluid for recovery of surface displacements in a gravity field.

Format and Example:

1	2	3	4	5	6 - 7		8 -19		10
FREEPT	IDF		IDP	ϕ	IDP	¢	IDP	¢	
FREEPT	3		301	22.5	302	90.0	303	370.0	

Field

Contents
IDF
IDP
$\phi \quad$ Azimuthal position of FREEPT on fluid point (RINGFL), in Fluid Coordinate System (Real)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. All free surface point identification numbers must be unique with respect to other scalar, structural and fluid points.
3. The free surface points are used for the identification of output data only.
4. Three points may be defined on a single card.
5. The referenced fluid point (IDF) must be included in a free surface list (FSLIST).
6. Output requests for velocity and acceleration can be made at these points.

NASTRAN DATA OECK

Description: Defines a set of frequencies to be used in the solution of frequency response problems.

Format and Example:

1	2	3	4	5	6	7	8	9	F
FREQ	SID	F	$a b c$						
FREQ	3	2.98	3.05	17.9	21.3	25.6	28.8	31.2	$A B C$

+bc	F	F	F	F	F	F	F	F	
+BC	29.2	22.4	19.3						

-etc.-
Field
Contents
SID
Frequency set identification number (Integer >0)
F
Frequency value (Real >0.0)

Remarks: 1. The units for the frequencies are cycles per unit time.
2. Frequency sets must be selected in the Case Control Deck (FREQ=SID) to be used by NASTRAN.
3. A11 FREQ, FREQ1 and FREQ2 cards must have unique frequency set identification numbers.

NASTRAN DATA DECK

Input Data Card FREQI
 Frequency List

Description: Defines a set of frequencies to be used in the solution of frequency response problems by specification of a starting frequency, frequency increment, and number of increments desired.

Format and Example:

1	2	3	4	5	6	7	8	9	10
FREQ1	SID	F1	DF	NDF					
FREQ1	6	2.9	0.5	13					

Field

Contents

SID

Frequency set identification number (Integer >0)
F1 First frequency in set (Real ≥ 0.0)
DF Frequency increment (Real >0.0)
NDF \quad Number of frequency increments (Integer >0)

Remarks: 1. The units for the frequency FI and the frequency increment DF are cycles per unit time.
2. The frequencies defined by this card are given by

$$
f_{\mathbf{i}}=F 1+(\mathbf{i}-1) D F, \quad \mathbf{i}=1, N D F+1
$$

3. Frequency sets must be selected in the Case Control Deck (FREQ=SID) to be used by NASTRAN.
4. All FREQ, FREQ1 and FREQ2 cards must have unique frequency set identification numbers.

NASTRAN DATA DECK

Input Data Card FREQ2 Frequency List

Description: Defines a set of frequencies to be used in the solution of frequency response problems by specification of a starting frequency, final frequency, and number of logarithmic increments desired.

Format and Example:

1	2	3	4	5	6	7	8	9	10
FREQ2	SID	F1	F2	NF					
FREQ2	6	1.0	$1 . E 5$	5					

Field	Contents
SID	Frequency set identification number (Integer >0)
F1	First frequency (Real >0.0)
F2	Last frequency (Real $>0.0 ;$ F2 $>$ F1)
NF	Number of logarithmic intervals (Integer >0)

Remarks: 1. The units for the frequencies F1 and F2 are cycles per unit time.
2. The frequencies defined by this card are given by

$$
f_{i}=F l \cdot e^{(i-1) d}, \quad i=1,2, \ldots, N F+1
$$

where

$$
d=\frac{1}{N F} \log _{e} \frac{F 2}{F 1}
$$

For the example shown, the list of frequencies will be $1.0,10.0,100.0,1000.0$, 10000.0 , and 100000.0 cycles per unit time.
3. Frequency sets must be selected in the Case Control Deck (FREQ=SID) to be used by NASTRAN.
4. All FREQ, FREQ1 and FREQ2 cards must have unique frequency set identification numbers.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card FSLIST
Free Surface List

Description: Declares the fluid points (RINGFL) which lie on a free surface boundary.

Format and Example:

1	2	3	4	5	6	7	8	9	10
FSLIST	RH \emptyset	IDF1	IDF2	IDF3	IDF4	IDF5	IDF6	IDF7	abc
FSLIST	$1.0-4$	1	3	5	4	2	7	6	$+12 F S$

$+b c$	IDF8	IDF9	-etc.-						def
+ l2FS	8	9	10	11	AXIS				

Field
Contents
RHØ Mass density at the surface (Real > 0.0 or blank; if blank the AXIF default value must not be blank)
IDFi Identification number of RINGFL point (Integer > or BCD, "AXIS." The first and/or last entry may be AXIS)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. Each logical card defines a surface. The order of the points must be sequential with the fluid on the right with respect to the direction of travel.
3. The BCD word, AXIS, defines an intersection with the polar axis of the Fluid Coordinate System.
4. There may be as many FSLIST cards as the user requires. If the fluid density varies along the boundary there must be one FSLIST card for each interval between fluid points.

BULK DATA DECK

Input Data Card GENEL
General Element

Description: Defines a general element using either:

1. The stiffness approach:

$$
\left\{\begin{array}{c}
f_{i} \\
\hdashline f_{d}
\end{array}\right\}=\left[\begin{array}{c:c}
k & -k S \\
\hdashline-s^{\top} k & s^{\top} K S
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
\hdashline u_{d}
\end{array}\right\} \text {, or }
$$

2. The flexibility approach:

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{i} \\
\hdashline f_{d}
\end{array}\right\}=\left[\begin{array}{ccc}
z & 1 & s \\
\hdashline-S^{T} & 1 & 0
\end{array}\right]\left\{\begin{array}{l}
f_{i} \\
\hdashline u_{d}
\end{array}\right\} \text {, where } \\
& \left\{u_{i}\right\}=\left[u_{i}, u_{i 2}, \ldots, u_{i m}\right]^{\top}, \\
& \left\{u_{d}\right\}=\left[u_{d 1}, u_{d 2}, \ldots, u_{d n}\right]^{\top}, \\
& {[K Z]=[K] \text { or }[Z]=\left[\begin{array}{cccc}
K Z_{11} & K Z_{12} & \cdots & K Z_{1 m} \\
\vdots & K Z_{22} & \cdots & \cdot \\
\vdots & \vdots & & \vdots \\
K Z_{m 1} & \cdots & \cdots & \cdots
\end{array}\right] \quad \text { and }[K Z]^{\top}=[K Z] \text {, }} \\
& {[s]=\left[\begin{array}{llll}
s_{11} & \cdots & \cdots & \cdots \\
\vdots & & s_{1 n} \\
\vdots & & & \vdots \\
s_{m 1} & \cdots & \cdots & \cdot \\
\bullet & s_{m n}
\end{array}\right] .}
\end{aligned}
$$

The required input is the $\left\{u_{i}\right\}$ list and the lower triangular portion of $[K]$ or [Z]. Additional input may include the $\left\{u_{d}\right\}$ list and [S]. If [S] is input, $\left\{u_{d}\right\}$ must also be input. If $\left\{u_{d}\right\}$ is input but $[S]$ is omitted, [S] is internally calculated. In this case, $\left\{u_{d}\right\}$ must have six and only six degrees of freedom. If [S] is not required, both $\left\{u_{d}\right\}$ and [S] are omitted.

GENEL (Cont.)
Format: (An example is given on the following page.)

1	2	3	4	5	6	7	8	9	10
GENEL	EID		UII	CI1	UI2	CI 2	UI3	CI3	$\times 1$
+1	UI4	CI4	UI5	CI5	U16	CI6	U17	CI7	X2
+2				Etc.					X3
+3	$U I_{m}$ - The last item in the UI-list will appear in one of fields $2,4,6$, or 8 .								X4
+4	"UD"		UD1	CD1	UD2	CD2	UD3	CD3	X5
+5				Etc.					X6
+6	$U D_{n}$ - The last item in the UD list will appear in one of fields 2, 4, 6, or 8 .								X7
+7	"K" or "Z"	KZ11	KZ21	KZ31	Etc.		KZ22	KZ32	X8
+8	Etc.		KZ33	KZ43	Etc.				X9
+9									$\times 10$
$+10$	$\mathrm{KZ} \mathrm{~mm}_{\mathrm{mm}}$	The la in one	tem field	he K or throu	matri	will			X11
$+11$	"S"	S11	S12	Etc.		S21	Etc.		X12
$+12$	$S_{m n}$	The la one of	$\begin{aligned} & \text { tem ir } \\ & \text { ids } 2 \end{aligned}$	S ma ough	ix wil	pear			

Field

Contents

EID Unique element identification number, a positive integer.
UI1, CI1) Identification numbers of coordinates in the UI or UD list, in sequence Etc.
UD1, ED1
Etc. corresponding to the $[K],[Z]$, and $[S]$ matrices. U_{i} and $U D_{i}$ are grid point numbers, and $C I_{j}$ and $\mathrm{CD}_{\mathfrak{i}}$ are the component numbers. ${ }^{1}$ If a scalar point is given, the component number is zero.
$K Z_{i j} \quad V a l u e s$ of the $[K]$ or $[Z]$ matrix ordered by columns from the diagonal, according to the UI list.
$S_{i j} \quad V a l u e s ~ o f ~ t h e ~[S] ~ m a t r i x ~ o r d e r e d ~ b y ~ r o w s, ~ a c c o r d i n g ~ t o ~ t h e ~ U D ~ l i s t . ~$ "UD", "K", (BCD data words which indicate the start of data belonging to UD, [K], "Z", and $\}[Z]$, or [S].

Remarks: 1. When the stiffness matrix, K, is input, the number of significant digits should be the same for all terms.
2. Double-field format may be used for input of K or Z.

BULK DATA DECK

GENEL (Cont.)
Example: Let element 629 be defined by

$$
\begin{aligned}
& \left\{u_{i}\right\}=[1-1,13-4,42,24-2]^{\top}, \\
& \left\{u_{d}\right\}=[6-2,33]^{\top},
\end{aligned}
$$

where $i-j$ means the $j^{\text {th }}$ component of grid point i. Points 42 and 33 are scalar points.

$$
[K]=\left[\begin{array}{llll}
1.0 & 2.0 & 3.0 & 4.0 \\
2.0 & 5.0 & 6.0 & 7.0 \\
3.0 & 6.0 & 8.0 & 9.0 \\
4.0 & 7.0 & 9.0 & 0.0
\end{array}\right], \quad[S]=\left[\begin{array}{ll}
1.5 & 2.5 \\
3.5 & 4.5 \\
5.5 & 6.5 \\
7.5 & 8.5
\end{array}\right]
$$

The data cards necessary to input this general element are shown below:

1	2	3	4	5	6	7	8	9	10
GENEL	629		1	1	13	4	42	0	X1
+1	24	2							X2
+2	UD		6	2	33	0			X3
+3	Z	1.0	2.0	3.0	4.0	5.0	6.0	7.0	X4
+4	8.0	9.0	0.0						X5
+5	S	1.5	2.5	3.5	4.5	5.5	6.5	7.5	X6
+6	8.5								

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card GRAV Gravity Vector

Description: Used to define gravity vectors for use in determining gravity loading for the structural model.

Format and Example:

1	2	3	4	5	6	7		6	
GRAV	SID	CID	G	N1	N2	N3			
GRAV	1	3	32.2	0.0	0.0	-1.0			

Field
Contents
SID
Set identification number (Integer > 0)
CID Coordinate system identification number (Integer ≥ 0)
G Gravity vector scale factor (Real)
N1, N2, N3
Gravity vector components (Real; $N 1^{2}+N 2^{2}+N 3^{2}>0.0$)

Remarks: 1. The gravity vector is defined by

$$
\vec{g}=G \cdot(N 1, N 2, N 3)
$$

2. A CID of zero references the basic coordinate system.
3. Gravity loads may be combined with "simple loads" (e.g., FDRCE, MgMENT) only by specification on a LøAD card. That is, the SID on a GRAV card may not be the same as that on a simple load card.
4. Load sets must be selected in the Case Control Deck (LøAD=SID) to be used by NASTRAN.

NASTRAN DATA DECK

Description: Defines default options for fields 3, 7 and 8 of all GRID cards.

Format and Example:

Field
$C P \quad$ Identification number of coordinate system in which the location of the grid point is defined (Integer ≥ 0)
CD Identification number of coordinate system in which displacements are measured at grid point (Integer ≥ 0)
PS Permanent single-point constraints associated with grid point (any of the digits 1-6 with no imbedded blanks) (Integer ≥ 0)

Remarks: 1. The contents of fields 3, 7 or 8 of this card are assumed for the corresponding fields of any GRID card whose fields 3, 7 and 8 are blank. If any of these fields on the GRID card are blank, the default option defined by this card occurs for that field. If no permanent single-point constraints are desired or one of the coordinate systems is basic, the default may be overridden on the GRID card by making one of fields 3,7 or 8 zero (rather than blank). Only one GRDSET card may appear in the user's Bulk Data Deck.
2. The primary purpose of this card is to minimize the burden of preparing data for problems with a large amount of repetition (e.g., two-dimensional pinned-joint problems).
3. At least one of the entries $C P, C D$, or PS must be nonzero.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card GRID
Grid Point

Description: Defines the location of a geometric grid point of the structural model, the directions of its displacement, and its permanent single-point constraints.

Format and Example:

1	2	3	4	5	6	7	8	9	10
GRID	$I D$	$C P$	$X 1$	$X 2$	$X 3$	$C D$	$P S$		
GRID	2	3	1.0	2.0	3.0		316		

Field

Contents

ID
Grid point identification number (0<Integer<999999)
CP Identification number of coordinate system in which the location of the grid point is defined (Integer ≥ 0 or blank*).
X1, X2, X3 Location of the grid point in coordinate system CP (Real)
CD
Identification number of coordinate system in which displacements, degrees of freedom, constraints, and solution vectors are defined at the grid point (Integer ≥ 0 or blank*)
PS
Permanent single-point constraints associated with grid point (any of the digits 1-6 with no imbedded blanks) (Integer ≥ 0 or blank*)

Remarks: 1. All grid point identification numbers must be unique with respect to all other structural, scalar, and fluid points.
2. The meaning of $X 1, X 2$ and $X 3$ depend on the type of coordinate system, $C P$, as follows: (see CDRD card descriptions)

Type	$X 1$	X2	$X 3$
Rectangular	X	Y	Z
Cylindrical	R	Θ (degrees)	Z
Spherical	R	θ (degrees)	Φ (degrees)

3. The collection of all CD coordinate systems defined on all GRID cards is called the Global Coordinate System. All degrees-of-freedom, constraints, and solution vectors are expressed in the Global Coordinate System.

* See the GRDSET card for default options for fields 3, 7 and 8.
nastran data deck

1

Description: Defines the location of a geometric grid point on a RINGFL for an axisymmetric fluid model and/or axisymmetric structure. Used to define the boundary of the |fluid.

Format and Example:

1	2	3	4	5	6	7	8	9	10
GRIDB	ID			ϕ		CD	PS	IDF	
GRIDB	30			30.0		3	345	20	

Field
Contents
ID
ϕ
CD

PS

IDF
Grid point identification number (Integer >0)
Azimuthal position in the fluid in degrees (Real)
Identification number of the coordinate system in which displacements are defined at the grid point (Integer ≥ 0)
Permanent single-point constraints associated with the grid point (any combination of the digits 1-6 with no embedded blanks) (Integer ≥ 0)
Identification number of a RINGFL (Integer >0)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. All GRIDB identification numbers must be unique with respect to other scalar, structural and fluid points.
3. An AXIF card must define a Fluid Coordinate System.
4. The RINGFL referenced must be present.
5. If no harmonic numbers on the AXIF card are specified, no fluid elements are necessary.
6. The collection of all CD coordinate systems defined on all GRID and GRIDB cards is called the Global Coordinate System.
7. Fields 3, 4, and 6 are ignored. This will facilitate the user's conversion of GRID cards to GRIDB cards. Note that the fields are the same except for fields 1 and 9 if a cylindrical coordinate system is used.
8. The referenced RINGFL point must be included in a boundary list (BDYLIST data card).

NASTRAN DATA DECK

Input Data Card GRIDF

Fluid Point

Description: Defines a scalar degree of freedom for harmonic analysis of a fluid.

Format and Example:

1	2	3	4	5	6	7	8	9	10
GRIDF	ID	R	2						
GRIDF	23	2.5	-7.3						

Field

Contents

ID
R
Z

Identification number of axisymmetric fluid point (Integer >0) Radial location of point in basic coordinate system (Real >0.0) Axial location of point in basic coordinate system (Real)

Remarks: 1. This card is allowed only if an AXSLØT card is also present.
2. The identification number (ID) must be unique with respect to all other scalar, structural and fluid points.
3. Grid points on slot boundaries are defined on GRIDS cards. Do not also define them on GRIDF cards.
4. For plotting purposes the R location corresponds to the basic X coordinate. The Z location corresponds to the basic Y coordinate. Pressures will be plotted as displacement in the basic Z direction.
5. Load and constraint conditions are applied as if the GRIDF is a scalar point. Positive loads correspond to inward flow and a single point constraint causes zero pressure at the point.

BULK DATA DECK

Input Data Card GRIDS
Slot Surface Point

Description: Defines a scalar degree of freedom with a two dimensional location. Used in defining pressure in slotted acoustic cavities.

Format and Example:

1	2	3	4	5	7	8	9	10	
GRIDS	ID	R	Z	W	IDF				
GRIDS	25	2.5	-7.3	0.5					

Field
Contents
ID
R
Z
W
IDF

Remarks:

1. This card is allowed only if an AXSLDT card is also present.
2. The identification numbers (ID and IDF if present) must be unique with respect to all other scalar, structural and fluid points.
3. If W is "blank", the default value on the AXSLøT card will be used.
4. The IDF number is referenced on the CAXIFi card for central cavity fluid elements next to the interface. The IDF number is entered only if the grid point is on an interface. In this case it should not also be defined on a GRIDF card.
5. If IDF is nonzero then R must be greater than zero.
6. For plotting purposes the R location corresponds to the basic X coordinate. The Z location corresponds to the basic Y coordinate. The slot width, W, corresponds to the basic Z coordinate. The pressure will be plotted in the basic Z direction.
7. Load and constraint conditions are applied as if the GRIDS is a scalar point. Positive loads correspond to inward flow and a single point constraint causes zero pressure at the point.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card GTRAN
Grid Point Transformation

Description: This card defines the output coordinate system transformation to be applied to the displacement set of a selected grid point.

Format and Example:

1	2	3	4	5	6	7	8	9	10		
GTRAN	SID	NAME	GID	TRAN							
GTRAN	44	GIMBAL	1067	45							

Field	\quad Contents
SID	Identification number of the transformation set (Integer >0)
NAME	Basic substructure name (BCD)
GID	Grid point identification (Integer >0)
TRAN	Identification number of a TRANS bulk data card (Integer ≥ 0)

Remarks: 1. If TRAN $=0$, the displacement set at the grid point will be transformed to the overall basic coordinate system.
2. If TRAN $=$ SID, the point will remain fixed to the substructure (i.e., no transformation occurs).
3. Otherwise, the displacement set at the grid point will be transformed to the coordinate system directions defined by the selected TRANS card.
4. Transformation sets must be selected in the Substructure Control Deck (TRANS=SID) to be used by NASTRAN. Note that 'TRANS' is a subcommand of the substructure CØMBINE command.

NASTRAN DATA DECK

Description: Defines a static load as a linear combination of load sets defined via FØRCE, MgMENT, FØRCET, M@MENT1, FØRCE2, MØMENT2, PLØAD, PLØAD2, PLØAD3, FØRCEAX, PRESAX, MØMAX, SLØAD, RFØRCE and GRAV cards.

Format and Example:

1	2	3	4	5	6	7	8	9	10
LQAD	SID	S	S1	11	S2	L2	S3	L3	abc
LøAD	101	-0.5	1.0	3	6.2	4			
+bc	S4	L4		-etc.-					

(etc.)

Field

Contents

Load set identification number (Integer > 0)
Scale factor (Real)
Scale factors (Real)
Load set identification numbers defined via card types enumerated above (Integer > 0)

Remarks: 1. The load vector defined is given by

$$
\{P\}=S \sum_{i} S_{i}\left\{P_{L i}\right\}
$$

2. The Li must be unique. The remainder of the physical card containing the last entry must be blank.
3. This card must be used if gravity loads (GRAV) are to be used with any of the other types.
4. Load sets must be selected in the Case Control Deck ($\mathrm{L} \emptyset A D=S I D$) to be used by NASTRAN.
5. A LQAD card may not reference a set identification number defined by another LØAD card.

NASTRAN DATA DECK

Input Data Card L $\underline{L Q A D C}$ Substructure Static Loading Combination

Description: Defines the static load for a substructuring analysis as a linear combination of load sets defined for each component substructure.

Format and Example:

1	2	3	4	5	6	7	8	10	
LOADC	SID	S	NAME1	ID1	S1	NAME2	ID2	S2	abc
L@ADC	27	1.0	WINGRT	5	0.5	FUSELAGE	966	2.5	ABC
+bc			NAME3	ID3	S3	NAME4	ID4	S4	def
+BC			MIDWG	27	1.75	etc.			

Field

Contents

SID S NAME i

IDi
Si

Load set identification number (Integer >0)
Scale factor applied to final load vector (Real)
Basic substructure name ($B C D$)
Load set identification number of substructure NAMEi (Integer > 0)
Scale factor (Real)

Remarks: 1. The load vector is combined by:

$$
\{P\}=S \sum_{i} S i\{P\}_{I D i}
$$

2. The load set identification numbers (IDi) reference the load sets used in Phase 1 to generate the load vectors on the basic substructures.
3. The NAMEi and IDi need not be unique.
4. The L $\emptyset A D C$ card is the means of specifying a static loading condition in a Phase 2 substructure analysis. The IDi may actually reference temperature loads or element deformation loads defined in Phase 1.
5. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.

NASTRAN DATA DECK

Description: Defines the material properties for linear, temperature-independent, isotropic materials.

Format and Example:

1	2	3	4	5	6	7	8	9	1
MAT 1	MID	E	G	NU	RHD	A	TREF	GE	+abc
MAT 1	17	$3 .+7$	$1.9+7$		4.28	0.19	$5.37+2$	0.23	ABC
+abc	ST	SC	SS						
+BC	20.+4	15.+4	12.+4						

Field

Contents

MID	Material identification number (Integer >0)
E	Young's modulus (Real ≥ 0.0 or blank)
G	Shear modulus (Real ≥ 0.0 or blank)
NU	Poisson's ratio ($-1.0<$ Real ≤ 0.5 or blank)
RH \emptyset	Mass density (Real)
A	Thermal expansion coefficient (Real)
TREF	Thermal expansion reference temperature (Real)
GE	Structural element damping coefficient (Real)
ST, SC, SS	Stress limits for tension, compression and shear (Real) (Required for Property Optimization calculations; otherwise optional if margins of safety are desired.)

Remarks: 1. One of E or G must be positive (i.e., either $E>0.0$ or $G>0.0$ or both E and G may be >0.0).
2. If any one of E, G or $N U$ is blank, it will be computed to satisfy the identity $E=2(1+N U) G$; otherwise, values supplied by the user will be used.
3. The material identification number must be unique for all MAT1, MAT2 and MAT3 cards.
4. MATl materials may be made temperature dependent by use of the MATTl card.
5. The mass density, RHØ, will be used to automatically compute mass for all structural elements except the two-dimensional bending only elements TRBSC, TRPLT and QDPLT.
6. If E and $N U$ or G and $N U$ are both blank they will be both given the value 0.0 .
7. Weight density may be used in field 6 if the value $\frac{1}{g}$ is entered on the PARAM card
WTMASS, where g is the acceleration of gravity.
8. Solid elements must not have $N U$ equal to 0.5 .

Description: Defines the material properties for linear, temperature-independent, anisotropic materials.

Format and Example:

1	2	3	4	6	7	8	9	10	
MAT2	MID	G11	G12	G13	G22	G23	G33	RHØ	+abc
MAT2	13	$6.2+3$			$6.2+3$		$5.1+3$	0.056	ABC

+abc	A 1	A 2	A 12	T 0	GE	ST	SC	SS	
+BC	0.15			-500.0	0.002	$20 .+5$			

Field

Contents

MID Material identification number (Integer >0)
Gij The material property matrix (Real)
RHØ Mass density (Real)
Ai Thermal expansion coefficient vector (Real)
TO Thermal expansion reference temperature (Real)
GE Structural element damping coefficient (Real)
ST, SC, SS Stress limits for tension, compression and shear (Real) (Used only to compute margins of safety in certain elements; they have no effect on the computational procedures)

Remarks: 1. The material identification numbers must be unique for all MAT1, MAT2 and MAT3 cards.
2. MAT2 materials may be made temperature dependent by use of the MATT2 card.
3. The mass density, RHØ, will be used to automatically compute mass for all structural elements except the two-dimensional bending only elements TRBSC, TRPLT and QDPLT.
4. The convention for the $G_{i j}$ in fields 3 through 8 is represented by the matrix relationship.

$$
\left\{\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\tau_{12}
\end{array}\right\}=\left[\begin{array}{lll}
G_{11} & G_{12} & G_{13} \\
G_{12} & G_{22} & G_{23} \\
G_{13} & G_{23} & G_{33}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right\}
$$

NASTRAN DATA DECK

bulk data deck

Input Data Card MAT3
Material Property Definition

Description: Defines the material properties for linear, temperature-independent, orthotropic materials.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MAT3	MID	EX	EY	$E Z$	NUXY	NUYZ	NUZX	RH \varnothing	$+a b c$
MAT3	23	$1.0+7$	$1.1+7$	$1.2+7$.3	.25	.27	$1.0-5$	ABC

$+a b c$	$G X Y$	$G Y Z$	$G Z X$	$A X$	$A Y$	$A Z$	$T R E F$	$G E$	
$+B C$	$2.5+6$	$3.0+6$	$2.5+6$	$1.0-4$	$1.0-4$	$1.1-4$	68.5	.23	

Field
Contents
MID Material identification number (Integer >0)
EX, EY, EZ
NUXY,NUYZ,NUZX
Young's moduli in the x, y and z directions respectively (Real ≥ 0.0)
Poisson's Ratios (Coupled strain ratios in the $x y$, $y z$ and $z x$ directions respectively) (Real)
RHO Mass density (Real)
GXY, GYZ, GZX Shear moduli for $x y, y z$ and $z x$ (Real ≥ 0.0)
$A X, A Y, A Z \quad$ Thermal expansion coefficients (Real)
TREF Thermal expansion reference temperature (Real)
GE Structural element damping coefficient (Real)

Remarks: 1. The material identification number must be unique with respect to the collection of all MATi cards.
2. MAT3 materials may be made temperature-dependent by use of the MATT3 card.
3. All nine of the numbers $E X, E Y, E Z, N U X Y, N U Y Z, N U Z X, G X Y, G Y Z$ and $G Z X$ must be present.
4. A nonfatal warning diagnostic will occur if any of NUXY or NUYZ has an absolute value greater than 1.0.
5. MAT3 materials may only be referenced by CTRIARG, CTRAPRG, CTRIAAX, CTRAPAX, and PTØRDRG cards.
6. The mass density, RH \emptyset, will be used to automatically compute mass for the TRIARG, TRAPRG, CTRIAAX, CTRAPAX and TØRDRG elements.

NASTRAN DATA DECK

Description: Defines the thermal material properties for temperature-independent, isotropic materials.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MAT4	MID	K	CP						
MAT4	103	. 6	. 2						

Field

Contents

MID Material identification number (Integer >0)
$K \quad$ Thermal conductivity (Real >0.0), or convective film coefficient
CP Thermal capacity per unit volume (Real >0.0 or blank), or film capacity per unit area

Remarks:

1. The material identification number may be the same as a MAT1, MAT2, or MAT3 card, but must be unique with respect to other MAT4 or MAT5 cards.
2. If a HBDY element references this card, K is the convective film coefficient and $C P$ is the thermal capacity per unit area.
3. MAT4 materials may be made temperature dependent by use of the MATT4 card.

NASTRAN DATA DECK

Description: Defines the thermal material properties for temperature-independent, anisotropic materials.

Format and Example:

1	2	3	4	5	6	7			
MAT5	MID	KXX	KXY	KXZ	KYY	KYZ	KZZ	CP	
MAT5	24	.092			.083		.020	0.2	

Field

Contents

MID	Material identification number (Integer >0)
KXX,KXY, KXZ, KYY, KYZ, KZZ	Thermal conductivity (Real)
$C P$	
	Thermal capacity per unit volume (Real ≥ 0.0 or blank)

Remarks:

1. The thermal conductivity matrix has the form:

$$
K=\left[\begin{array}{lll}
K X X & K X Y & K X Z \\
K X Y & K Y Y & K Y Z \\
K X Z & K Y Z & K Z Z
\end{array}\right]
$$

2. The material number may be the same as a MAT1, MAT2, or MAT3 card, but must be unique with respect to the MAT4 or MAT5 cards.
3. MAT5 materials may be made temperature dependent by use of the MATT5 card.

NASTRAN DATA DECK

Description: Specifies table references for material properties which are stress-dependent.

Format and Example:

Field

Contents
Material property identification number which matches the identification number on some basic MAT1 card (Integer > 0)
R1 Reference to table identification number (Integer ≥ 0)

Remarks: 1. Blank or zero entries mean no table dependence of the referenced quantity on the basic MATI card.
2. TABLES1 type tables must be used.

Input Data Card MATTI
Material Temperature Dependence
Description: Specifies table references for material properties which are temperature-dependent.
Format and Example:

1	2	3	4	6	10				
MATT 1	MID	R1	R2	R3	R4	R5	R6	R7	+abc
MATT1	17	32				15			ABC

+abc	R8	R9	R10	$\xrightarrow{<}$,	T	T	$\xrightarrow{<}$	
$+B C$	62								

Field
Contents
MID Material property identification number which matches the identification number on some basic MATl card (Integer >0)
Ri References to table identification numbers (Integer ≥ 0)

Remarks: 1. Blank or zero entries mean no table dependence of the referenced quantity on the basic MATl card.
2. TABLEM1, TABLEM2, TABLEM3 or TABLEM4 type tables may be used.

NASTRAN DATA DECK

Description: Specifies table references for material properties which are temperature-dependent.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MATT2	MID	R1	R2	R3	R4	R5	R6	R7	+abc
MATT2	17	32				15			ABC
+abc	R8	R9	R10	R11	R12	R13	R14	R15	
+BC	62								
Field		Contents							

MID	Material property identification number which matches the identification number on some basic MAT2 card (Integer >0)
Ri	References to table identification numbers (Integer ≥ 0)

Remarks: 1. Blank or zero entries mean no table dependence of the referenced quantity on the basic MAT2 card.
2. TABLEM1, TABLEM2, TABLEM3 or TABLEM4 type tables may be used.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card MATT3
Material Temperature Dependence

Description: Specifies table references for orthotropic, "MATЗ", material properties which are temperature-dependent.

Format and Example:

1	2	3	4	5	6	7	8	9	
MATT3	MID	R1	R2	R3	R4	R5	R6	R7	+abc
MATT3	23	48			54				ABC

+ab c	R 8	R 9	R 10	R 11	R 12	R 13	R 14	R 15	
+BC	74								

Field

Contents

MID Material property identification number which matches the identification number on some basic MAT3 card (Integer > 0)

Ri
References to table identification numbers (Integer ≥ 0)

Remarks: 1. Blank or zero entries imply no table dependence of the referenced quantity on the basic MAT3 card.
2. TABLEM1, TABLEM2, TABLEM3 or TABLEM4 type tables may be used.

NASTRAN DATA DECK

Description: Specifies table reference for temperature dependent thermal conductivity or convective film coefficient.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MATT4	MID	T(K)				,	,		
MATT4	103	73							

Field

Contents
MID ID of a MAT4 which is to be temperature dependent (Integer >0)
$T(K) \quad$ Identification number of a TABLEMi card which gives temperature dependence of the thermal conductivity or convective film coefficient (Integer > or blank)

Remarks:

1. The thermal capacity may not be temperature dependent; field 4 must be blank.
2. TABLEM1, TABLEM2, TABLEM3, or TABLEM4 type tables may be used. The basic quantities on the MAT4 card is always multiplied by the tabular function. Note that this is different from structural applications.
3. Blank or zero entries means no table dependence of the referenced quantity on the basic MAT4 card.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card MATT5
Thermal Material Temperature Dependence

Description: Specifies table references for temperature dependent conductivity matrix.

Format and Example:

1	2	3	4	5	6	7	8	9	10	
MATT5	MID	$\mathrm{T}(\mathrm{KXX})$	$\mathrm{T}(\mathrm{KXY})$	$\mathrm{T}(\mathrm{KXZ})$	$\mathrm{T}(\mathrm{KYY})$	$\mathrm{T}(\mathrm{KYZ})$	$\mathrm{T}(\mathrm{KZZ})$			
MATT5	24	73								

Field

Contents

MID	Identification number of a MAT5, which is to be temperature dependent (Integer >0)
$\mathrm{T}(\mathrm{K}-\mathrm{-})$	Identification number of a TABLEMi card which gives temperature dependence of the matrix term (Integer >0 or blank)

Remarks:

1. The thermal capacity may not be temperature dependent. Field 9 must be blank.
2. TABLEM1, TABLEM2, TABLEM3, or TABLEM4 type tables may be used. The basic quantities on the MAT5 card are always multiplied by the tabular function. Note that this is different from the structural applications.
3. Blank or zero entries mean no table dependence of the referenced quantity on the basic MAT5 card.

NASTRAN DATA DECK

Input Data Card MKAERDI Mach Number - Frequency Table

Description: Provides a table of Mach numbers (m) and reduced frequencies (k) for aerodynamic matrix calculation.

Format and Example:

1	2		4		6		8		10
MKAERØ1	m_{1}	m_{2}	m_{3}	m_{4}	m_{5}	m_{6}	m_{7}	m8	ABC
MKAERDI	. 1	. 7							+ABC

$+B C$	k_{1}	k_{2}	k_{3}	k_{4}	k_{5}	k_{6}	k_{7}	k_{8}	
$+B C$.3	.6	1.0						

Field

Contents

m_{i}	List of Mach numbers (Real, $1 \leq i \leq 8)$.
k_{j}	List of reduced frequencies (Real, $1 \leq j \leq 8)$.

Remarks:

1. Blank fields end the list, and thus cannot be used for 0.0 .
2. All combinations of (m, k) will be used.
3. The continuation card is required.

NASTRAN DATA DECK

Input Data Card MKAERQ2 Mach Number - Frequency Table

Description: Provides a list of Mach numbers (m) and reduced frequencies (k) for aerodynamic matrix calculation.

Format and Example:

1	2		4		6		8		10
MKAER@2	m_{7}	k_{1}	m_{2}	k_{2}	m_{3}	k_{3}	m_{4}	k_{4}	
MKAERØ2	. 10	. 30	. 10	. 60	. 70	. 30	. 70	1.0	

Field

Contents
$m_{i}, k_{i} \quad \begin{aligned} & \text { List of pairs of Mach numbers (Real) and reduced frequencies (Real) (imbedded } \\ & \text { blank pairs are skipped). }\end{aligned}$

Remarks:

1. This card will cause the aerodynamic matrices to be computed for a set of parameter pairs.
2. Several MKAERØ2 cards may be in the deck.

BULK DATA DECK

Input Data Card MgMAX
Conical Shell Static Moment

Description: Defines a static moment loading of a conical shell coordinate.

Format and Example:

1	2	3	4	5	6	7	8	9	MR
M MAX	SID	RID	HID	S	MR	MP	MZ		
M MAX	1	2	3	1.0	0.1	0.2	0.3		

Field
Contents
SID Load set identification number (Integer >0)
RID Ring identification number (see RINGAX) (Integer > 0)
HID Harmonic identification number (Integer ≥ 0 or a sequence of harmonics, see note 5)
S Scale factor (Real)
$\left.\begin{array}{l}M R \\ M P \\ M Z\end{array}\right\}$
Moment components in the r, ϕ, z directions (Real)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.
3. A separate card is needed for the definition of the moment associated with each harmonic.
4. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
5. If a sequence of harmonics is to be placed in HID the form is as follows: "SnlTn2" where $n 1$ is the start of the sequence and $n 2$ is the end of the sequence i.e., for harmonics 0 through 10, the field would contain "SOT10".

BULK DATA DECK

Input Data Card MgMENT
Static Moment

Description: Defines a static moment at a grid point by specifying a vector.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MgMENT	SID	G	CID	M	N1	N2	N3		
MgMENT	2	5	6	2.9	0.0	1.0	0.0		

Field

Contents
SID Load set identification number (Integer >0)
G Grid point identification number (Integer >0)
CID Coordinate system identification number (Integer ≥ 0)
$M \quad$ Scale factor (Real)
N1,N2,N3 Components of Vector measured in coordinate system defined by CID (Real; $\left.N 1^{2}+N 2^{2}+N 3^{2}>0.0\right)$

Remarks: 1. The static moment applied to grid point G is given by

$$
\vec{m}=M \cdot(N 1, N 2, N 3)
$$

2. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.
3. A CID of zero references the basic coordinate system.

Description: Used to define a static moment by specification of a value and two grid points which determine the direction.

Format and Example:

1	2	3	4	5	6	8			
MGMENT1	SID	G	M	$G 1$	$G 2$				
MQMENT	6	13	-2.93	16	13				

Field

Contents

SID	Load set identification number (Integer >0)
G	Grid point identification number (Integer >0)
M	Value of moment (Real)
G1, G2	Grid point identification numbers (Integer $>0 ; G 1 \neq G 2$)

Remarks: 1. The direction of the moment is determined by the vector from G1 to G2.
2. Load sets must be selected in the Case Control Deck (LøAD-SID) to be used by NASTRAN.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card MgMENT2
Static Moment

Description: Used to define a static moment by specification of a value and four grid points which determine the direction.

Format and Example:

1	2	3	4	5	6	7	8		
MQMENT2	SID	G	M	G1	G2	G3	G4		
M9MENT2	6	13	-2.93	16	13	17	13		

Field	Contents
SID	Load set identification number (Integer >0)
G	Grid point identification number (Integer >0)
M	Value of moment (Real)
G1,G2,G3,G4	Grid point identification numbers (Integer $>0 ; G 1 \neq G 2 ; G 3 \neq G 4)$

Remarks: 1. The direction of the force is determined by the vector product whose factors are vectors from G1 to G2 and G3 to G4 respectively.
2. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.

NASTRAN DATA DECK
2.4-162 (3/1/70)

Description: Defines a multipoint constraint equation of the form

$$
\sum_{j} A_{j} u_{j}=0
$$

Format and Example:

Field

SID
G Identification number of grid or scalar point (Integer >0)
C Component number - any one of the digits 1-6 in the case of geometric grid points; blank or zero in the case of scalar points (Integer)

A Coefficient (Real; the first A must be nonzero)

Remarks: 1. The first coordinate in the sequence is assumed to be the dependent coordinate and must be unique for all equations of the set.
2. Forces of multipoint constraint are not recovered.
3. Multipoint constraint sets must be selected in the Case Control Deck (MPC=SID) to be used by NASTRAN.
4. Dependent coordinates on MPC cards may not appear on GMIT, QMITI, SUPORT, SPC or SPCl cards; nor may the dependent coordinates be redundantly implied on ASET, ASETI, or MPCADD cards.

BULK DATA DECK

Input Data Card MPCADD
Multipoint Constraint Set Definition

Description: Defines a multipoint constraint set as a union of multipoint constraint sets defined via MPC cards.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MPCADD	SID	ST	S2	S3	S4	S5	S6	S7	abc
MPCADD	101	2	3	1	6	4			
+bc	S8	59	-etc. -						

Field
SID
Sj

Contents
Set identification number (Integer >0)
Set identification numbers of multipoint constraint sets defined via MPC cards (Integer > 0)

Remarks: 1. The Sj must be unique.
2. Multipoint constraint sets must be selected in the Case Control Deck (MPC=SID) to be used by NASTRAN.
3. Sj may not be the identification number of a multipoint constraint set defined by another MPCADD card.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card MPCAX Axisymmetric Multipoint Constraint

Description: Defines a multipoint constraint equation of the form

$$
\sum_{j} A_{j} u_{j}=0
$$

for a model containing CCØNEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MPCAX	SID				RID	HID	C	A	+abc
MPCAX	32				17	6	1	1.0	+1

$+a b c$	RID	HID	C	A	RID	HID	C	A	+def
+1	23	4	2	-6.8					

Field
Contents

SID	Set identification number (Integer >0)
RID	Ring identification number (Integer >0)
HID	Harmonic identification number (Integer >0)
C	Component number ($1 \leq$ Integer ≤ 6)
A	Coefficient (Real; the first A must be nonzero)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. The first coordinate in the sequence is assumed to be the dependent coordinate and must be unique for all equations of the set.
3. Multipoint constraint sets must be selected in the Case Control Deck (MPC=SID) to be used by NASTRAN.
4. Dependent coordinates appearing on MPCAX cards may not appear on gMITAX, SPCAX, or SUPAX cards.
5. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
6. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN ÜATA DECK

BULK DATA DECK

Input Data Card MPCS

Substructure Multipoint Constraints

Description: Defines multipoint constraints within or between substructures.

Format and Example:

1	2	3	4	5	6	7	8	9	10
MPCS	SID	NAME1	G1	Cl	A1	\bigcirc	,		abc
MPCS	171	WINGRT	966	1	1.0				ABC
+bc		NAME2	G21	C21	A21	G22	C22	A32	def
+BC		FUSELAGE	1036	1	. 031	1036	6	32.7	DEF
+ef		NAME3	G31	C31	A31	G32	C32	A32	ghi
+EF		CABIN	39	2	. 076				

Field
SID
NAME i
Gi

Ci Component number - Any one of the digits $1-6$ in the case of geometric grid points; blank or zero in the case of scalar points (Integer >0)
Coefficient (Real; A must be non-zero)

Contents

Set identification number (Integer >0)
Basic substructure name (BCD)
Grid or scalar point identification number in basic substructure NAME or NAME (Integer > 0)

Remarks: 1. The first degree of freedom in the sequence is the dependent degree of freedom and must be unique for all equations of the set.
2. MPCS constraints may be imposed only at the SØLVE step of substructuring in Phase 2. Therefore, referenced grid point components must exist in the final solution substructure.
3. The operation will constrain the degrees of freedom by the equation:

$$
\sum A_{i} u_{i}=0
$$

where $\mathrm{u}_{\mathbf{i}}$ is the displacement defined by NAMEi, Gi, and Ci .
4. Components may be connected within substructures and/or to separate substructures.
5. The dependent degree of freedom may not also be referenced on any SPCS, SPCS 1 , SPCSD, SPC, SPCI, ØMIT, ØMIT1 or SUPØRT cards.
6. Multipoint constraint sets must be selected in the Case Control Deck (MPC=SID) to be used by NASTRAN.
7. MPCS cards may be referenced by an MPCADD card.

Description: Defines nonlinear transient forcing functions of the form

$$
P_{i}(t)=S T\left(u_{j}(t)\right)
$$

Format and Example:

1	2	3	4	5	6	7	8	9	10
NOLIN]	SID	GI	CI	S	GJ	CJ	T		
NQLIN]	21	3	4	2.1	3	1	6		

Field
SID
GI

CI

S
GJ
CJ

T

Contents

Nonlinear load set identification number (Integer >0)
Grid or scalar or extra point identification number at which nonlinear load is to be applied (Integer >0)
Component number for GI a grid point ($0<$ Integer ≤ 6); blank or zero if GI is a scalar or extra point
Scale factor (Real)
Grid or scalar or extra point identification number (Integer >0)
Component number for GJ a grid point ($0<$ Integer ≤ 6); blank or zero if GJ is a scalar or extra point
Identification number of a TABLEDi card (Integer >0)

Remarks: 1. Nonlinear loads must be selected in the Case Control Deck (N@NLINEAR=SID) to be used by NASTRAN.
2. Nonlinear loads may not be referenced on a DLØAD card.
3. All coordinates referenced on NQLIN1 cards must be members of the solution set. This means the u_{e} set for modal formulation and the $u_{d}=u_{e}+u_{a}$ set for direct formulation.

BULK DATA DECK

Input Data Card NOLIN2
Nonlinear Transient Response Dynamic Load

Description: Defines nonlinear transient forcing functions of the form

$$
P_{i}(t)=s u_{j}(t) u_{k}(t)
$$

Format and Example:

1	2	3	4	5	6	7	8	9	10
NQLIN2	SID	GI	CI	S	GJ	CJ	GK	CK	
NOLIN2	14	2	1	2.9	2	1	2	1	

Field

GI

CI
S
GJ
CJ

GK
CK
I

S

J
J

Contents

Nonlinear load set identification number (Integer >0)
Grid or scalar or extra point identification number at which nonlinear load is to be applied (Integer >0)
Component number GI a grid point ($0<$ Integer ≤ 6); blank or zero if GI is a scalar or extra point
Scale factor (Real)
Grid or scalar or extra point identification number (Integer >0)
Component number for GJ a grid point ($0<$ Integer ≤ 6) ; blank or zero if GJ is a scalar or extra point
Grid or scalar or extra point identification number (Integer >0)
Component number of GK a grid point ($0<$ Integer ≤ 6); blank or zero if GK is a scalar or extra point

Remarks: 1. Nonlinear loads must be selected in the Case Control Deck (N@NLINEAR=SID) to be used by NASTRAN.
2. Nonlinear loads may not be referenced on a DL \emptyset AD card.
3. All coordinates referenced on NøLIN2 cards must be members of the solution set. This means the u_{e} set for modal formulation and the $u_{d}=u_{e}+u_{a}$ set for direct
formulation.

BULK DATA DECK

Input Data Card NQLIN3
Nonlinear Transient Response Dynamic Load
Description: Defines nonlinear transient forcing functions of the form

$$
P_{i}(t)=\left\{\begin{array}{cc}
s\left(u_{j}(t)\right)^{A}, & u_{j}(t)>0 \\
0, & u_{j}(t) \leq 0
\end{array}\right.
$$

Format and Example:

1	2	3	6	6	8	9	10		
NOLIN3	SID	GI	CI	S	GJ	CJ	A		
NQLIN3	4	102		-6.1	2	5	-3.5		

Field

Contents

SID
GI Grid or scalar or extra point identification number at which nonlinear load is to be applied (Integer >0)
CI Component number for GI a grid point ($0<$ Integer ≤ 6); blank or zero if GI is a scalar or extra point
Scale factor (Real)
Grid or scalar or extra point identification number (Integer >0)
GJ
CJ

A
Component number for GJ a grid point ($0<$ Integer ≤ 6); blank or zero if GJ is a scalar or extra point

Remarks: 1. Nonlinear loads must be selected in the Case Control Deck (NøNLINEAR=SID) to be used by NASTRAN.
2. Nonlinear loads may not be referenced on a DLØAD card.
3. All coordinates referenced on NQLIN3 cards must be members of the solution set. This means the u_{e} set for modal formulation and the $u_{d}=u_{e}+u_{a}$ set for direct formulation.

NASTRAN DATA DECK

Description: Defines nonlinear transient forcing functions of the form

$$
P_{i}(t)=\left\{\begin{array}{cc}
-S\left(-u_{j}(t)\right)^{A} & , u_{j}(t)<0 \\
0 & , u_{j}(t) \geq 0
\end{array}\right.
$$

Format and Example:

1	2	3	4	5	6	7	8	9	10
NQLIN4	SID	GI	CI	S	GJ	CJ	A		
NQLIN4	2	4	6	2.0	101		16.3		

Field

Contents

SID Nonlinear load set identification number (Integer >0)
GI Grid or scalar or extra point identification number at which nonlinear load is to be applied (Integer >0)

CI . Component number for GI a grid point ($0<$ Integer ≤ 6); blank or zero if GI is a scalar or extra point
S
Scale factor (Real)
GJ
CJ

A
Grid or scalar or extra point identification number (Integer >0)
Component number for GJ a grid point ($0<$ Integer ≤ 6); blank or zero if GJ is a scalar or extra point Amplification factor (Real)

Remarks: 1. Nonlinear loads must be selected in the Case Control Deck (N@NLINEAR=SID) to be used by NASTRAN.
2. Nonlinear loads may not be referenced on a DLØAD card.
3. All coordinates referenced on NØLIN4 cards must be members of the solution set. This means the u_{e} set for modal formulation and the $u_{d}=u_{e}+u_{a}$ set for direct formulation.

NASTRAN DATA DECK

Description: Defines coordinates (degrees of freedom) that the user desires to omit from the problem through matrix partitioning. Used to reduce the number of independent degrees of freedom.

Format and Example:

1	2		4-5		$6 \quad 7$		$8 \quad 9$		10
QMIT	ID	C	ID	C	ID	C	ID	C	
QMIT	16	2	23	3576			1	4	

Field

Contents

Grid or scalar point identification number (Integer >0)
C
Component number, zero or blank for scalar points, any unique combination of the digits 1-6 for grid points

Remarks: 1. Coordinates specified on ØMIT cards may not be specified on ØMITI, ASET, ASET1, SUP@RT, SPC or SPC1 cards nor may they appear as dependent coordinates in multipoint constraint relations (MPC) or as permanent single-point constraints on GRID card.
2. As many as 24 coordinates may be omitted by a single card.

NASTRAN DATA DECK

Description: Defines coordinates (degrees of freedom) that the user desires to omit from the problem through matrix partitioning. Used to reduce the number of independent degrees of freedom.

Format and Example:

1	2	3	4	5	6	7	8	10	
QMITI	C	G	G	G	G	G	G	G	abc
ØMITI	3	2	1	3	10	9	6	5	ABC

$+b c$	G	G	G	$-e t c$.					
$+B C$	7	8							

Alternate Form -etc.-

QMIT1	C	ID1	"THRU"	ID2			
QMIT1	0	17	THRU	109			

Field

Contents

C
Component number (Any unique combination of the digits l-6 (with no imbedded blanks) when point identification numbers are grid points; must be null or zero if point identification numbers are scalar points)

G,ID1,ID2 Grid or scalar point identification number (Integer > 0; IDI < ID2)

Remarks: 1. A coordinate referenced on this card may not appear as a dependent coordinate in a multipoint constraint relation (MPC card), nor may it be referenced on a SPC, SPC1, ØMIT, ASET, ASET1, or SUPØRT card or on a GRID card as permanent single-point constraints.
2. If the alternate form is used, all of the grid (or scalar) points IDl thru ID2 are assumed.

NASTRAN DATA DECK

Description: Defines coordinates that the user desires to omit from a model containing CCONEAX, CTRAPAX or CTRIAAX elements through matrix partitioning. Used to reduce the number of indenendent degrees of freedom.

Format and Example:

1	2	3	4	5	6	7	8	9	10
gMITAX	RID	HID	C	RID	HID	C			
gMI TAX	2	6	3	4	7	1			

Field

Contents
RID
Ring identification number (Integer >0)
HID
Harmonic identification number (Integer ≥ 0)
Component number (any unique combination of the digits 1-6)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. Up to 12 coordinates may be omitted via this card.
3. Coordinates appearing on GMITAX cards may not appear on MPCAX, SUPAX or SPCAX cards.
4. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
5. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

BULK DATA DECK

Input Data Card PAERDI Aerodynamic Panel Property

Description: Gives properties for DOUBLET LATTICE method.

Format and Example:

1	$2 \quad 3$		4		6	7	8	9	10
PAERDI	PID		X0	X1					
PAERD1	1		. 45	. 95					

Field
 Contents

PID Property identification number (referenced by CAERD), (unique Integer >0).
XO Center of pressure in fraction of box chord (Real), default $X 0=0.25$.
XI
Downwash center in fraction of box chord (Real), default $X 1=0.75$.

NASTRAN DATA DECK

Description: Specifies values for parameters used in DMAP sequences (including rigid formats).

Format and Example:

Field
N

V1, V2

Parameter name (one to eight alphanumeric characters, the first of which is alphabetic)
Parameter value based on parameter type as follows:

Type	V1	V2
Integer	Integer	Blank
Real, single-precision	Real	Blank
BCD	BCD	Blank
Real, double-precision	Double-precision	Blank
Complex, single-precision	Real	Real
Complex, double-precision	Double-precision	Double-precision

Remarks: 1. Only parameters for which assigned values are allowed may be given values via the PARAM card. Section 5 describes parameters as used in DMAP.
2. The following is a list of the parameters:
a. GRDPNT - optional in all DISPLACEMENT and AER \emptyset rigid formats. A positive integer value of this parameter will cause the Grid Point Weight Generator to be executed. The value of the integer indicates the grid point to be used as a reference point. If the integer is zero (blank is not equivalent) or is not a defined grid point, the reference point is taken as the origin of the basic coordinate system. All fluid related masses are ignored. Additional details for the Grid Point Weight Generator are given in Section 5.5 of the Theoretical Manual. The following weight and balance information is automatically printed following the execution of the Grid Point Weight Generator.
(1) Reference point.
(2) Rigid body mass matrix [MD] relative to the reference point in the basic coordinate system.
(3) Transformation matrix [S] from basic coordinate system to principal mass axes.
(4) Principal masses (mass) and associated centers of gravity (X-C.G., Y-C.G., Z-C.G.).
(5) Inertia matrix $I(S)$ about the center of gravity relative to the principal mass axes.
(6) Inertia matrix $I(Q)$ about the center of gravity relative to the principal inertia axes.
(7) Transformation matrix [Q] between S-axes and Q-axes.

PARAM (Cont.)

b. WTMASS - optional in all DISPLACEMENT and AER \emptyset rigid formats. The terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in EMA. Not recommended for use in hydroelastic problems.
c. IRES - optional in all DISPLACEMENT and HEAT statics problems (rigid formats $\overline{1,2}, 4,5$ and 6). A positive integer value of this parameter will cause the printing of the residual vectors following each execution of SSG3.
d. LFREQ and HFREQ - required in all modal formulations of DISPLACEMENT and AER \varnothing dynamics problems (rigid formats 10,11 and 12) unless LMODES is used. The real values of these parameters give the cyclic frequency range (LFREQ is lower limit and HFREQ is upper limit) of the modes to be used in the modal formulation.
e. LMQDES - required in all modal formulations of DISPLACEMENT and AER dynamics problems (rigid formats 10,11 and 12) unless LFREQ and HRFEQ are used. The integer value of this parameter is the number of lowest modes to be used in the modal formulation.
f. G - optional in the direct formulation of all DISPLACEMENT dynamics problems Trigid formats 7, 8 and 9). The real value of this parameter is used as a uniform structural damping coefficient in the direct formulation of dynamics problems (See Section 9.3 .3 of the Theoretical Manual). Not recommended for use in hydroelastic problems.
g. W3 and W4 - optional in the direct formulation of DISPLACEMENT transient response problems (rigid format 9). The real values (radians/unit time) of these parameters are used as pivotal frequencies for uniform structural damping and element structural damping, respectively (See Section 9.3 .3 of the Theoretical Manual). The parameter W3 should not be used for hydroelastic problems.
h. MDDACC - optional in the modal formulation of frequency response (rigid format 11) and transient response (rigid format 12) problems. A positive integer value of this parameter causes the Dynamic Data Recovery module to use the mode acceleration method. Not recommended for use in hydroelastic problems.
i. CØUPMASS - optional in all DISPLACEMENT and AER \varnothing rigid formats. A positive integer value of this parameter will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness. This option applies to both structural and nonstructual mas's for the following elements: BAR, CQNRQD, QUAD1, QUAD2, R@D, TRIA1, TRIA2, TUBE. Since structural mass is not defined for the following list of elements, the option applies only to the nonstructural mass: QDPLT, TRBSC, TRPLT. A negative value causes the generation of lumped mass matrices (transiational components only) for all the above elements. (This is the default). A zero value activates the following parameters described under j.
j. CPBAR, CPRØD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC optional in all DISPLACEMENT and AERD rigid formats. These parameters are active only if CØUPMASS=0. A positive value will cause the generation of coupled mass matrices for all elements of that particular type as shown by the following table:

Parameter
CPBAR
CPRQD
CPQUAD1
CPQUAD2
CPTRIA1
CPTRIA2
CPTUBE
CPQDPLT
CPTRPLT
CPTRBSC

Element Types
BAR
RØD, CONRøD
QUAD1
QUAD2
TRIA1
TRIA2
TUBE
QDPLT
TRPLT
TRBSC

A negative value (the default) for these parameters will cause the generation of the lumped mass matrices (translational components only) for these element types.
2.4-184 (3/1/76)
k. MAXIT - optional in nonlinear static HEAT transfer analysis (rigid format 3). The integer value of this parameter limits the maximum number of iterations. The default value is 4 iterations.

1. EPSHT - optional in nonlinear static HEAT transfer analysis (rigid format 3). The real value of this parameter is used to test the convergence of the nonlinear heat transfer solution (see Section 8.4.1 of the Theoretical Manual). The default value is . 001 .
m. TABS - optional in nonlinear static (rigid format 3) and transient (rigid format 9) HEAT transfer analysis. The real value of this parameter is the absolute reference temperature. The default value is 0.0 .
n. SIGMA - optional in nonlinear static (rigid format 3) and transient (rigid format 9) HEAT transfer analysis. The real value of this parameter is the StefanBoltzman constant. The default value is 0.0 .
2. BETA - optional in transient HEAT transfer analysis (rigid format 9). The real value of this parameter is used as a factor in the integration algorithm (see Section 8.4.2 of the Theoretical Manual). The default value is 0.55 .
p. RADLIN - optional in transient HEAT transfer analysis (rigid format 9). A positive integer value of this parameter causes some of the radiation effects to be linearized (see Equation 2, Section 8.4.2 of the Theoretical Manual). The default value is -7 .
q. BETAD - optional in static analysis with differential stiffness (rigid format 4). The integer value of this parameter is the number of iterations allowed for computing the load correction in the inner (load) loop before shifting to the outer (stiffness) loop which adjusts the differential stiffness. The default value is 4 iterations.
r. NT - optional in static analysis with differential stiffness (rigid format 4). The integer value of this parameter limits the cumulative number of iterations in both loops. The default value is 10 iterations.
s. EPSID - optional in static analysis with differential stiffness (rigid format 4). The real value of this parameter is used to test the convergence of iterated differential stiffness. The default value is 10^{-5}.
t. CTYPE - required in cyclic symmetry analysis (rigid formats 14 and 15). The $\overline{B C D}$ value of this parameter defines the type of cyclic symmetry as follows:
(1) RดT - rotational symmetry
(2) DRL - dihedral symmetry, using right and left halves
(3) DSA - dihedral symmetry, using symmetric and antisymmetric components.
u. NESGS - required in cyclic symmetry analysis (rigid formats 14 and 15). The integer value of this parameter is the number of identical segments in the structural model.
v. NLDAD - optional in static analysis with cyclic symmetry (rigid format 14). The integer value of this parameter is the number of static loading conditions. The default value is 1 .
w. CYCID - optional in static analysis with cyclic symmetry (rigid format 14). The integer value of this parameter specifies the form of the input and output data. A value of +1 is used to specify physical segment representation, and a value of -1 for cyclic transform representation. The default value is +1 .
x. CYCSEQ - optional in cyclic symmetry analysis (rigid formats 14 and 15). The integer value of this parameter specifies the procedure for sequencing the equations in the solution set. A value of +1 specifies that all cosine terms should be sequenced before all sine terms, and a value of -1 for alternating the cosine and sine terms. The default value is -1 .

$$
2.4-184 a(3 / 1 / 76)
$$

PARAM (Cont.)

y. KMAX - optional in static analysis with cyclic symmetry (rigid format 14). The integer value of this parameter specifies the maximum value of the harmonic index. The default value is ALL which is NSEGS/2 for NSEGS even and (NSEGS-1)/2 for NSEGS odd.
z. KINDEX - required in normal modes with cyclic symmetry (rigid format 15). The integer value of this parameter specifies a single value of the harmonic index.
aa. NQDJE - optional in modal flutter analysis. A positive integer of this parameter indicates user supplied downwash matrices due to extra points are to be read from tape via the INPUTT2 module in the rigid format. The default value is -1 .
ab. $\quad \mathrm{P} 1, \mathrm{P} 2$ and P 3 - required in modal flutter analysis when using N $\varnothing D J E$ parameter. See Section 5.3.2 for tape operation parameters required by INPUTT2 module. The defaults for P1,P2 and P3 are $-1,11$ and TAPEID, respectively.
ac. VREF - optional in modal flutter analysis. Velocities are divided by the real value of this parameter to convert units or to compute flutter indices. The default value is 1.0 .
ad. PRINT - optional in modal flutter analysis. The $B C D$ value, N \emptyset, of this parameter will suppress the automatic printing of the flutter summary for the K method. The default value is YES.

Description: Defines the properties of a simple beam (bar) which is used to create bar elements via the CBAR card.

Format and Example:

Field
Contents
PID Property identification number (Integer >0)
MID Material identification number (Integer >0)
A Area of bar cross-section (Real)
I1, I2, I12
J
NSM Nonstructural mass per unit length (Real)
K1, K2 Area factor for shear (Real)
Ci, Di, Ei, Fi Stress recovery coefficients (Real)

Remarks: 1. For structural problems, PBAR cards may only reference MATl material cards.
2. See Section 1.3.2 for a discussion of bar element geometry.
3. For heat transfer problems, PBAR cards may only reference MAT4 or MAT5 material cards.

NASTRAN DATA DECK

Description: Defines the properties of a conical shell element described on a CCONEAX card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PCONEAX	ID	MID1	T1	MID2	I	MID3	T2	NSM	+abc
PCØNEAX	2	4	1.0	6	16.3	8	2.1	0.5	+1

$+a b c$	Z1	Z2	PHI1	PHI2	PHI3	PHI4	PHI5	PHI6	+ def
+1	0.001	-0.002	23.6	42.9					+2

+ def	PHI7	PHI8	PHI9	PHI10	PHI11	PHI12	PHI13	PHI14	
+2									

Field

Contents

Remarks:

1. This card is allowed if and only if a AXIC card is also present.
2. PCDNEAX cards may only reference MAT1 material cards.
3. If either MIDI $=0$ or blank or $\mathrm{Tl}=0.0$ or blank, then both must be zero or blank.
4. If either MID2 $=0$ or blank or $I=0.0$ or blank, then both must be zero or blank.
5. If either MID3 $=0$ or blank or $T 2=0.0$ or blank, then both must be zero or blank.
6. A maximum of 14 azimuthal coordinates for stress recovery may be specified. An error will be detected if more than two (2) continuation cards appear.
7. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.

Description: Used to define the damping value of a scalar damper element which is defined by means of the CDAMP1 or CDAMP3 cards.

Format and Example:

Field
Contents
PID
Property identification number (Integer > 0)
B
Value of scalar damper (Real)

Remarks: 1. This card defines a damper value. The user is cautioned to be careful when using negative damper values. Damper values are defined directly on the CDAMP2 and CDAMP4 cards. A structural viscous damper, CVISC, may also be used for geometric grid points.
2. Up to four damper properties may be defined on a single card.
3. For a discussion of scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines the properties of a dummy element $(1 \leq \mathbf{i} \leq 9)$. Referenced by the CDUMi card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PDUMi	PID	MID	A1	A2			-etc.-		abc
PDUM3	108	2	2.4	9.6	1.E4	15.		3.5	ABC
+bc		-etc. -	AN						
+BC	5		2						

Field	Contents
PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
Al...AN	Additional entries (Real or Integer)

Remarks: The additional entries are defined in the user written element routines.

Description: Used to define the stiffness, damping coefficient, and stress coefficient of a scalar elastic element (spring) by means of the CELAS1 or CELAS3 card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PELAS	PID	K	GE	5	PID	K	GE	S	
PELAS	7	4.29	0.06	7.92	27	2.17	0.0032		

Field

Contents

PID	Property identification number (Integer >0)
K	Elastic property value (Real)
GE	Damping coefficient, $\mathrm{ge}_{\mathrm{e}}($ Real)
S	Stress coefficient (Real)

Remarks: 1. The user is cautioned to be careful using negative spring values. (Values are defined directly on some of the CELASi card types.)
2. One or two elastic spring properties may be defined on a single card.
3. For a discussion of scalar elements, see Section 5.6 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines the properties of the HBDY element.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHBDY | PID | MID | AF | E | ALPHA | R1 | R2 | | |
| PHBDY | 100 | 103 | 300 | .79 | | | | | |

Field

PID Property identification number (Integer >0)
MID Material identification number (Integer ≥ 0 or blank), used for convective film coefficient and thermal capacity.

AF

E

AL.PHA

R1, R2 Area factor (Real ≥ 0.0 or blank). Used only for HBDY types PØINT, LINE, and ELCYL. Emissivity ($0.0 \leq$ Real ≤ 1.0 or blank). Used only for radiation calculations. Absorbtivity ($0.0 \leq$ Real ≤ 1.0 or blank). Used only for thermal vector flux calculations, default value is E.
"Radii" of elliptic cylinder. Used for HBDY type "ELCYL". See the HBDY element description. (Real)

Remarks:

1. The referenced material Id must be on a MAT4 card. The card defines the convective film coefficient and thermal capacity per unit area. If no material is referenced the element convection and heat capacity are zero.
2. The area factor $A F$ is used to determine the effective area. For a "PDINT", AF = area; for "LINE" or "ELCYL", AF = effective width where area = AF•length. The effective area is automatically calculated for other HBDY types.

NASTRAN DATA DECK

Description: Defines the properties of an isoparametric solid element, including a material reference and the number of integration points. Referenced by the CIHEX1, CIHEX2, and CIHEX3 cards.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIHEX | PID | MID | CID | NIP | AR | ALFA | BETA | 3 | |
| PIHEX | 15 | 3 | | 3 | | | 5.0 | | |

Field

Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)

CID Identification number of the coordinate system in which the material referenced by MID is defined (Integer ≥ 0 or blank)

NIP Number of integration points along each edge of the element (Integer $=2,3,4$ or blank)

AR Maximum aspect ratio (ratio of longest to shortest edge) of the element (Real > 1.0 or blank)

ALFA Maximum angle in degrees between the normals of two subtrianales comprising a quadrilateral face (Real, $0.0 \leq A L F A \leq 180.0$, or blank)

Maximum angle in degrees between the vector connecting a corner point to an adjacent midside point and the vector connecting that midside point and the other midside or corner point (Real, $0.0 \leq B E T A \leq 180.0$, or blank)

Examples of Field Definitions:

Example of ALFA

Example of BETA

NASTRAN DATA DECK
PIHEX (Cont.)
Remarks: 1. All PIHEX cards must have unique identification numbers.
2. CID is not used for isotropic materials.
3. The default for CID is the basic coordinate system.
4. The default for NIP is 2 for IHEXI and 3 for IHEX2 and IEHX3.
5. AR, ALFA, and BETA are used for checking the geometry of the element. The defaults are:

	AR	ALFA (degrees)	BETA (degrees)
CIHEX1	5.0	45.0	--
CIHEX2	10.0	45.0	45.0
CIHEX3	15.0	45.0	45.0

BULK DATA DECK

Input Data Card PLFACT Piecewise Linear Analysis Factor Definition Card

Description: Defines scale factors for Piecewise Linear Analysis loading.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PLFACT	SID	B1	B2	B3	B4	B5	B6	B7	+abc
PLFACT	6	0.2	0.3	0.4	0.5	0.6	0.7	0.8	ABC

+abc	B 8	$\mathrm{B9}$	-etc.						
+BC	0.9	1.0							

Field
Contents
SID Unique set identification number (Integer >0)
$\mathrm{Bi} \quad$ Loading factor (Real)

Remarks: 1. The remainder of the physical card containing the last entry must be null.
2. At any stage of the Piecewise Linear Analysis, the accumulated load is given by

$$
\left\{P_{i}\right\}=B_{i}\{P\}
$$

where $\{P\}$ is the total load defined in the usual way.
Example: If it were desired to load the structure in ten equally spaced load increments then set

$$
B_{i}=0.1 \cdot i ; i=1,10
$$

3. Normally, the B_{i} form a monotonically increasing sequence. A singular stiffness matrix will result if $B_{i}=B_{i-1}$.
4. At least two factors must be defined.
5. Piecewise Linear Analysis factor sets must be selected in the Case Control Deck ($\mathrm{PLC} \subset E F F=S I D$) to be used by NASTRAN.

Description: Defines the maximum and minimum limits for ratio of new property to original property.

Format and Example:

1	2		3	4	5	6	7	8	9	10
PLIMIT	ELTYP	KMIN	KMAX	PID1	PID2	PID3	PID4	PID5	+abc	
PLIMIT	R $\emptyset D$.01	1.5	1	3	5	4	2	+ABC	

+bc	PID6	-etc. -							
$+B C$		-etc. -							

Alternate form:

PLIMIT	ELTYP	KMIN	KMAX	PID1	"THRU"	PIDi			
PLIMIT	ALL	.001	0.05	30	"THRU"	36			

Field

Contents

Remarks: 1. This card is not required (Default KMIN = KMAX $=0.0$ for ALL elements).
2. All PID values must be unique for each element type.
3. All elements with the same property identification number in the output stress data block, $\emptyset E S 1$, have these limits applied if ALL is specified.
4. Property entries optimized depend on the element type and material stress limits. Only nonzero properties with nonzero stress limits are optimized.
5. If $K M A X=0.0$, no limit is placed on the maximum change.
6. If ELTYP is blank, ALL is assumed.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PLQAD
Static Pressure Load

Description: Defines a static pressure load.

Format and Example:

1	2	3	4	5	6	7	8	10	
PL $\varnothing A D$	$S I D$	P	$G 1$	$G 2$	$G 3$	$G 4$			
PL@AD	1	-4.0	16	32	11				

Field

Contents
SID Load set identification number (Integer >0)
$P \quad$ Pressure (Real)
G1,G2,G3,G4 Grid point identification numbers (Integer > 0; G4 may be zero)

Remarks: 1. Grid points must be unique and noncollinear.
2. If four grid points are given, four triangles are formed and half of P is applied to each one. For each triangle the direction is defined by

$$
+\left(\vec{r}_{12} \times \vec{r}_{13}\right)
$$

where $\vec{r}_{i j}$ is the vector from $G i$ to $G j$.
3. Load sets must be selected in the Case Control Deck (L $\emptyset A D=S I D$) to be used by NASTRAN.

NASTRAN DATA DECK

Description: Defines a uniform static pressure load applied to two-dimensional elements.
Only QUAD1, QUAD2, QDMEM, QDMEM1, QDMEM2, QDPLT, SHEAR, TRBSC, TRIA1, TRIA2, TRMEM, TRPLT or TWIST elements may have a pressure load applied to them via this card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PLøAD2	SID	P	EID	EID	EID	EID	EID	EID	
PLøAD2	21	-3.6		4	16		2		

Alternate Form

PL $\emptyset A D 2$	SID	P	EID1	"THRU"	EID2		
PLØAD2	1	30.4	16	THRU	48		

Field

Contents

SID	Load set identification number (Integer > 0)
P	Pressure value (Real)
EID	
EID1 $\}$	Element identification number (Integer > 0; EID1 < EID2)
EID2	

Remarks: 1. EID must be 0 or blank for omitted entrys.
2. Load sets must be selected in the Case Control Deck ($L \varnothing A D=S I D$) to be used by NASTRAN.
3. At least one positive EID must be present on each PL@AD2 card.
4. If the alternate form is used, all elements EIDl thru EID2 must be two-dimensional.
5. The pressure load is computed for each element as if the grid points to which the element is connected were specified on a PLDAD card. The grid point sequence specified on the element connection card is assumed for the purpose, of computing pressure loads.
6. All elements referenced must exist.

NASTRAN DATA DECK

Description: Defines a uniform static pressure load applied to a surface of an isoparametric hexahedron element only.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PL@AD3	SID	P	EID1	G11	G12	EID2	G21	G22	
PL@AD3	3	-15.1	15	7	25	16	117	135	

Field

Contents

SID Load set identification number (Integer >0)
$P \quad$ Pressure value (Real, force per unit area)
EID1 \quad EID2 $\quad\{\quad$ Element identification number (Integer >0)
G11, G12 Grid point identification number of two grid points at diagonally opposite cor-
G21, G22 ners of the face on which the pressure acts (Integers >0)

Remarks: 1. Load sets must be selected in the Case Control Deck (LøAD = SID) to be used by NASTRAN.
2. At least one EID must be present on each PLøAD3 card.
3. All elements referenced must exist.
4. Computations consider the pressure to act positive outward on specified face of element.

NASTRAN DATA DECK

Input Data Card PLØTEL Dummy Element Definition

Description: Defines a durmy one-dimensional element for use in plotting. This element is not used in the model during any of the solution phases of a problem. It is used to simplify plotting of structures with large numbers of collinear grid points where the plotting of each one along with the elements connecting them would result in a confusing plot. The use of this "element" is entirely the responsibility of the user.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PLØTEL	EID	G1	G2		EID	G1	G2		
PLØTEL	29	35	16						

Field

Contents
EID
Element identification number (Integer > 0)
G1, G2
Grid point identification numbers of connection points (Integer >0; G1 $\neq \mathrm{G} 2$)

Remarks: 1. Element identification numbers must be unique with respect to all other element identification numbers.
2. One or two PLøTEL elements may be defined on a single card.

NASTRAN DATA DECK

Description: Used to define the mass value of a scalar mass, element which is defined by means of the CMASST or CMASS 3 cards.

Format and Example:

Field
Contents
PID
Property identification number (Integer >0)
M
Value of scalar mass (Real)

Remarks: 1. This card defines a mass value. The user is cautioned to be careful when using negative mass values. (Values are defined directly on some of the CMASSi card types.)
2. Up to four mass properties may be defined by this card.
3. For a discussion of scalar elements, see Section 5:6 of the Theoretical Manual.
nastran data deck

BULK DATA DECK

Input Data Card POINTAX
Axisymmetric Point

Description: Defines the location of a point on an axisymmetric ring at which loads may be applied via the FØRCE, FØRCEAX, MØMENT or M@MAX cards and at which displacements may be requested. These points are not subject to constraints via MPCAX, SPCAX, or פMITAX cards.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PØINTAX	ID	RID	PHI						
PØINTAX	2	3	30.0						

Field

Contents

 Point identification number (Unique Integer >0)
 Identification number of a RINGAX card (Integer >0)
 PHI Azimuthal angle in degrees (Real)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. PØINTAX identification numbers must be unique with respect to all other P@INTAX, RINGAX and SECTAX identification numbers.
3. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
4. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PQPT
Property Optimization Parameter

Description: Defines the basic parameters and existence of a property optimization analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
P@PT	MAX	EPS	GAMA	PRINT	PUNCH				
PgPT	2	1.0E-3	0.9	2	ND				

Field

Contents

MAX - Maximum number of iterations on property values (Integer >0)
EPS Convergence criteria for property value. If zero, no convergence check
(Real ≥ 0.0)
GAMA Iteration factor (Default $=1.0)($ Real $>0.0)$
PRINT Print control for property parameters and 9 FP. Printout occurs every Ith loop. The first and last loops are always printed (Integer >0)

PUNCH Property card punch option. If YES, properties that were optimized are punched (BCD, "YES" or "NO")

Remarks: 1. Only one PØPT card is allowed.
2. All subcases will be analyzed MAX+1 times unless all properties converge.
3. Property convergence is defined by

$$
\frac{\left\lvert\, \frac{\sigma-\sigma_{\ell} \mid}{\sigma_{\ell}}\right.}{}<\text { EPS }
$$

where σ is the maximum stress and σ_{ℓ} is the appropriate stress 1 imit on the material card.
4. Stress recovery must be requested for one of the following elements: RøD, TUBE, BAR, TRMEM, QDMEM, TRPLT, QDPLT, TRBSC, TRIA1, QUAD1, TRIA2, QUAD2, or SHEAR. In addition, the material card must have stress limits defined.
5. Property cards are always printed for the last iteration.
6. The property entry optimized depends on the element type and the material stress limits (see Section 1.13).

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PQDMEM
Quadrilateral Membrane Property

Description: Used to define the properties of a quadrilateral membrane. Referenced by the CQDMEM card. No bending properties are included.

Foramt and Example:

1	2	3	4	5	6	7	8	9	10
PQDMEM	PID	MID	T	NSM	PID	MID	T	NSM	
PQDMEM	235	2	0.5	0.0					

Field
Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
T	Thickness of membrane (Real >0.0)
NSM	Nonstructural mass per unit area (Real)

Remarks: 1. All PQDMEM cards must have unique property identification numbers.
2. One or two quadrilateral membrane properties may be defined on a single card.

Description: Used to define the properties of an isoparametric quadrilateral membrane. Referenced by the CQDMEMI card. No bending properties are included.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PQDMEM 1	PID	MID	T	NSM	PID	MID	T	NSM	
PQDMEM1	235	2	0.5	0.0					

Field

Contents

PID
MID
T
NSM

Property identification number (Integer >0)
Material identification number (Integer >0)
Thickness of membrane (Real >0.0)
Nonstructural mass per unit area (Real)

Remarks: 1. All PQDMEM1 cards must have unique property identification numbers.
2. One or two isoparametric quadrilateral membrane properties may be defined on a single card.

NASTRAN DATA DECK

Description: Used to define the properties of a quadrilateral membrane. Referenced by the CQDMEM2 card. No bending properties are included.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PQDMEM2	PID	MID	T	NSM	PID	MID	T	NSM	
PQDMEM2	235	2	0.5	0.0					

Field
Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
T	Thickness of membrane (Real >0.0)
NSM	Nonstructural mass per unit area (Real)

Remarks: 1. All PQDMEM2 cards must have unique property identification numbers.
2. One or two quadrilateral membrane properties may be defined on a single card.

NASTRAN DATA DECK
2.4-206d (4/1/73)

Input Data Card PQDPLT

Quadrilateral Plate Property

Description: Used to define the bending properties of a quadrilateral plate element. Referenced by the CQDPLT card. No membrane properties are included.

Format and Example:

1	2	3	4	5	6	7	8	9	21
PQDPLT	PID	MID1	I	MID2	T	NSM	Z1	Z2	
PQDPLT	16	23	4.29	16	2.63	1.982	0.05	-0.05	

Field

Contents

PID	Property identification number (Integer >0)
MID1	Material identification number for bending (Integer >0)
I	Bending area moment of inertia per unit width (Real)
MID2	Material identification number for transverse shear (Integer ≥ 0)
T	Transverse shear thickness (Real)
NSM	Nonstructural mass per unit area (Real)
Z1, Z2	Fiber distances for stress computation, positive according to the right-hand sequences defined on the CQDPLT card (Real)

Remarks: 1. All PQDPLT cards must have unique property identification numbers.
2. If T is zero, the element is assumed to be rigid in transverse shear.
3. No structural mass is generated for this element.

NASTRAN DATA DECK

BULK DATA DECK

Description: Defines the properties of a general quadrilateral element of the structural model, including bending, membrane, and transverse shear effects. Referenced by the CQUADI card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PQUAD 1	PID	MID1	T1	MID2	I	MID3	T3	NSM	abc
PQUADI	32	16	2.98	9	6.45	16	5.29	6.32	WXYZI
+bc	21	Z2							
+XYZI	0.09	-0.06							

Field

Contents

```
PID
    Property identification number (Integer > 0)
MID1
Tl
MID2
I
MID3
T3
NSM
Z1, Z2
Material identification number for membrane (Integer \geq 0)
Membrane thickness (Real)
Material identification number for bending (Integer \geq0)
Area moment of inertia per unit width (Real)
Material identification number for transverse shear (Integer \geq0)
Transverse shear thickness (Real)
Nonstructural mass per unit area (Real)
Fiber distances for stress computation, positive according to the right-hand
sequence defined on the CQUADI card (Real)
```

Remarks: 1. All PQUAD1 cards must have unique property identification numbers.
2. If T3 is zero, the element is assumed to be rigid in transverse shear.
3. The membrane thickness, Tl , is used to compute the structural mass for this element.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PQUAD2 Homogeneous Quadrilateral Property

Decription : Defines the properties of a homogeneous quadrilateral element of the structural model, incTuding bending, membrane and transverse shear effects. Referenced by the CQUAD2 card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PQUAD2	PID	MID	T	NSM	PID	MID	T	NSM	
PQUAD2	32	16	2.98	9.0	45	16	5.29	6.32	

Field
Contents
PID Property identification number (Integer >0)
MID Material identification number (Integer >0)
$T \quad$ Thickness (Real> 0.0)
NSM
Nonstructual mass per unit area (Real)

Remarks: 1. All PQUAD2 cards must have unique identification numbers.
2. The thickness used to compute membrane and transverse shear properties is T .
3. The area moment of inertia per unit width used to compute the bending stiffness is $T^{3} / 12$.
4. Outer fiber distances of $\pm T / 2$ are assumed.
5. One or two homogeneous quadrilateral properties may be defined on a single card.

Input Data Card PRESAX Axisymmetric Pressure Load

Description: Defines the static pressure loading for a model containing CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PRESAX	SID	P	RID1	RID2	PHI	PHI2			
PRESAX	3	7.92	4	3	20.6	31.4			

Field
Contents
SID Load set identification number (Integer >0)
$P \quad$ Pressure value (Real)
RID1
RID2 $\}$
Ring identification numbers (see RINGAX card) (Integer > 0)
PHII
PHI2 $\}$
Azimuthal angles in degrees (Real)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. Load sets must be selected in the Case Control Deck (LDAD=SID) in order to be used by NASTRAN.
3. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
4. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines the location of pressure points in the fluid for recovery of pressure data.

Format and Example:

1	2	3			$6 \quad 7$		8 - ${ }^{8}$		10
PRESPT	IDF	$3<$	IDP	¢	IDP	ϕ	IDP	ϕ	
PRESPT	14		141	0.0			142	90.0	

Field

Contents

IDF	Fluid point (RINGFL) identification number (Integer >0)
IDP	Unique pressure point identification number (Integer >0)
ϕ	Azimuthal position on fluid point, referenced by IDF, in Fluid Coordinate System
	(Real)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. All pressure point identification numbers must be unique with respect to other scalar, structural and fluid points.
3. The pressure points are used primarily for the identification of output data. They may also be used as points at which to measure pressure for input to control devices (see User's Manual, Section 1.7).
4. One, two or three pressure points may be defined per card.
5. Output requests for velocity and acceleration of these degrees of freedom will result in derivatives of pressure with respect to time.

NASTRAN DATA DECK

Description: Defines the properties of a rod which is referenced by the CR $\emptyset D$ card.

Format and Example:

1	2	3	4	5	6	7	8		
PRØD	PID	MID	A	J	C	NSM			
PRØD	17	23	42.6	17.92	4.236	0.5			

Field

Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
A	Area of rod (Real)
J	Torsional constant (Real)
C	Coefficient to determine torsional stress (Real)
NSM	Nonstructual mass per unit length (Real)

Remarks: 1. PR $\emptyset D$ cards must all have unique property identification numbers.
2. For structural problems, PRDD cards may only reference MATl material cards.
3. For heat transfer problems, PRØD cards may only reference MAT4 or MAT5 cards.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PSHEAR Shear Panel Property

Description: Defines the elastic properties of a shear panel. Referenced by the CSHEAR card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PSHEAR	PID	MID	T	NSM	PID	MID	T	NSM	
PSHEAR	13	2	4.9	16.2	14	6	4.9	14.7	

Field
Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
T	Thickness of shear panel (Real $\neq 0.0$)
NSM	Nonstructural mass per unit area (Real)

Remarks: 1. All PSHEAR cards must have unique identification numbers.
2. PSHEAR cards may only reference MATl material cards.
3. One or two shear panel properties may be defined on a single card.

NASTRAN DATA DECK

1

Description: Used to define membrane and flexure (bending) properties of a toroidal ring element. Referenced by the CTØRDRG card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PT@RDRG	PID	MID	TM	TF	PID	MID	TM	TF	
PTDRDRG	2	4	0.1	0.15					

Field	Contents
PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
TM	Thickness for membrane (Real >0.0)
TF	Thickness for flexure (Real)

Remarks: 1. All PTøRDRG cards must have unique property identification numbers.
2. The material identification number MID must reference only a MATl or MAT3 card.
3. One or two toroidal ring properties may be defined on a single card.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PTRAPAX Triangular Ring Element Property

Description: Defines the properties of an axisymmetric trapezoidal cross-section rina element referenced by the CTRAPAX card.

Format and Example:

1	2	3		4		5	6	7	
PTRAPAX	PID			MID	PHI 1	PHI2	PHI3	PHI4	PHI5
+abc									
PTRAPAX	5		15	0.0	5.0	6.0	7.0	8.0	+N1

+abc	PHI6	PHI7	PHI8	PHI9	PHI10	PHI11	PHI12	PHI13	+def
+ N1	9.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	+2

+ def	PHI14								
$+N 2$	45.0								

Field
PID
MID
PHI i

Contents

Property identification number (Integer >0).
Material identification number (Integer >0).
Azimuthal coordinates (in dearees) for stress recovery (Real).

Remarks:

1. All PTRAPAX cards must have unique property identification numbers.
2. This card is allowed if and only if an AXIC card is also present.
3. PTRAPAX card may reference MATI or MAT3 material cards.
4. A maximum of 14 azimuthal coordinates for stress recovery may be specified.

NASTRAN DATA DECK

Description: Defines basic bending triangle (TRBSC) properties. Referenced by the CTRBSC card. No membrane properties are included.

Format and Example:

1	2	3	4	6	7	8	9	10	
PTRBSC	PID	MID1	I	MID2	T	NSM	Z1	Z2	
PTRBSC	3	17	6.29	4	16.	1.982	0.05	-0.05	

Field

Contents

PID	Property identification number (Integer >0)
MID1	Material identification number for bending (Integer >0)
I	Bending area moment of inertia per unit width (Real)
MID2	Material identification number for transverse shear (Integer ≥ 0)
T	Transverse shear thickness (Real)
NSM	Nonstructural mass per unit area (Real)
Z1, Z2	Fiber distances for shear computation, positive according to the right-hand sequence defined in the CTRBSC card (Real)

Remarks: 1. All PTRBSC cards must have unique property identification numbers.
2. If T is zero, the element is assumed to be rigid in transverse shear.
3. No structural mass is: generated by this element.

NASTRAN DATA DECK

BULK DATA DECK:

Input Data Card PTRIAAX Triangular Ring Element Property.

Description: Defines the properties of an axisymmetric triangular cross-section ring element referenced by the CTRIAAX card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PTRIAAX	PID	,	MID	PHII	PHI2	PHI3	PHI4	PHI5	+abc
PTRIAAX	5		15	0.0	5.0	6.0	7.0	8.0	+N1
+abc	PHI6	PHI7	PHI8	PHI9	PHI10	PHI11	PHI12	PHII3	+def
+N1	9.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	+N2
+def	PHI14								
+N2	45.0								

Field

PID
MID
PHI i

Contents

Property identification number (Integer >0).
Material identification number (Integer >0).
Azimuthal coordinates (in dearees) for stress recovery (Real).

Remarks:

1. A 11 PTRIAAX cards must have unique property identification numbers.
2. This card is allowed if and only if an AXIC card is also present.
3. PTRIAAX card may reference MATl or MAT3 material cards.
4. A maximum of 14 azimuthal coordinates for stress recovery may be specified.

NASTRAN DATA DECK

Description: Defines the properties of a general triangular element of the structural model, including bending, membrane and transverse shear effects. Referenced by the CTRIAI card.

Format and Example:

1	2	3	4	5	6	7	8	9	MID3
PTRIA1	PID	MID1	T1	MID2	I	MID	T3	NSM	abc
PTRIA1	32	16	2.98	9	6.45	16	5.29	6.32	QED
+bc	ZI	$\mathrm{Z2}$							
+ED									

Field
PID
MIDI
T1
MID2
I
MID3
T3
NSM
Z1, Z2

Contents

Property identification number (Integer >0)
Material identification number for membrane (Integer ≥ 0)
Membrane thickness (Real)
Material identification number for bending (Integer ≥ 0)
Area of moment of inertia per unit width (Real)
Bending material identification number for transverse shear (Integer ≥ 0)
Transverse shear thickness (Real)
Nonstructural mass per unit area (Real)
Fiber distances for stress calculations, positive according to the right-hand sequence defined on the CTRIAl card (Real)

Remarks: 1. All PTRIAİ cards must have unique property identification numbers.
2. If T 3 is zero, the element is assumed to be rigid in transverse shear.
3. The membrane thickness, Tl , is used to compute the structural mass for this element.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PTRIA2
Homogeneous Triangular Element Property

Description: Defines the properties of a homogeneous triangular element of the structural model, including membrane, bending and transverse shear effects. Referenced by the CTRIA2 card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PTRIA2	PID	MID	T	NSM	PID	MID	T	NSM	
PTRIA2	2	16	3.92	14.7	6	16	2.96		

Field
Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
T	Thickness (Real >0.0)
NSM	Nonstructural mass per unit area (Real)

Remarks: 1. All PTRIA2 cards must have unique identification numbers.
2. The thickness used to compute the membrane and transverse shear properties is T.
3. The area moment of inertia per unit width used to compute the bending stiffness is $T^{3} / 12$.
4. Outer fiber distances of $\pm T / 2$ are assumed.
5. One or two homogeneous triangular element properties may be defined on a single
card.

NASTRAN DATA DECK

Description: Used to define the properties of a triangular membrane element. Referenced by the CTRMEM card. No bending properties are included.

Format and Example:

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
T	Membrane thickness (Real>0.0)
NSM	Nonstructural mass per unit area (Real)

Remarks: 1. All PTRMEM cards must have unique property identification numbers.
2. One or two triangular membrane properties may be defined on a single card.

NASTRAN.DATA DECK

bulk data deck

Input Data Card PTRPLT Triangular Plate Property

Description: Used to define the bending properties of a triangular plate element. Referenced by the CTRPLT card. No membrane properties are included.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PTRPLT	PID	MID1	I	MID2	T	NSM	Z1	Z2	
PTRPLT	17	26	4.29	16	$3.9-4$	2.634			

Field

Contents

PID	Property identification number (Integer >0)
MID1	Material identification number for bending (Integer >0)
I	Bending area moment of inertia per unit width (Real)
MID2	Material identification number for transverse shear (Integer ≥ 0)
T	Transverse shear thickness (Real)
NSM	Nonstructural mass per unit area (Real)
Z1, Z2	Fiber distances for stress computation, positive according to the right-hand sequence defined on the CTRPLT card (Real)

Remarks: 1. All PTRPLT cards must have unique property identification numbers.
2. If T is zero, the element is assumed to be rigid in transverse shear.
3. No structural mass is generated by this element.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card PTUBE Tube Property

Description: Defines the properties of a thin-walled cylindrical tube element. Referenced by the CTUBE card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PTUBE	PID	MID	0 D	T	NSM				
PTUBE	2	6	6.29	0.25					

Field
Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
$\square D$	Outside diameter of tube (Real >0.0)
T	Thickness of tube (Real; $T \leq 1 / 2 \emptyset D$)
NSM	Nonstructural mass per unit length (Real)

Remarks: 1. If T is zero, a solid circular rod is assumed.
2. PTUBE cards must all have unique property identification numbers.
3. For structural problems, PTUBE cards may only reference MATl material cards.
4. For heat transfer problems, PTUBE cards may only reference MAT4 or MAT5 material cards.

BULK DATA DECK

Input Data Card PTWIST Twist Pane1 Property

Description: Defines the elastic properties of a twist panel element. Referenced by the CTWIST card.

Format and Example:

1	2	3											4	6	7	8	9	10
PTWIST	PID	MID	T	NSM	PID	MID	T	NSM										
PTWIST	4	6	2.3	9.4	5	6	1.6											

Field
Contents

PID	Property identification number (Integer >0)
MID	Material identification number (Integer >0)
T	Thickness of twist panel (Real $\neq 0.0$)
NSM	Nonstructural mass per unit area (Real)

Remarks: 1. All PTWIST cards must have unique identification numbers.
2. PTWIST-cards may only reference MATl material cards.
3. One or two twist panel properties may be defined on a single card.

Description: Defines the viscous properties of a one-dimensional viscous element which is used to create viscous elements by means of the CVISC card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
PVISC	PID	Cl	C2		PID	C1	C2		
PVISC	3	6.2	3.94						

Field

Contents

PID	Property identification number (Integer >0)
C1, C2	Viscous coefficients for extension and rotation (Real)

Remarks: 1. Used for both extensional and rotational viscous elements.
2. Has meaning for dynamics problems only.
3. Viscous properties are material independent; in particular, they are temperatureindependent.
4. One or two viscous element properties may be defined on a single card.

BULK DATA DECK

Input Data Card QBDY1
Boundary Heat Flux Load

Description: Defines a uniform heat flux into HBDY elements.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QBDY | SID | Q0 | EID1 | EID2 | EID3 | EID4 | EID5 | EID6 | abc |
| QBDY | 109 | $1 .-5$ | 721 | | | | | | $A B C$ |
| $+b c$ | EID7 | - -etc. - | | | | | | | def |
| $+B C$ | | | | | | | | | |

Field

Contents

SID	Load set identification number (Integer >0)
QO	Heat flux into element (Real)
EIDi	HBDY elements (Integer >0 or "THRU")

Remarks:

1. QBDY1 cards must be selected in Case Control ($L \varnothing A D=S I D$) to be used in statics. The total power into an element is given by the equation:

$$
P_{i n}=(\text { Effective area) } Q 0
$$

2. QBDY1 cards must be referenced on a TLØAD card for use in transient. The total power into an element is qiven by the equation:

$$
P_{i n(t)}=\text { (Effective area) } \cdot Q 0 \cdot F(t-\tau)
$$

where the function of time, $F(t-\tau)$, is specified on a TLØAD1 or TLØAD2 card.
3. $Q O$ is positive for heat input.
4. If a sequential list of elements is desired, fields 4, 5 , and 6 may specify the first element, the BCD string "THRU", and the last element. No subsequent data is allowed with this option.

NASTRAN DATA DECK

Description: Defines grid point heat flux into an HBDY element.

Format and Example:

1	2	3	4	5	6	7	8	9	10
QBDY2	SID	EID	Q01	Q02	Q03	Q04			
QBDY2	109	721	1.-5	1.-5	2.-5	2.-5			

Field

SID
EID
QOi

Contents

Load set identification number (Integer >0)
Identification number of an HBDY element (Integer >0)
Heat flux at the $i^{\text {th }}$ grid point on the referenced HBDY element (Real or blank)

Remarks:

1. QBDY2 cards must be selected in Case Control (L@AD = SID) to be used in statics. The total power into each point, i, on an element is given by

$$
P_{i}=\text { AREA }_{i} \cdot Q 0_{i}
$$

2. QBDY2 cards must be referenced on a TL@AD card for use in transient. All connected grid points will have the same time function, but may have individual delays. The total power into each point, i, or an element is given by

$$
P_{i}(t)=A R E A_{i} \cdot Q O_{i} \cdot F\left(t-\tau_{i}\right)
$$

where $F\left(t-\tau_{i}\right)$ is a function of time specified on a TLØADI or TLØAD2 card.
3. $\mathrm{QO}_{\mathfrak{i}}$ is positive for heat flux input to the element.

BULK DATA DECK

Input Data Card QHBDY
Boundary Heat Flux Load

Description: Defines a uniform heat flux into a set of grid points.

Format and Example:

1	2	4	5	6	7	8	9	10	
QHBDY	SID	FLAG	Q0	AF	G1	G2	G3	G4	
QHBDY	120	LINE	$1.5+3$.75	13	15			

Field
SID

Q0
AF
G1,G2,G3,G4

FLAG Type of area involved (must be one of the following "POINT," "LINE," "REV," "AREA3," "AREA4")

Contents
Load set identification number (Integer >0)

Heat flux into an area (Real)
Area factor depends on type (Real > 0.0 or blank)
Grid point identification of connected points (Integer >0 or blank)

Remarks:

1. The heat flux applied to the area is transformed to loads on the points. These points need not correspond to an HBDY element.
2. The flux is applied to each point, i, by the equation

$$
P_{i}=A R E A_{i} \cdot Q 0,
$$

where $Q O$ is positive for heat input, and AREA $_{\mathbf{i}}$ is the portion of the total area associated with point i.
3. In statics, the load is applied with the Case Control request: L $\emptyset A D=S I D$. In dynamics, the load is applied by reference on a TL@ADi data card. The load at each point will be multiplied by the function of time $F\left(t-\tau_{i}\right)$ defined on the TLDADi card. $\tau_{\mathfrak{j}}$ is the delay factor for each point.
4. The number of connected points for the five types are 1(PØINT), 2(LINE,REV), 3(AREA3), 4(AREA4). Any unused Gi entries must be on the right.
5. The area factor $A F$ is used to determine the effective area for the PØINT and LINE types. It equals the area and the effective width, respectively. It is ignored for the other types, which have their area defined implicitly.
6. The type flag defines a surface in the same manner as the CHBDY data card. For physical descriptions of the geometry involved, see the CHBDY description.

NASTRAN DATA DECK

Description: Defines thermal vector flux from a distant source into HBDY elements.

Format and Example:

1	2	3	4	5	6	8	9	10	
QVECT	SID	QO	E1	E2	E3	EID1	EID2	EID3	abc
QVECT	333	$1 .-2$	-1.0	0.0	0.0	721	722	723	ABC

$+b c$	EID4	EID5	-etc. -						def
$+B C$	724								

Field

SID
Q0
E1,E2,E3
$E I D_{i}$

Load set identification number (Integer >0)
Magnitude of thermal flux vector (Real)
Vector components (in basic coordinate system) of the thermal vector flux (Real or Integer >0). The total flux is given by $Q=Q 0\{E 1, E 2, E 3\}$

Element identification numbers of HBDY elements irradiated by the distant source (Integer >0)

Remarks:

1. For statics, the load set is selected in the Case Control Deck (LQAD = SID). The total power into an element is given by

$$
P_{i n}=-\alpha A(\bar{e} \cdot \bar{n}) * Q 0
$$

where:

```
    \alpha = absorbtivity
    A = .area of HBDY element
    e}=\mathrm{ vector of real numbers E1, E2, E3
    (-.\overline{n}= positive normal vector of element, see CHBDY data card description
        0 if the vector product is positive (i.e., the flux is coming from
        behind the element)
```

2. For transient analysis, the load set (SID) is selected by a TLØADi card which defines a load function of time. The total power into the element is given by

$$
P_{\ell}(t)=-\alpha A(\bar{e}(t) \cdot \bar{n}) \star Q O F(t-\tau),
$$

where:
$\underline{\alpha}, A$, and \bar{n} are the same as the statics case
$\mathrm{e}(t)=$ vector of three functions of time, which may be given on TABLEDi data cards. If E1, E2, or E3 is an integer, it is the table identification number. If E1, E2, or E3 is a real number, its value is used directly; if Ei is blank, its value is zero.
$F(t-\tau)$ is a function of time specified or referenced by the parent TLøADI or TL@AD2 card. The value τ is calculated for each loaded point.

QVECT (Cont.)
3. If the referenced $H B D Y$ element is of TYPE = ELCYL, the power input is an exact integration over the area exposed to the thermal flux vector.
4. If the referenced $H B D Y$ element is of TYPE $=$ REV, the vector should be parallel to the basic z axis.
5. If a sequential list of elements is desired, fields 4,5 , and 6 may specify the first element, the BCD string "THRU", and the last element. No subsequent data is allowed with this option.

Description: Defines a rate of internal heat generation in an element.

Format and Example:

1	2	3	4	5	6	7	8	9	10
QVOL	SID	QV	EID1	EID2	EID3	EID4	EID5	EID6	abc
QVดL	333	$1 .+2$	301	302	303	317	345	416	ABC

$+b C$	$E I D 7$	-etc. -							def
$+B C$	127								

Field

Contents

SID
Load set identification (Integer >0)
QV Power input per unit volume produced by a beat conduction element (Real)
EIDi
A list of heat conduction elements (Integer > or BCD "THRU")

Remarks:

1. In statics, the load is applied with the case control request, LDAD = SID. The equivalent power into each grid point, i, connected to each element, is given by

$$
P_{i}=Q V \cdot V \emptyset L_{i},
$$

where V $Q L_{\text {i }}$ is the portion of the volume associated with point \mathbf{i} and QV is positive for heat generation.
2. In dynamics, the load is requested by reference on a TL@ADi data card. The equivalent power into each grid point is

$$
P_{i}=Q V \cdot V \emptyset L_{i} \cdot F\left(t-\tau_{i}\right)
$$

where $V \emptyset L_{i}$ is the portion of the volume associated with point i and $F\left(t-\tau_{j}\right)$ is the function of time defined by a TLØADi card. τ_{i} is the delay for each point i.
3. If a sequential list of elements is desired, fields 4, 5 , and 6 may specify the first element identification number, the BCD string "THRU" and the last element identification number. No subsequent data is allowed with this option.

NASTRAN DATA DECK

Description: A list of HBDY identification numbers given in the same order as the columns of the RADMTX matrix.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RADLST | EID1 | EID2 | EID3 | EID4 | EID5 | EID6 | EID7 | EID8 | abc |
| RADLST | 10 | 20 | 30 | 50 | 31 | 41 | THRU | 61 | ABC |

$+b c$	$E I D 9$	-etc.-							def
$+B C$	71								

Field
Contents
EIDi
The element identification numbers of the HBDY elements, given in the order that they appear in the RADMTX matrix (Integer >0 or BCD "THRU")

Remarks:

1. This card is required if a RADMTX is defined.
2. Only one RADLST card string is allowed in a data deck.
3. If a group of the elements are sequential, any field except 2 and 9 may contain the BCD word "THRU". Element Id numbers will be generated for every integer between the value of the previous field and the value of the subsequent field. The values must increase, however.
4. Any element may be listed more than once. For instance, if both sides of a panel are radiating, each side may participate in a different part of the view factor matrix.

NASTRAN DATA DECK

Description: Matrix of radiation exchange coefficients for nonlinear heat transfer analysis.

Format and Example:

INDEX
Fi+k,i The matrix values (Real), starting on the diagonal, continuing down the column. A group of zero's at the bottom of the column may be omitted. A blank field will end the column, which disallows imbedded blank fields.

Remarks:

1. The INDEX numbers go from 1 thru NA, where NA is the number of radiating areas.
2. The radiation exchange coefficient matrix is symmetric, and only the lower triangle is input. Column 1 is associated with the HBDY element first listed on the RADLST card, Column 2 for the next, etc. Null columns need not be entered.
3. $P_{i}=\sum_{j=1}^{N A} F_{i j} q_{j}$
$P_{i}=$ total irradiation into element \mathbf{i}
$q_{j}=$ radiosity (per unit area) at j
$F_{i j}=$ radiation matrix (units of area)
4. A column may only be specified once.

NASTRAN DATA DECK

Description: Defines load set power spectral density factors for use in Random Analysis having the frequency dependent form

$$
S_{j k}(F)=(X+i Y) G(F)
$$

Format and Example:

1	2	3	4	5	6	7	8	9	10
RANDPS	SID	J	K	X	Y	TID			
RANDPS	5	3	7	2.0	2.5	4			

Field

Contents

SID

J

K
X, Y
TID

Random analysis set identification number (Integer >0)
Subcase identification number of excited load set (Integer >0)
Subcase identification number of applied load set (Integer $\geq 0 ; K \geq J$)
Components of complex number (Real)
Identification number of a TABRNDi card which defines $G(F)$ (Integer ≥ 0)

Remarks:

1. If $J=K$, then Y must be 0.0 .
2. For $\operatorname{TID}=0, G(F)=1.0$.
3. Set identification numbers must be selected in the Case Control Deck (RANDøM=SID) to be used by NASTRAN.
4. Only 20 unique sets may be defined. As many RANDPS cards as desired with the same SID may be input, however.
5. RANDPS can only reference subcases included within a single loop (change in direct matrix input is not allowed).

NASTRAN DATA DECK

Description: Defines time lag constants for use in random analysis autocorrelation function computation.

Format and Example:

1	2	3	4	5	6	7	8	9	10
RANDT 1	SID	N	T0	TMAX					
RANDT 1	5	10	3.2	9.6					

Field

Contents

SID	Random analysis set identification number (Integer >0)
N	Number of time lag intervals (Integer >0)
TO	Starting time lag (Real $\geq 0.0)$
TMAX	Maximum time lag $($ Real $>T 0)$

Remarks: 1. At least one RANDPS card must be present with the same set identification number.
2. The time lags defined on this card are given by

$$
T_{\mathfrak{i}}=T_{0}+\frac{T_{\max }-T_{0}}{N}(i-1), \quad i=1, N+1
$$

3. Time lag sets must be selected in the Case Control Deck (RANDQM=SID) to be used by NASTRAN.

NASTRAN DATA DECK

Description: Defines sets of component degrees of freedom at substructure grid points which are not to be connected.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | C1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RELES | SID | NAME | G1 | C1 | G2 | C2 | G3 | C3 | def |
| RELES | 6 | WINGRT | 17 | 456 | 18 | 456 | 21 | 123 | DEF |
| +ef | G4 | C4 | etc. | | GN | CN | | | |
| $+E F$ | 25 | 456 | | | | | | | |

Contents

SID
NAME
Gi
Ci

Set identification number (Integer > 0)
Name of basic substructure (BCD)
Grid or scalar point identification number (Integer >0)
Component number - Any unique combination of the digits $1-6$ (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points.

Remarks: 1. The RELES data will override any connections generated automatically from geometry and any connections defined on CØNCT data cards.
2. The RELES data will not override connections defined on the CØNCT1 data card.
3. Connectivity sets must be selected in the Substructure Control Deck (CØNNECT=SID) to be used by NASTRAN. Note that 'CØNNECT' is a subcommand of the substructure CØMBINE command.
4. Connectivities defined during previously executed COMBINE operations will be retained and may be referenced by the grid point ID and component of any one of the basic substructures associated with that connectivity.

buLk data deck

Input Data Card RFgRCE Rotational Force

Description: Defines a static loading condition due to a centrifugal force field.

Format and Example:

1	2	3	4	5	6	7	8	9	N
RFQRCE	SID	G	CID	A	N1	N2	N3		
RFQRCE	2	5	\cdot	-6.4	0.0	0.0	1.0		

Field
Contents

Load set identification number (Integer >0)
G
CID
A
N 1
N2
N3
Grid point identification number (Integer ≥ 0)
Coordinate system defining rotation direction (Integer ≥ 0) The vector defined will act at point G.

Scale factor for rotational velocity in revolutions per unit time (Real)
Rectangular components of rotation direction vector (Real; $N 1^{2}+N 2^{2}+N 3^{2}>0.0$)

Remarks: 1. $G=0$ means the basic coordinate system origin.
2. $C I D=0$ means the basic coordinate system.
3. Load sets must be selected in the Case Control Deck ($L \emptyset A D=S I D$) to be used by NASTRAN.
4. Rotational force sets can be combined with other static loads only by using the LøAD bulk data card.
5. The load vector generated by this card can be printed with an $\emptyset L \emptyset A D$ request in the Case Control Deck.

NASTRAN DATA DECK

Description: Defines a ring for a model containing CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

Field

Contents

ID	Ring identification number (Integer >0)
R	Ring radius (Real >0.0)
Z	Ring axial location (Real)
PS	Permanent single-point constraints (any unique combination of the digits $1-6)$

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. The number of degrees of freedom defined is ($6-P S$). H where H is the harmonic count and PS is the number of digits in field 8. (See AXIC card.)
3. RINGAX identification numbers must be unique with respect to all other P@INTAX, RINGAX and SECTAX identification numbers.
4. The fourth and sixth degrees of freedom must be constrained when transverse shear flexibility is not included for the conical shell.
5. For a discussion of the conical shell problem see Section 5.9 of the Theoretical Manual.
6. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines a circle (fluid point) in an axisymmetric fluid model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
RINGFL	IDF	X1	X2	X3	IDF	X1	X2	X3	
RINGFL	3	1.0		30.0					

Field Contents

IDF
X1, X2, X3

Unique identification number of the fluid point (Integer, $0<I D F<10^{5}$)
Coordinates of point in fluid coordinate system defined on AXIF card (Real; $\mathrm{Xl}>0.0$)

Remarks: 1. This card is allowed only if an AXIF card is also present.
2. All fluid point identification numbers must be unique with respect to other scalar, structural and fluid points.
3. $X 1, X 2, X 3$ are (r, ϕ, z) for a cylindrical coordinate system and (ρ, θ, ϕ) for a spherical coordinate system. θ is in degrees. The value of ϕ must be blank or zero.
4. One or two fluid points may be defined per card.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card RLøAD1
Frequency Response Dynamic Load

Description: Defines a frequency dependent dynamic load of the form

$$
\{P(f)\}=\left\{A[C(f)+i D(f)] e^{i\{\theta-2 \pi f \tau\}}\right\}
$$

for use in frequency response problems.

Format and Example:

1	2	3	4	5	6	7	8	9	
RLФAD1	SID	L	M	N	TC	TD			
RLØAD1	5	3	6	9	1	2			

Field

Contents
SID
Set identification number (Integer >0)
L
Identification number of DAREA card set which defines A (Integer >0)
$M \quad$ Identification number of DELAY card set which defines τ (Integer ≥ 0)
$N \quad$ Identification number of DPHASE card set which defines θ (Integer ≥ 0)
TC Set identification number of TABLEDi card which gives $C(f)$ (Integer ≥ 0; $T C+T D>0)$
TD Set identification number of TABLEDi card which gives $D(f)$ (Integer ≥ 0; $\mathrm{TC}+\mathrm{TD}>0$)

Remarks: 1. If any of $M, N, T C$ or TD are blank or zero, the corresponding $\tau, \theta, C(f)$, or $D(f)$ will be zero.
2. Dynamic load sets must be selected in the Case Control Deck ($D L \emptyset A D=S I D$) to be used by NASTRAN.
3. RL@AD1 loads may be combined with RL@AD2 loads only by specification on a DL@AD card. That is, the SID on a RLøAD1 card may not be the same as that on a RLøAD2 card.
4. SID must be unique for all RLøADT, RLøAD2, TLøAD1 and TLøAD2 cards.

NASTRAN DATA DECK

Input Data Card RLØAD2 Frequency Response Dynamic Load

Description: Defines a frequency dependent dynamic load of the form

$$
\{P(f)\}=\left\{A B(f) e^{i\{\phi(f)+\theta-2 \pi f \tau\}}\right\}
$$

for use in frequency response problems.

Format and Example:

1	2	3	4	5	6	7	8	9	10
RLØAD2	SID	L	M	N	TB	TP			
RLØAD2	5	3	6	21	7	2			

Field

Contents
SID
Set identification number (Integer > 0)
$\mathrm{L} \quad$ Identification number of DAREA card set which defines A (Integer >0)
$M \quad$ Identification number of DELAY card set which defines τ (Integer ≥ 0)
N
TB
Identification number of DPHASE card set which defines θ in degrees (Integer ≥ 0)
Set identification number of TABLEDi card which gives $B(f)$ (Integer >0)
Set identification number of TABLEDi card which gives $\phi(f)$ in degrees (Integer ≥ 0)

Remarks: 1. If any of M, N or TP are zero, the corresponding τ, θ or $\phi(f)$ will be zero.
2. Dynamic load sets must be selected in the Case Control Deck (DLøAD=SID) to be used by NASTRAN.
3. RLØAD2 loads may be combined with RLØAD1 loads only by specification on a DL $\varnothing A D$ card. That is, the SID on a RLØAD2 card may not be the same as that on a RLØADT card.
4. SID must be unique for all RLøAD1, RLØAD2, TLØAD1 and TLØAD2 cards.

NASTRAN DATA DECK

Description: Defines a sector of a model containing CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SECTAX	ID	RID	R	PHI 1	PHI2				
SECTAX	1	2	3.0	30.0	40.0				

Field

Contents

ID
RID
R
PHI 1$\}$
PHI2 $\}$

Sector identification number (Unique Integer >0)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. SECTAX identification numbers must be unique with respect to all other PØINTAX, RINGAX and SECTAX identification numbers.
3. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
4. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

BULK DATA DÉCK

Input Data Card SEQEP

Extra Point Resequencing

Description: The purpose of this card is to allow the user to reidentify the formation sequence of the extra points of his structural model in such a way as to optimize bandwidth which is essential for efficient solutions by the displacement method.

Format and Example:

1	23		$\overbrace{4} \quad 5$		$\overbrace{6}$		8 9 9		10
SEQEP	ID	SEQID	ID	SEQID	ID	SEQID	ID	SEQID	
SEQEP	5392	15.6			2	1.9.2.6	3	2	

Field

Contents
ID
Extra point identification number (Integer >0)
SEQID
Sequenced identification number (a special number described below)

Remarks: 1. ID is any extra point identification number which is to be reidentified for sequencing purposes. The sequence number is a special number which may have any of the following forms where X is a decimal integer digit - XXXX.X.X.X, XXXX.X.X, XXXX.X or XXXX where any of the leading X's may be omitted. This number must contain no imbedded blanks.
2. If the user wishes to insert an extra point between two already existing grid, scalar and/or extra points, such as 15 and 16, for example, he would define it as, say 5392 , and then use this card to insert extra point number 5392 between them by equivalencing it to, say, 15.6. All output referencing this point will refer to 5392.
3. The SEQID numbers must be unique and may not be the same as a point ID which is not being changed. No extra point ID may be referenced more than once.
4. No continuation cards (small field or large field) are allowed with either the SEQGP or the SEQEP card.
5. From one to four extra points may be resequenced on a single card.

BULK DATA DECK

Input Data Card SEQGP Grid and Scalar Point Resequencing

Description: Used to order the grid points and user-supplied scalar points of the problem. The purpose of this card is to allow the user to reidentify the formation sequence of the grid and scalar points of his structural model in such a way as to optimize bandwidth which is essential for efficient solutions by the displacement method.

Format and Example:

1	2-3		4 - 5		6-7		8 - 9		10
SEQGP	ID	SEQID	ID	SEQID	ID	SEQID	ID	SEQID	
SEQGP	5392	15.6			2	1.9.2.6	3	2	

Field
ID
SEQID

Remarks: 1. ID is any grid or scalar point identification number which is to be reidentified for sequencing purposes. The grid point sequence number (SEQID) is a special number which may have any of the following forms where X is a decimal integer digit - XXXX.X.X.X, XXXX.X.X, XXXX.X or XXXX where any of the leading X's may be omitted. This number must contain no imbedded blanks.
2. If the user wishes to insert a grid point between two already existing grid points, such as 15 and 16, for example, he would define it as, say 5392 , and then use this card to insert grid point number 5392 between them by equivalencing it to, say 15.6. All output referencing this point will refer to 5392 .
3. The SEQID numbers must be unique and may not be the same as a point ID which is not being changed. No grid point ID may be referenced more than once.
4. No continuation cards (small field or large field) are allowed with either the SEQGP or the SEQEP card.
5. From one to four grid or scalar points may be resequenced on a single card.

BULK DATA DECK

Input Data Card SETI Grid Point List

Description: Defines a set of structural grid points by a list.

Format and Example:

1		3							
SET 1	SID	G1	G2	G3	G4	G5	G6	G7	ABC
SET 1	3	31	62	93	124	16	17	18	ABC
+ BC	G8	--etc.-							
+BC	19								

Field

SID
G1,G2, etc. List of structural grid points (Integer > or "THRU").

Remarks:

1. These cards are referenced by the SPLINE data cards.
2. When using the "THRU" option, all intermediate grid points must exist. The word "THRU" may not appear in field 3 or 9 (2 or 9 for continuation cards).

NASTRAN DATA DECK

Description: Defines a set of structural grid points in terms of aerodynamic macro elements.

Format and Example:

1	23			5		7	89		10
SET2	SID	MACR \emptyset	SP1	SP2	CHT	CH2	ZMAX	ZMIN	
SET2	3	111	. 0	. 75	0.	. 667	1.0	-3.51	

Field

Contents

SID Set identification number (Integer >0).
MACR $\emptyset \quad$ Element identification number of an aero macro element (Integer >0).
SP1,SP2 Lower and higher span division points defining prism containing set (Real).
$\mathrm{CH}, \mathrm{CH} 2 \quad$ Lower and higher chord division points defining pristh containing set (Real).
ZMAX,ZMIN Top and bottom (using right-hand rule with the order the corners as listed on a CAERD card) of the prism containing set (Real). Usually ZMAX ≥ 0, ZMIN ≤ 0.

Remarks:

1. These cards are referenced by the SPLINEi data cards.
2. Every grid point, within the defined prism and within the height range, will be in the set. For example,

The shaded area in the figure defines the cross-section of the prism for the sample data given above. Points exactly on the boundary may be missed, hence, to get the area of the macro element, use SP1 $=-.01$, $S P 2=1.01$, etc.
3. A zero value for ZMAX or ZMIN implies infinity is to be used.
4. To find the (internal) grid ID's found, use DIAG 18.

NASTRAN DATA DECK

Description: Defines a list of slot points which lie on an interface between an axisymmetric fluid and a set of evenly spaced radial slots.

Format and Example:

1	2	3	4	5	6	7	8	9	ID
SLBDY	RH \emptyset	M	ID1	ID2	ID3	ID4	ID5	ID6	abc
SLBDY	0.002	6	16	17	18	25	20	21	+ BDY

+bc	ID7	-etc. -						
$+B D Y$	22							

Field

Contents
RH $\varnothing \quad$ Density of fluid at boundary (Real >0.0, or blank)
M Number of slots (Integer ≥ 0, or blank)
IDj Identification numbers of GRIDS slot points at boundary with axisymmetric fluid cavity, $j=1,2, \ldots, \mathrm{~J}$ (Integer > 0)

Remarks: 1. This card is allowed only if an AXSL \emptyset T card is also present.
2. If RH \emptyset or M is "blank" the default value on the AXSL \emptyset card is used. The effective value must not be zero for RHØ. If the effective value of M is zero, no matrices at the boundary will be generated.
3. The order of the list of points determines the topology of the boundary. The points are listed sequentially as one travels along the boundary in either direction. At least two points must be defined.
4. More than one logical boundary card may be used.

NASTRAN DATA DECK

Input Data Card SLØAD Static Scalar Load

Description: Used to apply static loads to scalar points.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SLgAD	SID	5	F	S	F	S	F		
SLOAD	16	2	5.9	17	-6.3	14	-2.93		

Field

Contents

SID	Load set identification number (Integer >0)
S	Scalar point.identification number (Integer >0)
F	Load value (Real)

Remarks: 1. Load sets must be selected in the Case Control Deck (LøAD=SID) to be used by NASTRAN.
2. Up to three scalar loads may be defined on a single card.

BULK DATA DECK

Input Data Card SPC Single-Point Constraint .

Description_: Defines sets of single-point constraints and enforced displacements.

Format and Example:

Field

Contents
SID
G
C Component number ($6 \geq$ Integer ≥ 0; up to six unique such digits may be placed in the field with no imbedded blanks)
Value of enforced displacement for all coordinates designated by G and C (Real)

Remarks: 1. A coordinate referenced on this card may not appear as a dependent coordinate in a multipoint constraint relation (MPC card), nor may it be referenced on a SPCI, QMIT, QMITl or SUP@RT card. D must be 0.0 for dynamics problems.
2. Single-point forces of constraint are recovered during stress data recovery.
3. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
4. From one to twelve single-point constraints may be defined on a single card.
5. SPC degrees of freedom may be redundantly specified as permanent constraints on the GRID card.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card SPCl

Single-Point Constraint

Description: Defines sets of single-point constraints.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPC1 | SID | C | G1 | G2 | G3 | G4 | G5 | G6 | abc |
| SPC1 | 3 | 2 | 1 | 3 | 10 | 9 | 6 | 5 | $A B C$ |

+bc	$\mathrm{G7}$	G 8	$\mathrm{G9}$	-etc. -					
+BC	2	8							

Alternate Form

SPC1	SID	C	GID1	"THRU"	GID2		
SPC1	313	12456	6	THRU	32		

Field
Contents

SID
C

Gi, GIDi

Identification number of single-point constraint set (Integer >0)
Component number (Any unique combination of the digits $1-6$ (with no imbedded blanks) when point identification numbers are grid points; must be null if point identification numbers are scalar points)

Remarks: 1. Note that enforced displacements are not available via this card. As many continuation cards as desired may appear when "THRU" is not used.
2. A coordinate referenced on this card may not appear as a dependent coordinate in a multipoint constraint relation, nor may $i \bar{t}$ be referenced on a SPC, QMIT, ØMIT1, SUPØRT card.
3. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
4. SPC degrees of freedom may be redundantly specified as permanent constraints on the GRID card.
5. All grid points referenced by GID1 thru GID2 must exist.

BULK DATA DECK

Input Data Card SPCADD
Single-Point Constraint

Description: Defines a single-point constraint set as a union of single-point constraint sets defined via SPC or SPCl cards.

Format and Example:

Field

Contents

$\begin{array}{ll}\text { SID } & \text { Identification number for new single-point constraint set (Integer }>0 \text {) } \\ \text { Si } & \begin{array}{l}\text { Identification numbers of single-point constraint sets defined via SPC or SPC1 } \\ \text { cards } \quad \text { (Integer }>0 ; \text { SID } \neq \text { Si) }\end{array}\end{array}$

Remarks: 1. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
2. No Si may be the identification number of a single-point constraint set defined by another SPCADD card.
3. The Si values must be unique.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card SPCAX Axisymmetric Single-Point Constraint

Description: Defines sets of single-point constraints for a model containing CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SPCAX	SID	RID	HID	C	V				
SPCAX	2	3	4	13	6.0				

Field
Contents

SID	Identification number of single-point constraint set (Integer >0)
RID	Ring identification number (see RINGAX) (Integer ≥ 0)
HID	Harmonic identification number (Integer ≥ 0)
C	Component identification number (any unique combination of the digits 1-6)
V	Enforced displacement value (Real)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
3. Coordinates appearing on SPCAX cards may not appear on MPCAX, SUPAX or gMITAX cards.
4. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
5. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

Description: Defines an enforced displacement value for static analysis, which is requested as a [QAD.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SPCD	SID	G	C	D	G	C	D		
SPCD	100	32	436	-2.6	5		+2.9		

Field

Contents

SID Identification number of a static load set (Integer >0)
G
Grid or scalar point identification number (Integer >0)
C Component number ($6 \geq$ Integer ≥ 0; up to six unique such digits may be placed in the field with no imbedded blanks.)

D
Value of enforced displacement for all coordinates designated by G and C (Real)

Remarks: 1. A coordinate referenced on this card must be referenced by a selected SPC or SPC1 data card.
2. Values of D will override the values specified on an SPC bulk data card, if the LøAD set is requested.
3. The bulk data LøAD combination card will not request an SPCD.
4. At least one bulk data $L \emptyset A D$ card ($F \emptyset R C E, S L \emptyset A D$, etc.) is required in the L $\emptyset A D$ set selected in case control.

NASTRAN DATA DECK

Substructure Single Point Constraints

Description: Defines a set of single point constraints on a specified basic substructure.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SPCS	SID	NAME	G1	C1	G2	C2	G3	C3	abc
SPCS	61	MIDWG	9	45	18	124	36	456	ABC
+bc	G4	C4	G5	C5	G6	C6	G7	C7	def
+BC	88	136	etc.						

Set identification number (Integer >0)
NAME
Gi
Ci
Basic substructure name (BCD)

Grid or scalar point identification number in substructure (Integer >0)
Component number - Any unique combination of the digits 1 - 6 (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points.

Remarks: 1. A coordinate referenced on this card may not appear as a dependent coordinate in a multipoint constraint relation, nor may it be referenced on a SPCSI, SPCSD, SPC, SPCl, ØMIT, ØMITl or SUPØRT card.
2. Single-point forces of constraint are recovered during stress data recovery.
3. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
4. A single G, C pair may not specify all component degrees of freedom for a connected grid point where only some of the degrees of freedom of the grid point have been connected or when some have been disconnected via the RELES card. The degrees of freedom which were connected and those that were not connected must be referenced separately.

Input Data Card SPCSI
Substructure Single Point Constraints

Description: Defines a set of single point constraints on a specified basic substructure.

Format and Example:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPCS1 | SID | NAME | C | G1 | G2 | G3 | G4 | G5 | abc |
| SPCS1 | 15 | FUSELAGE | 1236 | 1101 | 1102 | 1105 | THRU | 1110 | ABC |

$+b c$	G6	G7	G8	G9	G10	G11	G12	G13	def
$+B C$	1121	1130	THRU	1140	1143	1150	etc.		

Field

Contents

SID
NAME
C

Gi

Set identification number (Integer > 0)
Basic substructure name (BCD)
Component number - Any unique combination of the digits $1-6$ (with no imbedded blanks) when the Gi are grid points, or null if they are scalar points Grid or scalar point identification numbers (Integer > 0)

Remarks: 1. THRU may appear in fields 6,7 , or 8 of the first card and anywhere in fields $3-8$ on a continuation card.
2. A coordinate referenced on this card may not appear as a dependent coordinate in a multipoint constraint relation, nor may it be referenced on a SPCS, SPCSD, SPC, SPC1, ØMIT, ØMIT1, or SUPØRT card.
3. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
4. All grid points referenced by Gi through Gj must exist.
5. A single G, C pair may not specify all component degrees of freedom for a connected grid point where only some of the degrees of freedom of the grid point have been connected or when some have been disconnected via the RELES card. The degrees of freedom which were connected and those that were not connected must be referenced separately.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card SPCSD
Substructure Single Point Constraints

Description: Defines a set of single point constraints and enforced displacements for a given substructure.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SPCSD	SID	NAME	G1	C1	D1	G2	C2	D2	
SPCSD	27	LWINGRT	965	3	3.6				

Field

Di
Gi
Ci

Contents

Remarks 1. A coordinate referenced on this card may not appear as a dependent coordinate in a multipoint constraint relation, nor may it be referenced on a SPCS, SPCS1, SPC, SPCI, ØMIT, ØMIT1, or SUPØRT card. The Di values are ignored in dynamics problems.
2. Single-point forces of constraint are recovered during stress data recovery.
3. Single-point constraint sets must be selected in the Case Control Deck (SPC=SID) to be used by NASTRAN.
4. From one to twelve single-point constraints may be defined on a single card.
5. A single G, C pair may not specify all component degrees of freedom for a connected grid point where only some of the degrees of freedom of the grid point have been connected or when some have been disconnected via the RELES card. The degrees of freedom which were connected and those that were not connected must be referenced separately.

BULK DATA DECK

SPLINEI
Surface Spline

Description: Defines a surface spline for interpolating out-of~plane motion for aeroelastic problems.

Format and Example:

1	$2 \quad 3$		4	5	6	7	8	9	10
SPLINE1	EID	CAERD	B0x 1	B0x2	SETG	DZ			
SPLINE1	3	111	111	118	14				

Field 1
Contents

EID Element identification number (unique Integer >0).
CAER $\emptyset \quad$ Aero element ID which defines plane of spline (Integer >0).
$\mathrm{B} \emptyset \mathrm{XI}, \mathrm{B} \emptyset \mathrm{X} 2 \quad$ First and last box whose motions are interpolated using this spline (Integer >0).
SETG Refers to a SETi card which lists the structural grid points to which the spline is attached (Integer >0).

DZ Linear attachment flexibility (Real ≥ 0).

Remarks:

1. The interpolated points (k-set) will be defined by aero-cells. The sketch shows the cells for which u_{k} is interpolated if $\mathrm{B} \emptyset \mathrm{XI}=111$ and $\mathrm{B} \emptyset \mathrm{X} 2=118$.

2. The attachment flexibility (units of area) is used for smoothing the interpolation. If $D Z=0$, the spline will pass thru all deflected grid points. If DZ >> (area of spline), a least squares plane fit will occur. Intermediate values will provide smoothing.
nAStrán data deck
r

Description: Defines a beam spline for interpolating out-of-plane motion for aeroelastic problems.

Format and Example:

1	3		$4 \quad 5$		6		8	9	
SPLINE2	EID	CAERD	B9X1	B9x2	SETG	DZ	DTQR		ABC
SPLINE2	5	8	12	24	60°		1.0	3	
+BC	DTHX	DTHY							
	-1.								

Field

Contents

EID Element identification number (unique Integer >0).
CAER $\emptyset \quad$ Aero element which defines plane of spline (Integer >0).
$B O X I, B O X 2 \quad$ First and last box whose motions are interpolated using this spline (Integer >0).
SETG Refers to a SETi card which lists the structural "g"-set to which the spline is attached (Integer > 0).

D2 Linear attachment flexibility (Real > 0).
DTGR Torsional flexibility (EI/GJ) (Real > 0).
CID Rectangular coordinate system which defines y-axis of spline (Integer ≥ 0).
DTHX, DTHY Torsional attachment flexibility (Real).

Remarks:

1. The interpolated points (k-set) will be defined by aero cells.
2. The y-axis of the spline is the projection of the y-axis of the coordinate system CID, projected onto the plane of the spline.
3. The flexibilities are used for smoothing, Zero attachment flexibility values will imply rigid attachment, i.e., no smoothing. (Negative values in fields 12 and 13 will imply infinity, hence no attachment. Do not use negative value for DTHY if grid points are on a straight line.)
4. A continuation card is required.
nastran data deck

BULK DATA DECK

Input Data Card SPQINT Scalar Point

Description: Defines scalar points of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SPOINT	ID								
SPØINT	3	18	1	4	16	2			

Alternate Form

SPDINT	ID]	"THRU"	ID2	\sum	\geq			$>$
SPOINT	5	THRU	649					

Field

Contents
ID,ID1,ID2 Scalar point identification number (Integer > 0; ID1 < ID2)

Remarks: 1. Scalar point defined by their appearance on a scalar connection card need not appear on a SPØINT card.
2. All scalar point identification numbers must be unique with respect to all other structural, scalar, and fluid points.
3. This card is used primarily to define scalar points appearing in single or multipoint constraint equations but to which no scalar elements are connected.
4. If the alternate form is used, scalar points ID1 thru ID2 are defined.
5. For a discussion of scalar points, see Section 5.6 of the Theoretical Manual.

Description: Defines coordinates at which the user desires determinate reactions to be applied during the analysis of a free body modeled with CCONEAX, CTRAPAX or CTRIAAX elements.

Format and Example:

1	2	3	4	5	6	7	8	9	10
SUPAX	RID	HID	C	RID	HID	C	\bigcirc		
SUPAX				4	3	2			

Field

Contents

RID
Ring identification number (Integer >0)
HID Harmonic identification number (Integer ≥ 0)
C Component number (any unique combination of the digits 1-6)

Remarks: 1. This card is allowed if and only if an AXIC card is also present.
2. Up to 12 coordinates may appear on a single card.
3. Coordinates appearing on SUPAX cards may not appear on MPCAX, SPCAX or GMITAX cards.
4. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
5. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

NASTRAN DATA DECK

Input Data Card SUPØRT
Fictitious Support

Description: Defines coordinates at which the user desires determinate reactions to be applied to a free body during analysis.

Format and Example:

Field
Contents
ID Grid or scalar point identification number (Integer >0)
C Component number (Zero or blank for scalar points; any unique combination of the digits 1-6 for grid points)

Remarks: 1. Coordinates defined on this card may not appear on single-point constraint cards (SPC, SPC1), on omit cards (M MIT, ØMIT1) or in multipoint constraint equations as dependent coordinates (MPC).
2. From one to twenty-four support coordinates may be defined on a single card.

Description: Defines structural damping as a tabular function of frequency.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABDMP1	ID								
TABDMP1	3								
+bc	f_{1}	g_{1}	f_{2}	g_{2}	f_{3}	g_{3}	f_{4}	94	
+BC	2.5	. 01057	2.6	. 01362	ENDT				

Field
Contents

ID
f_{i}
g_{i}

Table identification number (Integer > 0)
Frequency value in cycles per unit time (Real ≥ 0.0)
Damping value (Real)

Remarks: 1. The f_{i} must be in either ascending or descending order but not both.
2. Jumps $\left(f_{i}=f_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any f_{j}, g_{i} entry may be ignored by placing the BCD string "SKIP" in either of two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. The TABDMP1 mnemonic infers the use of the algorithm

$$
G=g_{T}(F)
$$

where F is input to the table and G is returned. The table look-up $g_{T}(F)$ is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $g_{T}(F)$ is used. There are no error returns from this table look-up procedure.
7. Structural damping tables must be selected in the Case Control Deck (SDAMP=ID) to be used by NASTRAN.
8. Structural damping is used only in modal formulations of complex eigenvalue analysis, frequency response analysis, or transient response analysis.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card TABLED1
Dynamic Load Tabular Function

Description: Defines a tabular function for use in generating frequency-dependent and timedependent dynamic loads.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABLEDI	ID								
TABLEDI	32								
+abc	X_{1}	y_{1}	x_{2}	y_{2}	x_{3}	y_{3}	X_{4}	y_{4}	+def
+BC	-3.0	6.9	2.0	5.6	3.0	5.6	ENDT		

Field
ID
x_{i}, y_{i}

Table identification number (Integer >0)
Tabular entries (Real)

Remarks: 1. The x_{i} must be in either ascending or decending order but not both.
2. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. Each TABLEDi mnemonic infers the use of a specific algorithm. For TABLED1 type tables, this algorithm is

$$
Y=y_{T}(X)
$$

where X is input to the table and Y is returned. The table look-up $y_{T}(x), x=X$, is performed using linear interpolation with the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

1

Description: Defines a tabular function for use in generating frequency-dependent and timedependent dynamic loads. Also contains parametric data for use with the table.

Format and Example:

+abc	x_{1}	y_{3}	x_{2}	y_{2}	x_{3}	y_{3}	x_{4}	y_{4}	+def
$+B C$	1.0	-4.5	2.0	-4.2	2.0	2.8	7.0	6.5	$D E F$

+def	x_{5}	y_{5}	x_{6}	y_{6}	x_{7}	y_{7}	x_{8}	y_{8}	+ghi
+EF	SKIP	SKIP	9.0	6.5	ENDT				
(etc.)									

Field
Contents
ID
$X 1$
x_{i}, y_{i}

Table identification number (Integer > 0)
Table parameter (Real)
Tabular entries (Real)
Remarks: 1. The x_{i} must be in either ascending or decending order but not both.
2. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. Each TABLEDi mnemonic infers the use of a specific algorithm. For TABLED2 type tables, this algorithm is

$$
Y=y_{T}\left(x-x_{1}\right)
$$

where X is input to the table and Y is returned. The table look-up $y_{T}(x), x=X-X I$, is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card TABLED3
Dynamic Load Tabular Function

Description: Defines a tabular function for use in generating frequency-dependent and timedependent dynamic loads. Also contains parametric data for use with the table.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABLED3	ID	X1	$\times 2$						+abc
TABLED3	62	126.9	30.0						ABC

+abc	x_{1}	y_{1}	x_{2}	y_{2}	x_{3}	y_{3}	x_{4}	y_{4}	+def
+BC	2.9	2.9	3.6	4.7	5.2	5.7	ENDT		

Field
ID
X1, X2
x_{i}, y_{i}

Table identification number (Integer > 0)
Table parameters (Real; X2 $\neq 0.0$)
Tabular entries (Real)

Remarks: 1. The x_{i} must be in either ascending or descending order but not both.
2. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. Each TABLEDi mnemonic infers the use of a specific algorithm. For TABLED3 type tables, this algorithm is

$$
Y=y_{T}\left(\frac{x-x 1}{x 2}\right)
$$

where X is input to the table and Y is returned. The table look-up $y_{T}(x), x=\frac{X-X 1}{X 2}$, is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.

BULK DATA DECK

Input Data Card TABLED4
Dynamic Load Tabular Function

Description: Defines coefficients of a power series for use in generating frequency-dependent and time-dependent dynamic loads. Also contains parametric data for use with the table.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABLED4	ID	X1	$\times 2$	$\times 3$	$\times 4$				+abc
TABLED4	28	0.0	1.0	0.0	100.				ABC

$+a b c$	A_{0}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	+ def
$+B C$	2.91	-0.0329	$6.51-5$	0.0	$-3.4-7$	$E N D T$			

etc.

Field

ID
$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$
A_{i}

Contents
Table identification number (Integer >0)
Table parameters (Real; X2 $\neq 0.0$; X3 < X4)
Coefficient entries (Real)

Remarks: 1. At least one entry must be present.
2. The end of the table is indicated by the existence of the BCD string "ENDT" in the field following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
3. Each TABLEDi mnemonic infers the use of a specific algorithm. For TABLED4 type tables, this algorithm is

$$
Y=\sum_{i=0}^{N} A_{i}\left(\frac{X-X 1}{X 2}\right)^{i}
$$

where X is input to the table and Y is returned. Whenever $X<X 3$, use $X 3$ for X; whenever $X>X 4$, use $X 4$ for X. There are $N+1$ entries in the table. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

BULK DATA DECK

Input [lata Card TABLEMI
Material Property Table

Description: Defines a tabular function for use in generating temperature dependent material properties.

Format and Example:

$+a b c$	x_{1}	y_{1}	x_{2}	y_{2}	x_{3}	y_{3}	x_{4}	y_{4}	+ def
$+B C$	-3.0	6.9	2.0	5.6	3.0	5.6	ENDT		

Field

Contents

ID
x_{i}, y_{i}

Table identification number (Integer > 0)
Tabular entries (Real)

Remarks: 1. The x_{i} must be in either ascending or descending order but not both.
2. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. Each TABLEMi mnemonic infers the use of a specific algorithm. For TABLEM1 type tables, this algorithm is

$$
Y=y_{T}(x)
$$

where X is input to the table and Y is returned. The table look-up $y_{T}(x), x=X$, is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

Description: Defines a tabular function for use in generating temperature dependent material properties. Also contains parametric data for use with the table.

Format and Example:

+abc	x_{1}	y_{1}	x_{2}	y_{2}	x_{3}	y_{3}	x_{4}	y_{4}	+def
+BC	1.0	-4.5	2.0	-4.5	2.0	2.8	7.0	6.5	DEF

+ def	x_{5}	y_{5}	x_{6}	y_{6}	x_{7}	y_{7}	x_{8}	y_{8}	$+g_{h i}$
$+E F$	SKIP	SKIP	9.0	6.5	ENDT				

(etc.)

Field

Contents

ID
X1
x_{i}, y_{i}

Table identification number (Integer > 0)
Table parameter (Real)
Tabular entries (Real)

Remarks: 1. The x_{i} must be in either ascending or descending order but not both.
2. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. Each TABLEMi mnemonic infers the use of a specific algorithm. For TABLEM2 type tables, this algorithm is

$$
Y=Z y_{T}(x-X I)
$$

where X is input to the table, Y is returned and Z is supplied from the basic MATi card. The table look-up $y_{T}(x), x=x-X 1$, is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.

BULK DATA DECK

Input Data Card TABLEM3 Material Property Table

Description: Defines a tabular function for use in generating temperature dependent material properties. Also contains parametric data for use with the table.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABLEM3	ID	$\times 1$	$\times 2$						$+\mathrm{abc}$
TABLEM3	62	126.9	30.0						ABC

$+a b C$	x_{1}	y_{1}	x_{2}	y_{2}	x_{3}	y_{3}	x_{4}	y_{4}	+ def
$+B C$	2.9	2.9	3.6	4.7	5.2	5.7	ENDT		

Field
Contents
ID
Table identification number (Integer > 0)
X1, X2
x_{i}, y_{i}
Table parameters (Real; X2 $\neq 0.0$)
x_{i}, y_{i}
Tabular entries (Real)

Remarks: 1. The x_{i} must be in either ascending or descending order but not both.
2. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. Each TABLEMi mnemonic infers the use of a specific algorithm. For TABLEM3 type tables, this algorithm is

$$
Y=Z y_{T}\left(\frac{X-X I}{X 2}\right)
$$

where X is input to the table, Y is returned and Z is supplied from basic MATi card. The table look-up $y_{T}(x), x=\frac{X-X 1}{X 2}$, is performed using linear interpolation with in the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card TABLEM4 Material Property Table

Description: Defines coefficients of a power series for use in generating temperature dependent material properties. Also contains parametric data for use with the table.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABLEM4	ID	X1	$\times 2$	$\times 3$	X4	<			+abc
TABLEM4	28	0.0	1.0	0.0	100.		.		ABC
+abc	A_{0}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	. A_{7}	+def
$+B C$	2.91	-0.0329	6.51-5	0.0	-3.4-7	ENDT			

etc.

Field

ID
X1, X2, X3, X4
A_{i}

Contents
Table identification number (Integer >0)
Table parameters (Rea1; X2 $\neq 0.0$; X3 < X4)
Coefficient entries (Real)

Remarks: 1. At least one entry must be present.
2. The end of the table is indicated by the existence of the BCD string "ENDT" in the field following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
3. Each TABLEMi mnemonic infers the use of a specific algorithm. For TABLEM4 type tables, this algorithm is

$$
y=Z \sum_{i=0}^{N} A_{i}\left(\frac{X-X 1}{X 2}\right)^{i}
$$

where X is input to the table, Y is returned and Z is supplied from the basic MATi card. Whenever $X<X 3$, use $X 3$ for X; whenever $X>X 4$, use $X 4$ for X. There are $N+1$ entries in the table. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card TABLESI

Description: Defines a tabular stress-strain function for use in Piecewise Linear Analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TABLES 1	ID	-	${ }^{2}$	S		I	-		+abc
TABLES 1	32								ABC
+abc	X_{1}	y_{1}	x_{2}	y_{2}	X_{3}	y_{3}	X_{4}	y_{4}	+def
+BC	-3.0	6.9	2.0	5.6	3.0	5.6	ENDT		

Field

Contents

ID
Table identification number (Integer >0)
x_{i}, y_{i}
Tabular entries (Real)

Remarks: 1. The x_{i} must be in either ascending or descending order but not both.
2. For Piecewise Linear Analysis, the y_{i} numbers must form a nondecreasing sequence for an ascending x_{i} sequence and vice versa.
3. Jumps between two points $\left(x_{i}=x_{i+1}\right)$ are allowed, but not at the end points.
4. At least two entries must be present.
5. Any $x-y$ entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
6. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
7. Each TABLESi mnemonic infers the use of a specific algorithm. For TABLES1 type tables, this algorithm is

$$
y=y_{T}(x)
$$

where X is input to the table and Y is returned. The table look-up $y_{T}(x), x=X$, is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $y_{T}(x)$ is used. There are no error returns from this table look-up procedure.
8. The table may have a zero slope only at its end.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card TABRNDI
Power Spectral Density Table

Description: Defines Power Spectral density as a tabular function of frequency for use in Random AnaTysis. Referenced on the RANDPS card.

Format and Example:

1	2.	3	4	5	6	7	8	9	10
TABRND 1	ID	$\xrightarrow{ }$		\rightarrow	\bigcirc	-	-		abc
TABRND1	3								ABC
+bc	f_{1}	g_{1}	f_{2}	g_{2}	f_{3}	g_{3}	f_{4}	g_{4}	def
+BC	2.5	. 01057	2.6	. 01362	ENDT				
-etc.-									
Field	Contents								

ID
Table identification number (Integer >0)
Frequency value in cycles per unit time (Real ≥ 0.0)
f_{i}
Power Spectral Density (Real)

Remarks: 1. The f_{j} must be in either ascending or descending order but not both.
2. Jumps between two points $\left(f_{i}=f_{i+1}\right)$ are allowed, but not at the end points.
3. At least two entries must be present.
4. Any f-g entry may be ignored by placing the BCD string "SKIP" in either of the two fields used for that entry.
5. The end of the table is indicated by the existence of the BCD string "ENDT" in either of the two fields following the last entry. An error is detected if any continuation cards follow the card containing the end-of-table flag "ENDT".
6. The TABRND1 mnemonic infers the use of the algorithm

$$
G=g_{T}(F)
$$

where F is input to the table and G is returned. The table look-up $g_{T}(F)$ is performed using linear interpolation within the table and linear extrapolation outside the table using the last two end points at the appropriate table end. At jump points the average $g_{T}(F)$ is used. There are no error returns from this table look-up procedure.

NASTRAN DATA DECK

Description: Defines temperature at grid points for determination of:

1) Thermal loading
2) Temperature-dependent material properties
3) Stress recovery

Format and Example:

Contents

SID
Temperature set identification number (Integer >0)
G
Grid point identification number (Integer >0)
T
Temperature (Real)

Remarks:

1. Temperature sets must be selected in the Case Control Deck (TEMP=SID) to be used by NASTRAN.
2. From one to three grid point temperatures may be defined on a single card.
3. If thermal effects are requested, all elements must have a temperature field defined either directly on a TEMPP1, TEMPP2, TEMPP3, or TEMPRB card or indirectly as the average of the connected grid point temperatures defined on the TEMP or TEMPD cards. Directly defined element temperatures always take precedence over the average of grid point temperatures.
4. If the element material is temperature dependent, its properties are evaluated at the average temperature. In the case of isoparametric hexahedron elements, their properties are evaluated at the temperature computed by interpolating the grid point temperatures.
5. Average element temperatures are obtained as a simple average of the connecting grid point temperatures when no element temperature data are defined.
6. Set ID must be unique with respect to all other LøAD type cards if TEMP (LøAD) is specified in Case Control Deck.

NASTRAN DATA DECK

Description: Defines temperature sets for a model containing CCDNEAX, CTRAPAX or CTRIAAX elements. |

Format and Example:

		3	4	5	6	7	8	9	10
TEMPAX	SID	RID	PHI	TEMP	SID	RID	PHI	TEMP	
TEMPAX	4	7	30.0	105.3					

Field

Contents
SID
RID
Ring identification number (see RINGAX card) ' (Integer >0)
PHI Azimuthal angle in degrees (Real)
TEMP Temperature (Real)

Remarks:

1. This card is allowed if and only if an AXIC card is also present.
2. One or two temperatures may be defined on each card.
3. Temperature sets must be selected in the case Control Deck (TEMP=SID) to be used by NASTRAN.
4. Set ID must be unique with respect to all other LØAD type cards if TEMP(LøAD) is specified in Case Control Deck.
5. At least two different angles are required for each RID and temperature set to specify the subtended angle $\left[\phi_{b}-\phi_{a}\right]$ over which the temperature applies.
6. For a discussion of the conical shell problem, see Section 5.9 of the Theoretical Manual.
7. For a discussion of the axisymmetric solid problem, see Section 5.11 of the Theoretical Manual.

Description: Defines a temperature default for all grid points of the structural model which have not been given a temperature on a TEMP card.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TEMPD	SID	T	SID	T	SID	T	SID	T	
TEMPD	1	216.3							

Field

Contents
SID
Temperature set identification number (Integer >0)
T
Default temperature (Real)

Remarks:

1. Temperature sets must be selected in the Case Control Deck ($T E M P=S I D$) to be used by NASTRAN.
2. From one to four default temperatures may be defined on a single card.
3. If thermal effects are requested, all elements must have a temperature field defined either directly on a TEMPP1, TEMPP2, TEMPP3, or TEMPRB card or indirectly as the average of the connected grid point temperatures defined on the TEMP or TEAPD cards. Directly defined element temperatures always take precedence over the average of grid point temperatures.
4. If the element material is temperature dependent its properties are evaluated at the average temperature. In the case of isoparametric hexahedron elements, their properties are evaluated at the temperature computed by interpolating the grid point temperatures.
5. Average element temperatures are obtained as a simple average of the connecting grid point temperatures when no element temperature data are defined.
6. Set ID must be unique with respect to all other LøAD type cards if TEMP (LØAD) is specified in Case Control Deck.

NASTRAN DATA DECK

Description: Defines a temperature field for plate, membrane and combination elements (by an average temperature and a thermal gradient over the cross-section) for determination of:

1) Thermal loading
2) Temperature-dependent material properties
3) Stress recovery

Format and Example:

1	2	3	4	5	6	8	9	10		
TEMPP1	SID	EID1	T	T^{1}	$T 1$	$T 2$				+ +abc
TEMPP1	2	24	62.0	10.0	57.0	67.0			AIA	
+abc	EID2	EID3	EID4	EID5	EID6	EID7	EID8	EID9	+def	
$+1 A$	26	21	19	30						

Alternate Form of Continuation Card

+ "abc	EID2	"THRU"	EIDi	EIDj	"THRU"	EIDK		
$+1 A$	1	THRU	10	30	THRU	61		

Field
SID Temperature set identification number (Integer >0)
EIDn Unique element identification number(s) (Integer > or BCD: the continuation card may have THRU in fields 3 and/or 6 , in which case EID2 < EIDi, EIDj < EIDk)
$\overline{\mathrm{T}}$
T^{\prime}
T1, T2

Average temperature over the cross-section. Assumed constant over area (Real) Effective linear thermal gradient. Not used for membranes (Real)
Temperatures for stress calculation at points defined on the element property card. (Z1 and Z2 are given on PTRBSC, PQDPLT, PTRPLT, PTRIA1, and PQUAD1 cards. T1 may be specified on the lower surface and T2 on the upper surface for the QUAD2 and TRIA2 elements. These data are not used for membrane elements (Real)

Remarks: 1. Temperature sets must be selected in the Case Control Deck (TEMP=SID) to be used by NASTRAN.
2. If continuation cards are present, EIDI and elements specified on the continuation card(s) are used. Elements must not be specified more than once.
3. If thermal effects are requested, all elements must have a temperature field defined either directly on a TEMPP1, TEMPP2, TEMPP3, or TEMPRB card or indirectly as the average of the connected grid point temperatures defined on the TEMP or TEMPD cards. Directly defined element temperatures always take precedence over the average of grid point temperatures.
4. For a temperature field other than a constant gradient the "effective gradient" for a homogeneous plate is:

$$
T^{\prime}=\frac{1}{I} \int_{Z} T(z) z d z
$$

where I is the bending inertia, and z is the distance from the neutral surface in the positive normal direction.
(Continued)

NASTRAN DATA DECK

TEMPPI (Cont.)
5. The "average" temperature for a homogeneous plate is

$$
\overline{\mathrm{T}}=\frac{1}{\text { Volume }} \int_{\text {Volume }} \mathrm{T} \text { dVolume }
$$

6. If the element material is temperature dependent, its properties are evaluated at the average temperature $\overline{\mathrm{T}}$.
7. Set ID must be unique with respect to all other LØAD type cards if TEMP (LøAD) is specified in Case Control Deck.

Description: Defines a temperature field for plate, membrane, and combination elements by an average temperature and thermal moments for determination of:

1) Thermal loading
2) Temperature-dependent material properties
3) Stress recovery

Format and Example:

1	2	3	4	5	6	7	8	9	10
TEMPP2	SID	EID1	\bar{T}	$M X$	MY	MXY	T1	T2	+abc
TEMPP2	2	36	68.8						XYZ
+abc	EID2	EID3	EID4	EID5	EID6	EID7	EID8	EID9	+def
$+Y Z$	400	1	2	5					

Alternate Form of Continuation Card

+ abc	EID2	"THRU"	EIDi	EIDj	"THRU"	EIDk			
$+Y Z$.	37	THRU	312	$315 .$,	THRU:	320		

MX, MY, MXY Resultant thermal moments per unit width in element coordinate system. Not

Field .
SID
EIDn
$\overline{\mathrm{T}}$

T1, T2

Contents

Temperature set identification number (Integer >0)..
Unique element identification number(s) (Integer >0 or BCD: a continuation card may have THRU in field 3 and/or 6 in which case EID2 < EIDi, EIDj < EIDk)
. Average temperature over cross-section. Assumed constant over area (Real) used for membrane elements (Real)
Temperature for stress calculation at points defined on the element property card. (Z1 and Z2 are given on PTRBSC, PQDPLT, PTRPLT, PTRIAI, and PQUADI cards. T1 may be specified on the lower surface and T2 on the upper surface for the QUAD2 and TRIA2 elements. These data are not used for membrane elements (Real)

Remarks: 1. Temperature sets must be selected in the Case Control Deck (TEMP $=$ SID) to be used by NASTRAN.
2. If continuation cards are present, EIDI and elements specified on the continuation card(s) are used. Elements must not be specified more than once.
3. If thermal effects are requested all elements must have a temperature field defined either directly on a TEMPP1, TEMPP2, TEMPP3, or TEMPRB card or indirectly as the average of the connected grid point temperatures defined on the TEMP or TEMPD cards. Directly defined element temperatures always take precedence over the average of grid point temperatures.

TEMPP2 (Cont.)
4. The thermal moments in the element coordinate system may be calculated from the formula:

$$
\left\{\begin{array}{l}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=-\int\left[G_{e}\right]\left\{\alpha_{e}\right\} T(z) z d z
$$

where the integration is performed over the bending material properties in the element coordinate system.

$$
\begin{aligned}
{\left[G_{e}\right] } & -3 \times 3 \text { elastic coefficient matrix } \\
\left\{\alpha_{e}\right\} & -3 \times 1 \text { material thermal expansion coefficients } \\
T(z) & - \text { temperature at } z \\
z & =\begin{array}{l}
\text { distance from the neutral surface in the element coordinate } \\
\\
\text { system. }
\end{array}
\end{aligned}
$$

5. The temperature dependent material properties are evaluated at the average temperature T. If a property varies with depth, an effective value must be used which satisfies the desired elastic and stress relationships. The temperatures at the fibre distances may be changed to compensate for local differences in α_{e} and produce correct stresses.
6. Set ID must be unique with respect to all other LØAD type cards if TEMP(LØAD) is specified in Case Control Deck.

BULK DATA DECK

Description: Defines a temperature field for homogeneous plate, membrane and combination elements (by a tabular description of the thermal field over the cross-section) for determination of:

> 1) Thermal loading
> 2) Temperature-dependent material properties
> 3) Stress recovery.

Format and Example:

1	2	3	4	6	7	8	9		
TEMPP3	SID	EID1	Z0	T0	$Z 1$	T1	$Z 2$	T2	+abc
TEMPP3	17	39	0.0	32.9	2.0	43.4	2.5	45.0	XY1

$+a b c$	$Z 3$	$T 3$	$Z 4$	$T 4$	$Z 5$	$T 5$	$Z 6$	$T 6$	+ def
$+Y 1$	3.0	60.0	4.0	90.0					$X Y 2$

+ def	$Z 7$	$T 7$	$Z 8$	$T 8$	$Z 9$	$T 9$	$Z 10$	$T 10$	$+g h i$
$+Y 2$									$X Y 3$

$+\operatorname{tgi}$	EID2	EID3	EID4	EID5	EID6	EID7	EID8	EID9	$+j k 1$
$+Y 3$	1	2	3	4	5	6	8	10	

Alternate Form of Continuation Card Number 3

$+g h i$	EID2	"THRU"	EIDi	EIDj	"THRU"	EIDK		+	
$+Y 3$				1	THRU	10			

Field

Contents

Temperature set identification number (Integer >0)
Unique element identification number(s) (Integer >0 or BCD: the continuation card may have THRU in fields 3 and/or 6 in which case EID2 < EIDi, EIDj < EIDk) Position of the bottom surface with respect to an arbitrary reference plane (Real)
Positions on cross-section from bottom to top of cross-section relative to the arbitrary reference plane. There must be an increasing sequence with the last nonzero value corresponding to the top surface (Real)
Temperature at the bottom surface (Real)
Temperature at position Zi (Real)

Remarks: 1. Temperature sets must be selected in the Case Control Deck (TEMP=SID) to be used by NASTRAN.
2. If the third (and succeeding) continuation card is present, EIDI and elements specified on the third (and succeeding) continuation cards are used. Elements must not be specified more than once.
3. The first and second continuation card must be present if a list of elements is to be used.

```
TEMPP3 (Cont.)
```

4. If thermal effects are requested, all elements must have a temperature field defined either directly on a TEMPP1, TEMPP2, TEMPP3, or TEMPRB card or indirectly as the average of the connected grid point temperatures defined on the TEMP or TEMPD cards. Directly defined element temperatures always take precedence over the average of grid point temperatures.
5. If the element material is temperature dependent, its properties are evaluated at the average temperature over the depth which is calculated by the program using a linear distribution between points.
6. For stress recovery, the temperatures at the extreme points z_{o} and $z_{\mathcal{N}}$ are assigned to the bottom surface and the top surface of the elements specified on either PTRIA2 or QUAD2 data card.
7. The data is limited to a maximum of eleven points on the temperature-depth profile.
8. Set ID must be unique with respect to all other LøAD type cards i.f $\operatorname{TEMP}(L \emptyset A D)$ is specified in Case Control. Deck.

Description: Defines a temperature field for the $B A R, R Q D, T U B E$, and $C \emptyset N R \emptyset D$ elements for determination of:

1) Thermal loading
2) Temperature-dependent material properties
3) Stress recovery

Format and Example:

1	2	3	4	5	6	7	8	9	10
TEMPRB	SID	E1D1	$\overline{\mathrm{T}} \mathrm{A}$	$\overline{\text { TB }}$	T'la	Tilb	T'2a	T'2b	+abc
TEMPRB	200	1	68.0	23.0	0.0	28.0		2.5	AXY 10

+abc	TCa	TDa	TEa	TFa	TCb	TDb	TEb	TF́b	+def
+XYY 0	68.0	91.0	45.0		48.0	80.0	20.0		AXY20

+ def	EID2	EID3	EID4	EID5	EID6	EID7	EID8	EID9	+ ghi..
$+X Y 20$	9	10						\ddots	

-etc.-
Alternate Form for Continuation Card Number 2

+ def	EID2	"THRU"	EIDi	EIDj	"THRU"	EIDK			
$+X Y 20$	2	THRU	4	10	THRU	14			+

Field	Contents
SID	Temperature set identification number (Integer > 0)
EIDn	Unique element identification number(s) (Integer >0 or BCD: the second continuation card may have THRU in fields 3 and/or 6 in which case EID2 < EIDi, EIDj < EIDk)
T̄A, $\overline{\text { ¢ }} \mathrm{B}$	Average temperature over the area at end "a" and end"b" (Real)
T'ij	Effective linear-gradient in direction i on end j (BAR only, Real)
Tij	Temperatures at point i as defined on the PBAR card(s) at end j. These data are used for stress recovery only (BAR only, Real)

Remarks: 1. Temperature sets must be selected in the Case Control Deck (TEMP=SID) to be used by NASTRAN.
2. If at least one nonzero or nonblank Tij is present, the point temperatures given are used for stress recovery. If no Tij values are given, linear temperature gradients are assumed for stresses.
3. If the second (and succeeding) continuation card is present, EID1 and elements specified on the second (and succeeding) continuation cards are used. Elements must not be specified more than once.
4. If thermal effects are requested, all elements must have a temperature field defined either directly on a TEMPP1, TEMPP2, TEMPP3, or TEMPRB card or indirectly as the average of the connected grid point temperatures defined on the TEMP or TEMPD cards. Directly defined element temperatures always take precedence over the average of grid point temperatures.
(Continued)
5. The effective thermal gradients in the element coordinate system for the BAR element are defined by the following integrals over the cross-section. For end "a" (end "b" is similar):

$$
\begin{aligned}
& T_{1 a}^{\prime}=\frac{1}{I_{1}} \int_{A} T_{a}(y, z) y d A \\
& T_{2 a}^{\prime}=\frac{1}{I_{2}} \int_{A} T_{a}(y, z) z d A
\end{aligned}
$$

where $T_{a}(y, z)$ is the temperature at point y, z (in the element coordinate system). at end "a" of the BAR. See Section 1.3, Figure 1 for the element coordinate system: I_{1} and I_{2} are the moment of inertia about the z and y axis respectively. The temperatures are assumed to vary linearly along the length (x-axis). Note that if the temperature varies linearly over the cross-section then $T_{1 a}^{\prime}, T_{1 b}^{\prime}, T_{2 a}^{\prime}$, and $T_{2 b}^{\prime}$ are the actual gradients.
6. If the element material is temperature dependent, the material properties are evaluated at the average temperature

$$
\frac{\bar{T}_{A}+\bar{T}_{B}}{2}
$$

7. Set ID must be unique with respect to all other LøAD type cards if TEMP (LØAD) is specified in Case Control Deck.

Input Data Card IF . Dynamic Transfer Function

Description: 1. May be used to define a transfer function of the form

$$
\left(B 0+B 1 p+B 2 p^{2}\right) u_{d}+\sum_{i}\left(A O(i)+A 1(i) p+A 2(i) p^{2}\right) u_{i}=0
$$

2. May be used as a means of direct matrix input.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TF	SID	GD	CD	B0	B1	B2			+abc
TF	1	2	3	4.0	5.0	6.0			+ABC
+abc	G(1)	$C(1)$	AO(1)	Al (1)	A2(1)				+def
+ABC	3	4	5.0	6.0	7.0				+DEF

Field

Contents

SID
GD, G(i)
$C D, C(i) \quad$ Component numbers (Null or zero for scalar or extra points, any one of the digits 1-6 for a grid point)
$B 0, B 1, B 2$
$A 0(i), A 1(i), \quad$ Transfer function coefficients (Real)
A2(i)
Set identification number (Integer > 0)
Grid; scalar or extra point identification numbers (Integer >0)

Remarks: 1. The matrix elements defined by this card are added to the dynamic matrices for the problem.
2. Transfer Function sets must be selected in the Case Control Deck (TFL=SID) to be used by NASTRAN.
3. The constraint relation given above will hold only if no elements are connected to the dependent coordinate.

BULK DATA DECK

Input Data Card TIC
Transient Initial Condition

Description: Defines values for the initial conditions of coordinates used in Transient analysis. Both displacement and velocity values may be specified at independent coordinates of the structural model.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TIC	SID	G	C	U0	V0				
TIC	1	3	2	5.0	-6.0				

Field

Contents

SID

Set identification number (Integer >0)
G Grid or scalar or extra point identification number (Integer >0)
C Component number (Null or zero for scalar or extra points, any one of the digits 1-6 for a grid point)
UO
Initial displacement value (Real)
vo
Initial velocity value (Real)

Remarks: 1. Transient initial condition sets must be selected in the Case Control Deck (IC=SID) to be used by NASTRAN.
2. If no TIC set is selected in Case Control Deck, all initial conditions are assumed zero.
3. Initial conditions for coordinates not specified on TIC cards will be assumed zero.
4. Initial conditions may be used only in direct formulation.

NASTRAN DATA DECK

BULK DATA DECK

Input Data Card TLDADI
Transient Response Dynamic Load

Description: Defines a time-dependent dynamic load of the form

$$
\{P(t)\}=\{A F(t-\tau)\}
$$

for use in transient response problems.

Format and Example:

Field

L

M
TF

Set identification number (Integer >0)
Identification number of DAREA card set or a thermal load set which defines A (Integer > 0)

Identification number of DELAY card set which defines τ (Integer ≥ 0)
Identification number of TABLEDi card which gives $F(t-\tau)$ (Integer >0)

Remarks:

1. If M is zero, τ will be zero.
2. Field 5 must be blank.
3. Dynamic load sets must be selected in the Case Control Deck ($D L \emptyset A D=S I D$) to be used by NASTRAN.
4. TL@AD1 loads may be combined with TL@AD2 loads only by specification on a DL@AD card. That is, the SID on a TLØAD1 card may not be the same as that on a TLØAD2 card.
5. SID must be unique for all TLØAD1, TLØAD2, RLØAD1 and RLØAD2 cards.
6. Field 3 may reference sets containing QHBDY, QBDY1, QBDY2, QVECT, and QVQL cards when using the heat transfer option.
7. If the heat transfer option is used, the referenced QVECT data card may also contain references to functions of time, and therefore A may be a function of time.

NASTRAN DATA DECK

Description: Defines a time-dependent dynamic load of the form

$$
\{P(t)\}=\left\{\begin{array}{ll}
\{0\}, \tilde{t}<0 \text { or } \tilde{t}>T 2-T 1 \\
\left\{A \hat{t}^{\sim} e^{C t} \cos \left(2 \pi F^{2}+P\right)\right.
\end{array}, \quad 0 \leq \tilde{t} \leq T 2-T 1 .\right.
$$

for use in transient response problems where $\tilde{t}=t-T 1-\tau$.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TLøAD2	SID	L	M		T1	T2	F	P	abc
TL@AD2	4	10	7		2.1	4.7	12.0	30.0	+12
+bc	C	B							
+12	2.0	3.0							

Field

Contents
SID

L
Identification number of DAREA card set or a thermal load set which defines A (Integer >0)
$P \quad$ Phase angle in degrees (Real)
C Exponential coefficient (Real)
B Growth coefficient (Real)

Remarks:

1. If M is zero, τ will be zero.
2. Field 5 must be blank.
3. Dynamic load sets must be selected in the Case Control Deck ($D L \emptyset A D=S I D$) to be used by NASTRAN.
4. TLØAD2 loads may be combined with TLØAD1 loads only by specification on a DLøAD card. That is, the SID on a TLØAD2 card may not be the same as that on a TLøAD1 card.
5. SID must be unique for al1 TLØAD1, TL@AD2, RLØAD1 and RL@AD2 cards.

NASTRAN DATA DECK

TLøAD2 (Cont.)

6. Field 3 may reference load sets containing QHBDY, QBDY1, QBDY2, QVECT, and QVøL cards when using the heat transfer option.
7. If the heat transfer option is being used, the referenced QVECT load card may also contain references to functions of time, and therefore A may be a function of time.

BULK DATA DECK

Input Data Card TRANS Component Substructure Transformation Definition

Description: Defines the location and orientation of the component substructure basic coordinate system axes relative to the basic coordinate system of the substructure formed as a result of the substructure CøMBINE operation. The translation and rotation matrices are defined by specifying the coordinates of three points A, B, C. The coordinates of points A, B, C must be expressed on this card in the basic coordinate system of the resultant combined substructure as follows:

A - defines the location of the origin of the basic coordinate system of the component substructure.
B - defines the location of a point on the z axis of the basic coordinate system of the component substructure.
C - defines the location of a point in the positive x side of the $x z$ plane of the basic coordinate system of the component substructure.

Format and Example:

1	2	3	4	5	6	7	8	8		
TRANS	CID			A 1	A 2	A 3	B 1	B 2	B 3	abc
TRANS	1		0.0	0.0	0.0	0.0	-0.5	10.0	ABC	
+BC	C 1	C 2	C 3							
+BC	0.0	10.0	0.5							

Field

Contents
CID \quad Set identification number (Integer >0)
A1, A2, A3
B1, B2, B3
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3\}$
Coordinates of the points defining system as described above.

Remarks: 1. Continuation card must be present.
2. Coordinates A, B, C are given in BASIC coordinate system of the result substructure.
3. The value of CID must be unique with respect to all other TRANS data cards.
4. Transformation sets for a whole substructure must be selected in the Substructure Control Deck (TRANS=SID) to be used by NASTRAN. Note that 'TRANS' is a subcommand of the substructure CØMBINE command.
5. Transformation of individual grid points in a substructure prior to combining them is requested by the GTRAN Bulk Data card which references the TRANS information.

NASTRAN DATA DECK

Input Data Card TSTEP . Transient Time Step

Description: Defines time step intervals at which solution will be generated and output in Transient Analysis.

Format and Example:

1	2	3	4	5	6	7	8	9	10
TSTEP	SIO	$N(1)$	DT(1)	N 0 (1)					+abc
TSTEP	2	10	. 001	5					+ABC

+abc	\rightarrow	N(2)	DT (2)	$\mathrm{N} \varnothing$ (2)	5	,	\bigcirc		+def
+ ABC		9	0.01	1					+DEF

Field

Contents

SID
$N(i)$
DT (i)
NQ(i)

Remarks: TSTEP cards must be selected in the Case Control Deck (TSTEP=SID) in order to be used by NASTRAN.

2.5 USER'S MASTER FILE

As a means of aiding the user in handling the large (several boxes of cards) Bulk Data Decks which are typical of NASTRAN problems, the User's Master File is provided for storage of many Bulk Data Decks on a single tape. There are many advantages to using a Master file. For a problem that several investigators are concurrently studying, the User's Master File provides a convenient common source of data. Standardization is easy to impose since there can be only one legitimate structural model deck for any given problem. When various parts of a structure are being analyzed separately, they may all be placed on the same User's Master File for ease of use. Errors due to card handling equipment (and people!) are sharply reduced since a several box input deck is reduced to a few cards. Finally, the convenience to the user in submitting jobs should be emphasized (run decks can be hand-carried!).

2.5.1 Use of User's Master File

Functionally, the User's Master File exhibits all of the properties of an 01d Problem Tape (\varnothing PTP) which would result if a job were terminated after the NASTRAN preface; only the control cards used are different. Thus the User's Master File (UMF) becomes an alternate source of bulk data input to NASTRAN which may be modified in identically the same way as bulk data is changed during a modified restart. Since the UMF is used as an alternate 9PTP functionally, only one or the other may appear in a run. The UMF, then, is used only for an initial run and may not be used in conjunction with a restart. The checkpoint feature may be used with a UMF run, however, and the resulting New Problem Tape (NPTP) may be used as an ØPTP in a subsequent restart.

In describing the use of the User's Master File, the UMF control cards will be contrasted with their $\emptyset P T P$ counterparts. In place of the setup card for the ØPTP tape (see Chapter 5 of the Programmer's Manual for a discussion of these machine and installation dependent NASTRAN driver control cards), use a setup card for the selected UMF tape. In place of the restart dictionary in the Executive Control Deck, use the card

UMF k_{1}, k_{2}
described in Section 2.2.1, which selects Bulk Data Deck k_{2} from UMF tape k_{1} to use in the current execution.

2.5.2 Using the User's Master File Editor

To assist the NASTRAN user in creating and maintaining User's Master Files, an auxiliary NASTRAN preface module, the User's Master File Editor, is provided. The functions performed by the Editor are:

1. Create a New User's Master File (NUMF) from Bulk Data Decks supplied by the user.
2. List and/or punch Bulk Data Decks from an already existing UMF.
3. Edit Bulk Data Decks (which may be modified) from an old UMF onto a NUMF.

Bulk Data Decks must be acceptable to the NASTRAN preface (XSØRT and IFP) to be accepted by the Editor.

The executive control card that causes NASTRAN to execüte as the User's Master File Editor is UMFEDIT. When in the Editor mode, NASTRAN executes only the preface. A separate run is required to use a User's Master File generated by the Editor. Preface module UMFEDT, which is where the User's Master File Editor actions occur, reads data cards from the System Input Stream which are used to control Editor activity. Some of these data cards precede the Bulk Data Deck being processed while others follow. The remainder of this section will be devoted to describing these cards and the action caused by them. Section 2.5 .3 gives some rules to be followed when making up data cards for the Editor. Several examples will then be given in Section 2.5 .4 to illustrate the functions performed by the User's Master File Editor.

Table 1 shows the Editor data cards and describes the action taken for each one. Three classes are described, depending on the tapes used. The cards are free-field format as are the executive control cards and case control cards previously described. The symbolic quantities tid and pid are each up to 8 arbitrarily selected integers chosen by the user who causes the User's Master File to be created. Table 2 shows a summary of Editor control cards.

When a New User's Master File (HUMF) is created, the User's Master File Editor (UMFEDIT) punches the Executive Control cards that are needed to read the decks from the newly created master file. The UMFEDIT automatically punches one UMF Executive Control card for each Bulk Data Deck that is written on the NUMF and lists it in a table of contents.

2.5.3 Rules for the User's Master File Editor

1. The tape identification number, tid, and the problem identification number, pid, are positive integers selected by the user. The only exception to this is that pid may be zero if the UMF card is being used only to specify a value for tid or to indicate a new deck rather than an alter set.
2. The tape identification number, tid, must be the same for all decks on a single UMF.
3. Only one pass is made while either reading the UMF or writing the NUMF. Sequential processing requests are thereby required. This means that the problem identification numbers must form an increasing sequence corresponding to the order of the decks.
4. A corollary to 2 is that a deck to be inserted between two decks on an existing UMF must be given a problem identification number whose value "lies between" the values of the problem identification numbers for the two UMF decks. Thus, an initial numbering sequence such as $10,20,30, \ldots$ is recommended.
5. Most NASTRAN users develop the habit of "storing" data cards not needed for a given run behind the ENDDATA card where they are normally ignored. This must not be done when using the Editor since it reads data from this position. Data cards following the FINIS card are ignored, however.

2.5.4 Examples of User's Master File Editor Usage

Several examples of User's Master File Editor usage are given in this section. The user is well-advised to study these examples both from the standpoint of understanding the functioning of the Editor and from the standpoint of learning how to use this NASTRAN feature. A symbolic representation of the contents of the UMF and/or NUMF used in each example is given along with an explanation of specific items of interest. These examples illustrate all of the capability of the User's Master File Editor.

Example 1. Create a User's Master File

Notes: 1. A tape must be set up for NASTRAN file NUMF.
2. A tape must not be set up for NASTRAN file UMF.
3. The DMAP sequence will not be used but must appear in the Executive Control Deck.
4. $E C H \emptyset=B \emptyset T H$ is recommended since the unsorted Bulk Data Deck is available only during the run used to create the User's Master File. The sorted echo is needed in order to make alterations to the bulk data when using the User's Master file in a NASTRAN run.
5. Note that the tape identification number, tid, is the same on all of the NUMF cards.
6. Note that the problem identification numbers, pid, are increasing according to the data deck order.

Example 2. List and/or punch selected decks from a User's Master File

Notes: 1. A tape containing the proper User's Master File must be set up on NASTRAN file UMF.
2. A tape must not be set up for NASTRAN file NUMF.
3. The DMAP sequence will not be used but must appear in the Executive Control Deck.
4. The dummy Bulk Data Deck consisting of a single blank card will not be used but must appear.
5. $E C H \emptyset=$ N $\emptyset N E$ is recommended to suppress printout of the dummy Bulk Data Deck. This has no effect on the User's Master File Editor.
6. The zero value of pid on the UMF card is required since only tid is being used in this application.
7. The LIST, PUNCH, and PUNPRT cards must be sequenced such that the pid values form an increasing sequence.
8. The above requests will cause a sorted Bulk Data Deck echo to be made for decks 20 and 60 ; decks 50 and 60 will be punched.

Example 3. Copy a User's Master File while listing.and/or punching selected decks.

Notes: 1. A tape containing the User's Master File to be copied must be set up on NASTRAN file UMF.
2. A tape must be set up on NASTRAN file NUMF.
3. The DMAP sequence is not used but must appear in the Executive Control Deck.
4. The dummy Bulk Data. Deck consisting of a single blank card will not be used but must appear.
5. $E C H \emptyset=N \emptyset N E$ is recommended to suppress printout of the dummy Bulk Data Deck. This has no effect on the User's Master File Editor.
6. The zero value of pid on the UMF card is required since. only tid is being used in this application.
7. The zero value of pid on the NUMF card is not used. This card is used to specify tid for the NUMF. If the NUMF card were absent, the same tid would be put on the NUMF as existed on the UMF.
8. The LIST, PUNCH, and PUNPRT cards must be sequenced such that the pid values form an increasing sequence.
9. The above requests will cause a sorted Bulk Data Deck echo to be made for decks 20, 30, and 50 ; decks 20 and 70 will be punched.
10. All of the decks contained on the UMF will be copied onto the NUMF tape. The tape identification number will be different as explained in note 7.

Example 4. Edit a User's Master File

ID A,B
TIME 5
APP DMAP
BEGIN
END
UMF 21026,20
UMFEDIT
CEND
TITLE $=$ M
SUBTITLE = DECKS 20 AND 50
$\mathrm{ECH} \emptyset=\mathrm{B}$ ПTH
BEGIN BULK
\{alter cards for Deck 20\}
ENDDATA
NUMF 333,20
REMOVE 40
UMF 21026,
BEGIN BULK
\{alter cards for Deck 50\} ENDDATA
NUMF 333, 55
REMDVE 60 '
UMF 21026,0
BEGIN BULK
\{Deck 65\}
ENDDATA
NUMF 333, 65
LIST 80
FINIS

Notes: 1. A tape containing the User's Master File to be edited must be set up on NASTRAN file UMF.
2. A tape must be set up on NASTRAN file NUMF.
3. The DMAP sequence is not used but must appear in the Executive Control Deck.
4. $\mathrm{ECH} \varnothing=\mathrm{B} \emptyset T H$ is recommended since the alter cards are available only during the run used to perform the edit. The sorted echo is needed for those decks being altered in order to make further alterations to the bulk data when using the newly created User's Master File in a NASTRAN run. Decks not being altered will not be echoed as a result of the $E C H \emptyset=B \emptyset T H$ card. Such decks may be echoed as they are copied as shown in the example for Deck 80.
5. The pid values must form an increasing sequence.
6. The requests in the above example will cause listings to be generated for deck 80 ; no decks will be punched.
7. Decks $30,70,80$, and 90 will be copied onto the NUMF with no changes.
8. Decks 10,40 , and 60 will be removed (i.e., not copied onto the NUMF).
9. Decks 20 and 50 will be modified. In addition the problem identification number of Deck 50 will be changed to 55 .
10. Deck 65 will be added.
11. Deck 10 is removed because it appears prior to the first call to the Editor. This may be avoided by using a pid of zero and a dummy Bulk Data Deck as shown in Example 3.

Table 1. User's Master File Editor Control Card Actions.
I. UMF Only is Present
A. FINIS

1. Terminate run.
B. BEGIN BULK
(Not Allowed)
C. REMØVE pid
(Not Allowed)
D. LIST pid
2. Skip UMF forward to pid and list the Bulk Data Deck on the printer.
E. PUNCH pid
3. Skip UMF forward to pid and punch the Bulk Data Deck on the punch.
F. UMF tid, pid (Not Allowed)
G. NUMF tid, pid (Not Allowed)
H. PUNPRT pid
4. Skip UMF forward to pid and then list and punch the Bulk Data Deck.
II. NUMF Only is Present
A. FINIS
l. Write end-of-file on NUMF.
5. Terminate run.
B. BEGIN BULK
6. Process the next Bulk Data Deck.
C. REMOVE pid
(Not Allowed)
D. LIST pid
(Not Allowed)
E. PUNCH pid
(Not Allowed)
F. UMF tid, pid
(Not Allowed)
G. NUMF tid, pid
7. If first entry to Editor, write tape identification file on NUMF.
8. Add preceding Bulk Data Deck to NUMF and automatically punch and list the UMF card for use with UMF.
H. PUNPRT pid (Not Allowed)
III. Both UMF and NUMF are Present
A. FINIS
9. Copy any remaining Bulk Data Decks from UMF to NUMF.
10. Write end-of-file on NUMF.
11. Terminate run.
B. BEGIN BULK
12. Process the next Bulk Data Deck which may be a new deck or a modified deck from the UMF.
C. REMQVE pid
13. Copy UMF onto NUMF up to indicated deck.
14. Skip indicated deck on UMF.
D. LIST pid
15. Copy UMF onto NUMF through indicated deck.
16. List indicated Bulk Data Deck on printer.
E. PUNCH pid
17. Copy UMF onto NUMF through indicated deck.

F 2. Punch indicated Bulk Data Deck on printer.
F. UMF tid, pid

1. Copy UMF onto NUMF up to indicated deck. (Must be immediately followed by BEGIN BULK card.)
G. NUMF tid, pid
2. If first entry to Editor, write tape identification file on NUMF.
3. Copy UMF onto NUMF up to deck with identification greater than pid.
4. Add preceding Bulk Data Deck to NUMF and automatically punch and list the UMF card for use with UMF.
H. PUNPRT pid
5. Copy UMF onto NUMF through indicated deck.
6. List indicated Bulk Data Deck on printer.
7. Punch indicated Bulk Data Deck on punch.

USER'S MASTER FILE

Table 2. Summary of User's Master File Editor Control Cards.

LIST pid
List the problem deck from UMF or copy the problem deck from UMF onto NUMF and list it.

NUMF tid, pid
PUNCH pid

PUNPRT pid

REMDVE pid
UMF tid, pid
Punch the problem deck from UMF or copy the problem deck from UMF onto NUMF and punch it.

Punch and print the problem deck from UMF or copy the problem deck from UMF onto NUMF and punch and print it.

Copy problem decks from UMF onto NUMF up to pid and skip over problem pid. Copy UMF problem deck onto NUMF, list it and punch UMF card.

NASTRAN DATA DECK

2.5.5 NASTRAN Demonstration Problems

The standard set of NASTRAN Demonstration Problems are each identified by a UMF tid, pid card. Thus, to run a demonstration problem, either use the Executive and Case Control driver decks provided or alter them and then add the bulk data deck from the UMF. Bulk data cards can be deleted with the / card or others can be added by referring to the sorted Bulk Data Deck Card number. See the NASTRAN Demonstration Problems Manual for the appropriate UMF number.

NASTRAN DATA DECK

2.6 USER GENERATED INPUT

It may happen that a user will want to take a problem previously run on another program and run it using NASTRAN. In many instances, this provides the user with the quickest means of familiarizing himself with NASTRAN since he is running a problem which he understands intimately. Also, he may wish to extend his analysis of some previously analyzed problem into regions which previous programs would not allow. In either event, he is faced with the problem of Input Data conversion.

The simplest way to convert structural model data is to write a small FØRTRAN (or other language) program to read in the data cards composing the input data deck for the previous program and punch a new NASTRAN Bulk Data Deck. Usually, the information is in a one to one correspondence, and this procedure is quite straight forward, requiring only a minimal knowledge of programing. While a large deck of cards may result, by using the User's Master File feature described in Section 2.5, the amount of large deck handling may be minimized.

2.6.1 Utility Module INPUT Usage

NASTRAN has implemented one data generating utility module within its existing structure for specific cases: General characteristics of the INPUT module are as follows:

1. INPUT allows the user of NASTRAN to generate the majority of the bulk data cards for a number of selected test problems without having to actually input the physical cards into the Bulk Data Deck.
2. The test problems for which partial data are generated by INPUT are:
a. $N \times N$ Laplace Network from scalar elements
b. $W \times L$ Rectangular Frame from BAR elements or R $\emptyset D$ elements
c. $W \times L$ Rectanguilar Array of QUADI elements
d. $W \times L$ Rectangular Array of TRIAl elements
e. N - segment string from scalar elements
f. N - cell beam made from BAR elements
g. N - scalar point. full matrix with optional unit loading

These problem types are described separately in the following sections.
3. To use INPUT variations of the following alter deck must be used:

```
ALTER 1
PARAM //C,N,N@P/V,N,TRUE=-1 $
INPUT, ,,,,/G1,G2,----,G5/C,N,a/C,N,b/C,N,b $
EQUIV G1,GE@M1/TRUE / G2,GE\emptysetM2/TRUE----/ G5,GEØM5/TRUE $
ENDALTER
```

The specific data blocks that need be included depend on the particular problem as do the parameter values. Examples for each problem type will be given.
4. Data cards are read by INPUT from the System Input File using FQRTRAN I/ \emptyset, each card containing up to 10 eight column fields. Remember to right-justify this data. The required data are described in each problem type description.
5. The INPUT data card(s) follow the ENDDATA card. Do not "store" other data that is not intended to be used by the INPUT module. Note that if the Univac 1108 is used, a system control card @XQT *NASTRAN.LINK2 must be inserted between the ENDDATA and INPUT data card(s).
6. Several sample problems were run as part of checkout. The input for these runs are available as examples of INPUT usage.
7. Restart tables are not effective with respect to "cards" generated by INPUT since the preface is unaware of their existance.
8. The INPUT data generator feature is restrictive. It can only be used in the circumstances illustrated. The user may emiploy the INPUT module as described but merging of user data with INPUT data is not supported. As an example, single point constraints may be defined either in the bulk data deck or in the INPUT module data deck but not both places in an attempt to combine them. Thus if SPC cards are defined in the bulk data deck, then the G4 data block will not be generated and GE@M4 must not be equivalenced to G4.
2.6.1.1 Laplace Circuit ($a=1, b=1,2$ or 3 , c is not used)

INPUT generates CELAS4, SPC (for $b=1$), and CMASS (for $b=2,3$) cards for the circuit shown.

user generated input

The scalar point id's are 1 through $(N+1)^{2}$ except for $1, N+1, N(N+1)+1$, and $(N+1)^{2}$. For $b=2$ or 3 , all edge points are replaced with ground. The scalar elements generated are shown below for each value of b for a typical cell. Elements between edge points are not generated.

a. Data Card

1	N
2	k
3	U
3	m
4	f

(I8) $\quad N^{2}=$ no. of cells
(E8.0) Spring stiffness
(E8.0) Enforced displacement along edge (b) $(b=1)$
(E8.0) Mass (b $=2,3$)
(E8.0) Coupling fraction (b =-3 only)
b. Options
$=1$, statics. Use statics (Rigid Format $D-1$) to solve $\nabla^{2} u=0$ with boundary conditions $u=0$ along (a) , (c) and (d),$u=U$ along (b). G2 and G4 are both used. No masses are generated.
$=2$, no mass coupling. Use real eigenvalue analysis (Rigid Format D-3) to obtain the eigenvalues of a square membrane $\left(\nabla^{2} u=\frac{\partial^{2} u}{\partial t^{2}}\right)$ where the theoretical
b solutions for $N \rightarrow \infty$ are given by

$$
f_{i j}=\frac{1}{N}\left\{i^{2}+j^{2}\right\}^{1 / 2} ; i, j=1,2, \ldots
$$

U is ignored. Only $G 2$ is used. Diagonal masses only are generated.
$=3$, mass coupling. Same as where the diagonal masses are m. The horizontal and vertical masses are -fm ; the cross diagonal masses are $-\frac{1}{2} \mathrm{fm}$.

c. Notes

(1) For $b=1, S P R=1000+N$ must be selected in Case Control Deck.

NASTRAN DATA DECK

ID INPUT,CASET
TIME 30
APP DISP
SดL 1,3
ALTER 1
PARAM //C,N,N@P/V,N,TRUE=-1 \$
INPUT, ,,,,/,G2,,G4,/C,N,1/C,N,1 \$
EQUIV G2,GEפM2/TRUE / G4,GEפM4/TRUE \$
ENDALTER
CEND
$E C H \emptyset=B \emptyset T H$
TITLE=TEST $\emptyset F$ UTILITY M $\varnothing D U L E$ INPUT
SUBTITLE=LAPLACE CIRCUIT
LABEL=STATICS
SPC=1005
QUTPUT
DISP=ALL
BEGIN BULK
\{blank card\}
ENDDATA
$\begin{array}{lll}5 & 1.0 & 10.0\end{array}$

Lines indicate scalar springs

USER GENERATED INPUT
2.6.1.2 Rectangular Frame made from BAR's or RDD's ($a=2, b=1,2,3$ or 4, $c=0,1,2$ or 3) INPUT generates GRID, CBAR or CRØD and SEQGP cards for the rectangular frame shown.

NASTRAN DATA DECK

a. Data Card

1	W	$(I 8)$	No. cells in x-direction
2	L	(I8)	No. cells in y-direction
3	Δx	$(E 8.0)$	Length of cell in x-direction
4	Δy	$(E 8.0)$	Length of cell in y-direction
5	P	(I8)	Permanent single-point constraints

b. Options (SEQGP cards)
b $\quad\left\{\begin{array}{l}=1, \text { Regular Banding (no SEQGP cards) } \\ =2, \text { Double Banding } \\ =3, \text { Active Columns } \\ =4, \text { Reverse Double Banding }\end{array}\right.$
c $\quad\left\{\begin{array}{l}=0, \text { Bars } \\ =1, \text { Rods with both diagonals } \\ =2, \text { Rods with UL - LR diagonals } \\ =3, \text { Rods - statically determinate }\end{array}\right.$
c. Notes
(1) A PBAR card with PID of 101 must be supplied as part of the bulk data for $c=0$; for $c \neq 0$, this is a PR $\emptyset D$ card.

ID INPUT, CASE2
TIME 30
APP DISP
S $\emptyset \mathrm{L}$ 1,3
ALTER 1
PARAM //C,N,N@P/V,N,TRUE=-1 \$
INPUT, ,,,,/G1,G2,,,/C,N,2/C,N,1 \$
EQUIV G1,GEØM1/TRUE / G2,GEØM2/TRUE \$
ENDALTER
CEND

ЕСНП $=$ ВดТН

TITLE=TEST ØF UTILITY M@DULE INPUT
SUBTITLE=RECTANGULAR FRAME FRQM BARS
LABEL=REGULAR BANDING
SPC=
$L \emptyset A D=1$
QUTPUT
SET $101=1,4,17,20$
DISP $=101$
BEGIN BULK

FDRCE	1	20	0	1.0	1.0	0.0	0.0
MAT1	7	1.0	1.0				
PBAR	101	7	1.0	2.0	4.0	8.0	
SPC	1	1	1234	0.0	4	23	0.0
ENDDATA							
	3	1.0	2.0	345			

17
13

2.6.1.3 Rectangular Plate made from QUAD1's ($a=3, b=1,2,3$ or 4, c is not used)

 INPUT generates GRID, CQUADI, SEQGP and SPC (if requested) cards for the rectangular grid work shown.

USER GENERATED INPUT

a. Data Deck (2 cards required)

First Card

1	W	$(I 8)$	No. cells in x-direction
2	L	$(I 8)$	No. cells in y-direction
3	ΔX	$(E 8.0)$	Length of cell in x-direction
4	Δy	$(E 8.0)$	Length of cell in y-direction
5	IP	$(I 8)$	Permanent constraints
6	θ	$(E 8.0)$	Material orientation angle in degrees

Second Card

1	IYO	(I8)	SPC's on $y=0$
2	IXO	(I8)	SPC's on $x=0$
3	IYL	(I8)	SPC's on $y=L \cdot \Delta y$
4	IXW	(I8)	SPC's on $x=W \cdot \Delta x$
5	IØX	(I8)	QMIT's in x-direction
6	IØY	(I8)	ØMIT's in y-direction

b. Options (SEQGP cards)

$$
\text { b }\left\{\begin{array}{l}
=1, \text { Regular banding (no SEQGP cards) } \\
=2, \text { Double banding } \\
=3, \text { Active banding } \\
=4, \text { Reverse double banding }
\end{array}\right.
$$

c. Notes

(1) If IP, IYO, IXO, IYL and IXW are all zero, G4 will be purged.
(2) A PQUADI card with PID $=101$ must be included in the Bulk Data.
(3) If SPC's are generated the set ID will be $1000 \mathrm{NX}+\mathrm{NY}$.

NASTRAN DATA DECK

2.6.1.4 Rectangular Plate made from TRIAl's ($a=4, b=1,2,3$ or 4, c is not used) INPUT generates GRID, CTRIA1 and SPC (if requested) cards for the rectangular grid work shown.

NASTRAN DATA DECK
a. Data Deck (2 cards required)

First Card

1	W	(I8)	No. cells in x-direction
2	L	(I8)	No. cells in y-direction
3	ΔX	(E8.0)	Length of cell in x-direction
4	Δy	(E8.0)	Length of cell in y-direction
5	IP	(I8)	Permanent constraints
6	θ	$(E 8.0)$	Material orientation angle in degress

Second Card

1	IYO	(I8)	SPC's on $y=0$
2	IXO	(I8)	SPC's on $x=0$
3	IYL	(I8)	SPC's on $y=L \cdot \Delta y$
4	IXW	(I8)	SPC's on $x=W \cdot \Delta x$

b. Options (SEQGP cards)

$$
\text { b } \quad\left\{\begin{array}{l}
=1, \text { Regular banding (no SEQGP cards) } \\
=2, \text { Double banding } \\
=3, \text { Active banding } \\
=4, \text { Reverse double banding }
\end{array}\right.
$$

c. Notes
(1) If IP, IYO, IXO, IYL and IXW are all zero, G4 will be purged.
(2) A PTRIAl card with PID=101 must be included in the Bulk Data.
(3) If.SPC's are generated the set ID will be $1000 \mathrm{NX}+\mathrm{NY}$.

ID INPUT, CASE 4
TIME 30
APP DISP
SOL 1,3
ALTER 1
PARAM //C,N,NDP/V,N,TRUE=-1 \$
INPUT, , ,, ,/GT,G2, ,G4,/C,N,4/C,N,1/C,N,1 \$
EQUIV'G1,GEØM1/TRUE / G2,GEQM2/TRUE / G4,GEØM4/TRUE \$
ENDALTER
CEND
$E C H \emptyset=B \emptyset T H$
TITLE=TEST $\emptyset F$ UTILITY MøDULE INPUT
SUBTITLE=RECTANGULAR PLATE MADE FROM CTRIAI'S
LABEL=ØPTIDN 1
WITH CLAMPED SUPPØRTS
SPC=3005
LøAD=1
QUTPUT
DISP=ALL
BEGIN BULK

FQRCE	1	1	0	1.0	0.0	0.0	1.0
MAT1	7	1.0	1.0			7	4.0
PTRIA1	101	7	1.0	7	2.0	7	4

ENDDATA

2.6.1.5 N-segment string ($a=5, b$ and c are not used)

INPUT generates CELAS4, CMASS4 and CDAMP4 cards for an N-segment string grounded at both ends.

USER GENERATED INPUT

a. Data Card

1	N	(I8)	No. of segments
2	k_{1}	$(E 8.0)$	Spring value
3	k_{2}	$(E 8.0)$	Spring value (if zero, none of these elements are generated)
4	m	$(E 8.0)$	Mass value (if zero, none of these elements are generated)
5	b	$(E 8.0)$	Damper values (if zero, none of these elements are generated)

b. Notes
(1) If any of k_{2}, m, or b are zero, those elements will not be generated.

NASTRAN DATA DECK

ID INPUT, CASE 5
TIME 30
APP DISP
SOL 1,3
ALTER 1
PARAM //C,N,N@P/V,N,TRUE=-1 \$
INPUT, ,,,,/,G2,,,/C,N,5 \$
EQUIV G2,GEgM2/TRUE \$
ENDALTER
CEND
ECH $\varnothing=B \emptyset T H$
TITLE=TEST $\emptyset F$ UTILITY M $\emptyset D U L E$ INPUT
SUBTITLE $=$ N-SEGMENT STRING
LABEL=STATICS
$\angle \emptyset A D=1$
ØUTPUT
DISP $=A L L$
BEGIN BULK

L@AD	1	3	1.0	6	1.0
ENDDATA $_{7}$	1.0	0.0	0.0	0.0	

2.6.1.6 N-cell Bar ($a=6$, b and c are not used)

INPUT generates GRID and CBAR cards for an N-cell bar. GMIT cards will also be created if requested.

a. Data deck

First Card

1	N	(I8)	No. of cells
2	L	(E8.0)	Length of bar
3	IP	(I8)	Permanent constraints
4	IFLG	(I8)	Orientation vector flag
5	IGO	(18)	GO (used only if IFLG = 2)
6	M	(I8)	No. of right-most grid points to be connected to GP2 via bars with PID $=102$
7	IØX	(I8)	ØMIT card count

Second Card (Read only if IFLG $=1$)

1	X1	(E8.0)	Orientation vector X1 component
2	X2	(E8.0)	Orientation vector X2 component
3	X3	(E8.0)	Orientation vector X3 component

b. Notes
(1) A PBAR card with PID $=101$ is required. If $M \neq 0$, a PBAR card with $P I D=102$ is required.
(2) IFLG $=2$ option is not allowed for this case.
(3) Do not include G4 in alter packet unless $10 X$ is greater than 0 .

NASTRAN DȦTA DECK

ID INPUT, CASE 6
TIME 30
APP DISP
SめL. 1,3
ALTER
PARAM //C,N,N@P/V,N,TRUE=-1 \$
INPUT, ,,,,/G1,G2,,,/C,N,6 \$
EQUIV G1,GE@M1/TRUE / G2,GEQM2/TRUE \$
ENDALTER
CEND
$E C H \varnothing=B \emptyset T H$
TITLE=TEST $\emptyset F$ UTILITY M $\emptyset D U L E$ INPUT
SUBTITLE=N-CELL BAR
LABEL $=$ STATICS
SPC=1
$L \emptyset A D=1$
QUTPUT
SET 101=11
DISP=101
BEGIN BULK

2.6.1.7 Full matrix with optional unit load ($a=7$, b and c are not used) INPUT generates N scalar points, all of which are interconnected giving $N(N+1) / 2$ elements. On option, SLØAD cards are generated for each CELAS4 scalar point.
a. Data Card

b. Notes
(a) GP1 is altered as shown in the example in order to run efficiently.
(b) If SLØAD cards are generated the load set ID is N.

NASTRAN DATA DECK

```
ID INPUT, CASE 7
TIME 30
APP DISP
S@L 1,3
ALTER 1
PARAM //C,N,N@P/V,N,TRUE=-1 $
INPUT, ,,,,/,G2,G3,,G5/C,N,7 $
EQUIV G2,GE@M2/TRUE / G3,GE@M3/TRUE $
ALTER 4,4
GP1 GE@M1,G5/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/C,N,0/V,N,NØGPDT $
ENDALTER
CEND
ECH\emptyset=B\emptysetTH
TITLE=TEST \emptysetF UTILITY M@DULE INPUT
SUBTITLE=FULL MATRIX WITH ØPTIØNAL UNIT L\emptysetAD
LABEL=\emptysetRDER = 10
L\emptysetAD=10
QUTPUT
DISP=ALL
SPCF=ALL
\emptysetL\emptysetAD=ALL
ELF\emptyset=ALL
BEGIN BULK
| {blank card}
ENDDATA
    10 1
```


2.7 SUBSTRUCTURE CONTROL DECK

The Substructure Control Deck options provide the user commands needed to control the execution of NASTRAN for automated multi-stage substructure analyses. These commands are input on cards with the same format conventions as are used for the normal NASTRAN Case Control Deck.

Initiation of a substructure analysis is achieved via the Executive Control Deck command (see Section 2.1):

APP DISPLACEMENT,SUBS

This command directs NASTRAN to automatically generate the required DMAP sequence of alters to the specified Rigid Format necessary to perform the operations requested in the Substructure Control Deck. Following the Substructure Control Deck in the NASTRAN input data stream comes the standard Case Control Deck which specifies the loading conditions, omit sets, method of eigenvalue extraction, element sets for plotting, plot control, and output requests, etc.

The Substructure Control Deck commands are summarized in Table 1 where they are listed under one of three categories according to whether they:

1. Specify the phase and mode of execution
2. Specify the substructuring matrix operations
3. Define and control the substructure operating file (S $\varnothing F$)

Several commands have associated with them a set of subcommands used to specify additional control information appropriate to the processing requested by the primary command. These subcommands are defined together with the alphabetically sorted descriptions of their primary commands in Section 2.7.3. Examples utilizing these commands are presented in Section 1.

The sections that follow discuss the interaction between the substructure commands and the standard case control commands, the translation of substructure commands into DMAP ALTER sequences, and the format conventions to be used. The bulk data cards provided for substructure analyses are included with the standard bulk data descriptions in Section 2.3 and they are summarized for convenient reference in Table 2.

NASTRAN DATA DECK

Table 1. Summary of substructure commands.
A. Phase and Mode Control

SUBSTRUCTURE \# - Defines execution phase (1, 2, or 3) (Required)
ØPTIØNS - Defines matrix options (K, M, P, or PA)
RUN - Limits mode of execution (DRY, G \emptyset, DRYG $\emptyset, S T E P$)
ENDSUBS \# - Terminates Substructure Control Deck (Required)
B. Substructure Operations

COMBINE - Combines sets of substructures
NAME - Names the resulting substructure
TØLERANCE* - Limits distance between automatically connected grids
CQNNECT - Defines sets for manually connected grids and releases
gUTPUT - Specifies optional output results
CØMPQNENT - Identifies component substructure for special processing
TRANSFØRM - Defines transformations for named component substructures
SYMTRANSF@RM - Specifies symmetry transformation
SEARCH - Limits search for automatic connects
EQUIV - Creates a new equivalent substructure
PREFIX* - Prefix to rename equivalenced lower level substructures
REDUCE - Reduces substructure matrices
NAME* - Names the resulting substructure
BØUNDARY* - Defines set of retained degrees of freedom.
QUTPUT* - Specifies optional output requests
RSAVE - Save REDUCE decomposition produce
SØLVE - Initiates substructure solution (statics or normal modes)
RECØVER - Recovers Phase 2 solution data
SAVE - Stores solution data on SøF
PRINT - Stores solution and prints data requested
BRECDVER - Basic sübstructure data recovery, Phase 3
PLøT - - Initiates substructure undeformed plots
C. SDF Controls
$S \emptyset F$ \# - Assigns physical files for storage of the S \varnothing F (Required)
PASSW@RD - Protects and insures access to correct file
SØFØUT or S $\wp \varnothing F I N$ - Copies $S \emptyset F$ data to or from an external file
POSITION - Specifies initial position of input file
NAMES - Specifies substructure name used for input
ITEMS $\quad-$ Specifies data items to be copied in
SØFPRINT - Prints selected items from the SøF
DUMP - Dumps entire S@F to a backup file
RESTØRE - Restores entire S \varnothing F from a previous DUMP operation
CHECK - Checks contents of external file created by SøFØUT
DELETE - Edits out selected groups of items from the $S \emptyset F$
EDIT - Edits out selected groups of items from the SضF
DESTRDY - Destroys all data for a named substructure and all the substructures of which it is a component
\# Mandatory Control Cards * Required Subcommand

Table 2. Substructure Bulk Data Card Summary.
A. Bulk Data Used for Processing Substructure Command REDUCE

BDYC - Combination of substructure boundary sets of retained degrees of freedom

BDYS - Boundary set definition
BDYS1 - Alternate boundary set definition
B. Bulk Data Used for Processing Substructure Command CøMBINE

CØNCT - Specifies grid points and degrees of freedom for manually specified connectivities - will be overridden by RELES data
CONCT1 - Alternate specification of connectivities
RELES - Specifies grid point degrees of freedom to be disconnected overrides CONCT and automatic connectivities
GTRAN - Redefines the output coordinate system grid point displacement sets
TRANS - Specifies coordinate systems for substructure and gird point transformations
C. Bulk Data Used for Processing Substructure Command SøLVE

LQADC - Defines loading conditions for static analysis
MPCS - Specifies multipoint constraints
SPCS - Specifies single point constraints
SPCS1 - Alternate specification of.single point constraints
SPCSD - Specifies enforced displacements for single point constraints

2.7.1 Commands and Their Execution

The sequence of operations is controlled by the order in which NASTRAN encounters the substructure commands. A few special data cards are required in any Substructure Command Deck. These are:

SUBSTRUCTURE $\left\{\begin{array}{l}\text { PHASE1 } \\ \text { PHASE2 } \\ \text { PHASE3 }\end{array}\right\}$ - The first card of the Substructure Command Deck and it follows the CEND card of the Executive Control Deck.

$\left.\begin{array}{l}S \emptyset F \\ P A S S W \varrho R D\end{array}\right\}$ - Required to define the substructure operating file to be used for this execution.
 ENDSUBS - Signals the end of the Substructure Command Deck.

The first step of any substructuring analysis is to define the basic substructures to be used. These are prepared by executing one Phase 1 run for each substructure. Checkpoints may be taken for each Phase 1 execution to save the files to be used during the Phase 3 data recovery runs. Alternately, the user may resubmit his entire original data deck for a Phase 3 run, thereby avoiding a proliferation of checkpoint tapes. During a Phase 2 execution, a long list of instructions may be specified. This list may be split up and run in several separate smaller steps. No checkpointing is required during a Phase 2 run in that all pertinent substructure data will be retained on the substructure operating file (SøF).

The Case Control Deck submitted following the ENDSUBS card will be used to direct the processing appropriate to the particular Phase being executed. During a Phase 1 run, the Case Control will be used to define the loading conditions, single and multipoint constraints (only one set may be used per basic substructure), omits, and desired plot sets. During a Phase 2 run, the Case Control will be used to specify the loads and constraint data for the SØLVE operation, outputting of results, or any plot requests. Finally, for a Phase 3 execution, the Case Control Deck is used to define the detail output and plot requests for each basic substructure.

Normal substructuring analyses will require many steps to. be executed under Phase 2 processing. They may all be submitted for processing at once, or they may be divided into several shorter sequences and executed separately. In the event of an abnormal termination, several steps may have been successfully executed. To recover requires simply removing those completed steps from the Substructure Control Deck and resubmitting the remaining commands. The SøF will act as the checkpoint/restart file independently of the normal NASTRAN checkpointing procedures.

SUBSTRUCTURE CONTROL DECK

If the solution structure is large, a NASTRAN checkpoint would be recommended to save intermediate results during the $S \emptyset L V E$ operation. If this is done, however, care must be exercised on restart to insure correct re-entry into the DMAP sequence. This may be accomplished by removing all substructure control commands preceding the SøLVE, modifying the Case Control Deck and Bulk Data Deck to change set identifiers onily if any new loads or constraint sets are to be specified and resubmitting the job. If no changes are to be made which would affect the S $\varnothing \square L V E$ operations, a regular restart can be executed without changing the original Case Control and Bulk Data Decks.

The user may wish to add to or modify the DMAP sequence generated automatically from the Substructure Control Deck commands. This user interaction with the DMAP operations is explained in the following section.

2.7.2 Interface with NASTRAN DMAP

Each substructure command card produces a set of DMAP ALTER cards which are automatically inserted into the Rigid Format called for execution on the SøL card of the Execution Control Deck (Section 2.1). These automatically generated alters require no user interfacing unless the user wishes to exercise the following options:

1. The user may insert ALTER cards in the Executive Control Deck. However, they may not overlap any DMAP cards affected by the substructure ALTERs. The DMAP card numbers, modified for each Rigid Format, are given in Chapter 3.
2. The user may suppress the DMAP generated by the substructure deck and run with either ALTER cards or with approach DMAP. To suppress the automatic DMAP, the following forms of the executive control card APP are provided

APP DISP,SUBS,1 (Retains execution of the substructuring preface operations) or APP DMAP (Standard NASTRAN is executed)
3. For user information and convenience, the substructure ALTER packages may be printed and/or punched on cards. The executive control card, DIAG 23 , will produce the printout. DIAG 24 will produce the punched deck. The punched deck may then be altered by the user and resubmitted as described in (2) above. However, the order of the associated substructure command deck must not be changed to insure proper sequencing of the requested operations.

2.7.3 Substructure Control Card Descriptions

The format of the substructure control cards is free-field. In presenting general formats for each card embodying all options, the following conventions are used:

1. Upper-case letters must be punched as shown.
2. Lower-case letters indicate that a substitution must be made.
3. Braces \{ \} indicate that a choice of contents is mandatory.
4. Brackets [] contain an option that may be omitted or included by the user.
5. Underlined options or values are the default values.
6. Physical card consists of information punched in columns 1 thru 72 of a card. All Substructure Control Cards are limited to a single physical card.

The Case Control Deck, which follows the ENDSUBS card of the Substructure Control Deck is described in Section 2.3.

Substructure Command BRECØVER - Basic Substructure Data Recovery

Purpose: This operation is performed in Phase 3 to recover datailed output data for a basic substructure used in Phase 1.

Request Format:

BRECOVER name

Subcommands: None

Definitions:
name - Name of structure defined in Phase 1 or structure equivalenced to the Phase 1 structure.

Notes: 1. Use of the RECØVER command in Phase 3 has the same effect as BRECØVER. That is, RECØVER is an alias for BRECØVER in Phase 3.
2. Phase 3 may be a RESTART of the original Phase 1 run or it may be executed from the original input data.

Substructure Command CHECK - Check Contents of External File

Purpose: ${ }^{-}$To list all substructure items on an external file which was generated with SøFØUT.

Request Format:
CHECK filename $\left\{\begin{array}{c}\text { DISK } \\ \text { 'TAPE }\end{array}\right\}$

Subcommands: None

Definitions:
filename - Name of the external file. One of the following: INPT, INPI,..., INP9.
DISK - File resides on a direct access device.
TAPE - File resides on tape.

Notes: 1. The substructure name, item name, and the date and time the item was written are listed for each item on the file.

Substructure Command CØMBINE - Combine Sets of Substructures

Purpose: This operation will perform the operations to combine the matrices and loads up to seven substructures into matrices and loads representing a new pseudostructure. Each component structure may be translated, rotated, and reflected before it is connected. The user may manually select the points to be connected or direct the program to connect them automatically.

Request Format:

$\operatorname{C\emptyset MBINE}\left(\left\{\frac{\text { AUTด }}{\text { MAN }}\right\},\left\{\begin{array}{l}\frac{X}{Y} \\ Z\end{array}\right\}\right)$ namel, name2, etc.

Subcommands:

NAME	$=$ new name (required)	
TØLERANCE	$=\varepsilon \quad$ (required)	
CØNNECT	$=n$	
ØUTPUT	$=m_{1}, m_{2}, \ldots$	

Each individual component substructure may have the following added commands:

Definitions:

AUT $\varnothing /$ MAN \quad - Defines method of connecting points. If AUTD is chosen, the physical location of grid points is used to determine connections. If MAN, all connections are defined on CØNCT or CØNCT1 bulk data.
$X, Y, Z \quad$ - Are used on CØMBINE card for searching geometry data for AUTD connections. Denotes preferred search direction for processing efficiency.
namel, name2, etc. - Unique names of substructures to be combined. Limits are from one to seven component structures.
new name - Defines name of combination structure (required).
$\varepsilon \quad-$ Defines limit of distance between points which will be automatically connected (real >0).
n - Defines set number of manual connections and releases specified on bulk data cards, CøNCT, CONCT1, and RELES.
name

- On CØMPØNENT card defines which substructure (namel, etc.) to which the following data is applied.
- Set identification number of TRANS and GTRAN bulk data cards which define the orientation of the substructure and/or selected grid points relative to new basic coordinates.
$X, Y, \ldots X Y, \ldots X Y Z$ - Defines axis (or set of axes) normal to the plane(s) of symmetry in the new basic coordinate system. The displacement and location coordinates in these directions will be reversed in sign.
namej, namek, etc. - Limits the automatic connection process such that only connections between component "name" and these structures are produced.
m_{1}, m_{2}, etc. - Optional output requests (see Note 4).

Notes: 1. The automatic connections are produced by first sorting the grid point coordinates in the specified coordinate direction and then searching within limited groups of coordinates. If the boundary of a substructure to be connected is aligned primarily along one of the coordinate axes, this axis should be used as the preferred search direction. If the boundary is parallel with, say, the yz plane and all boundary coordinates have a constant x value, then the search should be specified along either the y or the z axis.
2. The transformation (TRANS) data defines the orientation of the component substructure (old basic) in terms of the new basic coordinate system. All grid points originally defined in the old basic system will be transformed to the new basic system: Points defined in local coordinate systems will not be transformed unless otherwise specified on a GTRAN card, and their directions will rotate with the substructure.
3. The SYMTRANFØRM (or SYMT) request is primarily used to produce symmetric reflections of a structure. This is usually preceded by an EQUIV command to produce a new, unique substructure name. Note that the results for the new reflected substructure may reference a left-handed coordinate system wherever local coordinate systems are retained during the transformation. However, those coordinates which are originally in the old basic or are newly specified via a GTRAN card are automatically transformed to a right-handed coordinate system of the combined structure during the combination process.
4. The following output requests are available for the CDMBINE operation:

CODE	OUTPUT
2*	S@F table of contents
3	CQNCTl bulk data summary
4	CQNCT bulk data summary
6	GTRAN bulk data summary
7*	TRANS bulk data summary
9	RELES bulk data summary
11	Summary of automatically generated connections (in terms of internal point numbers)
12	Complete connectivity map of final combined pseudostructure defining each internal point in terms of the gird point ID and component substructure it represents
13	The EQSS item
14	The BGSS item Output printed is formatted. SøF data
15	The CSTM item for the newly created pseudostructure
16	The PLTS item (See Section 1.14 for definitions)
17	The L $¢$ DS item

$$
2.7-10(3 / 1 / 76)
$$

Examples:

1. CDMBINE PANEL SPAR

T \emptyset LE $=.0001$
NAME = SECTA
2. CØMBINE (AUTØ,Z) TANK1, TANK2, BULKHD

NAME $=$ TANKS
TQLE $=.01$
CØMPQNENT TANKI
TRAN $=4$
SEARCH = BULKHD
CØMPQNENT TANK2
SEARCH $=$ BULKHD
3. COMBINE (MAN) LWING, RWING

TOLE $=1.0$
NAME $=$ WING
COMPQNENT LWING
SYMT $=Y$

NASTRAN DATA DECK

Substructure Command DELETE

Purpose: To delete individual substructure items from the $\mathrm{S} \emptyset \mathrm{F}$.

Request Format:
DELETE name, item1, item2, item3, item4, item5

Subcommands: None

Definitions:
name - Substructure name
item1, item2,... - Item names (H@RG, KMTR, LøDS, SØLN, etc:)

Notes: 1. DELETE may be used to remove from one to five items of any single substructure.
2. For primary substructures, items of related secondary substructures are removed only if the later point to the same data (KMTX, MMTX, etc.).
3. For secondary and image substructures, no action is taken on items of related substructures, i.e., items of equivalenced substructures or higher or lower level substructures.
4. See the EDIT and DESTRØY commands for other means of removing substructure data.

Substructure Command DESTRØY - Removes All Data Referencing a Component Substructure

Purpose: To remove data for a substructure and all substructures of which it is a component from the S \wp F. In addition to the substructure being DESTRØY'ed ("name"), data for substructures which satisfy one or more of the following conditions are also removed from the SøF:

1. All substructures of which "name" is a component
2. All secondary (or equivalenced) substructures for which "name" is the primary substructure
3. All image substructures which are components of a substructure that is destroyed

Request Format:
DESTRØY name

Subcommands: None

Definition:
name - Name of substructure

Notes: 1. No action is taken if "name" is an image substructure.
2. See related commands EDIT and DELETE for additional means of removing substructure data.

NASTRAN DATA DECK

Substructure Command DUMP

Purpose: To copy the entire $S \emptyset F$ to an external file.

Request Format:
DUMP filename $\left\{\begin{array}{c}\text { DISK } \\ \text {,TAPE }\end{array}\right\}$

Subcommands: None

Definitions:
Filename - Name of the external file. Any one of the following: INPT, INP1,..., INP9.
DISK - File resides on a direct access device.
TAPE - File resides on tape.

Notes: 1. DUMP may be used to create a backup copy of the S \wp F.
2. All system information on the $S \emptyset F$ is saved.
3. The RESTØRE command will reload a DUMPed SפF.

Substructure Command EDIT - Selectively Removes Data from S0F File

Purpose: To permanentiy remove selected substructure data from the $\$ 0 F$.

Request Format:
EDIT (opt) name

Subcommands: None

Definitions:

name - Name of substructure.
opt - Integer value reflecting combinations of requests. The sum of the following integers defines the combination of data items to be removed from the 50 .

QPT	Items Removed
1	Stiffness Matrix (KMTX) 2 Mass Matrix
4	Load Data
8	Solution Data
16	Transformation Matrices defining next level (HORG)
32	All items for the substructure

Notes: 1. The user is cautioned on the removal of the HgRG matrix data. These matrices are required for the recovery of the solution results.
2. If the EDIT feature is to be employed, the user should consider also using SprouT to insure the existence of backup data in the event of an error.

Substructure Command EQUIV - Create a New Equivalent Substructure

Purpose: To assign an alias to an existing substructure and thereby create a new equivalent substructure. The new secondary substructure may be referenced independently of the original primary substructure in subsequent substructure commands. However, the data actually used in substructuring operations is that of the primary substructure.

Request Format:

EQUIV namel, name2

Subcommands:
PREFIX $=p$

Definitions:
p - Single BCD character.
namel - Existing primary substructure name.
name2 - New equivalent substructure name.

Notes: 1. A substructure created by this command is referred to as a secondary substructure.
2. All substructures which were used to produce the primary substructure will produce equivalent image substructures. The new image substructure names will have the prefix p.
3. A DESTR \emptyset Y operation on the primary substructure data will also destroy the secondary substructure data and all image substructures.
4. An EDIT or DELETE opeartion on the primary substructure will not remove data of the secondary substructure and vice versa.

Substructure Mode Control gPTIQNS - Defines Matrix Types

Purpose: This allows the user to: selectively control the type of matrices being processed.

Request Format:

\emptyset PTI $\emptyset \mathrm{NS} \quad \mathrm{ml}, \mathrm{m} 2, \mathrm{~m} 3$

Subcommands: None

Definition:
$\mathrm{ml}, \mathrm{m} 2, \mathrm{~m} 3$ - Any combination of the characters K, M, and either P or PA, where:
$\mathrm{K}=$ Stiffness Matrices
$M=$ Mass Matrices
$\mathrm{P}=$ Load Matrices
$\mathrm{PA}=$ Appended Load Vectors

Notes: 1. The default depends on the NASTRAN rigid format:

Rigid Format	Default
1-Statics	K, P
2 - Inertia Relief	K, M, P
3- Normal Modes	K, M

2. In a Phase 1 execution, Rigid Formats 1 and 3 will provide only two of the matrices, as shown above. In Rigid Format l, the mass matrix is not generated. In Rigid Format 3 , the loads matrix is not generated. An error condition will result unless the user adds the required DMAP alters to provide the requested data.
3. Stiffness, mass, or load matrices must exist if the corresponding K, M, P, or $P A$ option is requested in the subsequent Phase 2 run.
4. Matrices or loads may be modified by rerunning the substructure sequence for only the desired type. However, the old data must be deleted first with the EDIT or OELETE command. See Section 1.11 for the actual item names.
5. The append load option, PA, is used when additional load sets are required for solution, and it is not desired to regenerate existing loads. To generate these new load vectors, re-execute all required Phase 1 runs with the new load sets and $\emptyset P T I Q N=P A$. Then, repeat the Phase 2 operations with $\varnothing P T I \emptyset N=P A$. At each step, the new vectors are appended to the existing loads so that all load vectors will be available in the SQLVE stage.
6. Each ØPTION command overrides the preceding command to control subsequent steps of the substructure process.

Substructure Operating File Declaration PASSW@RD

Purpose: This declaration is required in the substructure command deck. The password is written on the $S \emptyset F$ file and is used to protect the file and insure that the correct file is assigned for the current run.

Request Format:

PASSWQRD password

Subcommands: None

Definition:

password - BCD password for the S $\wp F$ (8 characters maximum). See the S $9 F$ file declaration card description.

Substructure Command PLQT - Substructure Plot Command

Purpose: This operation is used to plot the undeformed shape of a substructure which may be composed of several component substructures. This command initiates the execution of a plot at any stage of the substructure process. The actual plot commands; origin data, etc., must be included in the normal case control data.

Request Format:
PLØT name

Subcommands: None

Definitions:

name - Name of component substructure to be plotted.

Notes: 1. The set of elements to be plotted will consist of all the elements and grid points saved in Phase 1 for each basic substructure comprising the substructures named in the PLØT command. (Only one plot set from each basic substructure is saved in Phase 1.)
2. The structure plotter output request packet, while part of the standard Case Control Deck, are treated separately in Sections 4.2 and 4.3, respectively.

NASTRAN DATA DECK

Substructure Command RECQVER - Phase 2 Solution Data Recovery

Purpose: This operation recovers displacements and boundary forces on specified substructures in the Phase 2 execution. The results are saved on the $S \emptyset F$ file and they may be printed upon user request. This command should be input after the SøLVE command to store the solution results on the S $\emptyset F$ file.

Request Format:
RECØVER s-name

Subcommands:
SAVE = name
PRINT = name

Definitions:
s-name - Name of the substructure named in a prior SØLVE command from which the solution results are to be recovered.
name - Name of the component structure for which results are to be recovered. May be the same as "s-name".

Notes: 1. SAVE will save the solution for substructure "name" on the SøF. PRINT will save and print the solution.
2. The actual printout is controlled by the output requests specified in the Case Control Deck (DISP, SPCF, and $\emptyset L \emptyset A D$). If there are no output requests in Case Control, PRINT is equivalent to SAVE and nothing will be printed.
3. For efficiency, the user should order multiple SAVE and/or PRINT commands so as to trace one branch at a time starting from his solution structure.
4. Reaction forces are computed for a substructure only if (1) the substructure is named on a PRINT subcommand and, (2) an output request for SPCFORCE exists in the Case Control.

Substructure Command REDUCE - Phase 2 Reduction to Retained Degrees of Freedom

Purpose: This operation performs a Guyan matrix reduction process for a specified component substructure, otherwise known as matrix condensation. It produces the same result as obtained by the specification of NASTRAN QMIT or ASET data. The purpose is to reduce the size of the matrices. In static analysis only points on the boundary need be retained. In dynamics, the boundary points and selected interior points are retained.

Request Format:

REDUCE name

Subcommands:
NAME - new name
BQUNDARY - n
ØUTPUT $-m_{1}, m_{2}, \ldots$
RSAVE

Definitions:

name - Name of substructure to be reduced.
new name - Name of resulting substructure.
$n \quad-\quad$ Set identification number of BDYC bulk data cards which define sets of retained degrees of freedom for the resulting reduced substructure matrices.
m_{1}, m_{2}, etc. - Optional output requests (see Note 3).

Notes: 1. All references to the grid points and components not defined in the "boundary set" will be reduced out of the new substructure. Any subsequent reference to these omitted degrees of freedom in CפMBINE, REDUCE, or SQLVE operations generated an error condition.
2. The same transformations will be applied to the reduced mass matrix for the new substructure. See the NASTRAN Theoretical Manual for a discussion of this effect.
3. The following output requests are available for the REDUCE operation (* marks recommended output options):

CODE	OUTPUT
1*	Current problem summary
2	Boundary set summary
3	Summary of grid point ID numbers in each boundary set
4	The EQSS item for the structure being reduced
5*	The EQSS item
6*	The BGSS item
7	The CSTM item These requests write formatted $\mathrm{S} \emptyset F$ items for the new reduced pseudostructure
8	The PLTS item
9*	The LøDS item

4. If the RSAVE card is included, the decomposition product of the interior point stiffness matrix (LMTX item) is saved on the SØF file. This matrix will be used in the data recovery for the omitted points. If it is not saved it will be regenerated when needed.

NASTRAN DATA DECK

Substructure Command RESTQRE

Purpose: To reload the S \wp F from an external file created with the DUMP command.

Request Format:
RESTøRE filename $\left\{\begin{array}{c}\text { DISK } \\ \text { 'TAPE }\end{array}\right\}$

Subcommands: None

Definitions:
Filename - Name of the external file. Any one of the following: INPT, INPI,..., INP9.
DISK - File resides on a direct access device.
TAPE - File resides on tape.

Notes: 1. The external file must have been created with the DUMP command.
2. The $S \emptyset F$ must be declared as 'NEW' on the S $\wp \emptyset F$ command.
3. RESTØRE must be the very first substructure command following the S@F and PASSW@RD declarations.

Substructure Mode Control RUN - Specifies Run Options

Purpose: This command is used to limit the substructure execution for the purpose of checking the validity of the input data. It allows for the processing of input data separately from the actual execution of the matrix operations.

Request Format:

RUN
$\left\{\begin{array}{c}\text { DRY } \\ \text { G } \emptyset \\ \text { DRYG } \emptyset \\ \text { STEP }\end{array}\right\}$

Subcommands: None

Definitions:
DRY - Limits the execution to table and transformation matrix generation. Matrix operations are skipped.

GØ - Limits the execution to matrix generation only. This mode must have been preceded by a successful RUN=DRY execution.

DRYG $\emptyset \quad-$ Will cause execution of a complete dry run for the entire job, followed by a RUN=G \emptyset execution if no fatal errors were detected.

STEP - Will cause the execution of both DRY and GØ operations one step at a time.

Notes: 1. The DRY, $\emptyset \emptyset$ and STEP options may be changed at any step in the input substructure command sequence. If the DRYG® option is used, the RUN card must appear only once at the beginning.
2. If a fatal error occurs during the first pass of the DRYG option, the program exits at the completion of all DRY operations.

Substructure Operation File Declaration S $\underline{\text { G }}$ - Assigns Physical Files for Storage of the S $\emptyset F$

Purpose: This declaration defines the names and sizes of the physical NASTRAN files the user assigns for storage of the S $\emptyset \boldsymbol{F}$ file. At least one of these declarations must be present in each substructure command deck. As many S $\wp \bar{F}$ declarations are required in the substructure command deck on each run as there are physical files assigned for ths storage of the søf file.

Request Format:

$S \emptyset F($ no. $)=$ filename, filesize,$\left\{\frac{0 L D}{\text { NEW }}\right\}$
Subcommands:
PASSW@RD = password

Definitions:

no. - Integer index of SøF file (1, 2, etc.) in ascending order of files required for storage of the $\mathrm{S} \emptyset F$. The maximum index is 10 .
filename - User name for an S \wp F physical file.
filesize - Size of allocated file space in kilowords, default $=100$.
ØLD. - S \quad F data is assumed to already exist on the file.
NEW - The $S \emptyset F$ is new. In this case, the S $\wp \boldsymbol{F}$ will be initialized.
password - BCD password for the S 5 F (8 characters maximum) used to protect the file and insure that the correct file is assigned for the current run (see the PASSW@RD card description).

Notes: 1. If more space is required for storage of the S $\varnothing \mathrm{F}$ file, additional physical files may be declared. Alternately, the file size parameter on a previously declared file may be increased, but only on the last physical file if more than one is used (on IBM the size of an existing file may not be increased.
2. Once an $S \emptyset F$ declaration is made, the index of the $S \emptyset F$ file must always be associated with the same file name. File names may not be changed from run to run.
3. The file names of each physical SøF file must be unique.
4. The declared size of the S ϱF may be reduced by the amount of contiguous free-space at the end of the logical SøF file. This may be accomplished by removing the physical file declaration for those unused files which have the highest sequence numbers. And, the size of the physical file with the highest sequence number of those remaining may

- be reduced. An attempt to eliminate a portion of the S $\emptyset F$ which contains valid data will result in a fatal error.

5. If the NEW parameter is present on any one of the S $\emptyset F$ declarations, the entire logical S@F is considered new. Therefore, if an additional physical file is added to an existing S $\wp \mathrm{F}$, the NEW parameter should not be included on any declarations.
6. The following conventions should be used for the file name declarations on each of the three NASTRAN computers:

CDC 6400/6600
Any 4-character alphanumeric name is acceptable. No special characters or blanks may be used. The file name used on the S $\emptyset F$ declaration must correspond to ones used on the system REQUEST or ATTACH card. Note that after a NASTRAN execution, the SøF files should be catalogued or extended.

$$
2.7-24(3 / 1 / 76)
$$

SUBSTRUCTURE CONTROL DECK

Examples:

1. Create a new $S \emptyset F$ file with a filename of $S \emptyset F 1$ and catalogue it.

REQUEST (SゆF1,*PF)
NASTRAN. CATALØG(SøFI, username)
789

NASTRAN data cards including the S $\emptyset F$ declaration --
SøF(1)=S@F1,1000,NEW

6789
2. Use of an existing $S \emptyset F$ file with a filename of $A B C D$.

ATTACH (ABCD, username)
NASTRAN.
EXTEND (ABCD)
789

NASTRAN data cards including the S $\$ \varnothing \mathrm{~F}$ declaration --
S $\varnothing F(1)=A B C D, 1000$
\vdots
6789
UNIVAC 1108
The filename used on the SØF declaration must specify one of the NASTRAN user files INPT, INPI,...., INP9.

Examples:

1. Create a new SøF file named INPT.
@ASG, U INPT.F///1000
@HDG,N
©XQT *NASTRAN.LINKI
NASTRAN data cards including the SØF declaration --
S $\emptyset F(1)=$ INPT, 400, NEW
@ADD,P *NASTRAN.CQNTRL
@FIN
2. Use of an existing SøF file with a filename of INP7.
@ASG,AX INP7.
@HDG,N
@XQT, *NASTRAN.LINK]
:
NASTRAN data cards including the SQF declaration -S@F(1)=INP7,250
@ADD,P *NASTRAN. CONTRL
@FIN

The file name used on the $S \emptyset F$ declaration must specify one of the following ten file names: $\$ \emptyset F \emptyset, S \emptyset F 1, S \emptyset F 2, \ldots, S \emptyset F 9$.

The JCL (Job Control Language) DD (data definition) card, not the NASTRAN SDF declaration, is used by the IBM operating system to allocate units to NASTRAN for use as SØF datasets. There must be one DD card corresponding to each NASTRAN S@F declaration; the DD card DDNAME parameter must exactly correspond to the four-character file name of the S SQF declaration of the Substructure Control Deck. The physical unit specified on the DD card must be a direct access device. On IBM, the S $\emptyset F$ declaration file size parameter is ignored and the actual size of the $S \emptyset F$ file is obtained from the SPACE parameter of the DD card.

Examples:

1. Create a new S $\varnothing F$ dataset with a filename $S \mathscr{F} 1$ and 1000 blocks.
//NSGD EXEC NASTRAN
//NS.SØF1, DD DSN=username, UNIT=2314, VøL=SER=userno, DISP=(NEM, KEEP)
$/ /$ SPACE $=(7200,(1000)), D C B=B L K S I Z E=7200$
//NS.SYSIN DD *

NASTRAN data cards including the S \wp F declaration --
$\mathrm{S} \emptyset \mathrm{F}(1)=\mathrm{SOF} 1$, NEH
/*
Note: The dataset disposition must be DISP=(NEW,KEEP) when the SQF dataset is created. However, an existing $\overline{S \emptyset F}$ dataset may be re-initialized by coding NEW on the SØF declaration in the NASTRAN data deck. In this case, the disposition on the DD card should be coded DISP $=\emptyset$ LD.
2. Use of an existing S $\emptyset F$ dataset with a filename of S $\$ \neq 7$.
//NSG \emptyset EXEC NASTRAN
//NS.SØF7 DD DSN=username, UNIT=3330, VØL=SER=userno, DISP=ØLD, //NS.SYSIN DD *

MASTRAN data cards including the S \wp F declaration --
$\operatorname{S@F}(1)=S \emptyset F 7$

Substructure Command SQFIN

Purpose: To copy substructure items from an external file to the $S \emptyset F$.

Request Format:
SøFIN $\left\{\binom{\right.$ EXTERNAL }{ INTERNAL }$\} \quad$ filename $\quad\left\{\begin{array}{c}\text {,DISK } \\ \text { TAPE }\end{array}\right\}$

Subcommands:
POSITION $=\left\{\begin{array}{c}\text { REWIND } \\ \text { NØREWIND }\end{array}\right\}$
NAMES $=\left\{\begin{array}{c}\text { substructure name } \\ \text { WH@LES@F }\end{array}\right\}$
ITEMS $=\left\{\begin{array}{c}\text { ALL } \\ \text { MATRICES } \\ \text { PHASE3 } \\ \text { TABLES } \\ \text { item name }\end{array}\right\}$

Definitions:
EXTERNAL - File was written on a different computer type.
INTERNAL - File was written with GING on the same computer type.
Filename - Name of the external file. If the file is in INTERNAL format, filename must specify INPT, INP1,...., INP9. If the file is in EXTERNAL format, filename must specify a FØRTRAN unit by using the form FØRT1, FØRT2,..., FØRT32.

DISK - File is located on a direct access device.
TAPE - File is located on a tape.
PØSITION - Specifies initial file position.
REWIND: file is rewound
NQREWIND: input begins at the current position
NAMES - Identifies a substructure for which data will be read. If NAMES=NHOLESQF is coded, and no other NAMES subcommands appear for the current S $\emptyset F I N$ command, all substructure items found on the external file from the point specified by the PøSITIØN subcommand to the end-of-file are copied to the S $\wp F$.

ITEMS - Identifies the data items which are to be copied to the $\$ \emptyset F$ for each substructure specified by the NAMES subcommands.

ALL: all items
MATRICES: all matrix items
PHASE3: the UVEC, QVEC, and SØLN items
TABLES: all table items
item name: name of an individual item

Notes: 1. Filename is required. The other S \varnothing FIN operands are optional.
2. All subcommands are optional.
3. The NAMES subcommand may appear up to five times for each SØFIN command.
4. If a substructure name of an item which is to be copied to the SøF does not exist on the S $\emptyset F$, it is added to the S $\emptyset F$. MDI (Master Data Index) pointers for higher level, combined structures and lower level are restored.
5. The PQSITIØN subcommand must be specified as REWIND for the EXTERNAL form of this command. All items on the external file are then read in. (User specifications for other subcommands are ignored.)
6. SøFØUT is the companion substructure command.
7. On IBM computers and for the EXTERMAL form of this command, the following DD card should be used:

```
//NS.FTxxF001 DD DSN=username,UNIT=2400-1,DISP=(,KEEP),
// LABEL=(,NL),DCB=(RECFM=FB,LRECL=132,BLKSIZE=3960,
// TRTCH=T,DEN=2)
```

Substructure Command SØFØUT

Purpose: To copy substructure items from the S $\wp \mathcal{F}$ to an external file.

Request Format:
søFøUT $\left\{\binom{\right.$ EXTERNAL }{$\left.\underline{\text { INTERNAL }}}\right\}$ filename $\left\{\begin{array}{c}\text {,DISK } \\ \underline{\text { TAPE }}\end{array}\right\}$

Subcommands:
PØSITI $\emptyset N=\left\{\begin{array}{c}\text { REWIND } \\ \frac{\text { NQREWIND }}{E \emptyset F}\end{array}\right\}$
NAMES $=\left\{\begin{array}{c}\text { substructure name } \\ \text { WHめLESめF }\end{array}\right\}$
ITEMS $=\left\{\begin{array}{c}\text { ALL } \\ \text { MATRICES } \\ \text { PHASE3 } \\ \text { TABLES } \\ \text { item name }\end{array}\right\}$

Definitions:
EXTERNAL - File will be written so that it may be read on a different computer type.
INTERNAL - File will be written with GINØ.
Filename - Name of the external file. If the file is in INTERNAL format, filename must specify INPT, INP1,..., INP9. If the file is in EXTERNAL format, filename must specify a FØRTRAN unit by using the form FØRT1, FØRT2,..., FØRT32.

DISK - File is located on a direct access device.
TAPE - File is located on a tape.
PØSITIQN - Specifies initial file position.
REWIND: file is rewound
NQREWIND: output begins at the current position
EØF: file is positioned to the point immediately preceding the end-of-file mark.
NAMES - Identifies a substructure for which data will be written. If NAMES=WHØLESØF is coded and no other NAMES subcommands appear for the current SØFØUT command, all substructure items found on the $S \emptyset F$ are copied to the external file.

ITEMS - Identifies the data items which are to be copied to the external file for each substructure specified by the NAMES subcommands.

ALL: all items
MATRICES: all matrix items
PHASE3: the UVEC, QVEC, and SØLN items
TABLES: all table items
item names: name of an individual item

Notes: 1. Filename is required. The other SØFØUT operands are optional.
2. All subcommands are optional.
3. The NAMES subcommand may appear up to five times for each SØFØUT command.
4. PLTS items of pseudostructures reference the PLTS items of the component basic substructures. Therefore, in order to save all data necessary to plot a pseudostructure, the PLTS items of its component basic substructures must be saved as well as the PLTS item of the pseudostructure.
5. For the external form of this command, PØSITIQN=NQREWIND has the effect of positioning the file to the end-of-file.
6. PØSITI \emptyset =REWIND should be coded for the first write to a new file.
7. $S \emptyset F I N$ is the companion substructure command.
8. On IBM computers and for the EXTERNAL form of this command, the following DD card should be used:
//NS.FTxxF001 DD DSN=username, UNIT=2400-1,DISP=(,KEEP),
// LABEL=(,NL) , DCB=(RECFM=FB,LRECL=132,BLKSIZE=3960,
// TRTCH=T,DEN=2)

NASTRAN DATA DECK

Substructure Command SØFPRINT

Purpose: To print selected contents of the $S \emptyset F$ file for data checking purposes.

Request Format:
S \emptyset FPRINT(opt) name, iteml, item2, etc.

Subcommands: None

Definitions:

```
opt - integer, control option, default = 0.
    opt = 1: prints data items only
    opt = 0: prints table of contents
    opt = -1: prints both
```

name - Name of substructure for which data is to be printed.
iteml, item2 - S $\emptyset F$ item name, used only when opt $\neq 0$, limit $=5$ (See Table 2.7-1).

Notes: 1. If only the table of contents is desired (opt $=0$), this command may be coded:

SØFPRINT TØC

On the page heading for the table of contents, the labels are defined as follows:
IS - Image substructure flag. 0 - not an image substructure
1 - image substructure
SS - Secondary substructure number (successor)
PS - Primary substructure number (predecessor)
LL - Lower level substructure number
CS - Combined substructure number
HL - Higher level substructure number

Substructure Command SøLVE - Substructure Solution

Purpose: This command initiates the substructure solution phase. The tables and matrices for the pseudostructure are converted to their equivalent NASTRAN data blocks. The substructure grid points referenced on bulk data cards SPCS, MPC, etc., are converted to pseudostructure scalar point identification numbers. The NASTRAN execution then proceeds as though a normal structure were being processed.

Request Format:

SøLVE name

Subcommands: None (Case Control and Bulk Data decks control the operations.)

Definition:
name - Name of pseudostructure to be analyzed with NASTRAN.

Notes: 1. Before requesting a SØLVE, the user should check to be sure that all necessary. matrices are available on the SØF file. For instance, loads and stiffness matrices are necessary in statics analysis. Mass and stiffness matrices are necessary in eigenvalue analysis, etc.

Substructure Command SUBSTRUCTURE - Initiates the Substructure Control Data Deck

Purpose: This command initiates the processing for automated substructuring and defines the phase of the analysis. It must be the first card in the Substructure Control Deck.

Request Format:

SUBSTRUCTURE $\left\{\begin{array}{l}\text { PHASE1 } \\ \text { PHASE2 } \\ \text { PHASE3 }\end{array}\right\}$

Subcommands:
NAME = name (required for PHASEI only)
SAVEPLQT $=n$ (used only in PHASE1)
RECOVER = name (used only in PHASE3)
BRECØVER = name (used only in PHASE3)

Definitions:

name - The name assigned to the basic substructure which is being created in PHASEI or for which results are to be computed in PHASE3.
$\mathrm{n} \quad$ - The plot set identification used to define the one set of elements and grid points to be saved in PHASE1 for subsequent plotting in PHASE2.

Notes: 1. The mode command RUN=STEP is assumed initially if the explicit command is not given immediately following the SUBSTRUCTURE command.
2. No further substructure commands are required for PHASE1 and PHASE3.
3. Additional substructure commands are required for PHASE2.
4. For PHASE3 operations, RECØVER and BRECØVER are equivalent and one of them must be present.

3.1 GENERAL DESCRIPTION OF RIGID FORMATS

The most general way of using NASTRAN is with a user written Direct Matrix Abstraction Program (DMAP). This procedure permits the user to execute a series of matrix operations of his choice along with any utility modules or executive operations that he may need. The user may even choose to write a module of his own. The rules governing all of these operations are described in Section 5.

In order to relieve the user from the necessity of constructing a DMAP sequence for each of his problems, a number of such sequences have been included in NASTRAN as rigid formats. A rigid format consists of two parts. The first part is a DMAP sequence that is stored in NASTRAN and available to the user by specifying the number of the rigid format on the S $\mathrm{S} \varnothing \mathrm{L}$ card in the Executive Control Deck. The second part of a rigid format'is a set of restart tables that automatically modify the series of DMAP operations to account for any changes that are made in any part of the Data Deck when making a restart, after having previously run all, or a part of the problem. Without such tables, the user would have to carefully modify his DMAP sequence to account for the conditions surrounding each restart. The chances for error in making these modifications for restart are very great. The restart tables not only relieve the user of the burden of modifying his DMAP sequence, but also assures him of a correct and efficient program execution.

In addition to the DMAP sequence provided with each rigid format, a number of options are available, which are subsets of each complete DMAP sequence. Subsets are selected by specifying the subset numbers (zero for the complete DMAP sequence) along with the rigid format number on the SØL card in the Executive Control Deck. See Section 2.2.1 for list of available subsets.

If the user wishes to modify the DMAP sequence of a rigid format in some manner not provided for in the available subsets, he can use the ALTER feature described in Section 2. Typical uses are to schedule an EXIT prior to completion, in order, to check intermediate output, schedule the printing of a table or matrix for diagnostic purposes, and to delete, or add a functional module to the DMAP sequence. Any DMAP instructions that are added to a rigid format are automatically executed when a restart is performed. The user should be familiar with the rules for DMAP programming, as described in Section 5, prior to making alterations to a rigid format.

The following rigid formats for structural analysis are currently included in NASTRAN:

1. Static Analysis
2. Static Analysis with Inertia Relief
3. Normal Mode Analysis
4. Static Analysis with Differential Stiffness
5. Buckling Analysis
6. Piecewise Linear Analysis
7. Direct Complex Eigenvalue Analysis
8. Direct Frequency and Random Reponse
9. Direct Transient Response
10. Modal Complex Eigenvalue Analysis
11. Moda1 Frequency and Random Response
12. Modal Transient Response
13. Normal Modes Analysis with Differential Stiffness
14. Static Analysis with Cyclic Symmetry
15. Normal Modes Analysis with Cyclic Symmetry

The following rigid formats for heat transfer analysis are included in NASTRAN:

1. Linear Static Heat Transfer Analysis
2. Nonlinear Static Heat Transfer Analysis
3. Transient Heat Transfer Analysis

The following rigid format for subsonic aeroelastic analysis is included in NASTRAN:
10. Modal Flutter Analysis

3.1.1 Input File Processor

The Input file Processor operates in the Preface prior to the execution of the DMAP operations in the rigid format. A complete description of the operations in the Preface is given in the Programmer's Manual. The main interest here is to indicate the source of data blocks that are created in the Preface and hence appear only as inputs in the DMAP sequences of the rigid formats. None of the data blocks created by the Input File Processor are checkpointed, as they are always regenerated on restart. The Input File Processor is divided into five parts. The first part (IFPI) processes the Case Control Deck, the second part (IFP) processes the Bulk Data 3.1-2 (3/1/76)

Deck, the third part (IFP3) performs additional processing of the bulk data cards associated with the conical shell element, and the fourth part (IFP4) performs additional processing of the bulk data cards associated with the fluid element. The fifth section (IFP5) processes data related to acoustic cavity analysis.

IFP1 processes the Case Control Deck and creates the Case Control Data Block (CASECC), the Plot Control Data Block (PCDB), and the XY-Plot Control Data Block (XYCDB). IFPI also examines all of the cards, except those associated with plotting, for errors in format or use. If errors are detected, they are classed as either fatal or warning, and suitable error messages are provided. Reference to Section 2.3 will assist the user in correcting errors in the Case Control Deck. If the error is fatal, the Executive System will not allow the execution to continue beyond the completion of the Preface.

The Bulk Data Deck is sorted in the Preface, if necessary, before the execution of the second part of the Input File Processor. IFP checks all of the bulk data cards for errors according to the rules given for each card in Section 2.4. If errors are detected, suitable messages are provided to the user. If the error is classed as fatal, the Executive System will not allow the execution to continue beyond the completion of the Preface. IFP creates the data blocks that are input to the various parts of the Geometry Processor (GEDM1, GEØM2, GEØM3 and GEDM4), the Element Properties Table (EPT), the Material Properties Table (MPT), the Element Deformation Table (EDT), and the Direct Input Table (DIT).

The third part of the Input File Processor (IFP3) converts the information on the special conical shell cards (CCØNEAX, CTRAPAX, CTRIAAX, FØRCEAX, MØMAX, MPCAX, ØMITAX, PCØNEAX, PØINTAX, PRESAX, PTRAPAX, PTRIAAX, RINGAX, SECTAX, SPCAX, SUPAX, AND TEMPAX) to reflect the number of harmonics specified by the user on the AXIC card. This converted information is added to any existing information on data blocks GEØM1, GEØM2, GEØM3 and GEØM4.

The fourth part of the input file processor (IFP4) converts the information on the fluid related cards (AXIF, BDYLIST, CFLUID2, CFLUID3, CFLUID4, DMIAX, FLSYM, FREEPT, FSLIST, GRIDB, PRESPT, and RINGFL) to reflect the desired harmonics, boundaries, and matrix input. This converted information is added to GEØM1, GEØM2, GEØM4, and MATPØØL.

The fifth part of the input file processor (IFP5) converts the information on the acoustic cavity related cards (AXSLØT, CAXIF2, CAXIF3, CAXIF4, CSLØT3, CSLØT4, GRIDF, GRIDS, and SLBDY) to equivalent structural scalar points, elements, scalar springs and plotting elements. This converted information is added to the GEDMI and GEØM2 data blocks.

3.1.2 Functional Modules and Supporting DMAP Operations

The DMAP listings for the rigid formats currently included in NASTRAN are presented in .the following sections. The mnemonics for the major functional modules are circled on the DMAP listings for ease of identification. Each major functional module is usually preceded and/or succeeded by several supporting DMAP operations. Brief descriptions of the operations in the functional modules are given for each of the rigid formats. The complete details for each functional module are given in the Programmer's Manual. Additional information is also given in the Theoretical Manual. The format of a functional module DMAP instruction is given in Section 5.

Many of the executive modules in the following list appear repeatedly in the rigid formats. Since the purpose of many of these operations in a rigid format is obvious, they are frequently omitted from the descriptions of the DMAP operations in the following sections. More complete descriptions of the executive modules are given in Section 5.

1. BEGIN indicates the beginning of the DMAP sequence constituting the rigid format.
2. FILE makes declarations relative to a particular file.
$A B C=T A P E$ states that file $A B C$ will be assigned to a physical tape if one is available.

DEF = APPEND states that file DEF may be extended as the result of an internal loop in the rigid format.

GHI = SAVE states that file GHI should not be dropped after use as it may be needed for subsequent executions of an internal loop.
3. CHKPNT specifies a list of files to be written on the new problem tape, including files that may have been purged, either because they were not generated in this particular execution or were explicitly purged with a PURGE statement.
4. LABEL specifies a labeled point in the sequence of DMAP instructions. Labels are referenced by REPT, JUMP and CDND instructions.
5. REPT specifies the end of a loop. The variable field contains the label name for the beginning of the loop and the number of times the loop is to be repeated.
6. JUMP specifies an unconditional transfer to the label indicated.
7. CØND specifies a conditional tranfer to the label indicated based on the value of the parameter named. The transfer occurs if the parameter value- is negative.
8. SAVE specifies variable parameter values that are to be saved for future use.
9. PURGE specifies the names of files that are conditionally dropped based on the parameter named.
10. EQUIV specifies the names of files that are conditionally equivalenced based on the parameter named.
11. END indicates the end of the DMAP sequence constituting the rigid format and causes a normal termination when executed.

3.1.3 Restart Procedures

Scheduled exits can be requested at any point in a rigid format by means of the ALTER feature. An exit is scheduled by inserting the following cards in the Executive Control Deck:

ALTER Kl
EXIT K2

ENDALTER
K1 $=$ OMAP statement number after which exit will take place.
K2 = Number of times EXIT instruction will be skipped before being executed - default is zero. For use with loops, where user wishes to execute the loop K2 times before scheduling the exit.

If the user chooses to restart the problem without making any changes, the Executive System will execute an unmodified restart following the last completed checkpoint.

Unscheduled exits are usually caused by errors on input cards or errors in the structural model resulting from missing or inconsistent input data. When such errors are detected, an unscheduled exit is performed accompanied with the output of the applicable user error messages. Following the correction of the input data errors, a modified restart can be performed.

Unscheduled exits may also occur because of machine failure or insufficient time allowance. In these cases, an unmodified restart is usually made following the last completed checkpoint. In some cases, where a portion of the problem has been completed, including the output for the completed portion, a modified restart must be made following an unscheduled exit due to insufficient time allowance. These situations are discussed under case control requirements in the sections dealing with the individual rigid formats.

The initial execution of any problem must be made with a complete NASTRAN Data Deck, including all of the bulk data. However, all or part of the bulk data may be assembled from alternate input sources, such as the User's Master file or a module written by the user to generate input. The User's Master File is described in Section 2.5 and user generated input is discussed in Section 2.6.

A New Problem Tape is constructed only when checkpointing (CHKPNT) is requested in the Executive Control Deck. The New Problem Tape should be assigned to a physical tape or other storage device that can be dismounted and saved at the conclusion of the execution. At the completion of an initial execution, the New Problem Tape contains the input deck, with the
bulk data in sorted form, and all of the files that were checkpointed during the execution.

For restarts, the 01d Problem Tape is defined as the Problem Tape that was written during the previous execution. The New Problem Tape is defined as the Problem Tape written during the current execution, beginning with the restart. At the completion of an unmodified restart the New Problem Tape contains the input deck, with the bulk data in sorted form, all files from the 01d Problem Tape that are necessary to complete the solution, and all of the files checkpointed during the current execution. At the completion of a modified restart, the New Problem Tape is similar, except the input deck is modified according to the information submitted for the restart.

For restarts, the Bulk Data Deck consists only of delete cards (see Section 2.4) and new cards which the user wishes to add. The previous Bulk Data Deck is read from the 01d Problem Tape. All other parts of the NASTRAN Data Deck, including the Executive Control Deck, the Case Control Deck, the BEGIN BULK card and the ENDDATA card must be resubmitted even though no changes are made in the control decks and no new bulk data is added. In addition, the RESTART cards punched during the previous execution must be included in the Executive Control Deck. When changing rigid formats, the solution number ($S \emptyset L$) must be changed to the number of the new rigid format.

Any changes in the Case Control Deck associated with bulk data selection or subcase definition, or changes in the Bulk Data Deck, in the form of deletions or additions, mark the restart as being modified. If no such changes are made, the Executive System performs an unmodified restart at the last completed checkpoint. If only changes have been made in the output requests, the restart is considered unmodified. However, some modules preceeding the last completed checkpoint may have to be executed in order to prepare the output.

For modified restarts, a number of previously executed DMAP instructions may have to be reexecuted, depending on the nature of the modifications made by the user. The DMAP instructions that need to be executed in a modified restart are automatically determined within the program by comparing all changes made in Case Control cards and Bulk Data cards with the restart tables that are part of each rigid format (see Section 10 of the Programmer's Manual). In addition, if the previous execution terminated prior to completion on the same rigid format, all DMAP instructions beyond the last completed checkpoint are executed on restart.

3.1.4 Rigid Format Output

Although most of the rigid format output is optional, some of the printer output is automatic.

The printer output is designed for 132 characters per line, with the lines per page controlled by the LINE card in the Case Control Deck. The LINE default is set to fit on 11-inch paper. Uptional titles are printed at the top of each page from information in the Case Control Deck. These titles may be defined at the subcase level. The pages are automatically dated and numbered.

The output from data recovery and plot modules is all optional, and its selection is controlled by cards in the Case Control Deck. The details of making selections in the Case Control Deck are described in Section 2.3 for printer and punch output, and in Section 4 for plotter output. Since the outputs from the data recovery and plot modules vary considerably with the rigid format, a list of available output is included in the section on the Case Control Deck for each rigid format. Information on the force and stress output available for each element type is given in Section 1.3.

The first part of the output for a NASTRAN run is prepared during the execution of the Preface, prior to the beginning of the DMAP sequence of the rigid format. The following output is either automatically or optionally provided during the execution of the Preface:

1. NASTRAN title page - one full page automatic unless chariged with the TITLEQPT parameter on the NASTRAN card before the Executive Control Deck.
2. Executive Control Deck echo - automatic.
3. Case Control Deck echo - automatic.
4. Unsorted Bulk Data Deck echo - optional, selected in Case Control Deck with the ECHDCard.
5. Sorted Bulk Data Deck echo - automatic, unless suppressed in the Case Control Deck with the $E C H \emptyset$ Card.
6. DMAP listing - Selected with DIAG 14 in the Executive Control Deck. Provides the list of DMAP instructions, including alters, for the subset of the rigid format being executed.
7. Checkpoint Dictionary - automatic, when operating in the checkpoint mode. A printed echo (unless suppressed with the DIAG 9 card in the Executive Control Deck) and the punched cards are prepared for additions to the checkpoint dictionary after the execution of each checkpoint.

When making restarts, the following additional output is automatically prepared during the execution of the Preface:

1. Asterisks are placed beside the DMAP statement numbers of all instructions marked for execution by the Card Name Table in the case of modified restarts, and by the Rigid Format Change Table in the case of restarts on different rigid formats.
2. Message indicating the bit position activated by a rigid format change.
3. Table indicating, among other things, the card names and the associated "packed bit positions" activated by modifications in the NASTRAN Data Deck. The reader is referred to the Programmer's Manual for the interpretation of the rest of this table.
4. A list of files, along with the DMAP instructions that were marked for execution by the File Name Table.
5. List of files from the 01d Problem Tape, including purged files, used to initiate the restart.

A number of fatal errors are detected by DMAP statements in the various rigid formats. The messages associated with these errors are documented in Section 6.1. These messages indicate the presence of fatal user errors that, either cannot be determined by the functional modules, or they can be more effectively detected by DMAP statements in the rigid format.

NASTRAN diagnostic messages are usually identified by number and documented in Section 6.2. These messages may be either program diagnostics or user diagnostics, and they may contain information, warnings, or an indication of a fatal error. There are also a few unnumbered, self-explanatory messages, for example, the time that the execution of each functional module begins and ends.

The Grid Point Singularity Table (GPST) is automatically output following the execution of the Grid Point Singularity Processor (GPSP) if singularities remain in the stiffness matrix at the grid point level. This table contains all possible combinations of single-point constraints, in the global coordinate system, that can be used to remove the singularities. Entries in this table should only be treated as warnings, because it cannot be determined at the grid point level whether or not the singularities are removed by other means, such as general elements or multipoint constraints. Further information on this matter is given in the Theoretical Manual.

Several items of output are discussed in other sections. Automatic output that is not associated with all of the rigid formats is discussed in the sections treating the individual rigid formats. Some output is under the control of PARAM cards. These itmes are discussed in Section 2.4 (PARAM card). The DIAG card is used to control the printing of some output. A list of the available output under DIAG control is given in the description of the executive control cards in Section 2.2.1.

Any of the matrices or tables that are prepared by the functional modules can be printed by using selected utility modules described in Section 5.5. These utility modules can be scheduled at any point in the rigid format by using the ALTER feature. In general, they should be scheduled immediately after the functional module that generates the table or matrix to be printed. Note that functional modules cannot be seperated from a SAVE instruction. However, the user is cautioned to check the calling sequence for the utility module, in order to be certain that all required inputs have been generated prior to this point.

3.2 STATIC ANALYSIS

3.2.1 DMAP Sequence for Static Analysis

RIGID FORMAT DMAP LISTING

RIGID FORMAT I

RIGID FORMATS

```
RIGIO FORMAT OMAP LISTING
SERIES N
RIGID FORMAT I
    NASTRANSOURCEPRROGRAMGOMPILATION
DMAP-DMAP INSTRUCTION
NO.
```


40 PARAM //C,N,ADD/V,N,NOKGGX/C,N,I/C,N,O \$
41 EQUIV UPTPI,OPTP2/NEVER/EST,ESTI/NEVER \$
42 EMC EST,CSIM,MPT,OIT,GEUMZ,/KELM,KDICI,MELM,MDICT, //V,N,NOKGGX/ V,
$N, N U M G G / C, N, / C, N, / C, N, / C, Y, C O U P M A S S / C, Y, C P B A R / C, Y, C P R O D / C, Y$,
CPQUADI/C,Y,CPQJADZ/C,Y,CPTRIAI/C,Y,CPIRIAZI C,Y,CPTUBE/C,Y,
CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRUSC \$
43 SAVE NOKGGX,NUMGG $\$$
44 CHKPNT KELM,KDICT,MELM,MOIGT \$
45 CUND JMPKGG,NOKGGX $\$$
46 EMA GPECT,KDICT,KELM/KGGX,GPST \$
47 CHKPNT KGGX,İPST $\$$
4 4 LABEL JMPKGG \$
49 COND JMPMGG,NUMUGG $\$$
50 EMA GPECT,MDIGT,MELM/MGG, $/ C, N,-1 / C, Y, W T M A S S=1.0 \$$
51 CHKPNT MUG \$
32 LABEL JMPMGG $\$$

```
RIGID FORMAT DMAP LISIING
SERIES N
RIGID FORMAT I
    NASTRANSSOURCE PROGRAMEOMPILATIION
DMAP-DMAP INSTRUCTION
    NO.
53 LOND LBLI,GROPNT \$
54 CUNU ERRURZ,NUMGG \(\$\)
5j GPWG BGPOT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GKUPNT/C,Y,WTMASS $
5ó OFP UGPWG,.,.,// \$
57 LABEL LBLl\$
58 EQUIV KGGX.KGU/IVOGENL $
59 CHKPNT KGG $
60 COND LBLLLA,IVUGENL $
61SMAS GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NUSIMP $
62 CHKPNT KGG $
03 LABEL Lbll1A. $
64 PAPAM //C,N,MPY/V,N,NSKIP/C,N,O/G,N,O $
65 LULII \(\$\)
67GGP4 CASECG,GEUM4,EQEXIIN,SIL,GPUT,BGPUT,CSTM/RG,YS,USET,ASET/V,N,
                LUSET/V,N,MPCF1/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N,
                NSKIP/V,N,REPEAT/V,N,NUSET/V,N,NUL/V,N,NUA/C,Y,SUBID $
68 SAVE MPCFI,MPGF2,SINGLE,OMIT,REAGT,NSKIP,REPEAT,NUSET,NOL,NUA $
69 COND ERKOH3,NUL $
70 PARAM //C,N,AND/V,N,NOSR/V,N,SINGLE/V,N,REACT $
71 PUKGE KRR,KLR,QR,OM/REACT/GM/MPCF1/GO,KOO,LOO,PO,UOOV,RUOV/OMIT/PS,
        KFS.KSS/SINGLE/QG/NOSK $
72 CHKPNT KRR,KLR,QR,DM,GM,GO,KUO,LOO,PO,UOOV,RUOV,PS,KFS,KSS,QG,USET,RG,
        YS,ASEI $
73 CONO LEL4,GENEL $
74 GPSPP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST $
75 SAVE NUGPST $
76 COND LBL4:NUGPST $
77 OFP OGPST,,,.,// $
78 LABEL LBL4$
```

```
        RIGID FORMAT DMAP LISTING
    RIGID FORMAT 1
```



```
79 EQUIV KGG,KNN/MPCFL$
80 CHKPNT KNN $
81 CUNO LBLZ,MPCF2 $
82 MCEI USET,RG/GM $
83 CHKPNT GM $
34 MCE2 USET,GM,KGG,,./KNN,., $
85 CHKPNT KNIV $
86 LABEL LBL2$
87 EQUIV KNN,KFF/SINGLE $
88 CHKPNT KFF $
39 CUND LBL3,SINGLE $
90 SCE1 USET,KNNN,,./KFFF,KFS,KSS,.,$$
91 CHKPNT KFS,KSS,KFF $
92 LAGEL LBL3$
93 EQUIV KFF,KAA/LMIT $
94 CHKPNI KAA $
95 CONO. LEL5,UMIT $
96SMP1 USET,KFF,,,/GO,KAA,KOU,LOO,,.,.$
97 CHKPNT GU,KAA,KUÜ,LUU $
98 LABEL LBL5 $
99 EQUIV KAA,KLL/REACT$
100 CHKPNT KLL $
101 COND LBLǴ,REACT $
102 RBMGI USET,KAA,/KLL,KLRR,KRR,,, $
103 CHKPNT KLL,KLR,KRR $
104 LABEL LBLG$
105 KBMG2 KLL/LLL $
106 CHKPNT LLL $
```

```
REGGID FORMAT DMAP LISTING
RIGID FORMAT I
    NASTRANSOURCEPROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
    ND.
107 CONO LBLT,REACT $
103 RBMG3 LLL,KLR,KRR/OM$
109 CHKPNT UM $
110 LABEL LBL7 $
111SSGI SLT,BGPUT,CSTM,SIL.,EST,MPT,GPTT,EOT,MGG,CASEGC,OIT/PG/V,N,
    LUSET/V,N,NSKIP $
LI2 LHKPNT `PG $
113 EQUIV PG,PL/NUSET $
114 CHKPNT PL $
115 CuNO LBLIO,NUSET $
11O SSG2 USET,GM,YS,KFS,GO,UM,PG/QR,PO,PS,PL $
117 CHKPNT QR,PU,PS,PL $
118 Label Lblio $
119 SSG3 LLL,KLL,PL,LOO,KDO,PONULV,UOOV,KULV,RUOV/V,N,OMIT/V,Y,IRES=-1/
    V,N,NSKIP/V,N,EPSI $
1<0 SAVE EPSI $
L21 CHKPNT ULV,UUUV,RULV,RUOV $
122 CUND LBLG,IRES $
123 MATGPR GPL,USET,SIL,RULV//G,N,L $
124 MATGPR GPL,USET,SIL,RUUV/IC,N,O $
125 LABEL LBL9 $
126SURI USET,PG,ULV,UOUV,YS,GO,GM,PS,KFS,KSS,QR/UGV,PGG,QG/V,N,NSKIP/
    G,N,STATICS$
127 CHKPNT UGV,PGG,QG $
128 COND LBLE,REPEAT $
129 REPT LBL11,100$ S EROORI $ Bottom of DMAP Loop
131 PARAM //C,N,NUT/V,N,TEST/V,N,REPEAT $
132 CUNO ERRORS,IEST $
133 LABEL LBL8$
```


RIGID FORMATS

```
    RIGID FORMAT DMAP LISTING
    SERIES N
RIGID FORMAT I
    NASTRRANSOURCEPPROGRAMCOMPILATIION
DMAP-DMAP INSTRUCTION
    NO.
134 CHKPNI CSTM S
                                C,N,STATICS $
136 UFP UNRGY1,OGPFB1,.,,I/$
137SDRL CASECC,CSTM,MPT,DIT,EQEXIN,SIL,GPTT,EDT,BGPDT,,QG,UGV,EST,,PPGG/
        OPGI,OQGL,OUGV1,OESI,OEFI,PUGVI/C,N,STATICS/V,N,NOSORT2=-1 $
138 SAVE NOSORT2 $
139 CUND LBLLT,NOSURT2 $
140SUR3 OUGV1,OPGL,UQG1,OEF1,UES1,IOUGV2,OPG2,OQG2,OEF2,OES2, $
141 OFP OUGV2,OPG2,OQG2,OEF2,OES2,//V,N,GARDNO $
142 SAVE CARDNO $
143 XYTRAN XYCUB,UPG2,UQG2,OUGVZ,OES2,UEFZ/XYPLTT/C,N,TRAN/C,N,PSET/V,N,
    PFILE/V,N,GARDNG $
144 SAVE PFILE,CARUNU $
145 XYPLCiT XYPLTT// $
146 JUMP DPLOT $
147 LABEL LBL17 $
148 CUNU LBLOFP,LUUNT $
149 OPTPR2 OPTP1,DESL,EST/UPTP2,ESTI/V,N,PKINT/V,N,TSTART/V,N,GOUNT/V,N,
    CAKDNU $
150 SAVE CARDNU,CUUNT,PKINT $
151 EQUIV ESTL,EST/ALWAYS/UPTP2,OPIPL/ALWAYS $
152 CONO LOOPEND,PRINT $
153 LABEL LBLUFP $
154 UFP UUGVL,OPGL,OQGL,LEFL,JESI,//V,N,CARONO $
155 SAVE CARONU $
150 CUNO P2,JUMPPLOT $
157 LABEL DPLOT $
153 PLOT PLTPAR,GPSETS,ELSETS,CASECC, BGPDT,EQEXIN,SIL,PUGVI,,GPECT,OESI/
    PLOTXZ/V,N,NSIL/V,N,LUSET/V,N,JUMPPLUT/V,N,PLTFLG/V,N,PFILE $
159 SAVE PFILE $.
```

```
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT I
```

```
DMAP-DMAP INSTRUCTION
```

DMAP-DMAP INSTRUCTION
NO.
NO.
160 PRTMSG PLUTX2// \$
161 LABEL P2 \$
162 LABEL LOOPEND \&
163 COND FINIS,COUNT \$
164 REPT LOUPTUP,100\$
160 LABEL ERRURI \$
167 PRTPARM //C,N,-1/C,N,STATICS \$
160 LABEL ERROR2 \$
169 PRIPARM //C,N,-2/C,N,STATICS \$
170 LABEL ERROR3 \$
171 PRTPARM //C,N,-3/C,N,STATICS \$
172 LABEL ERROK4 \$
173 PRTPARM //C,N,-4/C,N,SIATICS \$
174 LABEL ERROR5 \$
175 PRTPARM //C,N,-5/C,N,STATICS \$
176 LABEL FINIS\$
177 END \$

```

\subsection*{3.2.2 Description of DMAP Operations for Static Analysis}
4. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
7. GP2 generates Element Connection Table with internal indices.
11. Go to DMAP No. 21 if no plot package is present.
12. PLTSET transforms user input into a form used to drive structure plotter:
14. PRTMSG prints error messages associated with structure plotter.
17. Go to DMAP No. 21 if no undeformed structure plot request.
18. PLØT generates all requested undeformed structure plots.
20. . PRTMSG prints plotter data and engineering data for each undeformed plot generated.
23. GP3 generates Static Loads Table and Grid Point Temperature Table.
27. TAl generates element tables for use in matrix assembly and stress recovery.
30. Go to DMAP No. 172 and print error message if no elements have been defined.
33. ØPTPRI performs phase one property optimization and initialization check.
37. Go to next DMAP instruction if cold start or modified restart. LØดPTดP will be altered by the Executive System to the proper location inside the loop for unmodified restarts within the loop.
38. Beginning of Loop for property optimization.
39. Go to DMAP No. 57 if there are no structural elements.
42. EMG generates structural element matrix tables and dictionaries for later assembly.
45. Go to DMAP No. 48 if no stiffness matrix is to be assembled.
46. EMA assembles stiffness matrix \(\left[K_{g g}^{X}\right]\) and Grid Point Singularity Table.
49. Go to DMAP No. 52 if no mass matrix is to be assembled.
50. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
53. Go to DMAP No. 57 if no weight and balance request.
54. Go to DMAP No. 168 and print error message if no mass matrix exists.
55. GPWG generates weight and balance information.
56. ØFP formats weight and balance information and places it on the system output file for printing.
58. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
60. Go to DMAP No. 63 if no general elements.
61. SMA3 adds general elements to \(\left[K_{g g}^{x}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
65. Go to next DMAP instruction if cold start or modified restart. LBLIl will be altered by the Executive System to the proper location inside the loop for unmodified restarts within the loop.
66. Beginning of Loop for additional constraint sets
67. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\) and forms enforced displacement vector \(\left\{Y_{s}\right\}\).
69. Go to DMAP No. 170 and print error message if no independent degrees of freedom are defined.
73. Go to DMAP No. 78 if general elements present.
74. GPSP determines if possible grid point singularities remain.
76. Go to DMAP No. 78 if no grid point singularities remain.
77. ØFP formats the table of possible grid point singularities and places it on the system output file for printing.
79. Equivalence \(\left[\mathrm{K}_{\mathrm{gg}}\right]\) to \(\left[\mathrm{K}_{n n}\right]\) if no multipoint constraints.
81. Go to DMAP No. 86 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
82. MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m}^{\prime} / R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
84. MCE2 partitions stiffness matrix
\[
\left[K_{\mathrm{gg}}\right]=\left[\begin{array}{l|l}
\bar{K}_{\mathrm{nn}} & K_{\mathrm{nm}} \\
\frac{K_{\mathrm{mn}}}{} & \frac{K_{\mathrm{mm}}}{}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] .
\]
87. Equivalence \(\left[K_{n n}\right.\) ] to [ \(K_{f f}\) ] if no single-point constraints.
89. Go to DMAP No. 92 if no single-point constraints.
90. SCE1 partitions out single-point constraints
\[
\left[k_{n n}\right]=\left[\begin{array}{c:c}
k_{\mathrm{ff}} & \mathrm{~K}_{\mathrm{fs}} \\
\hdashline k_{\mathrm{sf}} & \mathrm{~K}_{\mathrm{ss}}
\end{array}\right]
\]
93. Equivalence \(\left[K_{f f}\right]\) to \(\left[K_{a a}\right]\) if no omitted coordinates.
95. Go to DMAP No. 98 if no omitted coordinates.
96. SMP1 partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{a \mathrm{a}} & \mathrm{~K}_{\mathrm{ao}} \\
\hline \mathrm{~K}_{\mathrm{oa}} & \mathrm{~K}_{\mathrm{oo}}
\end{array}\right],
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{0}\right]\).
99. Equivalence \(\left[{ }_{a \mathrm{aa}}\right]\) to \(\left[K_{\ell \ell}\right]\) if no free-body supports.
101. Go to DMAP No. 104 if no free-body supports.
102. RBMGI partitions out-free body supports
\[
\left[k_{a a}\right]=\left[\begin{array}{c|c}
k_{l \ell} & k_{l r} \\
\hline K_{r \ell} & k_{r r}
\end{array}\right] .
\]
105. RBMG2 decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\).
107. Go to DMAP No. 110 if no free-body supports.
108. RBMG3 forms rigid body transformation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right],
\]
calculates rigid body check matrix
\[
[x]=\left[k_{r r}\right]+\left[K_{\ell r}^{\top}\right][0],
\]
and calculates rigid body error ratio
\[
\varepsilon=\frac{|x|}{\left\|k_{r r}\right\|}
\]
111. SSGl generates static load vectors \(\left\{P_{g}\right\}\).

11之. Equivalence \(\left\{P_{g}\right\}\) to \(\left\{P_{\ell}\right\}\) if no constraints applied.
11E. SSG2 applies constraints to static load vectors
\[
\begin{aligned}
& \left\{P_{g}\right\}=\left\{\begin{array}{c}
\bar{P}_{n} \\
P_{m} \\
P_{m}
\end{array}\right\}, \quad\left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{T}\right]\left\{P_{m}\right\}, \\
& \left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
\bar{P}_{s}
\end{array}\right\}, \quad\left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f s}\right]\left\{Y_{s}\right\}, \\
& \left\{\mathrm{P}_{\mathrm{f}}\right\}=\left\{\begin{array}{c}
\bar{P}_{\mathrm{a}} \\
\left.\mathrm{P}_{\mathrm{o}}\right\}
\end{array}\right\}, \quad\left\{\mathrm{P}_{\mathrm{a}}\right\}=\left\{\bar{P}_{\mathrm{a}}\right\}+\left[\mathrm{G}_{\mathrm{o}}^{\mathrm{T}}\right]\left\{\mathrm{P}_{\mathrm{o}}\right\}, \\
& \left\{P_{a}\right\}=\left\{\begin{array}{l}
P_{e} \\
\left.-P_{r}\right\}
\end{array}\right\}
\end{aligned}
\]
and calculates determinate forces of reaction \(\left\{\mathbf{q}_{r}\right\}=-\left\{P_{r}\right\}-\left[D^{\top}\right]\left\{P_{\ell}\right\}\).
119. SSG3 solves for displacements of independent coordinates
\[
\left\{u_{\ell}\right\}=\left[K_{\ell \ell}\right]^{-1}\left\{\mathrm{P}_{\ell}\right\}
\]
solves for displacements of omitted coordinates
\[
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{P_{0}\right\}
\]
calculates residual vector (RULV) and residual vector error ratio for independent coordinates
\[
\begin{aligned}
\left\{\delta P_{\ell}\right\} & =\left\{P_{\ell}\right\}-\left[K_{\ell \ell}\right]\left\{u_{\ell}\right\} \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{T}\right\}\left\{\delta P_{\ell}\right\}}{\left\{P_{\ell}^{\top}\right\}\left\{u_{\ell}\right\}}
\end{aligned}
\]
and calculates residual vector (RUQV) and residual vector error ratio for omitted coordinates
\[
\begin{aligned}
\left\{\delta P_{0}\right\} & =\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\} \\
\varepsilon_{0} & =\frac{\left\{u_{0}^{T}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{\top}\right\}\left\{u_{0}^{0}\right\}}
\end{aligned}
\]
122. Go to DMAP No. 125 if residual vectors are not to be printed.
123. MATGPR prints the residual vector for independent coordinates (RULV)
124. MATGPR prints the residual vector for omitted coordinates (RUØV).
126. SDR1 recovers dependent displacements
\[
\begin{aligned}
& \left\{\begin{array}{l}
u_{\ell} \\
-u_{r}
\end{array}\right\}=\left\{u_{a}\right\}, \\
& \left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{a}\right\}+\left\{u_{0}^{0}\right\}, \\
& \left\{\begin{array}{l}
u_{a} \\
--u_{0}
\end{array}\right\}=\left\{u_{f}\right\}, \quad\left\{\begin{array}{l}
u_{f} \\
-\frac{y_{s}}{}
\end{array}\right\}=\left\{u_{n}\right\}, \\
& \left\{u_{m}\right\}=\left[G_{m}\right]\left\{u_{n}\right\},\left\{\begin{array}{l}
u_{n} \\
- \\
u_{m}
\end{array}\right\}=\left\{u_{g}\right\},
\end{aligned}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
\]
128. Go to DMAP No. 133 if all constraint sets have been processed.
129. Go to DMAP No. 66 if additional sets of constraints need to be progessed.
130. Go to DMAP No. 166 and print error message if number of loops exceeds 100.
132. Go to DMAP No. 174 and print error message if multiple boundary conditions are attempted with improper subset.
135. GPFFDR calculates for requested sets the arid point force balance and element strain energy for output.
136. ØFP formats the tables prepared bv \(\mathrm{G}_{\mathrm{A}} P F D R\) and nlaces them on the svstem output file for printing
137. SDR2 calculates element forces and stresses ( \(\varnothing E F 1, \emptyset E S 1\) ) and nrenares load vectors, displacement vectors and single-point forces of constraint for output ( \(\varnothing P G 1, ~ \emptyset U F V 1, P U G V 1, ~ \emptyset Q G 1)\).
139. Go to DMAP No. 147 if no output requests for grid point number or element number sort.
140. SDR3 prepares requested output sorted by grid point number or element number.
141. \(\emptyset F P\) formats requested output sorted by grid point number or element number and places it on the system output file for printing.
143. XYTRAN prepares the input for requested \(X-Y\) plots.
145. XYPLDT prepares requested \(X-Y\) plots of displacements, forces, stresses, loads or sinalepoint forces of constraint vs. subcase.
146. Go to DMAP No. 157.
148. Go to DMAP No. 153 if no phase two property optimization.
149. ØPTPR2 performs phase two property optimization.
151. Equivalence EST1 to EST and ØPTP2 to ØPTP1 evervtime this instruction is executed.
152. Go to DMAP No. 162 if no additional outnut is to be printed for this loop.
154. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
156. Go to DMAP No. 161 if no deformed structure plots are requested.
158. PLØT generates all requested deformed structure plots.
160. PRTMSG prints plotter data and engineering data for each deformed plot generated.
163. Go to DMAP No. 176 and make a normal exit if property optimization is complete.
164. fo to DMAP No. 38 if additional loons for pronerty optimization are needed.
165. Go to DMAP No. 176 and make normal exit.
167. STATIC ANALYSIS ERRØR MESSAGE NØ. 1 - ATTEMPT TØ EXECUTE M@RE THAN 100 LØØPS.
169. STATIC ANALYSIS ERRØR MESSAGE NØ. 2 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIØNS.
171. STATIC ANALYSIS ERRØR MESSAGE Nø. 3 - N \(\emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDØM HAVE BEEN DEFINED.
173. STATIC ANALYSIS ERR \(\emptyset\) R MESSAGE N@. 4 - N \(\emptyset\) ELEMENTS HAVE BEEN DEFINED.
175. STATIC ANALYSIS ERRØR MESSAGE NØ. 5-A LØØPING PRØBLEM RUN \(9 N\) N@N-LØØPING SUBSET.

\subsection*{3.2.3 Case Control Deck and Parameters for Static Analysis}

The following items relate to subcase definition and data selection for Static Analysis:
1. A separate subcase must be defined for each unique combination of constraints and static loads.
2. A static loading condition must be defined for (not necessarily within) each subcase with a LøAD, TEMPERATURE(LøAD), or DEFØRM selection unless all loading is specified with grid point displacements on SPC cards.
3. An SPC set must be selected for (not necessarily within) each subcase, unless the model is a properly supported free body, or all constraints are specified on GRID cards, Scalar Connection cards, or with General Elements.
4. Loading conditions associated with the same sets of constraints should be in contiguous subcases in order to avoid unnecessary looping.
5. REPCASE may be used to repeat subcases in order to allow multiple sets of the same output item.

The following printed output, sorted by loads (S@RT1) or by grid point number or element number ( \(S \emptyset R T 2\) ), may be requested for Static Analysis solutions:
1. Displacements and components of static loads and single-point forces of constraint at selected grid points or scalar points.
2. Forces and stresses in selected elements.

The following plotter output may be requested for Static Analysis solutions:
1. Undeformed and deformed plots of the structural model.
2. X-Y plot of any component of displacement, static load, or single-point force of constraint for a grid point or scalar point versus subcase.
3. X-Y plot of any stress or force component for an element versus subcase.

The following parameters are used in Static Analysis:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed.
2. WTMASS - optional - the terms of the mass matrix are multiplied by the real value of this parameter when they are generated in EMG.
3. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
4. CQUPMASS - CPBAR, CPRØD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices, rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

\subsection*{3.2.4 Automatic Alters for Automated Multi-stage Substructuring}

The following lines of the Static Analysis, Rigid Format l, are altered for automatic substructure analyses.
```

Phase 1: 69, 100-110, 115-161
Phase 2: 4-5, 9-22, 29-30, 41, 58-61, 73-78, 134-164
Phase 3: 100-110, 115-125, 127

```

If APP DISP,SUBS is used, the user may also specify ALTER's. However, these must not interfere with the automatically generated DMAP statement ALTER's listed above. See Section 5.9 for a description and listing of the ALTER's which are automatically generated for substructuring.

\subsection*{3.3 STATIC ANALYSIS WITH INERTIA RELIEF}
3.3.1 DMAP_Sequence_for Static Analysis with Inertia_Relief
```

RIGID FORMAT DMAP LISTING
SERIES N.
RIGID FORMAT }
NASTRANSSOURCEPROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTION
NO.

```
    1 BEGIN NO. 2 STATIC ANALYSIS WITH INERTIA RELIEF - SERIES N \(\$\)
    2 FILE QG=APPEND/PGG=APPEND/UGV=APPEND/GM=SAVE/KNN=SAVE/MNN=SAVE \&
    GPI GEOMI,GEOMZ,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ V,N.
        NOGPDT \$
    SAVE LUSETs
    CHKPNT GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL \$
    GP2 GEOM2,EQEXIN/ECT \$
    7 CHKPNT ECT \$
    8 PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB\$
    9 PURGE PLISETX,PLTPAR,GPSETS,ELSETS/NUPCDB \$
    10 COND Pl,NOPCDB \$
    11 PLTSET PCDB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ \(\quad V, N\),
        JUMPPLOT=-1 \$
    12 SAVE NSIL,JUMPPLOT \$
    13 PRTMSG PLTSETX// \$
    14 PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N,1\$
    15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
    16 COND PI,JUMPPLOT \(\$\)
    17 PLOT PLİPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,..,/PLOTXI/ \(V, N\),
        NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
    18 SAVE JUMPPLOT,PLTFLG,PFILE \(\$\)
    19 PRTMSG PLOTXI//\$
    20 LABEL PI \$
    21 CHKPNT PLTPAR,GPSETS,ELSETS \$
    22 GP3 GEDM3,EQEXIN,GEOM2/SLT,GPTT/V,N,NOGRAV \$
    23 CHKPNT SLT,GPTTS
    24 TAI ECT,EPT,BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N,

\section*{RIGID FORMATS}
```

 RIGIO FORMAT DMAP LISTING
 SERIES N
 RIGID FORMAT 2
NASTRANNSOURCEPPROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
NO.
NOSIMP/C,N,1/V,N,NOGENL/V,N,GENEL
25 SAVE NGSIMP,NOGENL,GENEL \$
26 COND ERRORI,NOSIMP \$
27 PURGE OGPST/GENEL \$
28 CHKPNT EST,GPECT,GEI,OGPST \$
29 PARAM //C,N,ADO/V,N,NOKGGX/C,N,1/C,N,O \$
30 PARAM //C,N,ADD/V,N,NOMGG/C,N,L/C,N,O S
31 EMG EST,CSTM,MPT,DIT,GEOMZ,/KELM,KDICT,MELM,MDICT,,IV,N,NOKGGX/ V,
N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/C,Y,
CPQUAOL/C,Y,CPQUADZ/C,Y,CPTRIAI/C,Y,CPTRIAZ/ C,Y,CPTUBE/C.Y,
CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSC \$
32 SAVE NOKGGX,NOMGG \$
33. CHKPNT KELM,KDICT,MELM,MOICT \$
34 COND JMPKGG,NOKGGX \$
35 EMA GPECT,KDICT,KELM/KGGX,GPST \$
36 CHKPNT KGGX,GPST \$
37 LABEL JMPKGG \$
38 COND ERRORI,NOMGG \$
39 EMA GPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0\$
40 CHKPNT MGG \$
41 COND LGPWG,GRDPNT \$
42 GPWG BGPDT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT =-1/C,Y,WTMASS \$
43 OFP OGPWG.,...// \$
4 4 ~ L A B E L ~ L G P W G ~ s ~
45 EQUIV KGGX,KGG/NOGENL \$
4 6 CHKPNT KGG \$
47 COND LBLIlA,NOGENL s
48 SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP

```
```

 RIGID FORMAT DMAP LISTING
 SERIES N
 RIGID FORMAT 2
 NASTRANSOURCE PGROGRAMCOMPILATIION
 DMAP-DMAP INSTRUCTION
NO.

49	CHKPNT	KGG
50	LABEL	LBLILA $\$$

 51 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O$
 52 JUMP LBLLL$
 54GP4 CASECC,GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,YS,USET,ASET/V,N,
 LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N,
 NSKIP/V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N;NOA/C,Y,SUBID $
 55 SAVE MPCFI,MPCF2,SINGLE,OMIT,REACT,NSKIP,REPEAT,NOSET,NOL,NOA \$
56 COND ERROR3,NOL \$
57 COND ERROR4,REACT \$
58 PURGE GM/MPCFI/GO,KOD,LOO,MOO,MOA,PO,UOOV,RUOV/OMIT/KSS,KFS,PS/
SINGLE \$
59 CHKPNT GM,RG,GO,KOO,LOO,MOO,MOA,PO,KSS,KFS,YS,PS,USET,ASET,RUOV \$
60 CCND LBL4,GENEL \$
61GPSPGGPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
62 SAVE NOGPST \$
63 COND LBL4,NOGPSTS
64 OFP OGPST,.,.,//\$
65 LABEL LBL4\$
66 EQUIV KGG,KNN/MPCFI/MGG,MNN/MPCF1\$
67 CHKPNT KNN,MNN \$
68 COND LBL2,MPCF2 \$
69 MCEI USET,RG/GM\$
70 CHKPNT GM \$
71 MCE2 USET,GM,KGG,MGG,,/KNN,MNN,, \$
72 CHKPNT KNN,MNN \$
73 LABEL LBL2\$

```
```

 RIGID FORMAT DMAP LISTING
 SERIES N
 RIGID FORMAT 2
NASIRANNSOURCEPROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTION
NO.
74 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE \$
75 CHKPNT KFF,MFF \$
76 COND LBL3,SINGLE \$
77 SCE1 USET,KNN,MNN,,/KFF,KFS,KSS,MFF,,\$
78 CHKPNT KFS,KSS,KFF,MFF\$
79 LABEL LBL3 \$
80 EQUIV KFF,KAA/OMIT/ MFF,MAA/OMIT s
81 CHKPNT KAA,MAA \$
82 COND LBLS,OMIT \$
83 SMPI USET,KFF,MFF,,/GO,KAA,KOC,LOO,MAA,MOO,MOA,, \$
84 CHKPNT GO,KAA,KOO,LOO,MAA,MOO,MDA\$
85 LABEL LBL5 \$
86 RBMG1 USET,KAA,MAA/KLL,KLR,KRR,MLL,MLR,MRR \$
87 CHKPNT KLL,KLR,KRR,MLL,MLR,MRR \$
88 KBMG2 KLL/LLL \$
89 CHKPNT LLL \$
90 RBMG3 LLL,KLR,KRR/DM\$
91 CHKPNT DM \$
92 RBMG4 DM,MLL,MLR,MRR/MR \$
93 CHKPNT MR \$
94 SSGL SLT,BGPOT,CSTM,SIL,EST ,MPT,GPIT,EOT,MGG,CASECC,DIT/PGG/V,N,
LUSET/V,N,NSKIPS
95 CHKPNT PG \$
96 SSG2 USET,GM,YS,KFS,GO,DM,PG/QR,PO,PS,PL \$
97 CHKPNT QR,PO,PS,PL\$
98 SSG4 PL,QR,PO,MR,MLR,DM,MLE,MOO,MOA,GO,USET/PLI,POI/V,N,OMIT \$
99 CHKPNT PLI,POI \$

```
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }
NASTRANSOURCEPPROGRAMGOMPILATIION
OMAP-DMAP INSTRUCTION
NO.
100 LLSG3 KL,KLL,PLI,LOO,KOD,PEI/ULV, UOOV,RULV,RUOV/V,N,OMIT/V,Y,
IRES=-I/V,N,NSKIP/V,N,EPSI
101 SAVE EPSI \$
102 CHKPNT ULV,UOOV,RULV,RUOV \$
103 COND LBL9,IRES \$
104 MATGPR GPL,USET,SIL,RULV//C,N,L \$
105 MATGPR GPL,USET,SIL,RUOV//C,N,O \$
106 LABEL LBL9 \$
107 SDRI USET,PG,ULV,UOOV,YS,GO,GM,PS,KFS,KSS,QR/UGV,PGG,QG/V,N,NSKIP/
C,N,STATICS \$
108 CHKPNT UGV,QG,PGG \$
109 COND LBLB,REPEAT \$
110 REPT LBL11,100\$
112 PARAM //C,N,NOT/V,N,TEST/V,N,REPEAT \$
113 COND ERRORS,TEST\$
114 LABEL LBL8\$
115 CHKPNT CSTM\$
116 SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,GPTT,EDT,BGPDT,,QG,UGV,EST,,PGG/
OPG1,UQGI,OUGV1,OESI,OEF1,PUGVI/C,N,STATICS \$
117 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O\&
118 OFP OUGVI,OPGL,OOG1,OEF1,OES1,//V,N,CARDNO s
119 SAVE CARDNO \$
120 COND P2,JUMPPLOT \$
121 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPOT,EQEXIN,SIL,PUGV1,,GPECT,OES1/
PLOTXZ/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
SAVE PFILE
123 PRTMSG PLOTX2// \$

```

\section*{RIGID FORMATS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGIO FORMAT 2
NASTRRANSOURCEPPROGRAMSCOMPILATINN
DMAP-DMAP INSTRUCTION
NO.
124 LABEL P2 \$
125 JUMP FINIS \$
126 LABEL ERRORI \$
127 PRTPARM //C,N,-I/C,N,INERTIA \$
128 LABEL ERROR2 \$
129 PRTPARM //C,N,-2/C,N,INERTIAS
130 LABEL ERROR3 \$
131 PRTPARM //C,N,-3/C,N,INERTIA\$
132 LABEL ERROR4 \$
133 PRTPARM //C,N,-4/C,N,INERTIA \$
134 LABEL ERROR5 \$
135 PRTPARM //C,N,-5/C,N,INERTIA \$
136 LABEL FINIS \$
137 END \$

```

\section*{STATIC ANALYSIS WITH INERTIA RELIEF}

\subsection*{3.3.2 Description of DMAP Operations for Static Analysis with Inertia Relief}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
6. GP2 generates Element Connection Table with internal indices.
10. Go to DMAP No. 20 if no plot package is present.
11. PLTSET transforms user input into a form used to drive structure plotter.
13. PRTMSG prints error messages associated with structure plotter.
16. Go to DMAP No. 20 if no undeformed structure plot request.
17. PLØT generates all requested undeformed structure plots.
19. PRTMSG prints plotter data and engineering data for each undeformed plot:generated.
22. GP3 generates Static Loads Table and Grid Point Temperature Table.
24. TAl generates element tables for use in matrix assembly and stress recovery.
26. Go to DMAP No. 126 and print error message if there are no structure elements.
31. EMG generates structural element matrix tables and dictionaries for later assembly.
34. Go to DMAP No. 37 if no stiffness matrix is to be assembled.
35. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{X}}\right]\) and Grid Point Singularity Table.
38. Go to DMAP No. 126 and print error message if no mass matrix exists.
39. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
41. Go to DMAP No. 44 if no weight and balance request.
42. GPWG generates weight and balance information.
43. ØFP formats weight and balance information and places it on the :system output file for printing.
45. Equivalence \(\left[K_{g g}^{X}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
47. Go to DMAP No. 50 if no general elements.
48. SMA3 adds general elements to \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix: \(\left[K_{g g}\right]\).
52. Go to next DMAP instruction if cold start or modified restart. LBLIl will be altered by the Executive System to the proper location inside the loop for unmodified restarts within the loop.
53. Beginning of Loop for additional constraint sets.
54. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\) and forms enforced displacement vector \(\left\{Y_{s}\right\}\).
56. Go to DMAP No. 130 and print error message if no independent degrees of freedom are defined.
57. Go to DMAP No. 132 and print error message if no free-body supports.
60. Go to DMAP No. 65 if general elements present.
61. GPSP determines if possible grid point singularities remain.
63. Go to DMAP No. 65 if grid point singularities remain.
64. ØFP Formats table of possible grid point singularities and places it on the system output file for printing.
66. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) and \(\left[M_{g g}\right]\) to [ \(M_{n n}\) ] if no multipoint constraints.
68. Go to DMAP No. 73 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
69. MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m}\left\{R_{n}\right]\right.\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
71. MCE2 partitions stiffness and mass matrices.
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] \text { and }} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]}
\end{aligned}
\]
74. Equivalence \(\left[K_{n n}\right.\) ] to [ \(K_{f f}\) ] and [ \(M_{n n}\) ] to [ \(M_{f f}\) ] if no single-point constraints.
76. Go to DMAP No. 79 if no single-point constraints.
77. SCE1 partitions out single-point constraints
\[
\left[K_{n n}\right]=\left[\begin{array}{l|l|l}
K_{f f} & k_{f s} \\
\hline K_{s f} & K_{s s}
\end{array}\right] . \quad \text { and } \quad\left[M_{n n}\right]=\left[\begin{array}{c|c}
M_{f f} & M_{f s} \\
\hline M_{s f} & M_{s s}
\end{array}\right] .
\]
80. Equivalence \(\left[K_{f f}\right.\) ] to [ \(K_{a a}\) ] and \(\left[M_{f f}\right.\) ] to [ \(M_{a a}\) ] if no omitted coordinates.
82. Go to DMAP No. 85 if no omitted coordinates.
83. SMPI partitions constrained stiffness and mass matrices
\[
\left[K_{f f}\right]=\left[\begin{array}{c:c}
\bar{K}_{a a} & K_{a o} \\
\hdashline K_{o a} & K_{00}
\end{array}\right] \quad \text { and } \quad\left[M_{f f}\right] \quad=\left[\begin{array}{l|l}
\bar{M}_{a a} & M_{a o} \\
\hline M_{o a} & M_{00}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reductions \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{0}\right]\)
and
\[
\left[M_{a a}\right]=\left[\bar{M}_{a \mathrm{a}}\right]+\left[M_{o a}^{\top}\right]\left[G_{o}\right]+\left[G_{0}^{T}\right]\left[M_{o a}\right]+\left[G_{o}^{T}\right]\left[M_{o o}\right]\left[G_{0}\right]
\]

ع6. RBMG1 partitions out free-body supports
\[
\left[K_{a a}\right]=\left[\begin{array}{l:l}
K_{\ell \ell} & k_{\ell r} \\
\hline K_{r \ell} & K_{r r}
\end{array}\right] \quad \text { and } \quad\left[M_{a a}\right]=\left[\begin{array}{l|l}
M_{\ell \ell} & M_{\ell r} \\
\hdashline M_{r \ell} & M_{r r}
\end{array}\right] .
\]
rr. RBMG2 decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[\mathrm{U}_{\ell \ell}\right]\).
9C. RBMG3 forms rigid body trans formation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right]
\]
calculates rigid body check matrix
\[
[x]=\left[K_{r r}\right]+\left[K_{\ell r}^{\top}\right][D],
\]
and calculates rigid body error ratio
\[
\varepsilon=\frac{\mid x \|}{T k_{r r} \|}
\]
92. RBMG4 forms rigid body mass matrix \(\left[m_{r}\right]=\left[M_{r r}\right]+\left[M_{\ell r}^{\top}\right][D]+\left[D^{\top}\right]\left[M_{\ell r}\right]+\left[D^{\top}\right]\left[M_{\ell \ell}\right][D]\).
94. SSG1 generates static load vectors \(\left\{P_{g}\right\}\).
96. SSG2 applies constraints to static load vectors
\[
\begin{aligned}
& \left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
-P_{s}
\end{array}\right\}, \quad\left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f S}\right]\left\{Y_{s}\right\}, \\
& \left\{P_{f}\right\}=\left\{\begin{array}{l}
\bar{P}_{a} \\
\overline{P_{0}}
\end{array}\right\}, \quad\left\{P_{a}\right\}=\left\{\bar{P}_{a}\right\}+\left[G_{0}^{T}\right]\left\{P_{0}\right\}, \\
& \left\{P_{a}\right\}=\left\{\begin{array}{l}
P_{\ell} \\
-P_{r}
\end{array}\right\}
\end{aligned}
\]
and calculates determinate forces of reaction \(\left\{q_{r}\right\}=-\left\{P_{r}\right\}-\left[D^{\top}\right]\left\{P_{\ell}\right\}\).
98. SSG4 calculates inertia loads and combines them with static loads
\[
\begin{aligned}
& \left\{P_{\ell}^{i}\right\}=\left\{P_{\ell}\right\}+\left(\left[M_{\ell \ell}\right][D]+\left[M_{\ell r}\right]\right)\left[m_{r}\right]^{-1}\left\{q_{r}\right\} \quad \text { and } \\
& \left\{P_{0}^{i}\right\}=\left\{P_{0}\right\}+\left(\left[M_{00}\right]\left[G_{o}\right]+\left[M_{a 0}^{\top}\right]\right)\left[\frac{D}{I}\right]\left[m_{r}\right]^{-1}\left\{q_{r}\right\}
\end{aligned}
\]
100. SSG3 solves for displacements of independent coordinates
\[
\left\{u_{\ell}\right\}=\left[K_{\ell \ell}\right]^{-1}\left\{P_{\ell}^{i}\right\},
\]
solves for displacements of omitted coordinates
\[
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{P_{0}^{i}\right\},
\]
calculates residual vector (RULV) and residual vector error ratio for independent coordinates
\[
\begin{aligned}
\left\{\delta P_{\ell}^{i}\right\} & =\left\{P_{\ell}^{i}\right\}-\left[K_{\ell \ell}\right]\left\{u_{\ell}\right\} \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{\top}\right\}\left\{\delta P_{\ell}^{i}\right\}}{\left\{P_{\ell}^{i}\right\}^{\top}\left\{u_{\ell}\right\}}
\end{aligned}
\]
and calculates residual vector (RUØV) and residual vector error ratio for omitted coordinates
\[
\begin{aligned}
\left\{\delta P_{0}^{i}\right\} & =\left\{P_{0}^{i}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\} \\
\varepsilon_{0} & =\frac{\left\{u_{0}^{\top}\right\}\left\{\delta P_{0}^{i}\right\}}{\left\{P_{0}^{i}\right\}^{\top}\left\{u_{0}^{o}\right\}}
\end{aligned}
\]
103. Go to DMAP No. 106 if residual vectors are not to be printed.
104. Print residual vector for independent coordinates (RULV)
105. Print residual vector for omitted coordinates (RUQV).
107. SDR1 recovers dependent displacements
\[
\begin{array}{ll}
\left\{\begin{array}{l}
u_{\ell} \\
-u_{r}
\end{array}\right\}=\left\{u_{a}\right\}, & \left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{a}\right\}+\left\{u_{0}^{o}\right\}, \\
\left\{\begin{array}{l}
u_{0}
\end{array}\right\}=\left\{u_{f}\right\}, & \left\{\begin{array}{l}
u_{f} \\
\left.-\frac{u_{s}}{a}\right\}
\end{array}\right\}=\left\{u_{n}\right\}, \\
\left\{u_{m}\right\}=\left[G_{m}\right]\left\{u_{n}\right\}, & \left\{\begin{array}{l}
u_{n} \\
-u_{m}
\end{array}\right\}=\left\{u_{g}\right\}
\end{array}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
\]
109. Go to DMAP No. 114 if all constraint sets have been processed.
110. Go to DMAP No. 53 if additional sets of constraints need to be processed.
111. Go to DMAP No. 128 and print error message if number of loops exceeds 100.

\section*{STATIC ANALYSIS WITH INERTIA RELIEF}
113. Go to DMAP No. 134 and print error message if multiple boundary conditions are attempted with improper subset.
116. SDR2 calculates element forces and stresses ( \(\varnothing \mathrm{EF} 1, \emptyset E S 1\) ) and prepares load vectors, displacement vectors and single-point forces of constraint for output ( \(\emptyset P G 1, ~ \emptyset U G V 1, ~ P U G V I, ~\) ØQG1).
118. \(\emptyset F P\) formats tables prepared by SDR2 and places them on the system output file for printing.
120. Go to DMAP No. 124 if no deformed structure plots are requested.
121. PLøT generates all requested deformed structure plots.
123. PRTMSG prints plotter data and engineering data for each deformed plot generated.
125. Go to DMAP No. 136 and make normal exit.
127. STATIC ANALYSIS WITH INERTIA RELIEF ERR@R MESSAGE NØ. 1.- MASS MATRIX REQUIRED FØR CALCULATIøN øF INERTIA LøADS.
129. STATIC ANALYSIS WITH INERTIA RELIEF ERRØR MESSAGE NØ. 2 - ATTEMPT TØ EXECUTE MØRE THAN 100 LDØPS.
131. STATIC ANALYSIS WITH INERTIA RELIEF ERRØR MESSAGE NØ. 3 - NØ INDEPENDENT DEGREES \(\emptyset F\) FREED@M HAVE BEEN DEFINED.
133. STATIC ANALYSIS WITH INERTIA RELIEF ERRØR MESSAGE NØ. 4 - FREE-BøDY SUPPØRTS ARE REQUIRED.
135. STATIC ANALYSIS WITH INERTIA RELIEF ERRØR MESSAGE NØ. 5-A LØ@PING PRØBLEM RUṄ ØN A N@NLøØPING SUBSET.

\subsection*{3.3.3 Case Control Deck and Parameters for Static Analysis with Inertia Relief}

The following items relate to subcase definition and data selection for Static Analysis with Inertia Relief:
1. A separate subcase must be defined for each unique combination of constraints and static loads.
2. A static loading condition must be defined for (not necessarily within) each subcase with a LøAD selection.
3. An SPC set may be selected only if used to remove grid point singularities or some, but not all, of the free body motions. At least one free body support must be provided with a SUP@RT card in the Bulk Data Deck.
4. Loading conditions associated with the same sets of constraints should be in contiguous subcases in order to avoid unnecessary looping.
5. REPCASE may be used to repeat subcases in order to allow multiple sets for the same output item.

The following output may be requested for Static Analysis with Inertia Relief:
1. Displacements at selected grid points due to the sum of the applied loads and the inertia loads.
2. Nonzero components of the applied static loads at selected grid points.
3. Reactions on free-body supports due to applied loads (single-point forces of constraint).
4. Forces and stresses in selected elements due to the sum of the applied loads and inertia loads.
5. Undeformed and deformed plots of the structural model.

The following parameters are used in Static Analys is with Inertia Relief:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed.
2. WTMASS - optional - the terms of the mass matrix are multiplied by the real value of this parameter when they are generated in SMA2.
3. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
4. CQUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

\subsection*{3.3.4 Automatic Alters for Automated Multi-stage Substructuring}

The following lines of the Static Analysis with Inertia Relief, Rigid Format 2, are altered in automatic substructure analyses.
```

Phase 1: 57, 86-93, 96-124
Phase 2: 3-4, 8-21, 26, 38, 45-48, 60-65, 116-124
Phase 3: 86-93, 96-106, 108

```

If APP DISP, SUBS is used, the user may also specify ALTER's. However, these must not interfere with the automatically generated DMAP statement ALTER's listed above. See Section 5.9 for a description and listing of the ALTER's which are automatically generated for substructuring.
3.4 NORMAL MODE ANALYSIS
3.4.1 DMAP Sequence for Normal Mode Analysis

RIGID FORMAT DMAP LISTING SERIES N

RIGID FORMAT 3
```

DMAP-DMAP INSTRUCTION

``` NO.

1 REGIN NO. 3 NORMAL MODES ANALYSIS - SERIES N \(\$\)
2 FILE LAMA=APPEND/PHIA=APPENO \$
3 GP1 GEDMI,GEOMZ,/GPL,EQEXIN,GPOT,CSTM,BGPOT,SIL/V,N,LUSET/V,N, NOGPDT \$
save luset \$
CHKPNT GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL \(\$\)
GP2 GEOMZ,EQEXIN/ECT \$
CHKPNT ECT \(\$\)
PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
9 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NOPCDB \$
10 COND P1,NOPCOB \(\$\)
11 PLTSET PCOB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N, JUMPPLOT=-1 \$

12 SAVE NSIL.JUMPPLOT \$
13 PRTMSG PLTSETX// \$
14 PARAM //C,N,MPY/V,N,PLTFLG/C,N,I/C,N,I \$
15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O\$
16 COND Pl.JUMPPLOT \$
17 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,..,/PPLOTXI/ V,N, NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLIFLG/V,N,PFILE \$

18 SAVE JUMPPLOT,PLTFLG,PFILE \$
19 PRTMSG PLOTX1//s
20 LABEL PI \$
21 CHKPNT PLTPAR,GPSETS,ELSETS \(\$\)
22 GP3 GEOM3, EQEXIN,GEOM2/,GPTT/V,N,NOGRAV \(\$\)
23 CHKPNT GPTY \$
24 TAL ECT,EPT, BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N.


\section*{NORMAL MODE ANALYSIS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 3
N.ASSRAN SOURCE PROGRAMCOMPILATION
OMAP-DMAP INSTRUCTION
NO.
49 CHKPNT KGG \$
50 LABEL LBLIL\$
51 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O\$
52 GP4 CASECC,GEOM4,EQEXIN,SIL,GPOT,BGPDT,CSTM/RG,,USET,ASET/V V,N,
LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N,
NSKIP/V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$
53 SAVE MPCFI,MPCF2,SINGLE,OMIT,REACT,NSKIP,REPEAT,NOSET,NOL,NOA \$
54 COND ERROR 3,NOL \$
55 PURGE KRR,KLR,DM,MLR,MR/REACT/GM/MPCFI/GO/OMIT/KFS/SINGLE/QG/NOSET \$
56 CHKPNT KRR,KLR,DM,MLR,MR,GM,RG,GO,KFS,QG,USET,ASET.\$
57 COND LBL4,GENEL \$
58 GPSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
59 SAVE NOGPST \$
60 COND LBL4,NOGPST \$
61 OFP OGPST,,,,,//\$
62 LABEL LBL4s
63 EQUIV KGG,KNN/MPCFI/MGG,MNN/MPCFI\$
64 CHKPNT KNN,MNN\$
65 COND LBL2,MPCF2\$
66 MCEL USET,RG/GM \$
6 7 CHKPNT GM S
68MCE2 USET,GM,KGG,MGG,,/KNN,MNN,, \$
69 CHKPNT KNN,MNN \$
70 LABEL LBL2\$
71 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE\$
72 CHKPNT KFF,MFF \$
73 COND LBL3,SINGLE \$

```
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 3

```

```

DMAP-DMAP INSTRUCTION
NO.
74 SCEI USET,KNN,MNN,,/KFF,KFS,,MFF,,\$
75 CHKPNT KFS,KFF,MFF\$
76 LABEL LBL3
77 EQUIV KFF,KAA/OMIT \$
78 EQUIV MFF,MAA/OMIT \$
79 CHKPNT KAA,MAA \$
80 COND LBL5,OMIT\$
81SMP1 USET,KFF,,,/GO,KAA,KOC,LOO,,.,%\$
82 CHKPNT GO,KAA \$
83 SMP 2 SSET,GO,MFF/MAA \$
84 CHKPNT MAA \$
85 LABEL LBL5\$
86 COND LBLG,REACT \$
87 USMGI UST,KAA,MAA/KLL,KLR,KRR,MLL,MLR,MRR \$
88 CHKPNT KLL,KLR,KRR,MLL,MLR,MRR %
89 K8MG2 KLL/LLL \$
90 CHKPNT LLL\$
91 RBMG3 LLL,KLR,KRR/DM \$
92 CHKPNT DM \$
83 RBMG4 DM,MLL,MLR,MRR/MR
94 CHKPNT MR \$
95 LABEL LBL6\$
96 DPD DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,,,,,,EED,EQDYN/V,N,
LUSET/V,N,LUSETD/V,N,NOTFL/V,N,NODLT/V,N,NOPSDL/V,N,NOFRL/ V,
N,NONLFT/V,N,NOTRL/V,N,NOEED/C,N,/V,N,NOUE \$
97 SAVE NOEED \$
98 COND ERROR2,NOEED \$

```
```

 RIGIO FORMAT DMAP LISTING
 SERIES N
 RIGID FCRMAT 3
 NASTRRAN SOURCEEPROGRAMMCOMPILLATION
 OMAP-DMAP' INSTRUCTION
NO.
99 CHKPNT EED \$
100 PARAM //C,N,MPY/V,N,NEIGV/C,N,I/C,N,-1 \$
101 READ KAA,MAA,MR,DM,EED,USET,CASECC/LAMA,PHIA,MI,OEIGS/C,N,MODES/V,N,
NEIGV \$
102 SAVE NEIGV \$
103 CHKPNT LAMA,PHIA,MI,OEIGS \$
104 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O \$
105 OFP LAMA,OEIGS,.,.//V,N,CARDNO \$
106 SAVE CARDNO \$
107 COND FINIS,NEIGV \$
108 SDRI USET,,PHIA,,,GO,GM,,KFS,,/PHIG,,QG/C,N,I/C,N,REIG \$
109 CHKPNT PHIG,QG \$
ll0 PARAM //C,N,MPY/V,N,SIXSIL/V,N,NSIL/C,N,6 \$
111 PARAM //C,N,EQ /V,N,SCALAR/V,N,SIXSIL/V,N,LUSET \$
112 EQUIV SIL,SIP/SCALAR/BGPDT,BGPDP/SCALAR \$
113 CHKPNT SIP,BGPDP \$
114 COND LBLT,SCALAR \$
115 PLTTRAN BGPDT,SIL/BGPDP,SIP/V,N,LUSET/V,N,LUSEP\$
116 SAVE LUSEPS
117 CHKPNT BGPDP,SIP\$
118 LABEL LBL7\$
119 SDR2 CASECC,CSTM,MPT,OIT,EQEXIN,SIL,,,BGPDP,LAMA,QG,PHIG,EST,./ ,
OQG1,OPHIG,OESI,OEFI,PPHIG/C,N,REIG \$
120 OFP OPHIG,OQGI,OEFI,OESI,.//V,N,CARDNO \$
121 SAVE CARDNO \$
122 COND P2,JUMPPLOT \$
123 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIP,,PPHIG,GPECT,OESI/
PLOTX2/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE S

```

\section*{RIGID FORMATS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 3
NASTRANNSOURCEPRROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
NO.
124 SAVE PFILE \$
126 LABEL P2 \$
127 JUMP FINIS s
128 LABEL ERRORI S
129 PRTPARM //C,N,-1/C,N,MODES \$
130 LABEL ERROR2 \$
131 PRTPARM //C,N,-2/C,N,MODES \$
132 LABEL ERROR3 s
133 PRTPARM //C,N;-3/C,N,MODES \$
134 LABEL FINIS\$
135 END S

```

\subsection*{3.4.2 Description of DMAP Operations for Normal Mode Analysis}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
6. GP2 generates Element Connection Table with internal indices.
10. Go to DMAP No. 20 if no plot package is present.
11. PLTSET transforms user input into a form used to drive structure plotter.
13. PRTMSG prints error messages associated with structure plotter.
16. Go to DMAP No. 20 if no undeformed structure plot request.
17. PLDT generates all requested undeformed structure plots.
19. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
22. GP3 generates Grid Point Temperature Table.
24. TAl generates element tables for use in matrix assembly and stress recovery.
26. Go to DMAP No. 128 and print error message if there are no structural elements.
31. EMG generates structural element matrix tables and dictionaries for later assembly.
34. Go to DMAP No. 37 if no stiffness matrix is to be assembled.
35. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{x}}\right]\) and Grid Point Singularity Table.
38. Go to DMAP No. 128 and print error message if no mass matrix exists.
39. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
41. Go to DMAP No. 44 if no weight and balance request.
42. GPWG generates weight and balance information.
43. ØFP formats weight and balance information and places it on the system output file for printing.
45. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
47. Go to DMAP No. 50 if no general elements.
48. SMA3 adds general elements to stiffness matrix \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
52. GP4 generates flags defining numbers of various displacement sets (USET) and forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
54. Go to DMAP No. 132 and print error message if no independent degrees of freedom are defined.
57. Go to DMAP No. 62 if general elements present.
58. GPSP determines if possible grid point singularities remain.
60. Go to DMAP No. 62 if no Grid Point Singularity Table.
61. DFP formats table of possible grid point singularities and places it on the system output file for printing.
63. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) and \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right.\) ] if no multipoint constraints.
65. Go to DMAP No. 70 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
66. MCE1 partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m} \quad R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
68. MCE2 partitions stiffness and mass matrices
\[
\left[K_{g g}\right]=\left[\begin{array}{c:c}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right] \text { and } \quad\left[M_{g g}\right]=\left[\begin{array}{c|c}
\bar{M}_{n n} & M_{n m} \\
\hline M_{m n} & M_{n m}
\end{array}\right]
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]\left[G_{m}\right] \text { and }} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[\dot{G}_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]}
\end{aligned}
\]
71. Equivalence \(\left[K_{n n}\right.\) ] to \(\left[K_{f f}\right]\) and \(\left[M_{n n}\right.\) ] to [ \(M_{f f}\) ] if no single-point constraints.
73. Go to DMAP No. 76 if no single-point constraints.
74. SCEI partitions out single-point constraints
\[
\left[K_{n n}\right]=\left[\begin{array}{c|c}
k_{f f} & k_{f s} \\
\hline K_{s f} & k_{s s}
\end{array}\right] \quad \text { and } \quad\left[M_{n n}\right] \quad=\left[\begin{array}{c|c}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right]
\]
77. Equivalence \(\left[K_{f f}\right.\) ] to [ \(K_{a a}\) ] if no omitted coordinates.
78. Equivalence \(\left[M_{f f}\right.\) ] to \(\left[M_{a a}\right.\) ] if no omitted coordinates.
80. Go to DMAP No. 85 if no omitted coordinates.
81. SMP1 partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{\mathrm{aa}} & k_{\mathrm{ao}} \\
\hdashline k_{\mathrm{oa}} & k_{o o}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right\rfloor\) and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{o}\right]\)
83. SMP2 partitions constrained mass matrix
\[
\left[M_{f f}\right]=\left[\begin{array}{c:c}
\bar{M}_{\mathrm{ma}} & M_{\mathrm{ao}} \\
\hdashline M_{\mathrm{oa}} & M_{\mathrm{oo}}
\end{array}\right]
\]
and performs matrix refuction
\[
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{0}\right]+\left[G_{o}^{\top}\right]\left[M_{o a}\right]+\left[G_{o}^{\top}\right]\left[M_{o o}\right]\left[G_{o}\right] .
\]
86. Go to DMAP No. 95 if no free-body supports.
87. RBMG1 partitions out free-body supports
\[
\left[\begin{array}{l:l|l}
K_{a a}
\end{array}\right]=\left[\begin{array}{l:l}
K_{\ell \ell} & K_{l r} \\
\hdashline K_{r \ell} & K_{r r}
\end{array}\right] \quad \text { and } \quad\left[M_{a a}\right]=\left[\begin{array}{l:l}
M_{l \ell} & M_{\ell r} \\
\hdashline M_{r l} & M_{r r}
\end{array}\right] .
\]
89. RBMG2 decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\).
91. RBMG3 forms rigid body transformation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right],
\]
calculates rigid body check matrix
\[
[x]=\left[k_{r r}\right]+\left[K_{\ell r}^{\top}\right][D]
\]
and calculates rigid body error ratio
\[
\varepsilon=\frac{\|x\|}{\left\|k_{r r}\right\|} .
\]
93. RBMG4 forms rigid body mass matrix \(\left[\mathrm{m}_{r}\right]=\left[M_{r r}\right]+\left[M_{\ell r}^{\top}\right][D]+\left[D^{\top}\right]\left[M_{\ell r}\right]+\left[D^{\top}\right]\left[M_{\ell \ell}\right][D]\).
96. DPD extracts Eigenvalue Extraction Data from Dynamics data block.

98 Go to DMAP No. 130 and print error message if no Eigenvalue Extraction Data.
101. READ extracts real eigenvalues from the equation
\[
\left[K_{a \mathrm{a}}-\lambda M_{a \mathrm{a}}\right]\left\{u_{a}\right\}=0,
\]
calculates rigid body modes by finding a square matrix \(\left[\phi_{r o}\right.\) ] such that
\[
\left[m_{0}\right]=\left[\phi_{r_{0}}^{\top}\right]\left[m_{r}\right]\left[\phi_{r_{0}}\right]
\]
is diagonal and normalized, computes rigid body eigenvectors
\[
\left[\phi_{\mathrm{ao}}\right]=\left[\begin{array}{c}
\mathrm{D} \phi_{\mathrm{ro}} \\
\hdashline \phi_{\mathrm{ro}}
\end{array}\right],
\]

\section*{RIGID FORMATS}
calculates modal mass matrix
\[
[m]=\left[\phi_{a}^{\top}\right]\left[M_{a \mathrm{aj}}\right]\left[\phi_{\mathrm{a}}\right]
\]
and normalizes eigenvectors according to one of the following user requests:
1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass.
105. ØFP formats eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
107. Go to DMAP No. 134 and exit if no eigenvalues found.
108. SDR1 recovers dependent components of the eigenvectors
\[
\begin{aligned}
&\left\{\phi_{0}\right\}=\left[G_{0}\right]\left\{\phi_{a}\right\}, \\
&\left.-\frac{\phi_{0}}{\phi_{a}}\right\}=\left\{\phi_{f}\right\}, \\
&\left\{\begin{array}{l}
\phi_{f} \\
\phi_{s}
\end{array}\right\}=\left\{\phi_{n}\right\},\left\{\phi_{m}\right\}=\left[G_{m}\right]\left\{\phi_{n}\right\}, \\
&\left\{\begin{array}{l}
\phi_{n} \\
\phi_{m}
\end{array}\right\}=\left\{\phi_{g}\right\}
\end{aligned}
\]
and recovers single-point forces of constraint \(\left\{q_{s}\right\}=\left[K_{f s}\right]^{\top}\left\{\phi_{f}\right\}\).
112. Equivalence SIL to SIP and BGPDT to BGPDP when one or more geometric grid points exist.
114. Go to DMAP No. 118 if
115. PLTTRAN modifies BGPDT and SIL for functional modules SDR2 and PLQT.
119. SDR2 calculates element forces and stresses ( \(\varnothing E F 1, \emptyset E S 1\) ) and prepares eigenvectors and single-point forces of constraint for output ( \(\emptyset P H I G\), PPHIG, QQG1).
120. \(\rho_{F P}\) formats tables prepared by SDR2 and places them on the system output file for printing.
122. Go to DMAP No. 126 if no deformed structure plots are requested.
123. PL叩T generates all requested deformed structure plots.
125. PRTMSG prints plotter data and engineering data for each deformed plot generated.
127. Go to DMAP No. 134 and make normal exit.
129. NØRMAL MøDE ANALYSIS ERRØR MESSAGE NØ. 1-MASS MATRIX REQUIRED FØR REAL EIGENVALUE ANALYSIS.
131. NØRMAL M@DE ANALYSIS ERRØR MESSAGE NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
133. NøRMAL M \(\emptyset D E\) ANALYSIS ERR \(\emptyset R\) MESSAGE N \(\emptyset\). 3 - \(N \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDgM HAVE BEEN DEFINED.

\subsection*{3.4.3 Automatic Output for Normal Mode Analysis}

Each eigenvalue is identified with a mode number determined by sorting the eigenvalues by their magnitude. The following summary of the eigenvalues extracted is automatically printed:
1. Mode Number
2. Extraction Order
3. Eigenvalue
4. Radian Frequency
5. Cyclic Frequency
6. Generalized Mass
7. Generalized Stiffness

The following summary of the eigenvalue analysis performed, using the Inverse Power method, is automatically printed:
1. Number of eigenvalues extracted.
2. Number of starting points used.
3. Number of starting point moves.
4. Number of triangular decompositions.
5. Number of vector iterations.
6. Reason for termination.
(1) Two consecutive singularities encountered while performing triangular decomposition.
(2) Four shift points while tracking a single root.
(3) All eigenvalues found in the frequency range specified.
(4) Three times the number of roots estimated in the frequency range have been extracted.
(5) All eigenvalues that exist in the problem have been found.
(6) The number of roots desired have been found.
(7) One or more eigenvalues have been found outside the frequency range specified.
(8) Insufficient time to find another root.
(9) Unable to converge
7. Largest off-diagonal modal mass term and the number failing the criteria.

The following summary of the eigenvalue analysis performed, using the Determinant method, is automatically printed:
1. Number of eigenvalues extracted.
2. Number of passes through starting points.
3. Number of criteria changes.
4. Number of starting point moves.
5. Number of triangular decompositions.
6. Number of failures to iterate to a root.
7. Reason for termination.
(1) The number of roots desired have been found.
(2) All predictions for eigenvalues are outside the frequency range specified.
(3) Insufficient time to find another root.
(4) Matrix is singular at first three starting points.
8. Largest off-diagonal modal mass term and the number failing the criterion.
9. Swept determinant function for each starting point.

The following summary of the eigenvalue analysis performed using the Givens method, is automatically printed:
1. Number of eigenvalues extracted.
2. Number of eigenvectors computed.
3. Number of eigenvalue convergence failures.
4. Number of eigenvector convergence failures.
5. Reason for termination.
(1) Normal termination.
(2) Insufficient time to calculate eigenvalues and number of eigenvectors requested.
(3) Insufficient time to find additional eigenvectors.
6. Largest off-diagonal modal mass term and the number failing the criterion.

\subsection*{3.4.4 Case Control Deck and Parameters for Normal Mode Analysis}

The following items relate to subcase definition and data selection for Normal Modes:
1. METHDD must be used to select an EIGR card that exists in the Bulk Data Deck.
2. On restart, the current EIGR card controls the eigenvalue extraction, regardless of what calculations were made in the previous execution. Consequently, when making restarts with either the Determinant method or the Inverse Power method, METH \(\emptyset D\) should be changed

\section*{RIGID FORMATS}
to select an EIGR card that avoids the extraction of previously found eigenvalues. This is particularly important following unscheduled exits due to insufficient time to find all eigenvalues in the range of interest.
3. An SPC set must be selected unless the model is a free body or all constraints are specified on GRID cards, Scalar Connection cards or with General Elements.
4. Multiple subcases are used only to control output requests. A single subcase is sufficient if the same output is desired for all modes. If multiple subcases are present, the output requests will be honored in succession for increasing mode numbers. MDDES may be used to repeat subcases in order to make the same output request for several consecutive modes.

The following output may be requested for Normal Mode Analysis:
1. Eigenvectors along with the associated eigenvalue for each mode.
2. Nonzero components of the single-point forces of constraint for selected modes at selected grid points.
3. Forces and stresses in selected elements for selected modes.
4. Undeformed plot of the structural model and mode shapes for selected modes.

The following parameters are used in Normal Mode Analysis:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - the terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in SMA2. Not recommended for use in hydroelastic problems.
3. CQUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

\subsection*{3.4.5 Automatic Alters for Automated Multi-stage Substructuring}

The following lines of the Normal Modes Analysis, Rigid Format 3, are altered in automatic substructure analyses.

Phase 1: 53, 86-95, 96-126
Phase 2: \(3-4,10-21,26,38,45-48,57-62,119-126\)
Phase 3: 86-95, 100-107, 108

If APP DISP, SUBS is used, the user may also specify ALTER's. However, these must not interfere with the automatically generated DMAP statement ALTER's listed above. See Section 5.9 for a description and listing of the ALTER's which are automatically generated for substructuring.

\section*{STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS}

\subsection*{3.5 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS}
3.5.1 DMAP Sequence for Static Analysis with Differential Stiffness

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 4
NASTRANSOURCE PROGRAMCOMPILATION OMAP-DMAP INSTRUCTION
NO.
 JUMPPLOT=-1 \$

12 Save NSIL,jurp PLOT \$
13 PRTMSG PLTSETX// \$
14 PARAM //C,N,MPY/V,N,PLTFLG/C,N,I/C,N,I s
15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
16 CUND Pl,JUMPPLOT \(\$\)
17 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,,,,/PLOTXI/ V,N, NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$

18 SAVE JUMPPLOT, PLTFLG,PFILE \$
19 PRTMSG PLOTX1// \$
20 LABEL P1 \$
21 CHKPNT PLTPAR,GPSETS,ELSETS \$
22 GP 3 GEOM3,EQEXIN,GEOM2/SLT,GPTT/V,N,NOGRAV S
23 SAVE NOGRAV \$
24 PARAM //C,N,AND/V,N,NOMGG/V,N,NDGRAV/V,Y,GRDPNT=-1 \$
25 CHKPNT SLT,GPTT \$
26 TAI ECT,EPT,BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N,
```

RIGIO FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 4
NASTRRANSOURCEPROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTION
NU.
NOSIMP/C,N,I/V,N,NOGENL/V,N,GENEL \&
27 SAVE NOSIMP,NOGENL,GENEL \&
28 CONO ERRORI;NOSIMP \$
29 PURGE OGPST/GENEL \$
30 CHKPNT EST,GPECT,GEI,OGPST \$
31 PARAM //C,N,ADD/V,N,NOKGGX/C,N,I/C,N,O\$
32 EMG EST,CSTM,MPT,DIT,GEOM2,/KELM,KDICT,MELM,MDICT,,/V,N,NOKGGX/V,
N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/C,Y,
CPQUADI/C,Y,CPQUADZ/C,Y,CPTRIAL/C,Y,CPTRIALI C,Y,CPTUBE/C,Y,
CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSC\$
33 SAVE NOKGGX,NOMGG \$
34 CHKPNT KELM,KDICT,MELM,MDICT \$
35 COND JMPKGG,NOKGGX \$
36 EMA GPECT,KOICT,KELM/KGGX,GPST \$
37 CHKPNT KGGX,GPST \&
38 LABEL JMPKGG \$
39 CONO JMPMGG,NOMGG \$
40@EMA GPECT,MCICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0 \$
41 CHKPNT MGG\$
42 LABEL JMPMGG \$
43 COND LBL1,GRDPNT \$
44 CUND ERROR4,NOMGG \$
45 GPWG BGPOT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GROPNT/C,Y,WTMASS \$
46 OFP OGPWG,,.,.// \$
47 LABEL LBLI\$
48 EQUIV KGGX,KGG/NDGENL \$
49 CHKPNT KGG \$
50 COND LBLI1,NOGENL \$
51SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP \$
52 CHKPNT KGG\$

```

\section*{RIGID FORMAT DMAP LISTING \\ SERIES N}

RIGID FORMAT 4
NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTION
NO.
53 LABEL LBL11\$
54 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O \$

55 GP4 CASECC, GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,YS,USET,ASET/V,N, LUSET/V,N, MPCFI/V,N,MPCF2/V,N,SINGLE/V,N, OMIT/V,N,REACT/V,N, NSKIP/V,N,REPEAT/V,N,NGSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$

56 SAVE MPCFI,MPCF2,SINGLE, OMIT,REACT,NSKIP,REPEAT, NUSET,NOL,NOA \$
57 CCND ERROR5,NOL \$
58 PURGE GM/MPCFI/GO,KCC,LCO,PO, UOOV,RUOV/OMIT/PS,KFS,KSS,QG/SINGLE/ UBOOV/OMIT/YBS,PBS,KBFS,KBSS,KDFS,KDSS/SINGLE \$

59 CHKPNT GM,RG,GO,KOO,LOO,PO,UOOV,RUOV,YS,PS,KFS,KSS,USET,ASET, UBOUV, YBS,PBS,KBFS,KBSS,KDFS,KDSS,QG \$

60 COND LBL4D,REACT \$
61 JUMP ERROR2 \({ }^{\circ}\)
62 LABEL LBL4D\$
63 CUND LBL4,GENELS
64 GPSPP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \(\$\)
65 SAVE NOGPST \$
66 COND LBL4,NOGPST \$
67 OFP OGPST,.,',// \$
68 LABEL LBL4 \$
69 EQUIV KGG,KNN/MPCFI \$
70 CHKPNT KNN \$
71 COND LBL2,MPCF2 \$
72 MCEI USET,RG/GM\$
73 CHKPNT GM \$
74 MCE2 USET,GM,KGG,, ,IKNN, , \(\$\)
75 CHKPNT KNN \$
76 LABEL LBL2 \$
77 EQUIV KNN,KFF/SINGLE \$
78 CHKPNT KFF \$

\section*{RIGID FORMAT DMAP LISTING \\ RIGID FORMAT 4}

NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTION NO.
```

79 COND LBL3,SINGLE\$
80 SCE1 USET,KNN,,,IKFF,KFS,KSS,,,\$
\&1 CHKPNT KFS,KSS,KFF\$
82 LABEL LBL3\$
83 EQUIV KFF,KAA/OMIT\$
84 CHKPNT KAA \$
85 COND LBL5,CMIT \$
86SMP1 USET,KFF,,,/GO,KAA,KOO,LOO,,.,. \$
87 CHKPNT GO,KAA,KOU,LOO \$
8 LABEL LBLS \$
89 RBMG2 KAA/LLL\$
90 CINKPNT LLL \$
91 SSGI SLT,BGPDT,CSTM,SIL,EST ,MPT,GPTT,EDT,MGG,CASECL,DIT/PG/V,N,
LUSET/C,N,1 \$
92 CHKPNT PG \$
93 EQUIV PG,PL/NOSET\$
94 CHKPNT PL \$
95 COND LBLIJ,NOSET \$
SO SSG2 USET,GM,YS,KFS,GO,,PG/,PD,PS,PL \$
97 CHKPNT PO,PS,PL \$
98 LABEL LBLIJ\$
99 SSG3 LLL,KAA,PL,LOO,KOO,PO/ULV,UOOV,RULV,RUOV/V,N,OMIT/V,Y,IRES=-1/
C,N,INV,N,EPSI\$

```
100 SAVE EPSI \$
101 CHKPNT ULV,NUOV,RULV,RUGV \(\$\)
102 CUND LBLg,IRES \$
103 MATGPR GPL,USET,SIL,RULV//C,N,L \$
LU4 MATGPR GPL,USET,SIL,RUCV//C,N,O\$
105 LABEL LBL9 \(\$\)

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 4

NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTION
NO.
\begin{tabular}{|c|c|c|}
\hline 0 & SOR1 & USET, ,ULV, UOOV,YS,GO,GM, PS, KFS, KSS, IUGV,PGI,QG/C, N, 1/C,N,DSOS \\
\hline 107 & CHKPNT & UGV,QG\$ \\
\hline 108 & SOR 2 & CASECC,CSTM,MPT,DIT,EQEXIN,SIL,GPTT,ECT,BGPCT, QG,UGV,EST, ,PG/ OPGI, OQGI, OUGVI, OESI,GEFI,PUGVI/C,N,OSO \& \\
\hline 109 & PARAM & //C,N,MPY/V,N,CARONO/C,N,U/C,N,O\$ \\
\hline 110 & OFP & OUGVI, OPGL, OQGL, OEFL,OESL,//V,N,CARONO \$ \\
\hline 111 & SAVE & CARDNO \$ \\
\hline 112 & COND & P2,JUMPPLOT \$ \\
\hline 113 & PLOT & PLTPAR, GP SETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,PUGVI, ,GPECT,OESI/ PLOTXZ/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N, PLTFLG/V,N,PFILE \$ \\
\hline 114 & save & Pfile \$ \\
\hline 115 & PRTMSG & PLOTX2//\$ \\
\hline 116 & LABEL & P2 \$ \\
\hline 117 & TA1 & ECT,EPT,BGPDT,SIL,GPTT,CSTM/XI,X2,ECPT,GPCT/V,N,LUSET/ V,N, NOS IMP/C,N,O/V,N,NOGENL/V,N,GENEL \$ \\
\hline 118 & DSMG1 & CASECC,GPTT,SIL,EDT,UGV,CSTN,MPT,ECPT,GPCT,DIT/KDGG/ V,N, DSCOSET\$ \\
\hline 115 & CHKPNT & KOGG \$ \\
\hline 120 & PARAM & //C,N,ACD/V,N,SHIFT/C,N,-1/C, N, \\
\hline 121 & PARAM & \(/ / C, N, A D D / V, N, C O U N T / V, N, A L W A Y S=-1 / V, N, N E V E R=1 \$\) \\
\hline 122 & PARAMR & //C,N,ADD/V,N,OSEPSI/C,N,O.O/C,N,O.0 \$ \\
\hline 123 & P AR AML & YS//C,N,NULL/C,N,/C,N;/C,N,/V,N,NOYS \$ \\
\hline 124 & JUMP & OUTLPTOP \$ Top of Stiffness \\
\hline 125 & LABEL & OUTLPTOP \$ Adjustment Loop \\
\hline 126 & EQUIV & PG,PGI/NOYS \$ \\
\hline 127. & CHKPNT & PG1 \$ \\
\hline 128 & PARAM & //C,N,KLOCK/V,N,TO \$ \\
\hline 129 & EQUIV & KDGG,KDNN/MPCF2 \$ \\
\hline 130 & CHKPNT & KDNN \$ \\
\hline 131 & COND & LBL2D,MPCF2 \(\$\) \\
\hline
\end{tabular}
```

 RIGID FORMAT OMAP LISTING
 SERIES N
 RIGID FORMAT }

```


\section*{STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS}
```

RIGID FORMAT DMAP LISTING
RIGID FORMAT }
NASTRANSOURCEPROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTION
NO.
160 LABEL PGOK \$
161 ADO PGI,/PGO/ \$
162 REMG2 KBLL/LBLL/V,N,POWER/V,N,DET\$.
163 SAVE OET,POWER \$
164 CHKPNT LBLL\$
165 PKTPARM //C,N,O/C,N,DET\$
166 PRTPARM //C,N,O/C,N,POWER \$

167	JUMP	INLPTUP $\$$	Top of Load Correction Loop
168	LABEL	INLPTOP $\$$	

169 PARAM //C,N,KLOCK/V,N,TI \$
17U SSG2 USET,GM,YS,KDFS,GO,,PGI/,PBO,PBS,PBL \$
171 SSG3 LBLL,KBLL,PBL,,,/UBLV,,RUBLV,/C,N,-1/V,Y,IRES/V,N,NDSKIP/V,N,
EPSI \$
172 SAVE EPSI \$
173 CHKPNT UBLV,RUBLV\$
174 CCNO LBLGD,IRES \$
175 MATGPR GPL,USET,SIL,RUBLV//C,N,L \$
17t LABEL LBL9D\$
177SDR1 USET,,UBLV,,YS,GO,GM,PBS,KBFS,KBSS,/UBGV,,QBG/C,N,1/C,N,DSI \&
178 CHKPNT UBGV,QBG \$
179 ACD UBGV,UGV/DUGV/C,N,(-1.0,0.0)\$
180 DSMG1 CASECC,GPTT,SIL,EDT,DUGV,CSTM,MPT,ECPT,GPCT,DIT/DKDGG/V,N,
OSCOSET \$
181 CHKPNT DKDGG \$
182 MPYAD CKOGG,UBGV,PGO/PGII/C,N,J/C,N,I/C,N,1/C,N,L \$
183 OSCHK
PGI,PGII,UBGV//C,Y,EPSIO=1.E-5/V,N,DSEPSI/C,Y,NT=1O/V,N,TO/V,N,
TI/V,N,DUNE/V,N,SHIFT/V,N,COUNT/C,Y,BETAD=4\$
184 SAVE DSEPSI,DONE,SHIFT,COUNT\$
185 COND CONE,DONE \$
186 CONO SHIFT,SHIFT\$

```

\section*{RIGID FORMAT DMAP LISTING}

SERIES N
RIGID FORMAT 4

```

 RIGID FORMAT DMAP LISTING
 SERIES N
 RIGID FORMAT 4
NASTRANSSGURCEPROGRAMCOMPILATIION
OMAP-DMAP INSTRUCTION
NO.
214 PRTPARM //C,N,-2/C,N,DIFFSTIF \$
215 LABEL ERRCR4 \$
216 PRTPARM //C,N,-4/C,N,OIFFSTIF \$
217 LABEL ERROR5 \$
218 PRTPARM //C,N,-5/C,N,DIFFSTIF \$
219 LABEL FINIS \$
220 END \$

```

\subsection*{3.5.2 Descrintion of DMAP Operations for Static Analvsis with Differential Stiffness}
2. GPI generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
4. Go to DMAP No. 211 if no grid point definition table.
6. GP2 generates Element Connection Table with internal indices.
10. Go to DMAP No. 20 if no plot package is present.
11. PLTSET transforms user input into a form used to drive structure plotter.
13. PRTMSG prints error messages associated with structure plotter.
16. Go to DMAP No. 20 if no undeformed structure plot request.
17. \(P L \emptyset T\) generates all requested undeformed structure nlots.
19. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
22. GP3 generates Static Loads Table and Grid Point Temperature Table.
26. TAl generates element tables for use in matrix assembly and stress recovery.
28. Go to DMAP No. 211 and print error message if no structural elements
32. EMG generates structural element matrix tables and dictionaries for later assembly.
35. Go to DMAP No. 38 if no stiffness matrix is to be assembled.
36. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{qg}}^{\mathrm{X}}\right]\) and Grid Point Singularity Table.
39. Go to DMAP No. 42 if no mass matrix is to be assembled.
40. EMA assembles mass matrix \(\left[M_{g g}\right]\).
43. Go to DMAP No. 47 if no weight and balance reauest.
44. Go to DMAP No. 215 and print error message if no mass matrix exists.
45. GPWG generates weight and balance information.
46. DFP formats weight and balance information and places it on the system output file for printing.
48. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
50. Go to DMAP No. 53 if no general elements.
51. SMA3 adds general elements to \(\left[K_{g g}^{x}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
55. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\) and forms enforced displacement vector \(\left\{Y_{s}\right\}\).
57. Go to DMAP No. 217 and print error message if no independent degrees of freedom are defined.
60. Go to DMAP No. 62 if no free-body supports supplied.
63. Go to DMAP No. 68 if general elements present.
64. GPSP determines if possible grid point sinaularities remain.

\section*{STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS}
66. Go to DMAP No. 68 if no Grid Point Singularity Table.
67. פFP formats table of possible grid point singularities and places it on the system output file for printing.
69. Equivalence \(\left[\mathrm{K}_{\mathrm{gg}}\right]\) to \(\left[\mathrm{K}_{\mathrm{nn}}\right.\) ] if no multipoint constraints.
71. Go to DMAP No. 76 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
72. MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m} ; R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
74. MCE2 partitions stiffness matrix
\[
\left[\mathrm{K}_{\mathrm{gg}}\right]=\left[\begin{array}{l:l}
\bar{k}_{\mathrm{nn}} & k_{\mathrm{nm}} \\
\hdashline \mathrm{~K}_{\mathrm{mn}} & k_{\mathrm{mm}}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{n n}\right]=\left[\bar{k}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right]
\]
77. Equivalence \(\left[K_{n n}\right.\) ] to [ \(K_{f f}\) ] if no single-point constraints.
79. Go to DMAP No. 82 if no single-point constraints.
80. SCE1 partitions out single-point constraints.
\[
\left[k_{n n}\right]=\left[\begin{array}{c|c}
k_{\mathrm{ff}} & k_{\mathrm{fs}} \\
\hdashline k_{\mathrm{sf}} & k_{\mathrm{ss}}
\end{array}\right] .
\]
83. Equivalence \(\left[K_{f f}\right.\) ] to [ \(K_{a a}\) ] if no omittéd coordinates.
85. Go to DMAP No. 88 if no omitted coordinates.
86. SMPI partitions constrained stiffness matrix
\[
\left[K_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{a a} & k_{a o} \\
\hdashline k_{o a} & k_{00}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]^{\prime}+\left[K_{o a}^{\top}\right]\left[G_{o}\right]\).
89. RMBG2 decomposes constrained stiffness matrix \(\left[K_{a a}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\)
91. SSG1 generates static load vectors \(\left\{P_{g}\right\}\).
93. Equivalence \(\left\{P_{g}\right\}\) to \(\left\{P_{\ell}\right\}\) if no constraints applied.
95. Go to DMAP No. 98 if no constraints applied.

\section*{RIGID FORMATS}
96. SSG2 applies constraints to static load vectors
\[
\begin{array}{ll}
\left\{P_{g}\right\}=\left\{\begin{array}{l}
\bar{P}_{n} \\
-P_{m}
\end{array}\right\}, & \left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{\top}\right]\left\{P_{m}\right\}, \\
\left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
-P_{s}
\end{array}\right\}, & \left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f s}\right]\left\{Y_{s}\right\}, \\
\left\{P_{f}\right\}=\left\{\begin{array}{ll}
P_{a} \\
- \\
P_{o} \\
P_{0}
\end{array}\right\} \text { and } & \left\{P_{\ell}\right\}=\left\{P_{a}\right\}+\left[G_{o}^{\top}\right]\left\{P_{o}\right\} .
\end{array}
\]
99. SSG3 solves for displacements of independent coordinates
\[
\left\{u_{\ell}\right\}=\left[K_{a a}\right]^{-1}\left\{P_{\ell}\right\},
\]
solves for displacements of omitted coordinates
\[
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{P_{0}\right\},
\]
calculates residual vector (RULV) and residual vector error ratio for independent coordinates
\[
\begin{aligned}
\left\{\delta P_{\ell}\right\} & =\left\{P_{\ell}\right\}-\left[K_{a \mathrm{a}}\right]\left\{u_{\ell}\right\} \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{\top}\right\}\left\{\delta P_{\ell}\right\}}{\left\{P_{\ell}^{\top}\right\}\left\{u_{\ell}\right\}}
\end{aligned}
\]
and calculates residual vector (RUQV) and residual vector error ratio for omitted coordinnates
\[
\begin{aligned}
\left\{\delta P_{0}\right\} & =\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\}, \\
\varepsilon_{0} & =\frac{\left\{u_{0}^{\top}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{\top}\right\}\left\{u_{0}^{0}\right\}} .
\end{aligned}
\]
102. Go to DMAP No. 105 if residual vectors are not to be printed.
103. Print residual vector for independent coordinates (RULV).
104. Print residual vector for omitted coordinates (RUQV).
106. SDRI recovers dependent displacements
\[
\begin{aligned}
\left\{u_{0}\right\} & =\left[G_{0}\right]\left\{u_{\ell}\right\}+\left\{u_{o}^{0}\right\}, \\
\left\{\begin{array}{l}
u_{a} \\
-u_{0}
\end{array}\right\}=\left\{u_{f}\right\}, & \left\{\begin{array}{c}
u_{f} \\
\left.-\frac{y_{s}}{s}\right\}
\end{array}\right\}=\left\{u_{n}\right\}, \\
\left\{u_{m}\right\} & =\left[G_{m}\right]\left\{u_{n}\right\},
\end{aligned}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
\]
108. SDR2 calculates element forces and stresses ( \(\varnothing E F 1\), gES1) and prepares load vectors, displacement vectors and single-point forces of constraint for output ( \(\emptyset P G 1, ~\) QUGVI, PUGVI, øQG1).
110. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
112. Go to DMAP No. 116 if no static deformed structure plots are requested.
113. PLDT generates all requested static deformed structure plots.
115. PRTMSG prints plotter data and engineering data for each deformed plot generated.
117. TA1 generates element tables for use in differential stiffness matrix assembly.
118. DSMG1 generates differential stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{d}}\right]\).
124. Go to next DMAP instruction if cold start or modified restart. ØUTLPT \(\varnothing\) P will be altered by the Executive System to the proper location inside the loop for unmodified restarts wtihin the loop.
125. Beginning of outer loop for differential stiffness iteration.
126. Equivalence \(\left\{\mathrm{P}_{\mathrm{g}}\right\}\) to \(\left\{\mathrm{P}_{\mathrm{g} 1}\right\}\) if no enforced displacements.
129. Equivalence \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{d}}\right]\) to \(\left[\mathrm{K}_{\mathrm{nn}}^{\mathrm{d}}\right]\) if no multipoint constraints.
137. Go to DMAP No. 134 if no multipoint constraints.
132. MCE2 partitions differential stiffness matrix
\[
\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{d}}\right]=\left[\begin{array}{l|l}
\overline{\mathrm{k}}_{\mathrm{nn}}^{\mathrm{d}} \mid & \mathrm{k}_{\mathrm{nm}}^{\mathrm{d}} \\
\hdashline \mathrm{~K}_{\mathrm{mn}}^{\mathrm{d}} \mid \mathrm{K}_{\mathrm{mm}}^{\mathrm{d}}
\end{array}\right]
\]
and performs matrix reduction \(\left[K_{n n}^{d}\right]=\left[\bar{K}_{n n}^{d}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}^{d}\right]+\left[K_{m n}^{d}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}^{d}\right]\left[G_{m}\right]\).

\section*{RIGID FORMATS}
135. Equivalence \(\left[K_{n n}^{d}\right]\) to \(\left[K_{f f}^{d}\right.\) ] if no single-point constraints.
137. Go to DMAP No. 140 if no single-point constraints.
138. SCEI partitions out single-point constraints
\[
\left[k_{n n}^{d}\right]=\left[\begin{array}{c:c}
k_{f f}^{d} & k_{f s}^{d} \\
\hdashline k_{s f}^{d} & k_{s s}^{d}
\end{array}\right]
\]
141. Equivalence \(\left[K_{f f}^{d}\right]\) to \(\left[K_{a a}^{d}\right]\) if no omitted coordinates.
143. Go to DMAP No. 146 if no omitted coordinates.
144. SMP2 partitions constrained differential stiffness matrix
\[
\left[k_{\mathrm{ff}}^{\mathrm{d}}\right]=\left[\begin{array}{c:c}
\bar{k}_{\mathrm{aa}}^{\mathrm{d}} & \mathrm{k}_{\mathrm{ao}}^{\mathrm{d}} \\
\hdashline \mathrm{~K}_{\mathrm{oa}}^{\mathrm{d}} & \mathrm{~K}_{\mathrm{oo}}^{\mathrm{d}}
\end{array}\right]
\]
and performs matrix reduction \(\left[K_{a a}^{d}\right]=\left[\bar{K}_{a a}^{d}\right]+\left[K_{o a}^{d}\right]^{\top}\left[G_{0}\right]+\left[G_{0}\right]^{\top}\left[K_{o a}^{d}\right]+\left[G_{0}\right]^{\top}\left[K_{00}^{d}\right]\left[G_{0}\right]\).
147. \(A D D\left[K_{a a}\right]\) and \(\left[K_{a a}^{d}\right]\) to form \(\left[K_{\ell \ell}^{b}\right]\).
148. \(A D D\left[K_{f s}\right]\) and \(\left[K_{f s}^{d}\right]\) to form \(\left[K_{f s}^{b}\right]\).
149. ADD [ \(\left.K_{S S}\right]\) and \(\left[K_{S S}^{d}\right]\) to form \(\left[K_{S S}^{b}\right]\).
150. Go to DMAP No. 160 if no enforced displacements.
151. MPYAD multiply \(\left[K_{S S}^{b}\right]\) and \(\left\{Y_{s}\right\}\) to form \(\left\{P_{S S}\right\}\).
152. MPYAD multiply \(\left[K_{f s}^{b}\right]\) and \(\left\{Y_{s}\right\}\) to form \(\left\{P_{f s}\right\}\).
153. UMERGE expand \(\left\{P_{n}\right\}\) to form \(\left\{P_{g}^{x}\right\}\).
158. ADD \(-\left\{P_{g}^{x}\right\}\) and \(\left\{P_{g}\right\}\) to form \(\left\{P_{g g}\right\}\).
159. Equivalence \(\left\{P_{g g}\right\}\) to \(\left\{P_{g}\right\}\).
161. \(A D D\left\{\mathrm{P}_{\mathrm{gI}}\right\}\) and nothing to create \(\left\{\mathrm{P}_{\mathrm{go}}\right\}\).
162. RBMGZ decomposes the combined differential stiffness matrix and.elastic stiffness matrix.
\[
\left[\mathrm{K}_{\ell \ell}^{\mathrm{b}}\right]=\left[\mathrm{L}_{\ell \ell}^{\mathrm{b}}\right]\left[\mathrm{U}_{\ell \ell}^{\mathrm{b}}\right]
\]
165. PRTPARM prints the scaled value of the determinant of the combined differential stiffness matrix and elastic stiffness matrix.
166. PRTPARM prints the scale factor (power of ten) of the determinant of the combined differential stiffness matrix and the elastic stiffnoss matrix.
167. Go to next DMAP instruction if cold start or modified restart. INLPT冃P will be altered by the executive system to the proper location inside the loon for unmodified restarts within the loop.
168. Beginning of inner loop for differential stiffness iteration.
170. SSG2 applies constraints to static load vectors
\[
\begin{aligned}
& \left\{P_{g 1}\right\}=\left\{\begin{array}{l}
-\overline{P_{n}^{b}} \\
-\frac{P_{m}^{b}}{b}
\end{array}\right\} \quad, \quad\left\{P_{n}^{b}\right\}=\left\{\bar{P}_{n}^{b}\right\}+\left[G_{m}^{\top}\right]\left\{P_{m}^{b}\right\}, \\
& \left\{P_{n}^{b}\right\}=\left(\begin{array}{c}
-\bar{D} \\
P_{f}^{b} \\
-\bar{p} \\
P_{s}^{b}
\end{array}\right\} \quad, \quad\left\{P_{f}\right\}=\left\{\bar{P}_{f}^{b}\right\}-\left[K_{f s}^{d}\right]\left\{Y_{s}\right\}, \\
& \left\{P_{f}^{b}\right\}=\left(\begin{array}{c}
P_{a}^{b} \\
\hdashline- \\
P_{o}^{b}
\end{array}\right) \quad \text { and } \quad\left\{P_{\ell}^{b}\right\}=\left\{P_{a}^{b}\right\}+\left[G_{0}^{\top}\right]\left\{P_{o}^{b}\right\} \text {. }
\end{aligned}
\]
171. SSG3 solves for displacements of independent coordinates for current differential stiffness load vector
\[
\left\{u_{\ell}^{\mathrm{b}}\right\}=\left[\mathrm{k}_{\ell \ell}^{\mathrm{b}}\right]^{-1}\left\{\mathrm{P}_{\ell}^{\mathrm{b}}\right\}
\]
and calculates residual vector (RBULV) and residual vector error ratio for current differential stiffness load vector
\[
\begin{aligned}
\left\{\delta \mathrm{P}_{\ell}^{\mathrm{b}}\right\} & =\left\{\mathrm{P}_{\ell}^{\mathrm{b}}\right\}-\left[\mathrm{K}_{\ell \ell}^{\mathrm{b}}\right]\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\}, \\
\varepsilon_{\ell}^{\mathrm{b}} & =\frac{\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\}^{\top}\left\{\delta \mathrm{P}_{\ell}^{\mathrm{b}}\right\}}{\left\{\mathrm{P}_{\ell}^{\mathrm{b}}\right\}^{\top}\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\}}
\end{aligned}
\]
174. Go to DMAP No. 176 if residual vector for current differential stiffness solution is not to be printed.
175. Print residual vector for current differential stiffness solution.
177. SDRI recovers dependent displacements for current differential stiffness solution
\[
\begin{aligned}
& \left\{u_{0}^{b}\right\}=\left[G_{0}\right]\left\{u_{\ell}^{b}\right\}+\left\{u_{0}^{o b}\right\}, \quad\left\{\begin{array}{l}
u_{\ell}^{b} \\
-\frac{u_{0}^{b}}{b}
\end{array}\right\}=\left\{u_{f}^{b}\right\}, \\
& \left\{\begin{array}{l}
u_{f}^{b} \\
-- \\
Y_{s}^{b}
\end{array}\right\}=\left\{u_{n}^{b}\right\}, \quad\left\{u_{m}^{b}\right\}=\left[G_{m}\right]\left\{u_{n}^{b}\right\}, \\
& \left\{\begin{array}{l}
u_{n}^{b} \\
-u_{m}^{b}
\end{array}\right\}=\left\{u_{g}^{b}\right\}
\end{aligned}
\]
and recovers single-point forces of constraint for current differential stiffness solution
\[
\left\{q_{s}^{b}\right\}=-\left\{P_{s}^{b}\right\}+\left[K_{s f}^{b}\right]\left\{u_{f}^{b}\right\}+\left[K_{f f}^{b}\right]\left\{Y_{s}^{b}\right\}
\]
179. ADD \(-\left\{U_{g}^{b}\right\}\) and \(\left\{U_{g}\right\}\) to form \(\left\{U_{g}^{d}\right\}\).
180. DSMG1 generates differential stiffness matrix \(\left[\delta K_{g g}^{d}\right]\)
182. MPYAD form load vector for inner loop iteration.
\[
\left\{\mathrm{P}_{\mathrm{g}_{I 1}}\right\}=\left[\delta \mathrm{K}_{\mathrm{gg}}^{\mathrm{d}}\right]\left\{\mathrm{U}_{\mathrm{g}}^{\mathrm{b}}\right\}+\left\{\mathrm{P}_{\mathrm{go}}\right\}
\]
183. DSCHK performs differential stiffness convergence checks.
185. Go to DMAP No. 200 if differential stiffness iteration is comblete.
186. Go to DMAP No. 192 if additional differential stiffness matrix changes are necessary for further iteration.
187. Equivalence breaks previous equivalence of \(\left\{P_{g}\right\}\) to \(\left\{P_{g}\right\}\).
188. Equivalence \(\left\{\mathrm{P}_{\mathrm{g}_{\mathrm{I}}}\right\}\) to \(\left\{\mathrm{P}_{\mathrm{gI}}\right\}\)
189. Equivalence breaks previous equivalence of \(\left\{\mathrm{P}_{\mathrm{g} 1}\right\}\) to \(\left\{\mathrm{P}_{\mathrm{g}_{\mathrm{I}}}\right\}\).
190. Go to DMAP No. 168 for additional inner loop differential stiffness iteration.
191. TABPT table prints vectors \(\left\{\mathrm{P}_{\mathrm{g}_{\mathrm{I}}}\right\},\left\{\mathrm{P}_{\mathrm{gl}}\right\}\), and \(\left\{\mathrm{P}_{\mathrm{g}}\right\}\).
193. \(A D D-\left[\delta K_{g g}^{d}\right]\) and \(\left[K_{g g}^{d}\right]\) to form \(\left[K_{g g l}^{d}\right]\).
195. Equivalence \(\left\{U_{g}^{b}\right\}\) to \(\left\{U_{g}\right\}\) and \(\left[K_{g g T}^{d}\right]\) to \(\left[K_{g g}^{d}\right]\).
197. Equivalence breaks previous equivalence of \(\left[K_{g g}^{d}\right]\) to \(\left[K_{g g l}^{d}\right]\) and \(\left\{U_{g}\right\}\) to \(\left\{U_{q}^{b}\right\}\).
198. Go to DMAP No. 125 for additional outer loop differential stiffness iteration.
199. TABPT table prints \(\left[K_{g g l}^{d}\right],\left[K_{g g}^{d}\right]\) and \(\left\{U_{g}\right\}\).
202. SDR2 calculates element forces and stresses ( \(\emptyset E F B 1, \emptyset E S B 1\) ) and prepares displacement vectors and single-point forces of constraint for output (ØUBGV1, PIJBGV1, ØOBG1) for all differential stiffness solutions.
203. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
205. Go to DMAP No. 209 if no deformed differential stiffness structure plots are requested.
206. PLøT generates all requested deformed differential stiffness structure plots.
208. PRTMSG prints plotter data and engineering data for each deformed plot generated.
210. Go to DMAP No. 219 and make normal exit.
212. STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS ERRØR MESSAGE NØ. 1 - N \(\emptyset\) STRUCTURAL ELEMENTS HAVE BEEN DEFINED.
214. STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS ERR@R MESSAGE NØ. 2-FREE B \(\emptyset D Y-S U P P \emptyset R T S ~ N \emptyset T\) ALL \(\emptyset\) WED.
216. STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS ERRQR MESSAGE NQ. 4 - MASS MATRIX REOUIRED FØR WEIGHT AND BALANCE CALCULATIONS.
218. STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS ERR \(\emptyset R\) MESSAGE N \(\emptyset .5\) - N \(\emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDgM HAVE BEEN DEFINED.

\section*{RIGID FORMATS}

\subsection*{3.5.3 Automatic Output for Static Analysis with Differential Stiffness}

The value of the determinant of the sum of the elastic stiffness and the differential stiffness is automatically printed for each differential stiffness loading condition.

Iterative differential stiffness computations are terminated for one of five reasons. Iteration termination reasons are automatically printed in an information message. These reasons have the following meanings:
1. REASON 0 means the iteration procedure was incomplete at the time of exit. This is caused by an. unexpected interruption of the iteration procedure prior to the time the subroutine has had a chance to perform necessary checks and tests. Not much more has happened other than to initialize the exit mode to REASON 0.
2. REASON 1 means the iteration procedure converged to the EPSI \(\emptyset\) value supplied by the user on a PARAM bulk data card. (The default value of EPSID is \(1.0 \mathrm{E}-5\). )
3. REASON 2 means iteration procedure is diverging from the EPSI value supplied by the user on a PARAM bulk dáta card. (The default value of EPSID is 1.OE-5.)
4. REASON 3 means insufficient time remaining to achieve convergence to the EPSI \(\varnothing\) value supplied by the user on a PARAM bulk data card. (The default value of EPSID is \(1.0 \mathrm{E}-5\).)
5. REASON 4 means the number of iterations supplied by the user on a PARAM bulk data card. has been met. (The default number of iterations is 10. )

Parameter values at the time of exit are automatically output as follows:
1. Parameter DQNE: -1 is normal; \(+N\) is the estimate of the number of iterations required to achieve convergence.
2. Parameter SHIFT: +1 indicates a return to the top of the inner loop was scheduled; -1 indicates a return to top of the outer loop was scheduled following the current iteration.
3. Parameter DSEPSI: the value of the ratio of energy error to total energy at the time of exit.

\subsection*{3.5.4 Case Control Deck and Parameters for Static Analysis with Differential Stiffness}

The following items relate to subcase definition and data selection for Static Analysis with Differential Stiffness:
1. The Case Control Deck must contain at least two subcases. Other than DSCDEFFICIENT in the second subcase, all subcases are used only for output selection.
2. DSCØEFFICIENT must appear in the second subcase, either to select a DSFACT set from the Bulk Data Deck, or to explicitly select the default value of unity.
3. A static loading condition must be defined above the subcase level with a LøAD, TEMPERATURE (L \(\emptyset A D)\), or DEFØRM selection, unless all loading is specified by grid point. displacements on SPC cards.
4. An SPC set must be selected above the subcase level unless all constraints are specified on GRID cards.
5. Output requests that apply only to the linear solution must appear in the first subcase.
6. Output requests that apply only to the solution with differential stiffness must be placed in the second and succeeding subcases. If only two subcases exist, the output requests in the second subcase will be honored for all differential stiffness loading conditions.
7. Output requests that apply to all solutions, both with and without differential stiffness may be placed above the subcase level.

The following output may be requested for Static Analysis with Differential Stiffness:
1. Nonzero Components of the applied static load for the linear solution at selected grid points.
2. Displacement and nonzero components of the single-point forces of constraint, with and without differential stiffness, at selected grid points.
3. Forces and stresses in selected elements, with and without differential stiffness.
4. Undeformed and deformed plots of the structural model.

The following parameters are used in Static Analysis with Differential Stiffness:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed.
2. WTMASS - optional - the terms of the mass matrix are multiplied by the real value of this parameter when they are generated in EMG.
3. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
4. COUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
5. BETAD - optional - the integer value of this parameter is the assumed number of iterations for the inner loop in shift decisions for iterated differential stiffness. The default value is 4 iterations.
6. NT - optional - the integer value of this parameter limits the maximum number of iterations. The default value is 10 iterations.
7. EPSID - optional - the real value of this parameter is used to test the convergence of iterated differential stiffness. The default value is \(10^{-5}\).
3.6 BUCKLING ANALYSIS
3.6.1 DMAP Sequence for Buckling Analysis

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 5
NASTRANSGURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTION
NO.
1 BEGIN NO. 5 BUCKLING ANALYSIS - SERIES N \(S\)
2 FILE LAMA=APPEND/PHIA=APPEND \$
3 GPI GEOM1,GEUM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ V,N, NOGPDT \$

4 SAVE LUSET \$
5 CHKPNT GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL \(\$\)
6 GP2 GEOMZ,EQEXIN/ECT \$
7 CHKPNT ECT \(\$\)
8 PARAML PCOB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
9 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NOPCDB \$
10 COND PI,NOPCDB \(\$\)
11 PLISET PCOB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N. JUMPPLOT \(=-1\) \$

12 SAVE NSIL,JUMPPLOT \(\$\)
13 PRTMSG PLTSETX// \$
14 PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N,1\$
15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O\$
16 COND PI,JUMPPLOT \(\$\)
17 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,..,/PLOTXI/ V,N, NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$

18 SAVE JUMPPLOT,PLTFLG,PFILE \(\$\)
19 PRTMSG PLOTX1//\$
20 LABEL Pl\$
21 CHKPNT PLTPAR,GPSETS,ELSETS \$
22 GP3 GEOM3,EQEXIN,GEOM2/SLT,GPTT/V,N,NOGRAV \(\$\)
23 SAVE NOGRAV
24 PARAM //C,N,AND/V,N,NOMGG/V,N,NOGRAV/V;Y,GRDPNT=-1\$
```

RIGID FORMAT DMAP LISIING
SERIES N
RIGID FORMAT 5
NASTRANSSOURCE PROGRAMCOMPILAIIION
DMAP-DMAP INSTRUCTION
NO.
25 CHKPNT SLT,GPIT\$
25 TAL ECT,EPT,BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/V V,N,
NOSIMP/C,N,I/V,N,NOGENL/V,N,GENEL \$
27 SAVE NOSIMP,NOGENL,GENEL \$
28 COND ERRORI,NOSIMP\$.
29 PURGE OGPST/GENEL \$
30 CHKPNT EST,GPECT,GEI,OGPST \$
31 PARAM //C,N,ADD/V,N,NOKGGX/C,N,I/C,N,O\$
32 EMG EST,CSTM.MPT,DIT,GEOM2,/KELM,KDICT,MELM,MDICT,,/V,N,NOKGGX/ V,
N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/C,Y,
CPQUADI/C,Y,CPQUAD2/C,Y,CPIRIAI/C,Y,CPTRIA2/ C,Y,CPTUBE/C,Y,
CPQDPLT/C,Y,CPIRPLT/C,Y,CPTRBSC \$
33 SAVE NOKGGX,NOMGG \$
34 CHKPNT KELM,KDICT,MELM,MDICT\$
35 COND JMPKGG,NOKGGX.\$
36 EMA GPECT,KDICT,KELM/KGGX,GPST \$
37 CHKPNT KGGX,GPST \$
38 LABEL JMPKGG \$
39 COND JMPMGG,NOMGG \$
40 GPMACT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0\$
41 CHKPNT MGG \$
42 LABEL JMPMGG \$
43 CCND LBLI,GRDPNT \$
44 COND ERROR5,NOMGG \$
45 GPWG BGPDT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT/C,Y,WTMASS S
46 OFP OGPWG.,.,.//\$
47 LABEL LBLIs
48 EQUIV KGGX,KGG/NOGENL \$

```
\begin{tabular}{|c|c|}
\hline RIGID FORMAT SERIES N & DMAP LISTING \\
\hline RIGID FORMAT & 5 \\
\hline NASTR & ANSOURCEPROGRAMCOMPILATION \\
\hline DMAP-DMAP INS NO. & truction \\
\hline 49 CHKPNT & KGG \$ \\
\hline 50 COND & LBLII,NOGENL \$ \\
\hline 51 SMA3 & GEI,KGGX/KGG/V,N,LUSET/V,N, NOGENL/V,N,NOSIMP\$ \\
\hline 52 CHKPNT & KGG \$ \\
\hline 53 LABEL & L8LII \\
\hline 54 PARAM & //C,N,MPY/V,N,NSKIP/C,N,O/C,N.O \$ \\
\hline 55 GP4 & CASECC, GEOM4, EQEXIN,SIL, GPDT, BGPDT, CSTM/RG, YS,USET,ASET/V,N, LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N, OMIT/V,N,REACT/V,N, NSKIP/V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBIDs \\
\hline 56 Save & MPCF1, MPC F2,SINGLE, OMIT, REACT, NSKIP,REPEAT, NOSET, NOL, NOA \$ \\
\hline 57 COND & ERRORG, NOL \$ \\
\hline 58 PARAM & //C,N,AND/V,N,NOSR/V,N,SINGLE/V,N,REACT \$ \\
\hline 59 PURGE & GM/MPCFI/GO,KOO,LOO,PO,UOOV,RUOV/OMIT/PS,KFS,KSS/SINGLE/ QG/ NOSR \$ \\
\hline 60 CHK PNT & GM,RG, GO, KOO, LOO, PO, UCOV, RUOV, YS, PS,KFS,KSS, USET, ASET, QG \$ \\
\hline 61. COND & LBL4D,REACT \(\$\) \\
\hline 62 JUMP & ERRDR2 \$ \\
\hline 63 LABEL & LBL4D\$ \\
\hline 64 COND & LBL4,GENEL \$ \\
\hline 65 GPSP & GPL,GPST,USET, SIL/OGPST/V,N,NOGPST \$ \\
\hline 66 SAVE & NOGPST \$ \\
\hline 67 COND & LBL4,NOGPST \(\$\) \\
\hline 68 OFP & OGPST,..../1 \\
\hline 69 LABEL & LBL4 \$ \\
\hline 70 EqUIV & KGG,KNN/MPCFL \$ \\
\hline 71 CHKPNT & KNN. \(\$\) \\
\hline 72 COND & LBL2,MPCF2 \$ \\
\hline 73 MCEI & USET,RG/GM \$ \\
\hline
\end{tabular}
```

RIGID FORMAT DMAP LISTING
RIGID FORMAT 5

```

```

 NO.
 74 CHKPNT GM $
 75 MCE2 USET,GM,KGG,.,/KNN,,,$
 76 CHKPNT KNN $
 77 LABEL LBLZ$
 78 EQUIV KNN,KFF/SINGLE:
 79 CHKPNT KFF$
 80 COND LBL3,SINGLE $
 81 SCE1 USET,KNN,,,/KFF,KFS,KSS,,, $
 82 CHKPNT KFS,KSS,KFF $
 83 LABEL LBL3 $
 84 EQUIV KFF,KAAIOMIT $
 85 CHKPNT KAA $
 86 COND LBL5,OMIT$
 87SMP1 USET,KFF,,,/GO,KAA,KGC,LOO,,.,,$
 B8 CHKPNT GO,KAA,KOO,LOO$
 89 LABEL LBL5 5
 90 RBMG2 KAA/LLL $
 91 CHKPNT LLL$
 92 SSGL SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MGG,CASECC,DIT/PG/ V,N,
 LUSET/C,N,l$
 93 CHKPNT PG $
 94 EQUIV PG,PL/NOSET $
 95 CHKPNT PL $
 96 COND LBLIO,NOSET $
 97 SSG2 USET,GM,YS,KFS,GO,,PG/,PO,PS,PL $
 98 CHKPNT PO,PS,PL $
 99 LABEL LBLIO$
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{RIGID FORMAT DMAP LISTING SERIES N.} \\
\hline \multicolumn{8}{|l|}{RIGID FORMAT 5} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{NO.} \\
\hline 100 & SSG3 & \multicolumn{6}{|l|}{LLL,KAA, PL,LOO,KOO, PO/ULV,UOOV, RULV,RUOV/V,N,OMIT/V,Y,IRES=-1/ C,N,I/V,N,EPSI \$} \\
\hline 10 & save & \multicolumn{6}{|l|}{EPSI \$} \\
\hline 102 & CHKPNT & \multicolumn{6}{|l|}{ULV, UOOV, RULV,RUOV \$} \\
\hline 103 & COND & \multicolumn{6}{|l|}{LBL9,IRES \$} \\
\hline 104 & MATGPR & \multicolumn{6}{|l|}{GPL,USET,SIL,RULV//C,N,L \$} \\
\hline 105 & MATGPR & \multicolumn{6}{|l|}{GPL,USET,SIL,RUOV//C,N,O\$} \\
\hline 106 & LABEL & \multicolumn{6}{|l|}{LBL9} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{107 SDR1}} & \multicolumn{6}{|l|}{USET,PG, ULV, UOOV, YS, GO,GM,PS,KFS,KSS, /UGV,PGG,QG/C,N,I/C,N,} \\
\hline & & \multicolumn{6}{|l|}{BKLO \$} \\
\hline 108 & CHK PNT & \multicolumn{6}{|l|}{UGV,QG,PGG \$} \\
\hline & SDR2 & \multicolumn{6}{|l|}{CASECC,CSTM,MPT,DIT,EQEXIN, SIL,GPTT,EDT,BGPDT, QG,UGV,EST,OPGG/ OPGI,OQGI,OUGVI,OESI,OEFI,PUGVI/C,N,BKLO} \\
\hline 111 & OfP & \multicolumn{6}{|l|}{OUGV1, OPG 1, OQG \(1, O E F 1, O E S 1, / / V, N, C A R D N O \$\)} \\
\hline 112 & save & \multicolumn{6}{|l|}{CARONO \$} \\
\hline 113 & COND & \multicolumn{6}{|l|}{P2,JUMPPLOT \$} \\
\hline 114 & PLOT & \multicolumn{6}{|l|}{PLIPAR,GPSETS, ELSETS,CASECC,BGPDT, EQEXIN, SIL, PUGVI, ,GPECT,OES1/ PLOTXZ/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$} \\
\hline 115 & SAVE & \multicolumn{6}{|l|}{PFILE \$} \\
\hline 116 & PRTMSG & \multicolumn{6}{|l|}{PLOTX2//} \\
\hline 117 & LABEL & \multicolumn{6}{|l|}{P2 \$} \\
\hline 118 & TA1 & \multicolumn{6}{|l|}{ECT,EPT,BGPDT,SIL,GPTT,CSTM/X1,X2,ECPT,GPCT/V,N,LUSET/ V,N, NOSIMP/C,N,O/V,N,NOGENL/V,N,GENEL \$} \\
\hline 119 & DSMGI & \multicolumn{6}{|l|}{```
CASECC,GPTT,SIL,EDT,UGV,CSTM,MPT,ECPT,GPCT,DIT/KDGG/ V,N,
DSCOSET $
```} \\
\hline 120 & CHKPNT & \multicolumn{6}{|l|}{KDGG \$} \\
\hline 121 & EQUIV & \multicolumn{6}{|l|}{KDGG,KDNN/MPCF2 \$} \\
\hline 122 & CHK PNT & \multicolumn{6}{|l|}{KDNN 5} \\
\hline 123 & COND & \multicolumn{6}{|l|}{LBL2D,MPCF2 \$} \\
\hline
\end{tabular}
```

    RIGID FORMAT OMAP LISTING
    SERIES N
    RIGID FORMAT }

```

```

DMAP-DMAP INSTRUCIION
NO.
124 MCE2 USET,GM,KDGG,,,/KDNN,,,\$
125 CHKPNT KDNN \$
126 LABEL LBL2D \$
127 EQUIV KDNN,KDFF/SINGLE \$
128 CHKPNT KDFF \$
129 COND LBL3D,SINGLE \$
130 SCE1 USET,KDNN,.,/KDFF,KDFS,I,. \$
131 CHKPNT KDFF,KDFS \$
132 LABEL LBL3D\$
133 EQUIV KDFF,KOAA/OMIT \$
134 CHKPNT KDAA \$
135 COND LBL5D,OMIT\$
136 SMP2 USET,GO,KDFF/KDAA \$
137 CHKPNT KDAA \$
138 LABEL LBLSD \$
139 ADD KDAA,/KDAAM/C,N,(-1.0,0.0)/C,N,10.0.0.0)\$
140 CHKPNT KDAAM \$
141 DPD DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,:,,,,EED,EQDYN/V,N,
LUSET/V,N,LUSETD/V,N,NOTFL/V.N,NODLT/V,N,NOPSDL/V,N,NOFRL/V.
N,NONLFT/V,N,NOTRL/V,N,NOEED/C,N,/V,N,NOUE \$
142 SAVE NOEED \$
143 CONO ERROR3,NOEED \$
144 CHKPNT EEDS
145 PARAM //C,N,MPY/V,N,NEIGV/C,N,I/C,N,-1 \$
146 READ KAA,KDAAM,,,EED,USET,CASECC/LAMA,PHIA,,OEIGS/C,N,BUCKLING/V,N.
NEIGV/C,N,2\$
147 SAVE NEIGV \$
148 CHKPNT LAMA,PHIA,OEIGS\$

```
```

    RIGID FORMAT DMAP LISTING
    RIGID FORMAT 5

```

```

DMAP-DMAP INSIRUCTION
NO.
149 OFP OEIGS,LAMA,,,%//V,N,CARDNO \$
150 SAVE CARDNO \$
151 COND ERROR4,NEIGV \$
152 SDRI USET,,PHIA,,,GO,GM,,KFS,,/PHIG,,BQG/C,N,I/C,N,BKLI \$
153 CHKPNT PHIG,BQG \$
154 SOR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,, BGPDT,LAMA,BQG,PHIG,EST,,I,
OBQG1,OPHIG,OBES1,OBEF1,PPHIG/C,N,BKLI \$
155 OFP OPHIG,OBQGI,OBEFI,OBESI,,//V,N,CARDNO \$
156 SAVE CARDNO \$
157 COND P3,JUMPPLOT \$
158 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,,PPHIG,GPECT.
OBESI/PLOTX3/V,N,NSIL/V,N,LUSET/V,N,JUMPPLUT/V,N,PLTFLG/V,N,
PFILE \$
159 SAVE PFILE \$
160 PRTMSG PLOTX3//s
161 LABEL P3\$
162 JUMP FINIS \$
163 LABEL ERROR1 \$
164 PRTPARM //C,N,-1/C,N,BUCKLING \$
165 LABEL ERROR2\$
166 PRTPARM //C,N,-2/C,N,BUCKLING \$
167 LABEL ERROR3 \$
168 PRTPARM //C,N,-3/C,N,BUCKLING\$
169 LABEL ERROR4 \$
170 PRTPARM //C,N:-4/C,N,BUCKLING \$
171 LABEL ERROR5 \$
172 PRTPARM //C,N,-5/C,N,BUCKLING \$
173 LABEL ERROR6 \$

```

\section*{RIGID FORMATS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }
NASTRRANSOURCE PROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
NO.
174 PRTPARM //C,N,-6/C,N,BUCKLING
175 LABEL FINIS s
176 END \$ :

```

\subsection*{3.6.2 Description of DMAP Operations for Buckling Analysis}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations and tables for relating internal and external grid point numbers.
6. GP2 generates Element Connection Table with internal indices.
10. Go to DMAP No. 20 if no plot package is present.
11. PLTSET transforms user input into a form used to drive structure plotter.
13. PRTMSF prints error messages associated with structure plotter.
16. Fo to DMAP No. 20 if no undeformed structure plot request.
17. PLøT generates all requested undeformed structure plots.
19. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
22. GP3 generates Static Loads Table and Firid Point Temperature Table.
26. TAl generates element tables for use in matrix assembly and stress recoverv.
28. Go to DMAP No. 163 and print error message if no structural elements.
32. EMG generates structural element matrix tables and dictionaries for later assembly.
35. Go to DMAP No. 38 if no stiffness matrix is to be assembled.
36. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{g}}^{\mathrm{x}}\right]\) and Grid Point Singularity Table.
39. fo to DMAP No. 42 if no mass matrix is to be assembled.
40. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
43. Go to DMAP No. 47 if no gravity loads and no weight and balance request.
44. Go to DMAP No. 171 and print error message if no mass matrix exists.

M5. GPWG generates weight and balance information.
46. \(\emptyset F P\) formats weight and balance information and places it on the system output file for printing.
48. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
50. Go to DMAP No. 53 if no general elements.
51. SMA3 adds general elements to \(\left[K_{g g}^{x}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
55. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\) and forms enforced displacement vector \(\left\{Y_{s}\right\}\).
57. Go to DMAP No. 173 and print error message if no independent degrees of freedom are defined.
61. Go to DMAP No. 63 if no free-body supports supplied.
62. Go to DMAP No. 165 and print error message if free-body supports are present.

E4. Go to DMAP No.. 69 if general elements present.
65. GPSP determines if possible grid point singularities remain.

67．Go to DMAP No． 69 if no firid Point Singuarity Table．
68．ØFP formats table of possible grid point singularities and places it on the system output file for printing．

70．Equivalence \(\left[K_{a d}\right.\) ］to \(\left[K_{n n}\right.\) ］if no multipoint constraints．
72．Go to DMAP No． 77 if MCE1 and MCE2 have already been executed for current set of multi－ point constraints．

73．MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m_{i}} \prime R_{n}\right]\) and solves for multi－ point constraint transformation matrix \(\left[G_{m}\right]^{\prime}=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\) ．
75．MCE2 partitions stiffness matrix
\[
\left[k_{g g}\right]=\left[\begin{array}{l}
\bar{k}_{n n} \mid k_{n m} \\
\frac{k_{m n}}{}+\frac{k_{n m}}{k_{n}}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right]
\]

78．Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right.\) ］if no single－point constraints．
80．Go to DMAP No． 88 if no single－point constraints．
81．SCE1 partitions out single－point constraints
\[
\left[k_{n n}\right]=\left[\begin{array}{c|c}
k_{f f} & k_{f s} \\
\hdashline k_{s f} & k_{s s}
\end{array}\right] .
\]

84．Equivalence \(\left[K_{f f}\right.\) ］to［ \(K_{a a}\) ］if no omitted coordinates．
86．Go to DMAP No． 89 if no omitted coordinates．
：87．SMP1 partitions constrained stiffness matrix
\[
\left[k_{\mathrm{ff}}\right]=\left[\frac{\bar{k}_{\mathrm{aa}}}{k_{\mathrm{oa}}}+\frac{k_{\mathrm{ao}}}{\mathrm{k}_{\mathrm{oo}}}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction \(\left[k_{a \mathrm{a}}\right]=\left[\bar{k}_{\mathrm{ad}}\right]+\left[k_{o \mathrm{a}}^{\top}\right]\left[\mathrm{G}_{0}\right]\) ．
〔0．RBMG2 decomposes constrained stiffness matrix \(\left[\mathrm{k}_{\mathrm{aa}}\right]=\left[\mathrm{L}_{\ell \ell}\right]\left[\mathrm{u}_{\ell \ell}\right]\) ．
¢2．SSG1 generates static load vectors \(\left\{P_{g}\right\}\) ．
〔4．Equivalence \(\left\{P_{g}\right\}\) to \(\left\{P_{\ell}\right\}\) if no constraints applied．
〔6．Go to DMAP No． 99 if no constraints applied．

\section*{BUCKLING ANALYSIS}
97. SSG2 applies constraints to static load vectors
\[
\begin{aligned}
& \left\{P_{g}\right\}=\left\{\begin{array}{l}
\left.\bar{P}_{n}\right\} \\
\left.\bar{P}_{m}\right\},
\end{array}\left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{T}\right]\left\{P_{m}\right\}\right. \\
& \left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
\left.\bar{P}_{s}\right\},
\end{array}\left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f s}\right]\left\{Y_{s}\right\},\right. \\
& \left\{P_{f}\right\}=\left\{\begin{array}{l}
P_{a} \\
-P_{0}
\end{array}\right\} \text { and }\left\{P_{\ell}\right\}=\left\{P_{a}\right\}+\left[G_{o}^{T}\right]\left\{P_{o}\right\} .
\end{aligned}
\]
100. SSG3 solves for displacements of independent coordinates
\[
\left\{u_{\ell}\right\}=\left[K_{\ell \ell}\right]^{-1}\left\{P_{\ell}\right\}
\]
solves for displacements of omitted coordinates
\[
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-7}\left\{p_{0}\right\}
\]
calculates residual vector (RULV) and residual vector error ratio for independent coordinates o
\[
\begin{aligned}
\left\{\delta \mathrm{P}_{\ell}\right\} & =\left\{\mathrm{P}_{\ell}\right\}-\left[\mathrm{K}_{\ell \ell}\right]\left\{u_{\ell}\right\} \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{T}\right\}\left\{\delta \mathrm{P}_{\ell}\right\}}{\left\{\mathrm{P}_{\ell}^{\top}\right\}\left\{u_{\ell}\right\}}
\end{aligned}
\]
and calculates residual vector (RUQV) and residual vector error ratio for omitted coordinates
\[
\begin{aligned}
\left\{\delta P_{0}\right\} & =\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\} \\
\varepsilon_{0} & =\frac{\left\{u_{0}^{\top}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{\top}\right\}\left\{u_{0}\right\}}
\end{aligned}
\]
103. Go to DMAP No. 106 if residual vectors are not to be printed.
104. Print residual vector for independent coordinates (RULV)
105. Print residual vector for omitted coordinates (RUgV).

\section*{RIGİD FORMATS}
107. SDR1 recovers dependent displacements
\[
\begin{array}{ll}
\left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{\ell}\right\}+\left\{u_{0}^{0}\right\}, & \left\{\begin{array}{l}
\left.u_{f}\right\} \\
\left.-y_{s}\right\} \\
\left\{\begin{array}{c}
u_{a} \\
-u_{0}
\end{array}\right\}=\left\{u_{f}\right\},
\end{array}\right. \\
\left\{u_{n}\right\}=\left[G_{m}\right]\left\{u_{n}\right\}, & \left\{\begin{array}{c}
u_{n} \\
- \\
\left.u_{m}\right\}
\end{array}\right\}=\left\{u_{g}\right\},
\end{array}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=-\left\{p_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
\]
109. SDR2 calculates element forces and stresses (\(\emptyset E F 1, \emptyset E S 1\)) and prepares load vectors, displacement vectors and single-point forces of constraint for output (\(\varnothing\) PG1, QUGV1, PUGVI, ØOG1).
111. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
113. Go to DMAP No. 117 if no static deformed structure plots are requested.
114. PLDT generates all requested static deformed structure plots.
116. PRTMSG prints plotter data and engineering data for each deformed plot generated.
118. TAl generates element tables for use in differential stiffness matrix assembly.
119. DSMG1 generates differential stiffness matrix \(\left[K_{g g}^{d}\right]\).
121. Equivalence \(\left[K_{g g}^{d}\right]\) to \(\left[K_{n n}^{d}\right]\) if no multipoint constraints.
123. Go to DMAP No. 126 if no multipoint constraints.
124. MCE2 partitions differential stiffness matrix
\[
\left[K_{\mathrm{gg}}^{\mathrm{d}}\right]=\left[\begin{array}{l:l}
\bar{k}_{\mathrm{nn}}^{\mathrm{d}} & k_{\mathrm{nm}}^{\mathrm{d}} \\
\frac{k_{\mathrm{mn}}^{\mathrm{d}}}{} & \mathrm{~K}_{\mathrm{mm}}^{\mathrm{d}}
\end{array}\right]
\]
and performs matrix reduction \(\left[K_{n n}^{d}\right]=\left[K_{n n}^{d}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}^{d}\right]+\left[K_{m n}^{d}\right]\left[G_{m}\right]+\left[G_{m}^{T}\right]\left[K_{m m}^{d}\right]\left[G_{m}\right]\).
127. Equivalence \(\left[K_{n n}^{d}\right]\) to \(\left[K_{f f}^{d}\right]\) if no single-point constraints.
129. Go to DMAP No. 132 if no single-point constraints.
130. SCE1 partitions out single-point constraints
\[
\left[k_{n n}^{d}\right]=\left[\begin{array}{lll}
k_{f f}^{d} & k_{f s}^{d} \\
\hline k_{s f}^{d} & k_{s s}^{d}
\end{array}\right]
\]
133. Equivalence \(\left[K_{f f}^{d}\right]\) to \(\left[K_{a a}^{d}\right.\)] if no omitted coordinates.
135. Go to DMAP No. 138 if no omitted coordinates.

\section*{BUCKLING ANALYSIS}
136. SMP2 partitions constrained differential stiffness matrix
\[
\left[\dot{K}_{f f}^{\mathrm{d}}\right]=\left[\begin{array}{ccc}
\bar{k}_{\mathrm{aa}}^{\mathrm{d}} & k_{\mathrm{ao}}^{\mathrm{d}} \\
\hdashline k_{\mathrm{oa}}^{\mathrm{d}} & + & \mathrm{K}_{\mathrm{oo}}^{\mathrm{d}}
\end{array}\right]
\]
and performs matrix reduction \(\left[K_{a a}^{d}\right]=\left[\bar{K}_{a a}^{d}\right]+\left[K_{o a}^{d}\right]^{\top}\left[G_{0}\right]+\left[G_{0}\right]^{\top}\left[K_{o a}^{d}\right]+\left[G_{0}\right]^{\top}\left[K_{00}^{d}\right]\left[G_{0}\right]\).
141. DPD extracts Eigenvalue Extraction Data from Dynamics data block.
143. Go to DMAP No. 167 and print error message if no Eigenvalue Extraction Data.
146. READ extracts real eigenvalues from the equation
\[
\left[K_{\ell \ell}+\lambda K_{\ell \ell}^{d}\right]\left\{u_{\ell}\right\}=0
\]
and normalizes eigenvectors according to one of the following user requests:
1) Unit value of selected coordinate
2) Unit value of largest component
149. ØFP formats eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
151. Go to DMAP No. 169 and print error message if no eigenvalues found.
152. SDR1 recovers dependent components of the eigenvectors
\[
\begin{array}{ll}
\left\{\phi_{0}\right\}=\left[G_{0}\right]\left\{\phi_{a}\right\}, & \left\{\begin{array}{c}
\phi_{a} \\
- \\
\phi_{0}
\end{array}\right\}=\left\{\phi_{f}\right\}, \\
\left\{\begin{array}{l}
\phi_{f} \\
- \\
\phi_{s}
\end{array}\right\}=\left\{\phi_{n}\right\}, & \left\{\phi_{m}\right\}=\left[G_{m}\right]\left\{\phi_{n}\right\}, \\
\left\{\begin{array}{l}
\phi_{n} \\
-- \\
\phi_{m}
\end{array}\right\}=\left\{\phi_{g}\right\}
\end{array}
\]
and recovers single point forces of constraint \(\left\{q_{s}\right\}=\left[K_{f s}^{\top}\right]\left\{\phi_{f}\right\}\).
154. SDR2 calculates element forces and stresses (\(\emptyset B E F 1, \emptyset B E S 1\)) and prepares eigenvectors and single-point forces of constraint for output (\(\varnothing \mathrm{PHIG}, \mathrm{PPHIG}, \emptyset B Q G 1\)).
155. QFP formats tables prepared by SDR2 and places them on the system output file for printing.
157. Go to DMAP No. ? fl if no deformed (buckling) structure plots are requested.
158. PLøT generates all requested deformed (buckling) structure plots.
160. PRTMSG prints plotter data and engineering data for each deformed plot generated.
162. Go to DMAP No. 175 and make normal exit.

164 BUCKLING ANALYSIS ERR \(\emptyset R\) MESSAGE NØ. 1 - NØ STRUCTURAL ELEMENTS HAVE BEEN DEFINED.

\section*{RIGID FORMATS}
166. BUCKLING ANALYSIS ERRดR MESSAGE NØ. 2 - FREE BøDY-SUPPØRTS NØT ALLøWED.
168. BUCKLING ANALYSIS ERR@R MESSAGE NØ. 3-EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
170. BUCKLING ANALYSIS ERRØR MESSAGE N \(\emptyset .4\) - \(N \emptyset\) EIGENVALUES FØUND.
172. BUCKLING ANALYSIS ERRØR MESSAGE N \(\emptyset .5\) - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIONS.
174. BUCKLING ANALYSIS ERR \(\emptyset\) R MESSAGE \(N \emptyset .6\) - \(\mathrm{N} \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREED\(\emptyset M\) HAVE BEEN DEFINED.

\section*{BUCKLING ANALYSIS}

\subsection*{3.6.3 Automatic Output for Buckling Analysis}

The summary of the eigenvalues associated with the buckling modes and the surmary of the eigenvalue analysis performed, as described in the Normal Mode Analysis rigid format, are automatically printed.

\subsection*{3.6.4 Case Control Deck and Parameters for Buckling Analysis}

The following items relate to subcase definition and data selection for Bucking Analysis:
1. The Case Control Deck must contain at least two subcases. Subcases beyond the second are used only for output selection.
2. METHØD must appear in the second subcase to select an EIGB card from the Bulk Data Deck.
3. A static loading condition must be defined in the first subcase with a L@AD, TEMPERATURE (L@AD), or DEFØRM selection, unless all loading is specified by grid point displacements on SPC cards.
4. An SPC set must be selected above the subcase level, unless all constraints are specified on GRID cards.
5. Output requests that apply only to the solution under static load must be placed in the first subcase.
6. Output requests that apply to the buckling solution only must be placed in the second and succeeding subcases. If only two subcases exist, the output requests in the second subcase will be honored for all buckling modes.
7. Output requests that apply to both the static solution and the buckling modes may be placed above the subcase level.

The following output may be requested for Buckling Analysis:
1. Displacements and nonzero components of the static loads and single-point forces of constraint at selected grid points for the static analysis.
2. Forces and stresses in selected elements for the static loading condition.
3. Mode shapes and nonzero components of the single-point forces of constraint at selected grid points for selected modes.
4. Undeformed plot'of the structural model and mode shapes for selected buckling modes.

\section*{RIGID FORMATS}

The following parameters are used in Buckling Analysis:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed.
2. WTMASS - optional - the terms of the mass matrix are multiplied by the real value of this parameter when they are generated in SMA2.
3. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
4. CØUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE; CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

\subsection*{3.7 PIECEWISE LINEAR ANALYSIS}
3.7.1 DMAP Sequence for Piecewise Linear Analysis

RIGID FORMAT DMAP LISTING
SERIES N
RIGID format 6
NASTRAN SOURCE PROGRAMCOMPILATION dMAP-DMAP INSTRUCTION
NO.
1 begin No. 6 piecewise.linear static analysis - Series N
2 FILE QGI=APPEND/UGVI=APPEND/KGGSUM=SAVE/PGVI=APPEND \$
3 GPI GEOM1,GEOM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ V,N, NOGPDT
save luset \$
5 CHKPNT GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL \$
GP2 GEOMZ,EQEXIN/ECT \$
CHKPNT ECT \$
PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
9 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NOPCDB \$
10 COND PI,NOPCDB \$
11 PLTSEI PCDB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N, JUMPPL OT=-1 \$

12 Save nsil.jumpplot \$
13 PRTMSG PLTSETX// \$
14 PARAM ///C,N,MPY/V,N,PLTFLG/C.N,I/C,N,1 \$
15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
16 COND PI,JUMPPLOT \(\$\)
17 PLOT PLTPAR,GPSEIS,ELSEIS,CASECC,BGPDT,EQEXIN,SIL,..,/PLOTXI/ V,N, NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$

18 SAVE JUMPPLOT,PLIFLG,PFILE \(\$\)
19 PRTMSG PLotXi// \$
20 LABEL Pl \$
21 CHKPNT PLTPAR,GPSETS,ELSETS \(\$\)
22 GP3 GEOM3,EQEXIN,GEOM2/SLT,GPTT/V.N,NOGRAV \(\$\)
23 Save Nograv \$
24 PARAM //C,N,AND/V,N,SKPMGG/V,N,NOGRAV/V,Y,GRDPNT \$
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{RIGIO FORMAT DMAP LISTING SERIES N} \\
\hline \multicolumn{9}{|l|}{RIGID FCRMAT 6} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{NA S TR A N S OURCE
DMAP-DMAP INSTRUCTION}} \\
\hline & & & & & & & & \\
\hline 25 & CHKPNT & \multicolumn{7}{|l|}{SLT,GPTT \$} \\
\hline & TA1 & \multicolumn{7}{|l|}{ECT,EPT, BGPDT,SIL,GPTT,CSTM/EST,GEI,ECPT ,GPCT/V,N,LUSET/ N, NOSIMP/C,N,G/V,N,NOGENL/V,N,GENEL \$} \\
\hline 27 & SAVE & \multicolumn{7}{|l|}{NOSIMP, NOGENL, GENEL \$} \\
\hline 28 & PARAM & \multicolumn{7}{|l|}{//C,N, AND/V,N, NOELMT/V,N,NOGENL/V,N,NOSIMP S} \\
\hline 29 & COND & \multicolumn{7}{|l|}{ERROR4, NOELMT \$.} \\
\hline 30 & PURGE & \multicolumn{7}{|l|}{GPST/NOSIMP/OGPST/GENEL \$} \\
\hline 31 & CHK PNT & \multicolumn{7}{|l|}{EST,ECPT,GPCT, GEI,GPST, OGPST \$.} \\
\hline 32 & COND & \multicolumn{7}{|l|}{LBLI,NOSIMP \$} \\
\hline 33 & SMAI & \multicolumn{7}{|l|}{CSTM,MPT, ECPT,GPCT, DIT/KGGX, GPST/V,N,NOGENL/V,N,NOK4GG \$} \\
\hline 34 & CHK PNT & \multicolumn{7}{|l|}{GPST,KGGX \$} \\
\hline 35 & COND & \multicolumn{7}{|l|}{LBLI,SKPMGG \$.} \\
\hline 36 & SMAL & \multicolumn{7}{|l|}{CSTM,MPT, ECPT, GPCT,DIT/MGG, /V,Y,WTMASS=1.O/V,N,NOMGG/V,N,NO8GG/ \(C, Y\), COUPMASS/C, \(Y, C P B A R / C, Y, C P R O D / C, Y, C P Q U A D I / C, Y, C P Q U A D 2 / C, Y\), CPTRIAI/C,Y,CPTRIAZ/C,Y,CPTUBE/C,Y,CPQOPLT/C,Y,CPTRPLT/C,Y, CPTRBSC \(\$\)} \\
\hline 37 & SAVE & \multicolumn{7}{|l|}{NOMGG \$} \\
\hline 38 & CHK PN T & \multicolumn{7}{|l|}{MGG \$} \\
\hline 39 & COND & \multicolumn{7}{|l|}{LBLI,GRDPNT} \\
\hline 40 & COND & \multicolumn{7}{|l|}{ERROR3,NOMGG \$} \\
\hline 41 & GPWG & \multicolumn{7}{|l|}{BGPDT, CSTM, EQEXIN,MGG/OGPWG/V,Y,GRDPNT \(=-1 / V, Y, W T M A S S\)} \\
\hline 42 & OFP & \multicolumn{7}{|l|}{OGPWG...../l} \\
\hline 43 & LABEL & \multicolumn{7}{|l|}{LBLI} \\
\hline 44 & PLAL & \multicolumn{7}{|l|}{CSTM,MPT, ECPT,GPCT, DIT, CASECC, EST/KGGXL, ECPTNL, ESTL,ESTNL/V,N, KGGLPG/V,N,NPLALIM/V,N,ECPTNLPG/V,N,PLSETNO/V,N,NONLSTR/V,N, PLFACT \(\$\)} \\
\hline 45 & SAVE & \multicolumn{7}{|l|}{KGGLPG, NPLALIM, ECPTNLPG, PLSETNO, NONLSTR,PLFACT \$} \\
\hline 46 & COND & \multicolumn{7}{|l|}{ERROR1,ECPTNLPG \$} \\
\hline 47 & PURGE & \multicolumn{7}{|l|}{ONLES, ESTNLI/NONLSTR \$} \\
\hline
\end{tabular}

\section*{PIECEWISE LINEAR ANALYSIS}

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 6
 DMAP-DMAP INSTRUCTION NO.

48 CHKPNT KGGXL,ECPTNL,ESTL,ESTNL,ESTNL1 \(\$\)
49 PARAM //C,N,ADD/V,N,ALWAYS/C,N,-1/C,N,O \$
50 PARAM //C,N,ADD/V,N,NEVER/C,N,I/C,N,O \$

51 EQUIV KGGX,KGG/NOGENL/KGGXL,KGGL/NOGENL \$
52 CHKPNT KGG,KGGL \(\$\)

53 COND LBLII,NOGENL \$
54 SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NESIMP \$
55 CHKPNT KGG \(\$\)
56 SMA3 GEI,KGGXL/KGGL/V,N,LUSET/V,N,NOGENL/V,N,KGGLPG
57 CHKPNT KGGL \$
58 LABEL LBLII\$

59 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O\$
60 GP4 CASECC, GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,YS,USET,ASET/V,N, LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N, OMIT/V,N,REACT/V,N, NSKIP/V,N,REPEAT/V,N,NUSET/V,N,NOL/V,N,NOA/C,Y,SUBID \(\$\)

61 SAVE MPCFI,MPCF2,SINGLE, OMIT,REACT,NSKIP,REPEAT,NOSET,NOL,NOA \$
62 PARAM //C,N,AND/V,N,NOSR/V,N,SINGLE/V,N,REACT \&
63 PURGE. KRR,KLR,QR,DM/REACT/GM/MPCFI/GO,KOO,LOD,PI,UOOV,RUOV/OMIT/PS, KFS,KSS/SINGLE/QG/NOSR \$

64 CHKPNT KRR,KLR,QR,DM,GM,GO,KOD,LOO,PO,UOOV,QG,PS,KFS,KSS,USET,RG,YS, RUQV \(\$\)

65 SSGIST,BGPDT,CSTM,SIL,EST,MPT, ,MGG,CASECC,DIT/PGI/V,N, LUSET/C, N,l\$

66 CHKPNF PGI \$
67 EQUIV PGI,PL/NOSET \$
68 CHKPNT PL \$
69 COND LBL4,GENEL \$
70 GPSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
71 SAVE NOGPST \$
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 6
NASTIRANSOURCE PROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTION
NO.
72 COND LBL4,NOGPST \$
73 OFP OGPST,.,,!//\$
74 LABEL LBL4 \$
75 PARAM //C,N,ADD/V,N,PLACOUNT/C,N,1/C,N,O S
76 EQUIV KGG,KNN/MPCFI\$
77 CHKPNT KNN \$
78 COND LBL2,MPCF2\$
79 MCEL USET,RG/GM\$
80 CHKPNT GM \$
81 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O \$
82 JUMP LOOPBGN \$ LOOPBGN \$ TOP Of DMAP LOOP
84 EQUIV KGG,KNN/MPGF2\$
85 CHKPNT KNN\$
86 COND LBL2,MPCF2\$
87 MCE2 USET,GM,KGG,.,IKNN,,, \$
88 CHKPNI KNN \$
89 LABEL LBL2 \$
90 EQUIV KNN,KFF/SINGLE \$
91 CHKPNT KFF \$
92 COND LBL3.SINGLE \$
93 SCE1 USET,KNN,,./KFFF,KFS,KSS,,,\$
94 CHKPNT KFS,KSS,KFF \$
95 LABEL LBL3\$
96 EQUIV KFF,KAA/OMIT \$
97 CHKPNT KAA \$

```

\section*{PIECEWISE LINEAR ANALYSIS}
```

RIGIO FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }

```

```

    NO.
    98 COND LBL5,OMIT $
    99SMPI USET,KFF,,,/GO,KAA,KGC,LOO,,,,.$
    100 CHKPNT GO,KAA,KOO,LOO \$
101 LABEL LBL5\$
102 EQUIV KAA,KLL/REACT \$
103 CHKPNT KLL \$
104 COND LBLG,REACT\$
105 RBMG1 USET,KAA,/KLL,KLR,KRR,.. \$
106 CHKPNT KLL,KLR,KRR \$
107 LABEL LBL6\$
108 DECOMP KLL/LLL,/C,N,I/C,N,O/V,N,MINDIAGK/V,N,DETKLLXX/V,N,IDETKLLX/V.
N,SINGKLLX\$
109 SAVE SINGKLLX \$
110 COND LOOPENDA,SINGKLLX \$
lll CHKPNT LLL\$
112 CCND LBL7,REACT \$
113 RBMG3 LLL,KLR,KRR/DM\$
114 CHKPNT DM \$
115 LABEL L.BL7 \$
116 ADDD PGI,IPG/V,N,PLFACT\$
117 CHKPNT PG \$
118 COND LBLIO,NOSET S
119 SSG2 USET,GM,YS,KFS,GO,DM,PG/QR,PO,PS,PL \$
120 CHKPNT QR,PO,PS,PL \$
121 LABEL LBLIO\$
122 SSG3 LLL,KLL,PL,LOO,KOO,PO/ULV,UOOV,RULV,RUOV/V,N,OMIT/V,Y,IRES=-1/
V,N,PLACOUNT/V,N,EPSI \$

```
```

    RIGID FORMAT OMAP LISTING
    SERIES N
    RIGID FORMAT }
    NASTRRANSOURCEPPROGRAMCOMPMILATION
    DMAP-DMAP INSIRUCTION
NO.
123 SAVE EPSI\$
124 CHKPNT ULV,UOOV,RULV,RUOV \$
125 COND LBL9,IRES \$
126 MATGPR GPL,USET,SIL,RULV//C,N,L \$
127 MATGPR GPL,USET,SIL,RUOV//C,N,O\$
128 LABEL LBL9 \$
129 SDRI USET,PG,ULV,UOOV,YS,GO,GM,PS,KFS,KSS,QR/DELTAUGV,DELTAPG,
DELTAQG/C,N,I/C,N,STATICS \$
130 CHKPNT DELTAUGV,DELTAPG,DELTAQG \$
131 PLAZ DELTAUGV,OELTAPG,DELTAQG/UGVI,PGVI,OGI/V,N,PLACOUNT \$
132 SAVE PLACOUNT \$
133 CHKPNT UGVI,QGI,PGVI \$
134 EQUIV ESTNL,ESTNLI/NEVER/ECPTNL,ECPTNLI/NEVER \$
135 COND PLALBLZA,NONLSTR \$
136 PLA3 CSTM,MPT,DIT,DELTAUGV,ESTNL,CASECC/ONLES,ESTNLINV,N,PLACOUNT/
V,N,PLSETNO \$
137 CHKPNT ESINLI \$
138 OFP ONLES,.,',//V,N,CARDNO \$
139 SAVE CARDNO \$
140 LABEL PLALBL2A \$
141 PARAM //C,N,SUB/V,N,DIFF/V,N,NPLALIM/V,N,PLACOUNT \$
142 COND LOOPEND,DIFF\$
143 PLA4 CSTM,MPT,ECPTNL,GPCT,OIT,DELTAUGV/KGGNL,ECPTNLI/N,N,PLACOUNT/V,
N,PLSETNO/V,N,PLFACT.S
144 SAVE PLACOUNT,PLSETNO,PLFACT \$
145 CHKPNT KGGNL,ECPTNLI s
146 EQUIV KGGNL,KGGSUM/KGGLPG \$
147 CHKPNT KGGSUM s

```
RIGIDFORMAT DMAP LISTING
SERIES
RIGIDFORMAT 6
OMAP NAMS
NO.
148 CONA INSTRUCTION
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 6
NASTRRANSOURCEPROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
NO.
173 JUMP FINIS \$
174 LABEL ERRORL\$
175 PRTPARM //C,N,-1/C,N,PLA \&
176 LABEL ERROR2 s
177 PRTPARM //C,N,-2/C,N,PLA \&
178 LABEL ERROR3 \$
179 PRTPARM //C,N,-3/C,N,PLA \$
180 LABEL ERROR4\$
181 PRTPARM //C,N,-4/C,N,PLA\$
182 LABEL FINIS\$
183 END \$

```

\section*{PIECEWISE LINEAR ANALYSIS}

\subsection*{3.7.2 Description of DMAP Operations for Piecewise Linear Analysis}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
6. GP2 generates Element Connection Table with internal indices.
10. Go to DMAP No. 20 if no plot package is present.
11. PLTSET transforms user input into a form used to drive structure plotter.
13. PRTMSG prints error messages associated with structure plotter.
16. Go to DMAP No. 20 if no undeformed structure plot request.
17. PLøT generates all requested undeformed structure plots.
19. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
22. GP3 generates Static Loads Table and Grid Point Temperature Table.
26. TAl generates element tables for use in matrix assembly and stress recovery.
29. Go to DMAP No. 180 and print error message if no elements have been defined.
32. Go to DMAP No. 43 if there are no structural elements.
33. SMA1 generates stiffness matrix \(\left[K_{g g}^{x}\right]\) and Grid Point Singularity Table.
35. Go to DMAP No. 43 if no gravity loads and no weight and balance request.
36. SMA2 generates mass matrix \(\left[\mathrm{M}_{\mathrm{gg}}\right]\).
39. Go to DMAP No. 43 if no weight and balance request.
40. Go to DMAP No. 178 and print error message if no mass matrix exists.
41. GPWG generates weight and balance information.
42. ØFP formats weight and balance information and places it on the system output file for printing.
44. PLAl extracts the linear terms from \(\left[K_{g g}^{x}\right]\) to give \(\left[K_{g g}^{X \ell}\right]\), extracts the nonlinear entries from the Element Connection and Properties Table to give ECPTNL, and separates the linear and nonlinear entries in the Element Summary Table to give ESTL and ESTNL.
46. Go to DMAP No. 174 and print error message if no elements have a stress dependent moduíus of elasticity.
51. Equivalence \(\left[K_{g g}^{X}\right]\) to \(\left[K_{g g}\right]\) and \(\left[K_{g g}^{x \ell}\right]\) to \(\left[K_{g g}^{\ell}\right]\) if no general elements.
53. Go to DMAP No. 58 if no general elements.
54. SMA3 adds general elements to \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
56. SMA3 adds general elements to \(\left[K_{g g}^{x \ell}\right]\) to obtain stiffness matrix of linear elements \(\left[K_{g g}^{\ell}\right]\).
60. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
65. SSG1 generates total static load vector \(\left\{P_{g}^{1}\right\}\).
67. Equivalence \(\left\{P_{g}^{1}\right\}\) to \(\left\{P_{\ell}\right\}\) if no constraints applied.
69. Go to DMAP No. 74 if general elements present.
70. GPSP determines if possible grid point singularities remain.
72. Go to DMAP No. 74 if no Grid Point Singularity Table.
73. QFP formats the table of possible grid point singularities and places it on the system output file for printing.
76. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) if no multipoint constraints.
78. Go to DMAP No. 89 if no multipoint constraints.
79. MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m} ; R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-7}\left[R_{n}\right]\).
82. Beginning of loop for Piecewise Linear Analysis.
84. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) if no multipoint constraints.
86. Go to DMAP No. 91 if no multipoint constraints.
87. MCE2 partitions stiffness matrix
\[
\left[k_{g g}\right]=\left[\begin{array}{ll}
\bar{k}_{n n} & k_{n m} \\
\frac{k_{m n}}{}+\frac{k_{m m}}{}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{T}\right]\left[K_{m m}\right]\left[G_{m}\right]
\]
90. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right]\) if no single-point constraints.
92. Go to DMAP No. 95 if no single-point constraints.
93. SCEI partitions out single-point constraints
\[
\left[k_{n n}\right]=\left[\begin{array}{c:c}
k_{\mathrm{ff}} & k_{\mathrm{fs}} \\
\hdashline k_{\mathrm{sf}} & k_{\mathrm{ss}}
\end{array}\right]
\]
96. Equivalence \(\left[K_{f f}\right]\) to \(\left[K_{a a}\right.\)] if no omitted coordinates.
98. Go to DMAP No. 101 if no omitted coordinates.
99. SMP1 partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{l:l}
\bar{k}_{a a} & k_{a o} \\
\hline k_{o a} & k_{o o}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\) and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[\mathrm{G}_{0}\right]\).
\(3.7-10(12 / 31 / 74)\)

\section*{PIECEWISE LINEAR ANALYSIS}
102. Equivalence [\(K_{a a}\)] to [\(K_{\ell \ell}\)] if no free-body supports.
104. Go to DMAP No. 107 if no free-body supports.
105. RBMG1 partitions out free-body supports
\[
\left[k_{a a}\right]=\left[\begin{array}{c:c}
k_{l \ell} & k_{l r} \\
\hdashline k_{r l} & k_{r r r}
\end{array}\right]
\]
108. DECØMP decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\).
110. Go to DMAP No. 166 if stiffness matrix \(\left[K_{\ell \ell}\right.\)] is singular (i.e., local plasticity).
112. Go to DMAP No. , 117 if no free-body supports.
113. RBMG3 forms rigid body transformation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right],
\]
calculates rigid body check matrix
\[
[x]=\left[K_{r r}\right]+\left[K_{\ell r}^{\top}\right][D]
\]
and calculates rigid body error ratio
\[
\varepsilon=\frac{\|x\|}{\left\|k_{r r}\right\|}
\]
116. Multiply total load vector \(\left\{P_{g}\right\}\) by factor to obtain applied load vector \(\left\{P_{g}\right\}\) for current
loop.
118. Go to DMAP No. 121 if no constraints applied.
119. SSG2 applies constraints to static load vector for current loop.
\[
\begin{aligned}
& \left\{P_{g}\right\}=\left\{\begin{array}{l}
\bar{P}_{n} \\
\left.-\bar{P}_{m}\right\}, \quad\left\{\dot{P}_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{\top}\right]\left\{P_{m}\right\}, ~, ~, ~
\end{array}\right. \\
& \left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
\bar{P}_{s}
\end{array}\right\}, \quad\left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f s}\right]\left\{Y_{s}\right\}, \\
& \left\{P_{f}\right\}=\left\{\begin{array}{c}
\bar{P}_{a} \\
P_{0}
\end{array}\right\}, \quad\left\{P_{a}\right\}=\left\{\bar{P}_{a}\right\}+\left[{ }_{G_{0}} \bar{T}_{0}\left\{P_{0}\right\},\right. \\
& \left\{P_{a}\right\}=\left\{\begin{array}{l}
P_{\ell} \\
P_{r}
\end{array}\right\}
\end{aligned}
\]
and calculates incremental determinate forces of reaction for current loop
\[
\left\{q_{r}\right\}=-\left\{P_{r}\right\}-\left[D^{T}\right]\left\{P_{\ell}\right\}
\]
122.. SSG3 solves for displacements of independent coordinates
\[
\left\{u_{\ell}\right\}=\left[\mathrm{K}_{\ell \ell}\right]^{-1}\left\{\mathrm{P}_{\ell}\right\},
\]
solves for displacements of omitted coordinates
\[
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{\mathrm{P}_{0}\right\}
\]
calculates residual vector (RULV) and residual vector error ratio for independent coordinates
\[
\begin{aligned}
\left\{\delta P_{\ell}\right\} & =\left\{P_{\ell}\right\}-\left[K_{\ell \ell}\right]\left\{u_{\ell}\right\} . \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{\top}\right\}\left\{\delta P_{\ell}\right\}}{\left\{P_{\ell}^{\top}\right\}\left\{u_{\ell}\right\}} .
\end{aligned}
\]
and calculates residual vector (RU@V) and residual vector error ratio for omitted coordinates.
\[
\begin{aligned}
\left\{\delta P_{0}\right\} & =\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\}, \\
\varepsilon_{0} & =\frac{\left\{u_{0}^{\top}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{\top}\right\}\left\{u_{0}^{0}\right\}}
\end{aligned}
\]
125. Go to DMAP No. 128 if residual vectors are not to be printed.
126. Print residual vector for independent coordinates (RULV)
127. Print residual vector for omitted coordinates (RUQV).
129. SDR1 recovers dependent incremental displacements for current loop
\[
\begin{array}{ll}
\left\{\begin{array}{l}
u_{\ell} \\
\hdashline u_{r}
\end{array}\right\}=\left\{u_{a}\right\}, & \left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{a}\right\}+\left\{u_{o}^{0}\right\}, \\
\left\{\begin{array}{l}
u_{a} \\
-u_{0}
\end{array}\right\}=\left\{u_{f}\right\}, & \left\{\begin{array}{c}
u_{f} \\
y_{s}
\end{array}\right\}=\left\{u_{n}\right\}, \\
\left\{u_{m}\right\}=\left[G_{m}\right]\left\{u_{n}\right\}, & \left\{\begin{array}{l}
u_{n} \\
\left.\hdashline u_{m}\right\}
\end{array}\right\}=\left\{u_{g}\right\},
\end{array}
\]
and recovers incremental single-point forces of constraint for current loop
\[
\left\{\delta q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}-
\]
131. PLA2 adds the incremental displacement vector and the incremental single-point forces of constraint vector for the current loop to the accumulated sum of these vectors.
\[
\begin{aligned}
& \left\{u_{g_{i+1}}\right\}=\left\{\delta u_{g_{i}}\right\}+\left\{u_{g_{i}}\right\} \quad \text { and } \\
& \left\{q_{g_{i+1}}\right\}=\left\{\delta q_{g_{i}}\right\}+\left\{q_{g_{i}}\right\} \text {. }
\end{aligned}
\]

\section*{PIECEWISE LINEAR ANALYSIS}
134. Allocate separate files for ESTNL and ESTNLI and for ECPTNL and ECPTNLT.
135. Go to DMAP No. 140 if no stress output requested for nonlinear elements.
136. PLA3 calculates incremental stresses in nonlinear elements for which an output request has been made and updates the accumulated stresses in these elements.
138. ØFP formats the accumulated stresses in nonlinear elements and places them on the system output file for printing.
142. Go to DMAP No. 164 if all loading increments have been completed.
143. PLA4 generates stiffness matrix for nonlinear elements and updates stress information in ECPTNL.
146. Equivalence \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{n} \ell}\right]\) to \(\left[\mathrm{K}_{g g}\right]\) if all elements are nonlinear.
148. Go to DMAP No. 151 if all elements are nonlinear.
149. Add stiffness matrix for nonlinear elements to stiffness matrix for linear elements
\[
\left[K_{g g}^{n \ell}\right]+\left[K_{g g}^{\ell}\right]=\text { KGGSUM }
\]
152. Equivalence KGGSUM to [\(\mathrm{K}_{\mathrm{gg}}\)] for next pass through loop.
154. Equivalence existing element tables to updated tables for next pass through loop.
156. Go to DMAP No. 159 - next two instructions are never executed.
157. PLA2 is used to define KGGSUM.
158. PLA2 is used to define ESTNL1 and ECPTNLT.
160. GO to DMAP No. 83 if additional load increments need to be processed.
161. Go to DMAP No. 176 and print error message if more than 100 loops.
162. End of loop for Piecewise Linear Analysis when local plasticity occurs in \(\mathrm{K}_{\text {l }}\).
163. PIECEWISE LINEAR ANALYSIS ERRØR MESSAGE NØ. 5 - STIFFNESS MATRIX SINGULAR DUE T MATERIAL PLASTICITY.
164. End of loop for Piecewise Linear Analysis.
165. SDR2 calculates element forces and stresses for linear elements (\(\varnothing E F 1, \emptyset E S 1\)) and prepares load vectors, displacement vectors and single-point forces of constraint for output (0 , ØUGVI, PUGVI, ØQG1).
166. \(\emptyset F P\) formats tables prepared by SDR2 and places them on the system output file for printing.
168. Go to DMAP No. 172 if no deformed structure plots are requested.
169. PLøT generates all requested deformed structure plots.
171. PRTMSG prints plotter data and engineering data for each deformed plot generated.
173. Go to DMAP No. 182 and make normal exit.
175. PIECEWISE LINEAR ANALYSIS ERRØR MESSAGE N \(\emptyset\). 1 - N \(\emptyset\) N \(\emptyset N L I N E A R ~ E L E M E N T S ~ H A V E ~ B E E N ~ D E F I N E D . ~\)
177. PIECEWISE LINEAR ANALYSIS ERRØR MESSAGE NØ. 2 - ATTEMPT Tø EXECUTE MØRE THAN 100 LØØPS.
179. PIECEWISE LINEAR ANALYSIS ERRØR MESSAGE N@. 3-MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIQNS.
181. PIECEWISE LINEAR ANALYSIS ERRØR MESSAGE NØ. 4 - N \(\emptyset\) ELEMENTS HAVE BEEN DEFINED.

\section*{PIECEWISE LINEAR ANALYSIS}

\subsection*{3.7.3 Case Control Deck and Parameters for Piecewise Linear Analysis}

The following items relate to subcase definition and data selection for Piecewise Linear Analysis:
1. The Case Control Deck must contain one and only one subcase.
2. A static loading condition must be defined with a LØAD selection.
3. An SPC set must be selected unless all constraints are specified on GRID cards.
4. PLCDEFFICIENT must appear either to select a PLFACT set from the Bulk Data Deck or to explicitly select the default value of unity.

The following output may be requested for Piecewise Linear Analysis:
1. Accumulated sums of displacements and nonzero components of the static loads and singlepoint forces of constraint at selected grid points for each load increment.
2. Stresses in selected elements. If an element is composed of a nonlinear material the accumulated stress will be output for each load increment. Stresses in linear elements are only calculated for the total load.
3. Undeformed plot of the structural model and deformed plots for each load increment.

The following parameters are used in Piecewise Linear Analysis:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed.
2. WTMASS - optional - the terms of the mass matrix are multiplied by the real value of this parameter when they are generated in SMA2.
3. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
4. CØUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

\section*{DIRECT COMPLEX EIGENVALUE• ANALYSIS}

\subsection*{3.8 DIRECT COMPLEX EIGENVALUE ANALYSIS}
3.8.1 DMAP Sequence for Direct Complex Eigenvalue Analysis

```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }
    ```

```

UMAP-DMAP INSIRUCTION
NO.

| 26 | A1 | ECT,EPT, OGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET./ V,N, NOS IMP $=-1 / C, N, 1 / V, N$, NOGENL $=-1 / V, N, G E N E L \$$ |
| :---: | :---: | :---: |
| 27 | SAVE | - NOSIMP, NOGENL, GENEL \$ |
| 28 | PURGE | K4GG, GPST, OLPST,MGG, BGG,K4NN,K4FF,K4AA, MNN,MFF,MAA,BNN,BFF, BAA, KGGX/NOSIMP / OGPST/GENEL \$ |
| 29 | CHKPNT | EST, GPECT, GEI,K4GG,GPST,MGG, BGG,KGÖX,UGPST, K4NN,K4FF,K4AA, MNN, MFF, MAA, BNN, BFF,BAA \$ |
| 30 | COND | LELI,NOSIMP\$ |
| 31 | . PARAM | //C, $\mathrm{N}, \mathrm{ADU} / \mathrm{V}, \mathrm{N}, \mathrm{NOKGGX/C,N,1/C,N,O} \mathrm{\$}$ |
| 32 | PARAM | $/ / C, N, A D U / V, N, N O M G G / C, N, 1 / C, N, O . \$$ |
| 33 | PARAM | $/ / C, N, A O D / V, N, N O B G G=-1 / C, N, 1 / C, N, O \$$ |
| 34 | PARAM | //C:N:ADD/V.N, NOK4GG/C, N, 1/C, $\mathrm{N}, \mathrm{O}$ \$ |
| 35 | EMG | EST, CSTM,MPT, DIT,GEUM2,/KELM,KDICT,MELM,MDICT, BELM,BDICT/V,N, NOKGGX/V,V,NUMGG/V,N,NOBGG/V,N,NUK4GG/C,N,/C,Y,COUPMASS/C,Y, CPBAR/C, $Y, C P R O D / C, Y, C P Q U A D I / C, Y, C P Q U A D 2 / C, Y, C P I R I A I / C, Y$, CPTRIAZ/C, Y,CPTUBE/C,Y,CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSC \$ |
| 36 | SAVE | NOKGGX,NUMGG, NUBGG, NUK4GG \$ |
| 37 | CHKPNT | KELM, KOICT,MELM, MDICT, BELM, BUICT \$ |
| 33 | COND | LBLKGGX,NUKGGX \$ |
| 39 | EMA | GPECT,KDICT,KELM/KGGX,GPST \$ |
| 40 | CHKPNT | KGGX,GPST \$ |
| 41 | LABEL | LBLKGGX \$ |
| 42 | COND | LBLMGG;NOMGG \$ |
| 43 | EMA | GPECT, MDICT, MELM/MGG, $C$ C, $N,-1 / C, Y, W T M A S S=1.0 \$$ |
| 44 | CHKPNT | MGG \$ |
| 45 | LABEL | LBLMGG $\$$ |
| 46 | COND | LBLBGG,NUBGG $\$$ |
|  | EMA | GPECT, BDICT, BELM/BGG, \$ |
| 48 | CHKPNT | BGG \$ |
| 49 | LABEL | LBLBGG \$ |
| 50 | COND | LBLK4GG,NOK4GG \$ : |

```
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }

```

```

DMAP-DMAP INSTRUCTION
NO.
51 EMA GPECT,KOICT,KELM/K4GG,/V,N,NUK4GG \$
52 CHKPNT K4GG \$
53 LABEL LBLK4GG \$
5 4 ~ P U R G E ~ M N N , M F F , M A A / N U M G G ~ \$ ~
55 PURGE BINN,BFF,BAA/NOBGG \$
56 CHKPNT MGG,MNN,MFF,MAA,BGG,BNN,BFF,BAA \$
57 COND LBLI.GKDPNT \$
5% CONO. ERROR3,NOMGG \$
59 GPWG GGPDT,GSTM,EQEXIN,MGG/OGPWG/V,Y,GROPNT/C,Y,WTMASS \$
GO OFP OCPWG,FI,//\$
61 LABEL LÓLl\$
62 EQUIV KGGX,KGG/NUGENL \$
63 CHKPNT KGG \$
64 COND LBL11,NUGENL \$
65SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP \$
66 CHKPNT KÖG \$
67 LABEL LBLL1\$
68 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O \$
69<P4 CASECC,GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,:USET,ASET/, V,N,
LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,HEACT/V,N,
NSKIP/V,N, KEPEAT/V,N,NUSET=-L/V,N;NUL/V,N,NUA=-1/ C,Y,SUBID \$
70 SAVE MPCFI,MPCF2,SINGLE,OMIT,NSKIP,NOSET,REACT,REPEAT,NOL,NUA \$
71 PURGE GM,GMO/MPGFI/GU,GUD/UMIT/KFS,QPC/SINGLE \$
72 CHKPNT GM,GMD,RG,GO,GOD,KFS,QPC \$
73 COND LBL4,GENEL \$
74 COND LBL4,NOSIMP \$
75@GSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
76 SAVE NUGPST \$
77 COND LBL4,NOGPST \$

```
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 7
    ```

```

DMAP-UMAP INSTRUCTION
NO.
78 OFP UGPST:I,:,//\$
79 LABEL LBL4\$
80 EQUIV KGG,KNN/MPCFL/MGG,MNN/MPCF1// BGG;ENN/MPCF1/K4GG,K4NN/MPCFL \$
81 CHKPNT KNN,MNN,BNN,K4NN \$
82 CUND LULZ,MPCF2 \$
83 MCELSSET,RG/GM \$
84 CHKPNT GM \$
85 MCE2 USET,GM,KGG,MGG,BGG,K4GG/KNN,MNN,BNN,K 4NN \$
86 CHKPNT KNN,MNN,BNN,K4NN\$
87 LABEL LBLZ \$
80 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE/BNN,BFF/SLNGLE/K4NN,K4FF/SINGLE \$
89 CHKPNY KFF,MFF.BFF.K4FF \$
90 GONO LBL3,SINGLE \$
91SCE1 USET,KNN,MNN,BNN,K4NN/KFF,KFS,,MFF,BFF,K4FF \$
92 CHKPNT KFS,KFF,MFF,GFF,K4FF \$
93 LABEL LBL3 \$
94 EQUIV KFF,KAA/LMII/ MFF,MAA/UMII/BFF,BAA/UMIT/K4FF,K4AA/OMIT \&
95 CHKPNT KAA,MAA,BAA,K4AA \$
96 COND LBLS.UMIT \$
97SMPL USET,KFF,,,/GU,KAA,KOU,LUU,,,,,\$
98 CHKPNI GU,KAA \$
99 COND LBLM,NOMGG '\$
100SSMP2 USET,GO,MFF/MAA \$
101 CHKPNT MAA \$
102 LABEL LBLM\$
103 COND LBLB,NOBGC \$
104 SMP2 USET,GU,BFF/BAA \$
105 CHKPNT BAA \$

```


RIGID FORMAT DMAP LISTING
SERIES N
RIGIO FORMAT 7
NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTIGN NU.
\begin{tabular}{|c|c|c|}
\hline 132 & CHKPNI & CASEXX \$ \\
\hline 133 & MTRXIN & CASEXX, MAT POUL,EQDYN, ,TFPOUL/K2OPP, M2DPP,B2PP/V,N,LUSETO/V,N, NUK2OPP/V,N,NOM2DPP/V,N,NOB2PP \$ \\
\hline 134 & save & NOK2DPP, NUM2DPP, NUB2PP \$ \\
\hline 135 & PARAM & //C,N,AND/V,N,NOM2PP/V,N,NOABFL/V,N,NOM2DPP \$ \\
\hline 130 & PARAM & \(/ / L, N, A N D / V, N, N U K 2 P P / V, N, N U F L / V, N, N O K 20 P P \$\) \\
\hline 137 & EuUIV & M2OPP, M2PP/NOABFL \$ \\
\hline 138 & AOD5 & ABFL,KBFL, K2DPP, , /K2PP/C,N,(-1.0,0.0) \$ \\
\hline 139 & COND & LBLFL2,NUABFL \$ \\
\hline 140 & TKNSP & ABFL/ABFLT \$ \\
\hline 141 & ADO & ABFLT, M2DPP/M2PP/V,N,MFACT \$ \\
\hline 142 & Label & LBLFL2 \$ \\
\hline 143 & PARAM & \(/ / C, N, A N D / V, N, B D E B A / V, N, N O U E / V, N, N O B 2 P P \$\) \\
\hline 144 & PARAM & \(/ / C, N, A N D / V, N, M D E M A / V, N, N O U E / V, N, N U M 2 P P \$\) \\
\hline 145 & PARAM & \(/ / C, N, A N O / V, N, K D E K 2 / V, N, N O G E N L / V, N, N O S I M P ~ \$ ~\) \\
\hline 146 & PURGE & K20D/NUK2PP/M2DD/NOM2PP/B2UD/NUB2PP \$ \\
\hline 147 & EQUIV & M2PP, M2OU/NOA/B2PP,B2DD/NOA/K2PP,K2DD/NOA/MAA,MDD/MDEMA/BAA, BDD/BDEBA \$ \\
\hline 148 & CHKPNJ & K2PP,M2PP, \(22 P P, K 200, M 2 D 0, B 200, B 00, M D D \$\) \\
\hline 149 & COND & LBLI8,NOGPDT \$ \\
\hline 150 & GKAD & USETO,GM,GO,KAA, BAA,MAA,K4AA,K2PP,M2PP,B2PP/KDD,BUD;MDD,GMD, GOD,K2DO,M2OD,B2UD/C,N,CMPLEV/C,N,DISP/C,N,DIRECT/C,Y,G=O.O/C, \(N, O .0 / C, N, O . O / V, N, N O K 2 P P / V, N, N U M 2 P P / V, N, N O B 2 P P / \quad V, N, M P C F 1 / V\), N,SINGLE/V,N,UMIT/V,N,NOUE/V,N,NOK4GG/V,N,NUBGG/V,N,KDEK2/C,N, -1 \$ \\
\hline 151 & LABEl & LBL18\$ \\
\hline 152 & EquIV & B2DD.BUD/NUBGG/ M200,MDD/NOSIMP/ K2DO,KDD/KDEK2 \$ \\
\hline 153 & CHKPNT & KDU, 300, MOD,GUD,GMD \$ \\
\hline 154 & COND & ERRURI, NOEED \$ \\
\hline 155 & CEAD & KDD, BOD, MDD, EED, CASEXX/PHID, CLAMA, OCEIGS/V,N,EIGVS S \\
\hline 156 & SAVE & EIGVS \(\$\) \\
\hline
\end{tabular}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }
    NASTRRANSUURCE PROGRAMGUMPILLATIGN
    DMAP-UMAP INSTRUCTIUN
NU.
157 CHKPNT PHID,CLAMA,UCEIGS \$
158 OFP OCEIGS,CLAMA,.,.//V,N,CARDNO \$
159 SAVE CARUNO \$
160 COND LaLIG,EIGVS\$
161 VUR CASEXX,EQOYN,USETD,PHID,CLAMA,,/OPHID,/G,N,GEIGN/C,N,DIRECT/C,
N,O/V,N,NOU/V,N,NOP/C,N,O \$
162 SAVE NUD,NOP \$
163 COND LBLIS,NOU \$
164 UFP UPHID,.,.,//V,N,GARDNU \$
165 SAVE CARDNO \$
166 LABEL LBLI5\$
167 COND LBL16,NOP \$
168 EQUIV PHID,CPHIP/NOA \$
169 COND LBLIT,NUA \$
170 SORI USETD,, PHID,:,GOD,GMD,,KFS,,/CPHIP,,QPC/C,N,I/C,N,DYNAMICS \$
171 LABEL LBLI7\$
172 CHKPNT CPHIP,QPC \$
173 SOR2 CASEXX,CSTM,MPT,DIT,EQOYN,SILD,,,,CLAMA,QPC,CPHIP,EST,,/,OQPC1,
OCPHIP,OESCI,OEFCI,/C,N,CEIG \$
174 UFP OCPHIP,OQPGL,OEFCL,OESC1,,//V,N,CARDNO \$
175 SAVE CARONG \$
176 LABEL LBLLO \$
177 CUND FINIS,REPEATE\$
178 REPT LBL13,100 \$ ERROR2 \$ Bottom of DMAP Loop
180 JUMP FINIS\$
181 LABEL ERROR2 \$
182 PRTPARM //C,N,-2/C,N,UIRCEAD \$
183 LABEL ERRORI \$

```

\section*{RIGID FORMATS}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }
    NASTRRANSOURGE PROGGRAMGUMPILLATIUN
    DMAP-UMAP INSTRUCTION
NO.
104 PRTPARM //C,N%-I/C,N,OIRCEAD \$
185 LABEL ERROR3 \$
186 PRTPARM //C,N,-3/C,N,DIRCEAD \$
187 LABEL FINIS \$
188 END \$

```

\subsection*{3.8.2 Description of DMAP Operations for Direct Complex Eigenvalue Analysis}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
7. Go to DMAP No. 110 if only Direct Matrix Input.
8. GP2 generates Element Connection Table with internal indices.
12. Go to DMAP No. 22 if no plot package is present.
13. PLTSET transforms user input into a form used to drive structure plotter.
15. PRTMSG prints error messages associated with structure plotter.
18. Go to DMAP No. 22 if no undeformed structure plot request.
19. PLøT generates all requested undeformed structure plots.
21. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
24. GP3 generates Grid Point Temperature Table.
26. TAl generates element tables for use in matrix assembly and stress recovery.
30. Go to DMAP No. 61 if there are no structural elements.
35. EMG generates structural element matrix tables and dictionaries for later assembly.
38. Go to DMAP No. 41 if no stiffness matrix is to be assembled.
39. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{X}}\right]\) and Grid Point Singularity Table.
42. Go to DMAP No. 45 if no mass matrix is to be assembled.
43. EMA assembles mass matrix \(\left[\mathrm{M}_{\mathrm{gg}}\right]\).
46. Go to DMAP No. 49 if no viscous damping matrix.
47. EMA assembles viscous damping matrix \(\left[\mathrm{B}_{\mathrm{gg}}\right]\).
50. Go to DMAP No. 53 if no structural damping matrix.
51. EMA assembles structural damping matrix \(\left[K_{g g}^{4}\right]\).
57. Go to DMAP No. 61 if no weight and balance request.
58. Go to DMAP No. 185 and print error message if no mass matrix exists.
59. GPWG generates weight and balance information.
60. ØFP formats the weight and balance information and places it on the system output file for printing.
62. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
64. Go to DMAP No. 67 if no general elements.
65. SMA3 adds general elements to \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
69. GP4 generates flags defining members of various displacement sets (USET) and forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
73. Go to DMAP No. 79 if general elements present.
74. Go to DMAP No. 79 if no structural elements.
75. GPSP determines if possible grid point singularities remain.
77. Go to DMAP No. 79 if no structural elements.
78. ØFP formats table of possible grid point singularities and places it on the system output file for printing.
80. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\), \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right],\left[B_{g g}\right]\) to \(\left[B_{n n}\right]\) and \(\left[K_{g g}^{4}\right]\) to \(\left[K_{n n}^{4}\right]\) if no multipoint constraints.
82. Go to DMAP No. 87 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
83. MCE1 partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m} \mid R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
85. MCE2 partitions stiffness, mass and damping matrices
\[
\begin{aligned}
& {\left[K_{g g}\right]=\left[\begin{array}{l:l}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right], \quad\left[M_{g g}\right]=\left[\begin{array}{l:l}
\bar{M}_{n n} & M_{n m} \\
\hdashline M_{m n} & M_{m m}
\end{array}\right],} \\
& {\left[B_{g g}\right]=\left[\begin{array}{l:l}
\bar{B}_{n n} & B_{n m} \\
\hline B_{m n} & B_{m m}
\end{array}\right] \quad \text { and } \quad\left[K_{g g}^{4}\right]=\left[\begin{array}{l|l}
\bar{K}_{n n}^{4} & k_{n m}^{4} \\
\hdashline k_{m n}^{4} & \frac{K_{n m}^{4}}{4}
\end{array}\right]}
\end{aligned}
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right],} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right],} \\
& {\left[B_{n n}\right]=\left[\bar{B}_{n n}\right]+\left[G_{m}^{\top}\right]\left[B_{m n}\right]+\left[B_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[B_{m m}\right]\left[G_{m}\right],} \\
& {\left[K_{n n}^{4}\right]=\left[\bar{K}_{n n}^{4}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}^{4}\right]+\left[K_{m n}^{4}\right]^{\top}\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}^{4}\right]\left[G_{m}\right] .}
\end{aligned}
\]
88. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right],\left[M_{n n}\right]\) to \(\left[M_{f f}\right],\left[B_{n n}\right]\) to \(\left[B_{f f}\right]\) and \(\left[K_{n n}^{4}\right]\) to \(\left[K_{f f}^{4}\right]\) if no singlepoint constraints.
90. Go to DMAP No. 93 if no single-point constraints.

\section*{DIRECT COMPLEX EIGENVALUE ANALYSIS}
91. SCE1 partitions out single-point constraints
\[
\begin{aligned}
& {\left[k_{n n}\right]=\left[\begin{array}{l:l|l}
k_{f f} & k_{f s} \\
\hdashline k_{s f} & k_{s s}
\end{array}\right], \quad\left[M_{n n}\right]=\left[\begin{array}{l:l}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right],} \\
& {\left[B_{n n}\right]=\left[\begin{array}{l:l|l}
B_{f f} & B_{f s} \\
\hdashline B_{s f} & B_{s s}
\end{array}\right] \quad \text { and } \quad\left[k_{n n}^{4}\right]=\left[\begin{array}{l:l}
k_{f f}^{4} & k_{f s}^{4} \\
\hdashline k_{s f}^{4} & k_{s s}^{4}
\end{array}\right],}
\end{aligned}
\]
94. Equivalence \(\left[K_{f f}\right]\) to \(\left[K_{a a}\right]\), \(\left[M_{f f}\right]\) to \(\left[M_{a a}\right],\left[B_{f f}\right]\) to \(\left[B_{a a}\right]\) and \(\left[K_{f f}^{4}\right]\) to \(\left[K_{a a}^{4}\right]\) if no omitted coordinates.
96. Go to DMAP No. 110 if no omitted coordinates.
97. SMPI partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
k_{a a} & k_{a 0} \\
\hdashline & \frac{1}{} \\
\hdashline k_{o a} & k_{o 0}
\end{array}\right]
\]

Solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction
\[
\left[K_{a a}^{1}\right]=\left[K_{a a}\right]+\left[K_{a 0}\right]\left[G_{o}\right]
\]
99. Go to DMAP No. 102 if no mass matrix.
100. SMP2 partitions constrained mass matrix
\[
\left[M_{f f}\right]=\left[\begin{array}{c|c}
M_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hdashline & \frac{-}{M_{\mathrm{oa}}} \\
M_{00}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[M_{a a}^{]}\right]=\left[M_{a a}\right]+\left[M_{a 0}\right]\left[G_{0}\right]+\left[M_{a 0} G_{0}\right]^{\top}+\left[G_{0}^{\top}\right]\left[M_{00}\right]\left[G_{0}\right]
\]
103. Go to DMAP No. 106 if no viscous damping matrix.
104. SMP2 partitions constrained viscous damping matrix
\[
\left[B_{f f}\right]=\left[\begin{array}{c:c}
B_{a a} & B_{a 0} \\
\hdashline B_{o a} & B_{o 0}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[B_{a a}^{1}\right]=\left[B_{a a}\right]+\left[B_{a o}\right]\left[G_{0}\right]+\left[B_{a o} G_{0}\right]^{T}+\left[G_{0}^{T}\right]\left[B_{00}\right]\left[G_{0}\right]
\]
107. Go to DMAP No. 110 if no structural damping matrix.
108. SMP2 partitions constrained structural damping matrix
\[
\left[k_{f f}^{4}\right]=\left[\begin{array}{c:c}
k_{\mathrm{aa}}^{4} & k_{\mathrm{ao}}^{4} \\
\hdashline k_{\mathrm{oa}}^{4} & k_{\mathrm{oo}}^{4}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{a a}^{4}\right]=\left[K_{a a}^{4}\right]+\left[K_{a o}^{4}\right]\left[G_{o}\right]+\left[K_{a o}^{4} G_{0}\right]^{\top}+\left[G_{0}^{\top}\right]\left[K_{o o}^{4}\right]\left[G_{o}\right]
\]
111. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool and Eigenvalue Extraction Data.
113. Equivalence \(\left[G_{0}\right]\) to \(\left[G_{0}^{d}\right]\) and \(\left[G_{m}\right]\) to \(\left[G_{m}^{d}\right]\) if no extra points introduced for dynamic analysis.
117. BMG aenerates DMIG card images describing the interconnection of the fluid and the structure.
121. Go to DMAP No. 124 if no fluid structure interface is defined.
122. MTRXIN generates fluid boundary matrices \(\left[A_{b, f \ell}\right.\)] and \(\left[K_{b, f \ell}\right.\)] if a fluid structure interface is defined. The matrix \(\left[K_{b, f \ell}\right]\) is generated only for a nonzero gravity in the fluid.
127. Go to next DMAP instruction if cold start or modified restart. LBLI3 will be altered by the Executive System to the proper location inside the loop for unmodified starts within the loop.
128. Beginning of loop for additional sets of direct input matrices.
130. CASE extracts user requests from CASECC for current loop.
133. MTRXIN selects the direct input matrices for the current loop, \(\left[K_{p p}^{2 d}\right],\left[M_{p p}^{2 d}\right]\) and \(\left[B_{p p}^{2}\right]\).
137. Equivalence \(\left[M_{p p}^{2 d}\right.\)] to \(\left[M_{p p}^{2}\right]\) if no \(\left[A_{b, f \ell}\right]\).
138. Add5 adds \(\left[K_{b, f \ell}\right]\) and \(\left[K_{p p}^{2 d}\right]\) and subtracts \(\left[A_{b, f \ell}\right]\) from them to form \(\left[K_{p p}^{2}\right]\).
139. Go to DMAP No. 142 if no \(\left[A_{b, f \ell}\right]\).
140. Transpose \(\left[A_{b, f \ell}\right]\) to obtain \(\left[A_{b, f \ell}\right]^{\top}\).
141. ADD assembles input matrix \(\left[M_{p p}^{2}\right]=\operatorname{MFACT}\left[A_{b, f \ell}\right]^{\top}+\left[M_{p p}^{2 d}\right]\).
147. Equivalence \(\left[M_{p p}^{2}\right]\) to \(\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]\) to \(\left[B_{d d}^{2}\right]\) and \(\left[K_{p p}^{2}\right]\) to \(\left[K_{d d}^{2}\right]\) if no constraints applied, \(\left[M_{a a}\right]\) to \(\left[M_{d d}\right]\) if no direct input mass matrices and no extra points, and \(\left[B_{a a}\right]\) to [\(\left.B_{d d}\right]\) if no direct input damping matrices and no extra points.
149. Go to DMAP No. 151 if only extra points defined.
150. GKAD assembles stiffness, mass, and damping matrices for use in Direct Complex Eigenvalue Analysis
\[
\begin{aligned}
& {\left[K_{d d}\right]=(1+i g)\left[K_{d d}^{1}\right]+\left[K_{d d}^{2}\right]+i\left[K_{d d}^{4}\right]} \\
& {\left[M_{d d}\right]=\left[M_{d d}^{1}\right]+\left[M_{d d}^{2}\right] \text { and }} \\
& {\left[B_{d d}\right]=\left[B_{d d}^{1}\right]+\left[B_{d d}^{2}\right]}
\end{aligned}
\]

Direct input matrices may be complex.
152. Equivalence \(\left[K_{d d}^{2}\right.\)] to [\(K_{d d}\)] if all stiffness is Direct Matrix Input, \(\left[M_{d d}^{2}\right]\) to [\(M_{d d}\)] if all mass is Direct Matrix Input and \(\left[B_{d d}^{2}\right]\) to \(\left[B_{d d}\right]\) if all damping is Direct Matrix Input.
154. Go to DMAP No. 183 and print error message if no Eigenvalue Extraction Data.
155. CEAD extracts complex eigenvalues from the equation
\[
\left[M_{d d} p^{2}+B_{d d} p+K_{d d}\right]\left\{u_{d}\right\}=0
\]
and normalizes eigenvectors according to one of the following user requests:
(1) Unit magnitude of selected coordinate
(2) Unit magnitude of 1 argest component.
158. QFP formats the summary of complex eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
160. Go to DMAP No. 176 if no eigenvalues found.
161. VDR prepares eigenvectors for output, using only the independent degrees of freedom.
163. Go to DMAP No. 166 if no output request for the independent degrees of freedom.
164. ØFP formats the eigenvectors for independent degrees of freedom and places them on the system output file for printing.
167. Go to DMAP No. 176 if no output request involving dependent degrees of freedom or forces and stresses.
168. Equivalence \(\left\{\phi_{d}\right\}\) to \(\left\{\phi_{p}\right\}\) if no constraints applied.
169. Go to DMAP No. 171 if no constraints applied.
170. SDR1 recovers dependent components of eigenvectors
\[
\begin{aligned}
& \left\{\phi_{0}\right\}=\left[G_{0}^{d}\right]\left\{\phi_{d}\right\}, \quad\left\{\begin{array}{c}
\phi_{d} \\
\phi_{0}
\end{array}\right\}=\left\{\phi_{f}+\phi_{e}\right\}, \\
& \left\{\begin{array}{c}
\phi_{f}+\phi_{e} \\
\phi_{S}
\end{array}\right\} \quad=\left\{\phi_{n}+\phi_{e}\right\}, \quad\left\{\phi_{m}\right\} \quad=\left[G_{m}^{d}\right]\left\{\phi_{n}+\phi_{e}\right\}, \\
& \left\{\begin{array}{l}
\phi_{n}+\phi_{e} \\
d_{m}
\end{array}\right)=\left\{\phi_{p}\right\}
\end{aligned}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=\left[K_{f s}^{\top}\right]\left\{\phi_{f}\right\}
\]
173. SDR2 calculates element forces and stresses (\(\varnothing E F C 1, \emptyset E S C 1\)) and prepares eigenvectors and single-point forces of constraint for output (\(\varnothing C P H I P, ~ \emptyset Q P C I\)).
174. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
177. Go to DMAP No. 187 if no additional sets of direct input matrices need to be processed.
178. Go to DMAP No. 128 if additional sets of direct input matrices need to be processed.
179. Go to DMAP No. 181 and print error message if more than 100 loops.
180. Go to DMAP No. 187 and make normal exit.
182. DIRECT CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE NØ. 2 - ATTEMPT TØ EXECUTE MøRE THAN 100 LOQPS.
184. DIRECT CQMPLEX EIGENVALUE ANALYSIS ERRQR MESSAGE ND. 1-EIGENVALUE EXTRACTIØN DATA REQUIRED FØR C@MPLEX EIGENVALUE ANALYSIS.
186. DIRECT CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE N@. 3 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIØNS.

\section*{DIRECT COMPLEX EIGENVALUE ANALYSIS}

\subsection*{3.8.3 Automatic Output for Direct Complex Eigenvalue Analysis}

Each complex eigenvalue is identified with a root number determined by sorting the complex eigenvalues according to the magnitude of the imaginary part, with positive values considered as a group ahead of all negative values. The following summary of the complex eigenvalues extracted is automatically printed for each set of direct input matrices:
1. Root Number
2. Extraction Order
3. Real and Imaginary Parts of the Eigenvalue
4. The coefficients \(f_{j}\) (frequency) and \(g_{j}\) (damping coefficient) in the following representation of the eigenvalue
\[
P_{j}=2 \pi f_{j}\left(i-\frac{1}{2} g_{j}\right)
\]

The following summary of the eigenvalue analysis performed using the Determinant method is automatically printed for each set of direct input matrices:
1. Number of eigenvalues extracted
2. Number of passes through starting points.
3. Number of criteria changes.
4. Number of starting point moves.
5. Number of triangular decompositions.
6. Number of failures to iterate to a root.
7. Number of predictions outside region.
8. Reason for termination:
(1) The number of roots desired have been found.
(2) All predictions for eigenvalues are outside the regions specified.
(3) Insufficient time to find another root.
(4) Matrix is singular at first three starting points.
9. Swept determinant functions for each starting point.

The following surmary of the eigenvalue analysis performed, using the Inverse Power method, is automatically printed for each region specified:
1. Number of eigenvalues extracted.
2. Number of starting points used.
3. Number of starting point moves.
4. Number of triangular decompositions.
5. Number of vector iterations.
6. Reason for termination.
(1) Two consecutive singularities encountered while performing triangular decomposition.
(2) Four starting point moves while tracking a single root.
(3) All eigenvalues found in the region specified.
(4) Three times the number of roots estimated in the region have been extracted.
(5) All eigenvalues that exist in the problem have been found.
(6) The number of roots desired have been found.
(7) One or more eigenvalues have been found outside the region specified.
(8) Insufficient time to find another root.
(9) Unable to converge.

\subsection*{3.8.4 Case Control Deck and Parameters for Direct Complex Eigenvalue Analysis}

The following items relate to subcase definition and data selections for Direct Complex Eigenvalue Analysis.
1. At least one subcase must be defined for each unique set of direct input matrices (K2PP, M2PP, B2PP).
2. Multiple subcases for each set of direct input matrices are used only to control output requests. A single subcase for each set of direct input matrices is sufficient if the same output is desired for all modes. If consecutive multiple subcases are present for a single set of direct input matrices, the output requests will be honored in succession for increasing mode numbers. MøDES may be used to repeat subcases in order to make the same output request for several consecutive modes.
3. CMETHØD must be used to select an EIGC card from the Bulk Data Deck for each set of direct input matrices.
4. On restart following an unscheduled exit due to insufficient time, the subcase structure must be changed to reflect the sets of direct input matrices that were completed, and either CMETHOD must be changed to select an EIGC card that reflects any complex eigenvalues found in the previous execution or EIGP cards must be used to insert poles for previously found eigenvalues. Otherwise, the previously found eigenvalues will be extracted again.
5. Constraints must be defined above the subcase level.

The following printed output, sorted by complex eigenvalue root number (SضRT), may be requested for any complex eigenvalue extracted, as either real and imaginary parts or magnitude and phase angle (\(0^{\circ}-360^{\circ}\) lead):
1. The eigenvector for a list of PHYSICAL points (grid points and extra scalar points introduced for dynamic analysis) or SØLUTION points (points used in formulation of the general K system).
2. Nonzero components of the single-point forces of constraint for a list of PHYSICAL points.
3. Stresses and forces in selected elements.

In addition an undeformed plot of the structural model may be requested.
The following parameters are used in Direct Complex Eigenvalue Analysis:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - the terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in EMA. Not recommended for use in hydroelastic problems.
3. G - optional - the real value of this parameter is used as a uniform structural damping coefficient in the direct formulation of dynamics problems. Not recommended for use in hydroelastic problems.
4. CQUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1; CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
3.9 DIRECT FREQUENCY AND RANDOM RESPONSE

\subsection*{3.9.1 DMAP Sequence for Direct Frequency and Random Response}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }
    ```

```

DMAP-DMAP INSTRUCTION

```
 NU.
 1 BEGIN NU. 8 DIRECT FREQUENCY RESPONSE ANALYSIS - SERIES N \(\$\)
 2 FILE KGGX=TAPE/ KGG=TAPE/ GUD=SAVE/GMD=SAVE \(\$\)
 3 GP1 GEOMI,GEOM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/V,N,
 NUGPDT \$
 4 SAVE LUSET,NUGPOT \(\$\)
 5 PURCE USET,GM,GU,KAA,BAA,MAA,K4AA,KFS,PSF,QPC,EST,ECT,PLTSETX,PLTPAR,
 GPSEIS,ELSEIS/NJGPDT \$
 6 LHKPNT GPL, EQEXIN,GPUT,CSTM, BGPDT,SIL,USET,GM,GO,KAA, BAA, MAA,K4AA,
 KFS, PSF. QPC,EST, ECT,PLTSETX,PLTPAR,GPSETS,ELSETS \(\$\)
 7 COND LBL5.NOGPDT \$
 8 GP2 GEUMZ,EQEXIN/ECT \$
 CHKPNT ECT \(\$\)
 10 PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
 11 PURGE PLTSETX,PLTPAK,GPSETS,ELSETS/NOPCDB. \$
 12 COND PL,NOPCOB \(\$\)
 13 PLTSET PCOB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSAL/ V,N.
 JUMPPLOT=-1 \$
 14 SAVE NSILIJUMPPLOT \(\$\)
 15 PRTMSG PLTSETX// \$
 10́ PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N:1\$
 17 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
 13 COND PI.JUMPPLOT.\$
 \(\begin{array}{ll}19 \text { PLOT } & \text { PLIPAR, } \\ & \text { NSIL/V, } \\ 20 \text { SAVE } & \end{array}\)
 21 PRTMSG PLOTXI//\$
 22 LABEL P1\$
 23 CHKPNT PLTPAR,GPSETS,ELSETS \(\$\)
 24 GP3
 25
 CHKPNT GPTT \$

\section*{RIGID FORMAT DMAP LISTING \\ SERIES N}

RIGID FORMAT 8
NASTRANSOURCEPKOGRAMGOMPILATIGN. DMAP-DMAP INSTRUCIION
Nu .

72 CHKPINT GM,GMO,KG,GU,GOD,KFS,PSF,QPC,USET \$
73 CUND LBL4,GENEL \$
74 CONO LBL4,NUSIMP \$
75 GPSP GPL,GPST,USET,SIL/OGPST/V,N,NUGPST \$
76 SAVE NUGPSS \$
77 CUND LUL4,NUGPST \$

\section*{RIGID FORMATS}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT B
    ```

```

DMAP-DMAP INSIRUCTIUN
NO.
78 OFP OGPST,:,%/1\$
79 LABEL LBL4 \$
80 EGUIV KGG,KNN/MPCF1/MGG;MNN/MPCF1/ BGG,BNN/MPCF1/K4GG,K4NN/MPCF1 \$
81 CHKPNT KNV,IMNN.BNN,K4NN \$
82 CONO LULZ,MPCFL \$
33@MCEL USET,RG/GM\$
84 CHKPNT GM \$
85MCE2 USET,GM,KGG,MG̈G,BGG,K4GG/KNN,MNN,BNN,K4NN \$
86 CHKPNT KNN,MNN,BNN,K4NN \$
87 LABEL LBL2 \$
88 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE/BNN,BFF/SINGLE/K4NN,K4FF/SINGLE \$
8Y CHKPNT KFF,MFF,OFF:K4FF \$
90 COND LGL3,SINGLE \$
91SCE1 USET,KNN,IINN,SNN,K4NN/KFF,KFS,,MFF,BFF,K4FF \$
92 CHKPNT KFS,KFF,MFF,8FF,K4FF \$
93 LABEL LBL3 \$
94 EQUIV KFF,KAA/OMIT \$
9j EQUIV MFF,MAAJOMII \$
96 EQUIV BFF,BAA/OMIT \$
97 EQUIV K4FF,K4AA/OMIT \$
98 CHKPNT KAA,MAA,BAA,K4AA \$
99 COND LBL5,UMIT\$
100 SMP1 USET,KFF,,,/GO,KAA,KOO,LOO,,%,\$
101 CHKPNT GO,KAA \$
102 COND LBLM,NOMGS \$
103 SMP2 USET,GO,MFF/MAA \$
104 CHKPNI MAA \$
105 LABEL LBLM\$

```

```

    RIGID FORMAT DMAP LISTING
    ```

\section*{SERIES N}

\section*{RIGID FORMAT 8}
```

NASTRANSOURCE PROGRAMGOMPILATIEN DMAP-DMAP INSIRUCIIUN NU.

| 132 | PURGE | OUOVC1, OUDVC2, XYPLTFA, OPPC 1, OQPC1, OUPVC1, OESC1,OEFC1, OPPC 2, OQPC2, OUPVC2, OESC2, UEFC2,XYPLIF,PSDF,AUTO, XYPLTR, K2PP,M2PP, 82PP,K200,M2DO,B2DD/NEVER \$ |
| :---: | :---: | :---: |
| 133 | CASE | CASECC, PSOL/CASEXX/C,N,FREQ/V,N,REPEATF/V,N,NULOOP \$ |
| 134 | SAVE | REPEATF, NOLOUP \$ |
| 135 | CHKPNT | CASEXX \$ |
| 136 | MIRXIN | CASEXX,MATPOUL,EQDYN, ,TFPOOL/K2OPP,M2DPP,B2PP/V,N,LUSETD/V,N, NUK2DPP/V,N,NOM2UPP/V,N,NOB2PP \$ |
| 137 | save | NOK2DPP, NOM2DPP, NUB2PP \$ |
| 138 | PARAM | //C, N, AND/V,N,N3M2PP/V,N, NOABFL/V,N,NOM2DPP \$ |
| 139 | PARAM | //C,N,AND/V,N,NOK2PP/V,N,NOFL /V,N,NUK2DPP \$ |
| 140 | EQUIV | M2DPP, M2PP/NUABFL \$ |
| 141 | ADD5 | ABFL,KBFL, K2DPP, /K2PP/C,N,(-1.0,0.0) \$ |
| 142 | conu | LBLFL2, NOABFL \$ |
| 143 | TRNSP | ADFL/ABFLT \$ |
| 144 | ADD | ABFLT,MZOPP/MZPP/V,N,MFACT \$ |
| 145 | LABEL | LBLFL2 \$ |
| 146 | PARAM | $/ / C, N, A N O / V, N, B D E B A / V, N, N U U E / V, N, N U B 2 P P \$$ |
| 147 | PARAM | //C, $\mathrm{N}, \mathrm{AND} / \mathrm{V}, \mathrm{N}, \mathrm{KDEEK} 2 / \mathrm{V}, \mathrm{N}, \mathrm{NOGENL} \mathrm{V}, \mathrm{N}, \mathrm{NOS}$ IMP \$ |
| 143 | PARAM | $/ / C, N, A N D / V, N, M O L M A / V, N, N U U E / V, N, N O M 2 P P \$$ |
| 149 | PURGE | K2D0/NOK 2PP/M2DO/NOM 2PP/B2DD/NUB 2PP \$ |
| 150 | EQUIV | M2PP,M2DO/NOA/B2PP,B2OD/NUA/K2PP,K2OD/NOA/MAA,MOU/MDEMA/BAA, BDD/BDEBA \$ |
| 151 | CHKPNT | K2PP,M2PP, B2PP,K20D, M200, $2200,800, M D O$ |
| 152 | CUND | LBLI8.NOGPDT \$ |
| 153 | GKAD | USETD,GM,GO,KAA, BAA,MAA,K4AA,K2PP,M2PP,B2PP/KDD,BDD,MUD,GMD, GOD, K20D, Y 20D, B2DU/C, N, FREQRESP/C,N,DISP/C,N,DIRECT/C,Y,G=0.0/ $C, N, O .0 / C, N, O . O / V, N, N U K 2 P P / V, N, N O M 2 P P / V, N, N O B 2 P P / \quad V, N, M P C F 1 /$ $V, N, S I N G L E / V, N, O M I T / V, N, N O U E / V, N, N U K 4 G G / V, N, N U B G G / V, N, K O E K 2 / C$, $\mathrm{N},-1 \$$ |
| 154 | LABEL | LBL18 ${ }^{\text {b }}$ |
| 155 | Equiv | B2DO,BDO/NOBGG/ M200,MDD/NUSLMP/ K200,KDD/KDEK2 \$ |

```

DIRECT FREQUENCY AND RANDOM. RESPONSE
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 8
        NASI RANSSOURCE PROGRRAMCOMPILLATIION
    DMAP-DMAP INSTRUCTION
NO.
156 CHKPNT KDD,BDD,MDO,GMD,GOD \$
157 CONO ERRORI,NOFRL \$
158 CUND ERROR2,NODLI \$
159 FRRD CASEXX,USETD,DLT,FRL,GMD,GOD,KDD,BDD,MDD,,OIT/UNVF,PSF,PDF,PPF/
C,N,DISP/C,N,DIRECT/V,N,LUSETD/V,N,MPCFI/V,N,SINGLE/V,N,OMIT/.
V,N,NONCUP/V,N,FRQSET \$
160 EQUIV PPF,PDF/NOSET \$
161 CHKPNT PSF,PPF,UDVF,PDF \$
162 CDR CASEXX,EQDYN,USETD,UDVF,PPF,XYGDB,/OUDVC1,/C,N,FREQRESP/C,N,
DIRECT/V,N,NOSURT2/V,N,NOD/V,N,NOP/C,N,O \$
163 SAVE NOD,NOP,NOSORT2 \$
164 COND LBLI5,NOD \$
165 COND LBLI5A,NOSORT2 \$
166 CHKPNT OUDVCL \$
167SUR3 OUOVC1,,,,,/OUDVC2,,,.,\$
168 OFP OUDVC2,.,.,//V,N,CARDNU \$
169 SAVE CARDNU \$
170 CHKPNT OUDVC2 \$
171 XYTRAN XYCOB,OUDVC2,,.,/XYPLTFA/C,N,FREQ/C,N,OSET/V,N,PFILE/V,N,
CARDNO \$
172 SAVE PFILE,CARDNU \$
173 XYPLUD XYPLIFA// \$
174 JUMP LBLI5 \$
175 LABEL LBLI5A \$
176 UFP OUOVCl,,.,I//V,N,CARDNO \$
l77 SAVE CARDNU \$
170 LABEL LBLIj\$
179 COND LBLI6,NOP \$
180 EQUIV UDVF,UPVC/NOA \$
18L COND LBLIg,NOA \$

```
```

    RIGIO FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 8
    ```

```

DMAP-DMAP INSTRUCTION
NO.
182 SDRI USETU,,UOVF,,,GOD,GMD,PSF,KFS,,/UPVC,,QPC/C,N,1/C,N,DYNAMICS \$
183 LABEL LBLI9 \$
184 CHKPNT UPVC,QPC \$
185 SDR2 CASEXX,CSTM,MPT,DIT,EQOYN,SILD,,,,PPF,QPC,UPVC,EST,XYCUB,PPF/
OPPC1,OQPC1,OUPVC1,OESCL,OEFC1,/C,N,FREQRESP/V,N,NOSURT2 \$
186 SAVE NOSORT2 \$
187 COND LBL17,NOSORT2 \$
188SSDR3.OPPC1,OQPC1,OUPVC1,OESC1,OEFC1,/OPPC2,OQPC2,OUPVC2,OESC2,
OEFC2:\$
189 CHKPNT UPPC2,UQPC2,DUPVC2,UESC2,NEFC2\$
190 OFP OPPCZ,OQPC2,OUPVC2,DEFC2,OESC2,1/V,N,CARDNO \$
191 SAVE CARDNU \$
192 XYTRAN XYCDB,OPPPC2,OQPC2,OUPVC2,OESC2,OEFC2/XYPLTF/C,N,FREQ/C,N,PSET/
V,N,PFILE/V,N,CARDNO \$
193 SAVE PFILE,GARDNO \$
194 XYPLOT XYPLTF// \$
195 COND LBLIG,NUPSDL \$
196 RANDOM XYCDB,DIT,PSDL,OUPVCZ,OPPC2,OQPC2,OESC2,OEFC2,CASEXX/PSDF,AUTO/
V,N,NORD \$
197 SAVE NURD \$
198 CHKPNT PSDF,AUTO \$
199 COND LBLIG,NORD \$
200 XYTRAN XYCDB,PSOF,AUTO,,,/XYPLTR/C,N,RAND/C,N,PSET/V,N,PFILE/ V,N,
CARONO \$
201 SAVE PFILE,GARONO S
202 XYPLOD XYPLTR// \$
203 JUMP LBLI6 \$
204 LABEL LBLI7 \$
205 OFP OUPVC1,OPPC1,OQPC1,OEFC1,OESC1,//V,N,CARDNO \$
206 SAVE CARDNU \$
207 LABEL LBL16\$

```

\section*{DIRECT FREQUENCY AND RANDOM RESPONSE}

\section*{RIGIO FORMAT DMAP LISTING}

RIGID FORMAT 8
NAS T R A N S O U R C E P R O G R A M C O M P I L A T I O N DMAP-DMAP INSTRUCTIUN NO.

\subsection*{3.9.2 Description of DMAP Operations for Direct Frequency and Random Response}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
7. Go to DMAP No. 113 if only Direct Matrix Input.
8. GP2 generates Element Connection Table with internal indices.
12. Go to DMAP No. 22 if no plot package is present.
13. PLTSET transforms user input into a form used to drive structure plotter.
15. PRTMSG prints error messages associated with structure plotter.
18. Go to DMAP No. 22 if no undeformed structure plot request.
19. PLØT generates all requested undeformed structure plots.
21. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
24. GP3 generates Grid Point Temperature Table.
26. TAl generates element tables for use in matrix assembly and stress recovery.
30. Go to DMAP No. 61 if there are no structural elements.
35. EMG generates structural element matrix tables and dictionaries for later assembly.
38. Go to DMAP No. 41 if no stiffness matrix is to be assembled.
39. EMA assembles stiffness matrix \(\left[K_{g g}^{x}\right]\) and Grid Point Singularity Table.
42. Go to DMAP No. 45 if no mass matrix is to be assembled.
43. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
46. Go to DMAP No. 49 if no viscous damping matrix.
47. EMA assembles viscous damping matrix \(\left[\mathrm{B}_{\mathrm{gg}}\right]\).
50. Go to DMAP No. 53 if no structural damping matrix is to be assembled.
51. EMA assembles structural damping matrix \(\left[K_{g g}^{4}\right]\).
57. Go to DMAP No. 61 if no weight and balance request.
58. Go to DMAP No. 218 and print error message if no mass matrix exists.
59. GPWG generates weight and balance information.
60. \(\emptyset F P\) formats weight and balance information and places it on the system output file for printing.
62. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
64. Go to DMAP No. 67 if no general elements.
65. SMA3 adds general elements to \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
69. GP4 generates flags defining members of various displacement sets (USET) and forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
73. Go to DMAP No. 79 if general elements present.
74. Go to DMAP No. 79 if no structural elements.
75. GPSP determines if possible grid point singularities remain.
77. Go to DMAP No. 79 if no grid point singularities exist.
78. ØFP formats the table of possible grid point singularities and places it on the system output file for printing.
80. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\), \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right],\left[B_{g g}\right]\) to \(\left[B_{n n}\right]\) and \(\left[K_{g g}^{4}\right]\) to \(\left[K_{n n}^{4}\right]\) if no multipoint constraints.
82. Go to DMAP No. 87 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
83. MCE1 partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m}: R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
85. MCE2 partitions stiffness, mass and damping matrices
\[
\begin{aligned}
& {\left[K_{g g}\right]=\left[\begin{array}{l:l}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right], \quad\left[M_{g g}\right]=\left[\begin{array}{l:l}
\bar{M}_{n n} & M_{n m} \\
\hdashline M_{m n} & M_{m m}
\end{array}\right],} \\
& {\left[B_{g g}\right]=\left[\begin{array}{l:l}
\bar{B}_{n n} & B_{n m} \\
\hdashline B_{m n} & B_{m m}
\end{array}\right] \text { and }\left[K_{g g}^{4}\right]=\left[\begin{array}{ll:l}
\bar{K}_{n n}^{4} & K_{n m}^{4} \\
\hdashline K_{m n}^{4} & K_{n m}^{4}
\end{array}\right]}
\end{aligned}
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]\left[G_{m}\right]} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]} \\
& {\left[B_{n n}\right]=\left[\bar{B}_{n n}\right]+\left[G_{m}^{\top}\right]\left[B_{m n}\right]+\left[B_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[B_{m m}\right]\left[G_{m}\right],} \\
& {\left[K_{n n}^{4}\right]=\left[\bar{K}_{n n}^{4}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}^{4}\right]+\left[K_{m n}^{4}\right]^{\top}\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}^{4}\right]\left[G_{m}\right] .}
\end{aligned}
\]
88. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right],\left[M_{n n}\right]\) to \(\left[M_{f f}\right]\), \(\left[B_{n n}\right]\) to \(\left[B_{f f}\right]\) and \(\left[K_{n n}^{4}\right]\) to \(\left[K_{f f}^{4}\right]\) if no singlepoint constraints.
90. Go to DMAP No. 93 if no single-point constraints.

\section*{RIGID FORMATS}
91. SCE1 partitions out single-point constraints
\[
\begin{aligned}
& {\left[k_{n n}\right]=\left[\begin{array}{l|l}
k_{f f} & k_{f s} \\
\hdashline k_{s f} & \frac{k_{s s}}{}
\end{array}\right], \quad\left[M_{n n}\right]=\left[\begin{array}{l|l}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & \frac{M_{s s}}{}
\end{array}\right],} \\
& {\left[B_{n n}\right]=\left[\begin{array}{l:l}
B_{f f} & B_{f s} \\
\frac{B_{s f}}{}+\frac{B_{s s}}{}
\end{array}\right] \text { and }\left[k_{n n}^{4}\right]=\left[\begin{array}{l|l}
k_{f f}^{4} & k_{f s}^{4} \\
\hline k_{c f}^{4} & \frac{k_{s s}^{4}}{4}
\end{array}\right] \text {. }}
\end{aligned}
\]
94. Equivalence \(\left[K_{f f}\right.\)] to \(\left[K_{a a}\right.\)] if no omitted coordinates.
95. Equivalence \(\left[M_{f f}\right.\)] to [\(M_{a a}\)] if no omitted coordinates.
96. Equivalence \(\left[\mathrm{B}_{\mathrm{ff}}\right]\) to \(\left[\mathrm{B}_{\mathrm{aa}}\right.\)] if no omitted coordinates.
97. Equivalence \(\left[K_{f f}^{4}\right]\) to \(\left[K_{a a}^{4}\right]\) if no omitted coordinates.
99. Go to DMAP No. 113 if no omitted coordinates.
100. SMP1 partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
k_{\mathrm{aa}} & k_{\mathrm{oo}} \\
\hdashline \mathrm{k}_{\mathrm{od}} & k_{\mathrm{oo}}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction
\[
\left[K_{\mathrm{aa}}^{1}\right]=\left[K_{\mathrm{aa}}\right]+\left[K_{\mathrm{ao}}\right]\left[\mathrm{G}_{0}\right]
\]
102. Go to DMAP No. 105 if no mass matrix.
103. SMP2 partitions constrained mass matrix
\[
\left[M_{f f}\right]=\left[\begin{array}{c:c}
M_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hdashline & - \\
M_{\mathrm{oa}} & M_{o 0}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[M_{\mathrm{aa}}^{1}\right]=\left[M_{\mathrm{aa}}\right]+\left[M_{\mathrm{ao}}\right]\left[G_{0}\right]+\left[M_{a 0} G_{0}\right]^{\top}+\left[G_{0}^{\top}\right]\left[M_{00}\right]\left[G_{0}\right]
\]
106. Go to DMAP No. 109 if no viscous damping matrix.
107. SMP2 partitions constrained viscous damping matrix
\[
\left[B_{f f}\right]=\left[\begin{array}{l:l}
B_{a a} & B_{a o} \\
\hline B_{o a} & B_{o o}
\end{array}\right]
\]
and performs matrix reduction
\[
\begin{gathered}
{\left[B_{a a}^{1}\right]=\left[B_{a a}\right]+\left[B_{a 0}\right]\left[G_{0}\right]+\left[B_{a 0} G_{0}\right]^{\top}+\left[G_{0}^{\top}\right]\left[B_{00}\right]\left[G_{0}\right]} \\
3.9-12(3 / 1 / 76)
\end{gathered}
\]
110. Go to DMAP No. 113 if no structural damping matrix.
111. SMP2 partitions constrained structural damping matrix
\[
\left[k_{\mathrm{ff}}^{4}\right]=\left[\begin{array}{l|l}
k_{\mathrm{aa}}^{4} & \mathrm{k}_{\mathrm{ao}}^{4} \\
\hdashline \mathrm{~K}_{\mathrm{oa}}^{4} & k_{\mathrm{oo}}^{4}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{a a}^{4}\right]=\left[K_{a a}^{4}\right]+\left[K_{a o}^{4}\right]\left[G_{o}\right]+\left[K_{a o}^{4} G_{o}\right]^{\top}+\left[G_{o}^{\top}\right]\left[K_{o o}^{4}\right]\left[G_{o}\right]
\]
114. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool, Dynamics Load Table, Power Spectral Density List and Frequency Response List.
116. Equivalence \(\left[G_{0}\right]\) to \(\left[G_{0}^{d}\right]\) and \(\left[G_{m}\right]\) to \(\left[G_{m}^{d}\right]\) if no extra points introduced for dynamic analysis.
120. BMG generates DMIG card images describing the interconnection of the fluid and the structure.
124. Go to DMAP No. 127 if no fluid structure interface is defined.
125. MTRXIN generates fluid boundary matrices \(\left[A_{b, f \ell}\right.\)] and \(\left[K_{b, f \ell}\right.\)] if a fluid structure interface is defined. The matrix \(\left[K_{b, f \ell}\right]\) is generated only for a nonzero gravity in the fluid.
130. Go to next DMAP instruction if cold start or modified restart. LBLI3 will be altered by the Executive System to the proper location inside the loop for unmodified starts within the loop.
131. Beginning of loop for additional sets of direct input matrices.
133. CASE extracts user requests from CASECC for current loop.
136. MTRXIN selects the direct input matrices for the current loop, \(\left[K_{p p}^{2 d}\right],\left[M_{p p}^{2 d}\right]\) and \(\left[B_{p p}^{2}\right]\).
140. Equivalence \(\left[M_{p p}^{2 d}\right.\)] to \(\left[M_{p p}^{2}\right]\) if no \(\left[A_{b, f \ell}\right]\).
141. ADD5 adds \(\left[K_{b, f \ell}\right]\) and \(\left[K_{p p}^{2 d}\right.\)] and subtracts \(\left[A_{b, f \ell}\right]\) from them to form \(\left[K_{p p}^{2}\right]\).
142. Go to DMAP No. 145 if no [\(A_{b, f \ell}\)].
143. Transpose \(\left[A_{b, f \ell}\right]\) to obtain \(\left[A_{b, f \ell}\right]^{\top}\).
144. ADD assembles input matrix \(\left[M_{p p}^{2}\right]=\operatorname{MFACT}\left[A_{b, f \ell}\right]^{\top}+\left[M_{p p}^{2 d}\right]\).
150. Equivalence \(\left[M_{p p}^{2}\right]\) to \(\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]\) to \(\left[B_{d d}^{2}\right]\) and \({ }^{\text { }}\left[K_{p p}^{2}\right]\) to \(\left[K_{d d}^{2}\right]\) if no constraints applied, \(\left[\dot{M}_{a a}\right]\) to \(\left[M_{d d}\right]\) if no direct input mass matrices and no extra points and \(\left[B_{a a}\right]\) to [\(B_{d d}\)] if no direct input damping matrices and no extra points.
152. Go to DMAP No. 154 if only extra points defined.

\section*{RIGID FORMATS}
153. GKAD assembles stiffness, mass, and damping matrices for use in Direct Frequency Response
\[
\begin{aligned}
& {\left[K_{d d}\right]=(1+i g)\left[K_{d d}^{1}\right]+\left[K_{d d}^{2}\right]+i\left[K_{d d}^{4}\right],} \\
& {\left[M_{d d}\right]=\left[M_{d d}^{1}\right]+\left[M_{d d}^{2}\right] \text { and }} \\
& {\left[B_{d d}\right]=\left[B_{d d}^{1}\right]+\left[B_{d d}^{2}\right] .}
\end{aligned}
\]

Direct input matrices may be complex.
155. Equivalence \(\left[K_{d d}^{2}\right.\)] to [\(K_{d d}\)]if all stiffness is Direct Matrix Input, \(\left[M_{d d}^{2}\right]\) to [\(M_{d d}\)] if all mass is Direct Matrix Input and \(\left[B_{d d}^{2}\right]\) to \(\left[B_{d d}\right]\) if all damping is Direct Matrix Input.
157. Go to DMAP No. 216 and print error message if no Frequency Response List.
158. Go to DMAP No. 214 and print error message if no Dynamics Load Table.
159. FRRD forms the dynamic load vectors \(\left\{P_{d}\right\}\) and solves for the displacements using the following equation
\[
\left[-M_{d d} \omega^{2}+i B_{d d} \omega+K_{d d}\right]\left\{u_{d}\right\}=\left\{P_{d}\right\} .
\]
160. Equivalence \(\left\{P_{p}\right\}\) to \(\left\{P_{d}\right\}\) if. no constraints applied.
162. VDR prepares displacements, sorted by frequency, for output using only the independent degrees of freedom.
164. Go to DMAP No. 178 if no output request for the independent degrees of freedom.
165. Go to DMAP No. 175 if no output request for independent displacements sorted by point number.
167. SDR3 sorts the independent displacements by point number.
168. ØFP formats the requested independent displacements sorted by point number and places them on the system output file for printing.
171. XYTRAN prepares the input for \(X-Y\) plotting of the independent displacements vs. frequency.
173. XYPL \(\emptyset T\) prepares the requested \(X-Y\) plots of the independent displacements vs. frequency.
176. \(\emptyset F P\) formats the requested independent displacements sorted by frequency and places them on the system output file for printing.
179. Go to DMAP No. 207 if no output request involving dependent degrees of freedom or forces and stresses.
180. Equivalence \(\left\{u_{d}\right\}\) to \(\left\{u_{p}\right\}\) if no constraints applied.
181. Go to DMAP No. 183 if no constraints applied.
182. SDR1 recovers dependent components of displacements
\[
\begin{array}{r}
\left\{u_{0}\right\}=\left[G_{0}^{d}\right]\left\{u_{d}\right\} \\
\left\{-\frac{u_{f}+u_{e}}{u_{s}}\right\}=\left\{u_{n}+u_{e}\right\} \\
\left\{\begin{array}{c}
\left.u_{n}+\frac{u_{e}}{u_{m}}\right\}
\end{array}\right\}=\left\{u_{p}\right\}
\end{array}
\]
and recovers single-point forces of constraint \(\left\{q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}\).
185. SDR2 calculates element forces and stresses (\(\emptyset E F C 1, ~ \emptyset E S C 1\)) and prepares load vectors, displacement vectors and single-point forces of constraint for output (\(\varnothing P P C 1, ~ \varnothing U P V C 1, ~ \emptyset Q P C 1) ~-~\) all sorted by frequency.
187. Go to DMAP No. 204 if no output requests sorted by point number or element number.
'188. SDR3 prepares requested output sorted by point number or element number.
190. ØFP formats the requested output sorted by point number or element number and places it on the system output file for printing.
192. XYTRAN prepares the input for requested \(X-Y\) plots.
194. XYPL \(\emptyset T\) prepares the requested \(X-Y\) plots of displacements, forces, stresses, loads or singlepoint forces of constraint vs. frequency.
195. Go to DMAP No. 207 if no Power Spectral Density List.
196. RAND®M calculates power spectral density functions and autocorrelation functions using the previously calculated frequency response.
199. Go to DMAP No. 207 if no RANDQM calculations requested.
200. XYTRAN prepares the input for requested \(X-Y\) plots of the RANDDM output. -
202. XYPLøT prepares the requested \(X-Y\) plots of autocorrelation functions and power spectral density functions.
203. Go to DMAP No. 207 if no frequency response output requests sorted by frequency.
205. DFP formats frequency response output requests sorted by frequency and places them on the system output file for printing.
208. Go to DMAP No. 220 if no additional sets of direct input matrices need to be processed.
209. Go to DMAP No. 131 if additional sets of direct input matrices need to be processed.
210. Go to DMAP No. 212 and print error message if more than 100 loops.
211. Go to DMAP No. 220 and make normal exit.

\section*{RIGID FORMATS}
213. DIRECT FREQUENCY AND RANDøM RESP@NSE ERRØR MESSAGE NØ. 3-ATTEMPT TØ EXECUTE MøRE THAN 100 LDØPS.
215. DIRECT FREQUENCY AND RANDøM RESPØNSE ERR@R MESSAGE Nø. 2 - DYNAMIC LøADS TABLE REQUIRED FØR FREQUENCY RESPØNSE CALCULATIØNS.
217. DIRĖCT FREQUENCY AND RANDØM RESPØNSE ERRØR MESSAGE NØ. 1 - FREQUENCY RESPØNSE LIST REQUIRED FØR FREQUENCY RESPØNSE CALCULATIØNS.
219. DIRECT FREQUENCY AND RANDØM RESPøNSE ERRØR MESSAGE NØ. 4 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIØNS.

\subsection*{3.9.3 Case Control Deck and Parameters for Direct Frequency and Random Response}

The following items relate to subcase definition and data selection for Direct Frequency and Random Response:
1. At least one subcase must be defined for each unique set of direct input matrices (K2PP, M2PP, B2PP) or frequencies.
2. Consecutive subcases for each set of direct input matrices or frequencies are used to define the loading conditions - one subcase for each dynamic loading condition.
3. Constraints must be defined above the subcase level.
4. \(D L \emptyset A D\) must be used to define a frequency-dependent loading condition for each subcase.
- 5. FREQUENCY must be used to select one, and only one, FREQ, FREQ1, or FREQ2 card from the Bulk Data Deck for each unique set of direct input matrices.
6. On restart following an unscheduled exit due to insufficient time, the subcase structure must be changed to reflect the sets of direct input matrices that were completed, and FREQUENCY must be changed to select a FREQ, FREQ1, or FREQ2 card that reflects any frequencies for which the response has already been determined. Otherwise the previous calculations will be repeated.
7. ØFREQUENCY may be used above the subcase level or within each subcase to select a subset of the solution frequencies for output requests. The default is to use all solution frequencies.
8. If Random Response calculations are desired, RANDøM must be used to select RANDPS and RANDTi cards from the Bulk Data Deck. Only one \(\emptyset F R E Q U E N C Y\) and FREQUENCY card can be used for each set of direct input matrices.

The following printed output, sorted by frequency (SØRT1) or by point number or element number (S@RT2), is available, either as real and imaginary parts or magnitude and phase angle (\(0^{\circ}-360^{\circ}\) lead), for the list of frequencies specified by ØFREQUENCY:
1. Displacements, velocities, and accelerations for a list of PHYSICAL points (grid points and extra scalar points introduced for dynamic analysis) or SøLUTION points (points used in formulation of the general \(K\) system).
2. Nonzero components of the applied load vector and single-point forces of constraint for a list of PHYSICAL points.
3. Stresses and forces in selected elements (ALL available only for S@RTl).

The following plotter output is available for Frequency Response calculations:
1. Undeformed plot of the structural model.
2. X-Y plot of any component of displacement, velocity, or acceleration of a PHYSICAL point or SØLUTION point.
3. X-Y plot of any component of the applied load vector or single-point force of constraint.
4. X-Y plot of any stress or force component for an element.

The following plotter output is available for Random Response calculations:
1. X-Y plot of the power spectral density versus frequency for the response of selected components for points or elements.
2. X-Y plot of the autocorrelation versus time lag for the response of selected components for points or elements.

The data used for preparing the \(X-Y\) plots may be punched or printed in tabular form (see Section 4.3). This is the only form of printed output that is available for Random Response. Also, a printed summary is prepared for each \(X-Y\) plot which includes the maximum and minimum values of the plotted function.

The following parameters are used in Frequency Response calculations:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - the terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in SMA2. Not recommended for use in hydroelastic problems.

\section*{DIRECT FREQUENCY AND RANDOM RESPONSE}
3. \(\underline{G}\) - optional - the real value of this parameter is used as a uniform structural damping coefficient in the direct formulation of dynamics problems. Not recommended for use in hydroelastic problems.
4. CØUPMASS - CPBAR, CPRØD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

3'10.1 DMAP Sequence for Direct Transient Response

RIGID FORMAT DMAP LISTING
SERIESN
RIGID FORMAT 9
 DMAP-UMAP INSTRUCTION
NU.
1 BEGIN NU. 9 DIRECT TRANSIENT KESPGNSE ANALYSIS - SERIES N \$
2 FILE KGGX=TAPE/ KGG=TAPE/ UDVT=APPENU \&
3 GPI GEOMI,GEOMZ,/GPL,EQEXIN,GPDT,CSTM, GGPDT,SIL/V,N:LUSET/ V,N: NOGPUT \$

4 SAVE LUSET,NOGPDT \$
5 PURGE USET,GM, UO,KAA,BAA,MAA,K4AA,PST,KFS,QP,EST,ECT,PLTSETX,PLTPAR, GPSETS, ELSETS/NUGPDT \$

6 CHKPNT GPL,EQEXIN,GPOT, CSTM,BGPDT,SIL,USET,GM,GU,KAA,BAA,MAA,K4AA, PST, KFS, QP, EST, ECT,PLTSETX,PLTPAR,GPSETS, ELSETS \$

7 COND LBLS.NUGPUT \$
8 GP2 GEOM \(2, E Q E X I N / E C T \$\)
9 CHKPNT ECT \$
10 PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,N,N,NUPCDB \(\$\)
11 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NOPCDB \(\$\)
12 CUNO PLINUPCDB \(\$\)
13 PLTSET PCDB, EQEXIN, ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N. JUMPPLUT=-1 \$

14 SAVE NSIL, JUMPPLOT \$
15 PRTMSG PLTSETX// \$
16 PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N,1 \$
17 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O\$
18 CUND PL.JUMPPLUT \$

```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }

```

```

DMAP-DMAP INSTRUCTIUN
NU.

2	1	ECT,EPT, OGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N. NUS IMP $=-1 / C, N, 1 / V, N, N O G E N L=-1 / V, N$, GENEL $\$$		
27	SAVE	NOSIMP, NUGENL, GENEL \$		
28	PUREE	K4GG,GPSI, OGPST, MGG,BGG, K4NN,K4FF,K4AA,MN BAA,KGGX/NUSIMP/ OGPST/GENEL \$	MFF, MAA,	$N, B F F,$
29	CHKPNT	EST, GPECT,GEI,K4GG,GPST,MGG, BGG,KGGX,OGPST, MiN, MFF, MAA, BNN, BFF,BAA \$	K 4 NN, K 4 F	4AA,
30	CONO	LBLI,NOSIMP \$		

31 PARAM //C,N,ADU/V,N,NJKGGX/C,N,1/C,N,O \$
32 PARAM //C,N;ADU/V,N,NUMGG/C,N,I/C,N,O \$..
33 PARAM //L,IV,ADD/V,N,NDBGG=-1/C,N,1/C,N,O \$
34 PARAM //C,N,ADO/V,N,NOK4GG/C,N,1/C,N,O \$
35 EMG
EST,CSTM,MPT,OLT,GEUMZ,/KELM,KDICT,MELM,MDICT,BELM,BOICT/ V.
N,NOKGGX/V,N,NOMGG/V,N,NOBGU/V,N,NOK4GG/C,N,/C,Y,COUPMASS/C,Y,
CP\triangleAR/C,Y,CPRUD/C,Y,CPQUAOL/C,Y,CPQUAD2/C,Y,CPTRIA1/C,Y,
CPTRIA2/C,Y,CPTUBE/C,Y,CPQUPLT/C,Y,CPTRPLT/C,Y,CPTRBSC \$
36 SAVE NUKGGX,NUMGG,NOBGG,INOK4GG \$
37 CHKPNT KELM,KDIGT,MELM,MUICT,BELM,BDICT \$
38 CUND LBLKGGX,NUKGGX \$
37EEMA GPECT,KDICT,KELM/KGGX,GPST \$
40 CHKPNT KGGX,GPST \$
4L LABEL LBLKGGX \$
42 COND LBLMGG,NOMGG \$
43 GMA GPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0\$
4 4 CHKPNT MGGG \$
45 LABEL LBLMGG \$
4 6 ~ C O N O ~ L B L B G G , N O B G G ~ \$ ~
47 GMA GPECT,BOICT,BELM/BGG,
48 CHKPINI BGG \$
49 LABEL LBLBGG\$
50 COND LOLK4GG:NOK4GG \$

```

\section*{DIRECT TRANSIENT RESPONSE}

\section*{RIGID FORMAT DMAP LISTING}

\section*{RIGID FORMAT 9}
 DMAP-DMAP INSTRUCTION
NO.
51 EMA GPECT,KDICT,KELM/K4GG,/V,N,NUK4GG \$
52 CHKPNT K4GG \$
53 LABEL LBLK4GG \$
54 PURGE MNN,MFF,MAA/NOMGG \$
55 PURGE BNN, BFF, \(Z A A / N O U G G \$\)

56 CHKPNT MGG,MNN,MFF,MAA, \(B G G, B N N, B F F, B A A \$\)
57 CUND LBLI,GRDPNT \$
58 CONO ERROR3,NUMGG \(\$\)
59 GPWG BGPDT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT=-1/C,Y,WTMASS \(\$\)
60 UFP UGPWG,,, ,// \(\$\)
61 LABEL LBLL\$
62 EQUIV KGGX,KGG/NUGEIVL \$
03 CH\&PNT KGG \(\$\)
64 CUNO LBLIL,NUGENL \$
65 SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NUGENL/V,N,NUSIMP \$
66 CHKPNT KGG \(\$\)
07 LABEL LBLIL\$
O甘 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C;N,O \$
696
CASELC, GEUM4, EQEXIN,SIL,GPDT, BGPDT,CSTM/RG, USET,ASET/V,N, LUSET/V,N,MPCFL/V,N,MPCF2/V,N,SINGLE/V,N, OMIT/V,N,REACT/V,N, NSKIP/V,N,REPEAT/V,N,NUSET/V,N,NUL/V,N,NOA/C,Y,SUBID \$

70 SAVE MPCFI,SINGLE,OMIT,NUSET,REACT,MPCF2,NSKIP,REPEAT,NUL,NUA \$
71 PURGE GM,GMD/APCFI/GU,GUU/UMIT/KFS,PST,QP/SINGLE \$
72 CHKPNT GM,GMO,RG,GO,GUU,KFS,PST,QP,USET \(\$\)
73 COND LBL4,GENEL \$

74-COND LBL4,NUSIMP \$
75 GPSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
\(76 \cdot\) SAVE NUOPSI \$
77 CUNO LBL4,NUGPST \$
```

RIGID FORMAT DMAP LISTING
RIGID FORMAT }

```

```

DMAP-DMAP INSTRUCTIUN
NO.
78 OFP OGPST,I,.,//\$
79 LABEL LBL4 \$
80 EQUIV KGG,KNN/MPCFI/MGG,MNN/MPCF1/ BGG,BNN/MPCF1/K4GG,K4NN/MPCF1 \$
81. CHKPNT KNN,MNN,BNN,K4NN \$
82 CONO LBLZ,MPCF1 S
83 MCEL USEI,KG/GM \$
84 CHKPNT GM \$
85 MCE2 USET,GM,KGG,MGG, GGG,K4GG/KNN,MNN,BNN,K4NN \$
86 CHKPNT KNN,MNN,BNN,K4NN \$
87 LABEL LBL2 \$
\&8 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE/BNN,BFF/SINGLE/K4NN,K.4FF/SINGLE \$
<9 CHKPNT KFF,MFF,BFF,K4FF \$
90 COND LQL3,SINGLE \$
91 SCEL USET,KNN,MNN,BNN,K4NN/KFF,KFS, ,MFF,BFF,K4FF \$
92 CHKPNT KFS,KFF,MFF,BFF,K4FF \$
93 LABEL LBL3 \$
94 EQUIV KFF,KAA/UMIT \$
95 EQUIV MFF,MAA/UMIT \$
9O EQUIV BFF,BAA/OMIT S
97 EQUIV K4FF,K4AA/OMIT \$
98 CHKPNT KAA,MAA,BAA,K4AA \$
99 COND LBL5,OMIT \$
100SMP1 USET,KFF,,,/GO,KAA,KUO,LOO,,,,"\$
101 GHKPNT GO,KAA \$
102 CUND LBLM,NUMGG \$
103 SMP2 USET,GO,MFF/MAA \$
104 CHKPNT MAA \$
105 LABEL LBLM \$

```

\section*{DIRECT. TRANSIENT RESPONSE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{RIGID FORMAT DMAP LISTING SERIES N} \\
\hline \multicolumn{7}{|l|}{RIGID FORMAT 9} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline 106 & COND & \multicolumn{5}{|l|}{LBLB,NuBGG \(\$\)} \\
\hline & SMP2 & \multicolumn{5}{|l|}{USET,GU,BFF/BAA \$} \\
\hline 108 & CHKPNT & \multicolumn{5}{|l|}{BAA \$} \\
\hline 109 & LABEL & \multicolumn{5}{|l|}{Lblas} \\
\hline 110 & COND & \multicolumn{5}{|l|}{LBL5,NUK4GG \$} \\
\hline & SMP2 & \multicolumn{5}{|l|}{USET,GO,K4FF/K4AA \$} \\
\hline 112 & CHKPNT & \multicolumn{5}{|l|}{K4AA \$} \\
\hline 113 & LABEL & \multicolumn{5}{|l|}{LBL5 \$} \\
\hline & DPU & \multicolumn{5}{|l|}{DYNAMICS,GPL,SIL,USET/GPLU,SILD,USETD,TFPOUL, DLT, , NLFT, TRL, , EQDYN/V,N,LUSET/V,N,LUSETO/V,N,NUTFL/V,N,NOULT/V,N,NUPSDL/ \(V\), N, NUFRL/V,N,NUNLFT/V,N,NOTRL/V,N,NUEED/C,N,/V,N,NOUE \$} \\
\hline 115 & save & \multicolumn{5}{|l|}{LUSETD, NGDLT, NUNLFT, NOTRL, NOUE \$} \\
\hline 116 & purge & \multicolumn{5}{|l|}{PNLU/NONLFT\$} \\
\hline 117 & EQUIV & \multicolumn{5}{|l|}{GO,GOU/NOUE/GM,GMD/NOUE \$} \\
\hline 118 & CHKPNT & \multicolumn{5}{|l|}{UЗETD, EQDYN, TFPOGL, DLT, TRL, GUD, GMU, NLFT, PNLD, SILD,GPLD \$} \\
\hline & BMG & \multicolumn{5}{|l|}{MATPUOL,BCPDT,EQEXIN,CSTM/BUPOOL/V,N,NOKBFL/V,N,NOABFL/ V,Ne MFACT \$} \\
\hline 120 & save & \multicolumn{5}{|l|}{MFACT, NOKBFL, NOABFL \$} \\
\hline 121 & PARAM & \multicolumn{5}{|l|}{\(/ / C, N, A N O / V, N, N O F L / V, N, N U A B F L / V, N, N O K B F L \$\)} \\
\hline 122 & Purge & \multicolumn{5}{|l|}{KBFL/NUKEFL/ ABFL/NOABFL \$} \\
\hline 123 & Cund & \multicolumn{5}{|l|}{LBLFL3,NOFL \({ }^{\text {S }}\),} \\
\hline 124 & MTRXIND & \multicolumn{5}{|l|}{\[
\begin{aligned}
& , B D P U O L, E Q D Y N,, / A B F L, K B F L, / V, N, L U S E T D / V, N, N O A B F L / V, N, N U K B F L / C, \\
& N, 0 \$
\end{aligned}
\]} \\
\hline 125 & SAVE & \multicolumn{5}{|l|}{NOABFL, NOKBFL \$} \\
\hline 126 & label & \multicolumn{5}{|l|}{LBLFL3 \(\$\)} \\
\hline 127 & CHKPNT & \multicolumn{5}{|l|}{ABFL,KBFL \$} \\
\hline 128 & MTRXIN & \multicolumn{5}{|l|}{CASECC, MATPOOL, EQDYN, ,TFPOOL/K2DPP,M2DPP,B2PP/V,N,LUSETD/V,N, NUK2UPP/V,N,NUMZDPP/V,N,NUउ2PP \$} \\
\hline 129 & Save & \multicolumn{5}{|l|}{NOK20PP, NOM2DPP, NUB2PP \$.} \\
\hline 130 & PARAM & \multicolumn{5}{|l|}{//C, \(N\), AND/V,N, NOM2PP/V,N,NOABFL/V,N, NOM2DPP \$} \\
\hline 131 & PARAM & \multicolumn{5}{|l|}{\(/ / C, N, A N D / V, N, N O K 2 P P / V, N, N O F L / V, N, N U K 2 D P P\) \$} \\
\hline & & \multicolumn{5}{|c|}{3.10-5 (3/1/76)} \\
\hline
\end{tabular}
```

RIGIO FORMAT DMAP LISTING
SERIES N

```

\section*{RIGID FORMAT 9}
```

NAS T R A N S U U R G E P R R O G R A M C O O M P I L A I I I DMAP-DMAP INSTRUCTION
NO.
132 EQUIV M2DPP,M2PP/NUABFL \$
133 ADU5 ABFL,KBFL,K2DPP,,/K2PP/C,N,1-1.0.0.0)\$
134 CONO LBLFL2,NOABFL \$
135 TRNSP ABFL/ABFLT \$
136 ADD ABFLT,MZDPP/MZPP/V,N,MFACT \$
137 LABEL LBLFL2\$
138 PARAM //C,N:ANO/V,N,KDEKA/V,N,NOUE/V,N:NOK2PP \$
139 PARAM //C,N,AND/V,N,MDEMA/V,N,NOUE/V,N,NDM2PP \$
140 PARAM //C,N,ANU/V,N,KOEK2/V,N,NUGENL/V,N,NUSIMP \$
141 PURGE K2DO/NUK2PP/M2DD/NOM2PP/B2OD/NOB2PP \$
142 EQUIV M2PP,M2OO/NUA/B2PP, B2DO/NUA/K2PP,K2DO/NUA/MAA,MDD/MDEMA/ KAA,
KDO/KDEKA \$
143 CHKPNT K2PP,M2PR,B2PP,K2OD,M2OD,B2OD,MDD,KDD \$
144 CONO LBLIO,NOËPDT \$
145 GKAD USETD,GM,GO,KAA,BAA,MAA,K4AA,K2PP,M2PP,B2PP/KDD,BDD,MDD,GMD,
GUD,K2UD,M2DU;B2DD/C,N,TRANRESP/C;N,DISP/C,N,OIRECT/C,Y,G=0.O/
C,Y,W3=0.O/C,Y,W4=O.O/V,N,NOK2PP/V,N,NUM2PP/V,N,NOB2PP/V,N,
MPCFI/V,N,SINGLE/V,N,OMIT/V,N,NOUE/V,N,NOK4GG/V,N,NOBGG/V,N,
KDEK2/C,N,-1 \$
146 LABEL LBL16 \$
147 EQUIV M\angleOD,MDD/NOSIMP/B2DD,BDD/NUGPDT/K2OD,KDD/KDEK2 \$
148 CHKPNT KDO,BOD,MOO,GMO,GOD \$
149 COND ERRORL,NGTRL \$
150 PARAM //C,N,ADO/V,N,NEVER/C,N,1/C,N,O \$
151 PARAM //C,N,MPY/V,N,REPEATI/C,N,L/C,N,-1 \$
152 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O \$
153 JUMP L8L13\$
154 LABEL LBL13\$
155 PURGE PNLD,OUDVL,OPNLI,OUDV2,UPNL2,XYPLTTA,OPP1,OQP1,OUPV1,OESI,OEF1,
OPP2,OQP2,OUPV2,CES2,OEF2,PLOTX2,XYPLTT/NEVER \$
156 CASE
CASECC,/CASEXX/C,N,TRAN/V,N,REPEATT/V,N,NOLOUP\$

```
```

RIGIO FORMAT DMAP LISTING
SERIES N

```

\section*{RIGID FORMAT 9}

```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }
NASSTRAANSOURCE PRROGRAMCOMPILLATIIEN
DMAP-DMAP INSTRUCTION
NO.

183	COND	LBL17, NUA \$
184	SDRL	USETD, ULVT, , GOD,GMD,PST,KFS, ,/UPV, ,QP/C,N,1/G,N,DYNAMICS \$
185	LABEL	LBL17 \$
186	CHKPNT	UPV, QP \$
187	SOR2	CASEXX,CSTM,MPT, DIT, EQUYN,SILD, , BGPDT,TOL, QP, UPV,EST, XYCDB, PPT/OPP1,UQP1,OUPV1,OES1,OEF1,PUGV/C,N,TRANRESP \$
188	SDR3	OPP1, OQP1, OUPV1, OES
189	CHKPNT	OPP2, OQP 2, OUPV2, OES2,OEF2 \$
190	OFP	OPP2,OQP 2, OUPV2, OEF2,OES2,/IV,N,CARDND \$
191	Save	CARDNU \$
192	COND	P2,JUMPPLOT \$
193	PLOT	PLTPAR,GPSETS,ELSETS,CASEXX, BGPUT, EQEXIN,SIL, ,PUGV,GPECT,OESI/ PLOTXZ/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE $\$$
194	SAVE	PFILE $\$$
195	PRTMSG	PLOTX2// \$
196	LABEL	P2 \$
197	XYTRAN	XYCOB, OPP2, UQP2, LUPV2,OES2,OEF2/XYPLTT/C,N,TRAN/C,N,PSET/V,N, PFILE/V,N,CARONO s
198	SAVE	PFILE,CARDNU \$
199	XYPLOT	XYPLTT// \$
200	LABEL	L6Ll8\$
201	COND	FINIS,REPEATT $\$$
202	REPT	LBL13,100 \$   Bottom of DMAP Loop
203	JUMP	ERRUR2 \$ ( Bottom of DMAP Loop
204	JUMP	FINIS $\$$
205	LABEL	ERPIUR2 \$
200	PRTPARM	//C,N,-2/C,N,OIRTRD \$
207	Ladel	ERKORI \$
208	PRTPARM	//C,N,-1/C,N,DIRIRD \$
209	LABEL	ERROR3 \$

```
```

    RIGIO FORMAT DMAP LISTING
    RIGID FORMAT }
    NASTRRANSOURCE P.ROGRAMGGOMPILLATIION
    DMAP-DMAP INSTRUCTIUN
NO.
210 PRTPARM //C,N,-3/C,N,DIRIRD \$
211 LABEL FINIS \$
212 END \$

```

\section*{RIGID FORMATS}

\subsection*{3.10.2 Description of DMAP Operations for Direct Transient Response}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
7. Go to DMAP No. 113 if only Direct Matrix Input.
8. GP2 generates Element Connection Table with internal indices.
12. Go to DMAP No. 22 if no plot package is present.
13. PLTSET transforms user input into a form used to drive structure plotter.
15. PRTMSG prints error messages associated with structure plotter.
18. Go to DMAP No. 22 if no undeformed structure plot request.
19. PLØT generates all requested undeformed structure plots.
21. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
24. GP3 generates Grid Point Temperature Table.
26. TAl generates element tables for use in matrix assembly and stress recovery.
30. Go to DMAP No. 61 if there are no structural elements.
35. EMG generates structural element matrix tables and dictionaries for later assembly.
38. Go to DMAP No. 41 if no stiffness matrix is to be assembled.
39. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{X}}\right]\) and Grid Point Singularity Table.
42. Go to DMAP No. 45 if no mass matrix is to be assembled.
43. EMA assembles mass matrix \(\left[\mathrm{M}_{\mathrm{gg}}\right]\).
46. Go to DMAP No. 49 if no viscous damping matrix.
47. EMA assembles viscous damping matrix \(\left[\mathrm{B}_{\mathrm{gg}}\right]\).
50. Go to DMAP No. 53 if no structural damping matrix.
51. EMA assembles structural damping matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{4}\right]\).
57. Go to DMAP No. 61 if no weight and balance request.
58. Go to DMAP No. 209 and print error message if no mass matrix exists.
59. GPWG generates weight and balance information.
60. gFP formats weight and balance information and places it on the system output file for printing.
62. Equivalence \(\left[K_{g g}^{x}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
64. Go to DMAP No. 67 if no general elements.
65. SMA3 adds general elements to \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
69. GP4 generates flags defining members of various displacement sets (USET) and forms multipoint constraint equations \(\left[\mathrm{R}_{\mathrm{g}}\right]\left\{\mathrm{u}_{\mathrm{g}}\right\}=0\).
73. Go to DMAP No. 79 if general elements present.
74. Go to DMAP No. 79 if no structural elements.
75. GPSP determines if possible grid point singularities remain.
77. Go to DMAP No. 79 if no grid point singularities exist.
78. DFP formats the table of possible grid point singularities and places it on the system output file for printing.
80. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\), \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right],\left[B_{g g}\right]\) to \(\left[B_{n n}\right]\) and \(\left[K_{g g}^{4}\right]\) to \(\left[K_{n n}^{4}\right]\) if no multipoint constraints.
82. Go to DMAP No. 87 if MCE1 and MCE2 have already been exeçuted for current set of multipoint constraints.
83. MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m} \mid R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
85. MCE2 partitions stiffness, mass and damping matrices
\[
\begin{aligned}
& {\left[K_{g g}\right]=\left[\begin{array}{l:l}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right], \quad\left[M_{g g}\right]=\left[\begin{array}{l:l}
\bar{M}_{n n} & M_{n m} \\
\hdashline M_{m n} & M_{m m}
\end{array}\right],} \\
& {\left[B_{g g}\right]=\left[\begin{array}{l:l}
\bar{B}_{n n} & B_{n m} \\
\hdashline B_{m n} & B_{m m}
\end{array}\right] \quad \text { and } \quad\left[K_{g g}^{4}\right]=\left[\begin{array}{c:c}
\bar{K}_{n n}^{4} & K_{n m}^{4} \\
\hdashline k_{m n}^{4} & k_{m m}^{4}
\end{array}\right]}
\end{aligned}
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]\left[G_{m}\right]} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]} \\
& {\left[B_{n n}\right]=\left[\bar{B}_{n n}\right]+\left[G_{m}^{\top}\right]\left[B_{m n}\right]+\left[B_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[B_{m m}\right]\left[G_{m}\right]} \\
& {\left[K_{n n}^{4}\right]=\left[\bar{K}_{n n}^{4}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}^{4}\right]+\left[K_{m n}^{4}\right]^{\top}\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}^{4}\right]\left[G_{m}\right] .}
\end{aligned}
\]
88. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right],\left[M_{n n}\right]\) to \(\left[M_{f f}\right],\left[B_{n n}\right]\) to \(\left[B_{f f}\right]\) and \(\left[K_{n n}^{4}\right]\) to \(\left[K_{f f}^{4}\right]\) if no singlepoint constraints.
90. Go to DMAP No. 93 if no single-point constraints.
91. SCET partitions out single-point constraints
\[
\begin{aligned}
& {\left[k_{n n}\right]=\left[\begin{array}{l:l|l}
k_{f f} & k_{f s} \\
\hdashline k_{s f} & k_{s s}
\end{array}\right], \quad\left[M_{n n}\right]=\left[\begin{array}{c|c}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right],} \\
& {\left[B_{n n}\right]=\left[\begin{array}{l:l}
B_{f f} & B_{f s} \\
\hdashline B_{s f} & B_{s s}
\end{array}\right] \quad \text { and }\left[k_{n n}^{4}\right]=\left[\begin{array}{l|l}
k_{f f}^{4} & k_{f s}^{4} \\
\hdashline k_{s f}^{4} & k_{s s}^{4}
\end{array}\right],}
\end{aligned}
\]

\section*{RIGID FORMATS}
94. Equivalence \(\left[\mathrm{K}_{\mathrm{ff}}\right.\)] to \(\left[\mathrm{K}_{\mathrm{aa}}\right.\)] if no omitted coordinates.
95. Equivalence \(\left[M_{f f}\right.\)] to \(\left[M_{a a}\right.\)] if no omitted coordinates.
96. Equivalence \(\left[B_{f f}\right]\) to \(\left[B_{a a}\right]\) if no omitted coordinates.
97. Equivalence \(\left[K_{f f}^{4}\right]\) to \(\left[K_{a a}^{4}\right]\) if no omitted coordinates.
99. Go to DMAP No. 113 if no omitted coordinates.
100. SMPl partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{l|l}
k_{\mathrm{aa}} & k_{\mathrm{ao}} \\
\hdashline \mathrm{k}_{\mathrm{oa}} & k_{\mathrm{oo}}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction
\[
\left[K_{a a}^{1}\right]=\left[K_{a a}\right]+\left[K_{a o}\right]\left[G_{o}\right]
\]
102. Go to DMAP No. 105 if no mass matrix.
103. SMP2 partitions constrained mass matrix
\[
\left[M_{f f}\right]=\left[\begin{array}{c|c}
M_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hdashline M_{\mathrm{oa}} & M_{\mathrm{oo}}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[M_{a a}^{1}\right]=\left[M_{a a}\right]+\left[M_{a 0}\right]\left[G_{0}\right]+\left[M_{a 0} G_{0}\right]^{\top}+\left[\mathrm{G}_{0}^{\top}\right]\left[M_{00}\right]\left[G_{0}\right]
\]
106. Go to DMAP No. 109 if no viscous damping matrix.
107. SMP2 partitions constrained viscous damping matrix
\[
\left[B_{f f}\right]=\left[\begin{array}{c:c}
B_{a a} & B_{a o} \\
\hdashline B_{o a} & B_{00}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[B_{a a}^{l}\right]=\left[B_{a a}\right]+\left[B_{a o}\right]\left[G_{0}\right]+\left[B_{a o} G_{0}\right]^{\top}+\left[G_{0}^{\top}\right]\left[B_{0 o}\right]\left[G_{0}\right]
\]
110. Go to DMAP No. 113 if no structural damping matrix.
111. SMP2 partitions constrained structural damping matrix
\[
\left[K_{f f}^{4}\right]=\left[\begin{array}{cc|c}
K_{a a}^{4} & \mid & K_{a 0}^{4} \\
\hline K_{o a}^{4} & K_{o 0}^{4}
\end{array}\right]
\]
and performs matrix reduction
\[
\begin{gathered}
{\left[K_{a a}^{4}\right]=\left[K_{a a}^{4}\right]+\left[K_{a o}^{4}\right]\left[G_{0}\right]+\left[K_{a o}^{4} G_{0}\right]^{\top}+\left[G_{o}^{\top}\right]\left[K_{o o}^{4}\right]\left[G_{0}\right]} \\
3.10-12(12 / 31 / 74)
\end{gathered}
\]

\section*{DIRECT TRANSIENT RESFONSE}
114. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool, Dynamics Load Table, Nonlinear Function Table and Transient Response List.
117. Equivalence \(\left[G_{0}\right]\) to \(\left[G_{0}^{d}\right]\) and \(\left[G_{m}\right]\) to \(\left[G_{m}^{d}\right]\) if no extra points introduced for dynamic analysis.
119. BMG generates DMIG card images describing the interconnection of the fluid and the structure.
123. Go to DMAP No. 126 if no fluid structure interface is defined.
124. MTRXIN generates fluid boundary matrices [\(A_{b, f \ell}\)] and [\(K_{b, f \ell}\)] if a fluid structure interface is defined. The matrix \(\left[K_{b, f \ell}\right]\) is generated only for a nonzero gravity in the field.
128. MTRXIN selects the direct input matrices \(\left[K_{p p}^{2 d}\right]\), \(\left[M_{p p}^{2 d}\right]\) and \(\left[B_{p p}^{2}\right]\).
132. Equivalence \(\left[M_{p p}^{2 d}\right]\) to \(\left[M_{p p}^{2}\right]\) if no \(\left[A_{b, f \ell}\right]\).
133. ADD5 adds \(\left[K_{b, f \ell}\right]\) and \(\left[K_{p p}^{2 d}\right]\) and subtracts \(\left[A_{b, f \ell}\right]\) from them to form \(\left[K_{p p}^{2}\right.\)].
134. Go to DMAP No. 137 if no [\(A_{b, f \ell}\)].
135. Transpose \(\left[A_{b, f \ell}\right]\) to obtain \(\left[A_{b, f \ell}\right]^{\top}\).
136. ADD assembles input matrix \(\left[M_{p p}^{2}\right]=\operatorname{MFACT}\left[A_{b, f \ell}\right]^{\top}+\left[M_{p p}^{2 d}\right]\).
142. Equivalence \(\left[M_{p p}^{2}\right]\) to \(\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]\) to \(\left[B_{d d}^{2}\right]\) and \(\left[K_{p p}^{2}\right]\) to \(\left[K_{d d}^{2}\right]\) if no constraints applied, [\(M_{a a}\)] to [\(M_{d d}\)] if no direct input mass matrices and no extra points, and [\(K_{a a}\)] to [\(K_{d d}\)] if no direct input stiffness matrices and no extra points.
144. Go to DMAP No. 146 if only extra points defined.
145. GKAD assembles stiffness, mass, and damping matrices for use in Direct Transient Response
\[
\begin{aligned}
{\left[K_{d d}\right] } & =\left[K_{d d}^{1}\right]+\left[K_{d d}^{2}\right] \\
{\left[M_{d d}\right] } & =\left[M_{d d}^{1}\right]+\left[M_{d d}^{2}\right] \text { and } \\
{\left[B_{d d}\right] } & =\left[B_{d d}^{1}\right]+\left[B_{d d}^{2}\right]+\frac{g}{\omega_{3}}\left[K_{d d}^{1}\right]+\frac{1}{\omega_{4}}\left[K_{d d}^{4}\right] .
\end{aligned}
\]

All matrices are real.
147. Equivalence \(\left[B_{d d}^{2}\right]\) to \(\left[B_{d d}\right]\) if all damping is Direct Matrix Input, \(\left[M_{d d}^{2}\right]\) to \(\left[M_{d d}\right]\) if all mass is Direct Matrix Input and \(\left[K_{d d}^{2}\right]\) to \(\left[K_{d d}\right]\) if all stiffness is Direct Matrix Input.
149. Go to DMAP No. 207 and print error message if no Transient Response List.
153. Go to next DMAP instruction if cold start or modified restart. LBLI3 will be altered by the Executive System to the proper location inside the loop for unmodified starts within the loop.
154. Beginning of loop for additional dynamic load sets.
156. CASE extracts user requests from CASECC for current loop.

\section*{RIGID FORMHTS}
160. TRLG generates matrices of loads versus time. \(\left\{P_{p}^{t}\right\}\), \(\left\{P_{s}^{t}\right\}\), and \(\left\{P_{d}^{t}\right\}\) are generated with one column per output time step. \(\left\{P_{d}\right\}\) is generated with one column per solution time step, and the Transient Output List (TOL) is a list of output time steps.
163. Equivalence \(\left\{P_{d}\right\}\) to \(\left\{\mathrm{P}_{\mathrm{d}}^{\mathrm{t}}\right\}\) if the output times are the same as the solution times and \(\left\{\mathrm{P}_{\mathrm{p}}^{t_{\mathrm{t}}}\right\}\) to \(\left\{P_{d}^{t}\right\}\) if the \(d\) and \(p\) sets are the same.
165. TRD forms the linear and nonlinear dynamic load vectors \(\left\{P_{d}\right\}\) and \(\left\{P_{d}^{n \ell}\right\}\) and integrates the equations of motion over specified time periods to solve for the displacements, velocities, and accelerations, using the following equation
\[
\left[M_{d d} p^{2}+B_{d d} p+K_{d d}\right]\left\{u_{d}\right\}=\left\{P_{d}\right\}+\left\{P_{d}^{n \ell}\right\} .
\]
168. VDR prepares displacements, velocities and accelerations, sorted by time step, for output using only the independent degrees of freedom.
171. Go to DMAP No. 179 if no output request for the independent degrees of freedom.
172. SDR3 sorts the independent displacements, velocities, accelerations and nonlinear load vectors by point number.
173. ØFP formats the requested independent displacements, velocities, accelerations and nonlinear load vectors sorted by point number and places them on the system output file for printing.
176. XYTRAN prepares the input for X-Y plotting of the independent displacements, velocities, accelerations and nonlinear load vectors vs. time.
178. XYPL \(\emptyset T\) prepares requested \(X-Y\) plots of the independent displacements, velocities, accelerations and nonlinear load vectors vs. time.
181. Go to DMAP No. 200 if no output request involving dependent degrees of freedom or forces and stresses.
182. Equivalence \(\left\{u_{d}\right\}\) to \(\left\{u_{p}\right\}\) if no constraints applied.
183. Go to DMAP No. 185 if no constraints applied.
184. SDR1 recovers dependent components of displacements
\[
\begin{aligned}
& \left\{u_{o}\right\}=\left[G_{0}^{d}\right]\left\{u_{d}\right\}, \quad\left\{\begin{array}{c}
u_{d} \\
- \\
u_{0}
\end{array}\right\}=\left\{u_{f}+u_{e}\right\}, \\
& \left\{-\frac{u_{f}+u_{e}}{u_{s}}\right\}=\left\{u_{n}+u_{e}\right\}, \quad\left\{u_{m}\right\} \quad=\left[G_{m}^{d}\right]\left\{u_{f}+u_{e}\right\}, \\
& \left\{\begin{array}{l}
u_{n}+u_{e} \\
u_{m}
\end{array}\right\}=\left\{u_{p}\right\}
\end{aligned}
\]
and recovers single-point forces of constraint \(\left\{q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}\).
187. SDR2 calculates element forces and stresses (\(\varphi \mathrm{EF} 1, \emptyset E S 1\)) and prepares load vectors, displacement, velocity and acceleration vectors and single-point forces of constraint for output (\(\varnothing\) PP1, \(\emptyset U P V 1, ~ P U G V, ~ \emptyset Q P 1) ~-~ a l l ~ s o r t e d ~ b y ~ t i m e ~ s t e p . ~\)
188. SDR3 prepares requested output sorted by point number or element number.

\section*{DIPECT TRANSIENT RESPONSE}
190. ØFP formats requested output sorted by point number or element number and places it on the system output file for printing.
192. Go to DMAP No. 196 if no deformed structure plots requested.
193. PLøT prepares all requested deformed structure plots.
195. PRTMSG prints plotter data and engineering data for each deformed plot generated.
197. XYTRAN prepares the input for requested \(X-Y\) plots.
199. XYPLDT prepares requested X-Y plots of displacements, velocities, accelerations, forces, stresses, loads or single-point forces of constraint vs. time.
201. Go to DMAP No. 211 if no additional dynamic load sets need to be processed.
202. Go to DMAP No. 154 if additional dynamic load sets need to be processed.
203. Go to DMAP No. 205 and print error message if more than 100 loops.
204. Go to DMAP No. 211 and make normal exit.
206. DIRECT TRANSIENT RESPØNSE ERRØR MESSAGE NØ. 2 - ATTEMPT TØ EXECUTE MØRE THAN 100 LØØPS.
208. DIRECT TRANSIENT RESPØNSE ERRØR MESSAGE NØ. 1-TRANSIENT RESP@NSE LIST REQUIRED FØR TRANSIENT RESP@NSE CALCULATI@NS.
210. DIRECT TRANSIENT RESP@NSE ERR \(\emptyset\) R MESSAGE N \(\emptyset .3\) - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIQNS.

\subsection*{3.10.3 Case Control Deck and Parameters for Direct Transient Response}

The following items relate to subcase definition and data selection for Direct Transient

\section*{Response:}
1. One subcase must be defined for each dynamic loading condition.
2. DLØAD or N \(\emptyset\) NLINEAR must be used to define a time-dependent loading condition for each subcase.
3. Constraints must be defined above the subcase level.
4. TSTEP must be used to select the time-step intervals to be used for integration and output in each subcase.
5. If nonzero initial conditions are desired, IC must be used to select a TIC card in the Bulk Data Deck.
6. On restart following an unscheduled exit due to insufficient time, the subcase structure should be changed to reflect any completed loading conditions. The TSTEP selections must be changed if it is desired to resume the integration at the point terminated.

The following printed output, sorted by point number or element number (SØRT2) is available at selected multiples of the integration time step:
1. Displacements, velocities, and accelerations for a list of PHYSICAL points (grid points and extra scalar points introduced for dynamic analysis) or SØLUTIØN points (points used in formulation of the general K system).
2. Nonzero components of the applied load vector and single point forces of constraint for a list of PHYSICAL points.
3. Nonlinear force vector for a list of SØLUTION points.
4. Stresses and forces in selected elements (All not allowed).

The following plotter output is available for Transient Response:
1. Undeformed plot of the structural model.
2. Deformed shapes of the structural model for selected time intervals.
3. X-Y plot of any component of displacement, velocity, or acceleration of a PHYSICAL point or SØLUTIQN point.
4. X-Y plot of any component of the applied load vector, nonlinear force vector, or singlepoint force of constraint.
5. X-Y plot of any stress or force component for an element.

The data used for preparing the \(X-Y\) plots may be punched or printed in tabular form (see Section 4.2). Also, a printed summary is prepared for each \(X-Y\) plot which includes the maximum and minimum values of the plotted function.

The following parameters are used in Direct Transient Response:
1. GRDPNT - optional - A positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - The terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in EMA. Not recommended for use in hydroelastic problems.
3. \(\underline{G}\) - optional - The real value of this parameter is used as a uniform structural damping coefficient in the direct formulation of dynamics problems. Not recommended for use in hydroelastic problems.
4. W3 and W4 - optional - The values of these parameters are used as pivotal frequencies for uniform structural damping and element structural damping respectively. W3 is required if uniform structural damping is desired. W4 is required if structural damping is desired for any of the structural elements. See page 9.3-8 of the NASTRAN Theoretical Manual.
5. CØUPMASS - CPBAR, CPRØD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - These parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.

\section*{MODAL COMPLEX EIGENVALUE ANALYSIS}
3.11.1 DMAP Sequence for Modal Complex Eigenvalue Analysis

\section*{RIGID FORMAT DMAP LISTING SERIES N}

RIGID fermat 10
NASTRANSOURGEPROGRAMCOMPILATION UMAP-DMAP INSTRUCTIUN Nu.

1 begin Nu. 10 mujal cumplex eigenvalue analysis - SERIES \(\mathrm{N} \$\)
2 FILE GOD=SAVE/ GMD=SAVE/ LAMA=APPEND/PHIA=APPEND \$
3 GPI GEOML,GEUMZ,/GPL,EQEXIN,GPUT,CSTM, BGPDT,SIL/V,N,LUSET/V,N. NUGPDT \$

SAVE LUSET \$
CHKPNI GPL,EQEXIN,GPOT, CSTM,BGPOT,SIL \$
GP2 GEOM2,EQEXIN/ECT \$
CHKPNT ECT \$
PARAML PCDB//C,N,PKES/E,N,/C,N,/C,N,N,N,NUPCDB \$
PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NOPCOB \(\$\)
10 COND PI,NUPCDB \$
11 PLTSET PGDB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N, JUMPPLOT=-1 \$

12 SAVE NSIL,JUMPPLOT \$
13 PRTMSG PLTSETX// \$
14 PARAM //C,N,MPY/V,N,PLJFLG/C,N,1/C,N,1 \$
15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
10 COND P1,JUMPPLUT \$
17 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPUT,EQEXIN,SIL,I,I/PLOTXI/ V,N, NSIL/V,N,LUSET/V,N,JUMPPLUT/V,N,PLTFLG/V,N,PFILE \$

18 SAVE PFILE \$
19 PRTMSG PLUTXI// \$
20 LABEL Pl \$
21 CHKPNT PLTPAR,GPSETS,ELSETS \$
22 GP3. GEOM3,EQEXIN,GEUM2/,GPIT/V,N,NOGRAV \$
23 CHKPNT GPTT \$
24 TAI ECT,EPT,BGPDI,SIL,GPTI,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N, NUSIMP/C,N,L/V,N,NUGENL/V,N.GENEL \$

25 SAVE NOGENL,NOSIMP,GENEL \$
3.11-1 (3/1/76)
RIGID FORMAI DMAP LISTING
SERIES
```

RIGID FORMAT 10

```

```

DMAP-DMAP INSTRUCTION
NO.
20 CONO ERRORI,NOSIMP\$
27 PURGE OGPST/GENEL \$
28 CHKPNT EST,GPECT,GEI,OGPST \$
29 PARAM //C,N,ADO/V,N,NOKGGX/C,N,I/C,N,O\$
30 PARAM //C,N,ADD/V,N,NOMGG/C,N,1/C,N,O\$
31 EMG EST,CSTM,MPT,OIT,GEUMZ,/KELM,KDICT,MELM,MOICT,,/V,N,NOKGGX/V,
N,NOMGG/C,N,/G,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROO/C,Y,
CPQUADI/C,Y,CPQUAD2/C,Y,UPTRIAI/C,Y,CPTRIA2/ C,Y,CPTUBE/C,Y,
CPQOPLT/C,Y,CPTRPLT/C,Y,CPTRBSG\$
32 SAVE NUKGGX,NUMGG \$
33 CHKPNT KELM,KDICT,MELM,MDICT \$
34 COND JMPKGGX,NUKGGX \$
35 EMA GPECT,KDICT,KELM/KGGXX,GPST \$
36 CHKPNJ KGGX,GPST \$
37 LABEL JMPKGGX s
38 COND ERRORI,NOMGG \$
39 EMA GPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WIMASS=1.0 \$
40 CHKPNI MGG \$
41 COND LGPWG,GRDPNT \$
42GPWG BGPOT,CSTM,EQEXIN,MGG/UGPWG/V,Y,GRDPNJ=-1/C,Y,WTMASS \$
43 OFP OGPWG,,,,///\$
4 4 ~ L A B E L ~ L G P W G \$
45 EQUIV KGGX,KGG/NUGENL \$
46 CHKPNT KGG \$
47 COND LBLII,NUGENL \$
48SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NUGENL/V,N,NOSIMP \$
49 CHKPNT KGG \$
50 LABEL LBLI1\$
51 PARAM //C,IN,MPY/V,N,NSKIP/C,N,O/G,N,O \$
52@GP4 CASECC,GEOM4,EQEXIN,SIL,GPDT,BGPOT,CSIM/RG,,USET,ASEI/ V,N,
3.11-2 (3/1/76)

```
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 10
    NASTRRANSOURGE PROGRAMCDMPILATIION
    DMAP-DMAP INSTRUCIIUN
NO.
LUSET/V,N,MPCF1/V,N,MPGF2/V,N,SINGLE/V,N,UMIT/V,N,REACT/V,N,
NSKIP/V,N,REPEAT/V,N,NDSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$
53 SAVE
54 PARAM
//C,N,AND/V,N,NOSR/V,N,REAGT/V,N,SINGLE \$
55 PURGE GM,GMD/MPCFI/GO,GOD/OMIT/KFS/SINGLE/GPC/NOSR/KLR,KRR,MLR,PIRR,
DM,MR/REACT \$
56 CHKPNT KRR,KLR,DY,MLR,MRR,MR,GM,RG,GO,KFS,QPC,USET,GMD,GOD,ASET \$
57 CUND LBL4,GENEL \$
58 GPPSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
59 SAVE NOGPST \$
60 CUND LBL4,NOGPST \$
61 UFP UGPST,.,.,// \$
62 LABEL LBL4\$
63 EQUIV KGG,KNN/MPCF1/MGG,MNN/MPCF1 \$
64 CHKPNT KNN,MNN \$
65 COND LBL2,MPGF1\$
66 MCEL USET,RG/GM\$
6 7 CHKPNT GM \$
68 MCE2 USET,GM,KGG,MGG,,IKNN,MNN,. \$
69 CHKPNT KNN,MNN \$
70 LABEL LBLZ \$
71 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE \$
72 CHKPNT KFF,MFF \$
73 COND LBL3.SINGLE \$
74 SCEL USET,KNN,MNN,,/KFF,KFS,,MFF,,\$
75 CHKPNT KFS,KFF,MFF \$
76 LABEL LBL3 \$
77 EQUIV KFFF,KAA/OMIT \$
78 EQUIV MFF,MAA/OMIT \$

```
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }1
        NASTRRANSOURCE PROGRAMGOUMPILATIION
    DMAP-DMAP INSTRUCTION
NU.
79 CHKPNT KAA,MAA \$
80 COND LBL5,OMIT \$
81 SMP1 USET,KFF,,,IGO,KAA,KOO,LOO,,,,,\$
82 CHKPNT GO,KAA \$
83 SMP2 USET,GO,MFF/MAA \$
84 CHKPNT MAA \$.
85 LABEL LBL5 \$
86 COND LBLG,REACT \$
87 RBMG1 USET,KAA,MAA/KLL,KLR,KRR,MLL,MLR,MRR \$
88 CHKPNT KLL,KLR,KRR,MLL,MLK,MRR \$
89 RBMG2 KLL/LLL \$
90 CHKPNT LLL \$
91 RBMG3 LLL,KLR,KRR/DM \$
92 CHKPNT DM \$
93 RBMG4 DM,MLL,MLR,MRR/MR \&
94 CHKPNT MR \$
95 LABEL LBL6\$
96 DPDD DYNAMICS,GPL,SIL,USET/GPLD,SILD,USEID,TFPOOL,,,,',EED,EQDYN/V,
N,LUSET/V,N,LUSETD/V,N,NUTFL/V,N,NUDLT/V,N,NOPSDL/V,N,NUFRL/V,
N,NUNLFT/V,N,NOTRL/V,N,NOEEO/C,N,/V,N,NOUE \$
97 SAVE LUSETD,NUUE,NOEED \$
98 COND ERRORZ,NUEED \$
99 EQUIV GU,GOD/NOUE/GM,GMD/NOUE \$
100 CHKPNT USETD,EED,EQDYN,TFPOOL,GOD,GMD,SILD,GPLD \$
101 PARAM //C,N,MPY/V,N,NEIGV/C,N,1/C,N,-1 \$
102 READ KAA,MAA,MR,OM,EED,USET,CASECC/LAMA,PHIA,MI,OEIGS/C,N,MODES/V,N,
NEIGV \$
103 SAVE NEIGV \$
104 CHKPNT LAMA,PHIA,MI,OEIGS \$
105 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O s

```
\begin{tabular}{lll}
& RIGIDFORMAT & DMAP LISTING \\
SERIES
\end{tabular}
```

    RIGID FORMAT DMAP LISTING
    RIGID FORMAT }1
        NAST RAN SOURCE PROGGRAM COMPIILATIEN
    OMAP-DMAP INSTRUCTION
NO.
131 SAVE CARDNU $\$$
132 COND LBLIT,EIGVS \$
133 VDR CASEXX,EQOYN,USEID,PHIH,CLAMA,,/UPHIH,/C,N,CEIGEN/C,N,MODAL/V,
N,NOSORT2/V,N,NOH/V,N,NOP/V,N,FMODE \$
134 SAVE NOH,NLP \$
135 CONU LBLI6,NUH \$
136 UFP OPHIH,B,,,//V,N,CARDNO \$
137 SAVE CARDNU \$
138 LABEL LBL16 \$
139 COND LBLI7,NUP \$
140 ODRI PHIH,PHIDH/CPHID \$
141 CHKPNT CPHID\$
142 EQUIV CPHID,CPHIP/NUA \$
143 COND LBLNOA;NOA \$
144 SOR1 USETD,,CPHID,,,GOD,GMD,,KFS,,/CPHIP,,QPC/L,N,I /C,N,DYNAMICS \$
145 LABEL LBLNOA \$
140 CHKPNT CPHIP,QPC \$
147SOR2 CASEXX,CSIM,MPI,DIT,EQDYN,SILO,,I,CLAMA,QPC,CPHIP,EST,,I,
UQPC1,OCPHIP,DESC1,OEFC1, /C,N,CEIGEN \$
148 OFP OCPHIP,OQPCL,DEFCL,OESC1,,//V,N,CARONO \$
149 SAVE CARONU \$
150 LABEL LOLI7\$
151 COND FINIS:REPEATE \$
L52 REPT LBL13.100\$ Bottom of DMAP Loop
153 JUMP ERROR3 \$
154 JUMP FINIS \$
155 LABEL ERROR3 \$
156 PRTPARM //C,N,-3/C,N,MDLCEAD \$
157 LABEL ERROR2 \$

```

MODÁL COMPLEX EIGENVALUE ANALYSIS
RIGID FORMAT DMAP LISTING
RIGIO FORMAT 10
NASTRANSUURCE PROGRAMCOMPILATIDN
```OMAP-DMAP INSTRUCTION
NO.
158 PRTPARM //C,N:-2/C,N,MOLCEAD $
```

159 LABEL ERROR1 \$
160 PRTPARM //C,N,-1/C,N,MDLCEAO
161 LABEL ERROR4 \$
162 PRTPARM //C,N,-4/C,N,MDLCEAD \$
163 LABEL FINIS \$
164 END $\$$

3.11.2 Description of DMAP Operations for Modal Complex Eigenvalue Analysis

3. GP1 generates coordinate system transformation matrices, table of grid point locations, and tables for relating internal and external grid point numbers.
4. GP2 generates Element Connection Table with internal indices.
5. Go to DMAP No. 20 if no plot package is present.
6. PLTSET transforms user input into a form used to drive structure plotter.
7. PRTMSG prints error messages associated with structure plotter.
8. Go to DMAP No. 20 if no undeformed structure plot request.
9. PLØT generates all requested undeformed structure plots.
10. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
11. GP3 generates Grid Point Temperature Table.
12. TAl generates element tables for use in matrix assembly and stress recovery.
13. Go to DMAP No. 159 and print error message if there are no structural elements.
14. EMG generates structural element matrix tables and dictionaries for later assembly.
15. Go to DMAP No. 37 if no stiffness matrix is to be assembled.
16. EMA assembles stiffness matrix $\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{X}}\right]$ and Grid Point Singularity Table.
17. Go to DMAP No. 159 if no mass matrix is to be assembled.
18. EMA assembles mass matrix $\left[M_{g g}\right]$.
19. Go to DMAP No. 44 if no weight and balance request.
20. GPWG generates weight and balance information.
21. QFP formats weight and balance information and places it on the system output file for printing.
22. Equivalence $\left[K_{g g}^{X}\right]$ to $\left[K_{g g}\right]$ if no general elements.
23. Go to DMAP No. 50 if no general elements.
24. SMA3 adds general elements to stiffness matrix $\left[K_{g g}^{X}\right]$ to obtain stiffness matrix $\left[K_{g g}\right.$].
25. GP4 generates flags defining members of various displacement sets (USET) and forms multipoint constraint equations $\left[R_{g}\right]\left\{u_{g}\right\}=0$.
26. Go to DMAP No. 62 if general elements present.
27. GPSP determines if possible grid point singularities remain.
28. Go to DMAP No. 62 if no Grid Point Singularity Table.
29. ØFP formats table of possible grid point singularities and places it on the system output file for printing.
30. Equivalence $\left[K_{g g}\right]$ to $\left[K_{n n}\right]$ and $\left[M_{g g}\right]$ to $\left[M_{n n}\right]$ if no multipoint constraints.
31. Go to DMAP No. 70 if no multipoint constraints.
32. MCE1 partitions multipoint constraint equations $\left[R_{g}\right]=\left[R_{m}\left\{R_{n}\right]\right.$ and solves for multipoint constraint transformation matrix $\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]$.
33. MCE2 partitions stiffness and mass matrices

$$
\left[K_{g g}\right]=\left[\begin{array}{c:c}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right] \quad \text { and } \quad\left[M_{g g}\right]=\left[\begin{array}{c:c}
\bar{M}_{n n} & M_{n m} \\
\hdashline & M_{m n} \\
M_{m m}
\end{array}\right]
$$

and performs matrix reductions

$$
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] \text { and }} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right] .}
\end{aligned}
$$

71. Equivalence $\left[K_{n n}\right]$ to $\left[K_{f f}\right]$ and $\left[M_{n n}\right]$ to $\left[M_{f f}\right.$] if no single-point constraints.
72. Go to DMAP No. 76 if no single-point constraints.
73. SCEI partitions out single-point constraints

$$
\left[k_{n n}\right]=\left[\begin{array}{l:l}
k_{f f} & k_{f s} \\
\hdashline K_{s f} & k_{s s}
\end{array}\right] \quad \text { and } \quad\left[M_{n n}\right]=\left[\begin{array}{c:c}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right] \text {. }
$$

77. Equivalence $\left[K_{f f}\right.$] to [$K_{a a}$] if no omitted coordinates.
78. Equivalence $\left[M_{f f}\right.$] to [$M_{a a}$] if no omitted coordinates.
79. Go to DMAP No. 85 if no omitted coordinates.
80. SMP1 partitions constrained stiffness matrix

$$
\left[K_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{a a} & k_{a o} \\
\hdashline k_{o a} & k_{00}
\end{array}\right]
$$

solves for transformation matrix $\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]$
and performs matrix reduction $\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{o}\right]$
83. SMP2 partitions constrained mass matrix

$$
\left[M_{\mathrm{ff}}\right]=\left[\begin{array}{l:c}
\bar{M}_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hdashline M_{\mathrm{oa}} & M_{\mathrm{oo}}
\end{array}\right]
$$

performs matrix reduction

$$
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{0}\right]+\left[G_{o}^{\top}\right]\left[M_{o a}\right]+\left[G_{0}^{\top}\right]\left[M_{o o}\right]\left[G_{o}\right]
$$

86. Go to DMAP No. 95 if no free-body supports.
87. RBMG1 partitions out free-body supports.
88. RBMG2 decomposes constrained stiffness matrix $\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]$.
89. RBMG3 forms rigid body transformation matrix

$$
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right]
$$

calculates rigid body check matrix

$$
[x]=\left[k_{r r}\right]+\left[k_{l r}^{\top}\right][D]
$$

and calculates rigid body error ratio

$$
\varepsilon=\frac{|x|}{\prod k_{r r} \|}
$$

93. RBMG4 forms rigid body mass matrix $\left[m_{r}\right]=\left[M_{r r}\right]+\left[M_{\ell r}^{\top}\right][D]+\left[D^{\top}\right]\left[M_{\ell r}\right]+\left[D^{\top}\right]\left[M_{\ell \ell}\right][D]$.
94. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool and Eigenvalue Extraction Data.
95. Go to DMAP No. 157 and print error message if no Eigenvalue Extraction Data.
96. Equivalence $\left[G_{0}\right]$ to $\left[G_{0}^{d}\right]$ and $\left[G_{m}\right]$ to $\left[G_{m}^{d}\right]$ if no extra points introduced for dynamic
analysis.
97. READ extracts real eigenvalues from the equation

$$
\left[K_{a a}-\lambda M_{a a}\right]\left\{u_{a}\right\}=0,
$$

calculates rigid body modes by finding a square matrix $\left[\phi_{\text {ro }}\right]$ such that

$$
\left[m_{0}\right]=\left[\phi_{r o}^{\top}\right]\left[m_{r}\right]\left[\phi_{r o}\right]
$$

is diagonal and normalized and computes rigid body eigenvectors

$$
\left[\phi_{\mathrm{ao}}\right]=\left[\begin{array}{c}
\mathrm{D}_{\mathrm{m}} \phi_{\mathrm{ro}} \\
\hdashline-- \\
\phi_{\mathrm{ro}}
\end{array}\right]
$$

calculates modal mass matrix

$$
[\mathrm{m}]=\left[\phi_{\mathrm{a}}^{\mathrm{T}}\right]\left[\mathrm{M}_{\mathrm{aa}}\right]\left[\phi_{\mathrm{a}}\right]
$$

and normalizes eigenvectors according to one of the following user requests:

1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass.
106. ØFP formats the summary of eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
107. Go to DMAP No. 161 and print error message if no eigenvalues found.
108. Go to next DMAP instruction if cold start or modified restart. LBL13 will be altered by the Executive System to the proper location inside the loop for unmodified starts within the loop.

MODAL COMPLEX EIGENVALUE ANALYSIS

112. Beginning of loop for additional sets of direct input matrices.
113. CASE extracts user requests from CASECC for current loop.
114. MTRXIN selects the direct input matrices for the current loop, $\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]$ and $\left[B_{p p}^{2}\right]$.
115. Equivalence $\left[M_{p p}^{2}\right]$ to $\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]$ to $\left[B_{d d}^{2}\right]$ and $\left[K_{p p}^{2}\right]$ to $\left[K_{d d}^{2}\right]$ if no constraints applied.
116. GKAD applies constraints to direct input matrices $\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]$ and $\left[B_{p p}^{2}\right]$, forming $\left[K_{d d}^{2}\right]$, $\left[M_{d d}^{2}\right]$ and $\left[B_{d d}^{2}\right]$.
117. GKAM assembles stiffness; mass and damping matrices in modal coordinates for use in Complex Eigenvalue Analysis.

$$
\begin{aligned}
& {\left[K_{h h}\right]=[k]+\left[\phi_{d h}^{\top}\right]\left[k_{d d}^{2}\right]\left[\phi_{d h}\right],} \\
& {\left[M_{h h}\right]=[m]+\left[\phi_{d h}^{\top}\right]\left[M_{d d}^{2}\right]\left[\phi_{d h}\right],} \\
& {\left[B_{h h}\right]=[b]+\left[\phi_{d h}^{\top}\right]\left[\mathrm{B}_{\mathrm{dd}}^{2}\right]\left[\phi_{\mathrm{dh}}\right],}
\end{aligned}
$$

where

$$
\begin{aligned}
& m_{i}=\text { modal masses } \\
& b_{i}=m_{i} 2 \pi f_{i} g\left(f_{i}\right) \\
& k_{i}=m_{i} 4 \pi^{2} f_{i}^{2}
\end{aligned}
$$

and direct input matrices may be complex.
127. CEAD extracts complex eigenvalues from the equation

$$
\left[M_{h h} p^{2}+B_{h h} p+K_{h h}\right]\left\{u_{h}\right\}=0
$$

$+$
and normalizes eigenvectors according to one of the following user requests:
(1) Unit magnitude of selected coordinate
(2) Unit magnitude of largest component.
130. ØFP formats the summary of complex eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
132. Go to DMAP No. 150 if no complex eigenvalues found.
133. VDR prepares eigenvectors for output, using only the extra points introduced for dynamic analysis and modal coordinates.
135. Go to DMAP No. 138 if no output request for the extra points introduced for dynamic analysis or modal coordinates.
136. QFP formats eigenvectors for extra points introduced for dynamic analysis and modal coordinates and places them on the system output file for printing.
139. Go, to DMAP No. 150 if no output request involving dependent degrees of freedom or forces and stresses.
140. DDR1 transforms the complex eigenvectors from modal to physical coordinates

$$
\left[\phi_{\mathrm{d}}\right]=\left[\phi_{\mathrm{dh}}\right]\left[\phi_{\mathrm{h}}\right]
$$

142. Equivalence $\left[\phi_{d}\right]$ to $\left[\phi_{p}\right]$ if no constraints applied.
143. Go to DMAP No. 145 if no constraints applied.
144. SDR1 recovers dependent components of eigenvectors

$$
\begin{aligned}
& \left\{\phi_{0}\right\}=\left[G_{0}^{d}\right]\left\{\phi_{d}\right\} \quad\left\{\begin{array}{l}
\phi_{d} \\
-- \\
\phi_{0}
\end{array}\right\}=\left\{\phi_{f}+\phi_{e}\right\}, \\
& \left\{-\frac{\phi_{f}+\phi_{e}}{\phi_{s}}\right\}=\left\{\phi_{n}+\phi_{e}\right\}, \quad\left\{\phi_{m}\right\}=\left[G_{m}^{d}\right]\left\{\phi_{n}+\phi_{e}\right\}, \\
& \left\{\begin{array}{c}
\phi_{n}+\phi_{e} \\
\phi_{m}
\end{array}\right\}=\left\{\phi_{p}\right\}
\end{aligned}
$$

and recovers single-point forces of constraint $\left\{q_{s}\right\}=\left[K_{f s}^{\top}\right]\left\{\phi_{f}\right\}$.
147. SDR2 calculates element forces and stresses ($\emptyset E F C 1, \emptyset E S C 1$) and prepares eigenvectors and single-point forces of constraint for output ($\varnothing C P H I P, ~ \emptyset Q P C 1)$.
148. ØFP formats tables prepared by SDR2 and places them on system output file for printing.
151. Go to DMAP No. 163 if no additional sets of direct input matrices need to be processed.
152. Go to DMAP No. 112 if additional sets of direct input matrices need to be processed.
153. Go to DMAP No. 155 and print error message if more than 100 loops.
154. Go to DMAP No. 163 and make normal exit.
156. MøDAL CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE NØ. 3 - ATTEMPT TØ EXECUTE MØRE THAN 100 LOQPS.
158. MØDAL CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
 FØRMULATION.
162. MøDAL CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE NØ. 4 - REAL EIGENVALUES REQUIRED FØR M $\emptyset D A L$ FgRMULATIDN.

3.11.3 Automatic Output for Modal Complex Eigenvalue Analysis

The Eigenvalue Summary Table and the Eigenvalue Analysis Summary, as described under Normal Mode Analysis, are automatically printed. All real eigenvalues extracted are included even though not all are used in the modal formulation.

The Complex Eigenvalue Summary Table and the Complex Eigenvalue Analysis Summary, as described under Direct Complex Eigenvalue Analysis, are automatically printed for each set of direct input matrices.

3.11.4 Case Control Deck and Parameters for Modal Complex Eigenvalue Analysis

The following items related to subcase definition and data selection must be considered in addition to the list presented with Direct Complex Eigenvalue Analysis:

1. METH \emptyset must appear above the subcase level to select an EIGR card that exists in the Bulk Data Deck.
2. All of the eigenvectors used in the modal formulation must be determined in a single execution.
3. An SPC set must be selected above the subcase level unless the model is a free body or all constraints are specified on GRID cards, Scalar Connection cards or with General Elements.
4. SDAMPING must be used to select a TABDMP1 table if structural damping is desired.

Output that may be requested is the same as that described under Direct Complex Eigenvalue Analysis. Output for SOLUTION points will have the modal coordinates identified by the mode nümber determined in Real Eigenvalue Analysis.

The eigenvectors used in the modal formulation may be obtained for the SØLUTIQN points by using the ALTER feature to print the matrix of eigenvectors following the execution of READ. The eigenvectors for all points in the model may be obtained by running the problem initially on the Normal Mode Analysis rigid format or by making a modified restart using the Normal Mode Analysis rigid format.

The following parameters are used in Modal Complex Eigenvalue Analysis:

1. GRDPNT - optional - A positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - The terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in EMA. Not recommended for use in hydroelastic problems.
 CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
3. LFREQ and HFREQ - required unless LMODES is used. The real values of these parameters give the frequency range (LFREQ is lower limit and HFREQ is upper limit) of the modes to be used in the modal formulation.
4. LM@DES - required unless LFREQ and HFREQ are used. The integer value of this parameter is the number of lowest modes to be used in the modal formulation.

MODAL FREQUENCY AND RANDOM RESPONSE

3.12 MODAL FREQUENCY AND RANDOM RESPONSE
3.12.1 DMAP Sequence for Modal Frequency and Random Response

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 11
NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTIUN NU.

1 BEGIN NO. 11 MODAL FREQUENGY RESPUNSE ANALYSIS - SERIES N $\$$
2 FILE GOD=SAVE/ GMD=SAVE/ LAMA=APPEND/PHIA=APPEND \$
3 GP1 GEOM 1, GEDM2,/GPL,EQEXIN,GPUF,CSTM,BGPDT,SIL/V,N,LUSET/ V,N, NUGPOT \$

4 Save LUSET \$
5 GHKPNT GPL,EQEXIN,GPOT,CSIM,BGPDT,SIL\$
6 GP2 GEUMZ,EQEXIN/ECT \$
7 CHKPNT ECT \$
PARAML PCOB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCOB $\$$
9 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NUPCDB \$
10 COND P1,NUPCDE $\$$
11 PLTSET PLDB,EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N, JUMPPLUT $=-1$ \$

12 SAVE NSIL.JUMPPLUT \$
13 PRTMSG PLTSETX// \$
14 PARAM //G,N,MPY/V,N,PLIFLG/C,N,1/C,N,1 \$
15 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
16 COND P1.JUMPPLOT \$
17 PLOT PLTPAR,GPSEIS,ELSETS,CASECC, BGPDT,EQEXIN,SIL,,,,/PLOTXI/ V,N, NSIL/V,N,LUSET/V,N,JUMPPLUI/V,N,PLTHLG/V,N,PFILE \$

18 SAVE PFILE \$
19 PRTMSG PLUTXI// \$
20 LABEL PI \$
21 CHKPNT PLTPAR,GPSETS,ELSETS \$
22 GP3 GEUM3,EQEXIN,GEUM2/,GPTT/V,N,NUGKAV \$
23. CHKPNT GPTJ \$

24 TAL ECT,EPT,BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,NV,N,LUSEF/ V,N,.. NUSIMP/C, $V, 1 / V, N, N U G E N L / V, N, G E N E L \$$

25 Save NuGENL, NuSimp,genel $\$$

RIGID FORMATS

```
    RIGID FORMAT DMAP LISTING
    SERIES N
RIGID FORMAT 11
```



```
DMAP-DMAP INSTRUCTION
    NU.
    20 CUNO ERRORI,NOSIMP $
    27 PURGE OGPSI/GEIVEL $
    28 CHKPNT EST,GPECT,GEI,OGPST $
    29 PARAM //C,N,ADD/V,N,NOKGGX/C,N,I/C,N,O $
    30 PARAM //C,N,AUD/V,N,NOMGG/C,N,I/C,N,O $
    31 EMG EST,CSTM,MPT,DIT,GEOMZ,/KELM,KUICT,MELM,MOICT,,/V,N,NOKGGX/ V,
        N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAK/C,Y,CPRUD/C,Y,
        CPQUADI/C,Y,CPQUADZ/C,Y,CPTRIAI/C,Y,CPTRIAZI C,Y,CPTUBE/C,Y,
        CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSG $
    32 SAVE NUKGGX,NOMGG $
    33. CHKPNT KELM,KOICT,MELM,MDICT $
    34 COND JMPKGGX,NJKGGX $
    35 EMA GPECT,KDICT,KELM/KGGX,GPST $
    30 GHKPNT KGGX,GPST $
    37 LABEL JMPKGGX $
    38 COND ERRURI,NUMGG $
    39 EMA CPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0$
    40 CHKPNT MGG $
    41 COND LGPWG,GRDPNT $
42 GPWG BGPOT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT=-1/C,Y,WTMASS $
43 OFP OGPiGG,,,,,// $
44 LABEL LGPWG $
45 EQUIV KGGX,KGG/NOGEINL $
46 CHKPNT KGG $
47 COND LELIL,NUGENL $
48SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP $
49 CHKPNT KGG $
50 LABEL LBLll$
51 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O $
52 GP4 CASECC,GEUM4,EQEXIN,SIL,GPDT,BGPOT,CSTM/RG,,USET,ASET/ V,N,
3.12-2 (3/1/76)
```

| RIGIDFORMAT | DMAP LISTING |
| :--- | :--- | :--- |
| SERIES N | |

RIGID FORMATS

```
RIGID
RIGID FORMAT 11
    NASTRRANSUURCEEPROGRAMGOMPILLATIEN
DMAP-DMAP INSTRUCTIUN
    NO.
    79 CHKPNT KAA,MAA $
    8O CONO LBLS,UMIT $
    O1 SMP1 USET,KFF,,,/GO,KAA,KUO,LOU,,\ldots,,$
    82 CHKPNT GO,KAA $
    83 SMP2 USET,GU,MFF/MAA $
    84 GHKPNT MAA $
    85 LABEL LBL5$
    86 EQUIV KAA,KLL/REACT$
    87 CHKPNT KLL $
    88 CONO LBLG,REACT $
    89 RBMG1 USET,KAA,MAA/KLL,KLR,KRR,MLL,MLR,MRR $
    90 CHKPNT KLL,KLR,KRR,MLL,MLR,MRR $
    91 JUMP LBLY$
    92 LABEL LBLG$
    93 COND LULT,MOUAC.C $
    94 LABEL LBL8$
    95 RBMG2 KLL/LLL $
    96 CHKPNT LLL $
    97 CÜNO LBLT,REAGT $
    9% RBMG3 LLL,KLR,KRR/DM
    99 CHKPNT DM $
100 RBMG4 DM,MLL,MLR,MRR/MR
101 CHKPNT MR $
102 LABEL LBL7 $
103 OPD DYNAMILS,GPL,SIL,USET/GPLD,SILD,USETD,TFPOUL,DLT,PSDL,FRL,.,
    EED,EQDYN/V,N,LUSET/V,N,LUSEID/V,N,NOTFL/V,N,NUOLT/V,N,NOPSUL/
    V,N,NOFRL/V,N,NJNLFT/V,N,NOTRL/V,N,NOEED/C,N,/V,N,NOUE $
104 SAVE LUSETD,NÜUE,NUDLT,NUFRL,NUEED,NUPSOL $
105 COND ERRORZ,NUEED &
```

| RIGIDRORMAT | DMAP LISTING |
| :--- | :--- | :--- |
| SERIES | |

```
    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 1I
```



```
DMAP-DMAP INSTRUCTIUN
    NO.
131 GKAD USETD,GM,GQ,,,MAA,,K2PP,M2PP,B2PP/,,MOD,GMD, GOD,K2OD,M2OD,
                        B2OO/C,N,FREQRESP/C,N,DISP/C,N,MUDAL/C,N,O.U/ C,N,O.O/C,N,O.O/
                        V,N,NUK2PP/V,N,NOM2PP/V,N,NUB2PP/ V,N,MPCF1/V,N,SINGLE/V,N,
                        UMIT/V,N,NUUE/C,N,-1/C,N,-1/ C,N,+1/V,Y,MODACC = -1 s
132 CHKPNT MUD,GMD,GOD,K2OD,M20D,B20D $
133 GKAM USETD,PHIA,MI,LAMA,DIT,M2CD,B2DO,K2OD,CASEXX/MHH,BHH,KHH,PHIDH/
                                V,N,NOUE/C,Y,LMJDES=999999/C,Y,LFREQ=0.0/C,Y,HFREQ=O.O/V,N,
                                NUM2PP/V,N,NUB2PP/V,N,NUK2PP/V,N,NUNCUP/V,N,FMUUE $
134 SAVE NONCUP,FMODE $
135 CHKPNT MHH,BHH,KHH,PHIOH $
136 COND ERROR5,NUFRL $
137 CUND ERRURG,NUDLT $
134 FRRO CASEXX,USETD,OLT,FRL,GMO,GOD,KHH,BHH,MHH,PHIDH,OLT/UHVF,PSF,
        POF,PPF/C,N,OISP/C,N,MODAL/V,N,LUSETD/V,N,MPCFI/V,N,SINGLE/V,N,
        OMIT/V,N,NONCUP/V,N,FRQSET $
139 SAVE FRQSET $
140 EQUIV PPF,PUF/NOSET $
141 CHKPNT PSF,PPF,UHVF,POF $
142 VOR CASEXX,EQOYN,USETD,UHVF,PPFF,XYCDB,/OUHVCI,/C,N,FREQRESP/C,N,
        MODAL/V,N,NOSORT2/V,N,NOH/V,N,NOP/V,N,FMODE $
143 SAVE NOH,NOP,NOSURT2 $
144 COND LBLI6,NOH $
145 COND LGLIOA,NUSORT2 $
146 CHKPNT OUHVCI $
147SDRS3 OUHVCL,.,.,/OUHVC2,,.,. $
148 UFP UUHVC2,:.,.//V,N,CARDNO $
149 SAVE CARUNU $
150 CHKPNT OUHVC2 $
151 XYTRAN XYCDB,OUHVC2,.,./XYPLTFA/C,N,FREQ/C,N,HSET/V,N,PFILE/V,N,
        CARUNO $
152 SAVE PFILE,CARDNO $
153 XYPLUT XYPLTFA // $
154 JUMP LBL16$
```

MODAL FREQUENCY AND RANDOM RESPONSE
RIGIDFORMAT DMAP LISTING
SERIES

```
    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 11
    NASTRRANSUURCE PROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTIUN
    NO.
181 SAVE NUSURT2$
182 SUR2 CASEXX,,,,EQDYN,SILD,,,,PPF,,.,XYCDB,PPF/OPPCA,,,,,/C,N,FREQ$
183 EQUIV OPPCA,OPPC1/MODACC s
184 CONO LBLSORT,NOSORT2$
185 SOR3 IQP1,IPHIP1,IES1,IEF1,OPPCA,/IQP2,IPHIP2,IES2,IEF2,OPPCB, $
186 EQUIV UPPCB,IJPPC2/MUDACC $
187 OORMM CASEXX,UHVF,PPF,IPHIP2,IQP2,IES2,IEF2,,EST,MPT,DIT/ ZUPVC2,
        ZQPC2,ZESC2,ZEFC2, $
188 EQUIV ZUPVC2,OUPVC2/MODACC/LQPC2,OQPC2/MODACC/ZESC2,OESC2/MUDACC/
        ZEFCZ,OEFC2/MODACC $
189 JUMP P2A $
190 LABEL LBLSORT $
191 DURMM CASEXX,UHVF,PPF,IPHIPI,IQP1,IESI,IEFI,,EST,MPT,OIT/ ZUPVC1,
        ZQPC1,ZESC1,ZEFC1,$
192 EQUIV LUPVCI,OUPVCI/MODACC/LQPCI,OQPCI/MODACC/ZESCI,OESCI/MODACC/
        ZEFCL,OEFLI/MUDACC $
193 JUMP LBLI8S
194 LABEL P2A $
195 CHKPNT DUPVCZ,UPPCZ.OQPC2,OESC2,OEFC2$
196 OFP OPPC2,DQPC2,UUPVC2,OEFC2,OESC2,//V,N,CARDNO $
197 SAVE CARDNU $
198 XYTKAN XYCUB,OPPC2,OQPC2,OUPVC2,OESG2,OEFC2/XYPLTF/C,N,FREQ/C,N,PSET/
        V,N,PFILE/V,N,CARUNO $
199 SAVE PFILE,CARDNO $
200 XYPLOI XYPLTF//$
201 COND LBL14,NOPSDL $
2U2 RANUUM XYCOB,UIT,PSOL,OUPVC2,OPPCL2,OQPCZ,OESCZ,UEFC2,CASEXX/PSDF,AUTU/
        V,N,NURD $
203 SAVE NORD $
2O4 CHKPNI PSOF,AUTU $
205 COND LBLI4,NOKO $
```


RIGID FORMAT DMAP LISTING

RIGID FORMAT 11

```
NASTRANSOURGEPROGRAMCOMPILATIEN DMAP TUMAP INSTRUCTION
    NO.
\begin{tabular}{|c|c|c|c|c|}
\hline 206 & XYTRAN & ```
XYCDB,PSDF,AUTO,,,/XYPLTR/C,N,RAND/C,N,PSET/
CARDNO $
``` & V,N,PFILE/ & \(\mathrm{V}, \mathrm{N}\), \\
\hline 207 & Save & PFILE,CARDNU \$ & & \\
\hline 208 & XYPLOT & XYPLTR// \$ & & \\
\hline 209 & JUMP & LBL14 \({ }^{\text {\$ }}\) & & \\
\hline 210 & LABEL & LBL18\$ & & \\
\hline 211 & OFP & OUPVCL, OPPC1, OQPC1, OEFC1, OESCL,//V,N,CARDNO & \$ & \\
\hline 212 & save & CARDNS \$ & & \\
\hline 213 & LABEL & L8L14\$ & & \\
\hline 214 & CUND & FINIS:REPEAIF \$ & & \\
\hline 215 & KEP I & LBL13,100\$ & & \\
\hline 216 & JUMP & ERKOR3 \$ & & \\
\hline
\end{tabular}
217 JUMP FINIS \$
218 LABEL ERROR3 \$
219 PRTPARM //C,N,-3/C,N,MDLFRRD \$
220 LABEL ERROK2 \$
221 PRTPARM //C,N,-2/L,N,MOLFRRD \$
222 LABEL ERROKI \$
223 PRTPARM //C,N,-1/C,N,MDLFRRD \$
224 LABEL ERROR4 \$
225 PRTPARM //C,N:-4/C,N,MDLFRRD \$
226 LABEL ERRORS \$
227 PRTPARM //C,N,-5/C,N,MOLFRRD \$
228 LABEL ERKURO \$
229 PRTPARM //C,N,-G/C,N,MDLFRRD \$
230 LABEL FINIS \$
231 END \$
```


## RIGID FORMATS

### 3.12.2 Description of DMAP Operations for Modal Frequency and Random Response

3. GPI generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
4. GP2 generates Element Connection Table with internal indices.
5. Go to DMAP No. 20 if no plot package is present.
6. PLTSET transforms user input into a form used to drive structure plotter.
7. PRTMSG prints error messages associated with structure plotter.
8. Go to DMAP No. 20 if no undeformed structure plot request.
9. PLøT generates all requested undeformed structure plots.
10. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
11. GP3 generates Grid Point Temperature Table.
12. TAl generates element tables for use in matrix assembly and stress recovery.
13. Go to DMAP No. 222 and print error messages if there are no structural elements.
14. EMG generates structural element matrix tables and dictionaries for later assembly.
15. Go to DMAP No. 37 if no stiffness matrix is to be assembled.
16. EMA assembles stiffness matrix $\left[K_{g g}^{x}\right]$ and Grid Point Singularity Table.
17. Go to DMAP No. 222 if no mass matrix is to be assembled.
18. EMA assembles stiffness matrix $\left[M_{g g}\right]$.
19. Go to DMAP No. 44 if no weight and balance request.
20. GPWG generates weight and balance information.
21. ØFP formats weight and balance information and places it on the system output file for printing.
22. Equivalence $\left[K_{g g}^{x}\right]$ to $\left[K_{g g}\right]$ if no general elements.
23. Go to DMAP No. 50 if no general elements.
24. SMA3 adds general elements to stiffness matrix $\left[K_{g g}^{X}\right]$ to obtain stiffness matrix $\left[K_{g g}\right]$.
25. GP4 generates flags defining members of various displacement sets (USET) and forms multipoint constraint equations $\left[R_{g}\right]\left\{u_{g}\right\}=0$.
26. Go to DMAP No. 62 if general elements present.
27. GPSP determines if possible grid point singularities remain.
28. Go to DMAP No. 62 if no grid point singularities remain.
29. ØFP formats table of possible grid point singularities and places it on the system output file for printing.
30. Equivalence $\left[K_{g g}\right]$ to $\left[K_{n n}\right]$ and $\left[M_{g g}\right]$ to $\left[M_{n n}\right.$ ] if no multipoint constraints.
31. Go to DMAP No. 70 if no multipoint constraints.
32. MCEI partitions multipoint constraint equations $\left[R_{g}\right]=\left[R_{m}^{\prime} R_{n}\right]$ and solves for multipoint constraint transformation matrix $\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]$.
33. MCE2 partitions stiffness and mass matrices

$$
\left[K_{g g}\right]=\left[\begin{array}{c:c}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right] \quad \text { and } \quad\left[M_{g g}\right]=\left[\begin{array}{c:c}
M_{n n} & M_{n m} \\
\hdashline- & - \\
M_{m n} & M_{m m}
\end{array}\right]
$$

and performs matrix reductions

$$
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] \text { and }} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]}
\end{aligned}
$$

71. Equivalence $\left[K_{n n}\right]$ to $\left[K_{f f}\right]$ and $\left[M_{n n}\right]$ to $\left[M_{f f}\right.$ ] if no single-point constraints.
72. GO to DMAP No. 76 if no single-point constraints.
73. SCE1 partitions out single-point constraints

$$
\left[K_{n n}\right]=\left[\begin{array}{c:c}
K_{f f} & K_{f s} \\
\hdashline K_{s f} & K_{s s}
\end{array}\right] \quad \text { and } \quad\left[M_{n n}\right]=\left[\begin{array}{c:c}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right]
$$

77. Equivalence $\left[K_{f f}\right]$ to $\left[K_{a a}\right.$ ] if no omitted coordinates.
78. Equivalence $\left[M_{f f}\right.$ ] to [ $M_{a a}$ ] if no omitted coordinates.
79. Go to DMAP No. 85 if no omitted coordinates.
80. SMP1 partitions constrained stiffness matrix.

$$
\left[K_{f f}\right]=\left[\begin{array}{l:c}
\bar{K}_{a a} & K_{a o} \\
\hdashline K_{o a} & K_{o o}
\end{array}\right]
$$

solves for transformation matrix $\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]$
and performs matrix reduction $\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{o}\right]$
83. SMP2 partitions constrained mass matrix.

$$
\left[M_{f f}\right]=\left[\begin{array}{l:c}
\bar{M}_{a a} & M_{a o} \\
\hdashline M_{o a} & M_{o o}
\end{array}\right]
$$

and performs matrix reduction

$$
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{0}\right]+\left[G_{0}^{\top}\right]\left[M_{o a}\right]+\left[G_{0}^{\top}\right]\left[M_{o o}\right]\left[G_{0}\right]
$$

## RIGID FORMATS

86. Equivalence [ $K_{a a}$ ] to [ $K_{l \ell}$ ] if no free-body supports.
87. Go to DMAP No. 92 if no free-body supports.
88. RBMG1 partitions out free-body supports

$$
\left[\begin{array}{l:l}
K_{a a}
\end{array}\right]=\left[\begin{array}{c:c}
K_{\ell \ell} & K_{\ell r} \\
\hdashline K_{r \ell} & K_{r r}
\end{array}\right] \quad \text { and } \quad\left[M_{a a}\right]=\left[\begin{array}{c:c}
M_{\ell \ell} & M_{\ell r} \\
\hdashline M_{r \ell} & M_{r r}
\end{array}\right]
$$

91. Go to DMAP No. 94.
92. Go to DMAP No. 102 if no request for mode acceleration data recovery.
93. RBMG2 decomposes constrained stiffness matrix $\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]$.
94. Go to DMAP No. 102 if no free-body supports.
95. RBMG3 forms rigid body transformation matrix

$$
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right]
$$

calculates rigid body check matrix

$$
[x]=\left[K_{r r}\right]+\left[K_{\ell r}^{\top}\right][D]
$$

and calculates rigid body error ratio

$$
\varepsilon=\frac{\|x\|}{\prod k_{r r} \|}
$$

100. RBMG4 forms rigid body mass matrix $\left[m_{r}\right]=\left[M_{r r}\right]+\left[M_{\ell r}^{\top}\right][D]+\left[D^{\top}\right]\left[M_{\ell r}\right]+\left[D^{\top}\right]\left[M_{\ell \ell}\right][D]$.
101. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool, Dynamic Loads Table, Power Spectral Density List, Frequency Response List and Eigenvalue Extraction Data.
102. Go to DMAP No. 220 and print error message if no Eigenvalue Extraction Data.
103. Equivalence $\left[G_{0}\right]$ to $\left[G_{0}^{d}\right]$ and $\left[G_{m}\right]$ to $\left[G_{m}^{d}\right]$ if no extra points introduced for dynamic analysis.
104. READ extracts real eigenvalues from the equation

$$
\left[K_{a a}-\lambda M_{a a}\right]\left\{u_{a}\right\}=0,
$$

calculates rigid body modes by finding a square matrix $\left[\phi_{r o}\right]$ such that

$$
\left[m_{0}\right]=\left[\phi_{r o}^{T}\right]\left[m_{r}\right]\left[\phi_{r o}\right]
$$

is diagonal and normalized and computes rigid body eigenvectors

$$
\left[\phi_{\mathrm{ao}}\right]=\left[\begin{array}{c}
\mathrm{D}_{\mathrm{m}} \phi_{\mathrm{ro}} \\
--- \\
\phi_{\mathrm{ro}}
\end{array}\right]
$$

## MODAL FREQUENCY AND RANDOM RESPONSE

calculates modal mass matrix

$$
[m]=\left[\Phi_{a}^{\top}\right]\left[M_{a a}\right]\left[\Phi_{a}\right]
$$

and normalizes eigenvectors according to one of the following user requests:

1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass.
114. ØFP formats the summary of eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
115. Go to DMAP No. 224 and print error message if no eigenvalues found.
116. Go to next DMAP instruction if cold start or modified restart. LBLI3 will be altered by the Executive System to the proper location inside the loop for unmodified starts within the loop.
117. Beginning of loop for additional sets of direct input matrices.
118. CASE extracts user requests from CASECC for current loop.
119. MTRXIN selects the direct input matrices for the current loop, $\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]$ and $\left[B_{p p}^{2}\right]$.
120. Equivalence $\left[M_{p p}^{2}\right]$ to $\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]$ to $\left[B_{d d}^{2}\right]$ and $\left[K_{p p}^{2}\right]$ to $\left[K_{d d}^{2}\right]$ if no constraints applied and [ $M_{a a}$ ] to $\left[M_{d d}\right]$ if no direct input mass matrices and no extra points introduced for Dynamic analysis.
121. GKAD applies constraints to direct input matrices $\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]$ and $\left[B_{p p}^{2}\right]$, forming $\left[K_{d d}^{2}\right]$, $\left[M_{d d}^{2}\right]$ and $\left[B_{d d}^{2}\right]$.
122. GKAM assembles stiffness mass and damping matrices in modal coordinates for use in Frequency Response.

$$
\begin{aligned}
{\left[k_{h h}\right] } & =[k]+\left[\phi_{d h}^{\top}\right]\left[k_{d d}^{2}\right]\left[\phi_{d h}\right] \\
{\left[M_{h h}\right] } & =[m]+\left[\phi_{d h}^{\top}\right]\left[M_{d d}^{2}\right]\left[\phi_{d h}\right] \\
{\left[B_{h h}\right] } & =[b]+\left[\phi_{d h}^{\top}\right]\left[B_{d d}^{2}\right]\left[\phi_{d h}\right] \\
m_{i} & =\text { modal masses } \\
b_{i} & =m_{i} 2 \pi f_{i} g\left(f_{i}\right) \\
k_{i} & =m_{i} 4 \pi^{2} f_{i}^{2}
\end{aligned}
$$

where
and direct input matrices may be complex.
136. Go to DMAP No. 226 and print error message if no Frequency Response List.
137. Go to DMAP No. 228 and print error message if no Dynamic Loads Table.
138. FRRD forms the dynamic load vectors $\left\{P_{h}\right\}$ and solves for the displacements using the following equation

$$
\left[-M_{h h} \omega^{2}+i B_{h h^{\omega}}+K_{h h}^{i}\right]\left\{u_{h}\right\}=\left\{P_{h}\right\}
$$

## RIGID FORMATS

140. Equivalence $\left\{P_{p}\right\}$ to $\left\{P_{d}\right\}$ if no constraints applied.
141. VDR prepares displacements, sorted by frequency, for output using only the extra points introduced for dynamic analysis and modal coordinates (solution points).
142. Go to DMAP No. 158 if no output request for solution points.
143. Go to DMAP No. 155 if no output request for solution points sorted by extra point or mode number.
144. SDR3 sorts the solution point displacements by extra point or mode number.
145. DFP formats the requested solution point displacements sorted by extra point or mode number and places them on the system output file for printing.
146. XYTRAN prepares the input for $X-Y$ plotting of the solution point displacements vs. frequency.
147. XYPLDT prepares requested $X-Y$ plots of the solution point displacements vs. frequency.
148. Go to DMAP No. 158.
149. ØFP formats the requested solution point displacements sorted by frequency and places them on the system output file for printing.
150. Go to DMAP No. 213 if no output request involving dependent degrees of freedom or forces and stresses.
151. Go to DMAP No. 178 if mode acceleration technique not requested.
152. DDR1 transforms the solution vector of displacements from modal to physical coordinates

$$
\left\{u_{d}\right\}=\left[\phi_{d h}\right]\left\{u_{h}\right\}
$$

164. DDR2 calculates an improved displacement vector using the mode acceleration technique, if requested.
165. Equivalence $\left\{u_{d}\right\}$ to $\left\{u_{p}\right\}$ if no constraints applied.
166. Go to DMAP No. 171 if no constraints applied.
167. SDRI recovers dependent components of displacements

$$
\begin{aligned}
& \left\{u_{0}\right\}=\left[G_{0}^{d}\right]\left\{u_{d}\right\},
\end{aligned} \quad\left\{\begin{array}{c}
u_{d} \\
u_{0}
\end{array}\right\}=\left\{u_{f}+u_{e}\right\},
$$

and recovers single-point forces of constraint $\left\{q_{s}\right\}=-\left\{p_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}$.
173. SDR2 calculates element forces and stresses ( $\emptyset E F C 1$, $\emptyset E S C 1$ ) and prepares load vectors, displacement vectors and single-point forces of constraint for output ( $\varnothing \mathrm{PPC1}, \emptyset \cup P V C 1, \emptyset Q P C 1$ ) all sorted by frequency.
175. Go to DMAP No. 210 if no output requests sorted by point number or element number.
176. SDR3 prepares requested output sorted by point number or element number.
177. Go to DMAP No. 194 because no mode accelerations requested.
179. SDR1 recovers dependent components of the eigenvectors

$$
\begin{aligned}
& \left\{\phi_{0}\right\}=\left[G_{0}^{d}\right]\left\{\phi_{n}\right\}, \quad\left\{\begin{array}{l}
\phi_{n} \\
-\phi_{0}
\end{array}\right\}=\left\{\phi_{f}+u_{e}\right\} \\
& \left\{\begin{array}{c}
\phi_{f}+u_{e} \\
-\phi_{s}
\end{array}\right\}=\left\{\phi_{n}+u_{e}\right\} \quad\left\{\phi_{m}\right\}=\left[G_{m}^{d}\right]\left\{\phi_{n}+u_{e}\right\}
\end{aligned}
$$

and recovers single-point forces of constraint

$$
\left\{q_{s}\right\}=\left[k_{f s}\right]^{\top}\left\{\phi_{f}\right\}
$$

180. SDR2 calculates element forces and stresses (IEF1,IESI) and prepares eigenvectors and singlepoint forces of constraint for output (IPHIP1, IQPI) - all sorted by frequency.
181. SDR2 prepares load vectors for output (פPPCA) - sorted by frequency.
182. Equivalence $\emptyset P P C A$ to $\emptyset P P C 1$ if mode acceleration requested.
183. Go to DMAP No. 190 if no output requested by point number or element number sort.
184. SDR3 prepares requested output sorted by point number or element number.
185. Equivalence $\emptyset P P C B$ to $\emptyset P P C 2$ if mode acceleration requested.
186. DDRMM prepares a subset of the element forces and stresses (ZEFC2, ZESC2), and displacement vectors and single-point forces of constraint (ZUPVC2, ZQPC2) solutions for output by point number or element number sort.
187. Equivalence ZUPVC2 to $\emptyset U P V C 2, ~ Z Q P C 2$ to $\emptyset Q P C 2$, ZESC2 to $\emptyset E S C 2$, and ZEFC2 to $\emptyset E F C 2$ if mode acceleration reauested.
188. Go to DMAP No. 194 because requested output is sorted by point number or element number.
189. DDRMM prepares a subset of the element forces and stresses (ZEFC1, ZESC1) and displacement vectors and single-point forces of constraint (ZUPVC1, ZQPC1) solutions for output.
190. Equivalence ZUPVC1 to $\emptyset U P V C 1, ~ Z Q P C 1$ to $\emptyset Q P C 1, Z E S C 1$ to $\emptyset E S C 1$, and $Z E F C 1$ to $\emptyset E F C 1$ if mode accelerations requested.
191. Go to DMAP No. 210 because requested output is not sorted by point number or element number.
192. ØFP formats the requested output sorted by point number or element number and places it on the system output file for printing.
193. XYTRAN prepares the input for requested $X-Y$ plots.
194. XYPL $\emptyset T$ prepares requested $X-Y$ plots of displacements, forces, stresses, loads or singlepoint forces of constraint vs. frequency.
195. Go to DMAP No. 213 if no Power Spectral Density List.
196. RANDQM calculates power spectral density functions and autocorrelation functions using the previously calculated frequency response.
197. Go to DMAP No. 213 if no RANDQM calculations requested.
198. XYTRAN prepares the input for requested X-Y plots of the RANDMM output.
199. XYPL $\emptyset T$ prepares reuqested $X-Y$ plots of autocorrelation functions and power spectral density functions.
200. Go to DMAP No. 213 because there are no frequency response output requests sorted by frequency.
201. ØFP formats the frequency response output requests sorted by frequency and places them on the system output file for printing.
202. Go to DMAP No. 230 if no additional sets of direct input matrices need to be processed.
203. Go to DMAP No. 120 if additional sets of direct input matrices need to be processed.
204. Go to DMAP No. 218 and print error message if more than 100 loops.
205. Go to DMAP No. 230 and make normal exit.
206. MgDAL FREQUENCY AND RANDgM RESP@NSE ERRQR MESSAGE N $\emptyset .3$ - ATTEMPT T $\emptyset$ EXECUTE MQRE THAN 100 Lø冃PS.
207. MØDAL FREQUENCY AND RANDQM RESPQNSE ERRØR MESSAGE NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FQR REAL EIGENVALUE ANALYSIS.
208. MØDAL FREQUENCY AND RANDgM RESP@NSE ERRØR MESSAGE NØ. 1 - MASS MATRIX REQUIRED FØR MgDAL FØRMULATIQN.
209. MØDAL FREQUENCY AND RANDQM RESPØNSE ERRØR MESSAGE NØ. 4 - REAL EIGENVALUES REQUIRED FØR MøDAL FØRMULATI $\emptyset N$.
210. MØDAL FREQUENCY AND RANDØM RESPØNSE ERRØR MESSAGE NØ. 5 - FREQUENCY RESP@NSE LIST REQUIRED FØR FREQUENCY RESPØNSE CALCULATIONS.
211. MØDAL FREQUENCY AND RANDØM RESPØNSE ERR@R MESSAGE NØ. 6 - DYNAMIC LØADS TABLE REQUIRED FØR FREQUENCY RESPQNSE CALCULATIgNS.

## MODAL FREQUENCY AND RANDOM RESPONSE

### 3.12.3 Automatic Output for Modal Frequency and Random Response

The Eigenvalue Summary Table and the Eigenvalue Analysis Summary, as described under Normal Mode Analysis, are automatically printed. All real eigenvalues extracted are included even though not all are used in the modal formulation.

### 3.12.4 Case Control Deck and Parameters for Modal Frequency and Random Response

The following items related to subcase definition and data selection must be considered in addition to the list presented with Direct Frequency and Random Response:

1. METHØD must appear above the subcase level to select an EIGR card that exists in the Bulk Data Deck.
2. All of the eigenvectors used in the modal formulation must be determined in a single execution.
3. An SPC set must be selected above the subcase level unless the model is a free body or all constraints are specified on GRID cards, Scalar Connection cards or with General Elements.
4. SDAMPING must be used to select a TABDMP1 table if structural damping is desired.

Output that may be requested is the same as that described under Direct Frequency and Random Response. Output for SØLUTIØN points will have the modal coordinates identified by the mode number determined in Real Eigenvalue Analysis.

The eigenvectors used in the modal formulation may be obtained for the SOLUTIØN points by using the ALTER feature to print the matrix of eigenvectors following the execution of READ. The eigenvectors for all points in the model may be obtained by running the problem initially on the Normal Mode Analysis rigid format or by making a modified restart using the Normal Mode Analysis rigid format.

The following parameters are used in Modal Frequency and Random Response:

1. GRDPNT - optional - A positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - The terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in SMA2. Not recommended for use in hydroelastic problems.
3. CQUPMASS - CPBAR, CPRØD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
4. LFREQ and HFREQ - required unless LM@DES is used. The real values of these parameters give the frequency range (LFREQ is lower limit and HFREQ is upper limit) of the modes to be used in the modal formulation.
5. LM@DES - required unless LFREQ and HFREQ are used. The integer value of this parameter is the number of lowest modes to be used in the modal formulation.
6. MODACC - optional - A positive integer value of this parameter causes the Dynamic Data Recovery module to use the mode acceleration method. Not recommended for use in hydroelastic problems.
3.13 MODAL TRANSIENT RESPONSE

### 3.13.1 DMAP Sequence for Modal Transient Response

```
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }1
```



```
DMAP-DMAP INSTRUCTIUN
```

    NU.
    1 BEGIN NO. 12 MJDAL TKANSIENT RESPUNSE ANALYSIS - SERIES N \(\$\)
    2 FILE LAMA=APPENU/PHIA=APPENO/UHVT=APPEND \$
    3 GPI GEOML,GEUM2,/UPL,EQEXIN,GPOT,CSIM, UGPDT,SIL/V,N,LUSET/ V,N,
                                    NOGPOT \(\$\)
    4 SAVE LUSET \$
    5 CHKPNT GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL \$
    6 GP2 GEUMZ,EQEXIN/ECT \$
    7 CHKPNT ECT \$
    3 PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
    9 PURGE PLISETX,PLTPAR,GPSETS,ELSETS/NOPCDB \$
    10 COND PI.NOPCDB \(\$\)
    11 PLTSET PLDG,EQEXIN,EGT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N,
        JUMPPLOT \(=-1\) b
    12 SAVE NSIL.JUMPPLOI \$
    13 PRTMSG PLTSETX// \$
    14 PARAM //C,N,MPY/V,N,PLTFLG/C,N,I/C,N,1\$ -
    15 PAKAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
    ló CUND PI.JUMPPLUT \$
    17 PLUT PLTPAR,GPSEIS,ELSETS,CASECC, BGPDT,EQEXIN,SIL,,I,/PLOTXI/ V,N,
        NSIL/V,N,LUSET/V,N,JUMPPLUT/V, N,PLTFLG/V,N,PFILE \$
    18 SAVE JUMPPLOT,PLTFLG,PFILE \(\$\)
    19 PRTMSO PLOTX1//\$
    20 LAJEL P1 \$
    21 CHKPNT PLTPAR,GPSETS,ELSETS \(\$\)
    \(2 \angle\) GP3 GEOM3,EQEXIN,GEOMZ/SLT,GPTT/V,N,NOGRAV \$
    23 CHKPNT SLT,GPTT \$
    24 TAI ECT,EPT,BGPDT,SIL,GPTI,CSTM/EST,GEI,GPECT,/V,N,LUSET/.V.N,
        NUSIMP/C,N,I/V,N,NOGENL/V,N,GENEL \(\$\)
    25 SAVE NOGENL,NUSIMP,GENEL $\$$

```
 RIGIO FORMAT OMAP LISTING
 SERIES N
 RIGID FORMAT }1
 NASTRRANSOUKCEPPROGRAMCOMPMLATIION
DMAP-DMAP INSTRUCTIUN
 NO.
 26 COND ERRURI,NOSIMP $
 27 PURGE OGPST/GENEL $
 28 GHKPNT EST,GPECT,GEI,OGPST $
 29 PARAM //C,N,ADO/V,N,NOKGGX/C,N,I/C,N:O $
 30 PARAM //C,N,ADD/V,N,NOMGG/C,N,1/C,N,O $
 31 EMG EST,CSTM,MPT,OIT,GEUM2,/KELM,KOICT,MELM,MDICT,,/V,N,NUKGGX/ V,
 N,NOMGG/G,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/C,Y,
 CPQUADI/C,Y,CPQUADZ/C,Y,CPTRIAI/C,Y,CPTRIALI C,Y,CPTUBE/C:Y,
 CPQOPLT/C,Y,CPTRPLT/G,Y,CPTRBSC $
 32 SAVE NUKGGX,NUMGG $
 33 CHKPNT KELM,KDIGT,MELM,MDICT $
 34 CONO JMPKGGX,NOKGGX $
 35 EMA GPECT,KUICT,KELM/KGGG,GPST $
 36 CHKPNT KGGX,GPSI $
 37 LABEL JMPKGGX $
 3% COND ERRORL,NOMGG $
 39 EMA GPECI,MOLCT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0$
 40. CHKPNT MGG $
 4L COND LGPWG,GRDPNT $
 42 GPWG BGPDT,CSIM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT=-1/C,Y,WTMASS $
 43 OFP OGPWG,,',I//$
 44 LABEL LGPWG $
 45 EQUIV KGGX,KGG/NOGENL $
 46 CHKPNT KGG $
 47 COND LBLII,NOGENL $
 48 SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NUSIMP $
 49 CHKPNT KGG $
 50 LABEL LBLIl$
 51 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O $
52 GP4 CASECG,GEOM4,EQEXIN,SIL,GPDI,BG̈PDT,CSTM/RG,,USET,ASET/ V,N,
```


## MODAL TRANSIENT RESPONSE

## RIGID FORMAT DMAP LISTING SERIESN <br> RIGID FORMAT 12

NO.		LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N: NSKIP/V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID $\$$	
53	SAVE	MPCF1, SINGLE, OMIT,REACT, NUSET, MPCF2,NSKIP,REPEAT, NOL, NOA \$.	
54	PARAM	$/ / C, N, A N D / V, N, N O S R / V, N, R E A C T / V, N, S I N G L E \$$	
55	PURGE	GM, GMD/MPCFI/GO,GUD/UMIT/KFS,PST/SINGLE/QP/NOSR/KLR,KRR,MLR,MR, MRR,OM/REACT \$	
56	CHKPNT	$K R R, K L R, D M, M L R, M R R, M R, G M, R G, G U, K F S, P S T, Q P, U S E T, G U D, G M D, ~ A S E T$	
57	COND	LBL4,GENEL \$ .	
58	GPSP	GPL, GPST, USET, SIL/OGPST/V,N,NUGPST \$	
59	SAVE	NUGPST \$	
60	COND	LOL4, NUSPST \$	-
61	OFP	OGPST:7,://\$	
62	LABEL	L8L4\$	
63	EQUIV	KGG, KNN/MPCFI/MGG, MNN/MPCF1	
64	CHKPNT	KINN, MNN \$	,
65	COND	LBL2,MPCFI\$	-
	MCE1	USET,RG/GM \$	
67	CHKPNT	GM \$	
	MCE2	USET,GM,KGG,MGG, / KNN,MNN: $\$$	
69	CHKPNT	$K N N, M N N \$$	
70	LABEL	LBL2\$	.
71	EQUIV	KNN,KFF/SINGLE/MNN,MFF/SINGLE \$	
72	CHKPNT	KFF, MFF \$	
73	COND	LBL3,SINGLE \$	
	SCE1	USET,KNN,MNN, / KFF, KFS, MFF, \$	
75	CHKPNT	KFS, KFF, MFF $\$$	
76	LABEL	LBL3\$	
77	EQUIV	KFF,KAA/OMIT $\$$	
78	Equiv	MFF,MAA/OMIT $\$$	

```
RIGID FORMAT DMAP LISTING
RIGID FORMAT }1
 NASTRRANSOURGE PROGRAMCOMPILLATIUN
DMAP-DMAP INSTRUCIIUN
 NO.
 79 CHKPIVT KAA,MAA &
 yO CONO LBL5.OMIT $
 81 SMP1 USET,KFF,,,/GO,KAA,KUO,LOO,,.,.$
 82 CHKPNT GU,KAA $
 83 SMP2 USET,GO,MFF/MAA $
 84 CHKPNT MAA $
 05 LABEL LBL. }5
 86 EQUIV KAA,KLL/REACT $
 87 CHKPNT KLL $
 88 COND LELLG,REACT $
 89 R8MGL USET,KAA,MAA/KLL,KLR,KRR,MLL,MLK,MRR $
 90 CHKPNT KLL,KLR,KRR,MLL,MLR,MRR $
 91 JUMP LBL8$
 92 LABEL LBLG $
 93 CUND LBLT,MOUACC $
 94 LABEL LBL8 $
 95 RBMG2 KLL/LLL $
 96 CHKPNI LLL $
 97 COND LBLT,REACT $
 98 RGMG3 LLL,KLR,KRR/OM$
 99 CHKPNT DM $
100 RBMG4 JM,MLL,MLR,MRR/MR $
101 CHKPNT MR $
102 LABEL LBL7 $
103 DPD DYNAMICS,GPL,SIL,USET/GPLU,SILD,USETD,TFPOOL,DLT,,,NLFT,TRL,
 EED ,EQOYN/V,N,LUSET/V,N,LUSETD/V,N,NOTFL/V,N,NODLT/V,N,NUPSOL/
 V,N,NUFRL/V,N,NJNLFT/V,N,NUTRL/V,N,NUEED/C,N,/V,N,NUUE $
104 SAVE LUSETD,NODLT,NONLFT,NOTRL,NUUE,NOEED $
105 COND ERROR2,NUEED $
```

| RIGIDFQRMAT | OMAP LISTING |
| :--- | :--- | :--- |
| SERIES |  |



## MODAL TRANSIENT RESPONSE

```
 RIGID FORMAT DMAP LISTING
 SERIES N
RIGID FORMAT }1
NASTRANSDURCEPROGRAMCDMPILATIUN
DMAP-DMAP INSTRUCTION
 NU.
155 SAVE PFILE,CARDNO $
150 XYPLOD XYPLTTA// $
157 LABEL LBL16 $
158 PAKAM //C,N,ANO/V,N,PJUMP/V,N,NOP/V,N,JUMPPLOT $
159 COND LBLI5,PJUMP$
160 PARAM //C,N,NOT/V,N,NOMOD/V,Y,MUDACC $
161 PARAM //C,N,AND/V,N,MPJUMP/V,Y,MODACC/V,N,JUMPPLOT $
162 GUNO LBOORM,MPJUMP $
163 ODRL UHVT,PHIDH/UDVIT $
164 CHKPNT UDVIT $
165 GOND LBLMOD,MODACC $
166 ODR2 USETO,UDVLT,POT,K2OD,BZUD,MOD,,LLL,DM/UDVZT,UEVT,PAF/ C,N,
 TRANRESP/V,N,NOUE/V,N,REACT/C,N,O $
167 CHKPNT UDVZT,UEVT,PAF $
168 EQUIV UOV2T,UOVIT/NUMOD $
169 CHKPNT UOVIT $
170 LABEL LGLMOD $
171 EQUIV UDVIT,UPV/NUA $
172 CONO LBL14,NOA $
173 SOR1
USETO,,UDVIT,,,GOD,GMO,PST,KFS,,/UPV,,QP/C,N,1/C,N,DYNAMICS $
174 LABEL LBLI4$
175 CHKPNT UPV,QP $
176 SOR2
CASEXX,CSTM,MPT,OIT, EQOYN,SILD, , BGPDT,TOL,QP,UPV,EST,XYCDB,
 PPT/OPP1,OQP1,OUPV1,OESI,UEF1,PUGV/C,N,TRANRESP $
177 SDR3
UPP1,OQP1,OUPV1,UES1,OEF1,/UPP2,OQP2,OUPV2,OES2,OEF2,$
178 JUMP
P2A $
179 LABEL LBDURM $
180 SDP.1
USETU,,PHIDH,,,GOD,GMO,,KFS,,/PHIPH,,QPH/C,N,I/C,N,REIG $
181 SOR2 CASEXX,CSIM,MHT,UIT,EQUYN,SILD,,:,LAMA,QPH,PHIPH,EST,XYCDB,/
,IQP1,IPHIPI,IESI,IEFI,/C,N,MMREIG $

MODAL TRANSIENT RESPONSE
```

RIGID FORMAT DMAP LISTING
RIGID FCRMAT }1
NASIRRANSOURCEPRROGRAMCOMPILATIION
DMAP-DMAP INSIRUCIION
NO.
208. LABEL ERRURI \$
209 PRTPARM //C,N,-1/G,N,MDLTRO \$
210 LABEL ERROR4 \$
211 PRIPARM //C,N,-4/C,N,MOLTRO \$
2L2 LABEL ERRORS \$
213 PRTPARM //C,N,-5/C,N,MOLTRD\$
214 LABEL FINIS \$
2.15 ENO \$

```

\subsection*{3.13.2 Description of DMAP Operations for Modal Transient Response}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
6. GP2 generates Element Connection Table with internal indices.
10. Go to DMAP No. 20 if no plot package is present.
11. PLTSET transforms user input into a form used to drive structure plotter.
13. PRTMSG prints error messages associated with structure plotter.
16. Go to DMAP No. 20 if no undeformed structure plot request.
17. PLøT generates all requested undeformed structure plots.
19. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
22. GP3 generates Grid Point Temperature Table.
24. TAl generates element tables for use in matrix assembly and stress recovery.
26. Go to DMAP No. 208 and print error message if there are no structural elements.
31. EMG generates structural element matrix tables and dictionaries for later assembly.
34. Go to DMAP No. 37 if no stiffness matrix is to be assembled.
35. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{x}}\right]\) and Grid Point Singularity Table.
38. Go to DMAP No. 208 and print error message if no mass matrix is to be assembled.
39. EMA assembles mass matrix \(\left[M_{g g}\right]\).
41. Go to DMAP No. 44 if no weight and balance request.
42. GPWG generates weight and balance information.
43. ØFP formats weight and balance information and places it on the system output file for printing.
45. Equivalence \(\left[K_{g g}^{\mathrm{X}}\right.\)] to \(\left[\mathrm{K}_{\mathrm{gg}}\right.\)] if no general elements.
47. Go to DMAP No. 50 if no general elements.
48. SMA3 adds general elements to stiffness matrix \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
52. GP4 generates flags defining members of various displacement sets (USET) and forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
57. Go to DMAP No. 62 if general elements present.
58. GPSP determines if possible grid point singularities remain.
60. Go to DMAP No. 62 if no grid point singularities remain.
61. ØFP formats the table of possible grid point singularities and places it on the system output file for printing.
63. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) and \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right]\) if no multipoint constraints.
65. Go to DMAP No. 70 if no multipoint constraints.
66. MCEI partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m}^{-} \mid R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
68. MCE2 partitions stiffness and mass matrices
\[
\left[K_{g g}\right]=\left[\begin{array}{ll:l}
\bar{K}_{n n} & K_{n m} \\
\hdashline K_{m n} & K_{m m}
\end{array}\right] \quad \text { and } \quad\left[M_{g g}\right]=\left[\begin{array}{l:l}
\bar{M}_{n n} & M_{n m} \\
\hdashline M_{m n} & M_{m m}
\end{array}\right]
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] \text { and }} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]}
\end{aligned}
\]
71. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right]\) and \(\left[M_{n n}\right]\) to [\(M_{f f}\)] if no single-point constraints.
73. Go to DMAP No. 76 if no single-point constraints.
74. SCEI partitions out single-point constraints.
\[
\left[K_{n n}\right]=\left[\begin{array}{l:c}
K_{f f} & K_{f s} \\
\hdashline K_{s f} & K_{s s}
\end{array}\right] \quad \text { and } \quad\left[M_{n n}\right]=\left[\begin{array}{c:c}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right]
\]
77. Equivalence \(\left[K_{f f}\right]\) to \(\left[K_{a a}\right]\) if no omitted coordinates.
78. Equivalence \(\left[M_{f f}\right]\) to [\(M_{a a}\)] if no omitted coordinates.
80. Go to DMAP No. 85 if no omitted coordinates.
81. SMPI partitions constrained stiffness matrix.
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{\mathrm{aa}} & k_{\mathrm{ao}} \\
\hdashline k_{o a} & k_{o o}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{0}\right]\)
83. SMP2 partitions constrained mass matrix.
\[
\left[M_{f f}\right]=\left[\begin{array}{c:c}
\bar{M}_{\mathrm{aa}} & M_{a o} \\
\hdashline M_{o \mathrm{a}} & M_{00}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{0}\right]+\left[G_{0}^{\top}\right]\left[M_{o a}\right]+\left[G_{0}^{\top}\right]\left[M_{o o}\right]\left[G_{0}\right]
\]
86. Equivalence \(\left[K_{a a}\right]\) to \(\left[K_{\ell \ell}\right.\)] if free-body supports.
88. Go to DMAP No. 92 if no free-body supports.
89. RBMG1 partitions out free-body supports.
\[
\left[K_{a a}\right]=\left[\begin{array}{l:l}
K_{\ell \ell} & K_{\ell r} \\
\hdashline K_{r \ell} & K_{r r}
\end{array}\right] \quad \text { and } \quad\left[M_{a a}\right]=\left[\begin{array}{l:l}
M_{\ell \ell} & M_{\ell r} \\
\hdashline M_{r \ell}: & M_{r r}
\end{array}\right]
\]
91. Go to DMAP No. 94.
93. Go to DMAP No. 102 if no request for mode acceleration data recovery.
95. RBMG2 decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\).
97. Go to DMAP No. 102 if no free-body supports.
98. RBMG3 forms rigid body transformation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right]
\]
calculates rigid body check matrix
\[
[x]=\left[K_{r r}\right]+\left[K_{\ell r}^{\top}\right][D],
\]
and calculates rigid body error ratio
\[
\varepsilon=\frac{\|x\|}{\prod k_{r r} \|}
\]
100. RBMG4 forms rigid body mass matrix \(\left[m_{r}\right]=\left[M_{r r}\right]+\left[M_{\ell r}^{\top}\right][D]+\left[D^{\top}\right]\left[M_{\ell r}\right]+\left[D^{\top}\right]\left[M_{\ell \ell}\right][D]\).
103. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool, Eigenvalue Extraction Data, Dynamic Loads Table, Nonlinear Function Table and Transient Response List.
105. Go to DMAP No. 206 and print error message if no Eigenvalue Extraction Data.
107. Equivalence \(\left[G_{0}\right]\) to \(\left[G_{0}^{d}\right]\) and \(\left[G_{m}\right]\) to \(\left[G_{m}^{d}\right]\) if no extra points introduced for dynamic analysis.
110. READ extracts real eigenvalues from the equation
\[
\left[K_{a a}-\lambda M_{a a}\right]\left\{u_{a}\right\}=0
\]
calculates rigid body modes by finding a square matrix \(\left[\phi_{\text {ro }}\right.\)] such that
\[
\left[m_{0}\right]=\left[\phi_{r o}^{\top}\right]\left[m_{r}\right]\left[\phi_{r o}\right]
\]
is diagonal and normalized and computes rigid body eigenvectors

MODAL TRANSIENT RESPONSE
\[
\left[\phi_{\mathrm{ao}}\right]=\left[\begin{array}{l}
\mathrm{D}_{\mathrm{m}} \phi_{\mathrm{ro}} \\
-\phi_{\mathrm{ro}}
\end{array}\right]
\]
calculates modal mass matrix
\[
[m]=\left[\phi_{\mathrm{a}}^{\top}\right]\left[\mathrm{m}_{\mathrm{aa}}\right]\left[\phi_{\mathrm{a}}\right]
\]
and normalizes eigenvectors according to one of the following user requests:
1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass.
114. ØFP formats the summary of eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
116. Go to DMAP No. 210 and print error message if no eigenvalues found.
117. MTRXIN selects the direct input matrices \(\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]\) and \(\left[B_{p p}^{2}\right]\).
121. Equivalence \(\left[M_{p p}^{2}\right]\) to \(\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]\) to \(\left[B_{d d}^{2}\right]\) and \(\left[K_{p p}^{2}\right]\) to \(\left[K_{d d}^{2}\right]\) if no constraints applied, and \(\left[M_{a a}\right.\)] to [\(M_{d d}\)] if no direct input mass matrices and no extra points.
123. GKAD applies constraints to direct input matrices \(\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]\) and \(\left[B_{p p}^{2}\right]\), forming \(\left[K_{d d}^{2}\right]\), \(\left[M_{d d}^{2}\right]\) and \(\left[B_{d d}^{2}\right]\).
125. GKAM assembles stiffness mass and damping matrices in modal coordinates for use in Transient Response
\[
\begin{aligned}
& {\left[K_{h h}\right]=[k]+\left[\phi_{d h}^{\top}\right]\left[K_{d d}^{2}\right]\left[\phi_{d h}\right]} \\
& {\left[M_{h h}\right]=[m]+\left[\phi_{d h}^{\top}\right]\left[M_{d d}^{2}\right]\left[\phi_{d h}\right],} \\
& {\left[B_{h h}\right]=[b]+\left[\phi_{d h}^{\top}\right]\left[B_{d d}^{2}\right]\left[\phi_{d h}\right],}
\end{aligned}
\]
where
\[
\begin{aligned}
& m_{i}=\text { modal masses } \\
& b_{i}=m_{i} 2 \pi f_{i} g\left(f_{i}\right) \\
& k_{i}=m_{i} 4 \pi^{2} f_{i}^{2}
\end{aligned}
\]
and all matrices are real.
128. Go to DMAP No. 212 and print error message if no Transient Response List.
131. Go to next DMAP instruction if cold start or modified restart. LBLI3 will be altered by the Executive System to the proper location inside the loop for unmodified starts within the loop.
132. Beginning of loop for additional dynamic load sets.
134. CASE extracts user requests from CASECC for current loop.
138. TRLG generates matrices of loads versus time. \(\left\{P_{p}^{t}\right\},\left\{P_{s}^{t}\right\}\), and \(\left\{P_{d}^{t}\right\}\) are generated with one column per output time step. \(\left\{P_{d}\right\}\) and \(\left\{P_{h}\right\}\) are generated with one column per solution time step, and the Transient Output List (TøL) is a list of output time steps.
141. Equivalence \(\left\{P_{d}\right\}\) to \(\left\{P_{d}^{t}\right\}\) if the output times are the same as the solution times and \(\left\{P_{d}^{t}\right\}\) to \(\left\{P_{p}^{t}\right\}\) if the \(d\) and \(p\) sets are the same.
143. TRD forms the linear and nonlinear dynamic load vectors \(\left\{P_{d}\right\}\) and \(\left\{P_{d}^{n \ell}\right\}\) and integrates the equations of motion over specified time periods to solve for the displacements, velocities and accelerations, using the following equation
\[
\left[M_{h h} p^{2}+B_{h h} p+K_{h h}\right]\left\{u_{h}\right\}=\left\{P_{h}\right\}+\left\{P_{h}^{n \ell}\right\}
\]
146. VDR prepares displacements, velocities and accelerations, sorted by time step, for output using only the extra points introduced for dynamic analysis and modal coordinates (solution points).
149. Go to DMAP No. 157 if no output request for the solution points.
150. SDR3 sorts the solution point displacements, velocities, accelerations and nonlinear load vectors by point number.
151. ØFP formats the requested solution point displacements, velocities, accelerations and non.linear load vectors sorted by point number and places them on the system output file for printing.
154. XYTRAN prepares the input for X-Y plotting of the solution point displacements, velocities, accelerations and nonlinear load vectors vs time.
156. XYPLØT prepares requested \(X-Y\) plots of the solution point displacements, velocities, accelerations and nonlinear load vectors vs time.
159. Go to DMAP No. 199 if no output request involving dependent degrees of freedom, forces and stresses, or deformed structure plot.
163. DDRI transforms the solution vector displacements from modal to physical coordinates
\[
\left\{u_{d}\right\}=\left[\phi_{d h}\right]\left\{u_{h}\right\}
\]
165. Go to DMAP No. 170 if mode acceleration technique not requested.
166. DDR2 calculates an improved displacement vector using the mode acceleration technique, if requested.
171. Equivalence \(\left\{u_{d}\right\}\) to \(\left\{u_{p}\right\}\) if no constraints applied.
172. Go to DMAP No. 174 if no constraints applied.
173. SDRI recovers dependent components of displacements
\[
\begin{aligned}
& \left\{u_{0}\right\}=\left[G_{0}^{d}\right]\left\{u_{d}\right\} \\
& \left(\begin{array}{c}
u_{f}+u_{e} \\
--- \\
-u_{s}
\end{array}\right\}=\left\{\begin{array}{c}
u_{d} \\
u_{0}
\end{array}\right)=\left\{u_{f}+u_{e}\right\} \\
& \left(\begin{array}{c}
\left.u_{n}+u_{e}\right\}, \\
-\frac{u_{e}}{}- \\
-u_{m}
\end{array}\right\}=\left\{u_{m}\right\}=\left[G_{m}^{d}\right]\left\{u_{n}+u_{e}\right\},
\end{aligned}
\]
and recovers single-point forces of constraint \(\left\{q_{s}\right\}=-\left\{p_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}\).
176. SDR2 calculates element forces and stresses (\(\varnothing \mathrm{EF} 1, \emptyset E S 1\)) and prepares load vectors, displacement, velocity and acceleration vectors and single-point forces of constraint for output (\(\emptyset P P 1, \emptyset U P V 1, P U G V, \emptyset Q P 1)\) - all sorted by time step.
177. SDR3 prepares requested output sorted by point number or element number.
178. Go to DMAP No. 187 if no mode acceleration requested.
180. SDRI recovers dependent components of the eigenvectors
\[
\begin{aligned}
& \left\{\phi_{0}\right\}=\left[G_{0}^{d}\right]\left\{\phi_{h}\right\}, \\
& \binom{\phi_{h}}{-\phi_{0}}=\left\{\phi_{f}+u_{e}\right\} \\
& \binom{\phi_{f}+u_{e}}{---}=\left\{\phi_{n}+u_{e}\right\} \quad\left\{\phi_{m}\right\}=\left[G_{m}^{d}\right]\left\{\phi_{n}+u_{e}\right\} \\
& \left(\begin{array}{c}
\phi_{n}+u_{e} \\
-\frac{\phi_{m}}{-}
\end{array}\right\}=\left\{\phi_{g}+u_{e}\right\}=\left\{\phi_{p}\right\}
\end{aligned}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=\left[K_{f s}\right]^{\top}\left\{\phi_{f}\right\} .
\]
181. SDR2 calculates element forces and stresses (IEF1; IESI) and prepares eigenvectors and single-point forces of constraint for output (IPHIP1, IQP1) - all sorted by time step.
182. SDR2 prepares load vectors for output (\(\emptyset P P A\)) sorted by time step.
183. SDR3 prepares requested output sorted by point number or element number.
184. Equivalence \(\emptyset P P B\) to \(\emptyset P P 2\) if mode acceleration requested.
185. DDRMM prepares a subset of the element forces and stresses (ZEF2, ZES2), and displacement vectors and single-point forces of constraint (ZUPV2, ZQP2) solutions for output by point number or element number sort.
186. Equivalence ZUPV2 to \(\emptyset U P V 2\), ZQP2 to \(\emptyset Q P 2\), ZES2 to \(\emptyset E S 2\), and ZEF2 to \(\emptyset E F 2\) if mode acceleration requested.
189. DFP formats requested output sorted by point number or element number and places it on the system output file for printing.
191. Go to DMAP No. 195 if no deformed structure plots requested.
192. PLDT prepares all requested deformed structure plots.
194. PRTMSG prints plotter data and engineering data for each deformed plot generated.
196. XYTRAN prepares the input for requested \(X-Y\) plots.
198. XYPL \(\emptyset T\) prepares requested \(X-Y\) plots of displacements, velocities, accelerations, forces, stresses, loads or single-point forces of constraint vs time.
200. Go to DMAP No. 214 if no additional dynamic load sets need to be processed.
201. Go to DMAP No. 132 if additional dynamic load sets need to be processed.
202. Go to DMAP No. 204 and print error message if more than 100 loops.
203. Go to DMAP No. 214 and make normal exit.
205. MøDAL TRANSIENT RESPQNSE ERRØR MESSAGE NØ. 3 - ATTEMPT T \(\emptyset\) EXECUTE MøRE THAN 100 LØØPS.
207. MØDAL TRANSIENT RESPØNSE ERRØR MESSAGE NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
209. MØDAL TRANSIENT RESPØNSE ERRØR MESSAGE NØ. 1 - MASS MATRIX REQUIRED FØR MØDAL FØRMULATI \(\emptyset N\).
211. MøDAL TRANSIENT RESPØNSE ERRØR MESSAGE NØ. 4 - REAL EIGENVALUES REQUIRED FØR MøDAL FØRMULATION.
213. MØDAL TRANSIENT RESFØNSE ERRØR MESSAGE NØ. 5-TRANSIENT RESPøNSE LIST REQUIRED FØR TRANSIENT RESPØNSE CALCULATIgNS.

\section*{MODAL TRANSIENT RESPONSE}

\subsection*{3.13.3 Automatic Output for Modal Transient Response}

The Eigenvalue Summary Table and the Eigenvalue Analysis Summary, as described under Normal Mode Analysis, are automatically printed. All real eigenvalues extracted are included even though not all are used in the modal formulation.

\subsection*{3.13.4 Case Control Deck and Parameters for Modal Transient Response}

The following items related to subcase definition and data selection must be considered in addition to the list presented with Direct Transient Response:
1. METHØD must appear above the subcase level to select an EIGR card that exists in the Bulk Data Deck.
2. All of the eigenvectors used in the modal formulation must be determined in a single execution.
3. An SPC set must be selected above the subcase level unless the model is a free body or all constraints are specified on GRID cards, Scalar Connection cards or with General Elements.
4. SDAMPING must be used to select a TABDMP1 table if structural damping is desired.

Output that may be requested is the same as that described under Direct Transient Response. Output for S@LUTI@N points will have the modal coordinates identified by the mode number determined in Real Eigenvalue Analysis.

The eigenvectors used in the modal formulation may be obtained for the S@LUTIØN points by using the ALTER feature to print the matrix of eigenvectors following the execution of READ. The eigenvectors for all points in the model may be obtained by running the problem initially on the Normal Mode Analysis rigid format or by making a modified restart using the Normal Mode Analysis rigid format.

The following parameters are used in Modal Transient Response:
1. GRDPNT - optional - A positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.

\section*{RIGID FORMATS}
2. WTMASS - optional - The terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in EMA. Not recommended for use in hydroelastic problems.
3. CQUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
4. LFREQ and HFREQ - required unless LMDDES is used. The values of these parameters give the frequency range (LFREQ is lower limit and HFREQ is upper limit) of the modes to be used in the modal formulation.
5. LMQDES - required unless LFREQ and HFREQ are used. The integer value of this parameter is the number of lowest modes to be used in the modal formulation.
6. M \(\triangle D A C C\) - optional - A positive integer value of this parameter causes the Dynamic Data Recovery module to use the mode acceleration method. Not recommended for use in hydroelastic problems.
3.14 NORMAL MODES WITH DIFFERENTIAL STIFFNESS
3.14.1 DMAP Sequence for Normal Modes with Differential Stiffness
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { RIG ID FORMAT } \\
& \text { SERIES N }
\end{aligned}
\] & DMAP LISTING & \\
\hline \begin{tabular}{l}
RIGID FORMAT \\
N A S T R
\end{tabular} & 13NSOURCE PROGRAMCOMPILATITN & \\
\hline OMAP-DMAP INSTR NO. & RRUCTION & \\
\hline 1 BEGIN & NO. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS - SERIES & N \\
\hline 2 file & L AMA \(=\) APPEND/PHIA=APPEND \$ & \\
\hline 3 GP1 & GEOM1,GEOM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ NUGPDT \$ & \(V, N\), \\
\hline 4 Save & LUSET \$ & \\
\hline 5 CHKPNT & GPL, EQEXIN, GPDT, CSTM, BGPDT, SIL s & \\
\hline 6 GP2 & GEOM2,EQEXIN/ECT & \\
\hline 7 CHKPNT & ECT \$ & \\
\hline 8 PARAML & PCDB//C,, PRES/C, \(/\) / \(C, N, / C, N, / V, N, N O P C D B \$\) & \\
\hline 9 PURGE & PLTSETX, PLTPAR,GPSETS,ELSETS/NOPCOB \$ & \\
\hline 10 COND & P1,NOPCDB \$ & \\
\hline 11 PLTSET & PCOB, EQEXIN, ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ JUMPPLOT=-1 \$ & \(V\), N , \\
\hline 12 SAVE & NSIL,JUMPPLOT \(\$\) & \\
\hline 13 PRTMSG & PLTSETX// \$ & \\
\hline 14 PARAM & \(/ / C, N, M P Y / V, N, P L T F L G / C, N, 1 / C, N, 1\) \$ & \\
\hline 15 PARAM & //C,N,MPY/V,N,PFILE/C,N,O/C,N,O* & \\
\hline 16 COND & Pl, JUMPPLOT \$ & \\
\hline 17 PLOT & PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,., ,/PLOTXI/ NSIL/V,N,LUSET/V,N, JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$ & / V,N, \\
\hline 18 SAVE & JUMPPLOT,PLTFLG,PFILE \$ & \\
\hline 19 PRTMSS & PLOTX1// \$ & \\
\hline 20 LABEL & Pls & \\
\hline 21 CHKPNT & PLTPAR,GPSETS, ELSETS \$ & \\
\hline 22 GP3 & GEOM3, EQEXIN,GEOM2/SLT,GPTT/V,N,NOGRAV \$ & \\
\hline 23 CHKPNT & SLT,GPTT \$ & \\
\hline 24 TAL & ECT,EPT, BGPOT,SIL,GPTT,CSTM/EST,GEI,GPECT,N,N,LUSET/ VOSIMP/C,N,I/V,N,NOGENL/V,N,GENEL \$ & \(V\), , \\
\hline 25 SAVE & NOSIMP, NOGENL, GENEL \$ & \\
\hline
\end{tabular}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }1
NASTRANSSOURCE PROGRAMCOMPILATIION
DMAP-DMAP INSTRUCTION
NU.

26	COND	ERRORI, VOSIMP \$			
27	Purge	OGPST/GENEL \$			
28	GHKPNT	EST,GPECT,GEI, OGPST \$			
29	PARAM	$/ / C, N, A D O / V, N, N O K G G X / C, N, 1 / C, N, O$			
	G	$\begin{aligned} & \text { EST, CSTM,MPT, DIT,GEOM2,/KELM,KDICT,MELM,MDICT, ,/V,N,NOKGGX/V, } \\ & \text { N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/C,Y, } \\ & \text { CPQUADI/C,Y,CPGUAOZ/C,Y,CPTRIAI/C,Y,CPTRIAZ/C,Y,CPTUBE/C,Y, } \\ & \text { CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSC } \end{aligned}$			

31 SAVE VOKGGX, VOMGG $\$$
32 CHKPNT KELM,KDICT,MELM,MDICT \$
33 COND JMPKGG,NOKGGX \$
34 EMA GPECT,KDICT,KELM/KGGX,GPST \$
35 CHKPNT KGGX,GPST \$
36 .LABEL JMPKGG \$
37 CONO ERRORS,NOMGG \$
38 EMA GPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0\$
39 CHKPNT MGG\$
40 COND LBLI,GRDPNT \$
4I GPWG BGPDT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT/C,Y,WTMASS \$
42 OFP OGPWG,I,,,I/\$
43 LABEL LBLI\$
44 EQUIV KGGX,KGG/NOGENL \$
45 CHKPNT KGG \$
46 COND LBLI1,NOGENL \$
47SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP \$
48 CHKPNT KGG \$
49 LABEL LBLI1 \$
5.0 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O \$
51 GP4 CASECC,GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,YS,USET,ASET/V,N,
LUSET/V,N,YPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N,
NSKIP/V,N,REPEAT/V,N,NOSET/V,N;NOL/V,N,NOA/C,Y,SUBID\$
3.14-2(3/1/76)

```

\section*{NORMAL MODES WITH DIFFERENTIAL STIFFNESS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 13
NASTRANNSOURCE PROGRAMGOMPILATIION
OMAP-DMAP INSTRUCTION
NO.

52	save	YPCF1, MPCF2,SINGLE, OMIT, REACT, NSKIP,REPEAT, NOSET, NOL, NOA	\$
53	CONO	ERRJRG,NOL \$	
5.4	PARAM	$/ / C, N, A N O / V, N, N O S R / V, N, S I N G L E / V, N, R E A C T$ \$	
55	PURGE	GM/MPCFI/GO,KOO,LOD,PO, UOOV,RUOV/OMIT/PS,KFS,KSS/SINGLE/ NOSR \$	QG/

56 CHKPNT GM,RG,GO,KOO,LOO,PG,UOOV,RUOV,YS,PS,KFS,KSS,USET,ASET,QG \$
57 COND LBL4U,REACT \$
58 JUMP ERROR2 \$
59 LABEL LBL4O \$
60 COND LBL4,GENEL \$
61GPSP GPL,GPST,USET,SIL/OGPST/V,N,NQGPST \$
62 SAVE NOGPST \$
63 CONO LBL4,NOGPST \$
64 OFP OGPST,.,.,// \$
65 LABEL LBL4s
66 EQUIV KGG.KNN/MPCF1 \$
67 CHKPNT KNN \$
68 COND LBL2,MPCF2\$
69 MCEI USET,RG/GM \$
70 CHKPNT GM \$
71 MCE2 USET,GM,KGG,,,/KNN,,, \$
72 CHKPNT KNN \$
73 LABEL LBL2 \$
74 EQUIV KNN,KFF/SINGLE \$
7.5 CHKPNT KFF \$
76 COND LBL3,SINGLE \$
77SCE1 USET,KNN,,,/KFF,KFS,KSSS,:,\$
7.8 CHKPNT KFS,KSS,KFF \$
79 LABEL LBL3\$

## RIGID FORMATS

```
 RIGID FORMAT DMAP LISTING
 SERIES N
RIGID FORMAT }1
 NASTRRANSSURCE PROGRAMEOMPILAATION
DMAP-DMAP INSTRUCTION
 NO.
 80 EQUIV KFF,KAA/OMIT S
 81. CHKPNT KAA &
 82 COND LBL5,OMIT$
 83 SMP1 USET,KFF,,./GO,KAA,KOO,LOO,.,.,$
 84 CHKPNT GO,KAA,KOO,LOG $
 85 LABEL LBL5 $
 86 RBMG2 KAA/LLL
 87 CHKPNT LLL $
 88 SSGL SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MGG,CASECC,OIT/PGG/ V,N,
 LUSET/C,N,L $
 8 9 ~ C H K P N T ~ P G ~ \$ ~
 90 EQUIV PG,PL/NOSET $
 91 CHKPNT PL $
 92 COND LBLIO,NOSET &
 93 SSG2 USET,GM,YS,KFS,GO,,PG/,PO,PS,PL $
 94 CHKPNT PO,PS,PL $
 95 LABEL LBL1O s
 96 SSG3
 LLL,KAA, PL,LOO,KOO, PO/ULV,UOOV,RULV,RUOV/V,N,OMIT/V,Y,IRES=-1/
 C,N,1/V,N,EPSI $
 97 SAVE EPSI $
 98 CHKPNT ULV,UOOV,RULV,RUOV $
 99 COND LBL9,IRES $
100 MATGPR GPL,USET,SIL,RULV//C,N,L $
101 MATGPR GPL,USET,SIL,RUOV//C,N,O $
102 LABEL LBL9$
103 SDR1 USET,PG,ULV,UCOV,YS,GO,GM,PS,KFS,KSS,/UGV,PGG,QG/C,N,I/C,N,
 BKLO $
104 CHKPNT UGV,QG,PGG $
105SOR2
CASECC,ESTM,MPT,DIT,EQEXIN,SIL,GPTT,EDT,BGPOT,,QG,UGV,EST,,PGG/
OPGI,OQG1,OUGVI,OESI,OEFI,PUGVI/C,N,BKLO $
```


## NORMAL MODES WITH DIFFERENTIAL STIFFNESS

```
 RIGID FORMAT DMAP LISTING
 SERIES N
RIGID FORMAT }1
```



```
DMAP-DMAP INSTRUCTION
 NO.
106 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O $
107 OFP OUGV1,OPG1,OQG1,OEF1,OES1,//V,N,CARDND $
108 SAVE CARDNO $
109 COND P2,JUMPPLOT $
```



```
111 SAVE PFILE $
11.2 PRTMSG PLOTX2// $
113. LABEL P2$
114 TA1 ECT,EPT,BGPDT,SIL,GPDT,CSTM/X1,X2,ECPT,GPCT/V,N,LUSET/ V,N,
 NOSIMP/C,N,O/V,N,NOGENL/V,N,GENEL $
115 DSMGI CASECC,GPTT,SIL,EDT,UGV,CSTM,MPT,ECPT,GPCT,DIT/KDGGI V,N,
 DSCOSET $
116 SAVE DSCOSET $
117 CHKPNT KDGG $
118 EQUIV KUGG,KDNN/MPCF2 / MGG,MNN/MPCF2 $
119 CHKPNT KDNN,MNN $
120 COND LBL2D,MPCF2$
121 MCE2 USET,GM,KDGG,MGG,I/KDNN,MNN., $
122 CHKPNT KDNN,MNN $
123 LABEL LBLZD $
124 EQUIV KDNN,KDFF/SINGLE / MNN,MFF/SINGLE $
125 CHKPNT KDFF,MFF $
126 COND LBLSD,SINGLE $
127 SCE1 USET,KDNN,MNN,./KDFF,KDFS,KDSS,MFF,,$
128 CHKPNT KDFF,KDFS,KDSS,MFF $
129 LABEL LBL3D $
130 EQUIV KUFF,KDAA/OMIT / MFF,MAA/OMIT
131 CHKPNT KDAA,MAA $
132 COND LBLSD,OMIT &
```

    RIGIDFGRMAT DMAP LISTING
    RIGID FORMAT 13
    NASTRANSOURCEPPROGRAMCOMPILATIION
    DMAP-DMAP INSTRUCTION
NO.
SMP2 USET,GO,KDFF/KDAA \$
138 CHKPNT PBL,PBS,YBS,UBOOV \$
139 PARAM //C,N,MPY/V,N,NDSKIP/C,N,O/C,N,O \$
140 DSMG2 MPT,KAA,KDAA,KFS,KDFS,KSS,KDSS,PL,PS,YS,UOOV/KBLL,KBFS,KBSS,
PBL,PBS,YBS,UBOOV/V,N,NDSKIP/ V,N,REPEATD/ V,N,DSCOSET \$
141 SAVE VOSKIP,REPEATD \$
142 CHKPNT KBLL,KBFS,KBSS,PBL,PBS,YBS,UBOOV
143 RBMG2 KBLL/LBLL/V,N,POWER/V,N,DET \$
144 SAVE DET,POWER \$
1.45 CHKPNT LBLL \$
146 PRTPARM //C,N,O/C,N,DET \$
147 PRTPARM //C,N,O/C,N,POWERS
148SSG3 LBLL,KBLL,PBL,,,/UBLV,,RUBLV,/C,N,-1/V,Y,IRES/V,N,NDSKIP/ V,N,
EPSI \$
149 SAVE EPSI \$
150 CHKPNT UBLV,RUBLV \$
151 COND LBL9D,IRES \$
152 MATGPR GPL,USET,SIL,RUBLV//C,N,L \$
153 LABEL L8L9D \$
154 SDR1 USET,,UBLV,UBOOV,YBS,GO,GM,PBS,KBFS,KBSS,/UBGV,,QBG/V,N,NOSKIP/
C,N,DSI\$
155 CHKPNT UBGV,QBG s
156 SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,GPTT,EDT,BGPDT,,QBG,UBGV,EST,./,
OQBG1,OUBGVL,OESBL,OEFB1,PUBGV1/C,N,DS1 \$
157 OFP OQBGI,OUBGVI,OESBI,OEFBL,,//V,N,CARDNO \$
158 DPD DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,.,..,.EED,EQDYN/V,N.

RIGID FORMAT DMAP LISTING SERIES N										
RIGID FORMAT 13										
		LUSET/V,N,LUSETD/V,N,NOTFL/V,N,NODLT/V,N,NOPSDL/V,N,NOFRL/ N, NUNLFT/V,N,NUTRL/V,N,NOEED/G,N,/V,N,NOUE S								
159	SAVE	VOEED \$								
160	CONO	ERROR3, NUEED\$								
161	CHKPNT	EED \$								
162	PARAM	//C, N,MPY/V,N,NEIGV/C,N,1/C, N, - \$								
	READ	KBLL,MAA,, EED,USET,CASECC/LAMA,PHIA,,OEIGS/C,N,MODES/ V,N, NEIGV/C,N,3								
164	save	NEIGV $\$$								
165	CHKPNT	LAMA,PHIA,OEIGS \$								
166	OFP	JEIGS,LAMA, , ,//V,N,CARDNO								
167	SAVE	CARDNO \$								
168	COND	ERRJR4,NEIGV \$								
	SDR1	USET, PHIA, , GO,GM, ,KDFS, /PHIG, BQG/C,, , I/C,N,REIG \$								
1.70	CHK PNT	PHIG,BQG \$								
171	CASE	CASECC, /CASEXX/C,N,TRANRESP/V,N,KEPEAT=3/V,N,LOOP \$								
	SDR 2	CA SEXX,CSTM,MPT,DIT, EQEXIN,SIL,., BGPDT, LAMA, BQG, PHIG,EST,,I, OBQGI,OPHIG,OBESI,OBEFI,PPHIG/C,N,REIG \$								
1.73	OFP	OPHIG,OBQGI,OBEFI,OBES $1, \ldots / / \mathrm{V}, \mathrm{N}, \mathrm{CARDNO} \$$								
174	SAVE	CARDNO \$								
175	COND	P3,JUMPPLOT \$								
176	PLOT	PLTPAR,GPSETS,ELSETS,CASECC, BGPDT, EQEXIN,SIL, ,PPHIG,GPECT, JBESI/P:JTX3/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N, Pfiles								
177	SAVE	PFILE \$								
178	PRTMSG	PLOTX3/1 \$								
179	LABEL	P3 \$								
180	JUMP	FINIS								
181	LABEL	ERRORL \$								
182	PRTPARM	//C,N,-1/C, N,NMOS \$								
183	LABEL	ERROR2 \$								
		3.14-7 (3/1/76)								

RIGID FORMATS

```
 RIGIO FORMAT OMAP LISTING
 SERIES N
 RIGID FORMAT }1
 NASTRRANSOURCE PROGRAMCOMPILATION
DMAP-DMAP INSTRUCTIUN
 NO.
184 PRTPARM //C,N,-2/C,N,NMOS$
185 LABEL ERROR3 s
186 PRTPARM //C,N,-3/C,N,NMDS &
187 LABEL ERROR4 $
188 PRTPARM //C,N,-4/C,N,NMDS $
189 LABEL ERROR5 s
100 PRTPARM //C,N,-5/C,N,NMDS $
191 LABEL ERRORG $
192 PRTPARM //C,N,-5/C,N,NMOS $
193 LABEL FINIS$
194 ENO $
```


## NORMAL MODES WITH DIFFERENTIAL STIFFNESS

### 3.14.2 Description of DMAP Operations for Normal Modes with Differential Stiffness.

3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
4. GP2 generates Element Connection Table with internal indices.
5. Go to DMAP No. 20 if no plot package is present.
6. PLTSET transforms user input into a form used to drive structure plotter.
7. PRTMSG prints error messages associated with structure plotter.
8. Go to DMAP No. 20 if no undeformed structure plot request.
9. PLøT generates all requested undeformed structure plots.
10. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
11. GP3 generates Static Loads Table and Grid Point Temperature Table.
12. TAl generates element tables for use in matrix assembly and stress recovery.
13. Go to DMAP No. 181 and print error message if no elements have been defined.
14. EMG generates structural element matrix tables and dictionaries for later assembly.
15. Go to DMAP No. 36 if no stiffness matrix is to be assembled.
16. EMA assembles stiffness matrix $\left[K_{g g}^{x}\right]$ and Grid Point Singularity Table.
17. Go to DMAP No. 189 and print error message if no mass matrix exists.
18. EMA assembles mass matrix $\left[\mathrm{Mgg}_{\mathrm{gg}}\right]$.
19. Go to DMAP No. 43 if no weight and balance request.
20. GPWG generates weight and balance information.
21. ØFP formats weight and balance information and places it on the system output file for printing.
22. Equivalence $\left[K_{g g}^{X}\right]$ to $\left[K_{g g}\right]$ if no general elements.
23. Go to DMAP No. 49 if no general elements.
24. SMA3 adds general elements to $\left[K_{\mathrm{gg}}^{\mathrm{X}}\right]$ to obtain stiffness matrix $\left[\mathrm{K}_{\mathrm{gg}}\right]$.
25. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations $\left[R_{g}\right]\left\{u_{g}\right\}=0$ and forms enforced displacement vector $\left\{Y_{s}\right\}$.
26. Go to DMAP No. 191 and print error message if no independent degrees of freedom are defined.
27. Go to DMAP No. 59 if no support cards.
28. Go to DMAP No. 183 and print error message if free-body supports are present.
29. Go to DMAP No. 65 if general elements present.
30. GPSP determines if possible grid point singularities remain.
31. Go to DMAP No. 65 if no grid point singularities remain.

$$
3.14-9(12 / 31 / 74)
$$

64. ØFP formats the table of possible grid point singularities and places it on the system output file for printing.
65. Equivalence $\left[K_{g g}\right]$ to $\left[K_{n n}\right]$ if no multipoint constraints.
66. Go to DMAP No. 73 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
67. MCEI partitions multipoint constraint equations $\left[R_{g}\right]=\left[R_{m} \mid R_{n}\right]$ and solves for multipoint constraint transformation matrix $\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]$.
68. MCE2 partitions stiffness matrix

$$
\left[K_{g g}\right]=\left[\begin{array}{lll}
\bar{K}_{n n} & K_{n m} \\
\cdots- & +-- \\
K_{m n} & K_{m m}
\end{array}\right]
$$

and performs matrix reduction

$$
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right]
$$

74. Equivalence $\left[K_{n n}\right.$ ] to $\left[K_{f f}\right]$ if no single-point constraints.
75. Go to DMAP No. 79 if no single-point constraints.
76. SCEI partitions out single-point constraints

$$
\left[k_{n n}\right]=\left[\begin{array}{c:c}
k_{f f} & k_{f s} \\
- & -- \\
k_{s f} & k_{s s}
\end{array}\right]
$$

80. Equivalence $\left[K_{f f}\right.$ ] to [ $K_{a a}$ ] if no omitted coordinates.
81. Go to DMAP No. 85 if no omitted coordinates.
82. SMPI partitions constrained stiffness matrix

$$
\left[k_{f f}\right]=\left[\begin{array}{ccc}
\bar{k}_{a a} & k_{a o} \\
- & -- \\
k_{o a} & k_{00}
\end{array}\right]
$$

solves for transformation matrix $\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]$
and performs matrix reduction $\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{0}\right]$.
86. RBMG2 decomposes constrained stiffness matrix $\left[K_{a a}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]$.
88. SSG1 generates static load vectors $\left\{P_{g}\right\}$.
90. Equivalence $\left\{P_{g}\right\}$ to $\left\{P_{\ell}\right\}$ if no constraints applied.
92. Go to DMAP No. 95 if no constraints applied.
93. SSG2 applies constraints to static load vectors

$$
\begin{array}{ll}
\left\{P_{g}\right\}=\left\{\begin{array}{l}
\bar{P}_{n} \\
-P_{m}
\end{array}\right\}, & \left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{\top}\right]\left\{P_{m}\right\}, \\
\left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
-P_{s}
\end{array}\right\}, & \left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}+\left[K_{f s}\right]\left\{Y_{s}\right\}, \\
\left\{P_{f}\right\}=\left\{\begin{array}{l}
P_{a} \\
\left.-P_{o}\right\}
\end{array}\right\} \text { and } \quad\left\{P_{\ell}\right\}=\left\{P_{a}\right\}+\left[G_{0}^{\top}\right]\left\{P_{0}\right\},
\end{array}
$$

96. SSG3 solves for displacements of independent coordinates

$$
\left\{u_{\ell}\right\}=\left[K_{\ell \ell}\right]^{-1}\left\{P_{\ell}\right\}
$$

solves for displacements of omitted coordinates

$$
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{p_{0}\right\}
$$

calculates residual vector (RULV) and residual vector error ratio for independent coordinates

$$
\begin{aligned}
\left\{\delta P_{\ell}\right\} & =\left\{P_{\ell}\right\}-\left[K_{\ell \ell}\right]\left\{u_{\ell}\right\} \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{\top}\right\}\left\{\delta P_{\ell}\right\}}{\left\{P_{\ell}^{\top}\right\}\left\{u_{\ell}\right\}}
\end{aligned}
$$

and calculates residual vector (RUØV) and residual vector error ratio for omitted coordinates

$$
\begin{gathered}
\left\{\delta P_{0}\right\}=\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\} \\
\varepsilon_{0}=\frac{\left\{u_{0}^{\top}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{\top}\right\}\left\{u_{0}\right\}}
\end{gathered}
$$

99. Go to DMAP No. 102 if residual vectors are not to be printed.
100. Print residual vector for independent coordinates (RULV).

## RIGID FORMATS

101. Print residual vector for omitted coordinates (RUøV).
102. SDR1 recovers dependent displacements

$$
\begin{array}{ll}
\left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{\ell}\right\}+\left\{u_{0}^{0}\right\}, \\
\left\{\begin{array}{l}
u_{a} \\
u_{0}
\end{array}\right\}=\left\{u_{f}\right\}, & \left\{\begin{array}{c}
u_{f} \\
u_{s}
\end{array}\right\}=\left\{u_{n}\right\}, \\
\left\{u_{m}\right\}=\left[G_{m}\right]\left\{u_{n}\right\}, & \left\{\begin{array}{l}
u_{n} \\
\left.-u_{m}\right\}
\end{array}\right\}=\left\{u_{g}\right\}
\end{array}
$$

and recovers single-point forces of constraint

$$
\left\{q_{s}\right\}=-\left\{P_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
$$

105. SDR2 calculates element forces and stresses ( $\emptyset E F 1, \emptyset E S 1$ ) and prepares load vectors, displacement vectors and single-point forces of constraint for output ( $\varnothing \mathrm{PGI}, ~ \emptyset U G V I, ~ P U G V I$, ØQGI).
106. DFP formats tables prepared by SDR2 and places them on the system output file for printing.
107. Go to DMAP No. 113 if no static deformed structure plots are requested.
108. PLøT generates all requested static deformed structure plots.
109. PRTMSG prints plotter data and engineering data for each deformed plot generated.
110. TAI generates element tables for use in matrix assembly for differential stiffness matrix.
111. DSMG1 generates differential stiffness matrix $\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{d}}\right]$.
112. Equivalence $\left[K_{g g}^{d}\right]$ to $\left[K_{n n}^{d}\right]$ and $\left[M_{g g}\right]$ to $\left[M_{n n}\right]$ if no multipoint constraints.
113. Go to DMAP No. 123 if no multipoint constraints.
114. MCE2. partitions differential stiffness matrix

$$
\left[K_{g g}^{d}\right]=\left[\begin{array}{l:c}
\bar{K}_{n n}^{d} & k_{n m}^{d} \\
\hdashline- & - \\
k_{m n}^{d} & k_{m m}^{d}
\end{array}\right]
$$

and performs matrix reduction

$$
\left[K_{n n}^{d}\right]=\left[\bar{K}_{n n}^{d}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}^{d}\right]+\left[K_{m n}^{d}\right]\left[G_{m}\right]+\left[G_{m}^{T}\right]\left[K_{m m}^{d}\right]\left[G_{m}\right]
$$

124. Equivalence $\left[K_{n n}^{d}\right]$ to $\left[K_{f f}^{d}\right]$ and $\left[M_{n n}\right]$ to $\left[M_{f f}\right.$ ] if no single-point constraints.
125. Go to DMAP No. 129 if no single-point constraints.
126. SCE1 partitions out single-point constraints

$$
\left[K_{n n}^{d}\right]=\left[\begin{array}{ccc}
K_{f f}^{d} & 1 & K_{f s}^{d} \\
\hdashline K_{s f}^{d} & 1 & K_{s s}^{d}
\end{array}\right] \text { and }\left[M_{n n}\right]=\left[\begin{array}{ll:}
M_{f f} & M_{f s} \\
\hdashline M_{s f} & M_{s s}
\end{array}\right]
$$

130. Equivalence $\left[K_{f f}^{d}\right]$ to $\left[K_{a a}^{d}\right]$ and $\left[M_{f f}\right]$ to $\left[M_{a a}\right.$ ] if no omitted coordinates.
131. Go to DMAP No. 136 if no omitted coordinates.
132. SMP2 partitions constrained differential stiffness matrix

$$
\left[K_{f f}^{d}\right]=\left[\begin{array}{ccc}
\bar{k}_{a a}^{d} & k_{a o}^{d} \\
\hdashline K_{o a}^{d} & 1 & k_{o o}^{d}
\end{array}\right]
$$

and performs matrix reduction $\left[K_{a a}^{d}\right]=\left[\bar{K}_{a a}^{d}\right]+\left[K_{a o}^{d}\right]\left[G_{0}\right]$.
134. SMP2 partitions constrained mass matrix

$$
\left[M_{f f}\right]=\left[\begin{array}{ccc}
\bar{M}_{\mathrm{aa}} & 1 & M_{a o} \\
\hdashline- & + & - \\
M_{o a} & 1 & M_{o o}
\end{array}\right]
$$

and performs matrix reduction

$$
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{0}\right]+\left[G_{0}^{\top}\right]\left[M_{o a}\right]+\left[G_{0}^{\top}\right]\left[M_{o o}\right]\left[G_{0}\right]
$$

137. Equivalence $\left\{P_{\ell}\right\}$ to $\left\{P_{\ell}^{b}\right\},\left\{P_{s}\right\}$ to $\left\{P_{s}^{b}\right\} ;\left\{Y_{s}\right\}$ to $\left\{Y_{s}^{b}\right\}$ and $\left\{u_{0}^{0}\right\}$ to $\left\{u_{0}^{o b}\right\}$ if no scale factors are specified on a DSFACT card.
138. DSMG2 adds partitions of stiffness matrix to similar partitions of differential stiffness matrix

$$
\begin{aligned}
& {\left[K_{l \ell}^{\mathrm{b}}\right]=\left[K_{\mathrm{aa}}\right]+\beta\left[K_{\mathrm{aa}}^{\mathrm{d}}\right]} \\
& {\left[K_{\mathrm{fs}}^{\mathrm{b}}\right]=\left[K_{\mathrm{fs}}\right]+\beta\left[K_{\mathrm{fs}}^{\mathrm{d}}\right] \text { and }} \\
& {\left[K_{\mathrm{ss}}^{\mathrm{b}}\right]=\left[K_{s s}\right]+\beta\left[K_{\mathrm{ss}}^{\mathrm{d}}\right]}
\end{aligned}
$$

and multiplies partitions of load vectors and displacement vectors by current value of differential stiffness scale factor ( $\beta$ )

$$
\begin{aligned}
& \left\{P_{\ell}^{b}\right\}=\beta\left\{P_{\ell}\right\}, \\
& \left\{Y_{s}^{b}\right\}=B\left\{Y_{s}\right\} \text { and } .
\end{aligned}
$$

$$
\left\{P_{s}^{b}\right\}=\beta\left\{P_{s}\right\}
$$

$$
\left\{u_{0}^{b o}\right\}=\beta\left\{u_{0}^{o}\right\}
$$

143. RBMG2 decomposes the combined differential stiffness matrix and elastic stiffness matrix

$$
\left[\mathrm{K}_{\ell \ell}^{\mathrm{b}}\right]=\left[\mathrm{L}_{l \ell}^{\mathrm{b}}\right]\left[\mathrm{U}_{\ell \ell}^{\mathrm{b}}\right] .
$$

146. PRTPARM prints the scaled value of the determinant of the combined differential stiffness matrix and elastic stiffness matrix.
147. PRTPARM prints the scale factor (power of ten) of the determinant of the combined differential stiffness matrix and the elastic stiffness matrix.
148. SSG3 solves for displacements of independent coordinates for current value of differential stiffness scale factor ( $\beta$ )

$$
\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\}=\left[\mathrm{K}_{\ell \ell}^{\mathrm{b}}\right]^{-1}\left\{\mathrm{P}_{\ell}^{\mathrm{b}}\right\}
$$

and calculates residual vector (RBULV) and residual vector error ratio for current value of differential stiffness load factor

$$
\begin{gathered}
\left\{\delta \mathrm{P}_{\ell}^{\mathrm{b}}\right\}=\left\{\mathrm{P}_{\ell}^{\mathrm{b}}\right\}-\left[\mathrm{K}_{\ell \ell}^{\mathrm{b}}\right]\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\} \\
\varepsilon_{\ell}^{\mathrm{b}}=\frac{\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\}^{\top}\left\{\delta \mathrm{P}_{\ell}^{\mathrm{b}}\right\}}{\left\{\mathrm{P}_{\ell}^{\mathrm{b}}\right\}^{\top}\left\{\mathrm{u}_{\ell}^{\mathrm{b}}\right\}}
\end{gathered}
$$

151. Go to DMAP No. 153 if residual vector for current value of differential stiffness load factor is not to be printed.
152. Print residual vector for current value of differential stiffness load factor.
153. SDRT recovers dependent displacements for current value of differential stiffness scale factor

$$
\begin{aligned}
& \left\{u_{0}^{b}\right\}=\left[G_{0}\right]\left\{u_{\ell}^{b}\right\}+\left\{u_{0}^{o b}\right\}, \quad\left\{\begin{array}{c}
u_{\ell}^{b} \\
-\frac{u_{0}^{b}}{u_{0}}
\end{array}\right\}=\left\{u_{f}^{b}\right\}, \\
& \left\{\begin{array}{l}
u_{f}^{b} \\
--y^{b}
\end{array}\right\}=\left\{u_{n}^{b}\right\}, \quad\left\{u_{m}^{b}\right\}=\left[G_{m}\right]\left\{u_{n}^{b}\right\}, \\
& \left\{\begin{array}{c}
u_{n}^{b} \\
\hdashline-u_{m}^{b}
\end{array}\right\}=\left\{u_{g}^{b_{c}}\right.
\end{aligned}
$$

and recovers single-point forces of constraint for current value of differential stiffness scale factor

$$
\left\{q_{s}^{b}\right\}=-\left\{p_{s}^{b}\right\}+\left[K_{s f}^{b}\right]\left\{u_{f}^{b}\right\}+\left[K_{f f}^{b}\right]\left\{v_{s}^{b}\right\}
$$

156. SDR2 calculates element forces and stresses ( $\varnothing E F B 1, \emptyset E S B 1$ ) and prepares displacement vectors and single-point forces of constraint for output (ØUBGV1, PUBGV1, ØQBG1).
157. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
158. DPD extracts Eigenvalue Extraction Data from Dynamics data block.
159. Go to DMAP No. 185 and print error message if no Eigenvalue Extraction Data.
160. READ extracts real eigenvalues from the equation

$$
\left[K_{l \ell}^{b}-\lambda M_{a a}\right]\left\{u_{a}\right\}=0
$$

calculates rigid body modes by finding a square matrix $\left[\phi_{r o}\right.$ ] such that

$$
\left[m_{0}\right]=\left[\phi_{r o}^{\top}\right]\left[m_{r}\right]\left[\phi_{r o}\right]
$$

is diagonal and normalized, computes rigid body eigenvectors

$$
\left[\phi_{\mathrm{ao}}\right]=\frac{\mathrm{D}}{\phi_{\mathrm{ro}}} \frac{\phi_{\mathrm{o}}}{}
$$

calculates modal mass matrix

$$
[m]=\left[\phi_{a}^{T}\right]\left[M_{a \mathrm{a}}\right]\left[\phi_{\mathrm{a}}\right]
$$

and normalizes eigenvectors according to one of the following user requests:

1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass.
166. ØFP formats eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
167. Go to DMAP No. 187 and exit if no eigenvalues found.
168. SDR1 recovers dependent components of the eigenvectors

$$
\begin{array}{ll}
\left\{\phi_{0}\right\}=\left[G_{0}\right]\left\{\phi_{a}\right\}, & \left\{\begin{array}{c}
\phi_{a} \\
- \\
\phi_{0}
\end{array}\right\}=\left\{\phi_{f}\right\}, \\
\left\{\begin{array}{c}
\phi_{f} \\
-- \\
\phi_{s}
\end{array}\right\}=\left\{\phi_{n}\right\}, & \left\{\phi_{m}\right\}=\left[G_{m}\right]\left\{\phi_{n}\right\},
\end{array}
$$

$$
\left\{\begin{array}{c}
\phi_{n} \\
-
\end{array}\right\}=\left\{\phi_{g}\right\}
$$

and recovers single-point forces of constraint $\left\{q_{s}\right\}=\left[K_{f s}^{\top}\right]\left\{\phi_{f}\right\}$.
172. SDR2 calculates element forces and stresses ( $\emptyset B E F 1, \emptyset B E S 1$ ) and prepares eigenvectors and single-point forces of constraint for output ( $\varnothing$ PHIG, PPHIG, ØBQGI).
173. $\emptyset F P$ formats tables prepared by SDR2 and places them on the system output file for printing.
175. Go to DMAP No. 179 if no deformed real eigenvalue structure plots are requested.
176. PLøT generatos all requested deformed real eigenvalue structure plots.
178. PRTMSG prints plotter data and engineering data for each deformed plot generated.
180. Go to DMAP No. 193 and make normal exit.
182. NøRMAL M@DES WITH DIFFERENTIAL STIFFNESS ERR $\emptyset$ R MESSAGE NØ. 1-N $\mathrm{N} \emptyset$ STRUCTURAL ELEMENTS HAVE BEEN DEFINED.
184. NØRMAL MøDES WITH DIFFERENTIAL STIFFNESS ERRØR MESSAGE NØ. 2 - FREE B $\emptyset D Y$ SUPPØRTS NØT ALLDWED.
186. NøRMAL MøDES WITH DIFFERENTIAL STIFFNESS ERRØR MESSAGE NØ. 3 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
188. NøRMAL MøDES WITH DIFFERENTIAL STIFFNESS ERRØR MESSAGE NØ. 4 - N $\emptyset$ EIGENVALUE FØUND.
190. NØRMAL MØDES WITH DIFFERENTIAL STIFFNESS ERRØR MESSAGE NØ. 5 - MASS MATRIX REQUIRED FØR REAL EIGENVALUE ANALYSIS.
192. NøRMAL MøDES WITH DIFFERENTIAL STIFFNESS ERRøR MESSAGE Nø. 6 - NØ INDEPENDENT DEGREES $\emptyset F$ FREEDgM HAVE BEEN DEFINED.

### 3.14.3 Automatic Output for Normal Modes with Differential Stiffness

Each eigenvalue is identified with a mode number determined by sorting the eigenvalues by their magnitude. The following summary of the eigenvalues extracted is automatically printed:

1. Mode Number
2. Extraction Order
3. Eigenvalue
4. Radian Frequency
5. Cyclic Frequency
6. Generalized Mass
7. Generalized Stiffness

The following summary of the eigenvalue analysis performed, using the Inverse Power method, is automatically printed:

1. Number of eigenvalues extracted.
2. Number of starting points used.
3. Number of starting point moves.
4. Number of triangular decompositions.
5. Number of vector iterations.
6. Reason for termination.
(1) Two consecutive singularities encountered while performing triangular decomposition.
(2) Four shift points while tracking a.single root.
(3) All eigenvalues found in the frequency range specified.
(4) Three times the number of roots estimated in the frequency range have been extracted.
(5) All eigenvalues that exist in the problem have been found.
(6) The number of roots desired have been found.
(7) One or more eigenvalues have been found outside the frequency range specified.
(8) Insufficient time to find another root.
(9) Unable to converge.
7. Largest off-diagonal modal mass term and the number failing the criteria.

The following summary of the eigenvalue analysis performed, using the Determinant method, is automatically printed:

1. Number of eigenvalues extracted.
2. Number of passes through starting points.
3. Number of criteria changes.
4. Number of starting point moves.
5. Number of triangular decompositions.
6. Number of failures to iterate to a root.
7. Reason for termination.
(1) The number of roots desired have been found.
(2) All predictions for eigenvalues are outside the frequency range specified.
(3) Insufficient time to find another root.
(4) Matrix is singular at first three starting points.
8. Largest off-diagonal modal mass term and the number failing the criterion.
9. Swept determinant function for each starting point.

The following summary of the eigenvalue analysis performed using.the Givens method, is automatically printed:

1. Number of eigenvalues extracted.
2. Number of eigenvectors computed.
3. Number of eigenvalue convergency failures.
4. Number of eigenvector convergence failures.
5. Reason for termination.
(1) Normal termination.
(2) Insufficient time to calculate eigenvalues and number of eigenvectors requested.
(3) Insufficient time to find additional eigenvectors.
6. Largest off-diagonal modal mass term and the number failing the criterion.

The value of the determinant of the sum of the elastic stiffness and the differential stiffness is automatically printed.

### 3.14.4 Case Control Deck and Parameters for Normal Modes with Differential Stiffness

The following items relate to subcase definition and data selection for Normal Modes with Differential Stiffness:

1. The Case Control Deck must contain three subcases. The first subcase is used only for output selection for the linear case.
2. DSCØEFFICIENT must appear in the second subcase, either to select a DSFACT set from the Bulk Data Deck, or to explicitly select the default value of unity.
3. METHØD must appear above the subcase level to select an EIGR bulk data card.
4. The static differential stiffness solution is output from the second subcase. The eigenvector solution is output from the third subcase.
5. A static loading condition must be defined above the subcase level with a LøAD, TEMPERATURE(LØAD), or DEFØRM selection, unless all loading is specified by grid point displacements on SPC cards.
6. An SPC set must be selected above the subcase level unless all constraints are specified on GRID cards.

The following output may be requested for Normal Modes with Differential Stiffness

1. Nonzero components of the applied statis load for the linear solution at selected grid points.
2. Displacement and nonzero components of the single-point forces of constraint, with and without differential stiffness, at selected grid points.
3. Forces and stresses in selected elements, with and without differential stiffness.
4. Deformed and undeformed plots.

The following output may be requested for the Normal Mode Analysis subcase:

1. Eigenvectors along with the associated eigenvalue for each mode.
2. Nonzero components of the single-point forces of constraint for selected modes at selected grid points.
3. Forces and stresses in selected elements for selected modes.
4. Undeformed plot of the structural model and mode shapes for selected modes.

The following parameters are used in Normal Mode Analysis:

1. GRDPNT - optional - a positive integer value of this parameter will cause the frid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - the terms of the structural mass matrix are multiplied by the real value of this parameter when they ane generated in SMA2.
3. CØUPMASS - CPBAR, CPRDD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPODPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of couples mass matrices rather than lumped mass matrices for all bar elements, rod elements; and plate elements that include bending stiffness.
3.15.1 DMAP Sequence for Static Analysis Using Cyclic Symmetry

## RIGID FORMAT DMAP LISTING SERIES N

RIGID FORMAT 14
NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTION NO.

1	BEGIN	NO. 14 STATIC ANALYSIS WITH CYCLIC SYMMETRY - SERIES N	$\$$
2	FILE	KKK=SAVE/PK=SAVE*	
3	file	UXV=APPEND\$	
4	PARAM	//C,N,NJP/V,Y,CYCIO=1 \$	
	GP1	```GEDML,GEOM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ VJGPDT S```	$V, N$,
6	SAVE	LUSET \$	
7	CHKPNT	GPL, EQEXIN, GPCT, CSTM, BGPDT, SIL \$	
	GP 2	GEOM2,EQEXIN/ECT \$	
9	CHKPNT	ECT s	
10	PARAML	PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB\$	
11	PURGE	PLTSETX, PLTPAR,GPSETS,ELSETS/NOPCDB $\$$	
12	COND	PL, NOPCDB \$	
13	PLTSET	PCDB, EQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ JUMP PLOT $=-1$ \$	$V, N$,
14	SAVE	NSIL, JUMPPLOT 5	
15	PRTMSG	PLTSETX// \$	
16	PARAM	//C,N,MPY/V,N,PLTFLG/C, $\mathrm{N}, 1 / \mathrm{C}, \mathrm{N}, 1$ \$	
17	PARAM	//C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$	
18	COND	PL,JUMPPLOT \$	
	PLOT	PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,., , /PLOTXI/ NSIL/V,N,LUSET/V,N, JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$	$V, N$,
20	SAVE	JUMPPLOT, PLTFLG,PFILE	
21	PRTMS	PLJTX1// \$	
22	LABEL	P1 ${ }^{\text {d }}$	
23	CHKPNT	PLTPAR,GPSETS,ELSETS \$	
	GP3	GEOi43, EQEXIN,GEOM2/SLT,GPTT/V,N,NOGRAV \$	
25	SAVE	NOGRAV \$	
26	PARAM	$/ / C, N, A V D / V, N, N O M G G / V, N, N O G R A V / V, Y, G R D P N T=-1{ }^{*}$	

$$
3.15-1(3 / 1 / 76)
$$

## RIGID FORMATS

```
RIGID FORMAT DMAP LISTING
RIGID FORMAT }1
 NASTRRANSOURCE PROGRAMCOMPMILATIION
DMAP-DMAP INSTRUCTION
 NO.
 27 CHKPNT SLT,GPTT $
 28 TA1 ECT,EPT,BGPOT,SIL,GPTT,CSTM/EST,GEI,GPECT,NV,N,LUSET/ V,N,
 NOSIMP/C,N,I/V,N,NOGENL/V,N,GENEL $
 29 SAVE VOSIMP,NOGENL,GENEL $
 30 PARAM //C,N,AND/V,N,NOELMT/V,N,NOGENL/V,N,NOSIMP$
 31 COND ERROR4,NOELMT $
 32 PURGE GPST/NOSIMP/OGPST/GENEL $
 33 CHKPNT EST,GPECT,GEI,GPST,OGPST $
 34 COND LBLI,NOSIMP $
 35 PARAM //C,N,ADD/V,N,NOKGGX/C,N,1/C,N,O $
 36 EMGG EST,CSTM,MPT,OIT,GEOM2,/KELM,KDICT,MELM,MDICT,,/V,N,NOKGGX/ V,
 N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/C,Y,
 CPQUADI/C,Y,CPQUAD2/C,Y,CPTRIAI/C,Y,CPTRIAZ/ C,Y,CPTUBE/C,Y,
 CPQDPLT/C,Y,CPTRPLT/C,Y,CPTRBSC $
37 SAVE NOKGGX,NOMGG $
38 CHKPNT KELM,KDICT,MELM,MDICT $
39 COND JMPKGG,NOKGGX $
40@EMA GPECT,KDICT,KELM/KGGX,GPST $
41 CHKPNT <GGX,GPST$
42 LABEL JMPKGG $
43 COND JMPMGG,NOMGG $
44 EMA GPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0$
45 CHKPNT MGG $
46 LABEL JMPMGG $
4.7 COND LBLI,GRDPNT $
48 COND ERROR2,NOMGG $
49GPWG BGPDT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT/C,Y,WTMASS$
50 OFP JGPWG.,F,// $
51 LABEL LBLI $
52 EQUIV KGGX,KGG/NOGENL $
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT 14
NASIRRANSOURCE PROGRRAMCOMPIL.AIION
OMAP-DMAP INSTRUCTION
NO.
53 CHKPNT KGG \$
54 COND LBLIIA,NOGENL\$
55 SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP \$
56 CHKPNT KGG \$
57 LABEL LBLIIA\$
5%8 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O\$
59 GP4 CASECG,GEUM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,YS,USET,ASET/V,N,
LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N,
NSKIP/V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$
60 SAVE MPCF1,MPCF2,SINGLE,OMIT,REACT,NSKIP,REPEAT,NOSET,NOL,NOA \$
61 COND ERRJR3,NOL \$
62 PARAY //C,N,NOT/V,N,REACDATA/V,N,REACT \$
63 COND ERRDR5,REACDATA \$
64 PURGE GM/MPCFL/GO,KOO,LOO,PO,UOOV,RUOV/OMIT/PS,KFS,KSS,QG/SINGLE \&
65 CHKPNT GM,GO,KOO,LOO,PG,UOOV,RUOV,PS,KFS,KSS,QG,USET,RG,YS,ASET \$
66 GPCYC GEJM4,EQEXIN,USET/CYCD/V,Y,CTYPE/V,N,NOGO\$
6 7 SAVE NOGO \$
6 8 CHKPNT CYCD \$
69 CONO ERROR4,NOGO \$
70 CONO LBL4,GENEL \$
71@PSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST \$
72 SAVE NOGPST \$
73 CONO LBL4,NOGPST \$
74 OFP OGPST,,,,,//\$
75 LABEL LBL4\$
76 EQUIV KGG,KNN/MPCF1 \$
77 CHKPNT KNN \$
78 COND LBL2,MPCF2 \$
79 MCE1 USET,RG/GM\$

```
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 14
 NASTRRANSOURCE PROGRAMCOMPILAATION
DMAP-DMAP INSTRUCTION
 NO.
 80 CHKPNT GM $
 81 MCE2 USET,GM,KGG,,,/KNN,,,$
 82 CHKPNT KNN $
 83 LABEL LBL2$
 84 EQUIV KNN,KFF/SINGLE &
 85 CHKPNT KFF $
 86 COND LBL3,SINGLE S
 87 SCELS USET,KNN,D,O/KFF,KFS.OKSS,O:$
 88 CHKPNT KFS,KSS,KFF$
 89 LABEL LBL3 $
 90 EQUIV KFF,KAA/OMIT$
 91 CHKPNT KAA &
 92 COND LBL5,OMIT$
 93SMP1 USET,KFF,,,/GO,KAA,KOO,LOO,.,., $
 94 CHKPNT GO,KAA,KOO,LOO$
 95 LABEL LBL5 $
 96 SSG1 SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MGG,CASECC,DIT/PG/V,N,
 LUSET/V,N,NSKIP$
 97 CHKPNT PG $
 98 EQUIV PG,PL/NOSET $
 9 9 ~ C H K P N T ~ P L ~ \$ ~
100 COND LBL9,NOSET $
101 SSG2 USET,GM,YS,KFS,GO,,PG/,PO,PS,PL $
102 CHKPNT PO,PS,PL $
103 COND LBL9,OMIT &
104SSS3 LOO,KOD,PO,,,/UOOV,,RUOV,/C,N,-1/V,Y,IRES=-1 $
105 CHKPNT UOOV,RUOV $.
106 COND LBL9,IRES $
107 MAIGPR GPL,USET,SIL,RUOV//C,N,O $
 3.15-4 (3/1/76)
```



```
RIGID FORMAT DMAP LISTING
 SERIESN
RIGID FORMAT }1
 NASTRRANSOURCE PROGGRAMCOMPILLATION
DMAP-OMAP IVSTRUCTION
 NO.
135 PARAM //C,N,SU8/V,N,DONE/V,Y,KMAX/V,N,KINDEX $
136 COND LBLI5,DONE $
137 REPT LBL11,100:
139 LABEL LBLI5\$
140 EQUIV UXV,ULV/CYCIO$
141 COND LBLIG,CYCIOS
142 CYCT1 UXV/ULV,GCYCB/V,Y,CTYPE/C,N,BACK/V,Y,NSEGS/V,Y,KMAX/V,Y,NLOAD/
143 SAVE NOGO $
144 COND ERRORG,NOGO $
145 LABEL LBLI6$
146 CHKPNT ULV $
147 SDR1 USET,PG,ULV,UOOV,YS,GO,GM,PS,KFS,KSS,/UGV,PGG,QG/V,N,NSKIP/C,N,
148 CHKPNT UGV,PGG,2G *
149 SDR2 CASECE,CSTM,MPT,DIT,EQEXIN,SIL,GPTT,EDT,BGPDT,,QG,UGV,EST,,PGG/
 OPG1,OQG1,OUGV1,OES1,OEF1,PUGVI/C,N,STATICS$
150 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O $
151 OFP UUGV1,OPGL,OQG1,OEF1,OESI,//V,N,CARDNO $
152 SAVE CARONO $
153 COND P2,JUMPPLOT $
154 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,PUGVI,,GPECT,OESI/
 PLOTX2/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE &
155 SAVE PFILE$
156 PRTMSG PLOTX2// $
157 LABEL P2 s
158 JUMP FINIS$
159 LABEL ERRORI $
160 PRTPARM //C,N,-1/C,N,CYCSTATICS $
```


## STATIC ANALYSIS USING CYCLIC SYMMETRY

```
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }1
 NASTRANSSUURCEPPROGRAMCOMPILATIION
OMAP-DMAP INSTRUCTION
NO.
161 LABEL ERROR2 $
162 PRTPARM //C,N,-2/C,N,CYCSTATICS$
163 LABEL ERROR3 s -
164 PRTPARM //C,N,-3/C,N,CYCSTATICS $
165 LABEL ERROR4 $
166 PRTPARM //C,N,-4/C,N,CYCSTATICS $
167 LABEL ERROR5 $
168 PRTPARM //C,N,-5/C,N,CYCSTATICS $
169 LABEL ERRUR6 $
170 PRTPARM //C,N,-6/C,N,CYCSTATICS.
171 LABEL FINIS$
172 END $
```


## RIGID FORMATS

3.15.2 Description of DMAP Operations for Static Analysis Using Cyclic Symmetry
5. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
8. GP2 generates Element Connection Table with internal indices.
12. Go to DMAP No. 22 if no plot package is present.
13. PLTSET transforms user input into a form used to drive structure plotter.
15. PRTMSG prints error messages associated with structure plotter.
18. Go to DMAP No. 22 if no undeformed structure plot request.
19. PLøT generates all requested undeformed structure plots.
21. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
24. GP3 generates Static Loads Table and Grid Point Temperature Table.
28. TAl generates element tables for use in matrix assembly and stress recovery.
31. Go to DMAP No. 165 and print error message if no elements have been defined.
34. Go to DMAP No. 51 if there are no structural elements.
36. EMG generates structural element matrix tables and dictionaries for later assembly.
39. Go to DMAP No. 42 if no stiffness matrix is to be assembled.
40. EMA assembles stiffness matrix $\cdot\left[K_{g g}^{x}\right]$ and Grid Point Singularity Table.
43. Go to DMAP No. 46 if no mass matrix is to be assembled.
44. EMA assembles mass matrix $\left[\mathrm{M}_{\mathrm{gg}}\right]$.
47. Go to DMAP No. 51 if no weight and balance request.
48. Go to DMAP No. 161 and print error message if no mass matrix exists.
49. GPWG generates weight and balance information.
50. ØFP formats weight and balance information and places it on the system output file for printing.
52. Equivalence $\left[K_{g g}^{x}\right]$ to $\left[K_{g g}\right.$ ] if no general elements.
54. Go to DMAP No. 57 if no general elements.
55. SMA3 adds general elements to $\left[K_{g g}^{X}\right]$ to obtain stiffness matrix $\left[K_{g g}\right]$.
59. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations $\left[R_{g}\right]\left\{u_{g}\right\}=0$ and forms enforced displacement vector $\left\{Y_{s}\right\}$.
61. Go to DMAP No. 163 and print error message if no independent degrees of freedom are defined.
63. Go to DMAP No. 167 and print error message if free-body supports are present.

66:- GPCYC prepares segment boundary table.
69. Go to DMAP No. 165 and print error message if CYJøIN data is inconsistent.
70. Go to DMAP No. 75 if general elements present.
71. GPSP determines if possible grid point singularities remain.
73. Go to DMAP No. 75 if no grid point singularities remain.
74. $\emptyset F P$ formats the table of possible grid point singularities and places it on the system output file for printing.
76. Equivalence $\left[K_{g g}\right.$ ] to $\left[K_{n n}\right.$ ] if no multipoint constraints.
78. Go to DMAP No. 83 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
79. MCEI partitions multipoint constraint equations $\left[R_{g}\right]=\left[\left.R_{m}\right|_{R_{n}}\right]$ and solves for multipoint constraint transformation matrix $\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]$.
81. MCE2 partitions stiffness matrix

$$
\left[K_{g g}\right]=\left[\begin{array}{lll}
\bar{K}_{n n} & K_{n m} \\
- & -- \\
K_{m n} & K_{m m}
\end{array}\right]
$$

and performs matrix reduction

$$
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right]
$$

84. Equivalence $\left[K_{n n}\right.$ ] to [ $K_{f f}$ ] if no single-point constraints.
85. Go to DMAP No. 89 if no single-point constraints.
86. SCET partitions out single-point constraints.

$$
\left[k_{n n}\right]=\left[\begin{array}{clc}
k_{f f} & 1 & k_{f s} \\
- & + & -- \\
k_{s f} & 1 & k_{s s}
\end{array}\right]
$$

90. Equivalence $\left[K_{f f}\right]$ to $\left[K_{a a}\right]$ if no omitted coordinates.
91. Go to DMAP No. 95 if no omitted coordinates.
92. SMP1 partitions constrained stiffness matrix

$$
\left[K_{f f}\right]=\left[\begin{array}{ccc}
\bar{K}_{a a} & 1 & K_{\bar{a} 0} \\
- & \frac{i}{1} & - \\
K_{o a} & 1 & K_{o o}
\end{array}\right]
$$

3.15-9 (3/1/76)

## RIGID FORMATS

solves for transformation matrix $\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]$
and performs matrix reduction $\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{0}\right]$.
96. SSGI generates static load vectors $\left\{P_{\mathrm{g}}\right\}$.
98. Equivalence $\left\{P_{g}\right\}$ to $\left\{P_{\ell}\right\}$ if no constraints applied.
101. SSG2 applies constraints to static load vectors

$$
\begin{aligned}
& \left\{P_{g}\right\}=\left\{\begin{array}{c}
\bar{P}_{n} \\
-P_{m} \\
P_{m}
\end{array}\right\}, \quad\left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{T}\right]\left\{P_{m}\right\}, \\
& \left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
\bar{P}_{s}
\end{array}\right\}, \quad\left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f s}\right]\left\{Y_{s}\right\}, \\
& \left\{P_{f}\right\}=\left\{\begin{array}{l}
\bar{P}_{a} \\
- \\
\bar{P}_{0}
\end{array}\right\}, \quad\left\{P_{a}\right\}=\left\{\bar{P}_{a}\right\}+\left[G_{0}^{T}\right]\left\{P_{0}\right\}, \\
& \left\{P_{a}\right\}=\left\{\begin{array}{l}
P_{\ell} \\
\frac{P_{r}}{r_{r}}
\end{array}\right\}
\end{aligned}
$$

and calculates determinate forces of reaction $\left\{q_{r}\right\}=-\left\{P_{r}\right\}-\left[D^{\top}\right]\left\{P_{\ell}\right\}$.
103. Go to DMAP No. 108 if no omitted coordinates.
104. SSG3 solves for displacements of omitted coordinates (these are not transformed)

$$
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{P_{0}\right\}
$$

and calculates residual vector (RU@V) and residual vector error ratio for omitted coordinates

$$
\begin{gathered}
\left\{\delta P_{0}\right\}=\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\}, \\
\varepsilon_{0}=\frac{\left\{u_{0}^{\top}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{\top}\right\}\left\{u_{0}^{0}\right\}}
\end{gathered}
$$

106. Go to DMAP No. 108 if residual vectors are not to be printed.
107. MATGPR prints the residual vector for omitted coordinates (RUØV).

## STATIC ANALYSIS USING CYCLIC SYMMETRY

109. Equivalence $\left\{P_{\ell}\right\}$ to $\left\{P_{X}\right\}$ if symmetric components of loads have been input.
110. Go to DMAP No. 113 if symmetric components of loads have been input.
111. CYCT1 transforms loads on analysis points to symmetric components.
112. Go to DMAP No. 169 and print error message if CYCT1 error was found.
113. Go to next DMAP instruction if cold start or modified restart. LBLll will be altered by the Executive System to the proper location inside the loop for unmodified restarts within the loop.
114. Beginning of loop for cyclic index values (KINDEX).
115. CYCT2 transforms matrices and loads from symmetric components to solution set.
116. Go to DMAP No. 169 and print error message if CYCT2 error was found.
117. RBMG2 decomposes constrained stiffness matrix for solution set.

$$
\left[k_{\mathrm{kk}}\right]=\left[\mathrm{L}_{\mathrm{kk}}\right]\left[u_{\mathrm{kk}}\right]
$$

125. SSG3 solves for displacements of solution set coordinates

$$
\left\{u_{k}\right\}=\left[K_{k k}\right]^{-1}\left\{P_{k}\right\},
$$

and calculates residual vector (RUKV) and residual vector error ratio for solution set coordinates

$$
\begin{aligned}
\left\{\delta P_{k}\right\} & =\left\{P_{k}\right\}-\left[K_{k k}\right]\left\{u_{k}\right\} \\
\varepsilon_{k} & =\frac{\left\{u_{k}^{\top}\right\}\left\{\delta P_{k}\right\}}{\left\{P_{k}^{\top}\right\}\left\{u_{k}\right\}}
\end{aligned}
$$

127. CYCT2 finds symmetric components of displacement from solution set data, and appends to output for each KINDEX.
128. Go to DMAP No. 169 and print error message if CYCT2 error was found.
129. Gó to DMAP No. 133 if residual vectors are not to be printed.
130. MATGPR prints the residual vector for solution set coordinates (RUXV).
131. Go to DMAP No. 139 if all cyclic index (KINDEX) values are complete.
132. Go to DMAP No. 118 if additional index values are needed.
133. Go to DMAP No. 159 and print error message if number of loops exceeds 100.
134. Equivalence $\left\{u_{x}\right\}$ to $\left\{u_{\ell}\right\}$ if output of symmetric components was requested.
135. Go to DMAP No. 145 if output of symmetric components was requested.
136. CYCT1 transforms displacements from symmetrical components to physical components.
137. Go to DMAP No. 169 and print error message if CYCT1 error was found.
138. SDRI recovers dependent displacements

$$
\begin{gathered}
\left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{a}\right\}+\left\{u_{0}^{0}\right\} \\
\left\{\begin{array}{c}
u_{a} \\
- \\
u_{0}
\end{array}\right\}=\left\{u_{f}\right\},\left\{\begin{array}{c}
u_{f} \\
-- \\
\gamma_{s}
\end{array}\right\}=\left\{u_{n}\right\}, \\
\left\{u_{m}\right\}=\left[G_{m}\right]\left\{u_{n}\right\},\left\{\begin{array}{c}
u_{n} \\
--\} \\
u_{m}
\end{array}\right\}=\left\{u_{g}\right\},
\end{gathered}
$$

and recovers single-point forces of constraint

$$
\left\{q_{s}\right\}=-\left\{p_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
$$

149. SDR2 calculates element forces and stresses ( $\emptyset E F 1$, $\emptyset E S 1$ ) and prepares load vectors, displacement vectors and single-point forces of constraint for output ( $\varnothing$ PG1, ØUGVI, PUGVI, DQG1).
150. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
151. Go to DMAP No. 157 if no deformed structure plots are requested.
152. PLØT generates all requested deformed structure plots.
153. PRTMSG prints plotter data and engineering data for each deformed plot generated.
154. Go to DMAP No. 171 and make normal exit.
155. STATICS WITH CYCLIC SYMMETRY ERRQR MESSAGE NØ. 1. ATTEMPT TØ EXECUTE MØRE THAN 100 LØØPS.
156. STATICS WITH CYCLIC SYMMETRY ERRØR MESSAGE NØ. 2 - MASS MATRIX REQUIRED FOR WEIGHT AND BALANCE CALCULATIØNS.
157. STATICS WITH CYCLIC SYMMETRY ERR $\emptyset R$ MESSAGE N $\emptyset$. 3 - N $\emptyset$ INDEPENDENT DEGREES $\emptyset F$ FREEDOM HAVE BEEN DEFINED.
158. STATICS WITH CYCLIC SYMMETRY ERRØR MESSAGE N $\emptyset .4$ - N $\emptyset$ ELEMENTS HAVE BEEN DEFINED.
159. STATICS WITH CYCLIC SYMMETRY ERRØR MESSAGE NØ. 6 - FREE-B $\emptyset D Y$ SUPP@RTS NØT ALL $\emptyset W E D$.
160. STATICS WITH CYCLIC SYMMETRY ERR@R MESSAGE N@. 7 - CYCLIC SYMMETRY DATA ERR@R.

### 3.15.3 Case Control Deck and Parameters for Static Analysis Using Cyclic Symmetry

The following items relate to subcase definition and data selection:

1. A separate group of subcases must be defined for each symmetric segment. For dihedral symmetry, a separate group of subcases are defined for each half.
2. The different loading conditions are defined within each group of subcases. The loads on each symmetric segment and the selected output requests may be independent. The number of loading cases is specified on the PARAM card NLゆAD.
3. The SPC and MPC request must appear above the subcase level and may not be changed.
4. An alternate loading method is to define a separate group of subcases for each harmonic index, $k$. The parameter CYCID is included and the load components for each index are defined directly within each group for the various loading conditions.

The following printed output, for each loading, condition and each symmetric segment or index, may be requested for Static Analysis solutions:

1. Displacements and components of static loads and single-point forces of constraint at selected grid points or scalar points.
2. Forces and stresses in selected elements.

The following plotter output may be requested for Static Analysis solutions:

1. Undeformed and deformed plots of the structural model (1 segment).
2. X-Y plot of any component of displacement, static load, or single-point force of constraint for a grid point or scalar point.
3. X-Y plot of any stress.or force component for an element.

The following parameters are used in Static Analysis using Cyclic Symmetry:

1. GRDPNT - optional - a positive inteqer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed.
2. WTMASS - optional - the terms of the mass matrix are multiplied by the real value of this parameter when they are generated in EMG.
3. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
4. CØUPMASS - CPBAR, CPRØD, CPQUAD1, CPOUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPODPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the qeneration of coupled mass matrices, rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
5. CTYPE - required - the BCD value of this parameter defines the type of cyclic symmetry as follows:
(1) $R \emptyset T$ - rotational symmetry
(2) DRL - dihedral symmetry, using right and left halves
(3) DSA - dihedral symmetry, using symmetric and antisymmetric components
6. NSEGS - required - the integer value of this parameter is the number of identical segments in the structural model.
7. $N L \emptyset A D$ - optional - the integer value of this parameter is the number of static loading conditions. The default value is 1 .
8. CYCID - optional - the integer value of this parameter specifies the form of the input and output data. A value of +1 is used to specify physical segment representation, and a value of -1 for cyclic transform representation. The default value is +1 .
9. CYCSEQ - optional - the integer value of this parameter specifies the procedure for sequencing the equations in the solution set. A value of +1 specifies that all cosine terms should be sequenced before all sine terms, and a value of -1 for alternating the cosine and sine terms. The default value is -1 .
10. KMAX - optional - the integer value of this parameter specifies the maximum value of the harmonic index. The default value is ALL which is NSEGS/2 for NSEGS even and (NSEGS-1)/2 for NSEGS odd.

## NORMAL MODES ANALYSIS USING CYCLIC SYMMETRY

3.16 NORMAL MODES ANALYSIS USING CYCLIC SYMMETRY
3.16.1 DMAP Sequence for Normal Modes Analysis Using Cyclic Symmetry

```
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }1
 NASTRRANSOURGEPROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
 NO.
```

1 BEGIN	NU. 15 NORMAL NODES ANALYSIS WITH CYCLIC SYMMETRY SERIES
2 GP1	GEOM1,GEOM2,/GPL,EQEXIN,GPDT, CSTM, BGPDT, SIL/V,N,LUSET/

SAVE LUSET \$
CHKPNT GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL \$
GP2 GEOM2,EQEXIN/ECT \$
CHKPNT ECT \$
PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
8 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NUPCD8 \$
9 COND PI,NOPCDB $\$$
10 PLISET PCDB,EQEXIN,ECT/PLJSETX,PLTPAR,GPSETS,ELSETS/V,N,NSILI V,N,
JUMPPLUT=-1 \$
11 SAVE NSIL,JUMPPLOT \$
12 PRTMSG PLTSETX// \$
13 PARAM //C,N,MPY/V,N,PLIFLG/C,N,L/C,N,I \$
14 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
15 CUND PI,JUMPPLUT \$
16 PLOT
PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,.,,/PLOTXI/ V,N,
NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
17 SAVE JUMPPLOT,PLTFLG,PFILE \$
18 PRTMSG PLUTX1//\$
19 LABEL P1 \$
20 CHKPNT PLTPAR,GPSETS,ELSETS \$
21 GP3 GEUM3,EQEXIN,GEOM2/,GPTT/V,N,NOGRAV \$
22 CHKPNT GPTT \$
23 TAL
ECT, EPT, BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N,
NOSIMP/C,N,I/V,N,NOGENL/V,N,GENEL \$
24 SAVE NUGENL, NUS IMP,GENEL \$
25 GOND ERRORG,NOSIMP \$

```
 RIGID FORMAT DMAP LISTING
 SERIES N
 RIGID FORMAT }1
 NASTRRANSOURCE PROGGRAMSCOMPILLATION
DMAP-DMAP INSTRUCTION
 NO.
 26 PURGE OGPST/GENEL $
 27 CHKPNT EST,GPECT,GEI,OGPST$
 28 PARAM //C,N,ADD/V,N,NGKGGX/C,N,I/C,N:O $
 29 PARAM //C,N,ADD/V,N,NOMGG/C,N,1/C,N,O $
 30 EMGG EST,CSTM,MPT,DIT,GEOM2,/KELM,KDICT,MELM,MDICT,,/N,N;NUKGGX/ V,
 N,NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROU/ C,Y,
 CPQUADI/C,Y,CPQUAO2/C,Y,CPIRIAL/C,Y,CPTRIAL/C,Y,CPTUBE/C,Y,
 CPQDPLT/C,Y,CPTRPLT/C,Y,CPTKBSC $
 31 SAVE NOKGGX,NOMGG $
 32 CHKPNT KELM,KDICT,MELM,MDICT $
 33 CONO JMPKGG,NOKGGX $
 34 EMA GPECT,KDICT,KELM/KGGX,GPSTS
 35 CHKPNT KGGX,GPST $
 36 LADEL JMPKGG $.
 37 COND ERRORI,NOMGG $
 38 EMA GPECT,MDICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0 $
 39 CHKPNT MGG $
 40 COND LGPWG;GRDPNT $
 41 GPWGG BGPOT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT=-1/G,Y,WIMASS $
 42 OFP OGPWG,,',.// $
 4 3 ~ L A B E L ~ L G P W G \$
 44 EQUIV KGGX,KGG/NUGENE $
 45 CHKPNT KUGG $
 46 COND LBLI1,NOGENL $
 47SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP $
 48 CHKPNT KGG $
49 LABEL LBL|1$
50 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O $
51@GP4 CASECC,GEUM4,EQEXIN,SIL,GPDI,BGPDT,CSTM/RG,,USET,ASET/ V,N,
 LUSET/V,N,MPCF1/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/V,N,
 NSKIP/V,N,KEPEAT/V,N,NOSET/V,N,NOL/V,N,NUA/C,Y,SUBID $

\section*{NORMAL MODES ANALYSIS USING CYCLIC SYMMETRY}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }1
                            NASTKKAN SOURCGEPROGRAMGOMPMLLATIVON
    OMAP-DMAP INSTRUCTIUN
NO.
52 SAVE MPCFI,MPCFZ,SINGLE,OMIT,REAGT,NSKIP,REPEAT,NOSET,NOL,NUA \$
53 COND ERROR3,NOL \$
54 PARAM //C,N,NOT/V,N,PEEACDATA/V,N,REACT \$
55 COND ERROR4,REACOATA \$
56 PURGE GM/MPCFI/GO/OMIT/KFS,QG/SINGLE \$
57 CHKPNI GM,RG,GO,KFS,QG,USET,ASET \$
53 GPCYC GEOM4,EQEXIN,USET/CYCD/V,Y,CTYPENV,N,NOGO \$
59 SAVE NUGO \$
60 CHKPNT CYCD \$
61 CONO ERROR5,NOGO \$
O2 COND LBL4,GENEL \$
63 GPSPP GPL,GPST,USET,SIL/OGPST/N,N,NOGPST \$
6 4 ~ S A V E ~ N U G P S T ~ \$ ~
65 CONO LBL4,NOGPST \$
66 OFP UGPST,I,,,//\$
67 LABEL LBL4\$
58 EQUIV KGG,KNN/MPCFI/MGG,MNN/MPCFI \$
69 CHKPNT KNNN,MNN \$
70 COND LBL2,MPCF2 S
11 MCE1 USET,RG/GM \$
72 CHKPNT GM \$
73 MCE2 USET,GM,KGG,MGG,,/KNN,MNN,. \$
74 CHKPNT KNN,MNN \$
75 LABEL LBL2 \$
76 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE \$
77 CHKPNT KFF,MFF \$
78 CONO LBL3,SINGLE \$
79 SCE1
USET,KNN,MNN,,/KFF,KFS,,MFF,,\$

```
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }1
 NASTRRANSOUURCE PROGRAMMCOMPPILATIION
DMAP-DMAP INSIRUCTION
 NU.
 80 CHKPNT KFS,KFF,MFF$
 81 LABEL LBL3$
 82 EQUIV KFF,KAA/OMII $
 83 EQUIV MFF,MAAIOMIT $
 84 CHKPNT KAA,MAA $
 85 COND LBL5,OMIT $
 BÓSMP1 USET,KFFF,,IGO,KAN,KUO,LOO,.,.,$
 87 CHKPNT GO,KAA $
 88 SMP2 USET,GO,MFF/MAA $
 89 CHKPNT MAA $
 90 LABEL LBL5 $
 91 OPO DYNAMICS,GPL,SIL,USET/GPLD,SILU,USETD,.,.,.,EED,EQDYN/V,N.
 LUSET/V,N,LUSETD/V,N,NUTFL/V,N,NUDLT/V,N,NUPSDL/V,N,NUFRL/ V,
 N,NONLFT/V,N,NUTRL/V,N,NOEED/C,N,/V,N,NOUE $
 92 SAVE NUEED $
 93 CONO ERRURZ,NUEED $
 94 CHKPNT EED $
 CSYCT2 CYCD,KAA,HAA,,,/KKK,MKK,,,/C,N,FORE/V,Y,NSEGS=-1/V,Y,KINDEX=-1/
 V,Y,CYCSEQ =-1/C,N,1/V,N,NOGO $
 96 SAVE NOGO $
 97 CHKPNT KKK,MKK $
 98 CONO ERRUR5,NUGO $
 99 REAO KKK,MKK,,,EED,,CASECG/LAMK,PHIK,MI,OEIGS/C,N,MOUES/V,N,NEIGV $
100 SAVE NEIGV $
101 CHKPNT LAMK,PHIK,MI,UEIGS $
102 PAKAM //C,N,MPY/V,N,CARDNU/C,N,U/C,N,O $
103 OFP LAMK,OEIGS,,,,//V,N,CARDNO $
104 SAVE CARDNO $
105 COND FINIS,NEIGV S
106 CYCTLS CYCD,,,,PHIK,LAMK/,,,PHIA,LAMA/C,N,BACK/V,Y,NSEGS/V,Y,KINDEX/

\section*{NORMAL MODES ANALYSIS USING CYCLIC SYMMETRY}

\section*{REGID FORMAT DMAP LISTING}

\section*{RIGID FORMAT 15}
 DMAP-DMAP INSTRUCTION
NO.
\(V, Y, C Y C S E Q / C, N, 1 / V, N, N O G O \$\)
107 SAVE NUGO \$
108 CHKPNT PHIA,LAMA \$
109 COND ERRORS,NUGO \(\$\)
110 SORI USET,,PHIA,:GO,GM, FKFS,,/PHIG, QG/C,N,I/C,N,REIG \(\$\)
111 CHKPNT PHIG,QG \$
112 PARAM //C,N,SUB/V,N,SCALAR/V,N,SIL/V,N,LUSET \(\$\)
113 EQUIV SIL:SIP/SCALAR/BGPDT,BGPDP/SCALAR \$
114 CHKPNT SIP,BGPDP \$
II5 GOND LBLT,SCALAR \(\$\)
116 PLTTRAN BGPOT,SIL/BGPDP,SIP/V,N,LUSET/V,N,LUSEP \(\$\)
117 SAVE LUSEP \$
118 CHKPNT BGPDP,SIP \$
119 LABEL LBLT\$
120 SDR2 CASECC,CSTM,MPT, DIT, EQEXIN,SIL,;BGPDP,LAMA, QG,PHIG,EST, \(/\), OUGI, UPHIG, DESI, OEFI, PPHIG/C, N,REIG \$

121 UFP OPHIG,OQGI,OEFI,OESI, ///V,N,CARDNU \$
122 SAVE CAKDNO \$
- 123 COND P2.JUMPPLOT \(\$\)

124 PLOT PLTPAR,GPSETS,ELSETS,CASECC, BGPDT,EQEXIN,SIP,,PPHIG,GPECT,OESI/ PLOTX2/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$

125 SAVE PFILE \(\$\)
126 PRTMSG PLOTX2//\$
127 LABEL P2 \$
128 JUMP FINIS \$
129 LABEL ERRORL \$
130 PRTPARM //C,N,-1/C,N,CYCMODES \(\$\)
131 LABEL ERROR2 \$
132 PRTPARM //C,N,-2/C,N,CYCMODES \$

\section*{RIGID FORMATS}
```

RIGID FORMAT DMAP LISTING
RIGID FORMAT }1
NASTRANNSOJRCE PROGRAMCOMPILLATION
DMAP-DMAP INSIRUCTION
NO.
133 LABEL ERROR3 \$
134 PRTPARM //C,N,-3/C,N,CYCMODES \$
135 LABEL ERROR4 \$
136 PRTPARM //C,N,-4/C,N,CYCMODES \$
137 LABEL ERROR5 \$
138 PRTPARM //C,N,-5/C,N,CYCMODES \$
139 LABEL ERROR6 \$
140 PRTPARM //C,N,-6/C,N,CYCMODES \$
141 LABEL FINIS \$
142 END \$

```
3.16.2 Description of DMAP Operations for Normal Modes Analysis Using Cyclic Symmetry
2. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
5. GP2 generates Element Connection Table with internal indices.
9. Go to DMAP No. 19 if no plot package is present.
10. PLTSET transforms user input into a form used to drive structure plotter.
12. PRTMSG prints error messages associated with structure plotter.
15. Go to DMAP No. 19 if no undeformed structure plot request.
16. PLøT generates all requested undeformed structure plots.
18. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
21. GP3 generates Static Loads Table and Grid Point Temperature Table.
23. TAI generates element tables for use in matrix assembly and stress recovery.
25. Go to DMAP No. 139 and print error message if no elements have been defined.
30. EMG generates structural element matrix tables and dictionaries for later assembly.
33. Go to DMAP No. 36 if no stiffness matrix is to be assembled.
34. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{x}}\right]\) and Grid Point Singularity Table.
37. Go to DMAP No. 129 and print error message if no mass matrix exists.
38. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
40. Go to DMAP No. 43 if no weight and balance request.
41. GPWG generates weight and balance information.
42. ØFP formats weight and balance information and places it on the system output file for printing.
44. Equivalence \(\left[K_{g g}^{X}\right]\) to \(\left[K_{g g}\right]\) if no general elements.
46. Go to DMAP No. 49 if no general elements.
47. SMA3 adds general elements to \(\left[K_{g g}^{X}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
51. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\) and forms enforced displacement vector \(\left\{Y_{s}\right\}\).
53. Go to DMAP No. 133 and print error message if no independent degrees of freedom are defined.
55. Go to DMAP No. 135 and print error message if free-body supports are present.
58. GPCYC prepares segment boundary table.
61. Go to DMAP No. 137 and print error message if CYJøIN data is inconsistent.
62. Go to DMAP No. 67 if general elements present.
63. GPSP determines if possible grid point singularities remain.
65. Go to DMAP No. 67 if no grid point singularities remain.
66. ØFP formats the table of possible grid point singularities and places it on the system output file for printing.
68. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) and \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right]\) if no multipoint constraints.
70. Go to DMAP No. 75 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
71.. MCEl partitions multipoint constraint equations \(\left[R_{g}\right]=\left[\left.R_{m}\right|_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
73. MCE2 partitions stiffness matrix
\[
\left[k_{g g}\right]=\left[\begin{array}{lll}
\bar{K}_{n n} & k_{n m} \\
-- & - & - \\
K_{m n} & k_{m m}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\dagger}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right]
\]
76. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right]\) and \(\left[M_{n n}\right]\) to \(\left[M_{f f}\right.\)] if no single-point constraints.
78. Go to DMAP No. 81 if no single-point constraints.
79. SCEI partitions out single-point constraints
\[
\left[K_{n n}\right]=\left[\begin{array}{c:c}
K_{f f} & K_{f s} \\
- & - \\
K_{s f} & K_{s s}
\end{array}\right] \quad\left[M_{n n}\right]=\left[\begin{array}{l:l}
M_{f f} & M_{f s} \\
- & - \\
M_{s f} & - \\
M_{s s}
\end{array}\right]
\]
82. Equivalence \(\left[K_{f f}\right]\) to \(\left[K_{a a}\right]\) if no omitted coordinates.
83. Equivalence \(\left[M_{f f}\right.\)] to [\(M_{a a}\)] if no omitted coordinates.
85. Go to DMAP No. 90 if no omitted coordinates.
86. SMP1 partitions constrained stiffness matrix
\[
\left[K_{f f}\right]=\left[\begin{array}{ccc}
k_{\mathrm{aa}} & : & K_{a 0} \\
-- & -- \\
K_{\mathrm{oa}} & 1 & K_{o o}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a \mathrm{a}}\right]+\left[K_{o a}^{\top}\right]\left[G_{o}\right]\).
88. SMP2 partitions constrained mass matrix
\[
\left[M_{f f}\right]=\left[\begin{array}{c:c}
\bar{M}_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hdashline & - \\
M_{\mathrm{oa}} & M_{o 0}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{0}\right]+\left[G_{0}^{\top}\right]\left[M_{o a}\right]+\left[G_{0}^{\top}\right]\left[M_{o o}\right]\left[G_{0}\right] .
\]
91. DPD extracts Eigenvalue Extraction Data from Dynamics data block.
93. Go to DMAP No. 131 and print error message if no Eigenvalue Extraction Data.
95. CYCT2 transforms matrices from symmetric components to solution set.
98. Go to DMAP No. 137 and print error message if CYCT2 error was found.
99. READ extracts real eigenvalues from the equation
\[
\left[k_{k k}-\lambda M_{k k}\right]\left\{u_{k}\right\}=0,
\]
calculates modal mass matrix
\[
[m]=\left[\phi_{k}^{\top}\right]\left[M_{k k}\right]\left[\phi_{k}\right]
\]
and normalizes eigenvectors according to one of the following user requests:
1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass.
103. ØFP formats eigenvalues and summary of eigenvalue extraction information and places them on the system output file for printing.
105. Go to DMAP No. 141 : and exit if no eigenvalues found.
106. СҮCT2 finds symmetric components of eigenvectors from solution set eigenvectors.
109. Go to DMAP No. 137 and print error message if CYCT2 error was found.
110. SDR1 recovers dependent components of the eigenvectors
\[
\begin{aligned}
& \left\{\phi_{0}\right\}=\left[G_{0}\right]\left\{\phi_{a}\right\},\left(\begin{array}{c}
\phi_{a} \\
-- \\
\phi_{0}
\end{array}\right)=\left\{\phi_{f}\right\}, \\
& \left(\begin{array}{c}
\phi_{f} \\
-- \\
\phi_{s}
\end{array}\right\}=\left\{\phi_{\mathrm{n}}\right\}, \quad\left\{\phi_{\mathrm{m}}\right\}=\left[G_{m}\right]\left\{\phi_{\mathrm{n}}\right\}, \\
& \left(\begin{array}{l}
\phi_{\mathrm{n}} \\
-- \\
\phi_{\mathrm{m}}
\end{array}\right\}=\left\{\phi_{\mathrm{g}}\right\} .
\end{aligned}
\]
and recovers single-point forces of constraint \(\left\{q_{s}\right\}=\left[K_{f s}\right]^{\top}\left\{\phi_{f}\right\}\).
113. Equivalence SIL to SIP and BGPDT to BGPDP when one or more geometric grid points exist.
116. PLTTRAN modifies BGPDT and SIL for functional modules SDR2 and PL \(\emptyset T\).
120. SDR2 calculates element forces and stresses (\(\varnothing E F 1, \emptyset E S 1\)) and prepares eigenvectors and single-point forces of constraint for output (@PHIG, PPHIG, ØQG1).
121. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
123. Go to DMAP No. 127 if no deformed structure plots are requested.
124. PLøT generates all requested deformed structure plots.
126. PRTMSG prints plotter data and engineering data for each deformed plot generated.
128. Go to DMAP No. 141 and make normal exit.
130. NØRMAL M@DES WITH CYCLIC SYMMETRY ERRQR MESSAGE NØ. 1 - MASS MATRIX REQUIRED FØR REAL EIGENVALUE ANALYSIS.
132. NØRMAL MØDES WITH CYCLIC SYMMETRY ERR@R MESSAGE NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
134. NØRMAL MØDES WITH CYCLIC SYMMETRY ERR@R MESSAGE N \(\emptyset\). 3 - N \(\emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREED \(\emptyset M\) HAVE BEEN DEFINED.
136. NØRMAL MØDES WITH CYCLIC SYMMETRY ERRØR MESSAGE NØ. 4 - FREE BØDY SUPPØRTS NØT ALLØWED.
138. NØRMAL M@DES WITH CYCLIC SYMMETRY ERRØR MESSAGE NØ. 5 - CYCLIC SYMMETRY DATA ERR@R.
140. NØRMAL MØDES WITH CYCLIC SYMMETRY ERR \(\emptyset\) MESSAGE NØ. 6 - \(N \emptyset\) STRUCTURAL ELEMENTS DEFINED.

\subsection*{3.16.3 Automatic Output for Normal Mode Analysis Using Cyclic Symmetry}

Each eigenvalue is identified with a mode number determined by sorting the eigenvalues by their magnitude. The following summary of the eigenvalues extracted is automatically printed:
1. Mode Number
2. Extraction Order
3. Eigenvalue
4. Radian Frequency
5. Cyclic Frequency
6. Generalized Mass
7. Generalized Stiffness

The following summary of the eigenvalue analysis performed, using the Inverse Power method, is automatically printed:
1. Number of eigenvalues extracted.
2. Number of starting points used.
3. Number of starting point moves.
4. Number of triangular decompositions.
5. Number of vector iterations.
6. Reason for termination.
(1) Two consecutive singularities encountered while performing triangular decomposition.
(2) Four shift points while tracking a single root.
(3) All eigenvalues found in the frequency range specified.
(4) Three times the number of roots estimated in the frequency range have been extracted.
(5) All eigenvalues that exist in the problem have been found.
(6) The number of roots desired have been found.
(7) One or more eigenvalues have been found outside the frequency range specified.
(8) Insufficient time to find another root.
(9) Unable to converge.
7. Largest off-diagonal modal mass term and the number failing the criteria.

The following summary of the eigenvalue analysis performed, using the Determinant method, is automatically printed:
1. Number of eigenvalues extracted.
2. Number of passes through starting points.
3. Number of criteria changes.
4. Number of starting point moves.
5. Number of triangular decompositions.
6. Number of failures to iterate to a root.
7. Reason for termination.
(1) The number of roots desired have been found.
(2) All predictions for eigenvalues are outside the frequency range specified.
(3) Insufficient time to find another root.
(4) Matrix is singular at first three starting points.
8. Largest off-diagonal modal mass term and the number failing the criterion.
9. Swept determinant function for each starting point.

The following summary of the eigenvalue analysis performed using the Givens method, is automatically printed:
1. Number of eigenvalues extracted.
2. Number of eigenvectors computed.
3. Number of eigenvalue convergence failures.
4. Number of eigenvector convergence failures.
5. Reason for termination.
(1) Normal termination.
(2) Insufficient time to calculate eigenvalues and number of eigenvectors requested.
(3) Insufficient time to find additional eigenvectors.
6. Largest off-diagonal modal mass term and the number failing the criterion.

\subsection*{3.16.4 Case Control Deck and Parameters for Normal Modes Analysis Using Cyclic Symmetry}

The following items relate to subcase definition and data selection for Normal Modes:
1. METHØD must be used to select an EIGR card that exists in the Bulk Data Deck.
2. An SPC set must be selected unless the model is a free body or all constraints are specified on GRID cards, Scalar Connection cards or with General Elements.
3. Multiple subcases are used only to control output requests. A single subcase is sufficient if the same output is desired for all modes. If multiple subcases are present, the output requests will be honored in succession for increasing mode numbers. MODES may be used to repeat subcases in order to make the same output request for several consecutive modes.

Each NASTRAN run calculates modes for only one symmetry index, \(k\). The following output may be requested for Normal Mode Analysis with Cyclic Symmetry:
1. Eigenvectors along with the associated eigenvalue for each mode.
2. Nonzero components of the single-point forces of constraint for selected modes at selected grid points.
3. Forces and stresses in selected elements for selected modes.
4. Undeformed plot of the structural model and mode shapes for selected modes.

The following parameters are used in Normal Mode Analysis using Cyclic Symmetry:
1. GRDPNT - optional - a positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - the terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in SMA2. Not recommended for use in hydroelastic problems.
3. CQUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQDPLT, CPTRPLT, CPTRBSC - optional - these parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
4. CTYPE - required - the BCD value of this parameter defines the type of cyclic symmetry as follows:
(1) RDT - rotational symmetry
(2) DRL - dihedral symmetry, using right and left halves
(3) DSA - dihedral symmetry, using symmetric and antisymmetric components

\section*{RIGID FORMATS}
5. NSEGS - required - the integer value of this parameter is the number of identical segments in the structural model.
6. CYCSEQ - optional - the integer value of this parameter specifies the procedure for sequencing the equations in the solution set. A value of +1 specifies that all cosine terms should be sequenced before all sine terms, and a value of -1 for alternating the cosine and sine terms. The default value is -1 .
7. KINDEX - required in normal modes with cyclic symmetry (Rigid Format 15). The integer value of this parameter specifies a single value of the harmonic index.

\section*{STATIC HEAT TRANSFER ANALYSIS}
3.17

STATIC HEAT TRANSFER ANALYSIS
3.17.1 DMAP Sequence for Static Heat Transfer Analysis

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 01 HEAT
 DMAP-DMAP INSIRUCTIUN
NU.
\begin{tabular}{lll}
20́ SAVE & NGSIMP \$ \\
27 & CUND & ERROR4,NUSIMP \\
28 & PURGE & GPST/NOSIMP \$
\end{tabular}

29 CHKPNT HEST,HGPECT,GPST \$
30 COND HLBLLIVUSIMP \(\$\)
31 PARAM //C,N,ADD/V,N,HNOKGG/C,N,I/C,N,O \$
32 EMG HEST,CSTM,MPT,DIT,GEOM2,/HKELM,HKOICT,,,,/V,N,HNOKGG \(\$\)
33 SAVE HNOKGG \$
34 CHKPNT HKELM,HKDICT \$
35 COND HLBL1,HNUKGG \$
36 EMA HGPECT,HKDICT,HKELM/HKGG,GPST \$
37 CHKPNT HKGG,GPST \$
38 LABEL HLBLI\$
39 PARAM //C,N,MPY/V,N,NSKIP/C,N,O/C,N,O \$
40 JUMP HLBLII TOP DMAP Loop
41 LABEL HLBLII*
42 GP4 CASECC, GEOM4,HEQEXIN,HSIL,GPDT, BGPDT,GSTM/RG,YS,HUSET,HASET/V, N,HLUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/ V,N,NSKIP/V,N,HREPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$

43 SAVE MPCFI,MPCFZ,SINGLE,OMIT,REACT,NSKIP,HREPEAT,NUSET,NEL,NOA \$
44 COND ERROR3,NOL \$
45 PARAM //C,N,AND/V,N,NOSR/V,N,SINGLE/V,N,REACT \$
46 PURGE HKRR,HKLR,HQR,HOM/REACT/GM/MPCFI/HGO,HKOO,HLOO,HPO,HUOUV, HRUQV/OMIT/HPS,HKFS,HKSS/SINGLE/HQG/NOSR \$

47 CHKPNT HKRR,HKLR,HQR,HDM,GM,HGO,HKOO,HLOO,HPO,HUUOV,HRUOV,HPS,HKFS,. HKSS,HQG,HUSET,RG,YS,HASET \$

48 GPSP GPL,GPST,HUSET,HSIL/OGPSTIV,N,NOGPST \$
49 SaVE NUGPST \$
50 COND HLBL4,NOGPST \$
51 OFP OGPST.,.,.// \$
```

RIGID FORMAT DMAP LISTING
RIGIO FORMAT OI HEAT
NASTRRANSOURGE PROGGRAMGOMPILLATIEN
DMAP-DMAP INSTRUCTION
NO.
52 LABEL HLBL4 \$
53 EQUIV HKGG,HKNN/MPCFI\$
54 CHKPNT HKNN \$
55 COND HLBLZ,MPCF2\$
56 MCE1 HUSET.RG/GM\$
57 CHKPNT GM \$
58MCE2 HUSET,GM,HKGG,,,/HKNN,,,\$
59 CHKPNT HKNN \$
60 LABEL HLBL2\$
61 EQUIV HKNN,HKFF/SINGLE \$
62 CHKPNT HKFF \$
63 COND HLBL3,SINGLE \$
64 SCE1 HUSET,HKNN,,,/HKFF,HKFS,HKSS,,,\$
65 CHKPNT HKFS,HKSS,HKFF \$
66 LABEL HLBL3\$
67 EQUIV HKFF,HKAA/OMIT \$
68 CHKPNT HKAA \$
69 COND HLBLS.OMIT \$
70 SMPL HUSET,HKFF,,,/HGO,HKAA,HKUO,HLOO,,,.,\$
71 CHKPNT HGO,HKAA,HKOO,HLOO \$
72 LaBEL HLbL5 \$
73 EQUIV HKAA,HKLL/REACT\$
74 CHKPNT HKLL \$
75 COND HLBLG,REACT \$
76 RBMG1 HUSET,HKAA,/HKLL,HKLR,HKRR,,:\$
77 CHKPNT HKLL,HKLR,HKRR S
7% LABEL HLBBL6\$
79 RBMG2 HKLL/HLLL \$

```
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT OI HEAT
        NAST RANSOURCE PROGGRAMECOMPILLATIEN
    DMAP-DMAP INSIRUCTION
NO.
80 CHKPNT HLLL
8i COND HLBLT,REACT \$
82 RBM63 HLLL,HKLR,HKRR/HDM\$
83 CHKPNT HDM \$
84 LABEL HLBL7\$
85 SSCI HSLT,BGPDT,CSIM,HSIL,HEST,MPT,GPTT,EDT,,CASECG,OIT/HPG/V,N.
HLUSET/V,N,NSKIP \$
86 CHKPNT HPG \$
87 EQUIV HPG,HPL/NUSET \$
88 CHKPNT HPL \$
89 COND HLBLIO,NOSET \$
90 SSG2 HUSET,GM,YS,HKFS,HGU,HDM,HPG/HQR,HPO,HPS,HPL \$
91 CHKPNT HQR,HPO,HPS,HPL \$
92 LABEL HLBLIO \$
93SSG3 HLLL,HKLL,HPL,HLOD,HKOO,HPG/HULV,HUOOV,HRULV,HRUOV/V,N,UMIT/
V,Y,IRES=-1/V,N,NSKIP/V,N,EPSI \$
Y4 SAVE EPSI \$
95 CHKPNT HULV,HUOUV,HRULV,HRUOV \$
96 COND HLBL9,IRES \$
97 MATGPR GPL,HUSET,HSIL,HRULV//C,N,L \$
98 MATGPR GPL.HUSET,HSIL,HRUOV//C,N,U \$
99 LABEL HLBL9 \$
100 SDRI HUSET,HPG,HULV,HUOUV,YS,HGO,GM,HPS,HKFS,HKSS,HQR/HUGV,HPGG,HQG/
V,N,NSKIP/C.N.HSTATICS \$
101 CHKPNT HUGV,HPGG,HQG \$
102 COND HLBLB,HREPEAT \$
103 REPT HLBL11,100\$ B
105 PARAM //C,N,NOT/V,N,HTEST/V,N,HREPEAT \$
106 COND ERRURS,HTEST \$

```

\section*{STATIC HEAT TRANSFER ANALYSIS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT OI HEAT
NASTRANSSOURCE PROGRAMSOMPILATIUN
DMAP-DMAP INSTRUCTION
NO.
107 LABEL HLBL8 \$
108 CHKPNT CSTM\$
109 SOR2 CASECC,CSTM,MPT,DIT,HEQEXIN,HSIL,GPTT,EDT, BGPOT,,HQG,HUGV,
HEST,,HPGG/HOPG1,HOQG1,HOUGV1,HOES 1,HOEF1,HPUGVI/C,N,STATICS \$
110 PARAM //G,N,MPY/V,N,CARDNO/C,N,O/C,N,O \$
111 OFP HQUGVI,HUPGI,HOQGL,HUEF1,HOESI,//V,N,CARDNO \$
112 SAVE CARDNO \$
113 COND HP2,JUMPPLOT \$
114 PLOT PLTPAR,GPSETS,ELSETS,CASECC, BGPDT,HEQEXIN,HSIL,HPUGV1,,HGPECT,
HOESI/PLOTX2/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLIFLG/V,N,
PFile \$
115 SAVE PFILE \$
110}\mathrm{ PRTMSG PLUTX2// \$
117 LABEL HPZ\$
118 JUMP FINIS\$
119 LABEL ERRORI \$
120.PRTPARM //G,N,-I/C,N,HSTA \$
121 LABEL ERROR3 \$
122 PRTPARM //C,N,-3/C,N,HSTA \$
123 LABEL ERRUR4 \$
124 PRTPARM //C,N,-4/C,N,HSTA \$
125 LABEL ERROR5 \$
126 PRTPARM //C,N,-5/C,N,HSTA \$
127 LABEL FINIS \$
128 END \$

```

\subsection*{3.17.2 Description of DMAP Operations for Static Heat Transfer Analysis}
4. GPI generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
7. GP2 generates Element Connection Table with internal indices.
11. Go to DMAP No. 21 if no plot packagè is present.
12. PLTSET transforms user input into a form used to drive structure plotter.
14. PRTMSG prints error messages associated with structure plotter.
17. Go to DMAP No. 21 if no undeformed structure plot request.
18. PLøT generates all requested undeformed structure plots.
20. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
23. GP3 generates Static Loads Table and Grid Point Temperature Table.
25. TAI generates element tables for use in matrix assembly and stress recovery.
27. Go to DMAP No. 123 and print error message if no elements have been defined.
30. Go to DMAP No. 38 if there are no structural elements.
32. EMG generates structural element matrix tables and dictionaries for later assembly.
35. Go to DMAP No. 38 if no stiffness matrix is to be assembled.
36. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{X}}\right]\) and Grid Point Singularity Table.
40. Go to next DMAP instruction if cold start or modified restart. LBLIl will be altered by the Executive System to the proper location inside the loop for unmodified restarts within the loop.
41. Beginning of loop for additional constraint sets.
42. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\) and forms enforced displacement vector \(\left\{{ }_{1}\right\}\).
44. Go to DMAP No. 121 and print error message if no independent degrees of freedom are defined.
48. GPSP determines if possible grid point singularities remain.
50. Go to DMAP No. 52 if no grid point singularities remain.
51. ØFP formats the table of possible grid point singularities and places it on the system output file for printing.
53. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) if no multipoint constraints.
55. Go to DMAP No. 60 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
56. MCE1 partitions multipoint constraint equations \(\left[R_{g}\right]=\left[\left.R_{m}\right|_{R_{n}}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).
58. MCE2 partitions stiffness matrix
\[
\left[k_{g g}\right]=\left[\begin{array}{c:c}
\bar{k}_{n n} & k_{n m} \\
\hdashline k_{n n} & k_{n m}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[k_{n n}\right]=\left[\bar{k}_{n n}\right]+\left[G_{m}^{\top}\right]\left[k_{m n}\right]+\left[k_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[k_{n m}\right]\left[G_{m}\right] .
\]
61. Equivalence \(\left[k_{n n}\right]\) to \(\left[k_{f f}\right]\) if no single-point constraints.
63. Go to DMAP No. 66 if no single-point constraints.
64. SCE! partitions out single-point constraints
\[
\left[k_{n n}\right]=\left[\begin{array}{c:c}
k_{f f} & k_{f s} \\
\hdashline k_{s f} & k_{s s}
\end{array}\right]
\]
67. Equivalence \(\left[\mathrm{k}_{\mathrm{ff}}\right]\) to \(\left[\mathrm{K}_{\mathrm{aa}}\right]\) if no omitted coordinates.
69. Go to DMAP No. 82 if no omitted coordinates.
70. SMP1 partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{\mathrm{aa}} & \mathrm{k}_{\mathrm{ao}} \\
\hdashline- & - \\
\mathrm{k}_{\mathrm{oa}} & \mathrm{k}_{\mathrm{oo}}
\end{array}\right]
\]
solves for transformation matrix \(\left[G_{0}\right]=-\left[k_{o 0}\right]^{-1}\left[K_{o a}\right]\)
and performs matrix reduction \(\left[K_{a \mathrm{a}}\right]=\left[\bar{k}_{\mathrm{aa}}\right]+\left[K_{o \mathrm{a}}^{\top}\right]\left[G_{0}\right]\).
73. Equivalence \(\left[\mathrm{K}_{\mathrm{aa}}\right]\) to \(\left[\mathrm{K}_{\ell \ell}\right]\) if no free-body supports.
75. Go to DMAP No. 78 if no free-body supports.
76. RBMG1 partitions out free-body supports
\[
\left[k_{a \mathrm{a}}\right]=\left[\begin{array}{c:c}
k_{l \ell} & k_{\ell r} \\
\hdashline k_{r l} & k_{r r}
\end{array}\right]
\]
79. RBMG2 decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\).

\section*{RIGID FORMATS}
81. Go to DMAP No. 84 if no free-body supports.
82. RBMG3 forms rigid body transformation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right] .
\]
calculates rigid body check matrix
\[
[x]=\left[k_{r r}\right]+\left[k_{l r}^{\top}\right][D],
\]
and calculates rigid body error ratio
\[
\varepsilon=\frac{\|x\|}{\left\|k_{r r}\right\|}
\]
85. SSGl generates static load vectors \(\left\{P_{g}\right\}\).
87. Equivalence \(\left\{P_{g}\right\}\) to \(\left\{P_{\ell}\right\}\) if no constraints applied.
90. SSG2 applies constrains to static load vectors
\[
\begin{array}{ll}
\left\{P_{g}\right\}=\left\{\begin{array}{l}
\bar{P}_{n} \\
\left.-P_{m}\right\},
\end{array}\right. & \left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{\top}\right]\left\{P_{m}\right\}, \\
\left\{P_{n}\right\}=\left\{\begin{array}{l}
\bar{P}_{f} \\
\left.-P_{s}\right\},
\end{array},\left\{P_{f}\right\}=\left\{\bar{P}_{f}\right\}-\left[K_{f s}\right]\left[Y_{s}\right\},\right. \\
\left\{P_{f}\right\}=\left\{\begin{array}{l}
\bar{P}_{a} \\
\left.-P_{0}\right\}
\end{array}\right\}, & \left\{P_{a}\right\}=\left\{\bar{P}_{a}\right\}+\left[G_{o}^{\top}\right]\left\{P_{o}\right\}, \\
\left\{P_{a}\right\}=\left\{\begin{array}{l}
P_{l} \\
\left.-P_{r}\right\}
\end{array}\right. &
\end{array}
\]
and calculates determinate forces of reaction \(\left\{q_{r}\right\}=-\left\{P_{r}\right\}-\left[D^{\top}\right]\left\{P_{\ell}\right\}\).
93. SSG3 solves for displacements of independent coordinates
\[
\left\{u_{\ell}\right\}=\left[K_{\ell \ell}\right]^{-1}\left\{P_{\ell}\right\},
\]
solves for displacements of omitted coordinates
\[
\begin{gathered}
\left\{u_{0}^{0}\right\}=\left[K_{00}\right]^{-1}\left\{P_{0}\right\}, \\
3.17-8(3 / 1 / 76)
\end{gathered}
\]

\section*{STATIC HEAT TRANSFER}
calculates residual vector (RULV) and residual vector error ratio for independent coordinates
\[
\begin{aligned}
\left\{\delta P_{\ell}\right\} & =\left\{P_{\ell}\right\}-\left[K_{\ell \ell}\right]\left\{u_{\ell}\right\} \\
\varepsilon_{\ell} & =\frac{\left\{u_{\ell}^{\top}\right\}\left\{\delta \dot{P}_{\ell}\right\}}{\left\{P_{\ell}^{\top}\right\}\left\{u_{\ell}\right\}}
\end{aligned}
\]
and calculates residual vector (RUØV) and residual vector error ratio for omitted coordinates
\[
\begin{aligned}
\left\{\delta P_{0}\right\} & =\left\{P_{0}\right\}-\left[K_{00}\right]\left\{u_{0}^{0}\right\} \\
\varepsilon_{0} & =\frac{\left\{u_{0}^{T}\right\}\left\{\delta P_{0}\right\}}{\left\{P_{0}^{T}\right\}\left\{u_{0}^{0}\right\}}
\end{aligned}
\]
96. Go to DMAP No. 99 if residual vectors are not to be printed.
97. MATGPR prints the residual vector for independent coordinates (RULV).
98. MATGPR prints the residual vector for omitted coordinates (RUØV).
100. SDR1 recovers dependent displacements
\[
\begin{aligned}
& \left\{\begin{array}{c}
u_{\ell} \\
-u_{r}
\end{array}\right\}=\left\{u_{a}\right\}, \quad\left\{u_{0}\right\}=\left[G_{0}\right]\left\{u_{a}\right\}+\left\{u_{0}^{0}\right\}, \\
& \left\{\begin{array}{l}
u_{a} \\
\frac{u_{a}}{}
\end{array}\right\}=\left\{u_{f}\right\}, \\
& \left\{\begin{array}{l}
u_{f} \\
-- \\
y_{s}
\end{array}\right\}=\left\{u_{n}\right\} \\
& \left\{u_{m}\right\}=\left[G_{m}\right]\left\{u_{n}\right\},\left\{\begin{array}{c}
u_{n} \\
- \\
u_{m}
\end{array}\right\}=\left\{u_{g}\right\},
\end{aligned}
\]
and recovers single-point forces of constraint
\[
\left\{q_{s}\right\}=-\left\{p_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}+\left[K_{s s}\right]\left\{Y_{s}\right\}
\]
102. Go to DMAP No. 107 if all constraint sets have been processed.
103. Go to DMAP No. 41 if additional sets of constraints need to be processed.
104. Go to DMAP No. 119 and print error message if number of loops exceeds 100.
106. Go to DMAP No. 125 and print error message if multiple boundary conditions are attempted with impraper subset.
109. SDR2 calculates element forces and stresses (\(\varnothing E F 1, \emptyset E S 1\)) and prepares load vectors, displacement vectors and single-point forces of constraint for output (\(\emptyset P G 1, ~ \emptyset U G V 1, ~ P U G V I, ~ \emptyset Q G 1) . ~\)
111. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
113. Go to DMAP No. 117 if no deformed structure plots are requested.
114. PLøT generates all requested deformed structure plots.
116. PRTMSG prints plotter data and engineering data for each deformed plot generated.
118. 'Go to DMAP No. 127. and make normal exit.
120. STATIC HEAT TRANSFER ANALYSIS ERRØR MESSAGE NØ. 1 - ATTEMPT TØ EXECUTE M@RE THAN 100 LØGPS.
122. STATIC HEAT TRANSFER ANALYSIS ERR \(\emptyset\) R MESSAGE N \(\emptyset .3\) - \(\mathrm{N} \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDØM HAVE BEEN DEFINED.
124. STATIC HEAT TRANSFER ANALYSIS ERRØR MESSAGE NØ. 4-N ELEMENTS HAVE BEEN DEFINED.
126. STATIC HEAT TRANSFER ANALYSIS ERRØR MESSAGE NØ. 5 - A LØØPING PRØBLEM RUN ØN NØN-LØØPING SUBSET.

\subsection*{3.17.3 Case Control Deck and Parameters for Static Heat Transfer Analysis}

The following items relate to subcase definition and data selection for Static Heat Transfer Analysis:
1. A separate subcase must be defined for each unique combination of constraints and static loads.
2. A static loading condition must be defined for (not necessarily within) each subcase with a L@AD selection, unless all loading is specified with grid point temperatures on SPC cards.
3. An SPC set must be selected for (not necessarily within) each subcase, unless all constraints are specified on GRID cards or Scalar Connection cards.
4. Loading conditions associated with the same sets of constraints should be in contiguous subcases, in order to avoid unnecessary looping.
5. REPCASE may be used to repeat subcases in order to allow multiple sets of the same output item.

The following output may be requested for Static Heat Transfer Analysis solutions:
1. Temperatures (THERMAL) and nonzero components of static loads (øLQAD) and constrained heat flow (SPCFØRCE) at selected grid points or scalar points.
2. The punch option of a THERMAL request will produce TEMP bulk data cards.
3. Flux density (ELFØRCE) in selected elements.
4. Undeformed plots of the structural model and temperature profiles.

The following parameters are used in Static Heat Transfer Analysis:
1. IRES - optional - a positive integer value of this parameter will cause the printing of the residual vectors following the execution of SSG3.
```

RIGID FORMAT DMAP LISTING
RIGID FORMAT 3 HEAT

```

```

DMAP-DMAP INSTRUCTION
NO.
1 BEGIN

```

```

                                    GEOM1,GEOM2,/GPL,HEQEXIN,GPDT,CSTM,BGPDT,HSIL/V,N,HLUSET/ V, N, NOGPDT \(\$\)
    3 SAVE HLUSET $\$$
4 CHKPNT GPL,HEQEXIN,GPDT,CSTM,BGPDT,HSIL \$
GGP2 GEOM2,HEQEXIN/ECT \$
6 CHKPNT ECT \$
PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCOB \$
8 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NOPCDB \$
G COND HPL,NOPCDB \$
10 PLTSET PCDB,HEQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,HNSIL/ V,N,
JUMPPLOT=-1 \$
11 SAVE HNSIL,JUMPPLOT \$
12 PRTMSG PLTSETX// \$
13 PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N,1 \$
14 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
15 COND HP1,JUMPPLOT \$
16PPLOT
PLTPAR,GPSETS,ELSETS,CASECC,BGPOT,HEQEXIN,HSIL,,,,/PLOTXI/ V,N,
HNSIL/V,N,HLUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
JUMPPLOT,PLTFLG,PFILE \$
PRTMSG PLOTX1// \$
LABEL HPI\$
CHKPNT PLTPAR,GPSETS,ELSETS \$
GP 3
GEOM3,HEQEXIN,GEON2/HSLT,GPTT/V,N,NOGRAV \$
22 CHKPNT HSLT,GPTT \$
23 TAL ECT,EPT,BGPOT,HSIL,GPTT,CSTM/HEST,,HGPECT,/V,N,HLUSET/, V,N,
NOSIMP/C,N,I/V,N,NOGENL/V,N,HXYZ \$
24 SAVE NOSIMP \$
25 COND ERROR2,NOSIMP \$

```
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 3 HEAT

```

```

DMAP-DMAP INSTRUCTION
NO.
26 CHKPNT HEST,HGPECT \$
27 PARAM //C,N,ADO/V,N,HNOKGG/C,N,1/C,N,O \$
28@EMG HEST,CSTM,MPT,DIT,GEOM2,/HKELM,HKDICT,,,,/V,N,HNOKGG \$
29 SAVE HNOKGG \$
30 CHKPNT HKELM,HKDICT \$
31 COND JMPKGGX,HNOKGG \$
32@MA HGPECT,HKDICT,HKELM/HKGGX,GPST\$
33 CHKPNT HKGGX,GPST \$
34 LABEL JMPKGGX \$
35 RMG HEST,MATPOOL,GPTT,HKGGX/HRGG,HQGE,HKGG/C,Y,TABS/C,Y,SIGMA=0.O/
V,N,HNLR/V,N,HLUSET\$
36 SAVE HNLR \$
37 EQUIV HKGGX,HKGG/HNLR\$
38 PURGE HQGE,HRGG/HNLR \$
39 CHKPNT HKGG,HQGE,HRGG \$
40GP4 CASECC,GEOM4,HEQEXIN,HSIL,GPDT, BGPDT, CSTM/RG,YS,HUSET,HASET/V,
N,HLUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/
V,N,NSKIP/V,N,HREPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$
41 SAVE
MPCF1,MPCF2,SINGLE,OMIT,REACT,NSKIP,HREPEAT,NOSET,NOL,NOA \$
4 2 COND
43 PURG
GM/MPCFI/HPS,HKFS,HKSS,HK SF,HRSN,HQG/SINGLE \$
44 CHKPNT GM,HPS,HKFS,HKSS,HUSET,RG,HKSF,HRSN,YS \$
45GPSPGGPL,GPST,HUSET,HSIL/OGPST/V,N,NOGPST \$
46 SAVE NOGPST \$
47 COND HLBL5,NOGPST \&
48 OFP OGPST,.,.,1/\$
49 LABEL HLBL5 \$
50 EQUIV HKGG,HKNN/MPCF1/HRGG,HRNN/MPCF1 \$
51 CHKPNT HKNN,HRNN \$
52 COND HLBL1,MPCF2 \$

```

\section*{RIGID FORMAT DMAP LISTING}

SERIES N
RIGID FORMAT 3 HEAT
NASTRANSOURCEPROGRAMCOMPILATION DMAP-DMAP INSTRUCTION
NO.
53 MCEI HUSET,RG/GM \&
54 CHKPNT GM \(\$\)
55 MCE2 HUSET,GM,HKGG,HRGG, / /HKNN,HRNN, \$
56 CTIKPNT HKNN,HRNN \$
57 LABEL HLBLI \$
58 EQUIV HKNN,HKFF/SINGLE/HRNN,HRFN/SINGLE \$
55 CHKPNT HKFF,HRFN \$
60 COND HLBLZ,SINGLE \(\$\)
61 VEC HUSET/VFS/C,N,N/C,N,F/C,N,S \$
62 PARTN GKNN,VFS, /HKFF,HKSF,HKFS,HKSS \$
63 PARTN HRNN,,VFS/HRFN,HRSN,,/C,N,1 \$
64 LABEL HLBL2 \$
65 CTKPNT HKFS,HKSS,HKFF,HKSF,HRFN,HRSN
66 DECOMP
HKFF/HLLL, HULL/C,N,U/C,N,U/V,N,MDIAG/V,N,DET/V,N,PWR/V,N, KSING \$

67 SAVE KSING \$
68 COND ERROR 3,KSING \$
\(69^{\circ}\) CHKPNT HLLL, HULL. \(\$\)
70 SSGI HSLT,BGPDT,CSTM,HSIL,HEST,MPT,GPTT,EDT,, CASECC,OIT/HPG/V,N, HLUSET/V,N,NSKIP \$

71 CHKPNT HPG \$
72 EQUIV HPG,HPF/NOSET \$
73. COND HLBL3,NOSET \$

74 SSG2 HUSET,GM, HKFS,.,HPG/, HPSS,HPF \$
75 LABEL HLBL3\$
76 CHKPNT HPF,HPS \$
77 SSGHT HUSET,HSIL,GPTT,GM,HEST,MPT,DIT,HPF,HPS,HKFF,HKFS,HKSF, HKSS, \(E P S H T=.001 / C, Y, T A B S=0.0 / C, Y, M A X I T=4 / V, Y, I R E S / V, N, M P C F I / V, N\), SINGLE \$

78 CHKPNT HUGV,HQG,HRULV \(\$\)
```

RIGID FORMAT DMAP LISTING
RIGID FORMAT 3 HEAT
NASTRRANSOURCE PROGRAMMCOMPILATION
DMAP-DMAP INSTRUCTION
NO.
79 COND HLBL4,IRES \$
80 MATGPR GPL,HUSET,HSIL,HRULV//C,N,F\$
81 LABEL HLBL4\$
82 PLTTRAN BGPDT,HSIL/BGPDP,HSIP/V,N,HLUSET/V,N,HLUSEP\$
83 SAVE HLUSEP \$
84 CHKPNT BGPDP,HSIP\$
85 SOR2 CASECC,CSTM,MPT,DIT,HEQEXIN,HSIL,GPTT,ECT,BGPOP,,HQG,HUGV,
HEST, ,HPG/HOPGI,HOQG1,HOUGV1,HOESI,HOEFI,HPUGVI/C,N,STATICS \$
86 PARAM //C,N,MPY/V,N,CARDNO/C,N,U/C,N,O \$
87 OFP HOUGVL,HJPG1,HOQG1,,,I/V,N,CARDNC \$
88 SAVE CARDNO \$
89 SURHT HSIL,HUSET,HUGV,HOEF 1,HSLT,HEST,DIT,HQGE,//HCEFIX/C,Y,TABS/
V,N,HNLR \&
90 OFP HOEFLX,,.,,//V,N,CARONO \$
91 SAVE CARDNO\$
92 COND HP2,JUMPPLOT \$
93 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,HEOEXIN,HSIP,HPUGVI,,HGPECT,
HOESI/PLOTX2/V,N,NSIL/V,N,HLUSEP/V,N,JUMPPLCT/V V,N,PLTFLG/V,
N,PFILE \$
94 PRTMSG PLOTX2//\$
95 LABEL HP2 \$
96 JUMP FINIS\$
97 LABEL ERRORI\$
98 PRTPARM //C,N,-1/C,N,HNLI \$
99 LABEL ERROR2 \$
200 PRTPARM //C,N,-2/C,N,HNLI \$
101 LABEL ERROR3 \$
102 PRTPARM //C,N,-3/C,N,HNLI \$
103 LABEL FINIS\$
104 END \$ .

```

\subsection*{3.18.2 Description of DMAP Operations for Nonlinear Static Heat Transfer Analysis}
2. GP1 generates grid point location tables and tables relating internal and external degree of freedom numbers.
5. GP2 generates the Element Connection Table.
9. Go to DMAP No. 19 if no plot package is present.
10. PLTSET transforms the input data into plot data tables.
12. PRTMSG prints error messages associated with the plot data.
15. Go to DMAP No. 19 if no undeformed structure plot request.
16. PLDT generates all plots of the structure without temperature profiles.
18. PRTMSG prints plotter and engineering data for each generated plot.
21. GP3 generates applied heat flux load tables (SLT) and the grid point temperature table.
23. TA1 generates element tables for use in matrix formulation, load generation, and element heat flux data recovery.
25. Go to DMAP No. 99 and print error message if no elements háve been defined.
28. EMG generates structural element matrix tables and dictionaries for later assembly.
31. Go to DMAP No. 34 if no conductivity matrix is to be assembled.
32. EMA assembles conductivity matrix \(\left[K_{g}^{x}\right]\) and Grid Point Singularity Table.
35. RMG generates the radiation matrix, \(\left[R_{g g}\right]\), and adds the estimated linear component of radiation to the conductivity matrix. \(\mathrm{gg}_{\text {The }}\) element radiation flux matrix, \(\left[\mathrm{Q}_{\mathrm{ge}}\right.\)], is also generated for use in recovery data for the HBDY elements.
37. Equivalence \(\left[K_{g g}^{X}\right]\) to \(\left[K_{g g}\right]\) if no linear component of radiation.
40. GP4 generates flags defining member of various displacement sets (USET) and forms multi-point constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=\{0\}\).
42. Go to DMAP instruction 97 if no independent degrees of freedom are defined.
45. GPSP determines if possible matrix singularities remain. These may be extraneous in a radiation problem, since some points may transfer heat through radiation only.
47. Go to DMAP No. 49 if no Grid Point Singularity Table.
48. \(\emptyset F P\) prints the singularity messages.
50. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) and \(\left[R_{g g}\right]\) to \(\left[R_{n n}\right]\) if no multi-point constraints exist.
52. Go to DMAP statement 57 if no multi-point constraints exist.
53. MCE1 partitions the multi-point constraint equation matrix \(\left[R_{g}\right]=\left[R_{m}!R_{n}\right]\) and solves for the multi-point constraint transformation matrix
\[
\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[\dot{R}_{n}\right]
\]

\section*{RIGID FORMATS}
55. MCE2 partitions conductivity and radiation matrices
\[
\left[k_{g g}\right]=\left[\begin{array}{l|l}
\bar{K}_{n n} & k_{n m} \\
\hdashline K_{m n} & \frac{k_{n m}}{k_{m n}}
\end{array}\right] \quad \text { and } \quad\left[R_{g g}\right]=\left[\begin{array}{l:l}
\bar{R}_{n n} & R_{n m} \\
\frac{R_{m m}}{R_{m m}} & \frac{R_{m}}{R_{n}}
\end{array}\right] \text {, }
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] \text { and }} \\
& {\left[R_{n n}\right]=\left[\bar{R}_{n n}\right]+\left[G_{m}^{\top}\right]\left[R_{m n}\right]+\left[R_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] .}
\end{aligned}
\]
58. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right]\) and \(\left[R_{n n}\right]\) to \(\left[R_{f n}\right]\) if no single-point constraints exist.
60. Go to DMAP statement 64 if no single-point constraints exist.
61. VEC generates a partitioning vector \(u_{n} \rightarrow u_{f}+u_{s}\).
62. PARTN partitions the conductivity matrix
\[
\left[k_{n n}\right]=\left[\begin{array}{l}
k_{f f} \\
\frac{k_{f s}}{k_{f}}
\end{array} \frac{k_{f s}}{k_{s s}}\right] .
\]
63. PARTN partitions the radiation matrix
\[
\left[R_{n n}\right]=\left[\begin{array}{c}
R_{f n} \\
\hdashline-R_{s n} \\
\hline
\end{array}\right] .
\]
66. DEC©MP decomposes the potentially unsymmetric matrix \(\mathrm{K}_{\mathrm{ff}}\) into upper and lower triangular factors \(\left[U_{\ell \ell}\right]\) and \(\left[L_{\ell \ell}\right]\).
68. Go to DMAP statement 101 if the matrix is singular.
70. SSGl generates the input heat flux vector \(\left\{P_{g}\right\}\).
72. Equivalence \(\left\{\mathrm{P}_{\mathrm{g}}\right\}\) to \(\left\{\mathrm{P}_{\mathrm{f}}\right\}\) if no constraints applied.
73. Go to DMAP statement 75 if no constraints of any kind exist.
74. SSG2 reduces the heat flux vector
\[
\begin{aligned}
& \left\{P_{g}\right\}=\left\{\begin{array}{l}
\bar{P}_{n} \\
\left.-P_{m}\right\}
\end{array}\right. \\
& \left\{P_{n}\right\}=\left\{\bar{P}_{n}\right\}+\left[G_{m}^{\top}\right]\left\{P_{m}\right\},
\end{aligned}
\]

\section*{NONLINEAR STATIC HEAT TRANSFER ANALYSIS}
\[
\left\{P_{n}\right\}=\left\{\begin{array}{l}
P_{f} \\
-P_{s}
\end{array}\right\}
\]
77. SSGHT solves the nonlinear heat transfer problems by iteration. User input parameters EPSHT and MAXIT are used to limit the iterations. For details, refer to Section 8 of the NASTRAN Theoretical Manual. The output data blocks are: \(\left\{u_{\mathrm{q}}\right\}\), the solution temperature vector, \(\left\{q_{g}\right\}\), the heat flux due to single point constraints, and \(\left\{\delta P_{\ell}\right\}\), the matrix of residual heat fluxes at each iteration step.
79. Go to DMAP statement 81 if no residual vectors are desired.
80. MATGPR prints the matrix of residual vectors.
82. PLTTRAN transforms the grid point definition tables into a format for plotting temperature solutions.
85. SDR2 calculates the heat flux due to conductivity and convection in the elements and prepares the solution vectors for output.
87. ØFP formats tables prepared by SDR2 for output.
89. SDRHT processes the HBDY elements to produce heat flux into the elements due to convection, radiation, and user applied flux.
90. ØFP formats the output element flux table for output.
92. Go to DMAP 95 if no temperature profile plots are requested.
93. PLøT generates temperature profile plots.
94. PRTMSG prints plotter data and engineering data for each plot generated.
96. Go to DMAP No. 103 and make nornal exit.
98. N \(\emptyset\) LLINEAR STATIC HEAT TRANSFER ANALYSIS ERR \(\emptyset R\) MESSAGE N \(\emptyset\). 1 - N \(\emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDØM HAVE BEEN DEFINED.
100. NØNLINEAR STATIC HEAT TRANSFER ANALYSIS ERRØR MESSAGE NØ. 2 - NØ SIMPLE STRUCTURAL ELEMENTS.
102. NØNLINEAR STATIC HEAT TRANSFER ANALYSIS ERR \(\emptyset R\) MESSAGE NØ. 3 - STIFFNESS MATRIX SINGULAR.

\subsection*{3.18.3 Case Control Deck and Parameters for Nonlinear Static Heat Transfer Analysis}

The following items relate to subcase definition and data selection for Nonlinear Static Heat Transfer Analysis:
1. A single subcase must be defined with a single loading condition (LQAD) and a single constraint condition (SPC).
2. An estimated temperature distribution vector must be defined on TEMP cards and selected with a TEMP(MATERIAL) request. Temperatures for constrained - components are taken from these TEMP cards and entries on SPC cards are ignored.

The following output may be requested for the last iteration in Nonlinear Static Heat Transfer Analysis:
1. Temperature (THERMAL) and nonzero components of static loads (\(\varnothing\) L \(\emptyset A D\)) and constrained heat flow (SPCFØRCE) at selected grid points or scalar points.
2. The punch option of a THERMAL request will produce TEMP bulk data cards.
3. Flux density (ELFØRCE) in selected elements. In the case of CHBDY elements, a flux density summary is produced that includes applied flux, radiation flux, and convective flux.
4. Undeformed plots of the structural model and temperature profiles.

The following parameters are used in Nonlinear Static Heat Transfer Analysis:
1. MAXIT - optional - the integer value of this parameter limits the maximum number of iterations.
2. EPSHT - optional - the real value of this parameter is used to test the convergence of the solution.
3. TABS - optional - the real value of this parameter is the absolute reference temperature.
4. SIGMA - optional - the real value of this parameter is the Stefan-Boltzmann constant.
5. IRES - optional - a positive value of this parameter will cause the printing of the residual vectors following the execution of SSGHT for each iteration.

\subsection*{3.19 TRANSIENT HEAT TRANSFER ANALYSIS}
3.19.1 DMAP Sequence for Transient Heat Trans fer Analysis

RIGID FORMAT DMAP LISTING
RIGID FORMAT 9 HEAT
NASTRANSOURCEPROGRAMCDMPILATION DMAP-OMAP INSTRUCTION
NO.
1 BEGIN NO. 09 TRANSIENT HEAT TRANSFER ANALYSIS - SERIES \(N \$\)
2 FILE HKGGX=TAPE/HKGG=TAPE \$

SAVE HLUSET,NOGPDT \(\$\)
5 PURGE
6 CHKPNT GPL,HEQEXIN,GPDT, CSTM, BGPDT, HSIL,HUSET, GM,HGO,HKAA,HBAA, HPSO, HKFS,HOP, HEST \$

7 COND HLBL5,NOGPDT \$
8 GP2
9 CHKPNT
ECT \$
10
11
12
13 PLTSET PCDB,HEQEXIN,ECT/PLTSETX,PLTPAR,GPSETS,ELSETS/V,N,NSIL/ V,N: JUMPPLOT=-1 \$

14 SAVE NSIL,JUMPPLOT \$
15 PRTMSG PLTSETX// \$
16 PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N,1\$
17 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,O \$
18 COND HP1,JUMPPLOTS
19 PLOT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,HEQEXIN,HSIL, , ,/PLOTXI/ V,N. NSIL/V,N,HLUSET/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$

JUMPPLOT,PLTFLG,PFILE
21 PRTMSG PLOTX1//\$
22 LABEL HP1 \$
23 CHKPNT PLTPAR,GPSETS,ELSETS \$

\section*{RISID FORMAT DMAP LISTING} SERIES N

RIGID FORMAT 9 HEAT
 DMAP-DMAP INSTRUCTION
NO.
\begin{tabular}{|c|c|c|}
\hline 24 & P3 & GEOM3, HEQEXIN, GEOM2/HSLT, GPTV/C,N, 1 \$ \\
\hline 25 & CHK PNT & GPTT,HSET \\
\hline 26 & TA1 & ECT,EPT, BGPDT,HSIL,GPTT,CSTM/HEST, HGPECT,/V,N,HLUSET/ V,N, NOSIMP \(=-1 / C, N, 1 / C, N, 123 / C, N, 123\) s \\
\hline 27 & SAVE & NOSIMP \$ \\
\hline 28 & CHKPN & HEST.HGPECT \(\$\) \\
\hline 29 & COND & HLBLI, NOSIMP \$ \\
\hline 30 & PARAM & \(/ / C, N, A D D / V, N, N O K G G X / C, N, 1 / C, N, O\) \\
\hline 31 & PARAM & \(/ / C, N, A D D / V, N, N O B G G / C, N, 1 / C, N, O\) \\
\hline 32 & EMG & HEST,CSTM,MPT, DIT,GEOM2, /HKELM, HKDICT, , HBELM,HBDICT/V,N. NOKGGX/C,N,/V,N,NOBGG \$ \\
\hline 33 & SAVE & NOKGGX,NOBGG \\
\hline 34 & CHKPNT & HKELM, HKDICT, HBELM, HBDICT \\
\hline 35 & COND & JMPKGGX, NOKGGX s \} \\
\hline 36 & EMA & HGPECT, HKDICT,HKELM/HKGGX,GPST \$ \\
\hline 37 & CHKPNT & HKGGX,GPST \$ \\
\hline 38 & LABEL & JMPKGGX \$ \\
\hline 39 & COND & JMPHBGG,NOBGG \$ \\
\hline 40 & EMA & HGPECT, HBDICT, HBELM/HBGG , \(\$\) \\
\hline 41 & CHK PNT & HBGG \\
\hline 42 & LABEL & JMPHBGG 5 \\
\hline 43 & PURGE & HBNN, HBFF, H8AA, HBGG/NOBGG \\
\hline 44 & CHKPNT & HBGG, HBNN, HBFF, HBAA \\
\hline 45 & LABEL & HLBLI \$ \\
\hline 46 & RMG & HEST, MATPOOL, GPTT,HKGGX/HRGG,HQGE,HKGG/C,Y,TABS/C,Y,SIGMA=0.0/ V,N.HNLR/V,N,HLUSET \$ \\
\hline 47 & SAVE & HNLR \$ \\
\hline 48 & EQUIV & HKGGX,HKGG/HNLR \$ \\
\hline
\end{tabular}

```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 9 HEAT
NASTRANNSOURCE PROGRAMEOMPILATIION
OMAP-DMAP INSTRUCTION
NO.

74	LABEL	HLBL4 \$	
75	EQUIV	HKFF, HKAAIOMIT \$	
76	equiv	HRFF, HRAA/OMIT \$	
77	EQUIV	HBFF, HBAA/OMIT	
78	CHKPNT	HKAA,HRAA,HBAA $\$$	
79	COND	HLBLS,OMIT \$	
80	SMPI	HUSET, HKFF,../HGO,HKAA,HKOO,HLOO, i,	
81	CHK PNT	HGO,HKAA \$	
82	COND	HLBLR, HNLR \$	
83	SMP2	HUSET, HGO,HRFF/HRAA \$	
84	CHKPNT	HRAA	
85	LABEL	HLBLR \$	
86	COND	HLBLS,NOBGG \$	
87	SMP2	HUSET,HGO,HBFF/HBAA \$	
88	CHKPNT	HBAA $\$$	
89	LABEL	HLBL5 5	
	DPD	DY NAMICS, GPL,HSIL,HUSET/GPLD,HSILD, HUSETD,TFPOOL, HDLT, , HTRL, HEQDYN/V,N,HLUSET/V,N,HLUSETD/C,N,L23/V,N,NODLT/ 123/C,N, 123/V,N,NONLFT/V,N,NOTRL/C, N, 123/C, N,/V,N,NOUE	HNLFT, $C, N$,
91	SAVE	HLUSETD, NODLT, NONLFT, NOTRL, NOUE \$	
92	COND	ERRORI, NOTRL \$	
93	EQUIV	HGO,HGOD/NDUE/GM,GMD/NOUE \$	
94	PURGE	HPPO,HPSO,HPDO, HPDT/NODLT \$	
95	CHK PNT	HUSETD, HEQDYN, TFPOOL, HDLT,HTRL,HGOD,GMD, HNLFT,HSILD,GPLD, HPSO,HPDO,HPDT $\$$	, HPPO.
96	MTRXIN	CASECC, MATPOOL, HEQDYN, ,TFPOOL/HK2PP, , HB 2PP/V,N, HLUSETD/ NOK2PP/C,N,123/V,N,NOB2PP s	$V, N$,
97	SAVE	NOK2PP,N082PP \$	

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{RIGID FORMAT OMAP LISTING SERIES N} \\
\hline \multicolumn{9}{|l|}{RIGID FORMAT 9 HEAT} \\
\hline \multicolumn{9}{|l|}{} \\
\hline 98 & PARAM & \multicolumn{7}{|l|}{//C,N, AND/V,N,KDEKA/V,N,NDUE/V,N,NOK2PP s} \\
\hline 99 & PURGE & \multicolumn{7}{|l|}{HK200/NOK2PP/HB2DD/NOB2PP \$} \\
\hline 100 & Equiv & \multicolumn{7}{|l|}{HK AA, HKDD/KDEKA/HB2PP, HB2DD/NOA/HK2PP,HK2DD/NOA/HRAA, HRDD/ NOUE \(\$\)} \\
\hline 101 & CHKPNT & \multicolumn{7}{|l|}{HK2PP, HB2PP, HK 2DD,HB2DD,HKDO, HRDD \$} \\
\hline 102 & COND & \multicolumn{7}{|l|}{HLBLG, NOGPDT \$} \\
\hline 103 & GKAD & \multicolumn{7}{|l|}{HUSETD,GM,HGO,HKAA, HBAA, HRAA, ,HK2PP, HB2PP/HKDD,HBDD, HRDD, GMD,HGOD,HK2DD, HM2OD, HB2DD/C,N,TRANRESP/C,N,DISP/C,N, DIRECT/ \(C, Y, G=0.0 / C, Y, W 3=0.0 / C, Y, W 4=0.0 / V, N, N O K 2 P P / C, N,-1 / / V, N\), NOB2PP/V,N,MPCFI/V,N,SINGLE/V,N,OMIT/V,N,NOUE/ C,N.-I/V,N. NOBGG/V,N,NOSIMP/C,N,-1 \$} \\
\hline 104 & LABEL & \multicolumn{7}{|l|}{HLBL6} \\
\hline 105 & EQUIV & \multicolumn{7}{|l|}{HK 200, HKDD/NOS IMP/HB2DD, HBDD/NOGPDT} \\
\hline 106 & CHKPNT & \multicolumn{7}{|l|}{HKDD, HBDD, HRDD, GMD, HGOD s} \\
\hline 107 & TRLG & \multicolumn{7}{|l|}{CASECC, HUSETD, HDLT,HSLT, BGPDT,HSIL,CSTM,HTRL,DIT,GMD,HGOD, HEST, /HPPO,HPSO,HPDO,HPDT, HTOL/V,N,NOSET/V,N,PDEPDO \$} \\
\hline 108 & save & \multicolumn{7}{|l|}{PDEPDO,NOSET \$} \\
\hline 109 & Equiv & \multicolumn{7}{|l|}{HPPO, HPDO/NOSET} \\
\hline 110 & EQUIV & \multicolumn{7}{|l|}{HPDO, HPDT/PDEPDO \$} \\
\hline 111 & CHKPNT & \multicolumn{7}{|l|}{HPPO, HPDO, HPSO, HTOL, HPDT \$} \\
\hline 112 & TRHT & \multicolumn{7}{|l|}{CASECC, HUSETD,HNLFT,DIT,GPTT,HKDD,HBDD,HRDD,HPDT,HTRL/ HUDVT, HPNLD/C,Y,BETA \(=.55 / C, Y, T A B S=0.0 / V, N, H N L R / C, Y, R A D L I N=-1 \$\)} \\
\hline 113 & CHK PNT & \multicolumn{7}{|l|}{HUDVT, HPNLD} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(114 \bigcirc\) VR}} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{CASECC, HEQDYN,HUSETD, HUDVT,HTOL, XYCDB,HPNLD/HOUDVI,HOPNL1/ N, TRANRESP/C,N,DIRECT/C,N,O/V,N,NOD/V,N,NOP/C,N,O \$}} \\
\hline & & & & & & & & \\
\hline 115 & SAVE & \multicolumn{7}{|l|}{NOD,NOP \$.} \\
\hline 116 & CHKPNT & \multicolumn{7}{|l|}{HOUDV1,HOPNLI \$} \\
\hline 117 & COND & \multicolumn{7}{|l|}{HL BLT. NOD \$} \\
\hline 118 & SDR 3 & \multicolumn{7}{|l|}{HOUDV1,HOPNL1, ., /HOUDV2,HOPNL2,.., \$} \\
\hline 119 & PARAM & \multicolumn{7}{|l|}{\(/ / C, N, M P Y / V, N, C A R O N O / C, N, O / C, N, O \$\)} \\
\hline
\end{tabular}

\section*{TRANSIENT HEAT TRANSFER ANALYSIS}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
    RIGID FORMAT }9\mathrm{ HEAT
        NASTRRANSOURCEPROGRAMSCMPILLATINN
    DMAP-DMAP INSTRUCTION
NO.
147 LABEL HP2 \$
148 XYTRAN XYCOB,HOPP2,HOQP2,HOUPV2,,HOEF2/HXYPLTT/C,N,TRAN/C,N,PSET/V,N,
PFILE/V,N,CARDNO\$
149 SAVE PFILE,CARDNO \$
150 XYPLOT HXYPLTT//\$
151 LABEL HLBL9 \$
152 JUMP FINIS $.
153 LABEL ERRORI$
154 PRTPARM //C,N,-1/C,N,HTRD\$
155 LABEL FINISS
156 END \$

```

\subsection*{3.19.2 Description of DMAP Operations for Transient Heat Transfer Analysis}
3. GPl generates grid point location tables and tables relating internal and external degree of freedom indices.
7. Go to DMAP No. 89 if no grid point definition table.
8. GP2 generates the Element Connection Table.
12. Go to DMAP No. 22 if no plot package is present.
13. PLTSET transforms user input into plot data tables.
15. PRTMSG prints error messages associated with the structure plotter.
18. Go to DMAP No. 22 if no structure-only plots are requested.
19. PLøT generates all plots of the structure without temperature profiles.
21. PRTMSG prints plotter data and engineering data for each generated plot.
24. GP3 generates the table of user defined temperature sets and the tables of static heat flux input data.
26. TAl generates element tables for use in matrix formulation, load generation, and element data recoverv.
29. Go to DMAP No. 45 if no structural or boundary elements exist.
32. EMG generates structural element matrix tables and dictionaries for later assembly.
35. Go to DMAP No. 38 if no stiffness matrix is to be assembled.
36. EMA assembles stiffness matrix \(\left[K_{g g}^{x}\right]\) and Frid Point Sinaularity Table.
39. Go to DMAP No. 42 if no heat capacity matrix is to be assembled.
40. EMA assembles heat capacity matrix \(\left[\mathrm{B}_{\mathrm{gg}}\right]\).
46. RMG generates the radiation matrix, \(\left[R_{g g}\right]\), and adds the estimated linear component of radiation to the conductivity matrix. 99 The element-radiation flux matrix, [\({ }_{0}\) ge \(]\), is also generated for use in data recovery.
48. Equivalence the linear heat transfer matrix, \(\left[K_{g g}\right]\), to the conductivity matrix if no
radiation exists. radiation exists.
51. GP4 generates flugs defining members of various displacement sets (USET) and forms the multi-point constraint equations, \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
55. Go to DMAP No. 60 if no simple elements exist.
56. GPSP determines if possible matrix singularities remain. These may be extraneous in a radiation problem, since some points may transfer heat through radiation only.
58. Go to DMAP No. 60 if no Grid Point Singularity Table.
59. ØFP prints the singularity messages.
61. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right],\left[R_{g q}\right]\) to \(\left[R_{n n}\right]\), and \(\left[B_{g g}\right]\) to \(\left[B_{n n}\right]\) if no multi-point constraints
63. Go to DMAP No. 68 if no multi-point constraints exist.
64. MCE1 partitions the multi-point constraint equation matrix, \(\left[R_{g}\right]=\left[R_{m} R_{n}\right]\), and solves for the multi-point constraint transformation matrix,
\[
\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]
\]
66. MCE2 partitions conductivity and radiation matrices
\[
\begin{aligned}
& {\left[k_{g g}\right]=\left[\begin{array}{l:l}
\bar{k}_{n n} & k_{n m} \\
\hdashline K_{m n} & k_{n m}
\end{array}\right],} \\
& {\left[R_{g g}\right]=\left[\begin{array}{l:l}
\bar{R}_{n n} & R_{n m} \\
\hdashline R_{m n} & R_{m m}
\end{array}\right],} \\
& B_{g g}=\left[\begin{array}{l:l}
\bar{B}_{n n} & B_{n m} \\
\hdashline B_{m n} & B_{m m}
\end{array}\right],
\end{aligned}
\]
and performs matrix reductions
\[
\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{T}\right]\left[K_{m n}\right]+\left[K_{m n}\right]\left[G_{m}\right]+\left[G_{m}^{T}\right]\left[K_{m n}\right]\left[G_{m}\right]
\]

The same equation is applied to \(R_{n n}\) and \(B_{n n}\).
69. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right],\left[B_{n n}\right]\) to \(\left[B_{f f}\right]\), and \(\left[R_{n n}\right]\) to \(\left[R_{f f}\right]\) if no single point constraints exist.
71. Go to DMAP No. 74 if no single point constraints exist.
72. SCE1 partitions the matrices as follows:
\[
\left[k_{n n}\right]=\left[\begin{array}{l:l}
k_{f f} & k_{f s} \\
\hdashline k_{s f} & k_{s s}
\end{array}\right]
\]
\(R_{n n}\) and \(B_{n n}\) are partitioned in the same manner, except only the ff partitions are saved.
75. Equivalence \(\left[K_{f f}\right.\)] to [\(K_{a a}\)] if no omitted coordinates.
76. Equivalence \(\left[R_{f f}\right]\) to \(\left[R_{a a}\right]\) if no omitted coordinates.
77. Equivalence \(\left[\mathrm{B}_{\mathrm{ff}}\right.\)] to \(\left[\mathrm{B}_{\mathrm{aa}}\right.\)] if no omitted coordinates.
79. Go to DMAP No. 89 if no omitted coordinates are requested.
80. SMP1 partitions the conductivity matrix
\[
\left[K_{f f}\right]=\left[\begin{array}{c:c}
\bar{K}_{a d} & k_{a o} \\
\hdashline K_{o a} & k_{o o}
\end{array}\right]
\]
solves for the transformation matrix \(\left[G_{0}\right]\) :
\[
\left[K_{00}\right]\left[G_{0}\right]=-\left[K_{0 a}\right],
\]
and solves for the reduced conductivity matrix \(\left[\mathrm{K}_{\mathrm{aa}}\right]\) :
\[
\left[k_{a \mathrm{a}}\right]=\left[\bar{k}_{\mathrm{aa}}\right]+\left[\mathrm{k}_{\mathrm{ao}}\right]\left[\mathrm{G}_{0}\right] .
\]
82. Go to DMAP No. 85 if no radiation matrix exists.
83. SMP2 partitions constrained radiation matrix
\[
\left[R_{f f}\right]=\left[\begin{array}{l:l}
\bar{R}_{\mathrm{aa}} & R_{\mathrm{ao}} \\
\hline R_{\mathrm{oa}} & R_{\mathrm{oo}}
\end{array}\right],
\]
and performs matrix reduction
\[
\left[R_{a a}\right]=\left[\bar{R}_{a a}\right]+\left[R_{o a}^{\top}\right]\left[G_{o}\right]+\left[G_{o}^{\top}\right]\left[R_{o a}\right]+\left[G_{o}^{\top}\right]\left[R_{o o}\right]\left[G_{o}\right] .
\]
86. Go to DMAP No. 89 if no heat capacity matrix, \(\left[B_{f f}\right]\), exists.
87. SMP2 calculates a reduced heat capacity matrix, \(\left[{ }_{a a}\right]\), with the same equation as DMAP No. 83.
90. DPD generates the table defining the displacement sets each degree of freedom belongs to (USETD), including extra points. It prepares the Transfer Function Pool, the Dynamics Load Table, the Nonlinear Function Table, and the Transient Response List.
92. Go to DMAP No. 153 and exit if no time step data was specified.
93. Equivalence \(\left[G_{0}\right]\) to \(\left[G_{0}^{d}\right]\) and \(\left[G_{m}\right]\) to \(\left[G_{m}^{d}\right]\) if no extra points were defined.
96. MTRXIN selects the direct input matrices \(\left[K_{p p}^{2}\right]\) and \(\left[B_{p p}^{2}\right]\).
100. Equivalence \(\left[K_{a a}\right]\) to \(\left[K_{d d}^{1}\right]\) if no direct input stiffness matrices and no extra points; \(\left[B_{p p}\right]\) to \(\left[B_{d d}^{2}\right]\) and \(\left[K_{p p}\right]\) to \(\left[K_{d d}^{2}\right]\) if only extra points are used; and \(\left[R_{a a}\right]\) to \(\left[R_{d d}\right]\) if no extra points are used.
102. Go to DMAP No. 194 if no grid point definition table.
103. GKAD expands the matrices to include extra points and assembles conductivity, capacitance, and radiation matrices for use in Direct Transient Response.
\[
\begin{aligned}
& {\left[K_{d d}^{1}\right]=\left[\begin{array}{c:c}
K_{a \mathrm{ad}} & 0 \\
\hdashline 0 & 0
\end{array}\right],} \\
& {\left[B_{d d}^{1}\right]=\left[\begin{array}{c:c}
B_{a d} & 0 \\
\hdashline 0 & 0
\end{array}\right],} \\
& {\left[R_{d d}\right]=\left[\begin{array}{c:c}
R_{a a} & 0 \\
\hdashline 0 & 0
\end{array}\right],} \\
& {\left[K_{d d}\right]=\left[K_{d d}^{1}\right]+\left[K_{d d}^{2}\right],} \\
& {\left[B_{d d}\right]=\left[B_{d d}^{1}\right]+\left[B_{d d}^{2-}\right] .}
\end{aligned}
\]
(Nonzero values of the parameters W4, G, and W3 are not recommended for use in heat transfer analysis.)
105. Equivalence \(\left[K_{d d}^{2}\right]\) to \(\left[K_{d d}\right]\) and \(\left[B_{d d}^{2}\right]\) to \(\left[B_{d d}\right]\) if no matrices were generated from the
structural elements.
107. TRLG generates matrices of heat flux loads versus time. \(\left\{P_{p}^{0}\right\},\left\{P_{s}^{0}\right\}\), and \(\left\{P_{d}^{0}\right\}\) are generated with one column per output time step. \(\{P \mathrm{P}\}\) is geherated with one column per solution time step, and the Transient Output List is a list of output time steps.
109. Equivalence \(\left\{P_{d}^{0}\right\}\) to \(\left\{P_{d}^{0}\right\}\) if the \(d\) and \(p\) sets are the same.
110. Equivalence \(\left\{P_{d}^{0}\right\}\) to \(\left\{P_{d}^{t}\right\}\) if the output times are the same as the solution times.
112. TRHT integrates the equation of motion:
\[
\left[B_{d d}\right]\{\dot{u}\}+\left[K_{d d}\right]\{u\}=\left\{P_{d}\right\}+\left\{N_{d}\right\}
\]
where \(\{u\}\) is a vector of temperatures at any time,
\(\{\dot{u}\}\) is the time derivative of \(\{u\}\) ("velocity"),
\(\left\{P_{d}\right\}\) is the applied heat flux at any time step, and
\(\left\{N_{d}^{d}\right\}\) is the total nonlinear heat flux from radiation and/or NøLIN data, extrapolated from the previous solution vector.
The output consists of the [\(u_{d}^{t}\)] matrix containing temperature vectors and temperature "velocity" vectors for the output time steps.
114. VDR processes the user solution set output requests.
117. Go to DMAP No. 126 if no solution set output is desired.
118. SDR3 transforms the requested temperature and nonlinear load values into output S@RT2 format.
120. DFP formats the temperature, temperature velocity, and heat flux nonlinear loads for printout.
128. Go to DMAP No. 151 and exit if no further output is desired.
129. Equivalence \(\left[u_{d}\right]\) to \(\left[u_{p}\right]\) if no structure points were input.
130. Go to DMAP No. 132 if no structure points were input.

13'. SDR1 recovers the dependent temperatures:
\[
\begin{gathered}
\left\{u_{0}\right\}=\left[G_{0}^{d}\right]\left\{u_{d}\right\} \\
\left\{\begin{array}{c}
u_{d} \\
-u_{0}
\end{array}\right\}=\left\{u_{f}\right\} \\
\left\{\begin{array}{c}
u_{f}+u_{e} \\
\hdashline u_{s}
\end{array}\right\}=\left\{u_{n}\right\}, \\
\left\{u_{m}\right\}=\left[G_{m}^{d}\right]\left\{u_{f}+u_{e}\right\} \\
\left\{\begin{array}{c}
u_{n}+u_{e} \\
\hdashline u_{m}
\end{array}\right\}=\left\{u_{p}\right\}
\end{gathered}
\]

The module also recovers the heat flux into the points having single-point constraints.
\[
\left\{q_{s}\right\}=-\left\{p_{s}\right\}+\left[K_{f s}^{\top}\right]\left\{u_{f}\right\}
\]
134. PLTTRAN coverts the grid point tables to standard plot form when grid points with one degree of freedom are used.
136. SDR2 calculates requested heat flux transfer in the elements and transforms temperatures, velocities, and heat flux loads into output form.
139. SDR3 prepares requested output in S@RT2 order.
141. ØFP formats requested output and places it on the system output file.
143. Go to DMAP No. 147 if no deformed structure plots are requested.
144. PLØT generates plots of the temperature profile on the structure for specified times.
146. PRTMSG prints plotter data and engineering data for structure plots.
148. XYTRAN prepares tables of requested grid point or element output quantities for XYPL \(\emptyset T\)
150. XYPL \(\emptyset T\) prepares requested plots of temperatures, velocities, element flux, or applied heat loads versus time.
152. Go to DMAP No. 155 and make normal exit.
154. TRANSIENT HEAT TRANSFER ANALYSIS ERR@R MESSAGE NØ. 1 - TRANSIENT RESP@NSE LIST REQUIRED FØR TRANSIENT RESP@NSE CALCULATIØNS.

\subsection*{3.19.3 Case Control Deck and Parameters for Transient Heat Transfer Analys is}

The following items relate to subcase definition and data selection for Transient Heat Transfer Analysis:
1. A single subcase must be defined with a single constraint condition.
2. \(\operatorname{DL} \emptyset A D\) and/or N \(\varrho N L I N E A R\) must be used to define a single time-dependent loading condition. The static load cards (QVECT, QVQL, QHBDY, QBDY1, and QBDY2) can be used to define a dynamic load by using these cards with, or instead of, the DAREA cards. The set identification number on the static load cards (field 2) is used in the same manner as the set identification number on the DAREA cards (field 2).
3. TSTEP must be used to select the time-step intervals to be used for integration and output.
4. If nonzero initial conditions are desired, IC must be used to select a TEMP set in the Bulk Data Deck.
5. An estimated temperature distribution vector must be defined on TEMP cards and selected with a TEMP (MATERIAL) request if radiation effects are included.

The following printed output, sorted by print number or element number (SøRT2), is available at selected multiples of the integration time step:
1. Temperatures (THERMAL) and derivatives of temperatures (VELøCITY) for a list of PHYSICAL points (grid points and extra scalar points introduced for dynamic analysis) or SDISPLACEMENT and SVELøCITY for SØLUTIØN points (points used in formation of dynamic equation).
2. Nonzero components of the applied load vector (\(\varnothing\) LøAD) and constrained heat flow (SPCFØRCE) for a list of PHYSICAL points.
3. Nonlinear load vector for a list of SØLUTIØN points.
4. Flux density (ELFØRCE) in selected elements.

The following plotter output is available for Transient Heat Transfer Analysis:
1. Undeformed plot of the structural model.
2. Temperature profiles for selected time intervals.
3. \(X-Y\) plot of temperature or defivative of temperature for a PHYSICAL point or SøLUTIØN point.
4. X-Y plot of the applied load vector, nonlinear load vector, or constrained heat flow.
5. X-Y plot of flux density for an element.

The data used for preparing the \(X-Y\) plots may be punched or printed in tabular form (see Section 4.2). Also, a printed summary is prepared for each \(X-Y\) plot which includes the maximum and minimum values of the plotted function.

The following parameters are used in Transient Heat Transfer Analysis:
1. TABS - optional - the real value of this parameter is the absolute reference temperature.
2. SIGMA - optional - the real value of this parameter is the Stefan-Boltzmann constant.
3. BETA - optional - the real value of this parameter is used as a factor in the integration algorithm.
4. RADLIN - optional - a positive integer value of this parameter causes some of the radiation effects to be linearized.

\section*{MODAL FLUTTER ANALYSIS}
3.20

\section*{MODAL FLUTTER ANALYSIS}

\subsection*{3.20.1 DMAP Sequence for Modal Flutter Analysis}

\section*{RIGID FORMAT DMAP LISTING}

SERIES N
RIGID FORMAT 10 AERO
NASTRANSOURCE PROGRAMCOMPILATION DMAP-DMAP INSTRUCTION
Nu.
\begin{tabular}{|c|c|}
\hline 1 BEGIN & AERO NO. 10 modal flutter analysis ser ies \(N\) ¢ \\
\hline 2 file & PHIHL =APP END/AJJL=APPENO/FSAVE=APPENU/CASEYY=APPEND/CLAMAL= APPEND/OVG=APPEND/GHHL=APPEND \$ \\
\hline 3 GP1 & GEOMI, GEOM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ V,N, NOGPDT \$ \\
\hline 4 SAVE & LUSET, NOGPOT \$ \\
\hline 5 CONO & ERRORL, NOGPDT \$ \\
\hline 6 CHKPNT & GPL,EQEXIN,GPDT,CSTM, BGPDT,SIL \$ \\
\hline 7 Purge & DIJE, D2JE/NODJE \$ \\
\hline 8 GP2 & GE OMR E E X XIN/ECT. \$ \\
\hline 9 CHKPNT & ECT \$ \\
\hline 10 GP3 & GEOM3, EQEXIN,GEOM2/,GPTT/V,N,NOGRAV \$ \\
\hline 11 CHKPNT & GPTT \$ \\
\hline 12 TAL & \[
\begin{aligned}
& \text { ECT, EPT,BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET/ V,N, } \\
& \text { NOSIMP/C,N,I/V,N,NCGENL/V,N,GENEL \$ }
\end{aligned}
\] \\
\hline 13 SAVE & NO GENL, NOS IMP, GENEL \$ \\
\hline 14 COND & ERROR1, NOSIMP \$ \\
\hline 15 PURGE & OGPST/GENEL \$ \\
\hline 10 CHKPNT & EST,GPECT, GEI, OGPST \$ \\
\hline 17 PaRam & //C,N,ADD/V,N,NOKGGX/C,N,1/C,N,O\$ \\
\hline 18 PARAM & \(/ / C, N, A D D / V, N, N O M G G / C, N, 1 / C, N, O \$\) \\
\hline 19 EMG & EST, CSTM, MPT, DIT, GEOMZ,/KELM,KOICT, MELM,MOICT, ,/V,N,NOKGGX/ \(V\), N, NOMGG/C,N,/C,N,/C,N,/C,Y,COUPMASS/C,Y,CPBAR/C,Y,CPROD/: C,Y, CPQUADI/C,Y,CPQUADZ/C,Y,CPTRIAI/C,Y,CPTRIAZ/C,Y,CPTUBE/C,Y, CPQDPLT/C, Y, CPTRPLT/C,Y,CPTRBSC \$ \\
\hline 20 SAVE & NOKGGX,NOMGG \$ \\
\hline 21 CHKPNT & KELM, KOICT,MELM, MOICT \$ \\
\hline 22 COND & JMPKGGX,NOKGGX \$ \\
\hline 23 EMA & GPECT,KDICT,KELM/KGGX,GPST \$ \\
\hline 24 CHKPNT & KGGX,GPST \$ \\
\hline
\end{tabular}

\section*{RIGID FORMATS}
```

    RIGID FORMAT DMAP LISTING
    SERIES N
RIGID FORMAT lO AERO
NASTRRANSOURCEPROGRAMCOMPILATIION
DMAP-DMAP INSTRUCTION
NO.
25 LABEL JMPKGGX \$
26 COND ERRDR1,NOMGG \$
27@MA GPECT,MCICT,MELM/MGG,/C,N,-1/C,Y,WTMASS=1.0\$
28 CHKPNT MGG \$
2s COND LGPWG,GRDPNT\$
30@GPWG BGPDT,CSTM,EQEXIN,MGG/OGPWG/V,Y,GRDPNT=-1/C,Y,WTMASS \$
31 OFP OGPWG,,,,,//\$
32 LABEL LGPWG \$
33 EQUIV KGGX,KGG/NOGENL \$.
34 CHKPNT KGG \$
35 COND LBL11,NOGENL \$
36SMA3 GEI,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NCSIMP \$
37 CHKPNT KGG \$
38 LABEL LBL11 \$
39GP4 CASECC,GEOM4,EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,,USET,ASET/V V,N,
LUSET/V,N,MPCF1/V,N,MPCF2/V,N,SINGLE/V,N,CMIT/V,N,REACT/C,N,O/
V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID \$
40 SAVE MPCFI,SINGLE,OMIT,REACT,NOSET,MPCF2,REPEAT,NOL,NOA \$
41 PARAM //C,N,AND/V,N,NOSR/V,N,REACT/V,N,SINGLE \$
42 PURGE GM,GMD/MPCFI/GO,GOD/OMIT/KFS/SINGLE/QPC/NOSR/KLR,KRR,MLR,MRR,
DM,MR/REACT\$
43 COND LBL4,GENEL S
44GGPSP GPL,GPST,USET,SIL/OGPST/V,N,NOGPST\$
45 SAVE NOGPST \$
46 COND LBL4,NOGPST\$
47 OFP OGPST,,,,'// \$
48 LABEL LBL4 \$
49 EQUIV KGG,KNN/MPCFI/MGG,MNN/MPCF1\$
50 CHKPNT KNN,MNN \&
51 CONO LBL 2,MPCF1

```
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGIO FORMAT 1O AERO
NASTRANSOURCEPROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
NO.
52 MCE1 USET,RG/GM S
53 CHKPNT GM \$
54 MCE2 USET,GM,KGG,MGG,OIKNN,MNN,, \$
55 CHKPNT KNN,MNN \$
56 LABEL LBL2\$
57 EQUIV KNN,KFF/SINGLE/MNN,MFF/SINGLE\$
58 CHKPNT KFF,MFF \$
59 COND LBL3,SINGLE \$
60\SCEI USET,KNN,MNN,,/KFF,KFS,,MFF,,\$
61 CHKPNT KFF,KFS,MFF \$
62 LABEL LBL3\$
63 EQUIV KFF,KAA/OMIT/ MFF,MAA/OMIT \$
64 CHKPNT KAA,MAA \$
65 COND LBL5,OMIT \$
66 SMP1 USET,KFFF,,,/GO,KAA,KOO,LOO,,,,, \$
67 CHKPNT GO,KAA \$
68 SMP2 USET,GO,MFF/MAA S
69 CHKPNT MAA \$
70 LABEL LBL5\$
71 CONO LBLG,REACT \$
72 RBMG1 USET,KAA,MAA/KLL,KLR,KRR,MLL,MLR,MRR \$
73 CHKPNT KLL,KLR,KRR,MLL,MLR,MRR \$
74 RBMG2 KLL/LLL \$
75 CHKPNT LLL\$
70 RBMG3 LLL,KLR,KRR/OM \$
77 CHKPNT DM \$
78 RBMG4 UM,NLL,MLR,MRR/MR \$
79 CHKPNT MR \$

```

\section*{RIGID FORMATS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT }10\mathrm{ AERO

```

```

DMAP-DMAP INSTRUCTION
NO.
80 LABEL LBLG $\$$

```

```

                                    N,NONLFT/V,N,NOTRL/V,N,NOEED/C,N,/V,N,NOUE $
    82 SAVE LUSETD,NDUE,NOEED $
    83 COND ERROR2,NOEED$
    84 EQUIV GO,GOD/NOUE/GM,GMD/NOUE $
    85 READ KAA,MAA,MR,DM,EEC,USET, CASECC/LAMA,PHIA,MI,OEIGS/C,N,MOUES/V,N,
        NEIGV $
    86 SAVE NEIGV$
    B7 CHKPNT LAMA,PHIA,MI,OEIGS $
    88 PARAM //C,N,MPY/V,N,CARDNO/C,N,O/C,N,O $
    89 OFP OEIGS,LAMA,,,,/N,N,CARDNO$
    90 SAVE CARDNO $
    91 CONO ERROR4,NEIGV $
    92 MTRXIN CASECC,MATPOOL,EQDYN.,TFPOOL/K2PP,M2PP,B2PP/V,N,LUSETD/V,N,
        NOK2PP/V,N,NCM2PP/V,N,NOB 2PP &
    93 SAVE NUK2PP,NOM2PP,NOB2PP $
    94 PURGE K2DD/NOK2PP/N2OD/NCM2PP/B2DO/NOB2PP $
    95 EQUIV M2PP,M2UD/NOSET/B2PP,B2DD/NOSET/K2PP,K2DO/NOSET $
    96 CHKPNT K2PP,M2PP,B2PP,K2DD,M2OD,B2DD $
    97GKAD USETD,GM,GO,,,,,K2PP,M2PP,B2PP/,,,GMD,GOD,K2OD,M2DC,B2DD/C,N,
        CMPLEV/C,N,DISP/C,N,MODAL/C,N,O.O/C,N,O.O/C,N,O.O/V,N,NOK2PP/V,
        N, NOM2PP/V,N,NOB2PP/V,N,MPCFI/V,N,SINGLE/V,N,OMIT/V,N,NOUE/C,
        N,-1/C,N,-1/C,N,-1/C,N,-1$
    98 CHKPNT K2DD,M2CD,B2DD,GOD,GMD $
    99GKAM USETD,PHIA,MI,LAMA,DIT,M2OD,B2DD,K2DD,CASECC/MHH,BHH,KHH,PHIDH/
        V,N,NOUE/C,Y,LMODES=999999/C, Y,LFREQ=0.O/C,Y,HFREQ=0.O/V,N,
        NOM2PP/V,N,NOB2PP/V,N,NOK2PP/V,N,NONCUP/V,N,FMODE/C,Y,KDAMP=-1$
    100 SAVE NONCUP,FMDDE \$
101 CHKPNT MHH,BHH,KHH,PHIOH \$
102 APD EDT,EQDYN,ECT,BGPDT,SILD,USETD,CSTM,GPLD/EQAERO,ECTA,BGPA,SILA,
USETA,SPLINE,AERO, ACPT,FLIST,CSTMA,GPLA,SILGA/V,N,NK/V,N,NJ/V.
N,LUSETA\$

```
 3.20-4 (3/1/76)

\section*{MODAL FLUTTER ANALYSIS}
```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT IO AERO
NASTRANNSOURCE PROGRAMCOMPILLATION
DMAP-DMAP INSTRUCTION
NU.
103 SAVE NK,NJ,LUSETA \$
104 CHKPNT EQAERO, ECTA,BGPA,S ILA,USETA,SPLINE,AERO,ACPT,FLIST,CSTMA,GPLA,
SILGA S
105 PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCOB \$
100 PURGE PLTSETA,PLTPARA,GPSETSA,ELSETSA/NOPCD8 \$
107 CONO P2,NOPCDB \$
108 PLTSET PCDB,EQAERO,ECTA/PLTSETA,PLTPARA,GPSETSA,ELSETSA/V,N,NSILI/V,N,
JUMPPLOT=-1 \$
109 SAVE NSILI,JUMPPLOT \$
110 PRTMSG PLTSETA// \$
111 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,I \$
112 PARAM //C,N,MPY/V,N,PLTFLG/C,N,O/C,N,1\$
113 COND P2,JUMPPLOT \$
114 PLOT PLTPARA,GPSETSA,ELSETSA,CASECC,BGPA,EQAERO,, ,.,/PLOTX2/V,N,
NSILI/V,N,LUSETA/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
115 SAVE PFILE,JUMPPLOT,PLTFLG \$
116 PRTMSG PLOTX2//\$
117 LABEL P2\$
118 COND ERROR2,NDEED \$
1L9GISSPLINE,USET,CSTMA,BGPA,SIL,ECTA,GM,GO/GTKA/V,N,NK/V,N,LUSET \$
120 CHKPNT GTKA \$
121 PARAM //C,N,ADD/V,N,DESTRY/C,N,O/C,N,1\$
122 AMG AERO,ACPT/AJJL,SKJ,DLJK,DLJK/V,N,NK/V,N,NJ/V,N,DESTRY\$
123 SAVE DESTRY \$
124 CHKPNT AJJL,SKJ,DIJK,D2JK \$
125 COND NODJE,NODJE \$
126 NNPUTT2 /DIJE,O2JE,,,/C,Y,POSITION=-1/C,Y,UNITNUM=1I/ C,Y,USRLABEL=
127 LABEL NODJE \$
128 PARAM //C,N,ADD/V,N,XQHHL/C,N,1/C,N,O\$

```

```

RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 10 AERO

```

```

DMAP-DMAP INSTRUCTION
NG.

```

```

RIGID FORMAT DMAP LISTING
SERIES N
RIGIO FORMAT 10 AERO
NASTRAANSOURCE PROGRAMCOMPILATION
DMAP-DMAP INSTRUCTION
NC.
183 UMERGE USETA,CPHIP,/CPHIPS/C,N,PS/C,N,P/C,N,SA \$
184 UMERGE USETA,CPHIPS,CPHIK/CPHIPA/C,N,PA/C,N,PS/C,N,K \&
185 CHKPNT CPHIPA \$
186 UMERGE USETA,QPG,/QPAC/C,N,PA/C,N,P/C,N,K\$
187 CHKPNT QPAC \$
188 SDR2 CASEZZ,CSTMA,MPT,OIT,EQAERO,SILA,,,BGPA,CLAMALL,QPAC,CPHIPA,
EST,,I, OQPAC1,OCPHIPA,OESC1,DEFCI,PCPHIPA/C,N,CEIGN \&
189 CHKPNT PCPHIPA \$
190 OFP OCPHIPA,OQPACI,OESCL,OEFCL,,//V,N,CARDNO \$
191 COND P3,JUMPPLOT \$
192 PLOT PLTPARA,GPSETSA,ELSETSA,CASEZZ, EGPA,EQAERO,SILGA,,PCPHIPA,,/
PLOTX3/V,N,NSILI/V,N,LUSETA/V,N,JUMPPLCT/V,N,PLTFLG/V,N,PFILE \&
193 PRTMSG PLOTX3// \$
194 LABEL P3\$
195 JUMP FINIS \$
196 LABEL ERRORI \$
197 PRTPARM //C,N,-1/C,N,FSUBSCN \$
198 LABEL ERKOR2 \$
199 PRTPARM //C,N,-2/C,N,FSUBSON \$
200 LABEL ERRCR3 \$
201 PRTPARM //C,N,-3/C,N,FSURSON
202 LABEL ERROR4\$
203 PRTPARM //C,N,-4/C,N,FSUBSON \$
204 LABEL FINIS \$
205 END \$

```

\subsection*{3.20.2 Description of DMAP Operations for Modal Flutter Analysis}
3. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
5. Go to DMAP No. 196 and print error message if no grid points are present.
8. GP2 generates Element Connection Table with internal indices.
10. GP3 generates Static Loads Table and Grid Point Temperature Table.
12. TAl generates element tables for use in matrix assembly and stress recovery.
14. Go to DMAP No. 196 and print error message if no elements have been defined.
19. EMG generates structural element matrix tables and dictionaries for later assembly.
22. Go to DMAP No. 25 if no stiffness matrix is to be assembled.
23. EMA assembles stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{\mathrm{X}}\right]\) and Grid Point Singularity Table.
26. Go to DMAP No. 196 and print error message if no mass matrix exists.
27. EMA assembles mass matrix \(\left[\mathrm{Mg}_{\mathrm{gg}}\right]\).
29. Go to DMAP No. 32 if no weight and balance request.
30. GPWG generates weight and balance information.
31. ØFP formats weight and balance information and places it on the system output file for printing.
33. Equivalence \(\left[K_{g g}^{x}\right.\)] to [\(K_{g g}\)] if no general elements.
35. Go to DMAP No. 38 if no general elements.
36. SMA3 adds general elements to \(\left[K_{g g}^{x}\right]\) to obtain stiffness matrix \(\left[K_{g g}\right]\).
39. GP4 generates flags defining members of various displacement sets (USET), forms multipoint constraint equations \(\left[R_{g}\right]\left\{u_{g}\right\}=0\).
43. Go to DMAP No. 48 if general elements present.
44. GPSP determines if possible grid point singularities remain.
46. Go to DMAP No. 48 if no grid point singularities remain.
47. \(\emptyset F P\) formats the table of possible grid point singularities and places it on the system output file for printing.
49. Equivalence \(\left[K_{g g}\right]\) to \(\left[K_{n n}\right]\) and \(\left[M_{g g}\right]\) to \(\left[M_{n n}\right.\)] if no multipoint constraints.
51. Go to DMAP No. 56 if MCE1 and MCE2 have already been executed for current set of multipoint constraints.
52. MCET partitions multipoint constraint equations \(\left[R_{g}\right]=\left[R_{m} \mid R_{n}\right]\) and solves for multipoint constraint transformation matrix \(\left[G_{m}\right]=-\left[R_{m}\right]^{-1}\left[R_{n}\right]\).

\section*{RIGID FORMATS}
54. MCE2 partitions stiffness and mass matrices
\[
\left[K_{g g}\right]=\left[\begin{array}{c:cc}
\bar{K}_{n n} & 1 & K_{n m} \\
--1 & -- \\
K_{m n} & 1 & K_{m m}
\end{array}\right] . \quad \text { and } \quad\left[M_{g g}\right]=\left[\begin{array}{c:c}
\bar{M}_{n n} & M_{n m} \\
- & - \\
\hdashline M_{m n} & - \\
M_{m m}
\end{array}\right]
\]
and performs matrix reductions
\[
\begin{aligned}
& {\left[K_{n n}\right]=\left[\bar{K}_{n n}\right]+\left[G_{m}^{\top}\right]\left[K_{m n}\right]+\left[K_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[K_{m m}\right]\left[G_{m}\right] \text { and }} \\
& {\left[M_{n n}\right]=\left[\bar{M}_{n n}\right]+\left[G_{m}^{\top}\right]\left[M_{m n}\right]+\left[M_{m n}^{\top}\right]\left[G_{m}\right]+\left[G_{m}^{\top}\right]\left[M_{m m}\right]\left[G_{m}\right]}
\end{aligned}
\]
57. Equivalence \(\left[K_{n n}\right]\) to \(\left[K_{f f}\right]\) and \(\left[M_{n n}\right]\) to \(\left[M_{f f}\right.\)] if no single-point constraints.
59. Go to DMAP No. 62 if no single-point constraints.
60. SCEI partitions out single-point constraints
\[
\left[K_{n n}\right]=\left[\begin{array}{c:cc}
K_{f f} & K_{f s} \\
\hdashline K_{s f} & 1 & K_{s s}
\end{array}\right] \quad \text { and } \quad\left[M_{n n}\right]=\left[\begin{array}{c:c}
M_{f f} & M_{f s} \\
\hdashline- & - \\
M_{s f} & M_{s s}
\end{array}\right]
\]
63. Equivalence \(\left[K_{f f}\right.\)] to \(\left[K_{a a}\right.\)] and \(\left[M_{f f}\right]\) to \(\left[M_{a a}\right.\)] if no omitted degrees of freedom.
65. Go to DMAP No. 70 if no omitted coordinates.
66. SMP1 partitions constrained stiffness matrix
\[
\left[k_{f f}\right]=\left[\begin{array}{c:c}
\bar{k}_{\mathrm{aa}} & k_{\mathrm{ao}} \\
\hdashline \mathrm{~K}_{\mathrm{oa}} & \mathrm{k}_{\mathrm{oo}}
\end{array}\right]
\]
and solves for transformation matrix \(\left[G_{0}\right]=-\left[K_{00}\right]^{-1}\left[K_{0 a}\right]\)
and performs matrix reduction \(\left[K_{a a}\right]=\left[\bar{K}_{a a}\right]+\left[K_{o a}^{\top}\right]\left[G_{o}\right]\).
68. SMP2 partitions constrained mass matrix
\[
\left[M_{\mathrm{ff}}\right]=\left[\begin{array}{c:c}
\bar{M}_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hdashline M_{\mathrm{oa}} & M_{\mathrm{oo}}
\end{array}\right]
\]
and performs matrix reduction
\[
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}^{\top}\right]\left[G_{o}\right]+\left[G_{0}^{\top}\right]\left[M_{o 0}\right]\left[G_{o}\right]+\left[G_{0}^{\top}\right]\left[M_{o a}\right]
\]
71. Go to DMAP No. 80 if no free-body supports.
72. RBMGI partitions out free-body supports
\[
\left[K_{a a}\right]=\left[\begin{array}{c:cc}
K_{\ell \ell} & K_{\ell r} \\
- & : & -- \\
K_{r \ell} & K_{r r}
\end{array}\right] \quad \text { and } \quad\left[M_{a a}\right]=\left[\begin{array}{c:c}
M_{\ell \ell} & M_{\ell r} \\
\hdashline- & -- \\
M_{r \ell} & M_{r r}
\end{array}\right]
\]
74. RBMG2 decomposes constrained stiffness matrix \(\left[K_{\ell \ell}\right]=\left[L_{\ell \ell}\right]\left[U_{\ell \ell}\right]\).
76. RBMG3 forms rigid body transformation matrix
\[
[D]=-\left[K_{\ell \ell}\right]^{-1}\left[K_{\ell r}\right]
\]
calculates rigid body check matrix
\[
[X]=\left[K_{r r}\right]+\left[K_{l r}^{\top}\right][D]
\]
and calculates and outputs rigid body error ratio
\[
\varepsilon=\frac{\|x\|}{\left\|k_{r r}\right\|}
\]
78. RBMG4 forms rigid body mass matrix \(\left[M_{r}\right]=\left[M_{r r}\right]+\left[M_{\ell r}^{\top}\right][D]+\left[D^{\top}\right]\left[M_{\ell r}\right]+\left[D^{\top}\right]\left[M_{\ell \ell}\right][D]\).
81. DPD generates flags defining members of various displacement sets used in dynamic analysis (USETD), tables relating internal and external grid point numbers, including extra points introduced for dynamic analysis, and prepares Transfer Function Pool and Eigenvalue Extraction Data.
83. Go to DMAP No. 198 and print error message if no Eigenvalue Extraction Data.
84. Equivalence \(\left[G_{0}\right]\) to \(\left[G_{0}^{d}\right]\) and \(\left[G_{m}\right]\) to \(\left[G_{m}^{d}\right]\) if no extra points introduced for dynamic
analysis.
85. READ extracts real eigenvalues and vectors from the equation
\[
\left[K_{a a}-\lambda M_{a a}\right]\left\{\phi_{a}\right\}=0
\]
calculates rigid body modes by finding a matrix [\(\phi_{\text {ro }}\)] such that
\[
\left[m_{0}\right]=\left[\phi_{r o}^{\top}\right]\left[m_{r}\right]\left[\phi_{r o}\right]
\]
is diagonal and normalized and computes rigid body eigenvectors
\[
\left[\phi_{\mathrm{ao}}\right]=\left[\begin{array}{c}
D \phi_{\mathrm{ro}} \\
--- \\
\phi_{\mathrm{ro}}
\end{array}\right]
\]
calculates modal mass matrix
\[
[m]=\left[\phi_{a}^{\top}\right]\left[M_{a a}\right]\left[\phi_{a}\right]
\]
and normalizes eigenvectors according to one of the following user requests:
1) Unit value of selected coordinate
2) Unit value of largest component
3) Unit value of generalized mass
89. ØFP formats the summary of eigenvalues and the summary of eigenvalue extraction information and places them on the system output file for printing.
91. Go to DMAP No. 202 and print error message if no eigenvalues are found.
92. MTRXIN selects the direct input matrices \(\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]\), and \(\left[B_{p p}^{2}\right]\).
95. Equivalence \(\left[M_{p p}^{2}\right]\) to \(\left[M_{d d}^{2}\right],\left[B_{p p}^{2}\right]\) to \(\left[B_{d d}^{2}\right]\) and \(\left[K_{p p}^{2}\right]\) to \(\left[K_{d d}^{2}\right]\) if no constraints applied.
97. GKAD applies constraints to direct input matrices \(\left[K_{p p}^{2}\right],\left[M_{p p}^{2}\right]\), and \(\left[B_{p p}^{2}\right]\), forming \(\left[K_{d d}^{2}\right]\), \(\left[M_{d d}^{2}\right]\), and \(\left[B_{d d}^{2}\right]\) (see Section 9.3.3 of the Theoretical Manual) and forms [\(\left.G_{m d}\right]\) and \(\left[G_{o d}\right]\).
99. GKAM selects eigenvectors to form \(\left[\phi_{d h}\right]\) and assembles stiffness, mass and damping matrices in modal coordinates:
\[
\begin{aligned}
& {\left[K_{h h}\right]=\left[\begin{array}{c}
\left.k i_{1}-1-\frac{0}{0}\right]+\left[\phi_{d h}^{\top}\right]\left[K_{d d}^{2}\right]\left[\phi_{d h}\right], ~ \\
0,
\end{array}\right.} \\
& {\left[M_{h h}\right]=\left[\begin{array}{c}
m i \\
-1-\frac{0}{0}
\end{array}\right]+\left[\phi_{d h}^{\top}\right]\left[M_{d d}^{2}\right]\left[\phi_{d h}\right] \text {, }} \\
& {\left[B_{h h}\right]=\left[\begin{array}{c:c}
b i & 0 \\
\hdashline 0 & \left.-\frac{0}{0}\right] \\
\mathbf{T}
\end{array}\right]\left[B_{d d}^{2}\right]\left[\phi_{d h}\right] \text {. }}
\end{aligned}
\]
where
\begin{tabular}{|c|c|}
\hline KDAMP \(=1\) & KDAMP \(=-1\) (default) \\
\hline \(m_{i}=\) modal masses & \(\mathrm{m}_{\mathrm{i}}=\) modal masses \\
\hline \(b_{i}=m_{i} 2 \pi f_{i} g\left(f_{i}\right)\) & \(\mathrm{b}_{\mathbf{i}}=0\) \\
\hline \(k_{i}=m_{i} 4 \pi^{2} f_{i}\) & \(k_{i}=\left(1+i g\left(f_{i}\right)\right) 4 \pi^{2} f_{i}^{2} m_{i}\) \\
\hline
\end{tabular}
102. APD processes the aerodynamic data cards from EDT. It adds the \(k\) points and the SA points to USETD making USETA. EQAERD, ECTA, BGPA, CSTMA, GPLA, and SILA are updated to reflect the new elements. AER \(\emptyset\) and ACPT reflect the aerodynamic parameters. SILGA is a special SIL for plotting.
107. Go to DMAP No. 117 if no plot package is present.
108. PLTSET transforms user input into a form used to drive structure plotter.
110. PRTMSG prints error messages associated with structure plotter.
113. Go to DMAP No. 117 if no undeformed aerodynamic structure plot request.
114. PLøT generates all requested undeformed aerodynamic structure plots.
116. PRTMSG prints plotter data and engineering data for each undeformed aerodynamic plot generated.

\section*{MODAL FLUTTER ANALYSIS}
118. Go to DMAP No. 198 and print error message if no Eigenvalue Extraction Data.
119. GI forms a transformation matrix \(\left[G_{k a}^{\top}\right]\) which interpolates between aerodynamic (\(k\)) and structural (a) degrees of freedom.
122. AMG forms the aerodynamic matrix list \(\left[A_{j j}\right]\), the area matrix \(\left[S_{k j}\right]\), and the downwash coefficients \(\left[D_{j k}^{1}\right]\) and \(\left[D_{j k}^{2}\right]\).
125. Go to DMAP No. 127 if no user-supplied downwash coefficients.

126: INPUTT2 provides the user-supplied downwash factors due to extra points (\(\left[D_{j e}^{1}\right]\), \(\left[D_{j e}^{2}\right]\)).
129. AMP computes the aerodynamic matrix list related to the modal coordinates as follows:
\(\left[\phi_{\mathrm{dh}}\right]=\left[\begin{array}{c:c}\phi_{\mathrm{ai}} & \phi_{\mathrm{ae}} \\ \hdashline \phi_{\mathrm{ei}} & \phi_{\mathrm{ee}}\end{array}\right]\)
\[
\left[G_{k i}\right]=\left[G_{k a}^{\top}\right]^{\top}\left[\phi_{a i}\right]
\]
\(\left[D_{j h}^{1} h_{1} \ll\left[D_{j i}^{1} \mid D_{j e}^{1}\right]\right.\)
\(\left[D_{j i}^{1}\right]=\left[D_{j k}^{1}\right]^{T}\left[G_{k i}\right]\)
\(\left[D_{j h}^{2}\right] \Leftarrow\left[D_{j i}^{2} \mid D_{j e}{ }^{2}\right]\)
\(\left[D_{j i}^{2}\right]=\left[D_{j k}^{2}\right]^{\top}\left[G_{k i}\right]\)
For each (\(m, k\)) pair:
\[
\left[D_{j h}\right]=\left[D_{j h}^{1}\right]+i k\left[D_{j h}^{2}\right]
\]

For each group:
\[
\begin{aligned}
{\left[Q_{j h}\right] } & =\left[A_{j j}^{\top}\right]^{-1} \text { group }\left[D_{j h}\right] \text { group } \\
{\left[Q_{k h}\right] } & =\left[S_{k j}\right]\left[Q_{j h}\right] \\
{\left[Q_{i h}\right] } & =\left[G_{k j}\right]^{\top}\left[Q_{k h}\right] \\
{\left[Q_{h h}\right] } & \approx\left[\begin{array}{c}
Q_{i h} \\
Q_{e h}
\end{array}\right]
\end{aligned}
\]
135. PARAM initializes the flutter loop counter (FLøØP) to zero.
136. Go to next DMAP instruction if cold start or modified restart. LØØPTØP will be altered by the Executive System to the proper location inside the loop for unmodified restarts within the loop.
137. Beginning of loop for flutter.
138. FAI computes the total aerodynamic mass matrix [\(M_{h h}^{X}\)], the total aerodynamic stiffness matrix \(\left[K_{h h}^{X}\right]\) and the total aerodynamic damping matrix \(\left[B_{h h}^{x}\right]\) as well as a looping table FSAVE. For the \(k\)-method
\[
\begin{aligned}
& M_{h h}^{x}=\left(k^{2} / b^{2}\right) M_{h h}+(\rho / 2) Q_{h h} \\
& K_{h h}^{x}=K_{h h}, \\
& B_{h h}^{x}=0
\end{aligned}
\]
140. CEAD extracts complex eigenvalues from the equation
\[
\left[M_{h h}^{x} p^{2}+B_{h h}^{x} p+K_{h h}^{x}\right]\left\{\phi_{h}\right\}=0
\]
and normalizes eigenvectors to unit magnitude of largest component.
142. Go to DMAP No. 154 if no complex eigenvalues found.
143. Go to DMAP No. 149 if no output request for the extra points introduced for dynamic analysis or modal coordinates.
144. VDR prepares eigenvectors for output, using only the extra points introduced for dynamic analysis and modal coordinates.
146. Go to DMAP No. 149 if no output request for the extra points introduced for dynamic analysis or modal coordinates.
147. ØFP formats eigenvectors for extra points introduced for dynamic analysis and modal coordinates and places them on the system output file for printing.
150. FA2 appends eigenvectors to PHIHL, eigenvalues to CLAMAL, Case Control to CASEYY, and V-g plot data to \(\emptyset V G\).
153. Go to DMAP No. 158 if there is insufficient time for another flutter loop.
155. Go to DMAP No. 158 if flutter loop complete.
156. Go to DMAP No. 137 for additional aerodynamic configuration triplet values.
161. Go to DMAP No. 165 if no \(X-Y\) plot package is present.
162. XYTRAN prepares the input for requested \(X-Y\) plots.
164. XYPL \(\emptyset T\) prepares requested \(X-Y\) plots of displacements, velocities, accelerations, forces, stresses, loads or single-point forces of constraint vs. time.
167. Go to DMAP No. 204 if no output requests involve dependent degrees of freedom or forces and stresses.
168. MgDACC selects a list of eigenvalues and vectors whose imaginary parts (velocity in input units) are close to a user input list.
169. DDRI transforms the complex eigenvectors from modal to physical coordinates
\[
\left[\phi_{\mathrm{d}}^{\mathrm{C}}\right]=\left[\phi_{\mathrm{dh}}\right]\left[\phi_{\mathrm{h}}\right]
\]
171. Equivalence \(\left[\phi_{d}^{\mathrm{C}}\right]\) to \(\left[\phi_{\mathrm{p}}^{\mathrm{C}}\right.\)] if no constraints applied,
172. Go to DMAP No. 174 if no constraints applied.
173. SDR1 recovers dependent components of eigenvectors
\[
\begin{array}{ll}
\left\{\phi_{o}^{c}\right\} \cdot\left[G_{o}^{d}\right]\left\{\phi_{d}^{c}\right\}, & \left\{\begin{array}{l}
\phi_{d} \\
\phi_{0} \\
0
\end{array}\right\}=\left\{\phi_{f}^{c}+\phi_{e}^{c}\right\}
\end{array}, \begin{gathered}
\left(\begin{array}{c}
\phi_{f}^{c}+\phi_{e}^{c} \\
--- \\
\phi_{s}^{c}
\end{array}\right\}=\left\{\phi_{n}^{c}+\phi_{e}^{c}\right\},
\end{gathered}
\]
\[
\left(\begin{array}{c}
\phi_{f}^{c}+\phi_{e}^{c} \\
--\underline{e} \\
\phi_{m}^{c}
\end{array}\right)=\left\{\phi_{p}^{c}\right\}
\]
and recovers single-point forces of constraint \(\left\{q_{s}\right\}=\left[K_{f s}^{\top}\right]\left\{\phi_{f}\right\},\left\{-\frac{0}{q_{s}^{-}}\right\}=\left\{Q_{p}^{c}\right\}\).
176. Equivalence \(\left[\phi_{d}^{c}\right.\)] to \(\left[\phi_{a}^{c}\right]\) if no extra points introduced for dynamic analysis.
177. Go to DMAP No. 180 if no extra points present.
178. VEC generates a d-size partitioning vector (RP) for the a and e sets.
179. PARTN performs partition of \(\left[\phi_{d}^{c}\right]\) using RP.
\[
\left\{\phi_{d}^{c}\right\}=\left\{\frac{\phi_{a}^{c}}{\phi_{\mathrm{e}}^{c}}\right\}
\]
182. MPYAD recovers the displacements at the aerodynamic points (k).
\[
\left\{\phi_{\mathrm{k}}^{\mathrm{c}}\right\}=\left[\mathrm{G}_{\mathrm{ka}}^{\top}\right]^{\top}\left\{\phi_{\mathrm{a}}^{\mathrm{c}}\right\}
\]
184. UMERGE places \(\left\{\phi_{k}\right\}\) in its proper place in the displacement vector
\[
\left\{\phi_{p a}^{c}\right\}<=\left\{\begin{array}{c}
\phi_{p}^{c} \\
\phi_{\mathrm{k}}^{c}- \\
-\frac{1}{0}-
\end{array}\right\}
\]
186. UMERGE is used to expand \(\left\{Q_{p}^{C}\right\}\) to the pa set.
188. SDR2 calculates element forces and stresses (\(\varnothing E F C 1, \emptyset E S C 1\)) and prepares eigenvectors and single-point forces of constraint for output (\(\varnothing C P H I P A, ~ \emptyset Q P A C 1)\). It also prepares PCPHIPA for deformed plotting.
190. ØFP formats tables prepared by SDR2 and places them on the system output file for printing.
191. Go to DMAP No. 194 if no deformed aerodynamic structure plots are requested.
192. PLOT prepares all deformed aerodynamic structure plots:
193. PRTMSG prints plotter data and engineering data for each deformed plot generated.
195. Go to DMAP No. 204 and make normal exit.
197. MøDAL CØMPLEX EIGENVALUE ANALYSIS ERR \(\emptyset R\) MESSAGE NØ. 1 - MASS MATRIX REQUIRED FØR MøDAL FØRMULATIØN.
199. MØDAL CØMPLEX EIGENVALUE ANALYSIS ERRQR MESSAGE NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FQR REAL EIGENVALUE ANALYSIS.
201. MøDAL CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE NØ. 3-ATTEMPT T \(\emptyset\) EXECUTE M \(\emptyset R E\) THAN 100 LФØPS.
204. MØDAL CØMPLEX EIGENVALUE ANALYSIS ERRØR MESSAGE NØ. 4 - REAL EIGENVALUES REQUIRED FØR MØDAL FØRMULATIØN.

\section*{RIGID FORMATS}

\subsection*{3.20.3 Output for Modal Flutter Analysis}

The Real Eigenvalue Summary Table and the Real Eigenvalue Analysis Summary, as described under Normal Mode Analysis, are automatically printed. All real eigenvalues are included even though all may not be used in the modal formulation.

The grid point singularities from the structural model are also output.
A flutter summary for each value of the configuration parameters is printed out unless PRINT=Nø. This shows \(\rho, k, l / k, m, m * V_{\text {sound }}, V, g\) and \(f\) for each complex eigenvalue.

V-g and V-f plots may be requested by the XYØUT control cards by specifying the curve type as VG. The "points" are loop numbers and the "components" are G or F.

Printed output of the following types, sorted by complex eigenvalue root number (SøRTI) and (\(m, k, \rho\)) may be requested for all complex eigenvalues kept, as either real and imaginary parts or magnitude and phase angle (\(0^{\circ}-360^{\circ}\) lead):
1. The eigenvector for a list of PHYSICAL and AERØDYNAMIC points (grid points, extra points, and aerodynamic points) or SØLUTIØN points (modal coordinates and extra points).
2. Nonzero components of the single-point forces of constraint for a list of PHYSICAL points.
3. Complex stresses and forces in selected elements.

The \(\emptyset F R E Q U E N C Y\) case control card can select a subset of the complex eigenvectors for data recovery. In addition, undeformed and deformed shapes may be requested. Undeformed shapes may include only structural or structural and aerodynamic elements.

The eigenvectors used in the modal formulation may be obtained for the analysis points by using the ALTER feature to print the matrix of eigenvectors following the execution of READ. The eigenvectors for all points in the model may be obtained by running the problem initially on the Normal Mode Analysis Rigid Format or by making a modified restart using the Normal Mode Analysis Rigid Format.

\subsection*{3.20.4 Case Control Deck and Parameters for Modal Flutter Analysis}
1. Only one subcase is allowed.
2. Desired direct input matrices for stiffness \(\left[K_{p p}^{2}\right]\), mass \(\left[M_{p p}^{2}\right]\), and damping \(\left[B_{p p}^{2}\right]\) must be
selected via the keywords K2PP, M2PP, or B2PP.
3. CMETHØD must be used to select an EIGC card from the Bulk Data Deck.
4. FMETHøD must be used to select a FLUTTER card from the Bulk Data Deck.
5. METHØD must be used to select an EIGR card that exists in the Bulk Data Deck.
6. SDAMPING must be used to select a TABDMP1 table if structural damping is desired.

The following user parameters are used in Modal Flutter Analysis.
1. GRDPNT - optional - A positive integer value of this parameter will cause the Grid Point Weight Generator to be executed and the resulting weight and balance information to be printed. All fluid related masses are ignored.
2. WTMASS - optional - The terms of the structural mass matrix are multiplied by the real value of this parameter when they are generated in SMA2. Not recommended for use in hydroelasti.c problems.
3. CQUPMASS - CPBAR, CPRQD, CPQUAD1, CPQUAD2, CPTRIA1, CPTRIA2, CPTUBE, CPQOPLT, CPTRPLT, CPTRBSC - optional - These parameters will cause the generation of coupled mass matrices rather than lumped mass matrices for all bar elements, rod elements, and plate elements that include bending stiffness.
4. LFREQ and HFREQ - required unless LMøDES is used. The real values of these parameters give the frequency range (LFREQ is lower limit and HFREQ is upper limit) of the modes to be used in the modal formulation. To use this option, LMøDES must be set to 0 .
5. LMФDES - used unless set to 0 . The integer value of this parameter is the number of lowest modes to be used in the modal formulation. The default value will request all modes to be used.
6. N \(\varrho D J E\) - optional in modal flutter analysis. A positive integer of this parameter indicates that user supplied downwash matrices due to extra points are to be read from tape via the INPUTT2 module in the rigid format. The default value is -1.
7. P1, P2 and P3 - required in modal flutter analysis when using N \(\varnothing D J E\) parameter. See Section 5.3.2 for tape operation parameters required by INPUTT2 module. The defaults for P1, P2 and P3 are \(-1,11\) and TAPEID, respectively.
8. VREF - optional in modal flutter analysis. Velocities are divided by the real value of this parameter to convert units or to compute flutter indices. The default value is 1.0 .
9. PRINT - optional in modal flutter analysis. The \(B C D\) value, \(N \emptyset\), of this parameter will suppress the automatic printing of the flutter summary for the \(K\) method. The default value is YES.

\subsection*{3.20.5 Modal Flutter Analysis Subsets}

Modal flutter analysis contains two subsets (4 and 5), primarily for data checking. Subset 4 checks all data cards. Subset 5 further refines subset 4 to check only the aerodynamic data. A data check of only the structural model can be accomplished by ALTERing in an EXIT after DMAP instruction number 13. A listing of subsets 4 and 5 follow.
```

3.20.6 DMAP Sequence for Modal Flutter Analysis, Subset 4
RIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 10 AERO (SUBSET 4)
NASTTRANSOURCE PROGRAMMCOMPILLATION
DMAP-DMAP INSTRUCTION
NO.

```

```

    GP2 GEOM2,EQEXIN/ECT $
    9 CHKPNT ECT $
    10GP3
        GEOM3, EQEXIN,GEQM2/,GPTT/V,N,NOGRAV $
    11 CHKPNT GPTT $
    12\AI ECT,EPT,BGPDT,SIL,GPTT,CSTM/EST,GEI,GPECT,/V,N,LUSET// V,N.
        NOSIMP/C,N,I/V,N,NOGENL/V,N,GENEL $
    13 SAVE NOGENL,NOSIMP,GENEL &
    14 COND ERRORI,NOSIMP $
    39GG4
        CASECC, GEOM4, EQEXIN,SIL,GPDT,BGPDT,CSTM/RG,,USET,ASET/ V,N,
        LUSET/V,N,MPCF1/V,N,MPCF2/V,N,SINGLE/V,N,UMIT/V,N,REACT/C,N,O/
        V,N,REPEAT/V,N,NOSET/V,N,NOL/V,N,NOA/C,Y,SUBID $
    40 SAVE MPCFI,SINGLE,OMIT,REACT,NOSET,MPCF2,REPEAT,NOL,NOA $
    41 PARAM //C,N,AND/V,N,NOSR/V,N,REACT/V,N,SINGLE $
    81 DPD DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,TFPOOL,,,',, EED,EQDYN/V,
        N,LUSET/V,N,LUSETD/V,N,NOTFL/V,N,NODLT/V,N,NOPSDL/V,N,NOFRL/V,
        N,NONLFT/V,N,NOTRL/V,N,NOEED/C,N,/V,N,NOUE $
    82 SAVE LUSETD,NOUE,NOEED $
    92 MTRXIN
        CASECC,MATPOOL, EQUYN, TFPOOL/K2PP,M2PP,B2PP/V,N,LUSETO/V,N,
        NOK2PP/V,N,NOM2PP/V,N,NOB2PP $
        NUK 2PP,NOM2PP,NCB2PP $
        EDT, EQOYN, ECT, BGPOT,S ILD,USETD,CSTM,GPLD/EQAERO,ECTA,BGPA,SILA,
        USETA,SPLINE,AERO,ACPT,FLIST,CSTMA,GPLA,SILGA/V,N,NK/V,N,NJ/V,
        N,LUSETA $
    103 SAVE NK,NJ,LUSETA \$
104 CHKPNT EQAERO, ECT A,BGPA,SILA,USETA,SPLINE,AERO,ACPT,FLIST,CSTMA,GPLA,
SILGA \$

```

\section*{RIGID FORMATS}
```

GIGID FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 10 AERO (SUBSET 4)
NASTRAANSOURCE PROGRAMCOMPILATIEN
DMAP-DMAP INSTRUCTION
NO.
105 PARAML PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \&
106 PURGE PLTSETA,PLTPARA,GPSETSA,ELSETSA/NOPCDB \$
107 CONO P2,NOPCDB \$
108 PLTSET PCDB,EQAERO,ECTA/PLTSETA,PLTPARA,GPSETSA,ELSETSA/V,N,NSILI/V,N,
JUMPPLOT=-1 \$
lO9 SAVE NSILI,JUMPPLOT \$
110 PRTMSG PLTSETA// \$
111 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,I \$
112 PARAM //C,N,MPY/V,N,PLTFLG/C,N,O/C,N,1 \$
113 COND P2,JUMPPLOT \$
114 PLOT PLTPARA,GPSETSA,ELSETSA,CASECC, BGPA, EQAERO,,.,./PLOTX2/V,N,
NSILI/V,V,LUSETA/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
115 SAVE PFILE,JUMPPLCT,PLTFLG \$
116 PRTMSG PLOTX2// \$
117 LABEL P2 \$
118 COND ERRORZ;NOEED \$
195 JUMP FINIS \$.
196 LABEL ERRORL \$
197 PRTPARM //C,N,-1/C,N,FSUBSON \$
198 LABEL ERROR2 \$
199 PRTPARM //C,N,-2/C,N,FSUB SON \$
204 LABEL FINIS \$
205 END \$

```
```

3.20.7 DMAP Sequence for Modal Flutter Analysis, Subset 5
RIGIO FORMAT DMAP LISTING
SERIES N
RIGID FORMAT 10 AERO (SUBSET 5)
NASTRRAN S OURCE PROG RAMCOMMPILATIION
DMAP-DMAP INSTRUCTION
NO.

1	BEGIN	AERO NO. 10 MODAL FLUTTER ANALYS IS SERIES $\mathrm{N} \$$
2	file	PHIHL = APPEND/AJJL=APPEND/FSAVE=APPEND/CASEYY=APPEND/CLAMAL= $A P P E N D / O V G=A P P E N D / Q H H L=A P P E N D \$$
	GP1	GEOM1,GEDM2,/GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL/V,N,LUSET/ V,N, NOGPDT \$
4	save	LUSET, NOGPDT \$
5	CUND	ERRORI, NOGPDT \$
6	CHKPNT	GPL, EQEXIN,GPDT, CSTM, BGPDT, SIL \$
	GP2	GEOMZ, EQEXIN/ECT \$
9	CHK PNT	ECT \$
39	GP4	CASECC, GEOM4, EUEXIN,SIL,GPDT, BGPDT, CSTM/RG, USET, ASET/ V,N, LUSET/V,N,MPCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,REACT/C,N,O/ $V, N, R E P E A T / V, N, N O S E T / V, N, N O L / V, N, N O A / C, Y, S U B I D \$$
40	S AVE	MPCFI,S INGLE, OMIT, REACT, NOSET, MPCF2,REPEAT, NCL, NOA
41	PARAM	$/ / C, N, A N D / V, N, N O S R / V, N, R E A C T / V, N, S$ INGLE
81	OPD	DYNAMICS,GPL,SIL, USET/GPLD,SILD,USETD,TFPOOL, ., , , EED,EQDYN/V, N,LUSET/V,N,LUSET D/V,N,NOTFL/V,N,NODLT/V,N,NOPSOL/V,N,NOFRL/V, N, NONLFT/V,N,NOTRL/V,N,NOEED/C,N,/V,N,NOUE \$
82	save	LUSETD, NUUE, NOEED \$
83	COND	ERROR2,NOEED \$
	APD	EOT, EQUYN, ECT, BGPOT, SILD, USETC, CSTM, GPLO/EQAERO, ECTA, BGPA,SILA, USETA,SPLINE,AERO,ACPT,FLIST,CSTMA,GPLA,SILGA/V,N,NK/V,N,NJ/V, N,LUSETA $\$$
103	SAVE	NK, NJ,LUSETA \$
04	CHKPNT	EQAERO, ECTA, BGPA,S ILA,USETA,SPLINE, AERO, ACPY,FLIST,CSTMA,GPLA, SILGA
105	Paraml	PCDB//C,N,PRES/C,N,/C,N,/C,N,/V,N,NOPCDB \$
106	PURGE	PLTSETA, PLIPARA, GP SETSA, ELSETSA/NOPCO8\$
107	COND	P2, NOPCDB \$
08	PLTSET	PCDB, EQAERO, ECTA/PLTSETA, PL TPARA,GPSETSA,ELSETSA/V,N,NSILI/V,N, JUMPPLOT=-1 \$
109	SAVE	NSILI, JUMPPLOT \$

```

\section*{RIGID FORMATS}
```

    RIGID FORMAT DMAP LISTINGG
    SERIES N
RIGIO FORMAT 10 AERO (SUBSET 5)
NASTGRANSOURCE PROGRAMMCOMPILLATION
DMAP-DMAP INSTRUCTION
NO.
110 PRTMSG PLTSETA// \$
111 PARAM //C,N,MPY/V,N,PFILE/C,N,O/C,N,1\$
112 PARAM //C,N,MPY/V,N,PLTFLG/C,N,O/C,N,1\$
113 COND P2,JUMPPLOT \$
114 PLOT PLTPARA,GPSETSA,ELSETSA,CASECC, BGPA,EQAERO,,.,./PPLOT X2/V,N,
NSILI/V,N,LUSETA/V,N,JUMPPLOT/V,N,PLTFLG/V,N,PFILE \$
115 SAVE PFILE,JUMPPLOT,PLTFLG \$
116 PRTMSG PLOTX2// \$
117 LABEL P2 s
118 COND ERROR2,NOEED \$
195 JUMP FINIS \$
196 LABEL ERRORI \$
1S7 PRTPARM //C,N,-1/C,N,FSUBSON \$
198 LABEL ERROR2\$
199 PRTPARM //C,N,-2/C,N,FSUBSEN \$
204 LABEL FINIS \$
205. ENO - \$

```

\subsection*{4.1 PLOTTING}

NASTRAN provides the capability for generating on any of several-different plotters the following kinds of plots:
1. Undeformed geometric projections of the structural model.
2. Static deformations of the structural model by either displaying the deformed shape (alone or superimposed on the undeformed shape), or displaying the displacement vectors at the grid points (superimposed on either the deformed or undeformed shape).
3. Modal deformations (sometimes called mode shapes or eigenvectors) resulting from real eigenvalue analysis by the same options stated in 2 above. Complex modes of flutter analysis may be plotted for any user chosen phase lag.
4. Deformations of the structural model for transient response or frequency response by displaying either vectors or the deformed shape for specified times or frequencies.
5. \(X-Y\) graphs of transient response or frequency response.
6. V-f and V-g graphs of flutter analysis.
7. Topological displays of matrices.

Structure plots (items 1-4) are discussed in Section 4.2 while \(X-Y\) plots (item 5) are discussed in Section 4.3. Matrix plots are generated by Utility Module SEEMAT described in Section 5 and must be accomplished by altering a Rigid Format or using a DMAP sequence. Requests for structure plots or \(X-Y\) plots are accomplished in the Case Control Deck by submitting a structure plot request packet or an \(X-Y\) output request packet. The discussion of these packets constitutes most of the remainder of this chapter. The optional PLØTID card is considered to be part of the plot packets (although it illust precede any \(\emptyset U T P U T(P L \emptyset T)\), \(\emptyset U T P U T(X Y \emptyset U T)\), or \(\emptyset U T P U T(X Y P L \emptyset T)\) cards, see page 2.3-38).

In order to actually create plots, a plotter and model name must be specified by the user. The method used to specify this information may vary according to the plot request made, but the actual names used do not vary. In addition, a physical plot tape must be set up by the user. The control cards needed to set up a plot tape are generally installation dependent and are described in Section 5 of the Programmer's Manua1. There are two plot tapes (PLTI and PLT2). It is only necessary to set up the plot tape used by the specified plotter. The number of plots for PLTl on IBM 360 computers is limited (see Section 5.3.5 of the Programmer's Manual).

The following table is a list of permissible plotter and model names, together with the corresponding plot tapes which must be set up by the user. The underlined items are the default models for each plotter. A model name is generally specified as two items, each having a default value. The default value of the second item is in some cases dependent upon the value specified for the first item. If no plotter is specified by the user, the requested plots will be created for the Stromberg Carlson (SC) model 4020 microfilm plotter.

PLOTTING
\begin{tabular}{|c|c|c|}
\hline .Plotter Name & Plot Tape & Plotter Modeli \\
\hline BL & PLTI & \(\left\{\frac{S T E}{L T E}\right\}, \underline{30}\) \\
\hline CALCDMP & PLT2 & \[
\begin{aligned}
& \left\{\frac{765}{763}\right\},\left\{\begin{array}{l}
\frac{205}{210} \\
105 \\
110
\end{array}\right\} . \\
& \left\{\begin{array}{l}
565 \\
563
\end{array}\right\},\left\{\begin{array}{l}
\frac{205}{210} \\
105 \\
110 \\
305 \\
310
\end{array}\right\}
\end{aligned}
\] \\
\hline DD & PLT2 & 80, \({ }^{\text {B }}\) \\
\hline EAI & PLT1 & \(\underline{3500},\left\{\frac{30}{45}\right\}\) \\
\hline NASTPLT & PLT2 & \(\left\{\begin{array}{l}M \\ T \\ D\end{array}\right\},\left\{\frac{0}{T}\right\}\) \\
\hline SC & PLT2 & 4020 \\
\hline
\end{tabular}

The plotter name, BL, is used for Benson Lehner plotters. The default model is an STE, 30. The first model item may be either STE or LTE, where STE is a short line electroplotter and LTE is a long line electroplotter. The second model item may only equal 30 , which is the size of the plotter table in inches. Both the STE and LTE plotters are table plotters.

The plotter name, CALCDMP, is used for California Computer plotters. The default model is a 765, 205. The first model item is the plotter model number as used in California Computer hardware descriptions. The 700 series plotters are those having the ZIP mode and 24 incremental directions. The 500 series plotters are those having only 8 incremental directions. The 600 series may have either 24 or 8 incremental directions. If the user has access to only a 663 or 665 plotter, it should be specified as a 563 or 565 if it has only 8 incremental directions, and as a 763 or 765 if it has 24 incremental directions. The 563 and 763 are both 30 -inch drum plotters, while the 565 and 765 are both 12-inch drum plotters.

\section*{PLOTTING}

The second model item indicates the type of tape transport used with the CALCOMP plotter and the increment size of the plotter. There are two possible increment sizes, .010 and .005 inches. The last two digits of this second model item represent these two possible increment sizes, i.e., \(10=.010\) and \(05=.005\). The first digit of the second model item represents the type of tape transport attached to the plotter. There are three types of tape transports available. The primary differences among these transports are the number of characters needed to cause one incremental movement on the plotter. Some transports (e.g. the 470,570 and 750 models) require three characters. These transports can only be attached to the 500 series plotters. Other transports (e.g. the 760 and 770) require two characters for each incremental movement. Still other transports (e.g. the 780) require only one character for each incremental movement. The first digit of the second model item is the number of characters required by the tape transport for each incremental movement. An example of a legitimate CALC0MP model name is (763,105). This represents a 763,30 -inch drum plotter with an increment size of .005 inches, driven by a tape transport requiring only one character for each incremental movement (e.g. a 780 tape transport).

The plotter name, \(D D\), is used for Data Display plotters. The only permissible model is the (\(80, B\)) microfilm plotter:

The plotter name, EAI, is used for Electronic Associates Inc. plotters. The first model item is the model number as described in EAI hardware descriptions. The only permissible model is an EAI 3500. This is a table plotter having either a 30 -inch or 45 -inch plotting surface. The second model item is the size of the plotting surface. The default size is a 30 -inch surface, i.e., \(3500,30\).

The plotter name, NASTPLT, is used for the NASTRAN General Purpose plotter package. This plotter package is used if the desired plotter is not available in the NASTRAN plotting software. However, if this package is specified, a separate program must be written to interpret the resulting plot tape and create the corresponding plots on the actual plotter desired. The default model is \(M, 0\). The first model item may either be \(M, T\), or \(D\). This indicates the actual plotter is a microfilm, table or drum plotter, respectively. The second model item indicates whether or not
 typing capability exists, all printed characters will be drawn. The default plotter type is a microfilm plotter with typing capability. An example of an acceptable model is (\(\mathrm{T}, \mathrm{l}\)). This represents a table plotter having no typing capability. A more detailed description of the

\section*{PLOTTING}
implications of the NASTRAN General Purpose plotter package is given in Section 6 of the Programmer's Manual.

The plotter name, \(S C\), is used for Stromberg Carlson plotters. The only permissible model is the 4020 microfilm plotter. If the only available plotter model is a 4060 , the user should determine if it has a 4020 compatibility package, as is usually the case, so as to avoid using the NASTRAN General Purpose plotter.

The operation of the Structure Plotter is of sufficient theoretical content to warrant inclusion in the Theoretical Manual. Section 13 of the Theoretical Manual provides a discussion of the basic theory and gives some examples of plotter output.

The availability of NASTRAN plotting capability is a function of the particular rigid format as shown in the following table.

\section*{PLOTTING}

\section*{Plotter Availability for the NASTRAN Rigid Formats}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rigid Format} & \multicolumn{2}{|l|}{Structure Plotter} & \multirow[t]{2}{*}{Curve Plotter} & \multirow[t]{2}{*}{Matrix Topology Plotter} \\
\hline & Undeformed & Deformed & & \\
\hline 1 & \(x\) & x & x & * \\
\hline 2 & \(x\) & x & & * \\
\hline 3 & \(x\) & \(x\) & & * \\
\hline 4 & x & X & & * \\
\hline 5 & x & \(x\) & & * \\
\hline 6 & \(x\) & x & & * \\
\hline 7 & \(x\) & x & & * \\
\hline 8 & x & \(x\) & \(x\) & * \\
\hline 9 & \(x\) & x & x & * \\
\hline 10 & x & \(x\) & & * \\
\hline 11 & x & x & x & * \\
\hline 12 & x & \(x\) & \(x\) & * \\
\hline 10(AERD) & x & x & x & * \\
\hline
\end{tabular}
* The matrix topology plotter is not automatically available in any rigid format. Utility module SEEMAT must be altered into the Rigid Format DMAP sequence in order to use this feature (see Section 5.2).

\subsection*{4.2 STRUCTURE PLOTTING}

In order to assist NASTRAN users both in the preparation of the analytical model and in the interpretation of output, the structure plotter provides the following capabilities for undeformed structures:
1. Place a symbol at the grid point locations. (optional)
2. Identify grid points by placing the grid point identification number to the right of the grid point locations. (optional)
3. Identify elements by placing the element identification number and element symbol at the center of each element. (optional)
4. Connect the grid points in a predetermined manner using the structural elements or PLøTEL elements.

The following capabilities are provided for deformed structures:
1. Place a symbol at the deflected grid point location. (optional)
2. Identify the deflected grid points by placing the grid point identification number to the right of the deflected grid point locations. (optional)
3. Connect the deflected grid points in a predetermined manner using the structural elements or PLøTEL elements.
4. Draw lines originating at the undeflected or deflected grid point location, drawn to user-specified scale, representing the \(X, Y, Z\) components or resultant summations of the grid point deflections.

The above plots are available in either orthographic, perspective, or stereoscopic projections on several plotters. Stereoscopic plots are normally made only on microfilm plotters since a stereoscopic viewer or projector must be used to obtain the stereoscopic effect. A request for structure plotting is made in the Case Control Deck by means of a plot request packet which includes all cards from an \(\emptyset U T P U T(P L \emptyset T)\) card to either a BEGIN BULK or \(\emptyset U T P U T(X Y \emptyset U T)\) [or \(\emptyset U T P U T(X Y P L \emptyset T)]\) card. It should be noted that only elements can be plotted. Grid points that are not associated with elements cannot be plotted. Grid points may be connected with PLØTEL elements for plotting purposes.

The data card format is free-field, subject to rules in paragraphs below. The cards are basically.sequence dependent even though some interchanging in sequence of defining parameters is permissible. The elements and grid points to be plotted may be defined anywhere in the submittal, but the parameters describing the characteristics of the plot are evaluated on the current basis every time a PLøT or FIND card (see Section 4.2.2.2) is encountered. In order to minimize mistakes, it is suggested that a strict sequence dependency be assumed.

\subsection*{4.2.1 General Rules}

\subsection*{4.2.1.1 Rules for Free-Field Card Specification}
1. Only columns 1 thru 72 are available. Any information specified in columns 73 thru 80 will be ignored.
2. If the last character on a card is a comma (not necessarily in column 72), the next card is a continuation of this physical card. Any number of continuation cards may be specified, and together they form a logical card.
3. The mnemonics or values can be placed anywhere on the card, but must be separated by delimiters.
4. The following delimiters are used:
a. blank
b. , comma
c. (left parenthesis
d.) right parenthesis
e. = equal sign

All of these delimiters can be used as needed to aid the legibility of the data.

\subsection*{4.2.1.2 P.lot Request Packet Card Format}

In the plot request packet card descriptions presented in Section 4.2.2, the following notations will be used to describe the card format:
1. Upper-case letters must be punched exactly as shown.
2. Lower-case letters indicate that a substitution must be made.
3. Braces \(\}\) indicate that a choice of the contents is mandatory.
4. Brackets [] contain an option that may be omitted or included by the user.
5. Underlined options or values are those for which a default option or an initialized (or computed) value was programmed.
6. A physical card consists of information punched in columns 1 through 72 of a card.
7. A logical card may consist of more than one physical card through the use of continuation cards.
8. Numerical values may always be either integer or real numbers, even though a specific type is at times suggested in order to conform to the input in other sections of the program.

\subsection*{4.2.1.3 Plot Titles}

Up to four lines of title information will be printed in the lower left-hand corner of each plot. The text for the top three lines is taken from the TITLE, SUBTITLE, and LABEL cards in the
\[
4.2-2(6 / 1 / 72)
\]

Case Control Deck. (See Sections 2.3.2 and 2.3.4 for a description of the TITLE, SUBTITLE, and LABEL cards.) The text for the bottom line may be of two forms depending on the type plot requested. One form contains the word UNDEFgRMED SHAPE. The other form contains the type of plot (statics, modal, etc.), subcase number, load set or mode number, frequency or eigenvalue or time, and (for complex quantities) the phase lag or magnitude.

The sequence number for each plot is printed in the upper corners of each frame. The sequence number is determined by the relative position of each \(P L \emptyset T\) execution card in the plot package. The date and (for deformed plots) the maximum deformation are also printed at the top of each frame.

\subsection*{4.2.2 Plot Request Packet Card Descriptions}

The general form for each card of the plot request packet is shown enclosed in a rectangular box. Description of the card contents then follows for each card.

\subsection*{4.2.2.1 SET Definition Cards}

These cards specify sets of elements, corresponding to portions of the structure, which may be referenced by PLQT and FIND cards. The SET card is required.

Each set of elements defines by implication a set of grid points connected by those elements. The set may be modified by deleting some of its grid points. The elements are used for creating the plot itself and element labeling while the grid points are used for labeling, symbol printing, and drawing deformation vectors.

SET \(i\) [INCLUDE] [ELEMENTS] \(j_{1}, j_{2}, j_{3} \operatorname{THRU} j_{4}, j_{5}\), etc.

\(\mathbf{i}=\) set identification number (positive integer, unique for each set)
\(\mathbf{j}=\) element identification numbers or element types
\(k=\) element identification numbers or grid point identification numbers or element types

Permissible element types are:
AXIF2, AXIF3, AXIF4, BAR, CQNE, CONRQD, HEXAI, HEXA2, FLUID2, FLUID3, FLUID4, IHEXI, IHEX2, IHEX3, PLØTEL, QDMEM, QDMEM1, QDMEM2, QDPLT, QUAD1, QUAD2, RØD, SHEAR, SLØT3, SLØT4, TETRA, TØRDRG, TRAPAX, TRAPRG, TRBSC, TRIA1, TRIA2, TRIAAX, TRIARG, TRMEM, TRPLT, TUBE, TWIST, VISC, WEDGE

ALL may be used to select all permissible element types.
INCLUDE may be used at any time for element information. When used with grid points, INCLUDE can be used only to restore previously EXCLUDEd grid points. It cannot be used to include grid points in the original set of grid points.

EXCLUDE can be used to delete elements or element types: All grid points that are associated with deleted elements are also deleted. EXCLUDE can be used to delete deformation vectors from grid points enumerated after an EXCLUDE command.

EXCEPT is a modifier to an INCLUDE or an EXCLUDE statement.
THRU is used to indicate all of the integers in a sequence of identification numbers, starting with the integer preceding THRU and ending with the integer following THRU. The integers in the range of the THRU statement need not be consecutive, e.g., the sequence \(2,4,7,9\) may be specified

\section*{PLotting}
as 2 THRU 9.. THRU is not applicable if element types are specified.
Each SET must be a logical card. Redefinition of sets previously defined is not permitted; nowever, there is no restriction on the number of sets. The sets of identification numbers can be assembled by use of the word ALL, or by individually listing the integers in any order such as 1065, \(32,46,47,7020\), or by listing sequences using THRU, EXCLUDE, and EXCEPT such as 100 THRU 1000 EXCEPT 182 EXCLUDE 877 THRU 911. Examples of SET cards:

Examples of SET cards:
1. SET 1 INCLUDE \(1,5,10\) THRU 15 EXCEPT 12
(Set will consist of elements \(1,5,10,11,13,14\) and 15)
2. \(\operatorname{SET} 25=R \emptyset D\), CONR \(\emptyset D\), EXCEPT 21
(Set will consist of all R \(\emptyset D\) and \(C \emptyset N R \emptyset D\) elements except element 21)
3. SET 10 SHEAR EXCLUDE GRID P \(\emptyset\) INTS 20, 30 THRU 60, EXCEPT 35, 36 INCLUDE ELEMENTS 70 THRU 80.
(This set will include all shear elements plus elements 70 thru 80 , and the associated grid point set will contain all grid points connected by these elements. Grid points 20 , 30 thru 34 and 37 thru 60 will appear on all plots with their symbols and labels, however no deformation vectors will appear at these grid points when VECT@R is commanded.
4. SET \((15)=(15\) THRU 100) EXCEPT (21 THRU 25)
(This set will include all elements from 15 to 20 and from 26 to 100).
5. SET 2 = ALL EXCEPT BAR
(This set will include all elements except bars).
NOTE: The equal signs, commas, and parentheses above are delimiters and are not required, because blanks also serve as delimiters.

\subsection*{4.2.2.2 Cards Defining Parameters}

These cards specify how the structure will be plotted, i.e., type of projection, view angles, scales, etc. All the multiple choice parameters are defaulted to a preselected choice if not specified. Each parameter requiring a numerical value that is not specified by the user can either be established internally in the program by means of the FIND card or can assume default values. The FIND card is used to request that the program select a SCALE, ØRIGIN, and/or VANTAGE PgINT to allow the construction of a plot in a user-specified region of the paper or film. The FIND card is described at the end of this Section, following the discussion of the associated parameters.

The parameter cards are listed here in a logical sequence; however, they need not be so specified.! Any order may be used, but if a parameter is specified more than once, the value or choice stated last will be used. Each parameter may be either an individual card, or any number of them may be combined on one logical card.

All the parameters used in the generation of the various plots will be printed out as part of the output, whether they are directly specified, defaulted or established using the FIND card.
\[
4.2-4 \quad(3 / 1 / 70)
\]

Initialization of parameters to default values occurs only once. Subsequently, these values remain until altered by a direct input. The only exceptions are the view angles, scale factors, vantage point parameters, and the origins. Whenever the plotter or the method of projection is changed, the view angles are reset to the default values, unless they are respecified by the user. In addition, the scale factors, vantage point parameters, and the origin must be redefined by the user.
\[
\text { PLøTTER plotter name, MøDEL name }\left[\text { DENSITY }\left\{\begin{array}{l}
800 \\
556 \\
200
\end{array}\right\} \mathrm{BPI}\right]
\]

The plotter names and MøDEL names are listed in Section 4.1. The tape density information is used only in print-out and does not control the density of the generated plot tape. To actually specify the tape density, the user must use the customary means of communication established at a given installation between the user and the computer operators. This card is required for plotters other than the SC 4020.

The default option is orthographic projection. See Section 13 of the Theoretical Manual for a discussion of the various projections. This card is optional.
\(\left.\begin{array}{|ll|}\hline \text { AXES } r, s, t & {\left[\frac{\text { SSYMMETRIC }}{}\right.} \\ \hline \text { LANTISYMMETRIC }\}]\end{array}\right]\)
\[
\begin{aligned}
& r, s, t=X \text { or } M X, Y \text { or } M Y, Z \text { or } M Z \text { (where "M" implies the negative axis) } \\
& Y, B, \alpha=\text { three angles of rotation in degrees (real numbers) }
\end{aligned}
\]

These two parameter cards define the orientation of the object in relation to the observer, that is, the angles of view. Both of these cards are optional. Defining the observer's coordinate system as \(R, S, T\) and the basic coordinate system of the object as \(X, Y, Z\), the angular relationship between the two systems is defined by the three angles \(\gamma, \beta\) and \(\alpha\) as follows:
\[
4.2-5 \quad(3 / 1 / 70)
\]

Using the above convention, \(\gamma\) and \(\beta\) represent the angles of turn and tilt. The default values are:
\(\gamma=34.27^{\circ}\)
\(B=23.17^{\circ}\) for orthographic and stereoscopic projections
\(0.0^{\circ}\) for perspective projection
\(\alpha=0.0^{\circ}\).
The order in which \(\gamma, \beta\), and \(\alpha\) are specified is critically important as illustrated in Figure 1 , at the end of this section. Also, see section 13.1.1 of the Theoretical Manual.

The AXES card can be used to preposition the object in \(90^{\circ}\) increments in such a manner that only rotations less than \(90^{\circ}\) are required by the VIEW card to obtain the desired orientation. This is accomplished by entering \(X, Y, Z, M X, M Y\) or \(M Z\) in the fields corresponding to \(R, S, T\) axes, where \(M X\), MY and MZ represent the negative \(X, Y\) and \(Z\) axis directions respectively. The default values are \(X, Y, Z\).

An undeformed or deformed plot of the symmetric portion of an object can be obtained by reversing the sign of the axis that is normal to the plane of symmetry. In the case of multiple planes of symmetry, the signs of all associated planes should be reversed. The ANTISYMMETRIC option should be specified when a symmetric structure is loaded in an unsymmetric manner. This will cause the deformations to be plotted antisymmetrically with respect to the specified plane or
planes. Since the AXES card applies to all parts (SETS) of a single frame, symmetric and antisymmetric combinations cannot be made with this card (see the symmetry option on the PLØT execution card in Section 4.2.2.3).

\section*{MAXIMUM DEFØRMATION d}

This card must always be included if a deformed structure is to be plotted. The value of \(d\) represents the length to which the maximum displacement component is scaled in each subcase. The maximum deformation of the structure must be specified in units of the structure (not inches of paper). This data is necessary since the actual deformations are usually too small to be distinguishable from the undeformed structure if they were plotted to true scale. If FIND card parameters are to be based on the deformed structure, the FIND card must be preceded by the MAXIMUM DEFDRMATIØN card.
\[
\text { SCALE } a[, b]
\]
```

a = real number representing scale to which the model is drawn
b = ratio of model size/real object size (stereoscopic projection only)

```

For orthographic or perspective projections, the scale "a" is the ratio of the plotted object in inches to the real object in the units of the structural model, i.e., one inch of paper equals one unit of structure. For stereoscopic projection, the stereoscopic effect is enhanced by first reducing the real object to a smaller model (scale "b"), and then applying scale "a". The ratio of plotted/real object is then the product a \(x\) b. A scale must be defined in order to make a plot; however, the SCALE card is not recommended for general use. See the FIND card described at the end of this Section in order to have the scale determined automatically.
```

    QRIGIN i,u,v
    i = origin identification number (any positive integer)
    u = horizontal displacement of paper origin from RST origin
    v = vertical displacement of paper origin from RST origin
    ```

In the transformation performed for any of the three projections, the origins of both the object (XYZ system) and of the observer (RST system) are assumed to be coincident.

This card refers to the paper origin. It represents the displacement of the paper origin (lower left hand corner) from the RST origin. The units are inches and are not subject to the scaling of the plotted object. The ØRIGIN card is not recommended for general use. See the FIND card described at the end of this Section in order to have the origin located so as to place the plotted object in the center of the image area.

Ten (10) origins are permitted to be active at one time. However, any one can be redefined at any time. An eleventh origin is also provided if more than 10 origins are erroneously defined (i.e., only the last of these surplus origins will be retained). CAUTION: when a new projection or plotter is called for, all previously defined origins are deleted.

VANTAGE PØINT \(r_{0}, s_{0}, t_{0}\left[, s_{o r}\right]\)
(perspective and stereoscopic projections only)
\(r_{0}=R\)-coordinate of the observer
\(s_{0}=S\)-coordinate of the observer in perspective projection or S-coordinate of the left eye of the observer in the stereoscopic projection
\(t_{0}=T\)-coordinate of the observer
\(s_{o r}=\begin{aligned} & \text { S-coordinate of the right eye of the observer in the stereoscopic (not needed in } \\ & \text { perspective) projection }\end{aligned}\)

This card defines the location of the observer with respect to the structural model. A vantage point is required for either perspective or stereoscopic projection. The VANTAGE PøINT card is not recommended for general use. See the FIND card described at the end of this Section. A theoretical description of vantage point is contained in Section 13 of the Theoretical Manual.
\[
\text { PRØJECTIØN PLANE SEPARATIØN } d_{0}
\]
(perspective and stereoscopic projections only)

This card specifies the R-direction separation of the observer and the projection plane.
The PRØJECTIØN PLANE SEPARATIØN card is not recommended for general use. See the FIND card described at the end of this Section. The card may be omitted if VANTAGE PØINT is included on the FIND card. A theoretical description of projection plane separation is contained in Section 13 of the Theoretical Manual.
ØCULAR SEPARATION \(\left\{\frac{2.756}{05}\right\}\)

> (stereoscopic projection only)

Ocular separation - S-coordinate separation of the two vantage points in the stereoscopic projection is defaulted to 2.756 inches which is the separation used in the standard stereoscopic cameras and viewers \((70 \mathrm{~mm})\). It is recommended that the default value be used.
\[
\text { CAMERA }\left\{\begin{array}{l}
\text { FILM } \\
\frac{\text { PAPER }}{\text { BØTH }}
\end{array}\right\} \quad\left[, \text { BLANK FRAMES }\left\{\begin{array}{l}
n \\
1 \\
\underline{1}
\end{array}\right\}\right]
\]
(microfilm plotters only)

This card offers three options of different cameras or combinations:
```

type = FILM - 35mm or 16mm film (positive or negative' images)
type = PAPER - positive prints
type = B\emptysetTH - positive prints and 35mm or 16mm film

```

The request for a 35 mm or 16 mm camera and positive or negative images must be communicated to the plotter operator through normal means of communications at the installation. Insertion of blank frames between plots is optional and is applicable only to plots generated on film. The type option must be FILM or BøTH if blank frames are desired. The plotter must be operated in the manual mode in order to have blank frames inserted between positive prints. If blank frames are desired only on film, and not on paper, the plotter must be operated in the automatic mode. The
\[
4.2-9(3 / 1 / 76)
\]
default values are type \(=\) PAPER, \(n=1\). This card is completely optional.
\(\frac{\text { PAPER SIZE }\left\{\begin{array}{c}a \\ \underline{8.5}\end{array}\right\}\left\{\begin{array}{c}x \\ B Y\end{array}\right\}\left\{\begin{array}{c}b \\ 11.0\end{array}\right\}\left[, \operatorname{TYPE}\left\{\begin{array}{c}\text { BCD value } \\ \text { VELLUM }\end{array}\right\}\right]}{\text { (table plotters only) }}\)
\[
\begin{aligned}
a & =\text { horizontal size of paper in inches } \\
b & =\text { vertical size of paper in inches } \\
\text { name } & =\text { any } B C D \text { value desired by user for identification purposes. }
\end{aligned}
\]

The default parameters are \(8.5 \times 11.0\), type VELLUM: This card is completely optional.
\[
\operatorname{PEN}\left\{\begin{array}{l}
i \\
\underline{1}
\end{array}\right\}:\left[, \operatorname{SIZE}\left\{\begin{array}{l}
\mathbf{j} \\
\underline{1}
\end{array}\right\}\right]\left[, \operatorname{C\emptyset L\emptyset R}\left\{\begin{array}{l}
\text { name } \\
B L A C K
\end{array}\right\}\right]
\]
(table plotters only)
\[
\begin{aligned}
\mathbf{i} & =\text { pen designation number } \\
\mathbf{j} & =\text { pen size number (0 thru } 3) \\
\text { name } & =\text { color desired }
\end{aligned}
\]

This card generates a message on the printed output which may be used to inform the plotter operator as to what size and which color pen point to mount in the various pen holders. The actual number of pens available will depend on the plotter hardware configuration at each installation. This card does not control the pen used in generating the plot (see the PEN option on the \(P L \emptyset T\) execution card in Section 4.2.2.3). The PEN card is optional; and is not appropriate for microfilm plotters.

The pen designations vary on various plotters; therefore, the designation numbers used here are only the pointers to true identification of the pens. The following table summarizes these pen designations and the acutal pen numbers on the plotters used.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ NASTRAN Pen } & \multicolumn{2}{|c|}{ PLOTTER Pen Number } \\
\cline { 2 - 3 } Designation & EAI 3500 & A11 Others \\
\hline 7 & 0 & 1 \\
2 & 1 & 2 \\
3 & 2 & 3 \\
4 & 3 & 4 \\
5 & 4 & 1 \\
6 & 5 & 2 \\
7 & 6 & 3 \\
8 & 7 & 4 \\
\hline
\end{tabular}

FIND [SCALE],[ØRIGIN i],[VANTAGE PøINT],[SET j],[REGIØN le,be, re,te]
\(\mathbf{i}=\) origin identification number (any positive integer).
\(j=\) set identification number (any positive integer).
le \(=\) fractional distance of left edge of plot region from the lower left corner of the image area (default value \(=0\)).
be \(=\) fractional distance of bottom edge of plot region from the lower left corner of the image area (default value \(=\overline{0}\)).
\(r e=\) fractional distance of right edge of plot region from the lower left corner of the image area (default value =1.).
te \(=\) fractional distance of top edge of plot region from the lower left corner of the image area (default value \(=1\).).

The FIND card requests the structure ploter to compute any of the parameters SCALE, \(\emptyset R I G I N i\), and/or VANTAGE PøINT indicated by the user based on (a) the plotter requested on the PLØTTER card, (b) the projection requested on the PRDJECTION card, (c) SETj and REGIDN le, be, re, te requested on the FIND card, (d) the orientation requested on the VIEW and/or AXES card(s), (e) the deformation scaling requested on the MAXIMUM DEFDRMATION card, and (f) the paper size for table plotters as requested on the PAPER SIZE card. All dependencies on which a FIND card is based must precede the FIND card.

Any one, two, or all three parameters may be computed by the program by using this card, provided that the parameters not requested have already been defined. If no set is specified on this card, the first set defined is used by default. If no options are specified on the FIND card, a SCALE and VANTAGE PØINT are selected and \(\emptyset R I G I N 1\) is located, using the first defined SET, so that the plotted object is located within the image area. The plot region is defined as some fraction of the image area (image area \(=0,0,1 ., 1\). and first quadrant \(=.5, .5,1 ., 1\).). The image area is located inside the margins on the paper. Each FIND card must be one (1) logical card. The FIND card is recommended for general use.
4.2.2.3 PLøT Execution Card

This logical card will cause one picture to be generated for each subcase, mode or time step requested, using the current parameter values. If only the word PLøT appears on the card, a picture of the undeformed structure will be prepared using the first defined set and the first defined origin. The available plot options and their meanings are:
1. STATIC - Plot static deformations in Rigid Formats 1, 2, 4, 5, 6 and 14.

MĐDAL - Plot mode shapes in Rigid Formats 3, 5, 13 and 15.
CMØDAL - Plot mode shapes in Rigid Formats 7 and 10.
FREQUENCY - Plot frequency deformations in Rigid Formats 8 and 11.
TRANSIENT - Plot transient deformations in Rigid Formats 9 and 12.
2. DEFØRMATIØN - Nonzero integers following refer to subcases that are to be plotted. Default is all subcases. See SHAPE and VECTOR for use of "0" command.

VELØCITY - Nonzero integers following refer to subcases that are to be plotted. Default is all subcases.

ACCELERATIDN - Nonzero integers following refer to subcases that are to be plotted. Default is all subcases.
3. il, i2, ... - Nonzero integers following refer to subcases that are to be plotted. Default is all subcases. See SHAPE and VECTOR for use of "0" (underlay) command.
4. RANGE
- Refers to range of eigenvalues (Rigid Format 5) or frequencies (Rigid Formats 3, 7, 8, 10 and 11), using requested subcases, for which plots will be prepared.

\section*{STRUCTURE PLOTTING}

TIME - Refers to time interval; using requested subcases and output time steps, for which plots will be prepared (Rigid Formats 9 and 12).
5. PHASE LAG
- Real number, \(\phi\), in degrees (default is 0.0). The plotted value is \(u_{R} \cos \phi-u_{I} \sin \phi\), where \(u_{R}\) and \(u_{I}\) are the real and imaginary parts of the response quantity (Rigid Formats \(7,8,10\) and 11).
MAGNITUDE
- Plotted value is \(\sqrt{u_{R}^{2}+u_{I}^{2}}\).
6. MAXIMUM DEFQRMATION
7. SET

Real number following is used as the maximum displacement component in
- scaling the displacements for all subcases. Each subcase is separately scaled according to its own maximum if this item is absent.
- Integer following identifies a set which defines the portion of the structure to be plotted. Default is first set defined.
8. ORIGIN
- Integer following identifies the origin to be used for the plot. . Default is first origin defined.
9. SYMMETRY w - Prepare an undeformed or deformed plot of the symmetric portion of the object which is defined by SET \(j\). This symmetric portion will be located in the space adjacent to the region originally defined by \(\emptyset R I G I N k\), and will appear as a reflection about the plane whose normal is oriented parallel to the coordinate direction \(w\).

ANTISYMMETRY \(w\) - Prepare a deformed plot of the symmetric portion of the antisymmetrically loaded object which is defined by SET \(j\). This symmetric portion will be located in the space adjacent to the region originally defined by \(\emptyset R I G I N ~ k\), and will appear as a reflection of the antisymmetrically deformed structure about the plane whose normal is oriented parallel to the coordinate direction \(w\).

The symbol \(w\) may specify the basic coordinates \(X, Y\), or \(Z\) or any combination thereof. This option allows the plotting of symmetric and/or antisymmetric combinations, provided that an origin is selected for the portion of the structure defined by the bulk data that allows sufficient room for the complete plot. This does not permit the combination of symmetric and antisymmetric subcases, as each plot must represent a single subcase. In the case of a double reflection, the figure will appear as one reflected about the plane whose normal is parallel to the first of the coordinates \(w\), followed by a reflection about the plane whose normal is oriented parallel to the second of the coordinates w. This capability is primarily used in the plotting of structures that are loaded in a symmetric or an antisymmetric manner. The plane of symmetry must be one of the basic coordinate planes.
10. PEN
- Integer following controls the internal NASTRAN pen number (see table in Section 4.2.2.2) that is used to generate the plot on table plotters.

DENSITY - Integer following specifies line density for film plotters. A line density of \(d\) is \(d\) times heavier than a line density of 1 .
11. SYMBDLS \(m[, n]\) - All of the grid points associated with the specified set will have symbol moverprinted with symbol \(n\) printed at its location. If \(n\) is not specified, only symbol m will be printed. Grid points excluded from the set will not have a symbol. Grid points in an undeformed underlay will be identified with symbol 2.

Following is a table of symbols available on each plotter. Symbols that are not available on a given plotter are defaulted to a similar symbol indicated in parentheses.
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBGL & \multirow{2}{*}{SYMBØL} & \multicolumn{3}{|c|}{AVAILABILITY} \\
\hline \(N \emptyset . m\) or \(n\) & & EAI 3500 & SC4020 & All Others \\
\hline 0 & no symbol & \(X\) & X & X \\
\hline 1 & X & \(\chi\) & X & \(X\) \\
\hline 2 & * & \(\chi\) & X & \(x\) \\
\hline 3 & + & \(X\) & X & X \\
\hline 4 & - & \(X\) & X & X \\
\hline 5 & - & \(X\) & \(X\) & X \\
\hline 6 & \(\bigcirc\) & X & \(X\) & \(X\) \\
\hline 7 & \(\square\) & \(X\) & X & X \\
\hline 8 & 0 & X & (7) & X \\
\hline 9 & \(\Delta\) & (7) & (7) & X \\
\hline
\end{tabular}
12. LABEL GRID PøINTS - All the grid points associated with the specified set have their identification number printed to the right of the undeflected or deflected location (undeflected location in the case of superimposed plots).

LABEL ELEMENTS - All the elements included in the specified set are identified by the element identification number and type at the center of each element (undeflected location in the case of superimposed plots).

LABEL BØTH
- Label both the grid points and elements.

Labels for element types are given in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline Element Type & Plot Label & & Element Type. & Plot Label \\
\hline AERD & AE & & QUADI & Q1 \\
\hline AXIF2 & A2 & & QUAD2 & Q2 \\
\hline AXIF3 & A3 & & RDD & RD \\
\hline AXIF4 & A4 & & SHEAR & SH \\
\hline BAR & BR & & SLDT3 & S3 \\
\hline CONE & CN & & SLDT4 & S4 \\
\hline CONRDD & CR & & TETRA & TE \\
\hline HEXAT & H1 & & T@RDRG & TR \\
\hline HEXA2 & H2 & & TRAPAX & T4 \\
\hline FLUID2 & F2 & & TRAPRG & TA \\
\hline FLUID3 & F3 & & TRBSC & TB \\
\hline FLUID4 & F4 & & TRIAAX & T3 \\
\hline IHEX \({ }^{\text {a }}\) & XL & . & TRIA & 11 \\
\hline IHEX2 & XQ & & TRIA2 & T2 \\
\hline IHEX3 & XC & & TRIRC & T1 \\
\hline PLDTEL & PL & & TRMEM & TM \\
\hline QDMEM & QM & & TRPLT & TP \\
\hline QDMEM1 & QM & & TUBE & TU \\
\hline QDMEM2 & QM & & TWIST & TW \\
\hline QDPLT & QP & & VISC & VS \\
\hline & & & WEDGE & WG \\
\hline
\end{tabular}
13. SHAPE
- All the elements included in the specified set are shown by connecting the associated grid points in a predetermined manner.

Both deformed and undeformed shapes may be specified. All of the deformed shapes relating to the subcases listed may be underlaid on each of their plots by including " 0 " with the subcase string on the PLDT card. The undeformed plot will be drawn using PEN 1 or DENSITY 1 and symbol 2 (if SYMBØLS is specified).
14. VECTØR \(v\) - A line will be plotted at the grid points of the set, representing in length and direction the deformation of the point.

Vectors representing the total deformation or its principal components may be plotted by insertion of the proper letter(s) for variable v. Possible vector combinations are:
\begin{tabular}{ll}
\(X\) or \(Y\) or \(Z\) & - requesting individual components \\
\(X Y\) or \(X Z\) or \(Y Z\) & - requesting 2 specified components \\
\(X Y Z\) & - requesting all 3 components \\
\(R X Y\) or \(R X Z\) or \(R Y Z\) - requesting vector sum of 2 components \\
\(R\) & - requesting total vector deformation \\
\(N\) & - used with any of the above combinations to request no \\
& underlay shape be drawn.
\end{tabular}

\section*{STRUCTURE PLOTTING}

All plots requesting the VECTØR option shall have an underlay generated of the undeformed shape using the same sets, "PEN 1 " or "DENSITY 1," and symbol 2 (if SYMBDLS is specified). If "SHAPE" and "VECTØR" are specified, the underlay will depend on whether " 0 " is used with DEFØRMATION. It will be the deformed shape when not used and will be both deformed and undeformed shapes when it is used. The part of the vector at the grid point will be the tail when the underlay is undeformed and the head when it is deformed. If the "N" parameter is used, no shape will be drawn but other options such as SYMBøLS will still be valid.

\section*{Examples of PLøT Cards}
1. PL®T

Undeformed SHAPE using first defined SET, first defined ØRIGIN and PEN 1 (or DENSITY 1).
2. PLøT SET 3 פRIGIN 4 PEN 2 SHAPE SYMBQLS 3 LABEL

Undeformed SHAPE using SET 3, ORIGIN 4, PEN 2 (or DENSITY 2) with each grid point of the set having \(a+p l a c e d\) at its location, and its identification number printed adjacent to it.
3. PL@T MØDAL DEFØRMATIgN 5 SHAPE

Modal deformations as defined in subcase 5 using first defined SET, first defined \(\emptyset\) RIGIN, and PEN 1 (or DENSITY 1).
4. PLØT STATIC DEFØRMATIQN 0, 3 THRU 5, 8 PEN 4, SHAPE

STATIC deformations as defined in subcases 3, 4, 5 and 8, deformed SHAPE; drawn with PEN 4, using first defined SET and ØRIGIN, underlayed with undeformed SHAPE drawn with PEN 1. This command will cause four, plots to be generated.
5. PLDT STATIC DEFDRMATIDN 0 THRU 5,

SET 2 gRIGIN 3 PEN 3 SHAPE,
SET 2 ØRIGIN 4 PEN 4 VECTØRS XYZ SYMBøLS 6,
SET 35 SHAPE
Deformations as defined in subcases 1, 2, 3, 4, and 5, undeformed underlay with PEN 1 , consisting of SET 2 at \(\emptyset\) RIGIN 3, SET 2 at \(\emptyset R I G I N 4\) (with an * placed at each grid point location), and SET 35 at GRIGIN 4. Deflected data as follows: SHAPE using SET 2 at QRIGIN 3 (PEN 3) and SET 35 at QRIGIN 4 (PEN 4); 3 VECTQRS (\(X, Y\) and \(Z\)) drawn at each grid point of SET 2 at \(\emptyset R I G I N 4\) (PEN 4) (less any excluded grid points), with O placed. at the end of each vector.
6. PLØT STATIC DEFØRMATIQNS 0, 3, 4,

SET 1 ØRIGIN. 2 DENSITY 3 SHAPE,
SET 1 SYMMETRY Z SHAPE,
SET 2 gRIGIN 3 SHAPE,
SET 2 SYMMETRY \(Z\) SHAPE
Static deformations as defined in subcases 3 and 4, both halves of a problem solved by symmetry using the \(X\)-Y principal plane as the plane of symmetry. SET 1 at GRIGIN 2 and SET 2 at ØRIGIN 3, with the deformed shape plotted using DENSITY 3 and the undeformed structure plotted using DENSITY 1. The deformations of the "opposite" half will be plotted to correspond to symmetric loading. This command will cause two plots to be generated.
7. PLøT TRANSIENT DEFØRMATIØN 1, TIME 0.1, 0.2, MAXIMUM DEFØRMATIØN 2.0, SET 1, \(\emptyset R I G I N ~ 1, ~\) PEN 2, SYMBØLS 2, VECTORR R

Transient deformations as defined in subcase 1 for time \(=0.1\) to time \(=0.2\), using set 1 at origin 1. The undeformed shape using pen or density 1 with an * at each grid point location will be drawn as an underlay for the resultant deformation vectors using pen or density 2 with an * typed at the end of each vector drawn. In addition a plotted value of 2.0 will be used for the single maximum deformation occuring on any of the plots produced. All other deformations on all other plots will be scaled relative to this single maximum deformation. This command will cause a plot to be generated for each output time step which lies between 0.1 and 0.2 .
8. PLøT CMØDAL DEFØRMATIØN PHASE LAG 90. SET 1 VECTØR R

The imaginary part of the complex mode shape will be plotted for set 1.
\[
4.2-15(12 / 3.1 / 74)
\]

\subsection*{4.2.3 Summary of Structure Plot Request Packet Cards}

SET Definition - Required

SET \(i\) [INCLUDE][ELEMENTS] \(j_{1}, j_{2}, j_{3}\) THRU \(j_{4}, j_{5}\), etc.
\[
\left[\begin{array}{l}
\text { INCLUDE } \\
\text { EXCLUDE } \\
\text { EXCEPT }
\end{array}\right]\left[\begin{array}{l}
\text { ELEMENTS } \\
\text { GRID PøINTS }
\end{array}\right] k_{1}, \dot{k}_{2}, k_{3} \operatorname{THRU} k_{4}, k_{5}, \text { etc. }
\]

Parameter Definition - Optional, except as noted
PLøTTER plotter name, MøDEL name [DENSITY \(\left\{\begin{array}{c}800 \\ 556 \\ 200\end{array}\right\}\) BPI \(]\)
(Required if not SC-4020)
\begin{tabular}{|c|c|}
\hline ØRTHØGRAPHIC) & \\
\hline \[
\left\{\begin{array}{l}
\text { PERSPECTIVE } \\
\text { STEREØSCDPIC }
\end{array}\right\}
\] & PRQJECTION \\
\hline
\end{tabular}
AXES \(\left.r, s, t\left[\left\{\frac{\text { SYMMETRIC }}{\text { ANTISYMMETRIC }}\right\}\right]\right]\)
VIEW \(\gamma, \beta, \alpha\)

SCALE \(a[, b]\) (Required if not on FIND card)

QRIGIN i, u, v (Required if not on FIND card)

VANTAGE PDINT \(r_{0}, s_{0}, t_{0}\left[, s_{0 r}\right] \quad \begin{aligned} & \text { (Required for perspective and steroscopic projections } \\ & \text { if not on FIND card) }\end{aligned}\)

PRØJECTION PLANE SEPARATION d
(Required for perspective and steroscopic projections if VANTAGE PØINT not on FIND card)

ØCULAR SEPARATIØN \(\left\{\frac{2.756}{0 S}\right\}\)

MAXIMUM DEFØRMATIØN d (Required if deformed shapes are to be drawn)
\(\operatorname{PEN}\left\{\begin{array}{l}\mathbf{i} \\ \underline{1}\end{array}\right\}\left[, \operatorname{SIZE}\left\{\begin{array}{l}j \\ 1\end{array}\right\}\right]\left[, \operatorname{C\emptyset L\emptyset R}\left\{\begin{array}{l}\text { name } \\ \text { BLACK }\end{array}\right\}\right]\)

STRUCTURE PLOTTING
CAMERA \(\left\{\begin{array}{l}\text { FILM } \\ \frac{\text { PAPER }}{\text { B } \emptyset T H}\end{array}\right\} \quad\left[\right.\), BLANK FRAMES \(\left.\left\{\begin{array}{l}n \\ \underline{1}\end{array}\right\}\right]\)
PAPER SIZE \(\left\{\begin{array}{c}a \\ \underline{8.5}\end{array}\right\}\left\{\begin{array}{l}x \\ B Y\end{array}\right\}\left\{\begin{array}{c}b \\ 11.0\end{array}\right\} \quad\left[\right.\), TYPE \(\left.\left\{\begin{array}{c}\text { BCD value } \\ \underline{\text { VELLUM }}\end{array}\right\}\right]\)

FIND Cärd - Optional
FIND ([SCALE],[ØRIGIN i],[VANTAGE PØINT],[SET j], [REGI@N le, be, re, te]

PLQT Execution Card - Required

\(\left[\left\{\frac{\text { PHASE LAG }}{\text { MAGNITUDE }} \phi\right\}\right][\) MAXIMUM DEFØRMATION \(d]\),

[SET j2] [gRIGIN k2] ... , etc.

Figure 1. Plotter coordinate system-model orientation.

\section*{PLOTTING}

\subsection*{4.3 X-Y ØUTPUT}

In riaid formats used for transient response, freauency response (including random response), and flutter analysis, the amount of output data generated is voluminous. In order to aid the user in assimilating this vast amount of data, the \(X-Y\) output processing modules XYTRAN and XYPL \(\emptyset T\) have been provided. The primary purpose of these modules is to generate plotted graphs of \(y(\dot{x})\) where \(x\) is frequency, time, or velocity and \(y\) is any response quantity selected by the user for observation. The user is not required to specify any parametric data for the X-Y plotter; however, he may do so if he wishes in order to obtain desired scales, regions of observation, etc.

In addition to (or in place of) the plots, \(X-Y\) tabular output may be printed or punched, and summary data (e.g., maximum and minimum values and locations of these values) may be obtained for any \(X-Y\) output.

The \(X-Y\) output described above is obtained by the user via the \(X-Y\) output request packet of the Case Control. Deck. This packet includes all cards between ØUTPUT(XYPLØT) [or ØUTPUT(XYØUT)] and either BEGIN BULK or gUTPUT(PLøT). The remainder of this section describes the \(X-Y\) output request data cards and the rules for writing them. Examples are provided to illustrate the use of this feature.

\subsection*{4.3.1 X-Y Plotter Terminology}

A single set of plotted \(X-Y\) pairs is known as a "curve". . Curves are the entities that the user requests to be plotted. The surface (paper, microfilm frame, etc.) on which one or more curves is plotted is known as a "frame". Curves may be plotted on a whole frame, an upper half frame, or a lower half frame. Grid lines, tic marks, axes, axis labeling and other graphic control items may be chosen by the user. The program will select defaults for parameters not selected by the user.

Only three cards are required for an \(X-Y\) plot request. The required cards are:
1. \(X-Y\) output request packet identifier - \(\emptyset U T P U T(X Y P L \emptyset T)\) or \(\emptyset U T P U T(X Y \emptyset U T)\).
2. Plotter selection card.
3. At least one command operation card.

The terms \(\emptyset U T P U T(X Y P L \emptyset T\)) and \(\emptyset U T P U T(X Y \emptyset U T)\) are interchangeable and either form may be used for any of the \(X-Y\) output requests. The plotter selection card is described as item 1 in Section 4.3.2.1.

\section*{PLOTTING}

If the output is limited to printing and/or punching the plotter selection card is not required. The command operation card is used to request the various forms of \(X-Y\) output. This card is described in Section 4.3.3.

If only the required cards are used, the graphic control items will all assume default values. Curves using all default parameters have the following general characteristics:
1. Tic marks are drawn on all edges of the frame. Five spaces are provided on each edge of the frame.
2. All tic marks are labeled with their values.
3. Linear scales are used.
4. Scales are selected such that all points fall within the frame.
5. The plotted points are connected with straight lines.
6. The plotted points are not identified with symbols.

The above characteristics may be modified by inserting any of the parameter definition cards, described in Section 4.3.2, ahead of the command operation card or cards. The use of a parameter definition card sets the value of that parameter for all following command operation cards unless the CLEAR card is inserted (see item 16 of Section 4.3.2.1). If grid lines are requested, they will be drawn at the locations of all tic marks that result from defaults or user request. The locations of tic marks (or grid lines) for logarithmic scales cannot be selected by the user. Default values for logarithmic spacing are selected by the program. The default values for the number of tic marks (or grid lines) per cycle depend on the number of logarithmic cycles required for the range of the plotted values.

The definition and rules for the X-Y output request packet cards follow. The definition notation used in Section 4.2.1.2 will also be followed here. The form of statements used in the \(X-Y\) output request packet differs in many instances from that of similar cards used in the structure plotter request packet. The user is cautioned to prepare his input decks as specified herein.

\subsection*{4.3.2 Parameter Definition Cards}

\subsection*{4.3.2.1 Cards Pertaining to All Curves}
1. PLØTTER \(=\) plotter name, model name

Selects plotter; required if plots are requested. Plotter choices are listed in
Section 4.1. (Note: one or both of the plot tapes must be set up. See Section 5 of the Programmer's Manual for instructions.)
2. \(\quad\) CAMERA \(=c\) (Integer)

Used for microfilm plotters only to select camera as follows: c \(\leq 1\) for film, \(c=2\) for paper, \(c \geq 3\) for both; default value is 3 .
3. \(\operatorname{PENSIZE}=\mathrm{ps}\) (Integer \(\geq 0\))

Used to select pen for table plotter; default value is 1 . (See Section 4.2.2.2)
4. DENSITY \(=d\) (Integer \(\geq 0\))

Used to select line density for microfilm plotters only; default value is 1. A line density of \(d\) is \(d\) times heavier than a line density of 1 .
5. SKIP \(=s \quad(\) Integer \(\geq 0)\)

Used to insert blank frames between requested frames for microfilm plotters; default value is 1 .
6. \(\quad\) XPAPER \(=x\) (Real)

YPAPER = y (Real)
Defines paper size for table plotters; default value is \(x=8.5\) inches and \(y=11.0\) inches.
7. \(\operatorname{XMIN}=x] \quad\) (Real)

XMAX = x2 (Real)
Specifies limits of abscissa of curve; default values are chosen so as to accommodate all points.
8. \(X L \emptyset G=\left\{\begin{array}{l}\mathrm{YES} \\ N \varnothing\end{array}\right\}\)

Request for logarithmic x-coordinate, default value is \(N \emptyset\). Default value for tic division interval depends on number of \(\log\) cycles (see table at end of this Section).
9. YAXIS \(=\left\{\begin{array}{l}\text { YES } \\ N D\end{array}\right\}\)

Request for plotting \(y\)-axis; default value is \(N \emptyset\).
10. XINTERCEPT \(=x i \quad\) (Real)

Location on the \(x\)-axis where the \(y\)-axis will be drawn; default value is 0.0 .

\section*{PLOTTING}
11. UPPER TICS \(=u t(\) Integer*)

Request for tick marks to be drawn on the upper edge of the frame; default value is integer one.
12. L@WER TICS = 1t (Integer*)

Request for tic marks to be drawn on the lower edge of the frame; default value is integer one.
13. CURVELINESYMB \(\emptyset L=\) cls (Integer)

Request for points to be connected by lines (cls = 0), identified by symbol \(|c| s \mid(c l s<0)\), or both (\(\mathrm{cls}>0\)); default value is 0 ; see Section 4.2.2.3 for the list of symbols. If cls \(\neq 0\), subsequent curves on the same frame will cause cls to be incremented by one (decrement by one if cls < 0) for each curve and thus cycle through the available symbols.
14. \(\operatorname{XDIVISIQNS}=x d(\) Integer \(>0)\)

Applies xd uniform spaces along the x-direction for whichever of the following are called for: UPPER TICS, LØWER TICS, YINTERCEPT: default value is 5 spaces, not applicable to log scales.
15. XVALUE PRINT SKIP \(=x p s(\) Integer \(\geq 0)\)

Request for values to be placed on tic marks. The number of tic marks to be skipped between labeled tic marks is xps.
16. CLEAR

Causes all parameter values except PLØTTER and titles (XTITLE, YTITLE, YTTITLE, YBTITLE, TCURVE) to revert to their default values.
17. XTITLE \(=\) \{any legitimate character string\}

Title to be used with \(x\)-axis.
18. \(\operatorname{TCURVE}=\) \{any legitimate character string \(\}\)

Curve title.
The default values for tic divisions on \(\log\) plots are given in the following table, but will range over whole cycles:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c}
Number \\
of Cycles
\end{tabular} & \multicolumn{1}{|c|}{ Intermediate Values } \\
\hline 1,2 & \(2 ., 3 ., 4 ., 5 ., 6 ., 7 ., 8 ., 9\). \\
3 & \(2 ., 3 ., 5 ., 7 ., 9\). \\
4 & \(2 ., 4 ., 6 ., 8\). \\
5 & \(2 ., 5 ., 8\). \\
6,7 & \(3 ., 6\). \\
\(8,9,10\) & 3. \\
\hline
\end{tabular}

\subsection*{4.3.2.2 Cards Pertaining Only to Whole Frame Curves}
1. YMIN \(=y 1\) (Real)

YMAX = y2 (Real)
Specifies limits of ordinate of curve; default values are chosen so as to accommodate all points.
*See note on page 4.3-8.

\section*{X-Y OUTPUT}
2. \(\quad\) XAXIS \(=\left\{\begin{array}{c}Y E S \\ N \varnothing\end{array}\right\}\)

Request for plotting \(x\)-axis; default value is \(N \emptyset\).
3. \(\quad\) YINTERCEPT \(=\) yi (Real)

Location on the \(y\)-axis where \(x\)-axis is drawn; default value is 0.0 .
4. \(Y L \emptyset G=\left\{\begin{array}{l}Y E S \\ N \emptyset\end{array}\right\}\)

Request for logarithmic y-coordinate; default value is \(N \varnothing\). Default value for tic division interval depends on number of \(\log\) cycles (see Section 4.3.2.1).
5. LEFT TICS \(=1 t\) (Integer*)

Request for tic marks to be drawn on the left edge of the frame; default value is integer one.
6. RIGHT TICS \(=r t(\) Integer*)

Request for tic marks to be drawn on the right edge of the frame; default value is integer one.
7. ALLEDGE TICS \(=\) aet (Integer*)

Request for tic marks to be drawn on all edges of the frame; default value is zero.
8. YDIVISIØNS \(=\operatorname{yd}(\) Integer \(>0)\)
\(y\)-division tic divisions; default value is 5 spaces; not applicable to log scales.
9. YVALUE PRINT SKIP \(=\) yps (Integer \(\geq 0\))

Request for values to be placed on tic marks. The number of tic marks to be skipped between labeled tic marks is yps.
10. XGRID LINES \(=\left\{\begin{array}{l}\text { YES } \\ \text { N }\end{array}\right\}\)

Request for drawing in the grid lines parallel to the \(y\)-axis at locations requested for tic marks; default value is \(N \emptyset\).
11. YGRID LINES \(=\left\{\begin{array}{l}\text { YES } \\ \text { N }\end{array}\right\}\)

Request for drawing in the grid lines parallel to the \(x\)-axis at locations requested for tic marks; default value is \(N O\).
12. YTITLE \(=\) \{any legitimate character string\}

Title to be used with \(y\)-axis.

\subsection*{4.3.2.3 Cards Pertaining Only to Upper Half Frame Curves}
1. \(\quad\) YTMIN \(=y t l \quad\) (Real)

YTMAX = yt2 (Real)
Specifies limits of ordinate of curve; default values are chosen so as to accomodate all points.
*See note on page 4.3-8.

\section*{PLOTTING}
2. XTAXIS \(=\left\{\begin{array}{l}\text { YES } \\ N \varnothing\end{array}\right\}\)

Request for plotting x-axis; default value is \(N \varnothing\).
3. YTINTERCEPT \(=y t i(\) Real \()\)

Location on the \(y\)-axis where \(x\)-axis is drawn; default value if 0.0 .
4. \(Y T L \emptyset G=\left\{\begin{array}{l}Y E S \\ N \emptyset\end{array}\right\}\)

Request for logarithmic \(y\)-coordinate, default value is \(N \varnothing\). Default value for tic division interval depends on number of log cycles (see table in Section 4.3.2.1).
5. TLEFT TICS \(=\) tlt (Integer*)

Request for tic marks to be drawn on the left edge of the upper half frame; default value is integer one.
6. TRIGHT TICS \(=\) trt (Integer*)

Request for tic marks to be drawn on the right edge of the upper half frame; default value is integer one.
7. TALL EDGE TICS \(=\) taet (Integer*)

Request for tic marks to be drawn on all edges of the upper half frame; default value is zero.
8. YTDIVISIQNS \(=y t d(\) Integer \(>0)\)
y-division tic divisions; default value is 5 spaces; not applicable to log scales.
9. YTVALUE PRINT SKIP \(=\) ytps (Integer \(\geq 0\))

Request for values to be placed on tic marks. The number of tic marks to be skipped between labeled tic marks is ytps.
10. XTGRID LINES \(=\left\{\begin{array}{l}\text { YES } \\ N \emptyset\end{array}\right\}\)

Request for drawing in the grid lines parallel to the \(y\)-axis at locations requested for tic marks; default value is \(N \varnothing\).
11. \(\quad\) YTGRID LINES \(=\left\{\begin{array}{l}\text { YES } \\ \mathrm{N} \emptyset\end{array}\right\}\)

Request for drawing in the grid lines parallel to the x-axis at locations requested for tic marks; default value is \(N \emptyset\).
12. YTTITLE \(=\) \{any legitimate character string\}

Title to be used with y-axis.

\footnotetext{
*See note on page 4.3-8.
}

\subsection*{4.3.2.4 Cards Pertaining Only to Lower Half Frame Curves}
1. \(\quad\) YBMIN \(=y b 1 \quad(\) Real \()\)

YBMAX \(=y b 2\) (Real)
Specifies limits of ordinate of curve; default values are chosen so as to accommodate all points.
2. XBAXIS \(=\left\{\begin{array}{c}\text { YES } \\ N \varnothing\end{array}\right\}\)

Request for plotting x-axis; default value is \(N \varnothing\).
3. YBINTERCEPT \(=y b i \quad\) (Real)

Location on the \(y\)-axis where \(x\)-axis is drawn; default value is 0.0 .
4. \(\quad \mathrm{YBL} \emptyset \mathrm{G}=\left\{\begin{array}{l}\mathrm{YES} \\ \mathrm{N} \emptyset\end{array}\right\}\)

Request for logarithmic \(y\)-coordinate; default value is \(N \varnothing\); default value for tic division interval depends on number of log cycles (see table in Section 4.3.2.1).
5. BLEFT TICS = blt (Integer*)

Request for tic marks to be drawn on the left edge of the lower half frame; default value is integer one.
6. BRIGHT TICS = brt (Integer*)

Request for tic marks to be drawn on the right edge of the lower half frame; default value is integer one.
7. BALL EDGE TICS = baet (Integer*)

Request for tic marks to be drawn on all edges of the lower half frame; default value is zero.
8. YBDIVISIQNS \(=\) ybd (Integer \(>0\))
\(y\)-direction tic divisions; default value is 5 spaces; not applicable to \(\log\) scales.
9. YBVALUE PRINT SKIP \(=\) ybps (Integer \(\geq 0\))

Request for values to be placed on tic marks. The number of tic marks to be skipped between labeled tic marks is ybps.
10. XBGRID LINES \(=\left\{\begin{array}{l}\mathrm{YES} \\ \mathrm{N} \varnothing\end{array}\right\}\)

Request for drawing in the grid lines parallel to the \(y\)-axis at locations requested for tic marks; default value is N .
* See note on page 4.3-8.
11. Ybgrid Lines \(=\left\{\begin{array}{l}\text { Yes } \\ N \varnothing\end{array}\right\}\)

Request for drawing in the grid lines parallel to the \(x\)-axis at locations requested for tic marks; default value is \(N \varnothing\).
12. YBTITLE \(=\) any legitimate character string

Title to be used with \(y\)-axis.
* Note

To determine if on any given edge (a) tic marks will be drawn without values, (b) no tic marks or values will be drawn or (c) tic marks with values will be drawn, the following sum must be computed by the user. Add the tic integer value of the edge in question to its associated ALLEDGE TICS, TALL EDGE TICS, or BALL EDGE TICS integer value. If the resulting value is less than 0 , tic marks will be drawn without values. If the resulting value is 0 , no tic marks or values will be drawn. If the resulting value is greater than 0 , tic marks with values will be drawn. The user should be "careful" in his use of the ALLEDGE TICS, TALL EDGE TICS, or BALL EDGE TICS cards. For example, the use of only the ALLEDGE TICS \(=-1\) card will result in no tic marks or values being drawn since the default values for individual edges is +1 . Tic values input may only be \(-1,0\), or 1 .
```

X-Y OUTPUT

```

\subsection*{4.3.3 Cormand Operation Cards}

When a command operation is encountered, one or more frames will be generated using the current parameter specifications. The form of this card is:
\begin{tabular}{|c|c|c|c|c|}
\hline Operation 1 or more (required) & Curve Type 1.only (required) & Plot Type & Subcase List & Curve Request(s) \\
\hline \(\left\{\begin{array}{l}\text { XYPLDT } \\ \text { XYPRINT } \\ \text { XYPUNCH } \\ \text { XYPEAK } \\ \text { XYPAPL } \varnothing T\end{array}\right\}\) & \(\left(\begin{array}{l}\text { ACCE } \\ \text { DISP } \\ \text { ELFARCE } \\ \text { NQNLINEAR } \\ \text { QLQAD } \\ \text { SACCE } \\ \text { SDISP } \\ \text { SPCF } \\ \text { STRESS } \\ \text { SVEL } \\ \text { VECT } \emptyset R \\ \text { VEL } \\ \text { VG }\end{array}\right\}\) & \begin{tabular}{l}
\[
\left\{\begin{array}{l}
\frac{\text { RESPQNSE }}{\text { AUTQ }} \\
\text { PSDF }
\end{array}\right\}
\] \\
NA
\end{tabular} & \begin{tabular}{l}
\[
\left\{\begin{array}{lll}
i_{1}, & i_{2}, & i_{3} \\
i_{4} & \text { THRU } & i_{5} \\
i_{6}, & \text { etc. } .
\end{array}\right\}
\] \\
default is all subcases \\
NA
\end{tabular} & "frames" \\
\hline
\end{tabular}

Operation - The entries in the Operation field have the following meaning:
1. XYPLDT - generate \(X-Y\) plots for the selected plotter.
2. XYPRINT - generate tabular printer output for the \(X-Y\) pairs.
3. XYPUNCH - generate punched card output for the X-Y pairs. Each card contains the following information:
1. \(X-Y\) pair sequence number
2. X-value
3. Y-value
4. Card sequence number
4. XYPEAK - output is limited to the printed summary page for each curve. This summary page contains the maximum and minimum values of \(y\) for the range of \(x\).
5. XYPAPL \(\emptyset T\) - generate \(X-Y\) plots on the printer. When the paper is rotated \(90^{\circ}\) for viewing the paper plots, the \(x\) axis moves horizontally along the page and the \(Y\) :axis moves vertically along the page. Symbol '*' identifies the points associated with the first curve of a frame, then for successive curves on the frame the points are designated by symbols ' \(O^{\prime}\), ' \(A^{\prime}\), ' \(B^{\prime}, ~ ' C ', ~ ' D ', ~ ' E '\), ' \(F\) ', ' \(\mathrm{G}^{\prime}\) and ' H '.

\section*{PLOTTING}

Curve Type - The entries in the curve type field have the meaning given below. Only one may appear in a single command operation logical card. However, there is no limit to the number of such cards.
\begin{tabular}{|l|l|}
\hline Curve Type & \multicolumn{1}{c|}{ Meaning } \\
\hline & \\
ACCE & Acceleration in the physical set \\
DISP & Displacement in the physical set \\
ELFQRCE & Element Force \\
NØNLINEAR & Nonlinear load \\
QL@AD & Load \\
SACCE & Acceleration in the solution set \\
SDISP & Displacement in the solution set \\
SPCF & Single-point force of constraint \\
STRESS & Element stress \\
SVELQ & Velocity in the solution set \\
VECTQR & Displacement in the physical set \\
VELD & Velocity in the physical set \\
VG & Flutter Analysis Curves \\
\hline
\end{tabular}

Solution set requests are more efficient, as the time-consuming recovery of the dependent displacements can be avoided. If there is a request for STRESS or ELFØRCE, the recovery of dependent displacements cannot be avoided.

Plot Type - The entries in the Plot Type field have the following meanings:
1. RESPØNSE - generate output for static analysis, frequency response, or transient response This is the default value.
2. AUTD - generate output for the autocorrelation function.
3. PSDF - generate output for the power spectral density function.

Subcase List - Generate output for the subcase numbers that are listed. Default is all subcases for which solutions were obtained. The subcase list must be in ascending order.

Curve Request(s) - The word "frames" represents a series of curve identifiers of the following general form:
\[
/ \mathrm{al}(\mathrm{~b} 1, \mathrm{c} 1), \mathrm{a} 2(\mathrm{~b} 2, \mathrm{c} 2), \mathrm{etc} . / \mathrm{d} 1(\mathrm{e} 1, \mathrm{f} 1), \mathrm{d} 2(\mathrm{e} 2, \mathrm{f} 2), \mathrm{etc} . / \mathrm{etc} .
\]

The information between slashes (/) specifies curves that are to be drawn on the same frame. The symbol al identifies the grid point or element number associated with the first plot on the first frame. The symbol a2 identifies the grid point or element number associated with the second plot on the first frame. The symbols dl and d 2 identify similar items for plots on the second frame, etc. Symbols are assigned in order by grid point or element identification number.

The symbols bl and b2 are codes for the items to be plotted on the upper half of the first frame, and cl and c2 are codes for the items to be plotted on the lower half of the first frame. If any of the symbols \(b 1, c l, b 2\), or \(c 2\) are missing, the corresponding curve is not generated. If the comma (,) and c1 are absent along with the comma (,) and c2, full frame plots will be prepared on the first frame for the items represented by bl and b2. For any single frame, curve identifiers must be all of the whole frame type or all of the half frame type, i.e., the comma (,) following bl and b2 must be present for all entries or absent for all entries in a single frame. The symbols el, fl; e2, and f2 serve a similar purpose for the second frame, etc. If continuation cards are needed the previous card may be terminated with any one of the slashes (/) or commas (,) in the general format.

The manner in which the item code (e.g., bl, b2) is implemented is dependent upon whether the Plot Type is either (a) RESPØNSE or (b) AUTØ or PSDF.

For VG plots, the al, a2 refers to the loop count of flutter analysis. The quantities \(b\) and \(c\) may have the values \(F\) for frequency and \(G\) for damping.

Plot Type RESPQNSE

For geometric grid points, the item code is one of the mneomonics T1, T2, T3, R1, R2, R3, T1RM, T2RM, T3RM, R1RM, R2RM, R3RM, T1IP, T3IP, R1IP, R2IP, or R3IP, where Ti stands for the \(i^{\text {th }}\) translational component, Ri stands for the \(i^{\text {th }}\) rotational component, and RM means real or magnitude and IP means imaginary or phase. For scalar or extra poirics, use. T1, TIRM, or TlIP. For elements use a positive integer from the following tables for element stress item codes or element force item codes. See Section 1.3 for interpretation of symbols.

Plot Types AUTO or PSDF

For geometric grid points, the item code is one of the mnemonics T1, T2, T3, R1, R2, R3; for scalar or extra points use T 1 . The symbols \(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3\) are defined as above. For elements use a positive integer from the following tables noting that if an item has a real and imaginary part, the selection of either part will result in the use of both parts. Real numbers will be treated as if they are complex numbers with zero imaginary parts. Split frames cannot be used for AUTO or PSDF plots.

Element Stress I tem Codes
(All items are stresses unless otherwise denoted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Element Name & Item Code & al Element Stresses Item & Item Code & Complex Element Stresses Item & Real-Mag. or Imag. -Phase \\
\hline RøD & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & \begin{tabular}{l}
Axial Stress \\
Axial Safety Margin \\
Torsional Stress \\
Torsional Safety Margin
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & \begin{tabular}{l}
Axial Stress \\
Axial Stress \\
Torsional Stress \\
Torsional Stress
\end{tabular} & \[
\begin{aligned}
& \text { RM } \\
& \text { IP } \\
& \text { RM } \\
& I P
\end{aligned}
\] \\
\hline TUBE & & Same as R RDD & & Same as RøD & \\
\hline SHEAR & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4
\end{aligned}
\] & Maximum Shear Average Shear Safety Margin & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & Maximum Shear Maximum Shear Average Shear Average Shear & \[
\begin{aligned}
& \text { RM } \\
& \text { IP } \\
& \text { RM } \\
& \text { IP }
\end{aligned}
\] \\
\hline TWIST & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4
\end{aligned}
\] & \begin{tabular}{l}
Maximum \\
Average \\
Safety Margin
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}
\] & Maximum Maximum Average Average & \[
\begin{aligned}
& \text { RM } \\
& \text { IP } \\
& \text { RM } \\
& \text { IP }
\end{aligned}
\] \\
\hline TRIA 1 & \[
\begin{array}{r}
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
11 \\
12 \\
13 \\
14 \\
15 \\
16 \\
17
\end{array}
\] & \begin{tabular}{ll}
Z1 \(=\) Fibre & Distance 1 \\
Normal-x & at Z1 \\
Normal-y & at Z1 \\
Shear-xy & at Z1 \\
-Shear Angle & at Z1 \\
Major-Principal & at Z1 \\
Minor-Principal & at Z1 \\
Max-Shear & at Z1 \\
Z2 \(=\) Fibre & Distance 2 \\
Normal-x & at Z2 \\
Normal-y & at Z2 \\
Shear-xy & at Z2 \\
O-Shear Angle & at Z2 \\
Major-Principal & at Z2 \\
Minor-Principal & at Z2 \\
Maximum-Shear & at Z2
\end{tabular} & \[
\begin{array}{r}
3 \\
\times \quad 4 \\
5 \\
6 \\
7 \\
8 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15
\end{array}
\] & \begin{tabular}{lrl}
Zl \(=\) Fibre & Distance & 1 \\
Normal-x & at & 1 \\
Normal-x & at & 1 \\
Normal-y & at & 1 \\
Normal-y & at & 1 \\
Shear-xy & at & 1 \\
Shear-xy & at & 1 \\
Z2 \(=\) Fibre & Distance & 2 \\
Normal-x & at & 2 \\
Normal-x & at 2 \\
Normal-y & at 2 \\
Normal-y & at 2 \\
Shear-xy & at 2 \\
Shear-xy & at 2
\end{tabular} & \[
\begin{aligned}
& \text { RM } \\
& \text { IP } \\
& \text { RM } \\
& \text { IP } \\
& \text { RM } \\
& \text { IP }
\end{aligned}
\]
RM
IP
\[
\mathrm{RM}
\]
IP
RM
IP \\
\hline \[
\begin{aligned}
& \text { TRBSC } \\
& \text { TRPLT }
\end{aligned}
\] & & \begin{tabular}{l}
Same as TRIAl \\
Same as TRIAI
\end{tabular} & & \begin{tabular}{l}
Same as TRIAl \\
Same as TRIAI
\end{tabular} & \\
\hline TRMEM & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
\] & \begin{tabular}{l}
Normal-x \\
Normal-y \\
Shear-xy \\
\(\theta\)-Shear Angle \\
Major-Principal \\
Minor-Principal \\
Maximum Shear
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7
\end{aligned}
\] & \begin{tabular}{l}
Normal-x \\
Normal-x \\
Normal-y \\
Normal-y \\
Shear-xy \\
Shear-xy
\end{tabular} & \[
\begin{aligned}
& R M \\
& I P \\
& R M \\
& I P \\
& R M \\
& I P
\end{aligned}
\] \\
\hline CONROD & & Same as RgD & & Same as R \(\emptyset \mathrm{D}\) & \\
\hline ELAS 1 & 2 & Stress & \[
\begin{array}{r}
2 \\
3
\end{array}
\] & Stress Stress & \[
\begin{aligned}
& \text { RM } \\
& \text { IP }
\end{aligned}
\] \\
\hline ELAS2 & 2 & Stress & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & Stress Stress & \[
\begin{aligned}
& \text { RM } \\
& \mathrm{IP}
\end{aligned}
\] \\
\hline
\end{tabular}
\(X-Y\) OUTPUT

*See footnote 2 on next page.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Element Name & Item Code & Real Element Stresses Item & Item Code & Complex Element Stresses Item & Real-Mag. or Imag.-Phase \\
\hline \multirow[t]{19}{*}{TRAPRG} & 2 & Radial (x) at 1 & & & \\
\hline & 3 & Circum. (Theta) at 1 & & & \\
\hline & - 4 & Axial (z) at 1 & & & \\
\hline & 5 & \(\begin{array}{ll}\text { Shear (} 2 x) & \text { at } 1 \\ \text { Radial (x) } & \text { at } 2\end{array}\) & & & \\
\hline & 7 & Circum. (Theta) at 2 & & & \\
\hline & 8 & Axial. (z) at 2 & & & \\
\hline & 9 & Shear (\(2 x\)) at 2 & & & \\
\hline & 10 & Radial (x) at 3 & & & \\
\hline & 11 & Circum. (Theta) at 3 & & & \\
\hline & 12 & Axial (z) at 3 & & & \\
\hline & 13 & Shear (zx) at 3 & & & \\
\hline & 14 & Radial (x) at 4 & & & \\
\hline & 15 & Circum. (Theta) at 4 & & & \\
\hline & 16 & Axial (z) at 4 & & & \\
\hline & 17 & Shear (zx) at 4 & & & \\
\hline & 18 & Radial (x) at 5 & & & \\
\hline & 19 & Circum. (Theta) at 5 & & & \\
\hline & 20 & Axial (z) at 5 & & & \\
\hline & 21 & Shear (\(2 x\)) at 5 & & & \\
\hline \multirow[t]{15}{*}{TØRDRG} & 2 & Mem.-Tangen. at 1 & & & \\
\hline & 3 & Mem.-Circum. at 1 & & & \\
\hline & 4 & Flex.-Tangen. at 1 & & & \\
\hline & 5 & Flex.-Circum. at 1 & & & \\
\hline & 6 & Shear-Force at 1 & & & \\
\hline & 7 & Mem.-Tangen. at 2 & & & \\
\hline & 8 & Mem.-Circum. at 2 & & & \\
\hline & 9 & Flex.-Tangen. at 2 & & & \\
\hline & 10 & Flex.-Circum. at 2 & & & \\
\hline & 11 & Shear-Force at 2 & & & \\
\hline & 12 & Mem.-Tangen. at 3 & & & \\
\hline & 13 & Mem.-Circum. at 3 & & & \\
\hline & 14 & Flex.-Tangen. at 3 & & & \\
\hline & 15 & Flex.-Circum. at 3 & & & \\
\hline & 16 & Shear-Force at 3 & & & \\
\hline \multirow[t]{12}{*}{TETRA} & 2 & Norma (x) & 2 & Normal (x) & RM \\
\hline & 3 & Normal (y) & 3 & Normal (y) & RM \\
\hline & 4 & Normal (z) & 4 & Normal (z) & RM \\
\hline & 5 & Shear (yz) & 5 & Shear (yz) & RM \\
\hline & 6 & Shear (xy) & 6 & Shear (xy) & RM \\
\hline & 7 & Shear (\(x z\)) & 7 & Shear (xz) & RM \\
\hline & 8 & Octahedral & 8 & Norma] (x) & IP \\
\hline & 9 & Pressure & 9 & Normal (y) & IP \\
\hline & & & 10 & Normal (z) & IP \\
\hline & & & 11 & Shear (yz) & IP \\
\hline & & & 12 & Shear (xy) & IP \\
\hline & & & 13 & Shear (xz) & IP \\
\hline WEDGE & Same as & TETRA & Same as & TETRA & \\
\hline HEXAI & Same as & TETRA & Same as & TETRA & \\
\hline HEXA2 & Same as & TETRA & Same as & TETRA & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Element Name & Item Code & Real Element Stresses Item & Item Code & \begin{tabular}{l}
Complex Element Stresses \\
Item
\end{tabular} & Real-Mag. or Imag. -Phase \\
\hline AXIF2 & 2
3
4
5 & \begin{tabular}{l}
Radial-Axis \\
Axial-Axis \\
Tangential-Edge \\
Circumferential-Edge
\end{tabular} & \[
\begin{aligned}
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8 \\
& 9
\end{aligned}
\] & \begin{tabular}{l}
Radial-Axis \\
Axial-Axis \\
Tangential-Edge \\
Circumferential-Edge \\
Radial-Axis \\
Axial-Axis \\
Tangential-Edge \\
Circumferential-Edge
\end{tabular} & \begin{tabular}{l}
RM \\
RM \\
RM \\
RM \\
IP \\
IP \\
IP \\
IP
\end{tabular} \\
\hline AXIF3 & \[
\begin{array}{r}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
\hline 10
\end{array}
\] & \begin{tabular}{l}
Radial-centroid \\
Circumferential-centroid \\
Axial-centroid \\
Tangential-edge 1 \\
Circumferential-edge 1 \\
Tangential-edge 2 \\
Circumferential-edge 2 \\
Tangential-edge 3 \\
Circumferential-edge 3
\end{tabular} & \[
\begin{array}{r}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
16 \\
17 \\
18 \\
19
\end{array}
\] & \begin{tabular}{l}
Radial-centroid \\
Circumferential-centroid \\
Axial-centroid \\
Tangential-edge 1 \\
Circumferential-edge 1 \\
Tangential-edge 2 \\
Circumferential-edge 2 \\
Tangential-edge 3 \\
Circumferential-edge 3 \\
Radial-centroid \\
Circumferential-centroid \\
Axial-centroid \\
Tangential-edge 1 \\
Circumferential-edge 1 \\
Tangential-edge 2 \\
Circumferential-edge 2 \\
Tangential-edge 3 \\
Circumferential-edge 3
\end{tabular} & \\
\hline AXIF4 & \[
\begin{array}{r}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & \begin{tabular}{l}
Radial-centroid \\
Circumferential-centroid \\
Axial-centroid \\
Tangential-edge 1 \\
Circumferential-edge 1 \\
Tangential-edge 2 \\
Circumferential-edge 2 \\
Tangential-edge 3 \\
Circumferential-edg: 3 \\
Tangential-edqe 4 \\
Circumferential-edge 4
\end{tabular} & \[
\begin{array}{r}
2 \\
3 \\
4 \\
6 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
16 \\
17 \\
18 \\
19 \\
20 \\
21 \\
22 \\
23
\end{array}
\] & \begin{tabular}{l}
Radial-centroid \\
Circumferential-centroid \\
Axial-centroid \\
Tangential-edge 1 \\
Circumferential-edge 1 \\
Tangential-edge 2 \\
Circumferential-edge 2 \\
Tangential-edge 3 \\
Circumferential-edge 3 \\
Tangential-edge 4 \\
Circumferential-edge 4 \\
Radial-centroid \\
Circumferential-centroid \\
Axial-centroid \\
Tangential-edge 1 \\
Circumferential-edge 1 \\
Tangential-edqe 2 \\
Circumferential-edge 2 \\
Tangential-edge 3 \\
Circumferential-edge 3 \\
Tangential-edge 4 \\
Circumferential-edge 4
\end{tabular} & \begin{tabular}{l}
RM \\
RM \\
RM \\
RM \\
RM \\
RM \\
RM \\
RM \\
RM \\
RM \\
RM \\
IP \\
IP \\
IP \\
IP \\
IP \\
IP \\
IP \\
IP \\
IP \\
IP \\
IP
\end{tabular} \\
\hline
\end{tabular}

*The stresses are repeated for each stress point within each element.

\section*{Note:}
1. If output is magnitude/phase the magnitude replaces the real part and the phase replaces the imaginary part.
2. The symbols \(S A 1,2,3,4\) and \(S B 1,2,3,4\) stand for stresses on end \(A\) or \(B\) at locations \(C, D\), \(E\), and \(F\) respectively as defined on the first continuation card of the PBAR bulk data card.

\section*{Element Force Item Codes}
(All items are element forces (or moments) unless otherwise indicated)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Element Name} & \multicolumn{2}{|r|}{Real Element Forces} & \multicolumn{3}{|l|}{Complex Element Forces} \\
\hline & Item Code & Item & I tem Code & Item & Real-Mag. or Imag. -Phase \\
\hline \multirow[t]{4}{*}{\(R \emptyset D\)} & \multirow[t]{4}{*}{2
3} & \multirow[t]{4}{*}{Axial Force Torque} & 2 & Axial Force & RM \\
\hline & & & 3 & Axial Force & IP \\
\hline & & & 4 & Torque & RM \\
\hline & & & 5 & Torque & IP \\
\hline TUBE & & Same as R \(\emptyset\) D & & Same as RgD & \\
\hline \multirow[t]{4}{*}{SHEAR} & \multirow[t]{4}{*}{2
3} & \multirow[t]{4}{*}{\begin{tabular}{l}
Force Pts. 1, 3 \\
Force Pts. 2, 4
\end{tabular}} & 2 & Force Pts. 1, 3 & RM \\
\hline & & & 3 & Force Pts. 1, 3 & IP \\
\hline & & & 4 & Force Pts. 2, 4 & RM \\
\hline & & & 5 & Force Pts. 2, 4 & IP \\
\hline \multirow[t]{4}{*}{TWIST} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Moment Pts. 1, 3 \\
Moment Pts. 2, 4
\end{tabular}} & 2 & Moment Pts. 1, 3 & RM \\
\hline & & & 3 & Moment Pts. 1, 3 & IP \\
\hline & & & 4 & Moment Pts. 2, 4 & RM \\
\hline & & & 5 & Moment Pts. 2, 4 & IP \\
\hline \multirow[t]{10}{*}{TRIA1} & \multirow[t]{10}{*}{2
3
4
5
6} & \multirow[t]{10}{*}{\begin{tabular}{l}
Bend-Moment-x \\
Bend-Moment-y \\
Twist-Moment \\
Shear-x \\
Shear-y
\end{tabular}} & 2 & Bend-Moment-x & RM \\
\hline & & & 3 & Bend-Moment-y & RM \\
\hline & & & 4 & Twist-Moment & RM \\
\hline & & & 5 & Shear-x & RM \\
\hline & & & 6 & Shear-y & RM \\
\hline & & & 7 & Bend-Moment-x & IP \\
\hline & & & 8 & Bend-Moment-y & IP \\
\hline & & & 9 & Twist-Moment & IP \\
\hline & & & 10 & Shear-x & IP \\
\hline & & & 11 & Shear-y & IP \\
\hline TRBSC & & Same as TRIA1 & & Same as TRIA1 & \\
\hline TRPLT & & Same as TRIAI & & Same as TRIAl & \\
\hline CONROD & & Same as RØD & & Same as RØD & \\
\hline \multirow[t]{2}{*}{ELAS 1} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{Force} & 2 & Force & RM \\
\hline & & & 3 & Force & IP \\
\hline \multirow[t]{2}{*}{ELAS2} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{Force} & 2 & Force & RM \\
\hline & & & 3 & Force & IP \\
\hline \multirow[t]{2}{*}{ELAS3} & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{Force} & 2 & Force & RM \\
\hline & & & 3 & Force & IP \\
\hline ELAS4 & 2 & Force & 2 & Force & RM \\
\hline & & & 3 & Force & IP \\
\hline QDPLT & & Same as TRIAI & & Same as TRIAI & \\
\hline TRIA2 & & Same as TRIAI & & Same as TRIA1 & \\
\hline QUAD2 & & Same as TRIAI & & Same as TRIA1 & \\
\hline
\end{tabular}

PLOTTING

X-Y OUTPUT

\subsection*{4.3.4 Examples of \(X-Y\) Output Request Packets}

BEGIN BULK or QUTPUT(PLØT) card is shown as a reminder to the user to place his \(X-Y\) output request packet properly in his Case Control Deck, i.e., at the end of the Case Control Deck or just ahead of any structure plot requests.

\section*{Example 1}

ØUTPUT (XYPLQT)
PLØTTER = SC 4020
XYPLQT SDISP / 16(T1)
BEGIN BULK
Causes a single whole frame to be plotted for the Tl displacement component of solution set point 16 using the default parameter values. If \(16(\mathrm{Tl})\) is not in the solution set, a warning message will be printed and no plot will be made. The plot will be generated for the SC 4020 plotter on NASTRAN tape PLT2 which must be set up.

\section*{Example 2}
```

ØUTPUT(XYØUT)
PL\emptysetTTER =EAI }350
XYPL\emptysetT, XYPRINT VEL\emptyset RESP\emptysetNSE 1,5 / 3(R1, ), 5( ,RT)
\emptysetUTPUT(PL\emptysetT)
Causes a single frame (consisting of an upper half frame and a lower half frame) to be plotted using the default parameter values. The velocity of the first rotational component of grid point 3 will be plotted on the upper half frame and that of grid point 5 will be plotted on the lower half frame for subcases 1 and 5. Tabular printer output will also be generated for both curves. The plots will be generated for the EAI 3500, 30-inch, table plotter on NASTRAN tape PLT1 which must be set up. Scales will be selected such that the frame will fit on $81 / 2 \times 11$-inch paper.

```

\section*{Example 3}

DUTPUT (XYPLDT)
PLDTTER \(=\) SC 4020
YDIVISIONS \(=20\)
XDIVISIØNS \(=10\)
XGRID LINES = YES
YGRID LINES = YES
XYPLDT DISP 2,5 /10(T1),10(T3)

Causes two whole frame plots to be generated, one for subcase 2 and one for subcase 5 . Each
plot contains the Tl and T3 displacement component for grid point 10. The default parameters will be modified to include grid lines in both the \(x\) and \(y\)-directions with 10 spaces in the \(x\)-direction and 20 spaces in the \(y\)-direction. The plot will be generated for the SC 4020 plotter on NASTRAN tape PLT2 which must be set up.

\section*{Example 4}

\section*{ØUTPUT (XYPLDT)}

PLDTTER = EAI 3500
XAXIS = YES
YAXIS = YES
XPAPER \(=17.0\)
YPAPER \(=22.0\)
XYPLDT STRESS 3/ 15(2)/ 21(6)
Causes two whole frame plots to be generated using the results from subcase 3 . The first plot is the response of the axial stress for rod element number 15 . The second plot is the response of the major principal stress for triangular membrane element number 21 . The default parameters will be modified to include the \(x\)-axis and \(y\)-axis drawn through the origin. Each plot will be scaled to fit on \(17 \times 22\)-inch paper. The plots will be generated for the EAI 3500 , 30 -inch, table plotter on NASTRAN tape PLTl which must be set up.

\section*{Example 5}

QUTPUT (XYPLQT)
PLDTTER = NASTPLT D,0
CURVELINESYMBQL \(=-1\)
XYPLDT VG \(/ 1(G, F) 2(G, F) 3(G, F) 4(G, F)\)
A split frame plot will be made; the upper half is \(V-g\) and the lower half is V-f. Data from the first four loops will be plotted. Distinct symbols are used for data from each loop, and no lines are drawn between points (since the flutter analyst must sometimes exercise judgement about which points should be connected).

\subsection*{4.3.5. Surmary of \(X-Y\) Output Request Packet Cards}

Type of value: \(I=\) Integer, \(R=\) Real, \(B=B C D\). See Sections 4.3.2 and 4.3.3 for details of these cards.

\begin{tabular}{|c|c|c|c|c|}
\hline & Whole frames only & Upper half frames only & Lower half frames only & \\
\hline 1 & YMIN \(=\) yl & YTMIN \(=y t]\) & YBMIN \(=\) ybl & (R) \\
\hline & YMAX \(\quad=y 2\) & YTMAX \(=\) yt2 & YBMAX \(=\mathrm{yb} 2\) & (R) \\
\hline 2 & XAXIS = yesno* & XTAXIS = yesno* & XBAXIS = yesno* & (B) \\
\hline 3 & YINTERCEPT = yi & YTINTERCEPT \(=y t i\) & YBINTERCEPT \(=\mathrm{ybj}\) & (I) \\
\hline 4 & YLQG \(=\) yesno* & YTLøG = yesno* & YBLQG = yesno* & (B) \\
\hline 5 & LEFT TICS \(=1 t\) & TLEFT TICS \(=\mathrm{tl} \mathrm{t}\) & BLEFT TICS = blt & (I) \\
\hline 6 & RIGHT TICS \(=r t\) & TRIGHT TICS \(=\) trt & BRIGHT TICS \(=\) brt & (I) \\
\hline 7 & ALLEDGE TICS = aet & TALL EDGE TICS = taet & BALL EDGE TICS = baet & (I) \\
\hline 8 & YDIVISIONS \(=\) yd & YTDIVISI®NS = ytd & YBDIVISIQNS \(=\mathrm{ybd}\) & (I) \\
\hline 9 & YVALUE PRINT SKIP \(=\) yps & YTVALUE PRINT SKIP \(=y\) tps & YBVALUE PRINT SKIP \(=\) ybps & (I) \\
\hline 10 & XGRID LINES \(=\) yesno* & XTGRID LINES = yesno* & XBGRID LINES = yesno* & (B) \\
\hline 71 & \(\begin{aligned} & \text { YGRID LINES } \\ & \text { YTITLE }\end{aligned}=\begin{aligned} & \text { yesno* } \\ & \text { anything }\}\end{aligned}\) & YTGRID LINES \(=\) = yesno* & YBGRID LINES = yesno* & (B) \\
\hline 12 & YTITLE \(=\) \{anything \} & YTTITLE \(=\) \{anything \(\}\) & YBTITLE \(=\) \{anything\} & (B) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Command operation cards} \\
\hline \(\left\{\begin{array}{l}\text { XYPL } \emptyset T \\ \text { XYPRINT } \\ \text { XYPUNCH } \\ \text { XYPEAK } \\ \text { XYPAPLDT }\end{array}\right\}\) & (ACCE \(\left.\begin{array}{l}\text { DISP } \\ \text { ELFQRCE } \\ \text { NQNLINEAR } \\ \text { QLDAD } \\ \text { SACCE } \\ \text { SDISP } \\ \text { SPCF } \\ \text { STRESS } \\ \text { SVEL } \\ \text { VECT } \emptyset R \\ V E L \emptyset \\ V G\end{array}\right\}\) & \(\left\{\begin{array}{l}\text { RESPONSE } \\ \begin{array}{l}\text { AUTØ } \\ \text { PSDF }\end{array}\end{array}\right\}\) & subcases /curves \\
\hline
\end{tabular}

\footnotetext{
* yesno must be either YES or Nø
}

\section*{DIRECT IATRIX ABSTRACTION}

\subsection*{5.1 GENERAL}

In addition to using the rigid formats provided automatically by NASTRAN, the user may wish to execute a series of modules in a different manner than provided by the rigid format. Or, he may wish to perform a series of matrix operations which are not contained in any existing rigid format. If the modifications to an existing rigid format are minor, the ALTER feature described in Section 2 may be employed. Otherwise, a user-written Direct Matrix Abstraction Program (DMAP) should be used.

DMAP is the user-oriented language used by NASTRAN to solve problems. A rigid format is basically a collection of statements in this language. DMAP, like English or FØRTRAN, has many grammatical rules which must be followed to be interpretable by the NASTRAN DMAP compiler. Section 5.2 provides the user with the rules of DMAP which will allow him to understand the rigid format DMAP sequences, write ALTER packages, and construct his own DMAP sequences using the many modules contained in the NASTRAN DMAP repertoire.

Section 5.3 is an index of matrix, utility, user and executive DMAP modules which are contained in Sections 5.4 thru 5.7 respectively.

Sections 5.4 thru 5.7 describe individually the many nonstructurally oriented modules contained in the NASTRAN library. Section 5.8 provides several examples of DMAP usage.

User-written modules must conform to the rules and usage conventions described herein.

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.2 DMAP RULES}

Grammatically, DMAP instructions consist of two types: Executive Operation Instructions and Functional Module Instructions. Grammatical rules for these two types of instructions will be discussed separately in subsequent sections.

Functional modules are arbitrarily classified as structural modules, matrix operation modules, utility modules, or user-generated modules.

The DMAP sequence itself consists of a series of DMAP instructions or statements, the first of which is BEGIN and the last of which is END. The remaining statements consist of Executive Operation instructions and Functional Module calls.

\subsection*{5.2.1 DMAP Rules for Functional Module Instructions}

The primary characteristic of the Functional Module DMAP instruction is its prescribed format. The general form of the Functional Module DMAP statement is:

where M \(\emptyset D\) is the DMAP Functional Module name,
Ii; \(\mathbf{i}=1, \mathrm{~m}\) are the Input Data Block names, Di; i \(=1, n\) are the Øutput Data Block names,
and \(\quad\) ai,bi,pi; \(\mathbf{i}=1, z\) are the Parameter Sections.

In the general form shown above, commas (,) are used to separate several like items while slashes (/) are used to separate sections from one another. The module name is separated from the rest of the instruction by a blank or a comma (,). The dollar sign (\$) is used to end the instruction and is not required unless the instruction ends in the delimiter / . Blanks may be used |in conjunction with any of the above delimiters for ease of reading.

A functional module communicates with other modules and the executive system entirely through its inputs, outputs and parameters. The characteristics or attributes of each functional module are contained in the Module Properties List (MPL) described in Section 2.4 of the Programmer's Manual and are reflected in the DMAP Module Descriptions that follow in Section 5.3 and in the Module Functional Descriptions contained in Chapter 4 of the Programmer's Manual. The module name is a BCD value (which consists of an alphabetic character followed by up to seven additional alphanumeric characters) and must correspond to an entry in the MPL. A Data Block name may be either a BCD value or null. The absence of a \(B C D\) value indicates that the Data Block is not needed for a particular application.

\section*{DIRECT MATRIX ABSTRACTION}
5.2.1.1 Each Functional Module DMAP statement must conform to the MPL regarding
1. Name spelling
2. Number of input data blocks
3. Number of output data blocks
4. Number of parameters
5. Type of each parameter

\subsection*{5.2.1.2 Functional Module Names}

The only Functional Module DMAP names allowed are those contained in the MPL. Therefore, if a user wishes to add a module, he must either use one of the User Module names provided (see Section 5.6 or add a name to the MPL. The Programmer's Manual should be consulted when adding a new module to NASTRAN.

\subsection*{5.2.1.3 Functional Module Input Data Blocks}

An input data must be previously defined in the DMAP sequence. This is accomplished by causing the data block to be output from a previous DMAP instruction. Input File Processor outputs and any user-input (via Bulk Data Cards) DMI or DTI data block names are exempt from this rule as are data blocks existing on the 01d Problem Tape. Since the number of Data Blocks is prescribed, the number of separating commas must be one less than the number of Data Blocks, even though one or more Data Blocks are null. An input data block may never be written on (nor have its trailer changed).

\subsection*{5.2.1.4 Functional Module Output Data Blocks}

A data block name may appear as an output once and only once. New names may be equivalenced to old ones, however, as described in Section 5.2.3.2. Since the number of Data Blocks is prescribed, the number of separating commas must be one less than the number of Data Blocks, even though one or more Data Blocks are null.

\subsection*{5.2.1.5 Functional Module Parameters}

Parameters are used for many purposes. They may convey data values into and/or out from the module, or they may simply serve as flags to control the computational flow within the module. The general form of a parameter section of a DMAP instruction is
ai, bi, pí
where the parameter specifications are:
\[
\begin{aligned}
& \text { (V Parameter value is variable and may be changed } \\
& \text { by the module during execution. } \\
& \text { Parameter value is prescribed initially by the } \\
& \text { user and is an unalterable constant. } \\
& \text { bi }= \begin{cases}Y & \text { Initial parameter value may be specified on a } \\
N & \text { PARAM bulk data card. } \\
\text { Initial parameter value may not be specified on a } \\
\text { PARAM bulk data card. }\end{cases} \\
& \mathrm{pi}= \begin{cases}\text { PNAME }=v & \begin{array}{l}
\text { PNAME is a BCD value selected by the user to } \\
\text { represent the name of the parameter. }
\end{array} \\
\text { PNAME } & \end{cases}
\end{aligned}
\]

The various forms available for pi require additional clarification. The form \(v\) means a value for the parameter and may only be used wnen \(a i=C\) and \(b i=N\). The other forms will be clarified in the symbolic examples that follow. Each parameter has an initial value which is established when the DMAP sequence is complied during execution of the NASTRAN preface. The means by which initial values are established for all DMAP parameters will be explained by the symbolic examples that follow. The value used at execution time may differ from the initial value if and only if the module changes the value, if \(a i=\) " \(V\) ", and the parameter name appears in a SAVE (see Section 5.7) instruction immediately following the module. Six parameter types are available. The proper type is specified by the Module Properties List (MPL). The types and examples of values as they would be written in DMAP are given below:

Parameter Type
Integer
Real
BCD
Double-Precision
Complex Single-Precision Complex Double-Precision

Many forms of the parameter section may be used. These will be explained in some detail.
null This is equivalent to \(/ C, N, v\) where \(v\) is the MPL default value which must exist. No nonnull parameters may follow a null parameter in the DMAP statement. A null is not punched, nor is the preceding /.
/C,N,v Constant input parameter
Examples: /C,N,0/C,N,BKLO/C,N,(1.0,-1.0)
In the three examples shown, the values 0 (integer), BLKO (BCD) and 1.0-il.0 (complex, single precision) are defined.
\begin{tabular}{|c|c|}
\hline /C,Y,PNAME & Constant input parameter; MPL default value is used unless a PARAM bulk data card referencing PNAME is present. Error condition is detected if either no PARAM card is present or if no MPL default value exists. \\
\hline /C,Y,PNAME=V & Constant input parameter; the value \(v\) is used unless a PARAM bulk data card referencing PNAME is present. \\
\hline \multirow[t]{5}{*}{/V,Y,PNAME or /V,Y,PNAME=v} & Variable parameter; may be input, output, or both; initial value is the first of 1. value from the most recently executed SAVE instruction, if any \\
\hline & 2. value from PARAM bulk data card referencing PNAME will be used if present in Bulk Data Deck \\
\hline & 3. \(v\), if present in DMAP instruction \\
\hline & 4. MPL default value, if any \\
\hline & If a parameter is output from a functional module and if the output value is to be carried forward, a SAVE instruction must immediately follow the DMAP instruction in which the parameter is generated. \\
\hline \multirow[t]{4}{*}{/V,N, PNAME or /V,N,PNAME=V} & Variable parameter; may be input, output, or both; initial value is the first of \\
\hline & 1. value from the most recently executed SAVE instruction, if any \\
\hline & 2. \(v\), if present in DMAP instruction \\
\hline & 3. MPL default value, if any \\
\hline
\end{tabular}

\subsection*{5.2.2 DMAP Rules for Executive Operation Instructions}

Each Executive Operation statement has its own format which is generally open-ended, meaning the number of inputs, outputs, etc. is not prescribed. Executive Operation instructions or statements are divided into general categories as follows:
1. Declarative instructions FILE, BEGIN and LABEL which aid the DMAP compiler and the file allocator.
2. Instructions CHKPNT, EQUIV, PURGE and SAVE which aide the NASTRAN executive system in allocating files, interfacing between functional modules and in restarting a problem.
3. Control instructions REPT, JUMP, CØND, EXIT and END which control the order in which DMAP instructions are executed.

The rules associated with the Executive Operation instructions are distinct for each instruction and are discussed individually in Section 5.7.

\subsection*{5.2.3 Techniques and Examples of Executive Module Usage}

Even though the DMAP program may be interpretable by the DMAP compiler it does not guarantee that the program will yield the desired results. Therefore this section is provided to acquaint the DMAP programmer with techniques and examples used in writing DMAP programs. In particular the instructions REPT, FILE, EQUIV, PURGE and CHKPNT will now be discussed in some detail. The DMAP module index for all nonstructural modules will be found in Section 5.3.

The new DMAP user should read Sections 5.4 through 5.7 to obtain the necessary knowledge of terminology before reading this section.

The data blocks and functional modules referenced in the following examples are fictitious and have no relationship to any real data blocks or functional modules.

A data block is described as having a status of "not generated," "generated" or "purged." A status of not generated means that the data blocks is available for generation by appearing as output in a functional module. A status of generated means that the data block contains data which is available for input to a subsequent module. A status of purged means that the data block cannot be generated and any functional module attempting to use this data block as input or output will be informed that the purged data block is not available for use.

\subsection*{5.2.3.1 The REPT and FILE Instructions (see Section 5.7)}

The DMAP instructions bounded by the REPT instruction and the label referenced by the REPT instruction are referred to as a loop. The location referenced by the REPT is called the top of the loop. In many respects a DMAP loop is like a giant functional module since it requires inputs and generates output data blocks which usually can be handled correctly by the file Allocator (see Section 4.9 of the Programmer's Manual) without any special action by the DMAP programmer. The one exception is a data block that is not referenced outside the loop (i.e., an internal data block with respect to the loop). The file allocator considers internal data blocks as scratch data "blocks to be used for the present pass through the loop but not to be saved for input at the top of the loop. Should the DMAP programmer desire to save an internal data block, he may do so by declaring the data block SAVE in the FILE instruction.

When the REPT instruction transfers control back to the top of the loop, the status of all internal data blocks is changed to "not generated" unless the internal data block is declared SAVE or APPEND in a FILE instruction. It should also be noted that equivalences established between internal data blocks (not declared saved) and data blocks referenced outside the loop are not carried over for the next time through the loop. The equivalence must be re-established each time through the loop. Data blocks generated by the Input File Processor are considered referenced outside of all DMAP loops.

EXAMPLE using REPT and FILE instructions.
DMAP \begin{tabular}{ll}
& \\
BEGIN & \(\$\) \\
FILE & \(X=S A V E / Y=A P P E N D / Z=A P P E N D ~\)
\end{tabular}

Assume that \(M \emptyset D 2\) sets \(P X=0\) when it is executed. Note that \(Z\) is declared APPEND, whereas \(Y\) will be saved since it is an internal data block that is to be appended. \(X\) is an internal data block that is to be saved since it will only be generated the first time through the loop but is needed as input each time the loop is repeated. \(W\) is an internal data block that is generated each time through the loop; therefore, it is not saved.

The following table shows what happens when the above DMAP program is executed. Only modules being executed are shown in the table. Data blocks \(A\) and \(B\) are assumed to be generated by the Input File Processor, and hence are considered referenced outside of all DMAP loops.

DMAP RULES
\begin{tabular}{|c|c|c|}
\hline Module being executed & Input. status and comments & Output status and comments \\
\hline MøD1 & B-assumed generated by the input file processor & W, Y - generated \\
\hline COND & PX is 0 & No transfer occurs since PX \(1 \geq 0\) \\
\hline M 9 D 2 & A-assumed generated by the input file processor & \begin{tabular}{l}
\(X\) - generated \\
\(P X\) is set < 0
\end{tabular} \\
\hline SAVE & PX < 0 & The value created above is saved for subsequent use. \\
\hline MøD3 & W, X, Y are all generated at this point & Z - generated \\
\hline REPT & Loop count is initially set at 1 & \begin{tabular}{l}
Transfer to Ll - set loop count to T-T=0 \\
Status of data blocks at top of loop will be: \\
A, B, Z - generated (referenced outside loop) \\
\(X, Y\) - generated (internal data blocks declared saved) \\
W - not generated (internal data block)
\end{tabular} \\
\hline M9D1 & B - generated & ```
W - generated
Y - generated (appended)
``` \\
\hline CøND & PX is now < 0 due to SAVE & Transfer to L3 occurs \\
\hline M9D3 & W, X, Y - generated & Z - generated (appended) \\
\hline REPT & Loop count is now 0 & No transfer occurs. \\
\hline M9D4 & Z - generated & Output to printer (assumed) \\
\hline END & & Normal termination of problem. \\
\hline
\end{tabular}

\subsection*{5.2.3.2 The EQUIV Instruction (see Section 5.7)}

There are no restrictions on the status of data blocks referenced in an EQUIV instruction. Consider the instruction EQUIV \(A, B_{1}, \cdots, B_{N} / P \$\) when \(P<0\). Data blocks \(B_{1}, \cdots, B_{N}\) take on all the characteristics of data block \(A\) including the status of \(A\). This means the status of some \(B_{j}\) can change from purged to generated or not generated.

The EQUIV instruction will unequivalence data blocks when \(P \geq 0\). In an unequivalence operation, the status of all secondary data blocks reverts to not generated.

Suppose \(A, B\), and \(C\) are all equivalenced and \(P \geq 0\). EQUIV \(A, B / P \quad \$\) will break the . equivalence between \(A\) and \(B\) but not between \(A\) and \(C\).

\section*{DIRECT MATRIX ABSTRACTION}

Now consider the following situation. Data block B is to be generated by repeatedly executing functional module \(M \emptyset D 2\). The input to \(M \emptyset D 2\) is the previous output from \(M \emptyset D 2\). That is to say, each successive generation of \(B\) depends on the previous \(B\) generated. The following example shows how the EQUIV instruction is used to solve this problem. Assume parameter BREAK \(\geq 0\) and parameter LINK < 0 .

EXAMPLE of EQUIV instruction.
\begin{tabular}{|c|c|c|c|}
\hline & BEGIN & A B & \\
\hline & M 0 D & A/B \$ & \\
\hline & ( LABEL & L1 \$ & \\
\hline DMAP & EQUIV & B,BB/BREAK & \$ \\
\hline DMAP & \{ MDD2 & B/BB \$ & \\
\hline loop & EQUIV & BB,B/LINK & \$ \\
\hline & ( REPT & L.1,1 \$ & \\
\hline & M9D3 & BB// \$ & \\
\hline & END & \$ & \\
\hline
\end{tabular}

The following table shows what happens when the above DMAP program is executed. Only modules being executed are shown in the table.
\begin{tabular}{|c|c|c|}
\hline Module being executed & Input status and corments & Output status and comments \\
\hline MøD1 & A-assumed generated by input processor & B - generated \\
\hline EQUIV & B will not be equivalenced to \(B B\) since BREAK \(\geq 0\). & No action taken. \\
\hline M9D2 & B-generated & BB - generated \\
\hline EQUIV & \(B B\) and \(B\) are not equivalenced. B - generated BB - generated LINK < 0 . & \(B\) is equivalenced to \(B B\). That is, \(B\) assumes all of the characteristics of \(B B\). \(B\) and \(B B\) then both have the status of generated. \\
\hline REPT & Loop count is initially 1 & Transfer to Ll; set loop count to l-1=0. \\
\hline EQUIV & \(B\) and \(B B\) are generated and equivalenced. \(B R E A K \geq 0\). & The equivalence is broken; B - generated, BB not generated \\
\hline M9D2 & B-generated & BB - generated \\
\hline EQUIV & \(B B\) and \(B\) are generated and not equivalenced. LINK < 0 . & B equivalenced to \(B B ; B, B B\) - generated
, \\
\hline REPT & Loop count is 0 & No transfer occurs. \\
\hline M9D3 & BB - generated & Output to printer (assumed) \\
\hline END & & Normal termination of problem. \\
\hline
\end{tabular}

Since equivalences are automatically broken between internal files (not declared saved) and files referenced outside the loop, the above DMAP program could be written as follows and the same results achieved.
\begin{tabular}{lll} 
BEGIN & \(\$\) \\
DMAP \\
MDD1 & A/B \(\$\) \\
loop
\end{tabular}\(\left\{\begin{array}{lll}\text { LABEL } & \text { L1 } \$ \\
\text { MDD2 } & \text { B/BB \$ } \\
\text { EQUIV } & \text { BB,B/LINK } \$ \\
\text { REPT } & \text { L1,1 } \$ \\
\text { MפD3 } & \text { B// } \$ \\
\text { END } & \$\end{array}\right.\)

Data block \(B B\) is now' internal; therefore, the instruction EQUIV \(B, B B / B R E A K ~ \$\) is not needed.

\subsection*{5.2.3.3 The PURGE Instruction (see Section 5.7)}

The status of a data block is changed to purged by explicitly or implicitly purging it. A data block is explicitly purged through the PURGE instruction, whereas it is implicitly purged if it is not created by the functional module in which it appears as an output.

The primary purpose of the PURGE instruction is to prepurge data blocks. Prepurging is the explicit purging of a data block prior to its appearance as output from a functional module. Prepurging data blocks allows the NASTRAN executive system to allocate available files more efficiently which decreases problem execution time. The DMAP programmer should look for data blocks that can be prepurged and purge them as soon as it is recognized that they will not be generated.

Sometimes during the execution of a problem it is necessary to generate a data block whose status is purged. This situation can occur both in DMAP looping and in a modified restart situation. In order to generate a data block that is purged it is first necessary to unpurge it (i.e., change its status from purged to not generated). Unpurging is achieved by executing a PURGE instruction which references the purged data block and whose purge parameter is positive.

The PURGE instruction thus has two functions, to unpurge as well as purge data blocks depending on the value of the purge parameter and the status of the referenced data block. The following table shows what action is taken by the PURGE instruction for all combinations of input.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{PURGE A/P \$} \\
\hline Status of data block A prior to PURGE & Value of \(P\) & Status of Data block A after PURGE \\
\hline Not generated Not generated & \(P \geq 0\)
\(P<0\) & Not generated (i.e., no action taken) Purged \\
\hline Generated Generated & \[
\begin{aligned}
& P \geq 0 \\
& P<0
\end{aligned}
\] & Generated (i.e., no action taken) Purged \\
\hline Purged Purged & \[
\begin{aligned}
& P \geq 0 \\
& P<0
\end{aligned}
\] & Not generated (i.e., unpurged) Purged (i.e., no action taken) \\
\hline
\end{tabular}

The user may wonder why he should not prepurge all data blocks and then unpurge them when necessary in order to really assist the file allocator. One should not do this, since there is a limited amount of space in the table where the status of data blocks is kept. One may overflow this table if too many data blocks are purged at one time. Therefore, only prepurge those data blocks that can truly be prepurged.

EXAMPLE of explicit and implicit purging and prepurging.


Assume that module MøD1 sets \(P X<0, P Y \geq 0\) and \(P B=0\). Assume that \(B\) is not generated by \(M \emptyset D 2\) if \(P B=0\). Assume that \(M \nsupseteq D 2\) sets \(P C<0\), but does not change \(P B\).

The following table shows what happens when the above DMAP program is executed. Only modules being executed are shown in the table.

DMAP RULES
\begin{tabular}{|c|c|c|}
\hline Module being executed & Input status and comments & Output status and comments \\
\hline MDD & IP-assumed generated by the input file processor & \[
\begin{aligned}
& A-\text { generated } \\
& P X<0, P Y \geq 0, P B=0
\end{aligned}
\] \\
\hline SAVE & \[
\begin{aligned}
& P X<0, P Y \geq 0 ; \\
& P B=0
\end{aligned}
\] & Parameter values are saved for use in subsequent modules. \\
\hline PURGE & \[
\begin{aligned}
& X, Y \text {-not generated } \\
& P X<0, P Y \geq 0
\end{aligned}
\] & ```
X - purged (i.e., prepurged)
Y - not generated
``` \\
\hline M9D2 & \(A\) - generated; \(P B=0\) & ```
B - purged (i.e., implicitly); C, D - generated;
PC < 0.
``` \\
\hline SAVE & \(\mathrm{PC}<0\) & PB value not saved since M \(M \square 2\) did not reset it. \\
\hline PURGE & \[
\begin{aligned}
& C \text { - generated } \\
& P C<0
\end{aligned}
\] & C - purged \\
\hline M9D3 & \begin{tabular}{l}
B, C - purged \\
D - generated
\end{tabular} & E - generated \\
\hline M9D4 & E - generated & \(X\) - purged; Y - generated; \(Z\) - generated \\
\hline M9D5 & \begin{tabular}{l}
\(X\) - purged \\
Y, Z - generated
\end{tabular} & Output to printer (assumed) \\
\hline END & & Normal termination of problem. \\
\hline
\end{tabular}

EXAMPLE of unpurging.


Assume that \(M \emptyset D 2\) sets \(P X<0\) and \(N P X \geq 0\) the first time it is executed. Assume that \(M \emptyset D 2\) sets \(P X \geq 0\) and \(N P X<0\) the second time it is executed.

The following table shows what happened when the above DMAP program is executed. Only modules being executed are shown in the table.

DIRECT MATRIX ABSTRACTION
\begin{tabular}{|c|c|c|}
\hline Module being executed & Input status and comments & Output status and comments \\
\hline MøD1 & IP-assumed generated by input file processor. & A - generated \\
\hline COND & \(N P X=0\) & Jump not executed \\
\hline PURGE & X - not generated & \(X\) - not generated (i.e., no action taken) \\
\hline MgD2 & A - generated & \(X, Y\) - generated; \(P X<0, N P X \geq 0\) \\
\hline SAVE & PX < 0, NPX \(\geq 0\) & \\
\hline PURGE & X - generated; \(\mathrm{PX}<0\) & \(x\) - purged \\
\hline MgD3 & \begin{tabular}{l}
\(X\) - purged; \\
\(Y\) - generated
\end{tabular} & \(z\) - generated \\
\hline REPT & Loop count \(=2\) & Transfer to location Ll; Loop count \(=1\) \\
\hline COND & NPX 20 & Jump not executed \\
\hline PURGE & X - purged; NPX \(\geq\). 0 & \(X\) - not generated (i.e., unpurged) \\
\hline MgD2 & A - generated & \(X\) - generated; \(Y\) - generated (note old data for \(Y\) is lost because \(Y\) not Appended); \(P X \geq 0\), NPX < 0 \\
\hline SAVE & PX \(200, N P X<0\) & \\
\hline PURGE & \(X\) - generated; \(P X \geq 0\) & \(x\) - generated (i.e., no action taken) \\
\hline MgD3 & \(X, Y\) - generated & \(z\) - generated (note new data appended to old because \(Z\) declared appended) \\
\hline REPT & Loop count \(=1\) & Transfer to location Ll; Loop count \(=0\) \\
\hline COND & NPX < 0 & Transfer to location L2 \\
\hline M0D3 & \(x, y-\) generated & z - generated (i.e., appended) \\
\hline REPT & Loop count \(=0\) & Fall through to next instruction \\
\hline MQD4 & Z - generated & Output to printer (assumed) \\
\hline END & & Normal termination of problem \\
\hline
\end{tabular}

\subsection*{5.2.3.4 The CHKPNT Instruction (see Section 5.7)}

The CHKPNT instruction provides the user with a means for saving data blocks for subsequent restart of his problem with a minimum amount of redundant processing. The following rules will assure the DMAP programmer of the most efficient restart.
1. Checkpoint all output data blocks from every functional module.
2. Checkpoint all data blocks mentioned in a PURGE instruction.
3. Checkpoint all secondary data blocks in an EQUIV instruction. Never checkpoint primary data blocks in an EQUIV instruction.

EXAMPLE of checkpointing.
```

BEGIN \$
M0D1 A/B,C/V,Y,P1/V,Y,P2 \$
SAVE Pl,P2 \$
CHKPNT B,C \$
PURGE X,Y/P1 / Z/P2 \$
CHKPNT X,Y,Z \$
EQUIV B,BB/P1 / C,CC,D/P2 \$
CHKPNT BB,CC,D \$
END \$

```

In the example the data blocks were checkpointed as soon as possible, which is the most straightforward way, but it required three calls to the checkpoint module, which increases problem execution time. Since checkpointing usually requires a small fraction of the total execution time, it is recommended that the user use the most straightforward method to avoid trouble. The rigid format DMAP sequences have been designed for efficiency and, consequently, they appear more complex than they really are.

\subsection*{5.3 INDEX OF DMAP MODULE DESCRIPTIONS}

Descriptions of all nonstructurally oriented Modules are contained herein, arranged alphabetically by category as indicated by the lists below. Descriptions for the structurally oriented modules are contained in Section 4 of the Programmer's Manual. They are listed here in order to provide a complete list of all NASTRAN Modules. Additional information regarding nonstructurally oriented modules is also given in Section 4 of the Programmer's Manual.

Matrix Operation Modules (12)
(See Section 5.4)
\begin{tabular}{ll} 
ADD & PARTN \\
ADD5 & SMPYAD \\
DECØMP & SQLVE \\
FBS & TRNSP \\
MERGE & UMERGE \\
MPYAD & UPARTN
\end{tabular}

User Modules (14)
(See Section 5.6)
\begin{tabular}{|c|c|}
\hline DDR & MФDA \\
\hline DUMMODI & MøDB \\
\hline DUMM10D2 & MDDC \\
\hline DUMM19D3 & QUTPUT \\
\hline DUMM0D4 & ØUTPUT4 \\
\hline INPUTT3 & PARTVEC \\
\hline INPUTT4 & XYPRNPLT \\
\hline
\end{tabular}

Utility Modules (23)
(See Saction 5.5)
\begin{tabular}{ll} 
DIAGONAL & PARAML \\
INPUT & PARAMR \\
INPUTT1 & PRTPARM \\
INPUTT2 & PVEC \\
MATGPR & SCALAR \\
MATPRN & SEEMAT \\
MATPRT & SETVAL \\
ØUTPUT1 & TABPCH \\
ØUTPUT2 & TABPRT \\
ØUTPUT3 & TABPT \\
PARAM & TIMETEST \\
& VEC
\end{tabular}

Executive Operation Modules (12)
(See Section 5.7)
\begin{tabular}{ll} 
BEGIN & FILE \\
CHKPNT & JUMP \\
COND & LABEL \\
END & PURGE \\
EQUIV & REPT \\
EXIT & SAVE
\end{tabular}

Structurally Oriented Modules (68)
(See Section 4 of the Programmer's Manual)
\begin{tabular}{|c|c|c|c|}
\hline BMG & GPCYC & PLA4 & SPAT \\
\hline CASE & GPFDR & PLQT & SMA2 \\
\hline CEAD & GP1 & PLTSET & SMA. \\
\hline DDR1 & GP2 & PLTTRAN & SMP1 \\
\hline DDR2 & GP3 & PRTMSG & S! \({ }^{\text {SP2 }}\) \\
\hline DDRMM & GP4 & RANDQM & SSGHT \\
\hline DPD & GPSP & RBMG1 & SSG1 \\
\hline DSCHK & GPWG & RBPIGL 2 & SSciz \\
\hline DSMGI & MCEI & RBMG3 & SSE3 \\
\hline DSMG2 & MCE2 & RBIMG4 & SSG4 \\
\hline EMA & MTRXIN & PEAD & TAI \\
\hline EMG & QFP & RMG & TRD. \\
\hline FA1 & QPTPR1 & SCE1 & TRHT \\
\hline FA2 & ØPTPR2 & SDR1 & TRLG \\
\hline FRRD & PLA1 & SDR2 & VDR \\
\hline GKAD & PLA2 & SDR3 & XYPLDT \\
\hline GKAM & PLA3 & SDRHT & XYTRAN \\
\hline
\end{tabular}

\section*{DIRECT MATRIX ABSTRACTION}

In the examples that accompany each description, the following notation is used:
1. Upper case letters and special symbols in the DMAP calling sequence must be punched as shown except for data block names, parameter names, and label names which are symbolic.
2. Lower case letters represent constants whose permissible values are indicated in the descriptive text.

Due to the many possible forms which may be used when writing parameters, a variety of arbitrarily selected forms will be used in the examples. This does not imply that the form used in any example is required or that it is the only acceptable form allowed.

The terms form, type, and precision are used in many functional module descriptions. By form is meant one of the following:
\begin{tabular}{ll} 
Form & \multicolumn{1}{c}{ Meaning } \\
1 & Square \\
2 & Rectangular \\
6 & Symmetric
\end{tabular}

By type is meant one of the following:
\begin{tabular}{cl} 
Type & \multicolumn{1}{c}{ Meaning } \\
1 & Real, single precision \\
2 & Real, double precision \\
3 & Complex, single precision \\
4 & Complex, double precision
\end{tabular}

By precision is meant one of the following:

\section*{Precision Indicator}

1
2

Meaning
Single precision numbers
Double precision numbers

INDEX OF DMAP MODULE DESCRIPTIONS

Substructure DMAP ALTERs (19)
(see Section 5.9)
\begin{tabular}{ll} 
BRECØVER & REDUCE \\
CHECK & RENAME \\
CØMBINE & RESTØRE \\
DELETE & RUN \\
DESTRØY & SØFIN \\
DUMP & SØFØUT \\
EDIT & SØFPRINT \\
EQUIV & SØLVE \\
PLØT & SUBSTRUCTURE \\
RECØVER &
\end{tabular}

\section*{CIRECT MATRIX ABSTRACTIOH}
5.4 MATRIX OPERATIONS MODULES ,

Module
Basic Operation
\([X]=a[A]+b[B]\)
ADD
\([X]=a[A]+b[B]+c[C]+d[D]+e[E]\)
\([\mathrm{A}]=[\mathrm{L}][\mathrm{U}]\)
\([X]=([L][U])^{-1}[B]\)
\([A]<=\left[\begin{array}{c:c}A 11 & A 12 \\ \hdashline A 21 & A 22\end{array}\right]\).
MPYAD
\([X]=[A][B]+[C]\)
\([A] \Rightarrow\left[\begin{array}{c:c}A 11 & A 12 \\ \hdashline A 21 & A 22\end{array}\right]\)
SMPYAD
\([X]=[A][B][C][D][E]+[F]\)
5.4-14
søLVE
\([X]=[A]^{-1}[B]\)
5.4-16

TRNSP
\([X]=[A]^{\top}\)
5.4-18

UMERGE \(\quad\{\) PHIF \(\}<=\left\{\frac{\text { PHIA }}{\text { PHI } \varnothing}\right\}\)

UPARTN
\(\left[K_{i j}\right]=\left[\begin{array}{c|c}K_{\mathbf{j} j} & K_{j \ell} \\ \hline K_{\ell j} & K_{\ell \ell}\end{array}\right]\)
I. NAME: ADD (Matrix Add)
II. PURPDSE: To compute \([X]=a[A]+b[B]\) where \(a\) and \(b\) are scale factors.
III. DMAP CALLING SEQUENCE:

ADD \(A, B / X / C, Y, A L P H A=(1.0,2.0) / C, Y, B E T A=(3.0,4.0) \$\)
IV. INPUT DATA BLØCKS:

A - Any matrix
B - Any matrix
Note: [A] and/or [B] may be purged, in which case the corresponding term in the matrix sum will be assumed null. The input data blocks must be unique.
v. QUTPUT DATA BLDCKS:

X - matrix.
The type of \([X]\) is maximum of the types of \([A],[B], a, b\). The size of \([X]\) is the size of [A] if [A] is present. Otherwise it is that of [B].

Note: [X] cannot be purged.
VI. PARAMETERS:

ALPHA - Input-complex-single precision, default \(=(1.0,0.0)\). This is a, the scalar multiplier for [A].

BETA - Input-complex-single precision, default \(=(1.0,0.0)\). This is \(b\), the scalar multiplier for [B].

Note: If \(\operatorname{Im}(A L P H A)\) or \(\operatorname{Im}(B E T A)=0.0\) the corresponding parameter will be considered real.
I. NAME: ADD5 (Matrix Add)
II. PURPØSE: To compute \([X]=a[A]+b[B]+c[C]+d[D]+e[E]\) where \(a, b, c, d\) and \(e\) are scale factors.
III. DMAP CALLING SEQUENCE:
```

ADD5 A,B,C,D,E / X / C,Y,ALPHA=(1.0,2.0) / C,Y,BETA=(3.0,4.0) / C,Y,GAMMA=(5.0,6.0) /
C,Y,DELTA=(7.0,8.0)/C,Y,EPSLN=(9.0,1.0)\$

```
IV. INPUT DATA BLØCKS:
\(A, B, C, D\), and \(E\) must be distinct matrices.
Note: Any of the matrices may be purged, in which case the corresponding term in the matrix sum will be assumed null. The input data blocks must be unique.
V. ØUTPUT DATA BLØCKS:

X - matrix.
The type of \([X]\) is maximum of the types of \(A, B, C, D, E, a, b, c, d, e\). The size of \([X]\) is the size of the first nonpurged input.

Note: [X] cannot be purged.
VI. PARAMETERS:

ALPHA - Input-complex-single precision, default \(=(1.0,0.0)\). This is \(a\), the scalar multiplier for [A].
\(\begin{aligned} & \text { BETA. - } \text { Input-complex-single precision, default }=(1.0,0.0) \text {. This is } b \text {, the scialar multiplier } \\ & \text { for }[B] .\end{aligned}\)
GAMMA - Input-complex-single precision, default \(=(1.0,0.0)\). This is \(c\), the scalar multiplier for [C].

DELTA - Input-complex-single precision, default \(=(1.0,0.0)\). This is \(d\), the scalar multiplier for [D].

EPSLN - Input-complex-single precision, default \(=(1.0,0.0)\). This is \(e\), the scalar multiplier for [E].

Note: \(\operatorname{If} \operatorname{Im}(A L P H A), \operatorname{Im}(B E T A), \operatorname{Im}(G A M M A), \operatorname{Im}(D E L T A)\), or \(\operatorname{Im}(E P S L N)=0.0\), the corresponding parameter will be considered real.
I. DECØMP (Matrix Decomposition)
II. PURPQSE: To decompose a square matrix [A] into upper and lower triangular factors [U] and [L].
\[
[A] \Rightarrow[L][U]
\]
III. DMAP CALLING SEQUENCE:

DECØMP A / L,U / V,Y,KSYM / V,Y,CHØLSKY / V,N,MINDIAG / V,N,DET / V,N,PQWER / V,N,SING \$
IV. INPUT DATA BLØCKS:

A - A square matrix
v. ØUTPUT DATA BLØCKS:

L - Nonstandard lower triangular factor of [A].
\(U\) - Nonstandard upper triangular factor of [A].
VI. PARAMETERS:

KSYM : - Input-integer, default = 1. 1, use symmetric decomnosition. 0, use unsymmetric decomposition.
CHøLSKY - Input-integer, default \(=0\). 1, use Cholesky decomoosition - matrix must be positive definite. 0, do not use Cholesky decomposition.
MINDIAG - Output-real double precision, default \(=0.000\). The minimum diagonal term of [U].
DET - Output-complex single nrecision, default \(=0.000\). The scaled value of the determinant of [A].
PQWER - Output-integer, default \(=0\). Integer PQWER of 10 by which DET should be multiplied to obtain the determinant of [A].
SING - Output-integer, default \(=0\). SING is set to -1 if [A] is singular.
VII. REMARKS:
1. Non-standard triangular factor matrix data blocks are used to improve the efficiency of the back substitution process in module FBS. The format of these data blocks is given in Section 2 of the Programmer's Manual.
2. The matrix manipulating utility modules should be cautiously employed when dealing with non-standard matrix data blocks.
3. If the CHØLSKY option is selected, the resulting factor (which will be written as [U]) cannot be input to FBS.
4. Variable parameters output from functional modules must be SAVEd if they are to be subsequently used. See the Executive Module SAVE description.
I. NAME: FBS (Matrix Forward-Backward Substitution)
II. PURPOSE: To solve the matrix equation \([L][U][X]= \pm[B]\) where [ \(L\) ] and [U] are the lower and upper triangular factors of a matrix previously obtained via Functional Module DECØMP.
III. DMAP CALLING SEQUENCE:

FBS \(\quad L, U, B / X / V, Y, S Y M / V, Y, S I G N / V, Y, P R E C / V, Y, T Y P E \$\)
IV. INPUT DATA BLOCKS:

L - Nonstandard lower triangular factor
U - Nonstandard upper triangular factor
B - Rectangular matrix
V. OUTPUT DATA BLOCKS:
\(X\) - Rectangular matrix having the same dimensions as [B].
VI. PARAMETERS:
\(\begin{aligned} S Y M & \text { - Input-integer-default }=0 \\ & \text { - Output-integer }\end{aligned}\left\{\begin{aligned} & 1-\operatorname{matrix}[L][U] \text { is symmetric } \\ &-1- \text { matrix }[L][U] \text { is unsymmetric } \\ & 0-\text { reset to } 1 \text { or -1 depending upon [U] } \\ & \text { being purged or not respectively. }\end{aligned}\right.\)
SIGN - Input-integer-default \(=1 .\left\{\begin{aligned} 1-\text { solve }[L][U][X] & =[B] \\ -1 & \text { - solve }[L][U][X]=-[B]\end{aligned}\right.\)
PREC - Input-integer-default \(=0 \quad\left\{\begin{array}{l}1-\text { use single precision arithmetic } \\ 2-\text { use double precision arithmetic } \\ 0-\text { logical choice based on input and } \\ \text { system precision flag }\end{array}\right.\)
- Output-integer Precision used.

TYPE
- Input-integer-default \(=0\)
- Output-integer
\(\left\{\begin{array}{l}1 \text { - output type of matrix }[X] \text { is real single precision } \\ 2 \text { - output type of matrix }[X] \text { is real doudle precision } \\ 3 \text { - output type of matrix }[X] \text { is complex sinale precision } \\ 4 \text { - outpuit type of matrix }[X] \text { is complex double precision } \\ 0 \text { - logical choice based on input matrices }\end{array}\right.\) TYPE used.

\section*{VII. REMARKS:}
1. Non-standard triangular factor matrix data blocks are used to improve the efficiency of the back substitution process. The format of these data blocks is given in Section 2 of the Programmer's Manual.
2. The matrix manipulating utility modules should be cautiously employed when dealing with non-standard matrix data blocks.

\section*{MATRIX OPERATIONS MODULES}
I. NAME: MERGE (Matrix Merge)
II. PURPQSE: To form the matrix [A] from its partitions:
[A]

III. DMAP CALLING SEQUENCE:

MERGE A11,A21,A12,A22,CP,RP / A / V,Y,SYM / V,Y,TYPE / V,Y,FØRM \$
IV. INPUT DATA BLØCKS:

All - Matrix
A21 - Matrix
A12 - Matrix
A22 - Matrix
CP - Column partitioning vector (see below) - Single precision column vector.
RP - Row partitioning vector (see below) - Single precision column vector.
Notes:
1. Any or all of [A11], [A12], [A21], [A22] can be purged. When all are purged this implies [A] = [0].
2. \(\{R P\}\) and \(\{C P\}\) may not both be purged.
3. See Remarks for meaning when either of \(\{R P\}\) or \(\{C P\}\) is purged.
4. [A11], [A12], [A21], [A22] must be unique matrices.
v. ØUTPUT DATA BLOCKS:

A - merged matrix from [A11], [A12], [A21], [A22]
Notes: [A] cannot be purged.
VI. PARAMETERS:

SYM - Input-integer, default \(=-1 . \quad S Y M<0,\{C P\}\) is used for \(\{R P\} . S Y M \geq 0,\{C P\}\) and \(\{R P\}\)
are distinct.
TYPE - Input-integer, default \(=0\). Type of [A] - see Remark 4
FØRM - Input-integer, default \(=0\). Form of \([A]\) - see Remark 3
VII. REMARKS:
1. MERGE is the inverse of PARTN in the sense that if [A11], [A12], [A21], [A22] were produced by PARTN using \{RP\}, \{CP\}, FØRM, SYM, and TYPE from [A], MERGE will produce [A]. See PARTN for options on \(\{R P\},\{C P\}\) and SYM.
2. All input data blocks must be distinct.
3. When \(\operatorname{FRPM}=0\), a compatible matrix [A] results as shown in the following table:

\section*{DIRECT MATRIX ABSTRACTION}
\begin{tabular}{|c|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{2}{c|}{} & \multicolumn{3}{c|}{ Form of A22 } \\
\cline { 2 - 5 } \multicolumn{2}{c|}{} & Square & Rectangular & Symmetric \\
\hline \multirow{3}{c|}{\begin{tabular}{c} 
Form \\
of \\
All
\end{tabular}} & Square & Rectangular & Rectangular & Rectangular \\
\cline { 2 - 5 } & Rectangular & Rectar & Rectangular \\
\hline
\end{tabular}
4. If TYPE \(=0\), the type of the output matrix will be the maximum type of [All], [A12], [A21] and [A22].
I. NAME: MPYAD (Matrix Multiply and Add)
II. PURPOSE: MPYAD performs the multiplication of two matrices and, optionally, addition of a third matrix to the product. By means of parameters, the user may compute \(\pm[A][B] \pm[C]\) \(=[X]\), or \(\pm[A]^{\top}[B] \pm[C]=[X]\).
III. DMAP CALLING SEQUENCE:

MPYAD \(A, B, C / X / V, N, T / V, N, S I G N A B / V, N, S I G N C / V, N, P R E C ~ \$\)
IV. INPUT DATA BLOCKS:
\(A\) - Left hand matrix in the matrix product [A][B]
\(B\) - Right hand matrix in the matrix product \([A][B]\)
C - Matrix to be added to [A][B]

\section*{Notes:}
1. If no matrix is to be added, [C] must be purged.
2. \([A],[B],[C]\) must be physically different data blocks.
3. \([A]\) and \([B]\) must not be purged.
v. OUTPUT DATA BLOCKS:

X - Matrix resulting from the MPYAD operation.
Note: [X] may not be purged.
VI. PARAMETERS:
T - Integer-input, no default.
\(T=\left\{\begin{array}{l}1, \text { perform }[A]^{\top}[B] \\ 0, \text { perform }[A][B]\end{array}\right.\)
SIGNAB - Integer-input, default \(=1 . \quad\) SIGNAB \(=\left\{\begin{aligned}+1, & \text { perform }[A][B] \\ 0, & \text { omit }[A][B] \\ -1, & \text { perform }-[A][B]\end{aligned}\right.\)
SIGNC - Integer-input, default \(=1 . \quad\) SIGNC \(=\left\{\begin{array}{c}+1, \text { add [C] } \\ 0, \text { omit }[C] \\ -1, \text { substract [C] }\end{array}\right.\)
PREC - Integer-input, default \(=0 . \quad \quad\) PREC \(=\left\{\begin{array}{l}\text { T, elements of [X] will be output } \\ \text { in single-precision } \\ 2, \text { elements of [X] will be output } \\ \text { in double-precision } \\ 0, \text { logical choice based on input } \\ \text { and system precision flag }\end{array}\right.\)
VII. EXAMPLES:
1. \([X]=[A][B]+[C] \quad([X]\) see notes)

MPYAD \(A, B, C / X / C, N, O \$\)
2. \([X]=[A]^{\top}[B]-[C]\) ([X] single-precision)

MPYAD A,B,C / X/C,N,1/C,N,1/C,N,-1/C,N,1\$
3. \([X]=-[A][B] \quad([X]\) see notes)

MPYAD A,B, / X / C,N,0 / C,N,-1 \$
Notes: The precision of \([X]\) is determined from the input matrices in that if anyone of these matrices is specified as double precision, then \([X]\) will also be double precision. If the precision for the input matrices is not specified, the precision of the system flag will be used.
I. NAME: PARTN (Matrix Partition)
II. PURPDSE: To partition [A] into [A11], [A12], [A21] and [A22]:
\[
[A] \Rightarrow \begin{gathered}
k-C P--\rightarrow \\
\begin{array}{c}
\text { 个 } \\
1 \\
R P \\
1 \\
\underline{\text { v }}
\end{array}\left[\begin{array}{ll:l}
k 11 & A 12 \\
\hdashline A 21 & A 22
\end{array}\right] \neq 0 \\
=0
\end{gathered} \neq 0
\]
III. DMAP CALLING SEQUENCE:

PARTN A CP , RP / A11, A21, A12,A22 / V,Y,SYM / V,Y,TYPE / V,Y,F11 / V,Y,F21 / V,Y,F12 / V,Y,F22 \$
IV. INPUT DATA BLDCKS:

A - Matrix to be partitioned.
CP - Column partitioning vector - single precision column vector.
RP - Row partitioning vector - single precision column vector.
V. QUTPUT DATA BLøCKS:

A11 - Upper left partition of [A]
A21 - Lower left partition of [A]
Al2 - Upper right partition of [A]
A22 - Lower right partition of [A]
Notes: 1. Any or all output data blocks may be purged.
2. For size of outputs see METH \(\emptyset D\) section below.
VI. PARAMETERS:

SYM - Input-integer, default =-1. SYM chooses between a symmetric partition and one unsymmetric partition. If SYM < 0 , \{CP\} is used as \{RP\}. If SYM \(\geq 0\), \{CP\} and \{RP\} are distinct.
TYPE - Input-integer, default \(=0\). Type of output matrices - see Remark 8
F11 - Input-integer, default \(=0\). Form of [A11].
F21 - Input-integer, default \(=0\). Form of [A21].
F12 - Input-integer, default \(=0\). Form of [A12].
F22 - Input-integer, default \(=0\). Form of [A22].
See Remark 7
VII. METHQD:

Let \(N C=\) number of nonzero terms in \(\{C P\}\).
Let \(N R=\) number of nonzero terms in \(\{R P\}\).
Let \(N R Q W A=\) number of rows in [A].
Let NCDLA \(=\) number of columns in [A].
Case \(1\{C P\}\) purged and \(S Y M \geq 0\).
[A11] is a (NRØWA-NR) by NCØLA matrix.
[A21] is a NR by NCDLA matrix.
[A12] is not written.
[A22] is not written.

CASE 2 \{RP\} purged and \(S Y M \geq 0\)
[A11] is a NRøWA by (NCØLA - NC) matrix.
[A21] is not written. \(\quad[A] \rightarrow[\) A11 : A12]
[A12] is a NRØWA by NC matrix.
[A22] is not written.
CASE 3 SYM \(<0\) (\{RP\} must be purged)
[A11] is a (NRØWA - NC) by (NCØLA - NC) matrix.
[A21] is a NC by (NCØLA - NC) matrix.
[A12] is a (NRØWA - NC) by NC matrix.
\([A] \rightarrow\left[\begin{array}{c:c}A 11 & A 12 \\ \hdashline A 21 & A 22\end{array}\right]\)
[A22] is a NC by NC matrix.
CASE 4 neither \(\{C P\}\) nor \(\{R P\}\) purged and \(S Y M \geq 0\)
[All] is a (NRøWA - NR) by (NCØLA - NC) matrix.
[A21] is a NR by (NCDLA - NC) matrix.
[A12] is a (NRøWA - NR) by NC matrix.
\[
[A] \rightarrow\left[\begin{array}{c:c}
A 11 & A 12 \\
\hdashline A 21 & A 22
\end{array}\right]
\]
[A22] is a NR by NC matrix.
VIII. REMARKS:
1. If [A] is purged, PARTN will cause all output data blocks to be purged.
2. If \(\{C P\}\) is purged, [A] is partitioned as follows:
\[
[A]=\left[\begin{array}{c}
A 11 \\
--- \\
A 21
\end{array}\right]
\]
3. If \(\{R P\}\) is purged and \(S Y M \geq 0\), [A] is partitioned as follows:
\[
[A] \Rightarrow\left[\begin{array}{ll:l}
A 11 & A 12
\end{array}\right]
\]
4. If \(\{R P\}\) is purged and \(S Y M<0\), \([A]\) is partitioned as follows:
\[
[A]=\left[\begin{array}{c:c}
A 11 & A 12 \\
\hdashline- & -- \\
A 21 & A 22
\end{array}\right]
\]
where \(\{C P\}\) is used as both the row and column partitioner.
5. \(\{R P\}\) and \(\{C P\}\) cannot both be purged.
6.
\[
[A] \Rightarrow\left[\begin{array}{c:c}
A 11 & A 12 \\
\hdashline A 21 & A 22
\end{array}\right]
\]

Let \([A]\) be a \(m\) by \(n\) order matrix.
Let \(\{C P\}\) be a \(n\) order row matrix containing \(q\) zero elements.
Let \(\{R P\}\) be a \(m\) order column vector containing \(p\) zero element.
Partition [All] will consist of all elements \(A_{i j}\) of [A] for which \(C P_{j}=R P_{i}=0\) in the same order as they appear in [A].

Partition [Al2] will consist of all elements \(A_{i j}\) of [A] for which \(C P_{j} \neq 0\) and \(R P_{i}=0\) in the same order as they appear in [A].

\section*{MATRIX OPERATIONS MODULES}

Partition [A21] will consist of all elements \(A_{i j}\) or [A] for which \(C P_{j}=0\) and \(R P_{i} \neq 0\) in the same order as they appear in [A].

Partition [A22] will consist of all elements \(A_{i j}\) of [A] for which \(C P_{j}=0\) and \(R P_{i} \neq 0\) in the same order as they appear in [A].
7. If the defaults for F11, F21, F12 or F22 are used, the corresponding matrix will be output with a compatible form entered in the trailer.
8. If TYPE \(=0\), the type of the output matrices will be the type of the input matrix [A].
IX. EXAMPLES:
1. Let \([A],\{C P\}\) and \(\{R P\}\) be defined as follows:
\[
[A]=\left[\begin{array}{rrrr}
1.0 & 2.0 & 3.0 & 4.0 \\
5.0 & 6.0 & 7.0 & 8.0 \\
9.0 & 10.0 & 11.0 & 12.0
\end{array}\right], \quad\{C P\}=\left\{\begin{array}{l}
1.0 \\
0.0 \\
1.0 \\
1.0
\end{array}\right\}, \quad\{R P\}=\left\{\begin{array}{l}
0.0 \\
0.0 \\
1.0
\end{array}\right\}
\]

Then, the DMAP instruction
PARTN A,CP,RP / A11,A21,A12,A22 / C,N,1 \$
will create the real double precision matrices
\([\mathrm{All}]=\left[\begin{array}{l}2.0 \\ 6.0\end{array}\right], \mathrm{Fll}=2\)
\([\mathrm{Al2}]=\left[\begin{array}{l}1.0 \\ 5.0\end{array}\right.\)
\(\left.\begin{array}{ll}3.0 & 4.0 \\ 7.0 & 8.0\end{array}\right], F 12=2\)
\([\mathrm{A} 21]=[10.0], \mathrm{F} 21=1\)
\([\mathrm{A} 22]=\left[\begin{array}{lll}9.0 & 11.0 & 12.0\end{array}\right], \mathrm{F} 22=2\)
2. If, in Example 1, the DMAP instruction were written as

PARTN A,CP, / All, A21,A12,A22 / C,N,1 \$
the resulting matrices would be
\([\mathrm{Al1}]=\left[\begin{array}{r}2.0 \\ 6.0 \\ 10.0\end{array}\right]\)
\([\mathrm{A} 12]=\left[\begin{array}{rrr}1.0 & 3.0 & 4.0 \\ 5.0 & 7.0 & 8.0 \\ 9.0 & 11.0 & 12.0\end{array}\right]\)
[A21] = purged
[A22] \(=\) purged
3. If, in Example 1, the DMAP instruction were written as

PARTN A,,RP / A11, A21, A12,A22 / C,N,1 \$
the resulting matrices would be
\[
\begin{array}{llll}
{[\mathrm{A} 11]=\left[\begin{array}{llll}
1.0 & 2.0 & 3.0 & 4.0 \\
5.0 & 6.0 & 7.0 & 8.0
\end{array}\right]} & {[\mathrm{A} 12]=\text { purged }} \\
{[\mathrm{A} 21]=\left[\begin{array}{llll}
9.0 & 10.0 & 11.0 & 12.0
\end{array}\right]} & {[\mathrm{A} 22]=\text { purged }}
\end{array}
\]
I. NAME: SMPYAD (Matrix Series Multiply and Add)
II. PURPOSE: To multiply a series of matrices together:
\[
[X]=[A][B][C][D][E] \pm[F] .
\]
III. DMAP CALLING SEQUENCE:

SMPYAD A,B,C,D,E,F / X / C,N,n / V,N,SIGNX / V,N,SIGNF / V,N,PX / V,N,TA / \(V, N, T B / V, N, T C / V, N, T D \$\)
IV. INPUT DATA BLOCKS:

A
B
C
\(\left.\begin{array}{l}\text { D } \\ E\end{array}\right\}\) - Up to 5 matrices to be multiplied together, from left to right:
F - Matrix to be added to the above product.

\section*{Notes:}
1. If one of the five multiplication matrices is required in the product (see parameter \(n\) below) and is purged, the multiplication will not be done.
2. If the [F] matrix is purged, no matrix will be added to the product.
V. OUTPUT DATA BLOCKS:

X - Resultant matrix (may not be pre-purged).
VI. PARAMETERS:
1. \(n=\begin{aligned} & \text { number } \\ & \text { input) }\end{aligned}\) matrices involved in the product, counting from the left (integer,
2. SIGNX = sign of the product matrix (e.g., [A][B][C][D][E])
\(=1\) for plus, -1 for minus (integer, input)
3. SIGNF = sign of the matrix to be added to the product matrix (integer, input)
\(=1\) for plus, -1 for minus
4. \(P X=\) output precision of the final result (integer, input)
\(=1\) for single-precision, 2 for double-precision, 0 logical choice based on input matrices.
5. \(T A\)
\(T B\) = transpose indicators for the \([A],[B],[C]\), and [D] matrices (1 if transposed TC 1 matrix to be used in the product; 0 if untransposed) - (integer, input)

Note:
All the parameters except \(n\) have default values as follows:
SIGNX \(=1\) (sign of product is plus)
SIGNF \(=1\) (sign of added matrix is plus)
PX \(=0\) (logical choice based on input matrices)
\(\left.\begin{array}{l}\text { TA } \\ \text { TB } \\ \text { TC } \\ \text { TD }\end{array}\right\}=0\) (use untransposed \([A],[B],[C]\), and \([D]\) matrices in the product)
VII. METHOD:

The method is the same as for the MPYAD module with the following additional remarks:
1. None of the matrices may be diagonal.
2. Except for the final product, all intermediate matrix products are generated in double-precision.
3. The matrices are post-multiplied together from right-to-left, i.e., the first product calculated is the product of matrix \(n-1\) and matrix \(n\).
VIII. EXAMPLES:
1. To compute \([X]=[A][B]^{\top}[C]-[F]\), use

SMPYAD \(A, B, C,,, F / X / C, N, 3 / C, N, 1 / C, N,-1 / C, N, 0 / C, N, 0 / C, N, 1 \$\)
2. To compute \([Z]=-[U]^{\top}[V]^{\top}[W]^{\top}[X]^{\top}[Y]\), use
 \(C, N, 1 / C, N, 1 \$\)
I. NAME: SØLVE (Linear System Solver)
II. PURPOSE: To solve the Matrix Equation
\[
[A][X]= \pm[B]
\]
III. DMAP CALLING SEQUENCE:

SØLVE \(A, B / X / V, Y, S Y M / V, Y, S I G N / V, Y, P R E C / V, Y, T Y P E \$\)
IV. INPUT DATA BLOCKS:

A - square real or complex matrix
\(B\) - rectangular real or complex matrix (if purged, the identity matrix is assumed).
V. OUTPUT DATA BLOCKS:

X - A rectangular matrix
Note: A standard matrix trailer will be written, identifying [X] as a rectangular matrix with the same dimensions as [B] and the type specified.
VI. PARAMETERS:

SYM - Input-integer, default \(=0 \quad\left\{\begin{array}{l}-1 \text { - use unsymmetric decomposition } \\ 1 \text { - use symmetric decomposition } \\ 0 \text { - logical choice based on input matrices }\end{array}\right.\)
- Output-integer SYM used.

SIGN - Input-integer, default \(=1 \quad\left\{\begin{aligned} 1-\text { solve }[A][X]=[B] \\ -1-\text { solve }[A][X]=-[B]\end{aligned}\right.\)
PREC - Input-integer, default \(=0 \quad\left\{\begin{array}{l}0 \text { - 'logical choice based on input } \\ 1 \text { - use single precision arithmetic } \\ 2-\text { use double precision arithmetic }\end{array}\right.\)
- Output-integer PREC used.

\section*{MATRIX OPERATIONS MODULES}
TYPE - Input-integer, default \(=0\)
- Output-integer \(\left\{\begin{array}{l}0 \text { - logical choice based on input } \\ 1 \text { - output type of matrix [ } X \text { ] is real. } \\ \text { single precision } \\ 2 \text { - output type of matrix }[X] \text { is real } \\ \text { double precision } \\ 3 \text { - output type of matrix [ } X \text { ] is complex } \\ \text { single precision } \\ 4-\begin{array}{l}\text { output type of matrix }[X] \text { is complex } \\ \text { double precision }\end{array} \\ \text { TYPE used. }\end{array}\right.\)

\section*{VII. METHOD:}

Depending on the SYM flag and the type of [A], one of subroutines SDCDMP, DECØMP, or CDC@MP is called to form [A] = [L][U].

One of FBS or GFBS is then called to solve \([\mathrm{L}][\mathrm{Y}]= \pm[\mathrm{B}]\) and \([\mathrm{U}][\mathrm{X}]=[Y]\), as appropriate.
I. NAME: TRNSP (Matrix Transpose)
II. PURPDSE: To form \([A]^{\top}\) given [A].
III. DMAP CALLING SEQUENCE:

TRNSP A/X \$
IV. INPUT DATA BLØCKS:

A - Any matrix data block.
Note: If [A] is purged, TRNSP will cause \([X]\) to be purged.
V. QUTPUT DATA BLØCKS:
\(X\) - The matrix transpose of [A]
Note: \([X]\) cannot be purged.
VI. PARAMETERS: None.
VII.' REMARKS:
1. Transposition of large full matrices is very expensive and should be avoided if possible (see Section 2.1.4 of the Theoretical Manual).
2. TRNSP currently uses an algorithm which assumes that the matrix is dense. This algorithm is extremely inefficient for sparce matrices. Sparce matrices should be transposed by using MPYAD.
I. NAME: UMERGE (Merges two matrices based on USET)
II. PURPDSE: To merge two column matrices (such as load vectors or displacement vectors) into a single matrix.
III. DMAP CALLING SEQUENCE:

LIMERGE USET, PHIA, PHID / PHIF / V,N,MAJ \(\cap R=F / V, N, S U B O=A / V, N, S U B T=L \$\)
IV. INPUT DATA BLQCKS:

USET - Uset [or U-set (Dynamics)]
PHIA
Any matrices
PHID
Note: 1. USET may not be purged.
2. PHIA or PHID may be purged in which case their respective elements will be zero.
3. PHIA, PHID and PHIF must be related by the following matrix equation
\[
\left\{\frac{\mathrm{PHIA}}{\mathrm{PHI} \mathrm{\varnothing}}\right\} \Longrightarrow\{\mathrm{PHIF}\} .
\]
V. DUTPUT DATA BLøCKS:

PHIF - matrix
Note: PHIF.must not be purged.
VI. PARAMETERS:

MAJØR - BCD value from table on page 5.3-17 (Input, no default)
SUBO - BCD value from table on page 5.3-17 (Input, no default)
SUB1 - BCD value from table on page 5.3-17 (Input, no default)
Note: The set equation \(M A J \emptyset R=\) SUBO + SUB1 should hold.

\section*{UIRECT MATRIX ABSTRACTION}
I. NAME: UPARTN (Partitions a matrix based on USET)
II. PURPQSE: To perform symmetric partitioning of displacement method matrices (particularly to allow user splitting of long running modules such as SMPI).
III. DMAP CALLING SEQUENCE:

UPARTN USET,KII / KJJ,KLJ,KJL,KLL / V,N,MAJøR=I / V,N,SUBO=J / V,N,SUBl=L \$
IV. INPUT DATA BLQCKS:

USET - U-set [or U-set (Dynamics)]
KII - Any. displacement matrix
Note: 1. USET may not be purged
2. KII may be purged in which case UPARTN will simply return, causing the output matrices to be purged.
v. QUTPUT DATA BLØCKS:
\(\left.\begin{array}{l}\text { KJJ } \\ \text { KLJ } \\ \text { KJL } \\ \text { KLL }\end{array}\right\}\) matrix partitions,\(~\)
Note: 1. Any or all output data block(s) may be purged.
2. UPARTN forms:

VI. PARAMETERS:

MAJØR - BCD value from table on page 5.3-17 (Input, no default)
SUBO - BCD value from table on page 5.3-17 (Input, no default)
SUB1 - BCD value from table on page 5.3-17 (Input, no default)
Note: The set equation \(M A J \emptyset R=S U B O+S U B 1\) should hold.

\section*{MATRIX OPERATIONS MODULES}
VII. EXAMPLE:

In Rigid Format 3 module SMPl performs the following calculations:
SMP1 partitions the constrained stiffness and mass matrices
\[
\left[K_{f f}\right] \Longrightarrow\left[\begin{array}{l|l}
\bar{K}_{a a} & \mathrm{~K}_{\mathrm{ao}} \\
\hline \mathrm{~K}_{\mathrm{oa}} & \mathrm{~K}_{\mathrm{oo}}
\end{array}\right]
\]
and
\[
\left[M_{f f}\right] \Longrightarrow\left[\begin{array}{c|c}
\bar{M}_{\mathrm{aa}} & M_{\mathrm{ao}} \\
\hline M_{\mathrm{oa}} & M_{\mathrm{oo}}
\end{array}\right]
\]
solves for transformation matrix
\[
\left[G_{o}\right]=-\left[K_{00}\right]^{-1}\left[K_{o a}\right]
\]
and performs the matrix reductions
\[
\left[\mathrm{K}_{\mathrm{aa}}\right]=\left[\bar{k}_{\mathrm{aa}}\right]+\left[\mathrm{K}_{\mathrm{oa}}\right]^{\top}\left[\mathrm{G}_{\mathrm{o}}\right]
\]
and
\[
\left[M_{a a}\right]=\left[\bar{M}_{a a}\right]+\left[M_{o a}\right]^{\top}\left[G_{0}\right]+\left[G_{0}\right]^{\top}\left[M_{o a}\right]+\left[G_{0}\right]^{\top}\left[M_{00}\right]\left[G_{o}\right]
\]

Step 1 can be performed by two applications of UPARTN:
UPARTN USET,KFF / KAAB,KøA, KøD / C,N,F / C,N,A / C,N, D \$
UPARTN USET,MFF / MAAB, MøA, Møø / C,N,F / C,N,A / C,N, \(\emptyset\)
Step 2 can be performed by SØLVE
SøLVE Køの,KøA/Gø/C,N,1/C,N,-1\$
KAA and MAA can be computed by a sequence of applications of the MPYAD module.
Note that checkpoints can be inserted as desired to breakup a long running module into several smaller steps.

\subsection*{5.5 UTILITY MODULES}
\begin{tabular}{|c|c|c|}
\hline Module & Basic Function & Page \\
\hline DIAGøNAL & Strip diagonal from matrix & 5.5-2 \\
\hline InPut & Generate most of bulk data for selected academic problems & 5.5-3 \\
\hline INPUTTI & Read data blocks from GIND-written user tapes & 5.5-4 \\
\hline INPUTT2 & Read data blocks from FØRTRAN-written. user tapes & '5.5-10 \\
\hline MATGPR & Print Matrices with Grid Point Identification & 5.5-13 \\
\hline MATPRN & Print Matrices & 5.5-15 \\
\hline MATPRT & Print Matrices associated only with geometric grid points & 5.5-16 \\
\hline QUTPUT1 & Write data blocks via GINØ onto user tapes & 5.5-17 \\
\hline QuTPUT2 & Write data blocks via FØRTRAN onto user tapes & 5.5-24 \\
\hline QUTPUT3 & Punch matrices onto DMI cards & 5. 5-28 \\
\hline PARAM & Manipulate Parameter values & 5.5-30 \\
\hline PARAML & Selects parameters from a user input matrix or table & 5.5-32 \\
\hline PARAMR & Performs specified arithmetic, logical and conversion operations on real or complex parameters & 5.5-33 \\
\hline PRTPARM & Print parameter values and DMAP error & 5.5-35 \\
\hline PVEC & Substructure Analysis Partitioning Vector Data Generator & 5.5-37 \\
\hline SCALAR & Convert Matrix element to parameter & 5.5-39 \\
\hline SEEMAT & Generate Matrix Topology Displays & 5.5-40 \\
\hline SETVAL & Set parameter values & 5.5-43 \\
\hline TABPCH & Punch NASTRAN tables on DTI cards & 5.5-44 \\
\hline TABPRT & Print selected table data blocks using readable format & 5. 5-45 \\
\hline TABPT & Print table data blocks & 5.5-47 \\
\hline TIMETEST & Provides NASTRAN system timing data & 5.5-48 \\
\hline VEC & Generate partitioning vector & 5.5-49 \\
\hline
\end{tabular}

Utility modules are an arbitrary sub-division of the Functional Modules and are used to output matrix and table data blocks and to manipulate parameters.

The data block names corresponding to the various matrix and table data blocks used in the Rigid Format DMAP sequences may be found in Section 3 or in the NASTRAN mnemonic dictionary, Section 7.

\section*{DIRECT MATRIX ABSTRACTION}
I. NAME: DIAGØNAL (Strip diagonal from matrix)
II. PURPOSE: To remove the real part of the diagonal from a matrix, raise each term to a specified power, and output a column vector or square symmetric matrix.
III. DMAP CALLING SEQUENCE:

DIAGØNAL A/B/C,Y,ØPT=CØLUMN/V,Y,PØWER=1. \$
IV. INPUT DATA BLOCKS:

A - can be any square or diagonal matrix.
v. OUTPUT DATA BLOCKS:
\(B\) - is either a real column vector or symmetric matrix containing the diagonal of \(A\).
VI. PARAMETERS:

OPT - Input-bcd, default=CØLUMN
='CØLUMN' - produces column vector output (labeled as a general rectangular matrix)
='SQUARE' - produces square matrix (labeled a symmetric matrix)
POWER - Input-real single precision, default \(=1\). Exponent to which the real part of each diagonal element is raised.
VII. REMARKS:
1. The module checks for special cases of PQWER=0., 0.5,1.0, and 2.
2. The precision of the output matrix matches the precision of the input matrix.
,

\section*{UTILITY MODULES}
I. NAME: INPUT (Input Generator)
II. PURPDSE: Generates the majority of the bulk data cards for selected academic problems. Used in many of the official NASTRAN Demonstration Problems.
III. DMAP CALLING SEQUENCE:

INPUT I \(1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{I} 4, \mathrm{I} 5 / \varnothing 1, \emptyset 2, \varnothing 3, \varnothing 4, \varnothing 5 / \mathrm{C}, \mathrm{N}, \mathrm{a} / \mathrm{C}, \mathrm{N}, \mathrm{b} / \mathrm{C}, \mathrm{N}, \mathrm{c} \$\)
IV. INPUT DATA BLØCKS:

Appropriate preface outputs.
v. ØUTPUT DATA BLøCKS:

Appropriate for the problem being generated.
VI. PARAMETERS:

The three parameters are used in conjunction with data read by INPUT from the input stream to define the problem being generated.
VII. METHØD:

Since INPUT is intimately related to bulk data card input, a detailed description of this module has been placed in Section 2.6.
I. NAME: INPUTTI (Reads User Tapes)
(The companion module is ØUTPUTI)
II. PURPQSE: Recovers up to five data blocks from a user tape and checks the user tape label where the expected format is that created by Utility Module QUTPUT1. Also used to position the user tape (including handling or multiple reel tapes) prior to reading the data blocks. Multiple calls are allowed. A message is written for each data block successfully recovered and after each tape reel switch.*
III. DMAP CALLING SEQUENCE:

INPUTT1 / DB1,DB2,DB3,DB4,DB5 / V,N,P1 / V,N,P2 / V,N,P3 \$
IV. INPUT DATA BLØCKS:

Input data blocks are not used in this module call statement.
v. QUTPUT DATA BLøCKS:

DBi - Data blocks which will be recovered from one of the NASTRAN permanent tape files INPT, INP1, INP2, through INP9. Any or all of the output data blocks may be purged. Only nonpurged data blocks will be taken from the tape. The data blocks will be taken sequentially from 'the tape starting from a position determined by the value of the first parameter. Note that the output data block sequence \(A, B,\), , is the same as , \(A, B\), or ,,,A,B.
*Currently user tape reel switching is available on IBM 360/370 and Univac 1108 only.

UTILITY MODULES
VI. PARAMETERS: The meaning of the first parameter ( \(P 1\) ) value is given in the table below. (The default value is 0 ).
\begin{tabular}{|c|c|}
\hline P1 Value & Meaning \\
\hline +n & Skip forward n data blocks before reading. \\
\hline 0 & Data blocks are read starting at the current position. The current position for the first use of a tape is at the label (P3). Hence, P3 counts as one Data Block. \\
\hline -1 & Rewind before reading, position tape past label (P3). \\
\hline -2 & Mount new reel and position new reel past label (P3) before reading. \\
\hline -3 & Print data block names and then rewind before reading. \\
\hline -4 & Current tape reel will have an end-of-file mark written on it, will be rewound and dismounted and then a new tape reel will be mounted with ring out and rewound before reading the data blocks. This option should be used when a call to INPUTTI is preceded by a call to QUTPUT1 using the same User Tape. \\
\hline -5 & Search user tape for first version of data block (DBi) requested. If any (DBi) are not found, fatal termination occurs. \\
\hline -6 & Search user tape for final version of data block (DBi) requested. If any (DBi) are not found, fatal termination occurs. \\
\hline -7 & Search user tape for first version of data block (DBi) requested. If any (DBi) are not found, warning message is written on the output file and run continues. \\
\hline -8 & Search user tape for final version of data block ( DBi ) requested. If any ( DBi ) are not found, warning message is written on the output file and run continues. \\
\hline
\end{tabular}

The second parameter (P2) for this module is the User Tape Code shown in the table below. (The default value is 0 ).
\begin{tabular}{|c|c|}
\hline User Tape Code & GINØ File Name \\
\hline 0 & INPT \\
1 & INP1 \\
2 & INP2 \\
3 & INP3 \\
4 & INP4 \\
5 & INP5 \\
6 & INP6 \\
7 & INP7 \\
8 & INP8 \\
9 & INP9 \\
\hline
\end{tabular}

The third parameter (P3) for this module is used as the User Tape Label for NASTRAN identification. The label (P3) is an alphanumeric variable of eight characters or less (the first character must be alphabetic). The value of P3 must match a corresponding. value on the user tape. The comparișon of P3 and the value on the user tape is dependent on the value of Pl as shown in the table below. (The default value for P 3 is XXXXXXXX ).
\begin{tabular}{|l|l|}
\hline P1 Value & Tape Label Checked \\
\hline\(+n\) & No \\
0 & No \\
-1 & Yes \\
-2 & Yes (0n new reel) \\
-3 & Yes (Warning Check) \\
-4 & Yes (On new ree1) \\
-5 & Yes \\
-6 & Yes \\
-7 & Yes \\
-8 & Yes \\
\hline
\end{tabular}

\section*{UTILITY MODULES}
VII. EXAMPLES: (Most examples use the default value for P2 and P3 which means the use of permanent NASTRAN tape file INPT and NASTRAN user tape label of XXXXXXXX)
1. INPUTTI / A,B,,, / \$

Read data blocks A and then B from user tape INPT starting from wherever INPT is currently positioned. If this is the first module to manipulate INPT, the tape will automatically be initially positioned at the beginning of the user tape label. In this case the first parameter of INPUTTI must be set to either one (1) to skip past the label or minus one \((-1)\) to rewind the tape and position it at the beginning of the first data block (A).
2. INPUTTI /,,,, / C,N,-1/C,N,3\$

Rewind INP3 and check user tape label.
3. INPUTT1 / A,,,, / C,N,-2 \$

Mount a new reel of tape (without write ring). for INPT and read data block A from the first file position. The label of the new reel of tape will be checked.
4. INPUTT1 /,,,, / C,N,-2 \$

INPUTT1 / A,,,, / C,N,0 \$
This is equivalent to example 3.
5. INPUTTI / A, B,C,D,E / C,N,14 \$

Starting from the current position, skip forward 14 data blocks on INPT and read the next five data blocks into \(A, B, C, D\), and \(E\). Do not check the user tape label.
6. INPUTTI / ,,,, / \(\mathrm{C}, \mathrm{N},-3 \$\)

INPUTTI / A,B,C,D,E/C,N,14 \$
A complete list of data block names will be provided including a warning check of the user tape label. Then, it will be the same as example 5 only if the current position in that example were at the beginning of the first data block.
7. INPUTT1 /,,,, / C,N,-2 \$

INPUTT1 /,,, / C,N,-3 \$
INPUTT1 / A,B,,, / C,N,14 \$
Mount a new reel of tape for INPT and check the new reel's label. Print the names of all data blocks on the new tape and give a warning check for tape label. Read the \(15^{\text {th }}\) and \(16^{\text {th }}\) data blocks into \(A\) and B. INPT will end up positioned at the beginning of the \(17^{\text {th }}\) data block if present.
VIII. MORE DIFFICULT EXAMPLES USING BOTH INPUTTI and OUTPUTI:

\section*{Example 1:}
(a) Objectives:
(1) Obtain printout of the names of all data blocks on INPT.
(2) Skip past the first four data blocks, replace the next two with data blocks \(A\) and \(B\), and retain the next three data blocks.
(3) Obtain printout of the names of all data blocks on INPT after (2) has been done.
(b) DMAP Sequence:

BEGIN \$
INPUTTI /,,,, / C,N,-3 \$
INPUTTI /,,T1,T2,T3 / C,N,6 \$
INPUTTI /,,,, / C,N,-l \$
QUTPUT1 \(A, B, T 1, T 2, T 3 / / C, N, 4 \$\)
ØUTPUT1, ,,,, // C,N,-3 \$
END \$
(c) Remarks:
(1) DMAP sequence (2) accomplishes objective (1) and rewinds INPT.
(2) DMAP sequence (3) recovers data blocks 7,8 , and 9 . This is necessary because they would be effectively destroyed by anything written in front of them on INPT.
(3) DMAP sequence (4) rewinds INPT.
(4) DMAP sequence (5) accomplishes objective (2).
(5) DMAP sequence (6) accomplishes objective (3) and leaves INPT positioned after the ninth file, ready to receive additional data blocks.
(6) Note that INPUTTI is used whenever possible to avoid the possibility of mistakenly writing on INPT prematurely.

\section*{UTILITY MODULES}

\section*{Example 2:}
(a) Objectives:
(1) Write data blocks A, B, and C on INPT.
(2) Obtain printout of the names of all data blocks on INPT after step (1).
(3) Make two copies of the tape created in (1).
(4) Add data blocks \(D\) and \(E\) to one of the tapes.
(5) Obtain the names of all data blocks on INPT after (4).
(b) DMAP Sequence:

BEGIN \$
ØUTPUT1 \(A, B, C,, / / C, N,-1 . \$\)
øutputi, ,,, , // C,N,-3 \$
ØUTPUT1 \(A, B, C,, / / C, N,-2 \$\)
Qutputi \(A, B, C,, / / C, N,-2 \$\)
ØUTPUT1 D,E,,, // C,N,0 \$
ØUTPUT1, ,,,, // C,N,-3 \$
END \$
(c) Remarks:
(1) DMAP Sequence (2) accomplishes objective (1).
(2) DMAP sequence (3) accomplishes objective (2). The statement INPUTTI / ,,,, / C,N,-3 \$ will do the same thing and add a rewind.
(3) Statements (4) and (5) accomplish objective (3).
(4) Statement (6) accomplishes objective (4) where the third tape is used.
(5) Statement (7) accomplishes objective (5). The statement INPUTTI / ,,,, / C,N,-3 \$ will do the same thing and add a rewind.
(6) On machines where tape reel switching is not implemented, the second parameter can be used as follows:

BEGIN \$
ØUTPUT1 \(A, B, C,, / / C, N,-1 \$\)
ØUTPUT1, ,,,, // C,N,-3 \$
QUTPUT1 \(A, B, C,, / / C, N,-1 / C, N, 1 \$\)
QUTPUT1 \(A, B, C,, / / C, N,-1 / C, N, 2 \$\)
QUTPUTI \(D, E,,, / / C, N, O / C, N, 2 \$\)
Qutput1, ,,,, // C,N,-3 / C,N,2 \$
END \$
I. NAME: INPUTT2 (Reads User-Written F@RTRAN Tapes)
(The companion module is ØUTPUT2)
II. PURPQSE: Recovers up to five data blocks from a FQRTRAN-written user tape. This tape. may be written either by a user-written FgRTRAN program or by the companion module QUTPUT2. The Programmer's Manual describes the format of the tape which must be written in order to be readable by INPUTT2.
III. DMAP CALLING SEQUENCE:

INPUTT2 / DB1,DB2,DB3,DB4,DB5 / V,N,P1 / V,N,P2 / V,N,P3 \$
IV. INPUT DATA BLOCKS:

Input data blocks are not used in this module call statement.
v. ØUTPUT DATA BLøCKS:

DBi - Data blocks which will be recovered from one of the NASTRAN FØRTRAN tape files UT1, UT2, through UT5. Any or all of the output data blocks may be purged. Only non'purged data blocks will be taken from the tape. The data blocks will be taken sequentially from the tape starting from a position determined by the value of the first parameter. Note that the output data block sequence \(A, B,\), , is the same as , \(A,, B\), or , , , \(A, B\).

UTILITY MODULES
VI. PARAMETERS: The meaning of the first parameter ( Pl ) value is given in the table below. (The default value is 0 ).
\begin{tabular}{|c|c|}
\hline Pl Value & Meaning \\
\hline +n & Skip forward \(n\) data blocks before reading. \\
\hline 0 & Data blocks are read starting at the current position. The current position for the first use of a tape is at the label (P3). Hence, P3 counts as one Data Block. \\
\hline -1 & Rewind before reading, position tape past label (P3). \\
\hline -3 & Print data block names and then rewind before reading. \\
\hline -5 & Search user tape for first version of data block (DBi) requested. If any (DBi) are not found, fatal termination occurs. \\
\hline -6 & Search user tape for final version of data block (DBi) requested. If any (DBi) are not found, fatal termination occurs. \\
\hline -7 & Search user tape for first version of data block (DBi) requested. If any (DBi) are not found, warning message is written on the output file and run continues. \\
\hline -8 & Search user tape for final version of data block (DBi) requested. If any (DBi) are not found, warning message is written on the output file and run continues. \\
\hline
\end{tabular}

The second parameter (P2) for this module is the FØRTRAN unit number from which the data blocks will be read. This unit is not required to be a physical tape. The allowable values for this parameter are highly machine and installation dependent. Reference should be made to Section 4 of the Programmer's Manual for a discussion of this problem. (The default value for \(P 2\) is 0 ).
\begin{tabular}{|c|c|}
\hline User Tape Code & FØRTRAN.File Name \\
\hline 11 & UT1 \\
12 & UT2 \\
13 & UT3 \\
14 & UT4 \\
15 & UT5 \\
\hline
\end{tabular}

The third parameter (P3) for this module is used as the FQRTRAN User Tape Label for NASTRAN identification. The label (P3) is an alphanumeric variable of eight characters or less (the first character must be alphabetic). The value of P3 must match a corresponding value on the FЯRTRAN User Tape. The comparison of P3 and the value on the User Tape is dependent on the value of \(P 1\) as shown in the table below. (The default value for P3 is \(X X X X X X X X X)\).
\begin{tabular}{|l|l|}
\hline Pl Value & Tape Label Checked \\
\hline\(+n\) & No \\
0 & No \\
-1 & Yes \\
-3 & Yes (Warning Check) \\
-5 & Yes \\
-6 & Yes \\
-7 & Yes \\
-8 & Yes \\
\hline
\end{tabular}

\section*{VII. EXAMPLES:}

INPUTT2 is intended to have the same logical action as the GINO User Tape module INPUTTI except for tape reel switching. It is therefore suggested that the examples shown under module INPUTTI be used for INPUTT2 as well, excepting the ones involving tape reel switching.
I. NAME: MATGPR (Displacement Approach Matrix Printer)
II. PURPQSE: Prints matrices generated by the Displacement Approach. External grid point identification of each nonzero element is also printed.
III. DMAP CALLING SEQUENCE:
A. For matrices generated in Rigid Formats 1-6 or matrices generated in Rigid Formats 7-12 prior to module GKAD (or GKAM):

MATGPR GPL,USET,SIL,M // C,N,c / C,N,r \$
B. For matrices generated in Rigid Formats 7-12 after module GKAD (or GKAM):

MATGPR GPLD,USETD,SILD,M // C,N,c / C,N,r \$
IV. INPUT DATA BL \(\emptyset C K S\) :

GPL - Grid Point List
GPLD - Grid Point List (Dynamics)
USET - U-set
USETD - U-set (Dynamics)
SIL. - Scalar Index List
SILD - Scalar Index List (Dynamics)
M - Any displacement approach matrix
V. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS:
1. c-row size (number of columns) - must be the appropriate \(B C D\) value from the table below. (Input, no default)
2. r-column size (number of rows) - must be the appropriate \(B C D\) value from the table below. If not specified, it will be assumed that \(r=c\). (Input, default \(=X\) which implies \(r=c\) )
\begin{tabular}{|c|c|}
\hline MATGPR parameter value & Means matrix is same size as \\
\hline M & \(U_{m}\) \\
\hline \(\emptyset\) & \(U_{0}\) \\
\hline R & \(\mathrm{U}_{\mathrm{r}}\) \\
\hline SG & \(U_{s}\) (specified on GRID card) \\
\hline SB & \(U_{S}\) (specified on SPC card) \\
\hline L & \(U_{\ell}\) \\
\hline A & \(\mathrm{U}_{\mathrm{a}}\) \\
\hline F & \(U_{f}\) \\
\hline S & \(U_{S}\) (union of \(S G\) and \(S B\) ) \\
\hline \(N\) & \(\dot{U}_{n}\) \\
\hline
\end{tabular}

\section*{DIRECT MATRIX ABSTRACTION}
\begin{tabular}{ll} 
G & \(U_{g}\) \\
\(E\) & \(U_{e}\) \\
\(P\) & \(U_{p}\) \\
NE & \(\xi_{0}\) \\
FE & \(\xi_{i}\) \\
\(D\) & \(U_{d}\) \\
\(H\) & \(U_{h}\)
\end{tabular}

\section*{Notes:}
1. See Section 3.3 of the Theoretical Manual for a discussion of set notation.
2. If the value specified for \(c\) is not in the above table, the matrix will not be printed.
3. The user must know which sets correspond to the rows and columns of the matrix he wishes to print. This is usually apparent from the DMAP name of the matrix data block.

\section*{VII. REMARKS:}
1. When using the form specified in IIIA, this module may not be scheduled until after GP4 since data blocks generated by GP4 are required inputs. When using the form specified in IIIB, this module may not be scheduled until after DPD since data blocks generated by DPD are required inputs.
2. If [M] is purged, no printing will be done.
3. The non-zero terms of the matrix will be printed along with the external grid point and component identification numbers corresponding to the row and column position of each term.

UTILITY MODULES
I. NAME: MATPRN (General Matrix Printer)
II. PURPDSE: To print general matrix data blocks.

1II. DMAP CALLING SEQUENCE:
MATPRN M1,M2,M3,M4,M5 // \$
IV. INPUT DATA BLØCKS:

Mi - Matrix data blocks, any of which may be purged.
V. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS: None
VII. ดUTPUT:

The nonzero band of each column of each input matrix data block is unpacked and printed in single precision.
VIII. NØTES:
1. Any or all input data blocks can be purged.
2. If any data block is not matrix type, the TABPT routine will be called.
IX. EXAMPLES:
1. MATPRN KGG,,,, // \$
2. MATPRN KGG,PL,PG,BGG,UPV // \$
I. NAME: MATPRT (Matrix Printer)
II. PURPOSE: To print matrix data blocks associated with grid points only.
III. DMAP CALLING SEQUENCE:

MATPRT \(X / / C, N, r c / C, N, y \$\)
IV. INPUT DATA BLOCK:
\(X\) - matrix data block to be printed. If \([X]\) is purged, then nothing is done.
v. OUTPUT DATA BLOCKS: None
VI. PARAMETERS:
1. \(r c\) - indicates whether \([x]\) is stored by rows ( \(r c=1\) ) or by columns ( \(r c=0\) ). (integer, input, default value \(=0\) ).
2. \(y\) - indicates whether \([X]\) is to be printed even if not purged ( \(y<0\), do not print [ \(X\) ]; \(y \geq 0\), print \([X]\) ) (integer, input, default value \(=0\) ).
VII. METHOD:

Each column (or row) of the matrix is broken into groups of 6 terms ( 3 terms if complex) per printed line. If all the terms in a group \(=0\), the line is not printed. If the entire column (or row) \(=0\), it is not printed. If the entire matrix \(=0\), it is not printed.
VIII. REMARKS:
1. MATPRT should not be used if scalar or extra points are present. For this case, use MATPRN.
2. Only one matrix data block is printed by this instruction. The instruction may be repeated as many times as required, however.

\section*{UTILITY MODULES}
I. NAME: ØUTPUTI (Create User Tapes)
(The companion module is INPUTTI)
II. PURPDSE: Writes up to five data blocks and a user tape label onto a user tape for subsequent use at a later date. (See User Module INPUTTI for recovery procedures.) ØUTPUT1 is also used to position the user tape (including handling of multiple reel tapes*) prior to writing the data blocks. Multiple calls are allowed. A message is written on the output file for each data block successfully written and after each tape reel switch. The user is cautioned to be careful when positioning a user tape with gUTPUTI since he may inadvertently destroy information through improper positioning. Even though no data blocks are written, an EQF will be written at the completion of each call which has the effect of destroying anything on the tape forward of the current position.
III. DMAP CALLING SEQUENCE:

QUTPUT1 DB1,DB2,DB3,OB4,DB5 // V,N,P1 / V,N,P2 /.V,N,P3 \$
IV. INPUT DATA BLDCKS:

DBi - Any data block which. the user desires to be placed on one of the NASTRAN permanent tape files INPT, INPI, INP2 thru INP9. Any or all of the input data blocks may be purged. Only nonpurged data blocks will be placed on the tape.
v. QUTPUT DATA BLØCKS: None.

\footnotetext{
*User tape reel switching is currently available only on the IBM 360/370 and Univac 1108 computers.
}

\section*{DIRECT MATRIX ABSTRACTION}
VI. PARAMETERS: The meaning of the first parameter ( Pl ) value is given in the table below. (The default value is 0 ).
\begin{tabular}{|c|c|}
\hline P1 Value & Meaning \\
\hline +n & Skip forward n data blocks before writing. \\
\hline 0 & Data Blocks are written starting at the current position. The current position for the first use of a tape is at the label (P3). In this case P3 counts as one Data Block. \\
\hline -1 & Rewind before writing. (This is dangerous:)* \\
\hline -2 & Mount new reel before writing.** \\
\hline -3 & Rewind tape, print data block names and then write after the last data block on the tape. \\
\hline -4 & Current tape reel will be rewound and dismounted and a new tape reel will be mounted with ring in and rewound before writing the data blocks. This option should be used when a call to ØUTPUTl is preceded by a call to INPUTTI using the same User Tape. \\
\hline
\end{tabular}

The second parameter (P2) for this module is the User Tape Code shown in the table below. (The default value is 0 ).
\begin{tabular}{|c|c|}
\hline User Tape Code & GINØ File Name \\
\hline 0 & INPT \\
1 & INP1 \\
2 & INP2 \\
3 & INP3 \\
4 & INP4 \\
5 & INP5 \\
6 & INP6 \\
7 & INP7 \\
8 & INP8 \\
9 & INP9 \\
\hline
\end{tabular}
*An EDF is written at the end of each call to ØUTPUTI.
**An end-of-file mark is written on the tape to be switched. Caution should be used when switching from a user tape being read by INPUTTT to a tape to be written by QUTPUTI.

The third parameter (P3) for this module is used to define the User Tape Label. The label is used for NASTRAN identification. The label ( \(P 3\) ) is an alphanumeric variable of eight or less characters (the first character must be alphabetic) which is written on the user tape. The writing of this label is dependent on the value of Pl as follows: (The default value for \(P 3\) is \(X X X X X X X X\) ).
\begin{tabular}{|l|l|}
\hline P1 Value & Tape Label Written \\
\hline\(+n\) & No \\
0 & No \\
-1 & Yes \\
-2 & Yes (On New Reel) \\
-3 & No (Warning Check) \\
-4 & Yes (On New Reel) \\
\hline
\end{tabular}

The user may specify the third parameter as \(V, Y\), name. The user then must also include a PARAM card in the bulk data deck to set a value for name.

\section*{VII. EXAMPLES:}
1. ØUTPUT1 \(A, B,,, / / C, N, 0 / C, N, 0 \$\) or ØUTPUT1 \(A, B,,, / / \$\)

Write data blocks \(A\) and then \(B\) onto user tape INPT starting wherever INPT is currently positioned. If this is the first write operation on INPT it must be preceded by ØUTPUT1,,,, // C,N,-1. \$ which will automatically label the tape positioned at its beginning.
2. ØUTPUTI, ,,,, // C,N,-1 / C,N,0 \$

Rewind INPT and destroy any data blocks that were on INPT and write default value of P3 on tape as a label.
3. ดUTPUT1 A,,,, // C,N,-2 / C,N,2 / C,N,USERTPA \$

Mount a new reel of tape (with write ring) for INP2 and write USERTPA for user tape label and then data block \(A\) as the first file.
4. ØUTPUT1, ,,,, // C,N,-2 / C,N,2 / C,N,USERTPA \$

ØUTPUTI A,,,, // C,N,0 / C,N,2 \$
This is equivalent to example 3.
5. QUTPUTI A,B,C,D,E // C,N,14 \$

Starting from the current position, skip forward 14 data blocks on INPT and write \(A, B, C, D\), and \(E\) as the next five data blocks. The skip positioning feature cannot be used if the current position of INPT is forward of a just previously written. data block end-of-file or before the tape is labeled.
6. ØUTPUT1, ,,,, // C,N,-3 \$

THIS IS AN
QUTPUT1 \(A, B, C, D, E / / C, N, 14 \$\)
IMPR@PER EXAMPLE.
This is an invalid sequence since the first call positions the tape at the end of all data blocks on the tape. See example 7.
7. INPUTTI / ,,,, / \(\mathrm{C}, \mathrm{N},-3 \$\)

ØUTPUT1 A,B,C,D,E // C,N,14 \$
A complete list of data block names will be printed by INPUTTl which will then rewind the tape. Then, QUTPUTl will skip forward 14 data blocks and write \(A, B, C, D\), and \(E\). The user tape label is given a warning check by INPUTTI.

THIS IS AN
ØUTPUT1, A, A,B,,, //C,N, \(\mathrm{C}, 14 \$\)
This is an invalid sequence since the first call effectively destroys whatever information is on the tape. See example 9.

\section*{UTILITY MODULES}
9. INPUTT1 / ,,,, / \(\mathrm{C}, \mathrm{N},-2 \$\)

INPUTT1 / ,,,,, / C,N,-3 \$
QUTPUT1 \(A, B,,, / / C, N, 14 \$\)
Mount a new reel of tape previously default labeled for INPT (the operator will have to be instructed to ignore the NØRING message and put a ring in the tape). Print the names of all data blocks on the tape and rewind the tape. Skip 14 data blocks on the tape and write \(A\) and then \(B\) as the \(15^{\text {th }}\) and \(16^{\text {th }}\) data blocks. Any information forward of this current position is effectively destroyed. See example 10.
10. INPUTT1 / ,,,, / C,N,-2 \$

QUTPUTI A,B,,, // C,N,-3 \$
Mount a new reel of tape previously default labeled for INPT (the operator will have to be instructed to ignore the NøRING message and put a ring in the tape). Print the names of all data blocks on the tape and write \(A\) and \(B\) as new data blocks at the end of the tape. If INPT contained 14 data blocks at the start of this sequence, it would be more efficient to do it this way than by using the sequence of example 9 since a pass on the tape is eliminated.
11. INPUTT1 / ,,,, / \(C, N,-2 / C, N, 0 / V, Y, B D S E T L A B \$\)

পUTPUT1 \(A, B,,, / / C, N,-3 / C, N, 0 / V, Y, B D S E T L A B \$\)
This is equivalent to example 10 except the user tape label is set on a PARAM card which must be included in the BULK DATA deck (i.e., PARAM BDSETLAB USERTP12).

\section*{DIRECT MATRIX ABSTRACTION}
VIII. DIFFICULT EXAMPLES USING INPUTTI and OUTPUTI:

Example 1:
(a) Objectives:
(1) Obtain printout of the names of all data blocks on INPT.
(2) Skip past the first four data blocks, replace the next two with data blocks \(A\) and \(B\), and retain the next three data blocks.
(3) Obtain printout of the names of all data blocks on INPT after (2) has been done.
(b) DMAP Sequence:

BEGIN \$
INPUTTI / ,,,, / C,N,-3 \$
INPUTT1 / ,,T1,T2,T3 / C,N,6 \$
INPUTT1 / ,,,, / C,N,-T \$
QUTPUT1 A,B,T1,T2,T3 // C,N,4 \$
QUTPUT1, ,,,, // C,N,-3 \$
END \$
(c) Remarks:
(1) DMAP sequence (2) accomplishes objective (1) and rewinds INPT.
(2) DMAP sequence (3) recovers data blocks 7,8 , and 9 . This is necessary because they would be effectively destroyed by anything written in front of them on INPT.
(3) DMAP sequence (4) rewinds INPT.
(4) DMAP sequence (5) accomplishes objective (2).
(5) DMAP sequence (6) accomplishes objective (3) and leaves INPT positioned after the ninth file, ready to receive additional data blocks.
(6) Note that INPUTTI is used whenever possible to avoid the possibility of mistakenly writing on INPT prematurely.

\section*{UTILITY MODULES}

\section*{Example 2:}
(a) Objectives:
(1) Write data blocks A, B, and C on INPT.
(2) Obtain printout of the names of all data blócks on INPT after step (1).
(3) Make two copies of the tape created in (1).
(4) Add data blocks \(D\) and \(E\) to one of the tapes.
(5) Obtain the names of all data blocks on INPT after (4).
(b) DMAP Sequence:

BEGIN \$
ØUTPUT1 \(A, B, C,, / / C, N,-1 \$\)
QuTPUT1, ,,,, // C,N,-3 \$
QUTPUT1 \(A, B, C,, / / C, N,-2 \$\)
QUTPUUT1 \(A, B, C,, / / C, N,-2 \$\)
ØUTPUTI D,E,,, // \$
QUTPUT1; ,,,, // C,N,-3 \$
END \$
(c) Remarks:
(1) DMAP sequence (2) accomplishes objective (1) since the tape must initially have P3 written on it when first used. The DMAP statement QUTPUT1 A,B,C,, // \(C, N,-1 \$\) will accomplish the same thing.
(2) DMAP sequence (3) accomplishes objective (2). The statement INPUTT1 / ,,,, / \(\mathrm{C}, \mathrm{N},-3 \$\) will do the same thing and add a rewind.
(3) Statements (4) and (5) accomplish objective (3).
(4) Statement (6) accomplishes objective (4) where the third tave is used.
(5) Statement (7) accomplishes objective (5). The statement INPUTT1/,,,, / C,N,-3 \$ will do the same thing and add a rewind.
(6) On machines where tape reel switching is not implemented, the second parameter can be used as follows:

BEGIN \$
QUTPUT1 \(A, B, C,, / / C, N,-1 \$\)
QUTPUT1, ,,,, // \(C, N,-3 \$\)
ØuTPuT1 \(A, B, C,, / / C, N,-1 / C, N, 1 \$\)
QUTPUT1 \(A, B, C,, / / C, N,-1 / C, N, 2 \$\)
ØUTPUT1 D, E,,,.//C,N,0 / C,N,2.\$
QUTPUT1, ,,, , // C,N,-3 / C,N,2 \$
END \$
I. NAME: ØUTPUT2 (Create User Written FØRTRAN Tapes)
(The companion module is INPUTT2)
II. PURPQSE: Writes up to five data blocks and a user tape label onto a FØRTRAN-written user tape for subsequent use at a later date. QUTPUT2 is also used to position the user tape prior to writing the data blocks. Multiple calls are allowed. A message is written on the output file for each data block successfully written. The user is cautioned to be careful when positioning a user tape with ØUTPUT2 since he may inadvertently destroy information through improper positioning. Even though no data blocks are written, an E \(\mathrm{O} F\) will be written at the completion of each call which has the effect of destroying anything on the tape forward of the current position.
III. DMAP CALLING SEQUENCE:

QUTPUT2 DB1,DB2, DB3,OB4, DB5 // V,N,P1 / V,N,P2 / V,N,P3 \$
IV. INPUT DATA BLDCKS:

DBi - Any data block which the user desires to be written on one of the NASTRAN FØRTRAN tape files UT1, UT2, through UT5. Any or all of the input data blocks may be purged. Only nonpurged data blocks will be placed on the tape.
V. ØUTPUT DATA BLØCKS: None.
VI. PARAMETERS:

The meaning of the first parameter ( Pl ) value is given in the table below. (The default value is 0 ).
\begin{tabular}{|c|l|}
\hline P1 Value & \multicolumn{1}{|c|}{ Meaning } \\
\hline\(+n\) & \(\begin{array}{l}\text { Skip forward } n \text { data blocks before writing. } \\
0\end{array}\) \\
-1 \\
-3 \\
Data Blocks are written starting at the current \\
position. The current position for the first \\
use of a tape is at the label (P3). In this case \\
P3 counts as one Data Block.
\end{tabular}\(\}\)\begin{tabular}{l} 
Rewind before writing. \\
-9
\end{tabular} \begin{tabular}{l} 
Rewind tape, print data block names and then \\
write after the last data block on the tape. \\
Write a final EgF on the tape.
\end{tabular}

The second parameter (P2) for this module is the FgRTRAN unit number onto which the data blocks will be written. This unit is not required to be a physical tape. The allowable values for this parameter are highly machine or installation dependent. Reference should be made to Section 4 of the Programmer's Manual for a discussion of this problem. (The default value for P 2 is 0 ).
\begin{tabular}{|c|c|}
\hline User Tape Code & \(\cdots\) \\
\hline 11 & FORTRAN File Name \\
12 & UT1 \\
13 & UT2 \\
14 & UT3 \\
15 & UT4 \\
& UT5 \\
\hline
\end{tabular}

The third parameter (P3) for this module is used to define the FØRTRAN User Tape Label. The label is used for NASTRAN identification. The label (P3) is an alphanumeric variable of eight or less characters (the first character must be alphabetic) which is written on the user tape. The writing of this label is dependent on the value of P1 as follows: (The default value for \(P 3\) is \(X X X X X X X X X\) ).
\begin{tabular}{|l|l|}
\hline P1 Value & Table Label Written \\
\hline\(+n\) & No \\
0 & No \\
-1 & Yes \\
-3 & No (Warning Check) \\
-9 & No \\
\hline
\end{tabular}

The user may specify the third parameter as \(V, \gamma\), name. The user then must also include a PARAM card in the bulk data deck to set a value for name.
VII. EXAMPLES:

ØUTPUT2 is intended to have the same logical action as the GINQ User Tape module ØUTPUTl except for tape reel switching. It is therefore suggested that the examples shown under module ØUTPUT1 be used for ØUTPUT2 as well, excepting the ones involving tape reel switching. All examples should be ended with a call to gUTPUT2 with \(\mathrm{Pl}=-9\).
VIII. REMARKS:

The primary objective of this module is to write tapes using simple FØRTRAN so that a user can read NASTRAN generated data with his own program. Similarly, matrices can be generated with externally written simple FØRTRAN programs and then read by module INPUTT2.

In order to do this, the format of the information on these tapes must be adhered to. The basic idea is that a one word logical KEY record is written which indicates what follows. A zero value indicates an end-of-file condition. A negative value indicates the end of a record where the absolute value is the record number. A positive value indicates that the next record consists of that many words of data.

\section*{UTILITY MODULES}

The correspondence between FORTRAN records and GIN@-written NASTRAN files is shown in the following sample:
\begin{tabular}{|c|c|c|c|c|}
\hline FORTRAN Record & Lenath & Contents & NASTRAN File & File Record \\
\hline 1 & 1 & KEY > 0 & 1 & 1 \\
\hline 2 & KEY & \{Data \(\int_{\text {KEY }}\) & & \\
\hline 3 & 1 & KEY > 0 & & \\
\hline 4 & KEY & \{Data \(\}\) KEY & & \\
\hline 5 & 1 & KEY < 0 (FAD) & & \\
\hline 6 & 1 & KEY > 0 & & 2 \\
\hline 7 & KEY & \{Data KKEY & & \\
\hline 8 & 1 & \(K E Y<0\) (E@R) & & \\
\hline 9 & 1 & \(K E Y=0(E \emptyset F)\) & & EøF \\
\hline 10 & 1 & KEY > 0 & 2 & 1 \\
\hline 11 & KEY & \{Data \({ }^{\text {a }}\) KEY & & \\
\hline 12 & 1 & KEY < 0 (EØR) & & \\
\hline 13 & 1 & \(K E Y=0\) ( \(E \emptyset F)\) & & \(E \emptyset F\) \\
\hline 14 & 1 & \(K E Y=0 \quad(E \emptyset F=E \emptyset D)\) & 3 & EDF \\
\hline
\end{tabular}

\section*{DIRECT MATRIX ABSTRACTION}
I. NAME: ØUTPUT3 (Punch Matrix Data Blocks onto Cards)
II. PURPQSE: Punches up to five matrix data blocks onto DMI bulk data cards. These cards may then read into NASTRAN as ordinary bulk data to reestablish the matrix data block at a later date.
III. DMAP CALLING SEQUENCE:
\[
\begin{aligned}
& \text { ØUTPUT3 M1,M2,M3,M4,M5 // C,N,P1 / C,Y,N1=ABC / C,Y,N2=DEF / C,Y,N3=GHI / } \\
& C, Y, N 4=J K L / C, Y, N 5=M N \emptyset \$
\end{aligned}
\]
IV. INPUT DATA BLDCKS:

Mi - Any matrix data block which the user desires to be punched on DMI cards. Any or all of the input data blocks may be purged. Only nonpurged data blocks will be punched.
v. ØUTPUT DATA BLDCKS: None
VI. PARAMETERS:

The first parameter (Pl) controls the writing of the DMI card inages on a FØRTRAN unit as follows:

P1 < 0 write on FØRTRAN unit \(\mid \mathrm{Pl\mid}\) as well as punch DMI cards
Pl \(\geq 0\) punch DMI cards only
The default value for Pl is 0 .

Ni - The values of the five BCD parameters shown above are used to create a unique continuation field configuration on the DMI cards. Only the first three characters are used. These three characters must be unique for all matrices which will be input together during a subsequent run using cards generated by ØUTPUT3. (Input, BCD, default values are \(N 1=\) no default, \(N 2=N 3=N 4=N 5=X X X)\).

\section*{UTILITY MODULES}
VII. METH@D: The nonzero elements of each matrix are punched on double-field DMI cards as shown in the example below. The name of the matrix is obtained from the header record of the data block. Field 10 contains the three character parameter value in columns 74-76 and an incremented integer card count in columns 77-80.
VIII. EXAMPLE:

Let the data block MAT contain the matrix
\[
\text { [MAT] }=\left[\begin{array}{llllll}
1.0 & 0.0 & 6.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 7.0 & 0.0 & 0.0 & 0.0 \\
2.0 & 4.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 5.0 & 0.0 & 0.0 & 0.0 & 9.0 \\
3.0 & 0.0 & 8.0 & 0.0 & 0.0 & 0.0
\end{array}\right]
\]

The DMAP instruction OUTPUT3 MAT,,,, // C,N,O/C,N,XYZ \$ will then punch out the DMI cards shown below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline DMI & MAT & 0 & 2 & 1 & 2 & & 5 & 6 & +XYZ & 0 \\
\hline DMI* & \multicolumn{2}{|l|}{MAT} & & 1 & & 1 & 1.00 & & *XYZ & 1 \\
\hline *XYZ 1 & & 3 & \multicolumn{2}{|l|}{2.000000 E 00} & & 5 & 3.00 & & *XYZ & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|r|rl|l|}
\hline DMI* & MAT & 2 & & 3 & 4.000000 E & 00 & \(* X Y Z\) & 3 \\
\hline\(\star X Y Z\) & 3 & \(5.000000 E\) & 00 & & & & & \(* X Y Z\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{DMI*} & MAT & 3. & 1 & 6.000000 E 00 & *XYZ & 5 \\
\hline *XYZ & 5 & 7.000000 E 00 & 5 & 8.000000 E 00 & & *XYZ & 6 \\
\hline DMI* & & MAT & 6 & 4 & 9.000000 E 00 & * XYZ & 7 \\
\hline
\end{tabular}
IX. REMARKS:
1. Only real single- or double-precision matrices may be output.
2. All matrices are output on double-field cards in single-precision.
3. The maximum number of cards that may be punched is 9999. If matrices larger than this are desired, use module ØUTPUT2 and write a program to process the resulting FORTRAN file.
4. The auxiliary subroutine PHDMIA used by module ØUTPUT3 can be used with stand-alone FØRTRAN programs. See Section 4 of the Programmer's Manual for details.
I. NAME: PARAM (Parameter Processor)
II. PURPOSE: To perform specified operations on integer DMAP parameters.
III. DMAP CALLING SEQUENCE:

PARAM // C,N,op / V,N,ØUT / V,N,IN1 / V,N,IN2 \$
IV. INPUT DATA BLOCKS: None
V. OUTPUT DATA BLOCKS: None
VI. PARAMETERS:
1. op is a BCD operation code from the table below (Input, no default). Op is usually specified as a "C,N" parameter.
2. ØUT is the name of the parameter which is being generated by PARAM (output, integer, default = 1).
3. INI is the name of a parameter whose value is used to compute QUT according to the table below (Input, integer, default = 1).
4. IN2 is the name of a parameter whose value is used to compute ØUT according to the table below (Input, integer, default = 1).
VII. REMARKS:
1. The table below gives the results for gUT as a function of op, INI, and IN2.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Arithmetic Operations } \\
\hline op & ADD & SUB & MPY & DIV & NØT \\
\hline ดUT & IN1+IN2 & IN1-IN2 & IN1-IN2 & IN1/IN2 & -IN1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Logical Operations} \\
\hline op & \multicolumn{4}{|c|}{AND} & \multicolumn{4}{|c|}{\(\emptyset \mathrm{R}\)} & \multicolumn{4}{|c|}{IMPL} \\
\hline QUT & -1 & +1 & +1 & +1 & -1 & -1 & -1 & +1 & -1 & +1 & -1 & -1 \\
\hline IN1 & \(<0\) & \(<0\) & \(\geq 0\) & \(\geq 0\) & <0 & \(<0\) & \(\geq 0\) & \(\geq 0\) & <0 & <0 & \(\geq 0\) & \(\geq 0\) \\
\hline IN2 & \(<0\) & \(\geq 0\) & <0 & \(\geq 0\) & & \(\geq 0\) & \(<0\) & \(\geq 0\) & <0 & \(\geq 0\) & <0 & \(\geq 0\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Special Operations} \\
\hline op & ØUT \\
\hline \(N \nsim P\) & QUT (unchanged) \\
\hline KLøCK & Current CPU time in integer seconds from the start of the job. \\
\hline TMTØGØ & Remaining CPU time in integer seconds based on the TIME card. \\
\hline PREC & Returns the currently requested precision; 2 = D.P. , 1 = S.P. \\
\hline
\end{tabular}
2. PARAM does its own SAVE; therefore, a SAVE is not needed following the module.

\section*{UTILITY MODULES}
VIII. EXAMPLES:
1. PARAM // C,N,NØT / V,N,XYZ / V,N,NGXYZ \$ - this example changes the sense of parameter NQXYZ which may be useful for the CØND or EQUIV instructions. Alternatively, XYZ could have been set in the following way:
2. PARAM // \(\mathrm{C}, \mathrm{N}, \mathrm{MPY} / \mathrm{V}, \mathrm{N}, \mathrm{XYZ} / \mathrm{V}, \mathrm{N}, \mathrm{NQXYZ} / \mathrm{C}, \mathrm{N},-1 \$\)
3. PARAM // C,N,IMPL / V,N,ABC / V,N,DEF / V,N,GHI \$
4. PARAM // \(C, N, N \not \subset P / V, N, P 1=5 \$\) - this example sets the value of parameter Pl to 5 and saves it for subsequent use.
I. NAME: PARAML (Selects parameters from a list)
II. PURPOSE: To select parameters from a user input matrix or table.
III. DMAP CALLING SEQUENCE:
```

PARAML INPUT // C,N,\emptysetP / V,N,RECN\emptyset / V,N,W\emptysetRDN /
V,N,REAL1 / V,N,INTEG / V,N,REAL2 / V,N,BCD \$

```
IV. INPUT DATA BLOCKS:

INPUT - Any matrix or table
V. OUTPUT DATA BLOCKS:

None.
VI. PARAMETERS:

QP - Input-BCD-no default.
RECN \(\varnothing\) - Input-integer-default \(=1\)
WORDN - Input-integer-default \(=1\)
REALI - Output-real-default \(=1.0\)
INTEG - Output-integer-default \(=0\)
REAL2 - Output-real-default \(=1.0\)
BCD - Output-BCD-default = blank
VII. REMARKS:
1. REALT, INTEG, REAL2, and BCD will be set by the module whenever they are "V" type parameters.
2. RECN \(\emptyset\) and \(W \emptyset R D N\) control the starting point, according to \(\emptyset P\).

If \(\emptyset P=D M I, R E C N \emptyset\) is the column number and \(W \emptyset R D N\) is the row number.
If \(\emptyset P=D T I\), RECN \(\emptyset\) is the record number and \(W \varrho R D N\) is the word number.
If \(\emptyset P=\) PRESENCE, INTEG will be -l if INPUT is purged.
3. PARAML does its own SAVE; therefore, a SAVE is not needed following the module.
VIII. EXAMPLE:

Obtain the value in column 1, row 1 of a matrix.
PARAML KGG // C,N,DMI / C,N,T / C,N,l / V,N,TERM \$

\section*{UTILITY MODULES}
I. NAME: PARAMR (Parameter Processor - Real)
II. PURPOSE: To perform specified arithmetic, logical, and conversion operations on real or complex parameters.
III. DMAP CALLING SEQUENCE:
```

PARAMR // C,N,\emptysetP / V,N,\emptysetUTR / V,N,INRI / V,N,INR2 /
V,N,\emptysetUTC / V,N,INC1 / V,N,INC2 /
V,N,FLAG \$

```
IV. INPUT DATA BLOCKS:

None.
v. OUTPUT DATA BLOCKS:

None.
VI. PARAMETERS:
\(\emptyset P\) - Input-BCD operation code from the table below - no default
ØUTR - Output-real-default \(=0.0\)
INR1 - Input-real-default \(=0.0\)
INR2 - Input-real-default \(=0.0\)
ØUTC - Output-complex-default \(=(0.0,0.0)\)
INC1 - Input-complex-default \(=(0.0,0.0)\)
INC2 - Input-complex-default \(=(0.0,0.0)\)
FLAG - Output-integer-default \(=0\)
The values of the parameters are dependent upon \(\emptyset P\) as shown in the following table:
\(\emptyset \mathrm{P}\)
ADD
SUB \(\quad\) QUTR \(=I N R 1-I N R 2\)
MPY \(\quad\) OUTR \(=I N R 1\) * INR2
DIV \(\quad\) QUTR \(=\) INR1 / INR2
N@P RETURN
SQRT \(\quad\) OUTR \(=\sqrt{\text { INR1 }}\)
SIN \(\quad\) QUTR \(=\operatorname{SIN}(\) INR1)
\(\operatorname{CDS} \quad\) ØUTR \(=\operatorname{CDS}(\) INR1)
ABS \(\quad\) OUTR \(=\mid\) INR1 \(\mid\)
EXP \(\quad\) QUTR \(=\exp (I N R 1)\)
\begin{tabular}{|c|c|}
\hline TAN & ØUTR \(=\) TAN(INR1) \\
\hline NØRM & QUTR \(=\|\) QUTC \(|\mid\) \\
\hline PQWER & ØUTR = INR1 ** INR2 \\
\hline ADDC & ØUTC \(=\) INC1 + INC2 \\
\hline SUBC & QUTC \(=\) INC1 - INC2 \\
\hline MPYC & QUTC \(=\) INC1 * INC2 \\
\hline DIVC & QUTC \(=\) INC1 / INC2 \\
\hline CSQRT & QUTC \(=\sqrt{\text { INC1 }}\) \\
\hline COMPLEX & QUTC \(=\) (INR1, INR2) \\
\hline CONJ & QUTC \(=\overline{\text { INCT }}\) \\
\hline REAL & INRT \(=\operatorname{Re}\) ( (UTC) \\
\hline & INR2 \(=\) Im ( (UTC) \\
\hline EQ & FLAG \(=-1\) if INR1 \(=\) INR2 \\
\hline GT & FLAG \(=-1\) if INR1 \(>\) INR2 \\
\hline LT & FLAG \(=-1\) if INR1 \(<\) INR2 \\
\hline LE & FLAG \(=-1\) if INR1 \(\leq\) INR2 \\
\hline GE & FLAG \(=-1\) if INR1 \(\geq\) INR2 \\
\hline NE & FLAG \(=-1\) if INR1 \(\neq\) INR2 \\
\hline L甲G & \(\emptyset U T R=L \emptyset G_{10}(\) INRT \()\) \\
\hline LN & \(\emptyset U T R=L \emptyset G_{e}\) (INRI) \\
\hline FIX & FLAG \(=\) FIX ( (UUTR) \\
\hline FLøAT & \(\emptyset U T R=F L \emptyset A T(F L A G)\) \\
\hline
\end{tabular}

\section*{VII. REMARKS:}
1. Any output parameter must be "V" type if the parameter is used by " \(\emptyset \mathrm{P}\) " as output.
2. For \(\emptyset P=D I V\) or \(\emptyset P=D I V C\), the output is zero if the denominator is zero.
3. PARAMR does its own SAVE; therefore, a SAVE is not needed following the module.
4. For \(\emptyset P=S I N, ~ \emptyset P=C \emptyset S\) or \(\emptyset P=\) TAN, the input must be expressed in radians.

\section*{UTILITY MODULES}
I. NAME: PRTPARM (Parameter and DMAP Message Printer)
II. PURPQSE: A. Prints parameter values.
B. Prints DMAP messages.
III. DMAP CALLING SEQUENCE:

PRTPARM // C,N,a / C,N,b / C,N, c \$
IV. INPUT DATA BLDCKS: None
v. ØUTPUT DATA BLDCKS: None
VI. PARAMETERS:
a - Integer value (no default value)
\(b-B C D\) value (default value \(=X X X X X X X X)\)
c - Integer value (default value \(=0\) )
VII. METH \(Q \mathrm{D}\) :
A. As a parameter printer, use \(a=0\). There are two options:
1. \(b=\) parameter name will cause the printout of the value of that parameter.

Example: PRTPARM //C,N,O/C,N,LUSET \$
2. \(b=X X X X X X X X\) will cause the printout of the values of all parameters in the current variable parameter table. Since this is the default value, it need not be specified.
Example: PRTPARM // C,N,O \$
B. As a DMAP message printer, use a \(\neq 0\). There are two options:
1. \(a>0\) causes the printout of the \(j^{\text {th }}\) message of category \(b\) where \(j=|a|\) and \(b\) is one of the values shown below. (The number of messages available in each category is also given.)
Example: PRTPARM // C,N,1/C,N,DMAP \$
2. a < 0 causes the same action as a > 0 with the additional action of program termination. Thus; PRTPARM may be used as a fatal message printer.
Example: PRTPARM // C,N,-2/C,N,PLA \$
VIII. REMARKS:
1. \(b\) is always a value.
2. Meaningless values of \(a\) and \(b\) will result in diagnostic messages from PRTPARM.
3.

TABLE OF b CATEGORY VALUES
\begin{tabular}{|c|c|c|c|}
\hline & DISPLACEMENT Rigid Formats & Value of b & Number of Messages \\
\hline 1 & Static Analysis & STATICS & 5 \\
\hline 2 & Static Analysis with Inertia Relief & INERTIA & 5 \\
\hline 3 & Normal Mode Analysis & MODES & 3 \\
\hline 4 & Static Analysis with Differential Stiffness & DIFFSTIF & 4 \\
\hline 5 & Buckling Analysis & BUCKLING & 6 \\
\hline 6 & Piorewise Linear Analysis & PLA & 5 \\
\hline 7 & Direct Complex Eigenvalue Analysis & DIRCEAD & 3 \\
\hline 8 & Direct Frequency and Random Response & DIRFRRD & 4 \\
\hline 9 & Direct Transient Response & DIRTRD & 3 \\
\hline 10 & Modal Complex Eigenvalue Analysis & MDLCEAD & 4 \\
\hline 11 & Modal Frequency and Random Response & MDLFRRD & 6 \\
\hline 12 & Modal Transient Response & MDLTRD & 5 \\
\hline 13 & Normal Modes Analysis with Differential Stiffness & NMDSTIF & 6 \\
\hline 14 & Static Analysis with Cyclic Symmetry & CYCSTAT & 6 \\
\hline 15 & Normal Modes Analysis with Cyclic Symmetry & CYCMФDES & 6 \\
\hline & HEAT Rigid Formats & & \\
\hline 1 & Static Heat Transfer & HSTAT & 4 \\
\hline 3 & Nonlinear Static Heat Transfer & HNLIN & 3 \\
\hline 9 & Transient Heat Transfer & HTRD & 1 \\
\hline & AERD Rigid Format & & \\
\hline 10 & Modal Flutter Analysis & FSUBSON & 4 \\
\hline & Direct Matrix Abstraction Program & & \\
\hline & DMAP & DMAP & See Remark 5 \\
\hline
\end{tabular}
4. For details on error messages for the \(i^{\text {th }}\) Displacement Rigid Format see section 3. (i+1) User's Manual. The Heat and Aero Rigid Formats follow these.
5. The message number, a, may be any integer for DMAP messages.
6. The third parameter is not currently used.

\section*{UTILITY MODULES}
I. NAME: PVEC (Substructure Analysis Partitioning Vector Data Generator)
II. PURPQSE: Generates a table similar to USET for use in Substructure Analysis.
III. DMAP CALLING SEQUENCE:


\section*{IV. INPUT DATA BLØCKS:}

Iii, \(i \mathbf{i = 0 1 , 2 0 - T a b l e ~ d a t a ~ b l o c k s ~ g e n e r a t e d ~ b y ~ G P 4 ~ i n ~ a ~ P h a s e ~ I ~ S u b s t r u c t u r e ~ A n a l y s i s ~}\) execution. Up to twenty (20) substructures may be handled simultaneously. The inputs may be purged if either the substructure is absent or if it is identical to a previously appearing substructure.

GEDM4 - Preface output containing the coupling data extracted from the user's SAME and NØSAME bulk data cards.
v. QUTPUT DATA BLDCKS:

01 - A table similar to USET which can be used to generate partitioning vectors by using utility module VEC.

Ø2 - Reserved for future use (may not be purged).
@3 - Reserved for future use (may not be purged).
VI. PARAMETERS:

ØPT1 - Input, integer, default \(=1\) which indicates no pseudostructure map is to be printed. A value of -1 indicates that the printing of the map is desired.

ØPT2 - Input, integer, default \(=1\) which indicates coupling is to occur for points mentioned on user-supplied SAME cards. A value of -1 directs PVEC to generate additional coupling information for any points having identical external identifications given on the input data blocks Iii. This additionat information is merged with the user-supplied SAME and NØSAME coupling data.

Pii, ii=01,20 - Input, integer, default \(=0\). The values of these parameters define the substructures in the analysis. For example, if P17 \(=20\) then the data on input data block I 17 would be assumed to represent substructure number 20. Zero values mean that the substructure is not present. In this case Iii should be purged. Negative values imply that the substructure is identical to the immediately preceding substructure. For example, if P07 \(=-14\), then the data for substructure number 14 would be found on 106 unless P06 < 0 in which case it would be on 105 , etc. Obviously, P01 \(\geq 0\).
VII. REMARKS:

For user convenience, two alternate forms of the PVEC module have been defined. For two to five substructures the user may use PVECO5.

PVECO5 I01,I02,---,I05,GEØM4 / \(\emptyset 1, \emptyset 2, \emptyset 3 / V, N, \emptyset P T 1 / V, N, \emptyset P T 2 / V, N, P 1 / V, N, P 2 /\) ... / V,N,P5 \$

Similarly, PVECIO is available for two to ten substructures.
PVEC10 101,102,---,I10,GE \(\cap M 4 / \emptyset 1, \emptyset 2, \emptyset 3 / V, N, \emptyset P T 1 / V, N, \emptyset P T 2 / V, N, P 1 / V, N, P 2 /\) --- / V,N,P10 \$
VIII. EXAMPLE:

Consider four substructures having identification numbers 10, 20, 30 and 40 . Substructure 30 is identical to substructure 20. Substructure Analysis Phase I runs have been made for substructures 10,20 and 40 creating data blocks A10, A20 and A40 which have been brought in from user tapes. To generate the partitioning vector bit table VSET, use

PVECO5 A10,A20, \(\underset{C}{C, N,-30 / C, N, 40, ~} \$\) C,N,-30 / C, N, 40 \$

To generate the partitioning vector for substructure 20 , use
PARAM // C,N,SUB / V,N,B / C,N, \(33 / C, N, 2 \$ 2=S E C \not \subset N D\) QNE
VEC VSET / E2O / C,N,BITID / C,N, / C,N, / V,N,B \$
To generate the complete partitioning vector matrix, use
VEC VSET / MPV / C,N,CØLUMNS / C,N,RIGHT / C,N, / C,N,4 \$ 4=NØ. SUBSTRUCTURES

\section*{UTILITY MODULES}
I. NAME: SCALAR (Convert matrix element to parameter)
II. PURPOSE: To extract a specified element from a matrix for use as a parameter.
III. DMAP CALLING SEQUENCE:

SCALAR \(\quad A / / V, Y, N R \emptyset W=1 / V, N, N C \emptyset L=1 / C, Y, V A L U E \quad \$\)
IV. INPUT DATA BLOCKS:

A - may be any type of matrix.
NOTE: If \(A\) is purged, value will be returned as (0.,0.).
v. OUTPUT DATA BLOCKS:

None
VI. PARAMETERS:

NROW - Input-integer, default \(=1\). Row number of element to be extracted from [A].
NCØL - Input-integer, default=1. Column identification of element.
VALUE - Output-complex-single precision, default=(0.,0.). Contents of element (NRØW,NCØL) in matrix [A].
I. NAME: SEEMAT (Pictorial Matrix Printer)
II. PURPØSE: Shows nonzero matrix elements on printer or plotter output positioned pictorially by row and column within the outlines of the matrix.
III. DMAP CALLING SEQUENCE:

> SEEMAT M1,M2,M3,M4,M5 // C,N, \(\left\{\frac{\text { PRINT }}{\text { PLDT }}\right\} / V, N, P F I L E / V, N, P A C K / C, N, p l o t t e r /\)
> \(\mathrm{C}, \mathrm{N}\), modeln1 / \(\mathrm{C}, \mathrm{N}\), modelbl / \(\mathrm{C}, \mathrm{N}\), modeln2 / \(\mathrm{C}, \mathrm{N}\), modelb2 /
> \(C, N\), sizex / C,N,sizey \(\$\)
IV. INPUT DATA BLØCKS:

Matrix Data Blocks, any of which may be purged.
v. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS:
1. PRINT implies use of the system output file. (Any value other than PLøT implies PRINT.)

PLøT implies use of one of the plotters. Either of the plotter tapes PLT1 or PLT2 will be used, depending on the type of plotter requested (see Section 4.1).

The default value for the first parameter is PRINT.
2. PFILE is the Plot File Number. (Used only if first parameter is PLøT.)

Input/output variable integer parameter. Frame or sheet number. The value of this parameter will be incremented by one (1) for each frame (sheet) plotted by SEEMAT. The default value for the second parameter is 0 .
3. PACK is reserved for a future modification that will allow the representation of a nonzero block of the matrix with a single character.
The default value for the third parameter is 100 .
4. Plotter Name - If the first parameter = PL \(\emptyset T\), one of the plotter names must be selected from the following list. Additional information on plotters and the meaning of the symbols used below is given in Section 4. The associated model identifiers are specified with the next four parameters. Each plotter has a default model associated with it, as indicated by the underlined model identifier.

The default value for the fourth parameter is SC.

\section*{UTILITY MODULES}
\begin{tabular}{|c|c|}
\hline Plotter Name & Model Identifiers \\
\hline BL & \(\left\{\frac{\text { LTE, } 30}{\text { STE, } 30}\right\}\) \\
\hline EAI & \(\left\{\begin{array}{l}3500,30 \\ 3500,45\end{array}\right\}\) \\
\hline SC & 4020,0 \\
\hline CALC®MP & \(\left\{\begin{array}{l}765,205 \\ 765,210 \\ 765,105 \\ 765,110 \\ 763,205 \\ 763,210 \\ 763,105 \\ 763,110 \\ 565,205 \\ 565,210 \\ 565,105 \\ 565,110 \\ 565,305 \\ 565,310 \\ 563,205 \\ 563,210 \\ 563,105 \\ 563,110 \\ 563,305 \\ 563,310\end{array}\right\rangle\) \\
\hline DD & 80, B \\
\hline NASTPLT & \(\left\{\begin{array}{l}M, 0 \\ \hline T, 0 \\ D, 0 \\ M, 1 \\ T, 1 \\ D, 1\end{array}\right\}\) \\
\hline
\end{tabular}
5. The parameter modelnl is used to specify the first of the two model identifiers when it is an integer value. The default value for the fifth parameter is 0.
6. The parameter modelbl is used to specify the first of the two model identifiers when it is a \(B C D\) value. The default value for the sixth parameter is blank.
7. The parameter modeln2 is used to specify the second of the two model identifiers when it is an integer value. The default value for the seventh parameter is 0 .
8. The parameter modelb2 is used to specify the second of the two model identifiers when it is a \(B C D\) value. The default value for the eighth parameter is blank.
9. The parameter sizex specifies the size of the plotter surface \(x\)-dimension on those plotters for which it is appropriate (e.g., the CALCøMP plotter). The default value for sizex is 30.0 .
10. The parameter sizey specifies the size of the plotter surface \(y\)-dimension on those plotters for which it is appropriate (e.g., the CALCØMP plotter). The default value for sizey is 30.0 .
VII. METHЮD: The matrix is partitioned into blocks which can be printed on a single sheet of output paper or frame on the plotter selected. Only blocks containing nonzero elements will be output. Row and column indices are indicated. The user of this module is cautioned to make sure his line count limit is large enough. A default of 20,000 lines is provided by NASTRAN. This may be changed via the statement MAXLINES= value in the NASTRAN Case Control Deck. The transpose of the matrix is output.
VIII. REMARKS:
1. If a plotter is used, the appropriate tape must be made available to NASTRAN.
2. If a plotter is used, a SAVE instruction should be executed to update PFILE.
3. The nonzero elements are indicated by asterisks (*), except for diagonal elements of square matrices which are indicated by the letter \(D\), and elements in the last row or column which are indicated by dollar signs (\$).
4. The default model for any plotter is specified by omitting the last four parameters.
5. When two of the last four parameters are used to specify model identifiers, the remaining two parameters should be specified as \(C, N\) only.

\section*{IX. EXAMPLES:}
1. Specify CALCØMP 765,205 as follows:

SEEMAT M1,M2,M3,M4,M5 // C,N,PLØT / V,N,PFILE / C,N / C,N,CALCDMP \$
2. Specify EAI 3500,45 as follows:

SEEMAT M1,M2,M3,M4,M5 // C,N,PLDT / V,N,PFILE / C,N / C,N,EAI / C,N,3500 / C,N / C,N,45/C,N \$
3. Specify Benson Lehner STE, 30 as follows:

> SEEMAT MI,M2,M3,M4,M5 // C,N,PLØT / V,N,PFILE / C,N / C,N,BL / C,N / C,N,STE / \(C, N, 30 / C, N \$\)
4. Specify the printer rather than a plotter as follows:

SEEMAT M1,M2,M3,M4,M5 // \$
5. For additional examples see Section 5.4.8.

\section*{UTILITY MODULES}
I. NAME: SETVAL (Set Values)
II. PURPQSE: Set DMAP Parameter variable values equal to other DMAP Parameter variables or DMAP Parameter constants.
III. DMAP CALLING SEQUENCE:
SETVAL \(/ / V, N, X 1 / V, N, A 1 /\)
\(V, N, X 2 / V, N, A 2 /\)
\(V, N, X 3 / V, N, A 3 /\)
\(V, N, X 4 / V, N, A 4 /\)

\(V, N, X 5 / V, N, A 5 \$\)
IV. INPUT DATA BLDCKS: None

V: ØUTPUT DATA BLØCKS: None
VI. PARAMETERS:
```

X1, X2, X3, X4, X5 Output, integers, variables
A1, A2, A3, A4, A5 Input, integers; default values = 1, variables or constants.

```
VII. METHQD: This module sets \(X 1=A 1, X 2=A 2, X 3=A 3, X 4=A 4\), and \(X 5=A 5\). Only two parameters need be specified in the calling sequence ( \(X 1\) and \(A 1\) ).
VIII. REMARKS:
1. A SAVE instruction must immediately follow the SETVAL instruction if the output parameter values are to be subsequently used.
2. See PARAM for an alternate method of defining parameter values.
3. As an example, the statements

SETVAL //V,N,X1/V,N,AT / V,N,X2 / C,N, \(3 \$\)
SAVE \(\quad \mathrm{X} 1, \mathrm{X} 2 \$\)
are equivalent to the statements
PARAM // C,N,ADD / V,N,XI / V,N,A1 / C,N,0 \$
PARAM // \(C, N, N \emptyset P / V, N, X 2=3 \$\)
I. NAME: TABPCH (Table Punch)
II. PURPOSE: To punch NASTRAN tables onto DTI cards in order to allow transfer of data from one NASTRAN run to another, or to allow user postprocessing.
III. DMAP CALLING SEQUENCE:

TABPCH TAB1,TAB2,TAB3,TAB4,TAB5 // C,N,A1/C,N,A2/C,N,A3/C,N,A4/C,N,A5\$
IV. INPUT DATA BLOCKS:

TAB]
TAB2
TAB3 Any NASTRAN Tables
TAB4
TAB5
V. OUTPUT DATA BLOCKS:

None - All output is punched onto DTI cards.
VI. PARAMETERS:

A1, \(A 2\), \(A 3\), A4, \(A 5\)-- Input - \(B C D\) - Defaults are ' \(A A^{\prime}\), ' \(A B^{\prime}\), ' \(A C\) ', ' \(A D\) ', 'AE'. These parameters are used to form the first two characters (columns 74,75 ) of the continuation field for each table respectively.
VII. REMARKS:
1. Any or all tables may be purged.
2. Integer and BCD characters will be punched onto single-field cards. Real numbers will be punched onto double-field cards. Their formats are I8, 2A4, El6.9.
3. Up to 99,999 cards may be punched per table.
4. Currently, twice the entire record must fit in open core.
5. Tables with 1 word BCD values (ELSETS) cannot be punched correctly.
VIII. EXAMPLES:

TABPCH EST,,,, // C,N,ES \(\$\) will punch the EST onto cards with a continuation neumonic of \(+E S_{b b b b} i\) (where \(i\) is the sequence number).

\section*{UTILITY MODULES}
I. NAME: TABPRT (Formatted Table Printer)
II. PURPOSE: To print selected table data blocks with format for ease of reading.
III. DMAP CALLING SEQUENCE:

TABPRT TDB // C,N,KEY / C,N,ØPTI / C,N,ØPT2 \$
IV. INPUT DATA BLOCKS:

TDB - Table Data Block from list given under \(X\).
V. ØUTPUT DATA BLOCKS: None
VI. PARAMETERS:
1. KEY - Alphanumeric value, no default. Identifies the format to be used in printing the table. The allowable list is given under \(X\).
2. ØPTl - Integer, default value \(=0\). If 0 , no blank lines are written between entires. If \(\neq 0\), one blank line will be written between each entry.
3. ØРT2 - Integer, default value \(=0\). Not used at present.
VII. ØUTPUT:

The contents of the table are formatted and written on the system output file.
VIII. NøTES:
1. The module returns in the event of any difficulty.
2. The TABPT module can be used to print the contents of any data block.
IX. EXAMPLES:
1. TABPRT CSTM // C,N,CSTM \$
2. TABPRT GPL // C,N,GPL / C,N,1.\$

\section*{DIRECT MATRIX ABSTRACTION}
X. MISCELLANEQUS

List of data blocks recognized by TABPRT (Rigid Format name used here. The actual DMAP name for the same or equivalent information is acceptable.)
\begin{tabular}{ll} 
Data Block & \\
BGPDT & Key (Value) \\
CSTM & BGPDT \\
EQDYN & CSTM \\
EQEXIN & EQDYN \\
GPCT & EQEXIN \\
GPDT & GPCT \\
GPL & GPDT \\
GPLD & GPL \\
GPTT & GPLD
\end{tabular}

\section*{UTILITY MODULES}
I. NAME: TABPT (Table Printer)
II. PURP@SE: To print table data blocks (may be used for matrix data blocks if desired).
III. DMAP CALLING SEQUENCE:

TABPT TAB1,TAB2,TAB3,TAB4,TAB5 // \$
IV. INPUT DATA BLQCKS:

TAB1 -
\(\left.\begin{array}{l}\text { TAB2 - } \\ \text { TAB3 - } \\ \text { TAB4 - } \\ \text { TAB5 - }\end{array}\right\}\) Any NASTRAN data block.
Note: Any or all input data blocks can be purged.
v. ØUTPUT DATA BLøCKS: None
VI. PARAMETERS: None
VII. REMARKS:
1. Each input data block is treated as a table and its contents are printed on the system output file via a prescribed format. Each word of the table is identified by the module as to type (real, \(B C D\), integer) and an appropriate format is used.
2. The trailer data items for the table are also printed.
3. Purged input data blocks are not printed.
VIII. EXAMPLES:

TABPT GEØM1,,,, // \$
TABPT GEØM1,GEØM2,GEØM3,GEØM4,GEØM5 // \$

\section*{DIRECT MATRIX ABSTRACTION}
I. NAME: TIMETEST (Provides Timing Data)
II. PURPOSE: To produce timing data for specific NASTRAN unit operations.
III. DMAP CALLING SEQUENCE:

TIMETEST /, / C,N,N / C,N,M / C,N,T / C,N, \(\cap 1 / C, N, \emptyset 2 \$\)
IV. INPUT DATA BLOCKS: None
V. OUTPUT DATA BLOCKS:

FILE1 Reserved for future implementation
FILE2
VI. PARAMETERS

N - Outer Loop Index
M - Inner Loop Index
T - Data type to be processed
01 - TIMTST Routine to be processed
02 - Powers of two table for TIMTS1 option selection

See Section 4.127 of the NASTRAN Programmer's Manual for further description of the parameters.
VII. REMARKS

None.
VIII. EXAMPLES

TIMETEST / , / C,N,100 / C,N,100 / C,N,1 / C,N,2 \$
TIMETEST / , / C,N, \(10 / \mathrm{C}, \mathrm{N}, 10 / \mathrm{C}, \mathrm{N}, 3 / \mathrm{C}, \mathrm{N}, 1 / \mathrm{C}, \mathrm{N}, 127 \$\)
I. NAME: VEC (Creates partitioning vector based on USET).
II. PURPQSE: To create a partitioning vector for displacement method matrices using USET that may be used by Matrix Operation Modules MERGE and PARTN. This allows the user to split up long running modules such as SMP1.
III. DMAP CALLING SEQUENCE:
A. For matrices generated in Rigid Formats \(1-6\) or prior to module GKAD (or GKAM) in Rigid Formats 7-12:

VEC USET / V / C,N,SET / C,N,SETO / C,N,SET1 / V,N,ID \$
B. For matrices generated in Rigid Formats \(7-12\) after module GKAD (or GKAM):

VEC USETD / V / C,N,SET / C,N,SETO / C,N,SETT / V,N,ID \$
IV. INPUT DATA BLQCKS:

USET - U-set
or
USETD - U-set (Dynamics)
Note: U-set may not be missing and must fit into open core.
v. ØUTPUT DATA BLøCKS:
\(V\) - Partitioning vector.
Note: 1. If all elements are in SETO or SETl then \(V\) will be purged.
2. \(V\) may not be purged prior to execution.
VI. PARAMETERS:

SET - Matrix set to be partitioned (Input ,BCD, no default.)
SETO - Upper partition of SET (Input ,BCD, no default).
SETI - Lower partition of SET (Input ,BCD, no default).
ID - Identification of bit position (see Remarks) (Input, integer, default \(=0\) ).
Note: 1. Legal parameter values are given in the table on page 5.3-17.
2. See Section 1.7.3 of the Programmer's Manual for a description of set notation or Section 3.3 of the Theoretical Manual.
VII. REMARKS:
1. Parameters SETO and SET1 must be a subset of the SET matrix parameter. A degree of freedom may not be in both subsets.
2. If desired, one of SETO or SET1 but not both may be requested to be the complement of the other one by giving it a value of cøMP.
3. If SET \(=\) BITID, the second and third parameters are ignored and the IDth bit position in USET (or USETD) is used. In this case, SET is assumed equal to \(G(o r P)\) and SETO will correspond to the zero's in the IDth position and SET1 will correspond to the non-zero's in the IDth position.

\section*{DIRECT MATRIX ABSTRACTION}
VIII. EXAMPLES:
1. To partition \(\left[K_{f f}\right.\) ] into a- and o-set based matrices, use

VEC USET / V/C,N,F/C,N, D/C,N,A \$
PARTN KFF,V, / K \(\varnothing \varnothing, K A \emptyset, K \emptyset A, K A A \$\)
Note that the same thing can be done in one step by UPARTN USET,KFF / K \(\emptyset \emptyset, K A \emptyset, K \emptyset A, K A A / C, N, F / C, N, \emptyset / C, N, A \$\)
2. Example 1 could be accomplished by

VEC USET / V/C,N,F/C,N, \(/ \mathrm{C}, \mathrm{N}, \mathrm{C}\) / MP \$
or
VEC USET / V/C,N,F/C,N,CФMP / C,N,A \$
3. Example 1 could be accomplished by

VEC USET / V/C,N,BITID / C,N,X / C,N,X/C,N,25 \$
5.6 USER MODULES
\begin{tabular}{|c|c|c|}
\hline Module & Basic Function & Page \\
\hline DDR & User Dummy Module & 5.6-2 \\
\hline DUMM@DI & Dummy Module-1 & 5.6-3 \\
\hline DUMM@D2 & Dummy Module-2 & 5.6-4 \\
\hline DUMMФD3 & Dummy Module-3 & 5.6-5 \\
\hline DUMM9D4 & Dummy Module-4 & \\
\hline INPUTT3 & Auxiliary Input File Processor & 5.6-7 \\
\hline INPUTT4 & Auxiliary Input File Processor & 5.6-8 \\
\hline MODA & User Dummy Module & 5.6-9 \\
\hline M \(\\) DB & User Dummy Module & 5.6-10 \\
\hline M \({ }^{\text {D D C }}\) & User Dummy Module & 5.6-11 \\
\hline QUTPUT & Auxiliary Output File Processor & 5.6-12 \\
\hline OUTPUT4 & Auxiliary Output File Processor & 5.6-13 \\
\hline PARTVEC & User Dummy Module & 5.6-14 \\
\hline XYPRNPLT & User Dummy Module & 5.6-15 \\
\hline
\end{tabular}

A number of modules have been placed in the NASTRAN system for which only dummy code exists. These modules are available to the user who wishes to create his own data blocks by reading tapes or data cards, generate his own output on the printer, punch or plotter, or perform his own matrix computations. The appropriate MPL information is presented for each such user module in this section. All necessary interfaces with the Executive System have been completed for these user modules. The procedures for implementing a user module are described in Section 2 of the Programmer's Manual.
I. NAME: DDR (User Dummy Module)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (see REMARKS below)

DDR A/X/C,N,ABC/C,N,DEF/C,N,GHI \$
IV. INPUT DATA BLØCKS: As desired by author of module.
V. ØUTPUT DATA BLØCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the constants shown in the calling sequence shown above.
VII. REMARKS:

This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs, as well as the number, type, and default values of the parameters, may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of the Programmer's Manual).
I. NAME: DUMMGDI (Dunmy Modute - 1)*
II. PURPDSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (see REMARKS)
```

DUMM@D1 I1,I2,I3,I4,I5,I6,I7,I8 /
01,\emptyset2,\emptyset3,\emptyset4,\emptyset5,\varnothing6,\emptyset7,ø8 /
C,N,-1 / V,Y,P2=-1 / V,N,P3=-1 / C,Y,P4=-1 /
C,Y,P5=-1.0 / C,N,-1.0 /
C,Y,P7=ABCDEFGH /
C,Y,P8=-1.000 /
C,Y,P9=(-1.0,-1.0)/
C,Y,P1O=(-1.0DO,-1.0D0) \$

```
IV. INPUT DATA BLDCKS: As desired by author of module.
V. ØUTPUT DATA BLDCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the default values shown in the calling sequence above.
VII. REMARKS: This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).

\footnotetext{
*The delivery version of NASTRAN contains a DUMMGDI module which is used to compute timing constants for the various machines on which the program runs.
}
I. NAME: DUMMפD2 (Dummy Module - 2)
II. PURPDSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (see REMARKS)
```

DUMM\emptysetD2 I1,I2,I3,I4,I5,I6,I7,I8 /
\emptyset1,\emptyset2,\emptyset3,\emptyset4,\emptyset5,\emptyset6,\emptyset7,\emptyset8 /
C,N,-1 / V,Y,P2=-1 / V,N,P3=-1 / C,Y,P4=-1 /
C,Y,P5=-1.0 / C,N,-1.0 /
C,Y,P7=ABCDEFGH /
C,Y,P8=-1.0DO /
C,Y,P9=(-1.0,-1.0) /
C,Y,P1O=(-1.0DO,-1.ODO) \$

```
IV. INPUT DATA BLØCKS: As desired by author of module.
V. QUTPUT DATA BLØCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the default values shown in the calling sequence above.
VII. REMARKS: This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).

\section*{USER MODULES}
I. NAME: DUMMФD3 (Dummy Module - 3)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (see REMARKS)

DUMM10D3 I1, \(12,13,14,15,16,17,18 /\)
\(\emptyset 1, \varnothing 2, \emptyset 3, \emptyset 4, \emptyset 5, \emptyset 6, \emptyset 7, \emptyset 8 /\)
\(\mathrm{C}, \mathrm{N},-1 / \mathrm{V}, \mathrm{Y}, \mathrm{P} 2=-1 / \mathrm{V}, \mathrm{N}, \mathrm{P} 3=-1 / \mathrm{C}, \mathrm{Y}, \mathrm{P} 4=-1 /\)
\(C, Y, P 5=-1.0 / C, N,-1.0 /\)
\(C, Y, P 7=A B C D E F G H /\)
\(C, Y, P 8=-1.0 \mathrm{DO} /\)
\(C, Y, P 9=(-1.0,-1.0) /\)
\(C, Y, P 10=(-1.000,-1.0 D 0) \$\)
IV. INPUT DATA BLDCKS: As desired by author of module.
V. QUTPUT DATA BLØCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the default values shown in the calling sequence above.
VII. REMARKS: This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).
I. NAME: DUMMØD4 (Dummy Module - 4)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (see REMARKS)

DUMMQD4 \(11,12,13,14,15,16,17,18 /\)
\[
\emptyset 1, \emptyset 2, \emptyset 3, \emptyset 4, \emptyset 5, \emptyset 6, \emptyset 7, \emptyset 8 /
\]
\(\mathrm{C}, \mathrm{N},-1 / \mathrm{V}, \mathrm{Y}, \mathrm{P} 2=-1 / \mathrm{V}, \mathrm{N}, \mathrm{P} 3=-1 / \mathrm{C}, \mathrm{Y}, \mathrm{P} 4=-1 /\)
\(C, Y, P 5=-1.0 / C, N,-1.0 /\)
\(\mathrm{C}, \mathrm{Y}, \mathrm{P} 7=\mathrm{ABCDEFGH} /\)
\(C, Y, P 8=-1.000\) /
\(C, Y, P 9=(-1.0,-1.0) /\)
\(C, Y, P 10=(-1.000,-1.000) \$\)
IV. INPUT DATA BLDCKS: As desired by author of module.
V. ØUTPUT DATA BLØCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the default values shown in the calling sequence above.
VII. REMARKS: This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).
I. NAME: INPUTT3 (Auxiliary Input File Processor)
II. PURPØSE: A user-written module to generate data block(s) and parameter(s) based on input data read by the module itself, or on parameter values or Input Data Blocks generated by NASTRAN, or by any combination of these.
III. DMAP CALLING SEQUENCE:

INPUTT3 I1; I2,I3,I4,I5 / Ø1, Ø2, Ø3,ø4,ø5 / C,N,a / C,N,b / C,N, c \$
IV. INPUT DATA BLØCKS: Any or all of the inputs may be purged according to the user-writer's design.
V. ØUTPUT DATA BLØCKS: May be tables or matrices depending on the user-writer's design; may or may not be purged.
VI. PARAMETERS: May be used as desired by the user-writer. Type is integer with default values of \(a=-1, b=0, c=0\). If parameter is to be output from module, the form \(C, N\), must be changed in the above example to \(V, N\), NAME or some other form capable of being output.
VII. REMARKS: This module has been provided for the NASTRAN user who wishes to process his own data cards. Data block(s) created must be compatible with any subsequent module(s) using them as input. The number of input and output data blocks, as well as the number, type and default values of the parameters, may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (See Section 2 of Programmer's Manual).
I. NAME: INPUTT4 (Auxiliary Input File Processor)
II. PURPQSE: A user-written module to generate data block(s) and parameter(s) based on input data read by the module itself, or on parameter values or Input Data Blocks generated by NASTRAN, or by any combination of these.
III. DMAP CALLING SEQUENCE:

INPUTT4 I1,I2,I3,I4,I5 / \(\emptyset 1, \emptyset 2, \emptyset 3, \emptyset 4, \varnothing 5 / C, N, a / C, N, b / C, N, c \$\)
IV. INPUT DATA BLDCKS: Any or all of the inputs may be purged according to the user-writer's design.
V. ØUTPUT DATA BLØCKS: May be tables or matrices depending on the user-writer's design; may or may not be purged.
VI. PARAMETERS: May be used as desired by the user-writer. Type is integer with default values of \(a=-1, b=0, c=0\). If parameter is to be output from module, the form \(C, N\), must be changed in the above example to V,N,NAME or some other form capable of being output.
VII. REMARKS: This module has been provided for the NASTRAN user who wishes to process his own data cards. Data block(s) created must be compatible with any subsequent module(s) using them as input. The number of input and output data blocks, as well as the number, type and default values of the parameters, may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (See Section 2 of Programmer's Manual).
I. NAME: MØDA (User Dummy ModuTe)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (See REMARKS below)

MЮDA / W, X, Y,Z / C,N, \(0.0 / C, N, 0.0 / C, N, 0.0 / C, N, 0.0 / C, N, 0.0 / C, N, 0 /\) \(C, N, 0 / C, N, 0 / C, N, 0 / C, N, 0 / C, N, 0.0 / C, N, O / C, N, O \$\)
IV. INPUT DATA BL \(\emptyset C K S:\) None
V. ØUTPUT DATA BLØCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the constants shown in the calling sequence shown above.
VII. REMARKS: This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of the parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).
I. NAME: MøDB (Úser Dummy Module)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (See REMARKS below)

MøDB A,B,C / W,X,Y,Z / C,N,1.0 / C,N,1.0 / C,N,1.0 / C,N,1.0 / C,N,0 / C,N,0 / C,N,0 / \(C, N, 1.0 / C, N, 0 / C, N, 0 / C, N, 0 \$\)
IV. INPUT DATA BLØCKS: As desired by author of module.
V. ØUTPUT DATA BLØCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the constants shown in the calling sequence shown above.
VII. REMARKS:

This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of the parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).

\section*{USER MODULES}
I. NAME: M \(\emptyset D C\) (User Dummy Module)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (See REMARKS below)

MaDC A,B // C,N,-1 \$
IV. INPUT DATA BLDCKS: As desired by author of module.
V. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the constants shown in the calling sequence shown above.
VII. REMARKS:

This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of the parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).
I. NAME: ØUTPUT (Auxiliary Output File Processor)
II. PURPØSE: A user-written module to generate printer, plotter or punch output.
III. DMAP CALLING SEQUENCE: (see remark under METHDD)
gUTPUT IN // \(C, Y, P=-1 \$\)
IV. INPUT DATA BLØCKS:

IN - Contains any desired information which the module extracts and writes on the system output file, punch, or either of the two plotters. May be purged.
V. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS: Parameters may be used as desired by the author of the module. Type is integer with MPL default value of -1 as shown above.
VII. METHØD: This module has been provided for the user of NASTRAN who may wish to process his own output. The number of inputs as well as the number, type, and default values of parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).

\section*{USER MODULES}
I. NAME: ØUTPUT4 (Auxiliary Output File Processor)
II. PURPQSE: A user-written module to generate printer, plotter or punch output.
III. DMAP CALLING SEQUENCE: (see remark under METHØD)

ØUTPUT4 IN1,IN2,IN3,IN4,IN5 // V,N,P1=-] / V,N,P2=-] \$
IV. INPUT DATA BLØCKS:

INi - Contains any desired information which the module extracts and writes on the system output file, punch, or either of the two plotters. May be purged.
V. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS: Parameters may be used as desired by the author of the module. Type is integer with MPL default value of -1 as shown above.
VII. METHØD: This module has been provided for the user of NASTRAN who may wish to process his own output. The number of inputs as well as the number, type, and default values of parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).
I. NAME: PARTVEC (User Dummy Module)

1I. PURPDSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (See REMARKS below)
```

PARTVEC I01,I02,---,I20,I21 / \emptyset1,\emptyset2,\emptyset3 / V,N,P1=0 / V,N,P2=0 / --- / V,N,P22=0 \$

```
IV. INPUT DATA BLØCKS: As desired by author of module.
V. ØUTPUT DATA BLDCKS: As desired by author of module.
VI. PARAMETERS: Parameters may be used as desired by the author of the module. The parameter types are indicated by the values shown in the calling sequence shown above.
VII. REMARKS:

This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of the parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section 2 of Programmer's Manual).
I. NAME: XYPRNPLT (User Dummy Module)
II. PURPQSE: Can be used for any desired purpose.
III. DMAP CALLING SEQUENCE: (see REMARKS below)

XYPRNPLT A// \$
IV. INPUT DATA BLøCKS: As desired by the author of module.
v. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS: None
VII. REMARKS:

This module has been provided for the user of NASTRAN who may wish to include a module of his own design into the system. The number of inputs and outputs as well as the number, type, and default values of the parameters may be changed by changing the Module Properties List (MPL) in Block Data Program XMPLBD (see Section of Programmer's Manual).
5.7 EXECUTIVE OPERATION MODULES
\begin{tabular}{llr} 
Module & \multicolumn{1}{c}{ Basic Function } & Page \\
BEGIN & Always first in DMAP; begin DMAP program & \(5.7-2\) \\
CHKPNT & \begin{tabular}{l} 
Write data blocks on checkpoint tape \\
if checkpointing
\end{tabular} & \(5.7-3\) \\
COND & \begin{tabular}{l} 
Conditional forward jump \\
END
\end{tabular} & \begin{tabular}{l} 
Always last in DMAP; terminates \\
DMAP execution
\end{tabular} \\
EQUIV & \begin{tabular}{l} 
Assign another name to a data block
\end{tabular} & \(5.7-4\) \\
EXIT & Conditional DMAP termination & \(5.7-5\) \\
FILE & \begin{tabular}{l} 
Defines special data block char- \\
acteristics to DMAP compiler
\end{tabular} & \(5.7-6\) \\
JUMP & Unconditional forward jump & \(5.7-7\) \\
LABEL & Defines DMAP location & \(5.7-8\) \\
PURGE & Conditional data block elimination & \(5.7-9\) \\
REPT & Repeat a series of DMAP instructions & \(5.7-10\) \\
SAVE & Save value of output parameter & \(5.7-11\)
\end{tabular}

All modules classified as Executive Operation Modules are individually described in this section. Additional discussions concerning the interaction of the Executive Modules with themselves and with the NASTRAN Executive System are contained in Section 5.2.3.
I. NAME: BEGIN (Begin DMAP program)
II. PURPQSE: BEGIN Is a declarative DMAP instruction which denotes the beginning of a DMAP program.
III. DMAP CALLING SEQUENCE:

BEGIN \$
IV. REMARKS:
1. The BEGIN card is required when selecting APP DMAP in the Executive Control Deck and must be followed by DMAP instructions up to and including the END card.
2. BEGIN is a non-executable DMAP instruction which is used only by the DMAP compiler for information purposes.
I. NAME: CHKPNT (Checkpoint)
II. PURPQSE: Causes data blocks to be written on the New Problem Tape (NPTP) to enable the problem to be restarted with a minimum of redundant processing.
III. DMAP CALLING SEQUENCE:

CHKPNT D1,D2,...,DN \$
where \(\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{DN}(\mathrm{N} \geq 1)\) are data blocks to be copied onto the problem tape for use in restarting problem.
IV. RULES:
1. A data block to be checkpointed must have been referenced in a previous PURGE, EQUIV or functional module instruction.
2. CHKPNT cannot be the first instruction of a DMAP loop.
3. Data Blocks generated by the Input File Processor (including DMI's and DTI's) should not be checkpointed since they are always regenerated on restart.
4. Checkpointing only takes place when a New Problem Tape (NPTP) is set up and the Executive Control Card CHKPNT YES appears in the Executive Control Deck. Otherwise, the CHKPNT instructions are ignored.
5. For each data block that is successfully checkpointed, a card of the restart dictionary is punched which gives the critical data for the data block as it exists on the Problem Tape.
6. For data blocks that have been purged or equivalenced, an entry is made in the restart dictionary to this effect. In these cases data blocks are not written on the Problem Tape.
I. NAME: CØND (Conditional Transfer)
II. PURPDSE:To alter the normal order of execution of DMAP modules by conditionally transferring program control to a specified location in the DMAP program.
III. DMAP CALLING SEQUENCE:

CØND \(n, V \$\)
where:
1. \(n\) is a BCD label name specifying the location where control is to be transferred. (See the LABEL instruction.)
2. \(V\) is a \(B C D\) name of a variable parameter whose value indicates whether or not to execute the transfer. If \(V<0\) the transfer is executed.
IV. EXAMPLE:

BEGIN \$

COND LI,K \$
M@DULE1 \(A / B / V, Y, P 1 \$\)

LABEL L1 \$
MQDULEN X/Y \$

END \$
If \(K \geq 0\), \(M \not \subset D U L E 1\) is executed. If \(K<0\) control is transferred to the label Ll and MDDULEN is executed.
V. REMARKS:

Only forward transfers are allowed. See the REPT instruction for backward transfers.

\section*{executive operation modules}
I. NAME: END (End DMAP Program)
II. PURPQSE: Denotes the end of a DMAP program.
III. DMAP CALLING SEQUENCE:

END \$
IV. NøTES:
1. The END instruction also acts as an implied EXIT instruction.
2. The END card is required whenever the analyst selects APP DMAP in his Executive Control Deck.

\section*{DIRECT MATRIX ABSTRACTION}
I. NAME: EQUIV (Data Block Name Equivalence)
II. PURPØSE: To attach one or more equivalent (alias) data block names to an existing data block so that the data block can be referenced by several equivalent names.
III. DMAP CALLING SEQUENCE:

EQUIV DBN1A, DBN2A, DBN3A / PARMA / DBN1B, DBN2B / PARMB \$
Note: The number of data block names (DBNij) prior to each parameter (PARMj) and the number of such groups in a particular calling sequence are variable.
IV. INPUT DATA BLDCKS:

DBN1A, DBN2A, etc. - Any data block names appearing within the DMAP sequence. The lst data block name in each group (DBNIA and DBN1B in the examples above) is known as the primary data block and the \(2 n d\), etc. data block names become equivalent to the primary (depending on the associated parameter value). These equivalenced data blocks are known as secondary data blocks.
V. ØUTPUT DATA BLøCKS: (None specified or permitted)
VI. PARAMETERS:

PARMA, etc. - One required for each set of data block names.
VII. METHØD: The data block names in each group are made equivalent if the value of the associated parameter is \(<0\). If a number of data blocks are already equivalenced and the parameter value is \(\geq 0\), the equivalence is broken and the data block names again become unique. Also, this unequivalence operation causes the status of all the secondary data blocks to be not generated. If the data blocks are not equivalenced and the parameter value is \(\geq 0\), no action is taken.
VIII. RULES:
1. The primary data block must be output from a previous functional module.
2. The primary data block must be referenced in the immediately preceding functional module and/or in a subsequent functional module.
I. NAME: EXIT (Terminate DMAP program)
II. PURPQSE: To conditionally terminate the execution of the DMAP program.
III. DMAP CALLING SEQUENCE:

EXIT c \$
where \(c\) is an integer constant which specifies the number of times the instruction is to be ignored before terminating the program. If \(c=0\) the calling sequence may be shortened to EXIT \$.
IV. EXAMPLE:

BEGIN \$

DMAP \(\left\{\begin{array}{l}\text { LABEL L1 } \$ \\ \text { MDDULET A/B/V,Y,P] } \$ \\ \cdot \\ \cdot \\ \cdot \\ \text { EXIT } 3 \$ \\ \text { REPT LI, } 3 \$\end{array}\right.\)

END \$
V. REMARKS:
1. The EXIT instruction will be executed the third time the loop is repeated (i.e., the instructions within the loop will be executed four times).
2. EXIT may appear anywhere within the DMAP sequence.

\section*{DIRECT MATRIX ABSTRACTION}
I. NAME: FILE (File Allocation Aide)
II. PURPDSE: To inform the File Allocator (see Section 4.9 of the Programmer's Manual) of any special characteristics of a data block.
III. DMAP CALLING SEQUENCE:

FILE \(A=a 1, a 2 \ldots a \alpha / B=b 1, b 2 \ldots b \beta / \ldots . / \quad z=z 1, z 2 \ldots z \omega \$\)
where:
\(A, B \ldots Z\) are the names of the data blocks possessing special characteristics.
al...aa,bl...bß....zl...zw are the special characteristics from the list below.

The allowable special characteristics are:
1. SAVE - Indicates data block is to be saved for possible looping in DMAP program.
2. APPEND - Output data blocks which are generated within a DMAP loop are rewritten during each pass through the loop, unless the data block is declared APPEND in a FILE statement. The APPEND declaration allows a module to add information to a data block on successive passes through a DMAP loop.
3. TAPE - Indicates that data block is to be written on a physical tape if a physical tape is available.

\section*{Notes:}
1. Data blocks created by the NASTRAN preface may not appear in FILE declarations.
2. Symbolic DMAP sequences which explain the use of the FILE instruction are given in Section 5.2.3.1.
3. FILE is a non-executable DMAP instruction which is used only by the DMAP compiler for information purposes.
4. A data block name may appear only once in all FILE statements; otherwise the first appearance will determine all special characteristics applied to the data block.

\section*{EXECUTIVE OPERATION :MODULE}
I. NAME: JUMP (Unconditional Transfer)
II. PURPQSE: To alter the normal order of execution of DMAP modules by unconditionally transferring program control to a specified location in the DMAP program. The normal order of execution of DMAP modules is the order of occurrence of the modules as DMAP instructions in the DMAP program.
III. DMAP CALLING SEQUENCE:

JUMP \(\mathrm{n} \$\)
where \(n\) is a \(B C D\) name appearing on a LABEL instruction which specifies where control is to be transferred.
IV. Remarks:

Jumps must be forward in the DMAP sequence. See the REPT instruction for backward jumps.

\section*{DIRECT MATRIX ABSTRACTION}
I. NAME: LABEL (DMAP Location)
II. PURP@SE: To label a location in the DMAP program so that the location may be referenced by the DMAP instructions JUMP, CQND and REPT.
III. DMAP CALLING SEQUENCE:

LABEL \(n\) \$
where \(n\) is a \(B C D\) name.
IV. Remarks:
1. The LABEL instruction is inserted just ahead of the DMAP instruction to be executed when transfer of control is made to the label.
2. LABEL is a non-executable DMAP instruction which is used only by the DMAP compiler for information purposes.

\section*{EXECUTIVE OPERATION MODULE}
I. NAME: PURGE (Explicit Data Block Purge)
II. PURPØSE: To flag a data block so that it will not be assigned to a physical file.
III. DMAP CALLING SEQUENCE:

PURGE DBNIA,DBN2A,DBN3A / PARMA / DBN1B,DBN2B / PARMB \$

Note: The number of data block names ( \(\mathrm{DBN}_{\mathrm{ij}}\) ) prior to each parameter ( \(\mathrm{PARM}_{j}\) ) and the number of groups of data block names and parameters in a particular calling sequence is variable.

IV: INPUT DATA BLDCKS:
DBNIA, DBN2A, etc. - Any data block names appearing within the DMAP sequence.
V. ØUTPUT DATA BLøCKS: (None specified or permitted)
VI. PARAMETERS:

PARMA, etc. - One required for each group of data block names.
VII. METHQD: The data blocks in a group are purged if the value of the associated parameter is < 0 . If a data block is already purged and the parameter value is \(\geq 0\), the purged data block is unpurged so that it may be subsequently reallocated. If the data block is not purged and the parameter value is \(\geq 0\), no action is taken.
I. NAME: REPT (Repeat)
II. PURPØSE: To repeat a group of DMAP instructions a specified number of times.
III. DMAP CALLING SEQUENCE:

REPT \(n, c\) \$
where:
1. \(n\) is a \(B C D\) name which specifies the name of a label which marks the beginning of the group of DMAP instructions to be repeated. (See LABEL instruction).
2. \(c\) is an integer constant which specifies the number of times to repeat the instructions.
IV. EXAMPLE:

BEGIN \$
.
.

LABEL LI \$
M@DULE1 \(A / B / V, Y, P 1 \$\)

M \(\quad\) DULEN \(B / C / V, Y, P N \$\)
REPT L1,3 \$

END \$
V. REMARKS:
1. The instructions MQDULE1 to MODULEN will be repeated three times (i.e., executed four times) in the above example.
2. REPT is placed at the end of the group of instructions to be repeated.
3. The constant, \(c\), may not be a parameter name.

\section*{EXECUTIVE OPERATION MODULE}
I. NAME: SAVE (Save Variable Parameter Values)
II. PURPQSE: To specify which variable parameter values are to be saved from the preceding functional module DMAP instruction for use by subsequent modules.
III. DMAP CALLING SEQUENCE:

SAVE V1,V2,...,VN \$
where the \(V 1, V 2, \ldots, V N(N>0)\) are the \(B C D\) names of some or all of the variable parameters which appear in the immediately preceding Functional Module DMAP instruction.
IV. REMARKS:

A SAVE instruction must immediately follow the functional module instruction wherein the parameters being saved are generated.

\subsection*{5.8 EXAMPLES}

In order to facilitate the use of DMAP, several examples are provided in this section. The user is urged to study these examples both from the viewpoint of performing a sequence of matrix operations and that of a DMAP flow.

\subsection*{5.8.1 DMAP Example}

\section*{Objective}
1. Print the contents of table data block \(A\).
2. Print matrix data blocks \(B, C\), and \(D\).
3. Print values of parameters P1 and P2.
4. Set parameter P3 equal to -7 .
\begin{tabular}{ll} 
BEGIN & \(\$\) \\
TABPT & \(A,,,, / / \$\) \\
MATPRN & \(B, C, D,, / / \$\) \\
PRTPARM & \(/ / C, N, 0 / C, N, P 1 \$\) \\
PRTPARM & \(/ / C, N, 0 / C, N, P 2 \$\) \\
PARAM & \(/ / C, N, N \emptyset P / V, N, P 3=-7 \$\) \\
END & \(\$\)
\end{tabular}

\section*{Remarks:}

To be a practical example, a restart situation is assumed. The user is cautioned to remember to reenter at DMAP instruction 2 by changing the last reentry point in the restart dictionary.

\subsection*{5.8.2 DMAP Example}

Let the constrained stiffness matrix \(\left[K_{\ell \ell}\right]\) and the load vector \(\left\{P_{\ell}\right\}\) be defined by means of DMI bulk data cards. The following DMAP sequence will perform the series of matrix operations
\[
\begin{aligned}
&\left\{u_{1}\right\}=\left[K_{\ell \ell}\right]^{-1}\left\{P_{\ell}\right\} \\
&\{r\}=\left[K_{\ell \ell}\right]\left\{u_{1}\right\}-\left\{P_{\ell}\right\} \\
&\{\delta u\}=\left[K_{\ell \ell}\right]^{-1}\{r\} \\
&\left\{u_{2}\right\}=\left\{u_{1}\right\}+\{\delta u\} \\
& \text { Print }\left\{u_{2}\right\}
\end{aligned}
\]
```

BEGIN \$
S\emptysetLVE KLL,PL / Ul / C,N,l / C,N,1 / C,N,l / C,N,1 \$
MPYAD KLL,U1,PL / R / C,N,0 / C,N,1 / C,N,-1 \$
S\emptysetLVE KLL,R / DU / C,N,1 \$
ADD U1,DU / U2 \$
MATPRN U2,,,, // \$
END \$

```

\section*{Remarks:}
1. \(\left[K_{\ell \ell}\right]\) is assumed symmetric.
2. In the example above, KLL will be decomposed twice. A more efficient DMAP sequence, which requires only a single decomposition for this problem, is given below.

BEGIN \$
DECØMP KLL / LLL,ULL \$
FBS LLL,ULL,PL / UT / C,N, \(1 / C, N, 1 / C, N, 1 / C, N, 1 \$\)
MPYAD KLL,UI,PL/R/C,N,0/C,N,1/C,N,-1\$
FBS LLL,ULL,R / DU \$
ADD UT,DU / U2 \$
MATPRN U2,,,, // \$
END \$

\subsection*{5.8.3 DMAP Example to Use the Structure Plotter to Gënerate Undeformed Plots of the Structural} Model
```

BEGIN \$
GP1 GE\emptysetM1,GE\emptysetM2, / GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL / V,N,LUSET / V,N,N@CSTM / V,N,N\emptysetGPDT \$
SAVE LUSET \$
GP2 GEOM2,EQEXIN / ECT \$
PLTSET PCDB,EQEXIN,ECT / PLTSETX,PLTPAR,GPSETS,ELSETS / V,N,NSIL / V,N,NPSET \$
SAVE NPSET,NSIL \$
PRTMSG PLTSETX // \$
PARAM // C,N,N\emptysetP / V,N,PLTFLG=1 \$
PARAM // C,N,N\emptysetP / V,N,PFILE=O \$
CDND PI,NPSET \$
PL\emptysetT PLTPAR,GPSETS,ELSETS,CASECC,BGPDT,EQEXIN,SIL,, / PL\emptysetTXI / V,N,NSIL / V,N,LUSET /
V,N,NPSET / V,N,PLTFLG / V,N,PFILE \$
SAVE NPSET,PLTFLG,PFILE \$
PRTMSG PL\emptysetTXI // \$
LABEL P1 \$
PRTPARM // C,N,O \$
END \$

```

\section*{Remarks:}
1. GEØM1, GEØM2, PCDB and CASECC are generated by the Input File Processor.
2. PRTPARM is used to print all current variable parameter values.
3. This DMAP sequence contains several structurally oriented modules. This sequence of DMAP instructions is essentially identical with the section of each rigid format associated with the operation of the Structure Plot Request Packet of the Case Control Deck (contained in data block PCDB).

\section*{DIRECT MATRIX ABSTRACTION}
```

5.8.4 Example of DMAP to Print Eigenvectors Associated with any of the Modal Formulation Rigid
Formats
BEGIN \$
\emptysetFP LAMA,\emptysetEIGS,,., // \$
SDRI USET,,PHIA,,,GD,GM,,KFS,, / PHIG,,QG / C,N,1 / C,N,REIG \$
SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,,,BGPDT,LAMA,QG,PHIG,EST, / , \emptysetQGI,\emptysetPHIG,\emptysetESI,\emptysetEF1,/
C,N,REIG \$
\emptysetFP \emptysetPHIG,\emptysetQGI,\emptysetEFT,\emptysetEST,, // \$
END \$

```

Remarks:
1. A restart from a successfully executed modal formulation is assumed.
2. This DMAP sequence contains several structurally oriented modules.

\section*{EXAMPLES}

\subsection*{5.8.5 Example of DMAP Using a User-written Module}

As an example of how a user might perform matrix operations of his own design, the following DMAP is provided. Functional modules M \(M D A, M \emptyset D B\), and \(M \varnothing D C\) are assumed to be written by the user and added to the NASTRAN system, replacing dummy modules with the same names. A brief explanation of a problem for which this DMAP is applicable is given.
\begin{tabular}{|c|c|c|}
\hline 1 & BEGIN & \$ \\
\hline 2 & PARAM & // C,N,N@P / V,N,TRUE=-1 \$ \\
\hline 3 & PARAM & // C,N,NดP / V,N,FALSE \(=+1\) \$ \\
\hline 4 & MQDA & \[
\begin{aligned}
& / X, Y, D B, A / V, N, B E T A=0.0 / V, N, S I G M A=1.0 / V, N, F W=0.0 / V, N, S W=0.0 / \\
& V, N, E T A I N F=5.0 / V, N, M=100 / C, N, 0 / C, N, 0 / C, N, 0 / V, N, I C \emptyset N V=0 / \\
& V, N, Z C \emptyset N V=1.0 E-4 / V, N, I T M A X=10 / C, N, 0 \$
\end{aligned}
\] \\
\hline 5 & SAVE & BETA,SIGMA; FW, SW, ETAINF, M, ICØNV, ZCØNV, ITMAX \$ \\
\hline 6 & LABEL & TøP \$ \\
\hline 7 & FILE & A=SAVE / DB=SAVE \$ \\
\hline 8 & SQLVE & A, DB / DY/C,N,0/C,N,1/C,N,1/C,N,1\$000 \\
\hline 9 & EQUIV & \(X, X X\) / FALSE / Y,YY / FALSE \$ \\
\hline 10 & M \(\quad\) DB & \(X, Y, D Y / X X, Y Y, D B B, A A / V, N, B E T A / V, N, S I G M A / V, N, F W / V, N, S W / V, N, M /\) C,N,0 / V,N,ICØNV / V,N,ZCめNV / C,N,0 / V,N,DØNE=1 / V,N,DIVERGED=1 \$ \\
\hline 11 & SAVE & DQNE, DIVERGED \$ \\
\hline 12 & COND & QUIT, DIVERGED \$ \\
\hline 13 & CQND & OUT, DONE \$ \\
\hline 14 & EQUIV & XX, \(\times\) / TRUE / YY,Y / TRUE / DBB, DB / TRUE / AA, \(/\) / TRUE \$ \\
\hline 15 & COND & QUIT,ITMAX \$ \\
\hline 16 & REPT & TOP, 1000 \$ \\
\hline 17 & PRTPARM & // C,N,-1/C,N,DMAP \$ \\
\hline 18 & EXIT & \$ \\
\hline 19 & LABEL & OUT \$ \\
\hline 20 & M \(\quad\) DC & X,Y // \$ \\
\hline 21 & EXIT & \$ \\
\hline 22 & LABEL & QUIT \$ \\
\hline 23 & PRTPARM & // C,N,-2 / C,N,DMAP \$ \\
\hline 24 & EXIT & \$ \\
\hline 25 & END & \$ \\
\hline
\end{tabular}

The above DMAP sequence is designed to solve an iteration problem where \(\{x\}\) is the set of independent variable values on which the discretized solution \(\{y(x)\}\) is defined. Let the discrete values of \(\{y(x)\}\) measured at \(\{x\}\) be called \(\{y\}\). An iteration sequence
\[
\{y\}^{\mathbf{i}+1}=\{y\}^{\mathbf{i}}+\left[A\left(\{y\}^{\mathbf{i}},\{x\}\right)\right]^{-1}\left\{\delta \mathbf{b}\left(\{y\}^{\mathbf{i}},\{x\}\right)\right\}
\]
is to be performed where [A] and \(\{\delta b\}\) are computable functions of \(\{y\}\) and \(\{x\}\). A convergencedivergence criterion is assumed known. It is also assumed that the independent variable distribution \(\{x\}\) may be modified as the solution proceeds. A brief description of the significant DMAP instructions is given below:

4 Initialization of all parameters and output data blocks. This module is assumed to be written by the user.

7 Prevents file allocator from dropping \(A\) and DB.
8 Compute \(\{\delta y\}=[A]^{-1}\{\delta b\}\)
9 Break equivalences.
10 Iterate to obtain new \(\{x\},\{y\},\{\delta b\},[A] ;\) test convergence and set parameters DQNE and DIVERGED. This module is assumed to be written by the user.
14 The new \(\{x\},\{y\},\{\delta b\},[A]\) are established as current by replacing the old values.
20 Prints out the converged solutions \(\{x\}\) and \(\{y\}\). This module is assumed to be written by the user.

\section*{EXAMPLES}

\subsection*{5.8.6 DMAP ALTER Package for Using a User-Written Auxiliary Input File Processor}
\begin{tabular}{|c|c|}
\hline ALTER & 1 \\
\hline INPUT & GE@M1, ,, / Gl, , G4, / C,N,3 \$ \\
\hline PARAM & // C,N,NめP / V,N,TRUE=-1 \$ \\
\hline EQUIV & G1,GEgM1 / TRUE / G4,GEgM4 / TRUE \$ \\
\hline COND & LBLXXX, TRUE \$ \\
\hline TABPT & G1,G4,,, // \$ \\
\hline LABEL & LBLXXX \$ \\
\hline ENDALT & \\
\hline
\end{tabular}

\section*{Remarks:}
1. This is an ALTER package that could be used by any Rigid Format.
2. The last three instructions are needed to avoid violating the Equivalence rule that a primary data block name must be referenced in a subsequent functional module. A way to avoid using these three instructions is to move the PARAM ahead of INPUT, in which case the EQUIV immediately follows the module in which the primary data blocks are output. In this case the ALTER package becomes
\begin{tabular}{|c|c|}
\hline ALTER & 1 \\
\hline PARAM & // C,N,NøP / V,N,TRUE=-1 \$ \\
\hline INPUT & GE@M1, ,,, / Gl, , G4, / C,N,3\$ \\
\hline EQUIV & G1,GEØM1 / TRUE / G4,GEØM4 / TRUE \$ \\
\hline ENDAL & \\
\hline
\end{tabular}
3. It is assumed that a user-written module INPUT exists which reads data block GEØM1 (created by the Input File Processor of the NASTRAN Preface) and creates data blocks G1 and G4. It is then desired to use G1 and G4 in place of GEØM1 and GEØM4, the data blocks normally created by the NASTRAN Preface.
4. ALTER is described in Section 2.2.

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.8.7 DMAP to Perform Real Eigenvalue Analysis Using Direct Input Matrices}
Notes:
1. The echo of a test problem bulk data deck for the preceding DMAP sequence follows.

2. Data blocks DYNAMICS and CASECC are generated by the NASTRAN Preface (Input File Processor) and contain the eigenvalue extraction data from the EIGR card and the eigenvalue method selection data extracted from the METHDD card in the Case Control Deck.
3. Data blocks KTEST and MTEST are generated by the NASTRAN Preface (Input File Processor) from the DMI bulk data cards.
4. Data block MI is the modal mass matrix, which is not used in this DMAP subsequent to READ, but which must appear as an output in READ. Parameter NE is an output parameter whose value is the number of eigenvalues extracted. If none are found NE will be set to -1.

Alternate DMAP to perform real eigenvalue analysis using Direct Input Matrices where the degrees of freedom are associated with grid points.
```

BEGIN \$
GP1 GE@M1,GE\emptysetM2, / GPL,EQEXIN,GPDT,CSTM,BGPDT,SIL / V,N,LUSET / C,N,O / C,N,0 \$
SAVE LUSET \$
GP4 CASECC,,EQEXIN,SIL,GPDT,BGPDT,CSTM / ,,USET, / V,N,LUSET / C,N,O / C,N,O /
C,N,O / C,N,O / C,N,O / C,N,O / C,N,O/C,N,O / C,N,O / C,N,O \$
DPD DYNAMICS,GPL,SIL,USET / GPLD,SILD,USETD,,,,,,,,EED,EQDYN / V,N,LUSET / C,N,0 /
C,N,O / C,N,O / C,N,0 / C,N,0 / C,N,0 / C,N,0 / V,N,N\varnothingEED / C,N,O / C,N,O \$
SAVE NQEED \$
C\emptysetND El,NØEED \$
READ KTEST,MTEST,,,EED,,CASECC / LAMA,PHIA,MI,\emptysetEIGS / C,N,M\emptysetDES / V,N,NEIGV \$
SAVE NEIGV \$
\emptysetFP LAMA,\emptysetEIGS,,,, // \$
COND FINIS,NEIGV \$
SDR1 USET,,PHIA,,,,,,,, / PHIG,,/ C,N,1 / C,N,REIG \$
SDR2 CASECC,,,,EQEXIN,SIL,,,BGPDT,LAMA,,PHIG,,, / ,,\PHIG,,,/ C,N,REIG \$
\emptysetFP \emptysetPHIG,,,,, // \$
JUMP FINIS \$
LABEL EI \$
PRTPARM // C,N,-2 / C,N,M\emptysetDES \$
LABEL FINIS \$
END \$

```

\section*{Notes:}
1. The echo of a test problem bulk data deck for the preceding DMAP sequence follows.
\(\left.\begin{array}{lllllllllllllllllll} & 1 & 2 & \ldots & 3 & \ldots & 4 & \ldots & 5 & \ldots & 6 & \ldots & 7 & \ldots & 8 & \ldots & 9 & \ldots & 10\end{array}\right]\)
2. Data block EED is generated by DPD, which copies the EIGR or EIGB cards from data block DYNAMICS. The actual card used is selected in case control by METH \(\emptyset D=\) SID.
3. Each degree-of-freedom defined by the DMI matrices must be associated with some grid or scalar point in this version. In the example above, this is done by defining four scalar points.
4. The EIGR card selected in the Case Control Deck will be used as explained in Note 2.
5. The use of module MTRXIN and DMIG bulk data cards will allow the user to input matrices via grid point identification numbers.

\subsection*{5.8.8 DMAP Example to Print and Plot a Topological Picture of Two Matrices}
1. BEGIN \$
2. SEEMAT KGG,KLL,,, // \$
3. SEEMAT KGG,KLL,,, // C,N,PLØT / V,N,P=0/C,N/C,N,SC/C,N,4020/C,N,X/C,N,0\$
4. SAVE P \$
5. PRTPARM // C,N,O/C,N,P \$
6. PARAM // C,N,MPY / V,N,P / C,N,O/C,N,1 \$
7. SEEMAT KGG,KLL,,, // C,N,PLDT / V,N,P / C,N / C,N,EAI / C,N,3500 / C,N,X / C,N,30 \$
8. SAVE P \$
9. PRTPARM // C,N,0/C,N,P \$
10. END \$

\section*{Notes:}
1. Instruction number 2 causes the picture to be generated on the printer.
2. Instruction number 3 causes the picture to be generated on the SC 4020 plotter.
3. The parameter \(P\) is initialized to zero by instruction number 3. The form \(V, N, P\) would also have accomplished the same thing since the MPL default value is zero.
4. Instruction number 5 prints the current value of parameter \(P\). Since \(P\) was initially set to zero and instruction number 3 is the first instruction executed which has \(P\) as an input, then \(P\) will have a zero value on input to instruction number 3. \(P\) is incremented by one (1) for every frame generated on the SC 4020 plotter. Since the value of the output parameter \(P\) was saved in the immediately following SAVE instruction, the value printed by instruction number 5 will be the number of frames generated by the execution of instruction number 3.
5. Instruction number 6 causes the value of \(P\) to be set to zero ( 0 ), the product of zero (0) and one (1). Since PARAM is the only module which does its own SAVE, no succeeding SAVE instruction is necessary. This illustrates a commonly used technique for setting parameter values in DMAP programs.
6. Instructions 7, 8 and 9 essentially repeat instructions 3, 4 and 5 using the EAI 3500 table plotter in place of the SC 4020 plotter.
7. The END instruction, which is required, also acts as an EXIT instruction.
8. NASTRAN tapes PLT1 and PLT2 must both be set up in order to execute this DMAP successfully.
9. Matrix data blocks KGG and KLL are assumed to exist on the PQDL file. This will be the case if either DMI input is used or if a.restart is being made from a run in which KGG and KLL were generated and checkpointed.

\subsection*{5.3.9 DMAP Example to Compute the \(r\)-th Power of a Matrix [Q]}
\begin{tabular}{|c|c|}
\hline BEGIN & \$ \\
\hline MATPRN & Q,, , / // \$ \\
\hline PARAM & // C,N,N@P / V,N,TRUE=-1 \$ \\
\hline PARAM & // C,N,SUB / V,N,RR / V, \(\mathrm{V}, \mathrm{R}=-1 / \mathrm{C}, \mathrm{N}, 2 \$\) \\
\hline PARAM & // C,N,NФP / V,N,FALSE=+1 \$ \\
\hline COND & ERR@R1,RR \$ \\
\hline ADD & Q, / QQ \$ \\
\hline LABEL & DOIT \$ \\
\hline EQUIV & QQ,P / FALSE \$ \\
\hline MPYAD & \(Q, Q Q, / P / C, N, O \$\) \\
\hline EQUIV & P, QQ / TRUE \$ \\
\hline PARAM & // C,N,SUB / V,N,RR / V,N,RR / C, N, 1 \$ \\
\hline COND & STDP, RR \$ \\
\hline REPT & DDIT,1000000 \$ \\
\hline JUMP & ERRØR2 \$ \\
\hline LABEL & STPP \$ \\
\hline MATPRN & P,,, , // \$ \\
\hline EXIT & \$ \\
\hline LABEL & ERRDR1 \$ \\
\hline PRTPARM & // C,N,-1/C,N,DMAP \$ \\
\hline EXIT & \$ \\
\hline LABEL & ERRDP2 \$ \\
\hline PRTPARM & //C,N,-2 / C,N,DMAP \$ \\
\hline EXIT & \$ \\
\hline END & \$ \\
\hline
\end{tabular}

Notes:
1. The matrix [Q] is assumed input via DMI bulk data cards.
2. The parameter \(R\) is assumed input on a PARAM bulk data card.
3. A logical flow diagram for this DMAP is shown in the following sketch.

DI RECT MATRIX ABSTRACTION

5.8-12 (3/1/76)

\subsection*{5.8.10 Usage of UPARTN, VEC, and PARTN}

In Rigid Format No. 7 (Series \(N\) ), the functional modules SMP1 and SMP2 perform the following matrix operations:
\[
\begin{aligned}
& {\left[k_{f f}\right] \Rightarrow\left[\begin{array}{l|l}
\bar{k}_{\mathrm{aa}} & k_{\mathrm{ao}} \\
\hdashline \mathrm{~K}_{\mathrm{oa}} & \mathrm{k}_{\mathrm{oo}}
\end{array}\right]} \\
& {\left[G_{0}\right]=-\left[k_{00}\right]^{-1}\left[k_{0 a}\right]} \\
& {\left[k_{a \mathrm{a}}\right]=\left[\bar{k}_{a \mathrm{a}}\right]+\left[\mathrm{K}_{\mathrm{oa}}\right]^{\top}\left[\mathrm{G}_{\mathrm{o}}\right]} \\
& {\left[M_{f f}\right] \Rightarrow\left[\begin{array}{c:c}
\bar{M}_{\mathrm{ad}} & M_{\mathrm{ao}} \\
\bar{M}_{\mathrm{oa}} & M_{00}
\end{array}\right]} \\
& {[A]=\left[M_{00}\right]\left[G_{0}\right]+\left[M_{o a}\right]} \\
& {[B]=\left[M_{o a}\right]^{\top}\left[G_{o}\right]+\left[\bar{M}_{a \mathrm{a}}\right]} \\
& {\left[M_{\mathrm{ad}}\right]=\left[G_{0}\right]^{i \quad}[A]+[B]} \\
& {\left[\mathrm{K}_{f f}^{4}\right] \Rightarrow\left[\begin{array}{c:c} 
& \\
\bar{K}_{\mathrm{aa}}^{4} & \mathrm{~K}_{\mathrm{ao}}^{4} \\
\hdashline \mathrm{~K}_{\mathrm{oa}}^{4} & \mathrm{~K}_{00}^{4}
\end{array}\right]} \\
& {[A]=\left[K_{00}^{4}\right]\left[G_{0}\right]+\left[k_{0 a}^{4}\right]} \\
& {[B]=\left[K_{0 a}^{4}\right]^{\top}\left[G_{0}\right]+\left[\bar{k}_{a \mathrm{a}}^{4}\right]} \\
& {\left[K_{\text {an }}^{4}\right]=\left[G_{0}\right]^{\top}[A]+[B]} \\
& { }_{\left[B_{f f}\right]} \Rightarrow\left[\begin{array}{c|c} 
& \\
\bar{B}_{\mathrm{aa}} & \mathrm{~B}_{\mathrm{ao}} \\
-{ }_{\mathrm{B}_{\mathrm{oa}}} & \mathrm{~B}_{\mathrm{oo}}
\end{array}\right]
\end{aligned}
\]
\[
\begin{aligned}
& {[A]=\left[B_{o o}\right]\left[G_{0}\right]+\left[B_{o a}\right]} \\
& {[B]=\left[B_{o a}\right]^{\top}\left[G_{0}\right]+\left[\bar{B}_{a a}\right]} \\
& {\left[B_{a a}\right]=\left[G_{0}\right]^{\top}[A]+[B]}
\end{aligned}
\]

This is far too many time-consuming matrix operations to perform within single modules when the a-set and o-set are large. (Remember, checkpoint only occurs after the module has done all its work.) One way to break the Rigid Format Series N SMPI into parts is to use an ALTER packet similar to the ALTER Packet which follows for Rigid Format No. 7 (Series N).
```

ALTER 97, 98 \$ RIGID F\emptysetRMAT SERIES N
SMP1 USET,KFF,,,/G\emptyset,KAA,K\emptyset\emptysetB,L\varrho\emptyset,U\emptyset\emptyset,,,,, \$
CHKPNT KAA,G\emptyset \$
SMP2 USET,G\emptyset,MFF/MAA \$
CHKPNT MAA \$
SMP2 USET,G\emptyset,BFF/BAA \$
CHKPNT BAA \$
SMP2 USET,GO,K4FF/K4AA \$
CHKPNT K4AA \$
ENDALTER

```

Unfortunately, most of the time is now spent in SMP2. In order to subdivide the matrix operations further, the partitions of the matrices \(\left[\mathrm{K}_{\mathrm{ff}}\right.\) ] etc. must be obtained. There are two new modules introduced in Level 15 which can be used to do this. The first is UPARTN which forms the symmetric partitions of a symmetric matrix.

\section*{EXAMPLES}

SMP 1 and SMP2 using UPARTN for Rigid Format No. 7 (Series N)
ALTER \(96,106 \$\) ALTER T \(\emptyset\) SERIES \(N\)
\$

UPARTN USET,KFF / KøØ, ,KØA,KAAB / C,N,F / C,N, \(\varnothing\) / C,N,A \$
CHKPNT KØD,KФA,KAAB \$
SØLVE KDด,KØA / GØ / C,N,1 / C,N,-I \$
CHKPNT GØ \$
MPYAD K \(\emptyset A, G \emptyset, K A A B / K A A / C, N, 1 \$\)
CHKPNT KAA \$
\$

CHKPNT MØØ,MØA,MAAB \$
MPYAD MøØ,GØ,MØA / MAATEMP1 / C,N,0 \$
CHKPNT MAATEMPI \$
MPYAD M@A,GØ,MAAB / MAATEMP2 / C,N,1 \$
CHKPNT MAATEMP2 \$
MPYAD GØ,MAATEMP1,MAATEMP2 / MAA / C,N,1 \$
CHKPNT MAA \(\$\)
\$
UPARTN USET,K4FF / K4
CHKPNT K4ØØ,K4甲A,K4AAB \$
MPYAD K4ØП,GØ,K4ØA / K4AATMPT / C,N,0 \$
CHKPNT K4AATMPI \$
MPYAD K4ఏA,GØ,K4AAB / K4AATMP2 / C,N,1 \$
CHKPNT K4AATMP2 \$
MPYAD G \(\emptyset, K 4 A A T M P 1, K 4 A A T M P 2 / K 4 A A / C, N, 1 \$\)
CHKPNT K4AA \$
\$
UPARTN USET,BFF / B \(\emptyset \emptyset, \quad B \cap A, B A A B / C, N, F / C, N, \emptyset / C, N, A \$\)
CHKPNT \(B \emptyset \emptyset, B \emptyset A, B A A B \$\)
MPYAD \(\mathrm{B} \emptyset \emptyset, \mathrm{G} \emptyset, \mathrm{B} \emptyset A / \mathrm{BAATEMP1} / \mathrm{C}, \mathrm{N}, 0 \$\)
CHKPNT BAATEMPI \$
```

MPYAD B\emptysetA,G\emptyset,BAAB / BAATEMP2 / C,N;1 \$
CHKPNT BAATEMP2 \$
MPYAD G\emptyset,BAATEMP1,BAATEMP2 / BAA / C,N,1 \$
CHKPNT BAA \$
\$
ENDALTER

```

In order to subdivide the matrix operations further, the partitioning information contained in USET must be made available to PARTN and MERGE so that the various matrix partitions can be formed external to SMP2 and manipulated with matrix operation modules such as MPYAD. The utility module VEC was introduced in Level 15 to accomplish this task. The ALTER Packet on the following page shows the replacement of Structural Matrix Partitioning in Rigid Format No. 7 (Series \(N\) ) using this utility module.

SAP1 and SMP2 using VEC and PARTN for Rigid Format No. 7 (Series N)
\[
\text { ALTER } \quad 96,106 \$
\]
\$
VEC USET / V/C,N,F/C,N, \(/ \mathrm{C}, \mathrm{N}, \mathrm{A} \$\)
CHKPNT V \(\$\)
\$
PARTN KFF,V, / KøØ, ,KDA,KAAB \$
CHKPNT KøØ,KØA,KAAB \$
DECØMP KDD / LDD,UДD / C,N,1 / C,N,0 / V,N,MIND / V,N,DET / V,N,NDET / V,N,SING \$
SAVE MIND,DET,NDET,SING \$
CØND LSING,SING \$
CHKPNT LøØ,UøØ \$
FBS \(\quad L \emptyset \emptyset, U \emptyset \emptyset, K \emptyset A / G \emptyset / C, N, 1 / C, N,-1 \$\)
CHKPNT GØ \$
MPYAD KøA,GØ,KAAB / KAA / C,N,1 \$
CHKPNT KAA \$
\$
PARTN MFF,V, / M甲Ф, ,MФA,MAAB \$
CHKPNT MФØ,MØА, МААВ \$
MPYAD M \(\quad\) D, \(G \emptyset, M \emptyset A / M A A T E M P 1 / C, N, 0 \$\)
CHKPNT MAATEMP1 \$
MPYAD M \(\triangle A, G \emptyset, M A B B / M A A T E M P 2 / C, N, 1 \$\)
CHKPNT MAATEMP2 \$
MPYAD GØ,MAATEMP1,MAATEMP2 / MAA / C,N,l \$
CHKPNT MAA \$
\$
PARTN K4FF,V,/K4ØØ, ,K4@A,K4AAB \$
CHKPNT K4øØ,K4ØA,K4AAB \$
MPYAD K4 \(\quad\), GØ, K4@A / K4AATMP1 / C,N, \(0 \$\)
CHKPNT K4AATMPI \$
MPYAD K4@A,GØ,K4AAB / K4AATMP2 / C,N,1 \$
CHKPNT K4AATMP2 \$

\section*{DIRECT MATRIX ABSTRACTION}
```

MPYAD G\emptyset,K4AATMPT,K4AATMP2 / K4AA / C,N,l \$
\$
PARTN BFF,V, / B\emptyset\emptyset, ,B\emptysetA,BAAB \$
CHKPNT B\emptyset\emptyset,B\emptysetA,BAAB \$
MPYAD B B\emptyset,G\emptyset,B\emptysetA / BAATEMP1 / C,N,0 \$
CHKPNT BAATEMP1 \$
MPYAD B\emptysetA,G\emptyset,BAAB / BAATEMP2 / C,N,1 \$
CHKPNT BAATEMP2 \$
MPYAD G\emptyset,BAATEMP1,BAATEMP2 / BAA / C,N,1 \$
CHKPNT BAA \$
\$
ALTER 180 \$ ADD ERR\emptysetR TRAP FOR SINGULAR K\emptyset\emptyset MATRIX IN R.F. 7 (SERIESN)
\$
LABEL LSING \$
PRTPARM // C,N,O / C,N,SING \$
PRTPARM // C,N,-1 / C,N,DMAP \$
EXIT \$
\$
ENDALTER

```

\section*{EXAMPLES}

\subsection*{5.8.11 DMAP Example}

Let \(A, B\) and \(C\) be matrices whose values are to be defined at execution time. Let \(B\) be.a real constant whose value is to be defined at execution time. Let \(\alpha\) be an integer constant whose value (defined at execution time) determines the operations to be performed to compute matrix \(X\) as follows:
\[
[X]= \begin{cases}{[A][B]+[C]} & , \alpha<0 \\ {[B[A]+[B]]^{\top}} & , \alpha=0 \\ {[A]^{2}[C]^{-1}} & , \alpha>0\end{cases}
\]

Write a DMAP to accomplish the above, assuming A, B and C will be defined by DMI bulk data cards and that \(\alpha\) and \(\beta\) will be defined on PARAM bulk data cards. Print the inputs and outputs using the DMAP Utility Functional Modules MATPRN and PRTPARM. Use the DMAP Utility Module SEEMAT to print a topology display of \([A]\) and \([X]\).

A solution to this problem is given on the following page along with data for an actual example.

ID A,B
TIME 5
APP DMAP
BEGIN \$
JUMP START \$
PARAM // C,N,NDP / V,N,TRUE=-1 \$ SET TRUE T \(\emptyset\) - 1 (=.TRUE.)
LABEL START \$
MATPRN A,B,C, // \$
CDND QNE, ALPHA \$
PARAM // C,N,NDT / V,N,CHODSE / V,Y,ALPHA \$
COND THREE,CH@@SE \$
JUMP TWD \$
\$
LABEL QNE \$ ALPHA .LT. 0
MPYAD A,B,C / X / C,N,O \$
JUMP FINIS \$
\$
LABEL TWØ \$ ALPHA.EQ. 0
ADD A,B / Y/C,Y,BETA=(0.0,0.0) \$
TRNSP Y / X2 \$
EQUIV X2,x / TRUE \$
JUMP FINIS \$
\$
LABEL THREE \$ ALPHA .GT. 0
SOLVE C, / Z \$
MPYAD A,Z, / W/C,N,O \$
MPYAD A,W, / X3 / C,N,0 \$
EQUIV X3,X / TRUE \$
\$
LABEL FINIS \$
MATPRN X,,,, // \$
SEEMAT A, X,',, // \(\mathrm{C}, \mathrm{N}, \mathrm{PRINT} \$\)
PRTPARM // C,N,0 \$
END \$
CEND
TITLE \(=\) TEST MPYAD
BEGIN BULK
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DMI & A & 0 & 6 & 1 & 2 & 2 & 2 \\
\hline DMI & A & 1 & 1 & 1.01 & & & \\
\hline DMI & A & 2 & 2 & 1.01 & & & \\
\hline DMI & B & 0 & 6 & 1 & 2 & 2 & 2 \\
\hline DMI & B & 1 & 1 & 1.01 & & & \\
\hline DMI & B & 2 & 2 & 1.01 & & & \\
\hline DMI & C & 0 & 6 & 1 & 2 & 2 & 2 \\
\hline DMI & C & 1 & 1 & 1.01 & & & \\
\hline DMI & C & 2 & 2 & 1.01 & & & \\
\hline PARAM & ALPMA & -1 & & & & & \\
\hline PARAM ENDDATA & BETA & 1.0 & . 0 & & & & \\
\hline
\end{tabular}

\subsection*{5.9 AUTOMATIC SUBSTRUCTURE DMAP ALTERS}

In the automated substructure process, the user commands (described in Section 2.7) are converted to the form of DMAP instructions via ALTER card equivalents. This section describes the resulting DMAP data for each command.

The "raw DMAP" data, stored in the program and modified according to the user input data, is listed by command type. The fields in the raw DMAP to be modified, or "variables", are underlined (i.e., XXX). The subcommand control cards are identified by parentheses on the right side. For example, the ( \(P\) only) for the SUBSTRUCTURE command item 12 , implies that this DMAP instruction is included only if the \(\emptyset P T I Q N\) request includes \(P\) (loads).

The ALTER card images are not true DMAP instructions but are used to locate positions in the existing DMAP Rigid Format for replacement by or insertion of the new DMAP instructions. The locations to be specified depend on the Rigid Format selected by the SøL Executive Control Card and are listed in Section 3 for each Rigid Format. The relevant section of the Rigid Format for each ALTER is indicated by the note in parentheses. For instance "After GP4" in Rigid Format 1 (statics) implies "ALTER 54" for insertion of the corresponding DMAP instructions following Rigid Format Series \(N\) instruction number 54. If an existing set of DHAP instructions is to be removed. the parenthetical note may indicate "Remove DECDMP", where DECDMP may be a set of NASTRAN modules related to the entire decomposition process.

The descriptions given below are highly dependent on the user input commands and the Rigid Format selected. For an exact listing of all DMAP data generated for the current set of substructure commands, the DIAG 23 Executive Control Card may be input. Adding DIAG 24 will produce a punched deck of the actual ALTER cards generated. This feature allows the user to modify these alters and execute under APP DMAP.

\subsection*{5.9.1 Index of Substructure DMAP ALTERs}
\begin{tabular}{|c|c|c|}
\hline ALTER & Basic Function & Page \\
\hline BRECØVER & Convert Phase 2 results to solution vectors & 5.9-3 \\
\hline COMBINE & Combine several substructures & 5.9-4 \\
\hline \[
\begin{aligned}
& \text { DELETE } \\
& \text { DESTRøY }
\end{aligned}
\] & & \\
\hline EDIT \(\}\) & Internal utility commands & 5.9-5 \\
\hline \[
\begin{aligned}
& \text { EQUIV } \\
& \text { RENAME } \\
& \text { SØFPRINT }
\end{aligned}
\] & & \\
\hline PLDT & Plot substructures & 5.9-6 \\
\hline RECDVER & Recover and output Phase 2 solution data & 5.9-7 \\
\hline REDUCE & Initiate matrix partitioning operations & 5.9-8 \\
\hline RUN & Define the DRY parameter & 5.9-9 \\
\hline \[
\begin{aligned}
& \text { SØFIN } \\
& \text { SØFØUT }
\end{aligned}
\] & & \\
\hline RESTØRE & File operators & 5.9-10 \\
\hline \[
\begin{aligned}
& \text { DUMP } \\
& \text { CHECK }
\end{aligned}
\] & & \\
\hline SøLVE & Provide data for execution of the solution phase & 5.9-11 \\
\hline SUBSTRUCTURE & Initiate the automatic DMAP process & 5.9-12 \\
\hline
\end{tabular}

\section*{AUTOMATIC SUBSTRUCTURE DFAAP ALTERS}

\subsection*{5.9.2 DMAP for Command: BRECØVER (Phase 3)}

The BRECØVER command converts the results of a Phase 2 substructure analys is to NASTRAN solution vectors for the detailed calculation of basic structure (or an equivalent basic substructure) displacements, forces, loads, and stresses. The same structure model of the primary substructure defined in Phase 1 must be used in Phase 3. It is possible to perform the Phase 3 execution either as a restart of the Phase 1 run or as an independent run, which recalculates the necessary data blocks.

Raw DMAP:
\begin{tabular}{|c|c|}
\hline ALTER & (Remove solution) \\
\hline PARAM & //C,N,N@P/V,N,ALWAYS=-1 \$ \\
\hline SSG2 & USET,GM,YS,KFS,GØ, , \(\mathrm{PG} / \mathrm{QR}, \mathrm{PQ}, \mathrm{PS}, \mathrm{PL} \$\) (P only) \\
\hline RC@VR3 & ,PG, PS, Ph, YS/ULV, QSS , PGS , PSS , POS ,YSS , LAMA/C, \(\mathrm{N}, \mathrm{SQLN} /\) \\
\hline & C,N,NAME \$ \\
\hline EQUIV & PGS, PG/ALWAYS/PØS, P¢/ALWAYS/YSS,YS/ALWAYS/PSS,PS/ALWAYS \$ (Ponly) \\
\hline \$ & \\
\hline COND & LBSXXX, ¢MIT \$ \\
\hline FBS &  \\
\hline LABEL & LBSXXX \$ \\
\hline ØFP & LAMA, , , ,//V,N,CARDN@\$ \\
\hline ALTER & (After SDR1) \\
\hline UMERGE & USET, QSS,/QGS/C, \(\mathrm{N}, \mathrm{G} / \mathrm{C}, \mathrm{N}, \mathrm{A} / \mathrm{C}, \mathrm{N}, 0\) \$ \\
\hline ADD & QG,QGD/QGT \$ \\
\hline EQUIV & QGT,QG/ALWAYS \$ \\
\hline
\end{tabular}

Variables:
SØLN \(\quad=\) Rigid Format solution number
PG,PS, Pø,YS = Remove data blocks if \(\emptyset P T I \emptyset N\) not \(P\)
NAME \(\quad=\) Name of basic Phase 1 substructure, corresponding to input data
XXX \(\quad=\) Step number

\subsection*{5.9.3 DMAP for Command: CDMBINE}

The COMBINE command initiates the process for combining several substructures defined on the \(S \emptyset F\) files. The \(C \emptyset M B 1\) module reads the control deck and the Bulk Data cards and builds the tables and transformation matrices for the combination structure. - The C@MB2 module performs the matrix transformations using the matrices stored on the S@F file or currently defined as NASTRAN data blocks. The resultant matrices are stored on the \(S \emptyset f\) file and retained as NASTRAN data blocks.

Raw DMAP:
```

CØMB1 CASECC,GEQM4//C,N,STP/S,N,DRY/C,N,PQPT \$
CQND LBSTP,DRY \$
Cめ!1R2 , KNO1, KNO2, KN03, KNO4, KN05, KN06, KN07/KNSC/S,N,DRY/C,N,K/

```

```

SØFØ \quad KNSC, $,,, / / S, N, D R Y / C, N, N A M E C / C, N, K M T X \$$
C9MB2 \quad INO1, MNO2, MNO3, MNO4, MNO5, MN06, MNO7/MMSC/V,N,DRY/C, N,M/
$C, N, N A M E 0001 / C, N$, NAME0002/C,N,NAMEOOO3/C,N,MAMEDOY4/C,N, $\quad\}$ (M only)

```

```

 SØF \(\quad, M N S C,,,, / / S, N, D R Y / C, N, N A M E C / C, N, M M T X \$\)
 CQMB2 , PNO1, PN02, PN03, PN04, PN05, PN06, PNO7/PNSC/V,N,DRY/C,N,P/
    ```

```

 \(S \emptyset F \emptyset \quad, P N S C,,,, / / S, N, D R Y / C, N, N A M E C / C, N, P V E C \$\)
 LABEL LBSTP \$
 LøDAPP \(\quad\) PNSC//S,N,DRY/C,N,NAMEC \(\$\}\) (PA only)
    ```
Variables:
NAME0001, NAMEOOO2, ...;etc. = Names of pseudostructures to be combined
NO1,NO2,...,etc. = Internal number for structures to be combined
NAMEC = Name of combined structure
NSC = Internal number of combined structure
STP \(\quad=\) Step number
P@PT \(\quad=\) Flag for appended loads ( \(\emptyset P T I \emptyset N=P A\) )

\section*{AUTOMATIC SUBSTRUCTURE DMAP ALTERS}

\subsection*{5.9.4 DMAP for Utility Commands: DELETE, DESTRDY, EDIT, EQUIV, RENAME, SQFPRINT}

Several internal operations of the S \(\wp\) F may be performed with the utility commands which create various calls to the S@FUT module. Each of the commands and associated data are inserted as parameters.

\section*{Raw DMAP:}


Variables:
\begin{tabular}{ll} 
NAME & \(=\) Name of substructure \\
ØPER & \(=\) Operation to be performed (first four characters of command, i.e., EDIT) \\
ØPT & \(=\) Integer option code \\
NAME0002 & \(=\) Second substructure name for EQUIV and RENAME \\
PREF & \(=\) Prefix for EQUIV operation \\
ITMI, ITM2, etc. \(=\) SØF data item names
\end{tabular}

The following chart describes the variables used for each command.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Command & NAME & ØPER & ØPT & NAME0002 & PREF & ITM1, etc. \\
\hline DELETE & X & X & & & & X \\
\hline DESTRØY & X & X & & & & \\
\hline EDIT & X & X & X & & & \\
\hline EQUIV & X & X & & X & X & \\
\hline RENAME & X & X & & X & & \\
\hline SØFPRINT & X & X & X & & & X \\
\hline
\end{tabular}

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.9.5 DMAP for Substructure Plots: PLØT}

Any level of substructure may be plotted as an undeformed shape using the existing NASTRAN plot logic. The plot sets generated in Phase 1 are combined and transformed for that plotting. Raw DMAP:
```

1 PLTMRG CASECC,PCDB/PLTXXXX,GPXXX,ELXXX,BCXXX,CASXXX,EQXXX/C,N,
2 NAME/V,N,NGP/V,N,LSIL/V,N,NPSET \$
3 SAVE NGP,LSIL,NPSET \$
4 SETVAL //V,N,PLTFLG/C,N,1/V,N,PFIL/C,N,0 \$
5 SAVE PLTFLG,PFIL \$
6 PL\emptysetT PLTXXX,GPXXX,BLXXX,CASXXX,BGXXX,FQXXX,,,/PMXXX/V,N,NGP/V,N,
7 LSIL/V,N,NPSET/V,N,PLTFLG/V,N,PFIL \$
8 SAVE NPSET,PLTFLG,PFIL \$
9 PRTMSG PMXXX// \$

```
Variables:
NAME - Name of substructure to be plotted
XXX - Step number

\subsection*{5.9.6 DMAP for Command: RECØVER (Phase 2)}

This operation performs the recovery and output of the Phase 2 solution data. The NASTRAN solution displacement vector is transformed and expanded to correspond to the degrees of freedom of the selected component substructures. Each pass through the DMAP loop corresponds to a requested structure to be processed. The RCQVR module selects the substructure to be processed with the loop counter, ILØØP.

\section*{Raw DMAP:}
\begin{tabular}{|c|c|c|}
\hline 1 & \$RECOVER & PHASE 2 (Follows preceding command sequence) \\
\hline 2 & PARAM & \(/ / C, N, N Q P / V, N, I L \varrho \varrho P=0 \$\) \\
\hline 3 & LABEL & LBSTP \$ \\
\hline 4 & RCøVR & CASESS , GELA , KGG, MGG, PG, UGPH/ØUG1, ØPG1, ØQG1, U1, U2, U3, \\
\hline 5 & & U4, U5/V,N, DRY/V,N,ILØИP/C, N, STP/C, N, NAMEFSS/C,N,NSOL/ \\
\hline 6 & & V,N,NEIGV/V,N,LUI/V,N,UIN/V,N,U2N/V,N,U3N/V,N,U4N/V,N,U5N \$ \\
\hline 7 & SAVE & DRY, ILøØP,LUI, U1N,U2N,U3N,U4N,U5N \$ \\
\hline 8 & \(\emptyset \mathrm{FP}\) & ØUG1, \(\emptyset\) QGI, ØPG1, ,,//V,N,CARDNØ \$ \\
\hline 9 & SAVE & CARDND \\
\hline 10 & COND & LBBSTP, ILDDP \$ \\
\hline 11 & REPT & LBSTP, \(100 \$\) \\
\hline 12 & LABEL & LBBSTP \$ \\
\hline
\end{tabular}

Variables:
GELA \(\quad=\) GEM@4 or LAMA depending on rigid format
KGG,MGG,PG = Data blocks which depend on \(\emptyset P T I \emptyset N\)
UGPH \(\quad=\) UGV or PHIG depending on rigid format
STP \(\quad=\) Step number
NAMEFSS \(\quad=\) Name of solution structure
NSØL \(\quad=\) Rigid Format solution number

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.9.7 DMAP for Command: REDUCE}

The REDUCE conmand initiates the matrix partitioning operations to be performed on the stiffness, mass, and load vectors in order to produce a set of matrices defined by a subset of the original degrees of freedom. The REDUCE module generates the partitioning vector PV, a USET data block US, and an identity matrix IN from the Bulk Data and the corresponding substructure tables stored on the S \(\varrho F\). The remainder of \(\operatorname{DMAP}\) sequence directs the actual matrix operations.

Raw DMAP:


Variables:
```

XXX,SPT = Step number
NAMEOOOA = Name of input structure, A.
NAMEOOOB = Name of output structure, B.
NOA,NOB = Internal numbers of substructures A and B.
TYP = Matrix precision flag (l = single)
PDPT,PQVE = Flags for appended loads (@PTION=PA)

```

\section*{AUTOHATIC SUBSTRUCTURE DMAP ALTERS}

\subsection*{5.9.8 DMAP for Command: RUN}

The RUN command defines the DRY parameter for use by the subsequent DMAP instructions. If the user specifies RUN=DRYGØ, a special set of DMAP instructions are placed at the end of the entire command sequence.

Raw DMAP:
PARAM \(\quad / / C, N, A D D / V, N, D R Y / C, N, I / C, N, O \$\)

Variables:
I \(=\) Integer code for RUN option (DRY \(=-1, G \emptyset=0, S T E P=1\) )
If RUN=DRYGø, I is set to (DRY) initially and the following DMAP is inserted at the end of the complete ALTER stream:

LABEL LBSEND
PARAM \(\quad / / C, N, A D D / V, N, D R Y / V, N, D R Y / C, N, 1 \$\)
COND FINIS,DRY \$
REPT LBSBEG,1 \$
JUMP FINIS \$

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.9.9 DMAP for External I \(/ \emptyset\) Commands: \(S \emptyset F I N\), \(S \emptyset F \emptyset U T\), RESTØRE, DUMP, CHECK}

Several operations may be performed on the NASTRAN user files and the SøF file using the EXID module. The various input parameters are set by the Substructure Commands.

\section*{Raw DMAP:}
\[
\begin{array}{ll}
\text { EXIØ } & / / V, N, D R Y / C, N, 0 / C, N, D E V I / C, N, U N I T N A M E / C, N, F \emptyset R M / C, N, M \emptyset D E / \\
C, N, P \emptyset S I / C, N, I T E M / C, N, N A M E 0001 / C, N, N A M E O 002 / E, N, N A M E O 003 / \\
& C, N, N A M E 0004 / C, N, N A M E O 005 \$
\end{array}
\]

Variables:
```

MDDE = First four characters of command name (i.e., 'S\emptysetFI', 'REST')
DEVI = Device used for I/\emptyset file ('TAPE' or 'DISK')
UNITNAME = Name of NASTRAN user file assigned to I/\emptyset file (i.e., INPT, INPI, etc.)
FQRM = Format of data ('EXTE' or 'INTE')
P\emptysetSI = Position of file on device ('REWI', 'N\varrhoRE', or 'E\emptysetF')
ITEM = Name of S\emptysetF item or 'ALL', 'MATR', 'TABL', or 'PHAS'
NAME0001, etc. = Names of substructures to be copied.

```

The following chart describes the variables used for each command:
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Command & MØDE & DEVI & UNI TNAME & FØRM & PØSI & ITEM & NAME000 \\
\hline SØFIN & X & X & X & X & X & X & X \\
\hline SØFØUT & X & X & X & X & X & X & X \\
\hline RESTØRE & X & X & X & & & & \\
\hline DUMP & X & X & X & & & & \\
\hline CHECK & X & X & X & & & & \\
\hline
\end{tabular}

\subsection*{5.9.10 DMAP for Command: SQLVE}

The SØLVE command provides the necessary data for execution of the solution phase of NASTRAN. Module SGEN replaces the NASTRAN GP1 module for the purpose of defining an equivalent pseudostructure from data blocks. The new data blocks GE3S and GE4S contain the load and constraint data in the form of converted Bulk Data card images. The stiffness and mass matrices are obtained from the SDF files and added to any user matrix terms.

\section*{Raw DMAP:}
\begin{tabular}{|c|c|c|}
\hline 1 & ALTER & (Remove GP1) \\
\hline 2 & PARAM & //C,N,NดP/V,N,ALWAYS=-1 \$ \\
\hline 3 & SGEN & CASECC, GEQM3,GE@M4/CASESS, CASEI,GPL , EQEXIN, GPDT, BGPDT, SIL , \\
\hline 4 & & GE3S,GE4S,CSTM/V,N,DRY/C,N,NAMESØLS/V,N,LUSET/V,N,NØGPDT \$ \\
\hline 5 & SAVE & DRY,LUSET,NØGPDT \$ \\
\hline 6 & EQUIV & GE3S,GEDM3/ALWAYS/GE4S,GEQM4/ALWAYS/CASEI, CASECC/ALWAYS \$ \\
\hline 7 & COND & LBSTP/DRY \$ \\
\hline 8 & ALTER & (Remove PLøT) \\
\hline 9 & ALTER & (Remove NØSIMP COND) \\
\hline 10 & COND & LBSøL, NøSINP \$ \\
\hline 11 & ALTER & (Remove SMA3) \\
\hline 12 & LABEL & LBSOL \$ \\
\hline 13 & SgFI & /KNQS,MNQS, , ,/V,N,DRY/C,N,NAMESQLS/C,N,KNTX/C,N,MMTX \$ \\
\hline 14 & EQUIV & KNØS , KGG/NØSIMP \$ (K only) \\
\hline 15 & EQUIV & MNOS,MGG/NØSIMP \$ (M, only used for Rigid Formats 2 and 3) \\
\hline 16 & COND & LBSTP, NØSIMP \$ \\
\hline 17 & ADD & KGGX, KNФS/KGG/ \$ (K only) \\
\hline 18 & ADD & MGG,MNQS/MGGX/ \$ \\
\hline 19 & EQUIV & MGGX,MGG/ALWAYS \$ (M, only used for Rigid Formats 2 and 3) \\
\hline 20 & LABEL & LBSTP \\
\hline 21 & CHKPNT & MGG \$ (M, only used for Rigid Formats 2 and 3) \\
\hline 22 & ALTER & (After GP4) \\
\hline 23 & COND & LBSEND,DRY \$ \\
\hline 24 & ALTER & (Remove SDR2-PLØT) \\
\hline
\end{tabular}

Variables
\begin{tabular}{ll} 
NAMES \(\emptyset L S\) & \(=\) Name of solution structure \\
N \(\emptyset S\) & \(=\) Internal number of solution structure \\
STP & \(=\) Step number
\end{tabular}

\subsection*{5.9.11 DMAP for Command: SUBSTRUCTURE}

The SUBSTRUCTURE command is necessary to initiate the automatic DMAP process. In Phase 1 , the SUBPHI module is used to build the substructure tables on the S \(\emptyset F\) from the NASTRAN grid point tables and the S 9 FØ module is used to copy the matrices onto the S 9 F . In Phase 2 and Phase 3, the initial value of the DRY parameter is set and the DMAP sequence is initiated.

Raw DMAP:

\section*{PHASE 1}
\begin{tabular}{|c|c|c|}
\hline 1 & ALTER & (After GP4) \\
\hline 2 & PARAM & //C,N,ADD/V,N,DRY/C,N,I/C,N,0 \$ \\
\hline 3 & LABEL & LBSBEG \$ \\
\hline 4 & COND & LBLIS,DRY \$ \\
\hline 5 & ALTER & (Remove DECOMP) \\
\hline 6 & LABEL & LBLIS \$ \\
\hline 7 & ALTER & (Remove solution) \\
\hline 8 & SUBPH 1 & CASECC, EQEXIN, USET, BGPDT, CSTM,GPSETS,ELSETS//V,N; \\
\hline 9 & & DRY/C, \(\mathrm{N}, \mathrm{NAME/C,N,PL} \mathrm{\emptyset TID/C,N} ,\mathrm{PQPT} \mathrm{\$}\) \\
\hline 10 & SAVE & DRY \$ \\
\hline 11 & COND & LBSEND,DRY \$ \\
\hline 12 & SSG2 & USET,GM, YS, KFS,G0, ,PG/QR, PD, PS, PL \$ (P or PA only) \\
\hline 13 & CHKPNT & PD, PS, PL \$ \\
\hline 14 & SQFg & , KAA , MAA , PL , ///V,N,DRY/C,N,NAME/C,N,KMTX/C,N,MMTX/C,N, PVEC \$ \\
\hline 15 & L甲DAPP & PL,//V, N, DRY/C, N, NAME \$ (PA only) \\
\hline & & PHASE2 \\
\hline 1 & ALTER & 2,0 \\
\hline 2 & PARAM & \(/ / C, N, A D D / V, N, D R Y / C, N, I / C, N, 0 \$\) \\
\hline 3 & LABEL & LBSBEG \$ \\
\hline
\end{tabular}

\section*{PHASE 3}
\begin{tabular}{lll}
1 & ALTER & (Remove DECøMP) \\
2 & PARAM & \(/ / C, N, A D D / V, N, D R Y / C, N, I / C, N, O \$\) \\
3 & LABEL & LBSBEG \(\$\)
\end{tabular}

\section*{Variables:}
\begin{tabular}{ll} 
I & \(=\) Integer RUN option code (see RUN command) \\
NAME & \(=\) Phase 1 substructure name \\
PL \(\emptyset T I D ~\) & \(=\) Phase 1 Plot Set ID \\
KAA,MAA,PL & \(=\) Data blocks dependent on \(\emptyset P T I \emptyset N\) \\
PØPT & \(=\) Flag for appended loads ( \(\emptyset P T I O N=P A)\)
\end{tabular}

\subsection*{6.1 RIGID FORMAT DIAGNOSTIC MESSAGES}

A number of fatal errors are detected by DMAP statements in the various rigid formats. These messages indicate the presence of fatal user errors that, either cannot be determined by the functional modules, or that can be more effectively detected by DMAP statements in the rigid format. The detection of such an error causes a transfer to a LABEL instruction near the end of the rigid format. The text of the message is output and the execution is terminated. These messages will always appear at the end of the NASTRAN output.

\subsection*{6.1.1 Displacement Approach Rigid Formats}

The texts of the rigid format error messages are given in the following sections for each of the displacement approach rigid formats. The text for each message is given in capital letters and is followed by additional explanatory material, including suggestions for remedial action.

\subsection*{6.1.1.1 Rigid Format Error Messages for Static Analysis}

NØ. 1 - ATTEMPT T \(\emptyset\) EXECUTE MØRE THAN 100 LOØPS.
An attempt has been made to use more than 100 different sets of boundary conditions. This number may be increased by altering the REPT instruction following SDRI.

NØ. 2 - MASS MATRIX REQUIRED FQR WEIGHT AND BALANCE CALCULATI@NS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.
\(N \emptyset .3\) - \(N \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREED \(\emptyset M\) HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPOINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUP@RT, GMIT, or GRDSET cards, or grounded on Scalar Connection cards.

NØ. 4 - NØ ELEMENTS HAVE BEEN DEFINED.
The stiffness matrix is null because no elements have been defined on either Connection cards or GENEL cards.

NØ. 5 - A LØØPING PRØBLEM RUN \(\emptyset N\) NØN-LØØPING SUBSET.
A problem requiring boundary condition changes was run on subsets 1 or 3 . The problem should be restarted on subset 0 .
6.1.1.2 Rigid Format Error Messages for Static Analysis with Inertia Relief

N \(\emptyset .1\) - MASS MATRIX REQUIRED FØR CALCULATIØN ØF INERTIA LØADS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

NQ. 2 - ATTEMPT TØ EXECUTE MORE THAN 100 LOOPS.
An attempt has been made to use more than 100 different sets of boundary conditions. This number may be increased by altering the REPT instruction following SDRI.

\section*{DIAGNOSTIC MESSAGES}

N \(\emptyset .3\) - \(N \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDØM HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPDINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUPØRT, IGMIT, or GRDSET cards, or grounded on Scalar Connection cards.

NQ. 4 - FREE BøDY SUPPØRTS ARE REQUIRED.
A statically determinate set of supports must be specified on a SUP@RT card in order to determine the rigid body characteristics of the structural model.

NØ. 5 - A LØØPING PRØBLEM RUN ØN NØN-LØØPING SUBSET.
A problem requiring boundary condition changes was run on subsets 1 or 3 . The problem should be restarted on subset 0 .

\section*{6:1.1.3 Rigid Format Error Messages for Normal Mode Analysis}

NØ. 1 - MASS MATRIX REQUIRED FØR REAL EIGENVALUE ANALYSIS.
The mass matrix is null because either no structural elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGR card and METHЮD must select an EIGR set in the Case Control Deck.

NØ. 3 - \(N \varnothing\) INDEPENDENT DEGREES \(\emptyset F\) FREEDGM HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPDINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUP@RT, GMIT, or GRDSET cards, or grounded on Scalar Connection cards.

\subsection*{6.1.1.4 Rigid Format Error Messages for Static Analysis with Differential Stiffness}

Nの. 1 - N \(\emptyset\) STRUCTURAL ELEMENTS HAVE BEEN DEFINED.
The differential stiffness matrix is null because no structural elements have been defined with Connection cards.

Nの. 2 - FREE BØDY SUPP@RTS N@T ALLØWED.
Free bodies are not allowed ir. Static Analysis with Differential Stiffness. The SUP@RT cards must be removed from the Bulk Data Deck and other constraints applied if required for stability.

NØ. 3 - ATTEMPT TØ EXECUTE MØRE THAN 100 LOØPS.
An attempt has been made to use more than 100 scale factors for differential stiffness calculations. This number may be increased by altering the REPT instruction following SDRT.

NØ. 4 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE. CALCULATI@NS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

N \(\emptyset .5\) - \(\mathrm{N} \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREED \(\emptyset\) M HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPOINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, GMIT, or GRDSET cards, or grounded on Scalar Connection cards.

\section*{NO. 6 - A LØØPING PRØBLEM RUN \(\emptyset N\) NØN-LØØPING SUBSET.}

A problem requiring multiple differential load factor was run on subset (1 or 3) which does not support them. The problem should be restarted on subset 0 .

\subsection*{6.1.1.5 Rigid Format Error Messages for Buckling Analysis}
\(N \emptyset .1\) - \(N \emptyset\) STRUCTURAL ELEMENTS HAVE BEEN DEFINED.
The differential stiffness matrix is null because no structural elements have been defined with Connection cards.

NØ. 2 - FREE B \(\emptyset D Y\) SUPPØRTS NØT ALL \(\emptyset W E D\).
Free bodies are not allowed in Buckling Analysis. The SUP@RT cards must be removed from the Bulk Data Deck and other constraints applied if required for stability.

NØ. 3 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGB card and METHØD must select an EIGB set in the Case Control Deck.

Nの. 4 - NØ EIGENVALUES FØUND.
No buckling modes exist in the range specified by the user.
NØ. 5 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIQNS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card or the density was not defined on a Material card.
\(N \emptyset .6-N \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREEDQM HAVF BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPDINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, GMIT, or GRDSET cards, or grounded on Scalar Connection cards.
6.1.1.6 Rigid Format Error Messages for Piecewise Linear Analysis

NØ. 1 - NØ NØNLINEAR ELEMENTS HAVE BEEN DEFINED.
A piecewise linear problem has not been formulated because none of the elements have a stress dependent modulus of elasticity defined on a Material card.

Nめ. 2 - ATTEMPT TØ EXECUTE M@RE THAN 100 L \(\emptyset \emptyset P S\).
An attempt has been made to use more than 100 load increments. This number may be increased by altering the REPT instruction preceding SDR2.

NØ. 3 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIONS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

NØ. 4 - NØ ELEMENTS HAVE BEEN DEFINED.
The stiffness matrix is null because no elements have been defined on either Connection cards or GENEL cards.

NØ. 5 - STIFFNESS MATRIX SINGULAR DUE TØ MATERIAL PLASTICITY.
The stiffness matrix is singular due either to one or more grid point singularities or element material plasticity.

\section*{DIAGNOSTIC MESSAGES}

\section*{6．1．1．7 Rigid Format Error Messages for Direct Complex Eigenvalue Analysis．}

Nの． 1 －EIGENVALUE EXTRACTIQN DATÄ REQUIRED FØR C＠MPLEX EIGENVALUE ANALYSIS．
Eigenvalue extraction data must be supplied on an EIGC card and CMETH＠D must select an EIGC set in the Case Control Deck．

Nの． 2 －ATTEMPT FD EXECUTE MgRE THAN 100 LØDPS．
An attempt has been made to use more than 100 sets of direct input matrices．This number may be increased by altering the REPT instruction following SDR2．

Nの． 3 －MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIØNS
The mass matrix is null because either no elements were defined on Connection cards， nonstructural mass was not defined an a Property card，or the density was not defined on a Material card．

6．1．1．8 Rigid Format Error Messages for Direct Frequency and Random Response．

NØ． 1 －FREQUENCY RESPØNSE LIST REQUIRED FØR FREQUENCY RESP＠NSE CALCULATIQNS．
Frequencies to be used in the solution of frequency response problems must be supplied on a FREQ，FREQ1，or FREQ2 card and FREQ must select a frequency response set in the Case Control Deck．

NØ． 2 －DYNAMIC LØADS TABLE REQUIRED FØR FREQUENCY RESP＠NSE CALCULATI＠NS．
Dynamic loads to be used in the solution of frequency response problems must be speci－ fied on an RLØAD1 or RLØAD2 card and DLøAD must select a dynamic load set in the Case Control Deck．

NØ． 3 －ATTEMPT TØ EXECUTE MØRE THAN 100 LØØPS．
An attempt has been made to use more than 100 sets of direct input matrices．This number may be increased by altering the REPT instruction following the last gFP instruction．
Nø． 4 －MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIONS．
The mass matrix is null because either no elements were defined on Connection cards， nonstructural mass was not defined on a Property card，or the density was not defined on a Material card．

6．1．1．9 Rigid Format Error Message for Direct Transient Response

NØ． 1 －TRANSIENT RESPØNSE LIST REQUIRED FØR TRANSIENT RESP＠NSE CALCULATIØNS．
Time step intervals to be used must be specified on a TSTEP card and a TSTEP selection must be made in the Case Control Deck．

NØ． 2 －ATTEMPT \(T \emptyset\) EXECUTE MØRE THAN 100 LØØPS．
An attempt has been made to use more than 100 dynamic load sets．This number may be increased by altering the REPT instruction following the last XYPL \(\emptyset T\) instruction．

NØ． 3 －MASS MATRIX REQUIRED FOR WEIGHT AND BALANCE CALCULATI＠NS．
The mass matrix is null because either no elements were defined with Connection cards， nonstructural mass was not defined on a Property card，or the density was not defined on a Material card．
6.1.1.10 Rigid Format Error Messages for Modal Complex Eigenvalue Analysis.

NØ. 1 - MASS MATRIX REQUIRED FØR MøDAL FØRMULATIØN.
The mass matrix is null because either no structural elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

NØ. 2 - EIGENVALUE EXTRACTI \(\emptyset N\) DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGR card and METH@D must select an EIGR set in the Case Control Deck.

Nの. 3 - ATTEMPT \(T \emptyset\) EXECUTE MQRE THAN 100 L \(\emptyset \emptyset P S\).
An attempt has been made to use more than 100 different sets of direct input matrices. This number can be increased by altering the REPT instruction following SDR2.

NØ. 4 - REAL EIGENVALUES REQUIRED FØR MØDAL FØRMULATIØN.
No real eigenvalues were found in the frequency range specified by the user.
6.1.1.11 Rigid Format Error Messages for Modal Freauency and Random Response.

N@. 1 - MASS MATRIX REQUIRED FQR M@DAL FØRMULATIQN.
The mass matrix is null because either no structural elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

NØ. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGR card and METH \(\varnothing D\) must select an EIGR set in the Case Control Deck.

NØ. 3 - ATTEMPT T \(\emptyset\) EXECUTE MgRE THAN 100 LØØPS.
An attempt has been made to use more than 100 sets of direct input matrices. This number can be increased by altering the REPT instruction following the last gFP instruction.

Nの. 4 - REAL EIGENVALUES REQUIRED FØR MØDAL F@RMULATIØN.
No real eigenvalues were found in the frequency range specified by the user.
NØ. 5 - FREQUENCY RESPØNSE LIST REQUIRED FØR FREQUENCY RESPØNSE CALCULATIØNS.
Frequencies to be used in the solution of frequency response problems must be supplied on a FREQ, FREQ1, or FREQ2 card and FREQ must select a frequency response set in the the Case Control Deck.

NØ. 6 - DYNAMIC LøADS TABLE REQUIRED FØR FREQUENCY RESPØNSE CALCULATIøNS.
Dynamic loads to be used in the solution of frequency response problems must be specified on an RLØAD1 or RLøAD2 card and DLøAD must select a dynamic load set in the Case Control Deck.

\subsection*{6.1.1.12 Rigid Format Error Messages for Modal Transient Response.}

NØ. 1 - MASS MATRIX REQUIRED FØR MØDAL FØRMULATIØN.
The mass matrix is null because either no structural elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

Nø. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGR card and METH@D must select an EIGR set in the Case Control Deck.

Nの. 3 - ATTEMPT TØ EXECUTE MgRE THAN 100 LØØPS.
An attempt has been made to use more than 100 dynamic load sets. This number can be increased by altering the REPT instruction following the last XYPLDT instruction.

NØ. 4 - REAL EIGENVALUES REQUIRED FØR MØDAL FØRMULATIØN.
No real eigenvalues were found in the frequency range specified by the user.
NØ. 5 - TRANSIENT RESPØNSE LIST REQUIRED FØR TRANSIENT RESP@NSE CALCULATIØNS.
Time step intervals to be used must be specified on a TSTEP card and a TSTEP selection must be made in the Case Control Deck.

\subsection*{6.1.1.13 Rigid Format Error Messages for Normal Modes with Differential Stiffness.}
\(N \emptyset\). 1 - \(N \emptyset\) STRUCTURAL ELEMENTS HAVE BEEN DEFINED.
The differential stiffness matrix is null because no structural elements have been defined with Connection cards.

Nø. 2 - FREE B \(\emptyset D Y\) SUPPØRTS NøT ALL \(\emptyset W E D\).
Free bodies are not allowed in Normal Modes with Differential Stiffness. The SUPØRT cards must be removed from the Bulk Data Deck and other constraints applied if required for stability.

Nの. 3 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGR card and METH \(\emptyset\) D must select an EIGR set in the Case Control Deck.
\(N \emptyset .4\) - \(N \emptyset\) eigenvalue FØund.
No eigenvalues were found in the frequency range specified by the user.
NØ. 5 - MASS MATRIX REQUIRED FØR REAL EIGENVALUE ANALYSIS.
The mass matrix is null because either no structural elements were defined with Connection cards, nonstructural mass was not defined on a Property card or the density was not defined on a Material card.
\(N \emptyset .6-N\) INDEPENDENT DEGREES \(\emptyset F\) FREED@M HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPDINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUP@RT, QMIT, or GRDSET cards, or grounded on Scalar Connection cards.
6.1.1.14 Rigid Format Error Messages for Statics using Cyclic Symnetry.

An attempt has been made to use more than 100 different sets of boundary conditions. This number may be increased by altering the REPT instruction following SDRI.

Nø. 2 - MASS MATRIX REQUIRED FØR WEIGHT AND BALANCE CALCULATIØNS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card or the density was not defined on a Material card.
\[
6.1-6(3 / 1 / 76)
\]

\section*{RIGIN FORMAT DIAGNOSTIC MESSAGES}
\(N \emptyset\). 3 - \(N \emptyset\) INDEPENDENT DEGREES \(\emptyset F\) FREED \(\emptyset M\) HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPDINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUPDRT, QMIT, or GRDSET cards, or grounded on Scalar Connection cards.

NØ. 4 - N \(\emptyset\) ELEMENTS HAVE BEEN DEFINED.
The stiffness matrix is null because no elements have been defined on either Connection cards or GENEL cards.

NØ. 5 - FREE B \(\emptyset D Y\) SUPPØRTS NØT ALL@WED.
Free bodies are not allowed in Statics with Cyclic Symmetry. The SUP@RT cards. must be removed from the Bulk Data Deck and other constraints applied if required for stability.

Nø. 6 - CYCLIC SYMMETRY DATA ERRøR.
See Section 1.12 for proper modeling techniques and corresponding PARAM card requirements.
6.1.1.15 Rigid Format Error Messages for Normal Modes using Cyclic Symmetry.

Nの. 1 - MASS MATRIX REQUIRED FQR WEIGHT AND BALANCE CALCULATIQNS.
The mass matrix is null because either no elements were defined with Connection cards, nonstructural mass was not defined on a Property card, or the density was not defined on a Material card.

N@. 2 - EIGENVALUE EXTRACTIØN DATA REQUIRED FØR REAL EIGENVALUE ANALYSIS.
Eigenvalue extraction data must be supplied on an EIGR card and METH@D must select an EIGR set in the Case Control Deck.

NØ. 3 - N \(\cap\) INDEPENDENT DEGREES \(\emptyset F\) FREEDดM HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SPDINT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUP@RT, QMIT, or CRDSET cards, or grounded on Scalar Connection cards.
\(N \emptyset .4\) - FREE B \(\emptyset D Y\) SUPP@RTS NøT ALLØWED.
Free bodies are not allowed in Normal Modes with Cyclic Symmetry. The SUPQRT cards must be removed from the Bulk Data Deck and other constraints applied if required for stability.

Nの. 5 - ATTEMPT TØ EXECUTE MDRE THAN 100 LOQPS.
An attempt has been made to use more than 100 different sets of boundary conditions. This number may be increased by altering the REPT instruction following SDRI.

Nø. 6 - \(N\) O STRUCTURAL ELEMENTS HAVE BEEN DEFINED.
The stiffness matrix is null because no structural elements have been defined with Connection cards.

\section*{DIAGNOSTIC MESSAGES}

\subsection*{6.1.2 Heat Approach Rigid Formats}

The texts of the rigid format error messages are given in the following sections for each of the heat approach rigid formats. The text for each message is given in capital letters and is followed by additional explanatory material, including suggestions for remedial action.

\subsection*{6.1.2.1 Rigid Format Error Messages for Static Heat Transfer Analysis}

Nø. 1 - ATTEMPT TØ EXECUTE MgRE THAN 100 LOgPS.
An attempt has been made to use more than 100 different sets of boundary conditions. This number may be increased by altering the REPT instruction following SDRT.
\(N \varnothing .3\) - \(N \varnothing\) INDEPENDENT DEGREES \(\emptyset F\) FREED \(\emptyset M\) HAVE BEEN DEFINED.
Either no degrees of freedom have been defined on GRID, SP@INT or Scalar Connection cards, or all defined degrees of freedom have been constrained by SPC, MPC, SUPQRT, QMIT or GRDSET cards, or grounded on Scalar Connection cards.
\(N \varnothing .4\) - \(N \varnothing\) ELEMENTS HAVE BEEN DEFINED.
The stiffness matrix is null because no elements have been defined on either Connection cards or GENEL cards.

NØ. 5 - A LØØPING PROBLEM RUN \(\emptyset N\) NØN-LØØPING SUBSET.
A problem requiring boundary condition changes was run on subset 1 . The problem should be restarted on subset 0 .
6.1.2.2 Rigid Format Error Messages for Nonlinear Static Heat Transfer Analysis

NØ. 1 - ATTEMPT TØ EXECUTE MØRE THAN 100 LOØPS.
An attempt has been made to use more than 100 different sets of direct input matrices. This number can be increased by altering the REPT instruction following SDR2.
\(N \emptyset .2\) - \(N \emptyset\) SIMPLE STRUCTURAL ELEMENTS.
The heat conduction matrix is null because no Connection cards (other than GENEL) have been defined.
\(N \emptyset .3\) - STIFFNESS MATRIX SINGULAR.
The heat conduction matrix is singular due to unspecified grid point temperatures.
6.1.2.3 Rigid Format Error Message for Transient Heat Transfer Analysis

NØ. 1 - TRANSIENT RESPØNSE LIST REQUIRED FØR TRANSIENT RESPØNSE CALCULATIØNS.
Time step intervals to be used must be specified on a TSTEP card and a TSTEP selection must be made in the Case Control Deck.

\subsection*{6.1.3 Aero Approach Rigid Format}

The texts of the rigid format error messages are given in the following section for the aero approach rigid format. The text for each message is given in capital letters and is followed by additional explanatory material, including suggestions for remedial action.

\subsection*{6.1.3.1 Rigid Format Error Messages for Modal Flutter Analysis}
\(N \emptyset .1\) - MASS MATRIX REQUIRED \(F \emptyset R\) MøDAL FøRMULATI@N.
The mass matrix is null because either no structural elements were defined with Connection cards, nonstuctural mass was not defined on a Property card or the density was not defined on a Material card.
nø. 2 - eigenvalue extractign data required fgr real eigenvalue analysis.
Eigenvalue extraction data must be supplied on an EIGR card and METHDD must select an EIGR set in the Case Control Deck.

Nø. 3 - ATTEMPT Tø EXECUTE MøRE THAN 100 LøDPS.
An attempt has been made to use more than 100 different sets of direct input matrices. This number can be increased by altering the REPT instruction following FA2.
nø. 4 - real eigenvalues required før mgdal førmulatiøn.
No real eigenvalues were found in the frequency range specified by the user.

\section*{DIAGNOSTIC MESSAGES}

\subsection*{6.2 NASTRAN SYSTEM AND USER MESSAGES}

NASTRAN system and user messages are identified by number. Message numbers have been assigned in groups as follows:
\begin{tabular}{ll}
\(1-1000\) & Preface Messages \\
1001 - 2000 & Executive Module Messages \\
2001 - & Functional Module Messages
\end{tabular}

These messages have the following format:
\[
* * * \quad\left\{\begin{array}{l}
\text { SYSTEM } \\
\text { USER }
\end{array}\right\} \quad\left\{\begin{array}{l}
\text { FATAL } \\
\text { WARNING } \\
\text { INFDRMATIØN }
\end{array}\right\} \text { MESSAGE id, text. }
\]
where "id" is a unique message identification number and "text" is the message as indicated in capital letters for each of the diagnostic messages. A series of asterisks (****) in the text indicates information that will be filled in for a specific use of the message, such as, the number of a grid point or the name of a bulk data card. Many of the messages are followed by additional explanatory material, including suggestions for remedial action.

The system and user messages described in this section pertain only to those messages gener- . ated by NASTRAN. Although these messages can appear at various places in the output stream, they should be easily identified by their format. The various computer operating systems also produce diagnostic messages that can appear at various places in the output stream. The format of these messages will vary with the operating system. Reference should be made to the operating system manuals for interpretation of the messages that are not generated by NASTRAN.

System messages refer to diagnostics that are associated with program errors. In general such errors cannot be corrected by the user. Reference should be made to the Programmer's Manual and assistance secured from the programming staff. User messages refer to errors that are usually associated with the preparation of the NASTRAN Data Deck. Corrective action is indicated in the message text or the explanatory information following the text. In some cases reference may have to be made to other sections of the User's Manual for proper card formats or for clarification of procedures.

Fatal messages cause the termination of the execution following the printing of the message, text. These messages will always appear at the end of the NASTRAN output. Warning and information
\[
6.2-1(6 / 1 / 72)
\]
messages will appear at various places in the output stream. Such messages only convey warnings or information to the user. Consequently, the execution continues in a normal manner following the printing of the message text.

As an example, consider message number 2025, which will appear in the printed output as follows:
*** USER FATAL MESSAGE 2025, UNDEFINED C甲DRDINATE SYSTEM 102.
The three leading asterisks (***) are always present in user and system diagnostic messages. The word USER indicates that this is a user message rather than a system message. The word FATAL indicates that this is a fatal message rather than a warning or information message. The number 2025 is the identification number for this message. The text of the message follows the conma (,). The number 102 replaces the asterisks ( \(* * * *\) ) in the general message text, and indicates that 102 is the identification number of the undefined coordinate system.

\subsection*{6.2.1 Preface Messages}

01 *** USER WARNING MESSAGE 1, ASSUMED FIRST INPUT FILE IS NULL.
User has specified N input data blocks when there should be \(\mathrm{N}+1\).
02 *** USER WARNING MESSAGE 2, PARAMETER NAMED ******** IS DUPLICATED. No harm done. Parameter is saved just once.

03 *** USER FATAL MESSAGE 3, FØRMAT ERR@R IN PARAMETER NØ.***. Double delimiter appears in parameter section of previous DMAP instruction.

04 *** SYSTEM FATAL MESSAGE 4, MPL PARAMETER ERRØR, MøDULE NAME = ******** PARAMETER NØ.***. MPL entry for module is incorrect. See block data program XMPLBD.

05 *** USER fatal message 5, parameter input data errør illegal value før parameter named ********.
Type of parameter on PARAM card is inconsistent with type of parameter by same name in above DMAP instruction.

06 *** USER FATAL MESSAGE 6, illegal value føR parameter nø.***.
The type of parameter in DMAP instruction does not correspond to type requested in DMD or MFD section of Programmer's Manual.

07 *** USER FATAL MESSAGE 7, PARAMETER Nø.*** NEEDS PARAMETER NAME.
Parameter is not in correct format.

08 *** USER FATAL MESSAGE 8, BULK DATA PARAM CARD ERRØR. MUST NøT DEFINE PARAMETER NAMED ********.

The "N" in V,N,******** means user cannot set the value of the parameter with name ******** on a PARAM card.

09 *** USER FATAL MESSAGE 9, VALUE NEEDED FgR PARAMETER NØ. ***. Constant needs value in DMAP instruction or on PARAM card.

10 *** USER FATAL MESSAGE 10, ILLEGAL INPUT SECTI@N FØRMAT.
11 *** USER FATAL MESSAGE 11, ILLEGAL ØUTPUT SECTIØN FØRMAT.
12 *** USER FATAL MESSAGE 12, ILLEGAL CHARACTER IN DMAP INSTRUCTION NAME.
Name must be 8 or less alpha-numeric characters, the first character being alpha.

13 *** USER FATAL MESSAGE 13, DMAP INSTRUCTIØN NØT IN MØDULE LIBRARY.

14 *** SYSTEM FATAL MESSAGE 14, ARRAY NAMED ******** ØVERFLøWED.
See XGPI module description in MFD section of Programmer's Manual.

15 *** USER FATAL MESSAGE 15, INCDNSISTENT LENGTH USED F@R PARAMETER NAMED ********. This parameter was used in a previous DMAP instruction which gave it a different type. See Section 5.2.1 of the User's Manual.

16 *** USER FATAL MESSAGE 16, ILLEGAL FØRMAT.

17 *** USER FATAL MESSAGE 17, UNIDENTIFIED NASTRAN CARD KEYW@RD ********. ACCEPTABLE KEYW@RDS FQLLDW ---

18 *** USER FATAL MESSAGE 18, TøØ MANY PARAMETERS IN DMAP PARAMETER LIST.
Incorrect calling sequence for DMAP instruction.

19 *** USER FATAL MESSAGE 19, LABEL NAMED ******** IS MULTIPLY DEFINED.
LABEL named appears in more than one place in DMAP program.

20 *** USER FATAL MESSAGE 20, ILLEGAL CHARACTERS IN PARAMETER NØ. ***
Name must be 8 or less alpha-numeric characters, the first character being alpha.
21 *** USER FATAL MESSAGE 21, PARAMETER NAMED ******** IS N \(\emptyset T\) IN PRECEDING DMAP INSTRUCTION PARAMETER LIST.

Parameters in SAVE instruction must appear in immediately preceding DMAP instruction.
22 *** USER FATAL MESSAGE 22, DATA BLØCK NAMED ******** MUST BE DEFINED PRI \(\emptyset\) R T \(\emptyset\) THIS INSTRUCTI \(\emptyset \mathrm{N}\). See Section 5.2 of the User's Manual.
\[
6.2-3(4 / 1 / 73)
\]
```

23 *** USER FATAL MESSAGE 23, DATA BL\emptysetCK NAMED ******** IS N\emptysetT REFERENCED IN SUBSEQUENT
FUNCTI@NAL M@DULE.
See Section 5.2 of the User's Manual. Error can be suppressed by adding the following :
PARAM //C,N,N\emptysetP/V,N,TRUE=-1 \$
CDND LABELXXX,TRUE \$
TABPT ********,,,,// \$
LABEL LABELXXX \$
24 *** SYSTEM FATAL MESSAGE 24, CANN@T FIND FILE NAMED ******** 9N DATA PØ\emptysetL TAPE.
Contents of /XDPL/ does not match contents of Pool Tape.
25 *** USER FATAL MESSAGE 25, PARAMETER NAMED ******** NQT DEFINED.
Parameter is referenced in nonfunctional module, but is nowhere defined.
26 *** USER FATAL MESSAGE 26, LABEL NAMED ******** NOT DEFINED.
LABEL name does not appear in LABEL instruction.
27 *** USER WARNING MESSAGE 27, LABEL NAMED ********* N@T REFERENCED.
LABEL name appears only in a LABEL instruction.
28 *** SYSTEM FATAL MESSAGE 28, UNEXPECTED END \emptysetF TAPE QN NEW PR\emptysetBLEM TAPE.
Either you truly encountered an EDT or file linkage has been destroyed in /XFIST/,
/XPFIST/ and/or /XXFIAT/.
29 *** SYSTEM FATAL MESSAGE 29, UNEXPECTED END \emptysetF TAPE @N \emptysetLD PR@BLEM TAPE.
File linkage has been destroyed in /XFIST/, /XPFIST/ and/or /XXFIAT/.
30 *** SYSTEM FATAL MESSAGE 30, UNEXPECTED END \emptysetF TAPE \emptysetN DATA P\emptysetQL TAPE.
See Message 28.
31 *** SYSTEM FATAL MESSAGE 31; CØNTR\emptysetL FILE ******** INC\emptysetMPLETE \emptysetR MISSING \emptysetN NEW PR\emptysetBLEM TAPE.
Data block XCSA is not in correct format or it is missing.
32 *** USER FATAL MESSAGE 32, FILE NAMED ******** MUST BE DEFINED PRI\emptysetR T\emptyset THIS INSTRUCTI\emptysetN.
See Section 5.2 of the User's Manual.
33*** SYSTEM FATAL MESSAGE 33, NAME (*********) IN NEW CØNTR\emptysetL FILE DICTI\emptysetNARY N\varrhoT VALID.
First record of data block XCSA on Problem Tape contains a name which is not recognized
by XGPI moduTe.
34 *** SYSTEM FATAL MESSAGE 34, CANN\emptysetT TRANSLATE DMAP INSTRUCTION N\emptyset.***.
Error in subroutine XSCNDM or XRCARD.

```

35 *** USER FATAL MESSAGE 35, INCØRRECT ØLD PRØBLEM TAPE MØUNTED. ID ØF TAPE M@UNTED = ********,
 Wrong reel mounted for multireel Problem Tape.

36 *** SYSTEM FATAL MESSAGE 36 , CANNØT FIND FILE NAMED ******** \(\emptyset \mathrm{N}\) \(\emptyset \mathrm{LD}\) PR@BLEM TAPE.
Header record of file on Problem Tape does not match file name in restart dictionary.

37 *** USER WARNING MESSAGE 37, WARNING ØNLY - MAY N@T BE ENØUGH FILES AVAILABLE FØR M \(\quad\) MDULE REQUIREMENTS. FILES NEEDED \(=\) *** FILES AVAILABLE \(=* * *\).
Program will execute if enough data blocks referenced by the module are purged. Purged data blocks are not assigned files.

38 *** SYSTEM FATAL MESSAGE 38 , NØT ENQUGH CDRE FQR GPI TABLES
User must break up DMAP program.

39 *** SYSTEM FATAL MESSAGE 39 , RIGID FØRMAT DMAP SEQUENCE D@ES NØT CØRRESP@ND TØ MED TABLE. The MED Table must have the same number of entries as there are DMAP instructions in DMAP sequence.

40 *** USER FATAL MESSAGE 40, ERR@R IN ALTER DECK - CANNØT FIND END ØF DMAP INSTRUCTIØN. User should check ALTER part of the Executive Control Deck.

41 *** SYSTEM FATAL MESSAGE 41, TABLES INCØRRECT FØR REGENERATING DATA BLØCK ********. File Name Table and MED Table used by routine XFLDEF are wrong.

42 *** USER WARNING MESSAGE 42 , PARAMETER NAMED ******** ALREADY HAD VALUE ASSIGNED PREVIØUSLY. Parameter appears in a previous instruction which assigned it a value. The previous value will be used.

43 *** USER FATAL MESSAGE 43, INCØRRECT FØRMAT FØR NASTRAN CARD.

44 *** USER FATAL MESSAGE 44 , UNABLE T \(\emptyset\) FIND END DMAP INSTRUCTION. User has altered out the END instruction.

45 *** USER FATAL MESSAGE 45, DATA BLøCK NAMED ******** ALREADY APPEARED AS ØUTPUT QR WAS USED AS INPUT BEFØRE BEING DEFINED.
See Section 5.2 of the User's Manual.

46 *** USER FATAL MESSAGE 46, INCØRRECT REENTRY PØINT.
The last reentry card in the restart dictionary has a DMAP instruction number greater than the instruction number on the END card of the DMAP program.

47 *** USER FATAL MESSAGE 47, THIS INSTRUCTIØN CANN@T BE FIRST INSTRUCTIQN QF LØ@P.
CHKPNT DMAP instruction must not follow a LABEL instruction which is located at the top of a loop.

\section*{DIAGNOSTIC MESSAGES}
```

 48 *** USER WARNING MESSAGE 48, DATA BL\emptysetCK ******** IS ALWAYS REGENERATED, THEREF\emptysetRE IT WILL N\emptysetT
 BE CHECKP\emptysetINTED.
 This data block is generated by Input File Processors (IFP) and must not be checkpointed
 to insure proper restart.
 49 *** SYSTEM FATAL MESSAGE 49, MPL TABLE (M@DULE PR@PERTIES LIST) IS INC\emptysetRRECT.
 Error is in common block/XGP12/.
 50 *** SYSTEM FATAL MESSAGE 50, CANN\emptysetT FIND JUMP \emptysetSCAR ENTRY NEEDED F\emptysetR THIS RESTART.
 There must be a dummy JUMP instruction before every LABEL instruction at top of a loop
 for rigid formats.
 51 *** SYSTEM FATAL MESSAGE 51, NQT ENOUGH \emptysetPEN CDRE FQR XGPIBS R\emptysetUTINE.
 Additional core memory is required.
 52 *** SYSTEM FATAL MESSAGE 52, NAMED C0MMON /XLINK/ IS T\varrho日 SMALL.
 There must be one word in LINK table for every entry in MPL.
 53 *** USER FATAL MESSAGE 53, INC\emptysetRRECT F\emptysetRMAT IN AB\emptysetVE CARD.
 201 *** USER FATAL MESSAGE 201, REQUESTED BULK DATA DECK *********, NOT @N USER MASTER FILE.
Requested UMF problem identification number not found on currently mounted UMF tape.
202 *** SYSTEM FATAL MESSAGE 202, UMF C@ULD NØT BE \emptysetPENED.
User Master File (UMF) not present (destroyed) in FIST.
203 *** SYSTEM FATAL MESSAGE 203, ILLEGAL E\emptysetR \emptysetN UMF.
User Master File (UMF) contains no records in requested file.
204 *** USER FATAL MESSAGE 204, C\emptysetLD START, N\emptyset BULK DATA.
No data cards were found after the BEGIN BULK card. A blank card will satisfy this rule.
205 *** USER WARNING MESSAGE 205, CDLD START, DELETE CARDS IGN@RED.
Delete (/) cards were present and ignored within the Bulk Data Deck.
206 *** USER FATAL MESSAGE 206, PREVI\emptysetUS CØNTINUATI\emptysetN MNEM\emptysetNIC HAS A DUPLICATE.
Two or more continuation cards were found with column 2-8 identical.
207 *** USER INF\emptyset MESSAGE 207, BULK DATA NØT S@RTED, XSØRT WILL RE@RDER DECK.
Bulk Data Deck was not in alpha-numeric sort. Sorting will be performed. Sorting of
large deck can be time consuming.
208 *** USER FATAL MESSAGE 208, PREVIØUS CARD IS A DUPLICATE PARENT.
Two or more cards were found with column 74-80 identical and a continuation card is present with that mnemonic (column 2-8).

```
\[
6.2-6(7 / 1 / 70)
\]

209 *** USER FATAL MESSAGE 209, PREVIQUS **** C@NTINUATION CARDS HAVE NØ PARENTS.
One or more continuation cards were found with a mnenonic (column 2-8) not matching any other card (column 74-80).

210 *** SYSTEM FATAL MESSAGE 210, SCRATCH CØULD N甲T BE ØPENED.
One of the required scratch files was not present (destroyed) in FIST.

211 *** SYSTEM FATAL MESSAGE 211 , ILLEGAL E \(\emptyset\) QR ØN SCRATCH.
A required scratch file was formatted improperly.

212 *** SYSTEM FATAL MESSAGE 212, ILLEGAL E \(\emptyset F \operatorname{ON}\) ITAPE4.
Scratch file containing continuations was mispositioned.

213 *** SYSTEM FATAL MESSAGE 213, ILLEGAL EØF 9N ØPTP.
01d Problem Tape contained no bulk data (illegal format).

214 *** SYSTEM FATAL MESSAGE 214, ØPTP CØULD NØT BE ØPENED.
01d Problem Tape ( \(\emptyset \mathrm{PTP}\) ) not present (destroyed) in FIST.

215 *** SYSTEM FATAL MESSAGE 215, NPTP CQULD NØT BE ØPENED.
New Problem Tape (NPTP) not present (destroyed) in FIST.
216 *** SYSTEM FATAL MESSAGE 216, ILLEGAL INDEX.
FORTRAN computed-G \(\emptyset\)-T \(\emptyset\) has received an illogical value.

217 *** SYSTEM FATAL MESSAGE 217, ILLEGAL E 0 F 9 ITAPE4.

300 *** USER FATAL MESSAGE 300, DATA ERR@R IN FIELD UNDERLINED.
(1)

A data error as described in the text has been detected by utility routine XRCARD or RCARD.

300 *** USER FATAL MESSAGE 300, INVALID DATA CØLUMN 72.
(2)

Error in format of exponent.
300 *** USER FATAL MESSAGE 300, INTEGER DATA ØUT \(9 F\) MACHINE RANGE.
(3)

The limits are \(2^{31}-1\) for IBM, \(2^{59}-1\) for \(\operatorname{CDC}\) and \(2^{35}\)-1 for UNIVAC.

300 *** USER FATAL MESSAGE 300 , INVALID CHARACTER FØLLQWING INTEGER IN COLUMN ***.
(4)

Either an illegal delimeter was detected or a real number is missing the decimal.

300 *** USER FATAL MESSAGE 300, DATA ERR@R - UNANTICIPATED CHARACTER IN CØLUMN ***.
(5)
\(A \pm E\) or \(\pm D\) was expected based on other input data.
300 *** USER FATAL MESSAGE 300, DATA ERR \(\emptyset\) R MISSING DELIMETER ØR REAL PØWER ØUT \(\emptyset F\) MACHINE RANGE.
(6)

Either no delimeter was found or the power was exceeded. The limits are E-78 to E+75 . for IBM, E-38 to E+38 for UNIVAC and E-294 to E+322 for CDC.

300 *** USER FATAL MESSAGE 300, RØUTINE XRCARD FINDS ØUTPUT BUFFER T \(\emptyset \emptyset\) SMALL T \(\emptyset\) PRØCESS CARD (7) C@MPLETELY.

301 *** USER WARNING MESSAGE 301 , BULK DATA CARD ******** CØNTAINS INCØNSISTENT DATA.
SØRTED CARD C \(\emptyset\) UNT \(=\) ******

302 *** USER WARNING MESSAGE 302 , \(\emptyset N E\) ØR MøRE GRID CARDS HAVE DISPLACEMENT CØ@RDINATE SYSTEM ID QF -1.

303 *** SYSTEM FATAL MESSAGE 303, NØ ØPEN CØRE FØR IFP.
Overlay structure must be redefined.

304 *** SYSTEM FATAL MESSAGE 304, IFP NQT READING NPTP **** ****.
The Input File Processor subroutine IFP attempts to locate the bulk data file on the NPTP by searching it forward. The first two words of the file header records are examined for a match with the Hollerith string BULKDATA. If the bulk data is not found by the fifth file, the assumption is made that IFP is either not reading NPTP or that it has been badly written. The header record of fifth file is printed as part of the message.

\section*{dIAGNOSTIC MESSAGES}

311 *** USER FATAL MESSAGE 311, NøNUNIQUE FIELD 2 @N BULK DATA CARD ******** ***. Sorted bulk data card indicated must have a unique integer in field 2.

312 *** USER FATAL MESSAGE 312, TØØ MANY CØNTINUATIØNS FØR BULK DATA CARD ******. See bulk data card description in Section 2.4 of the User's Manual.

313 *** USER FATAL MESSAGE 313, ILLEGAL NUMBER \(9 F\) WØRDS \(9 N\) BULK DATA CARD ******. See bulk data card description in Section 2.4 of the User's Manual.

314 *** SYSTEM FATAL MESSAGE 314, INVALID CALL FRgM IFP ******. Code error, machine failure, or cell is being destroyed.

315 *** USER FATAL MESSAGE 315, FØRMAT ERR@R ON BULK DATA CARD ******. See bulk data card description in Section 2.4 of the User's Manual.

316 *** USER FATAL MESSAGE 316, ILLEGAL DATA ON BULK DATA CARD ******. See bulk data card description in Section 2.4 of the User's Manual.

317 *** USER FATAL MESSAGE 317, BAD DATA 9R FØRMAT \(9 R\) N@N-UNIQUE NAME DTI **** S@RTED CARD CQUNT ****.

See bulk data card description in Section 2.4 of the User's Manual.

318 *** SYSTEM FATAL MESSAGE 318, NØ RØØM IN /XDPL/ FØR DTI ****.
Overflow of Data Pool Table. See Section 2 of the Programmer's Manual.

\section*{NASTRAN SYSTEM AND USER MESSAGES}

319 *** SYSTEM FATAL MESSAGE 319, IFP READING EØF @N NPTP. Unexpected \(E \emptyset F\) encountered while attempting to read a card image.

320 *** USER FATAL MESSAGE 320, IFP ERR@R ****** LAST CARD PRØCESSED IS ******. Code error in IFP or XSØRT.

321 *** USER FATAL MESSAGE 321, N@NUNIQUE PARAM NAME *****. All names of parameters must be unique.

322 *** SYSTEM FATAL MESSAGE 322 , ILLEGAL ENTRY TØ IFSiP. IFP code error detected in IFSIP, IFS2P, IFS3P, IFS4P, IFS5P.

324 *** USER WARNING MESSAGE 324, BLANK CARD(S) IGN@RED. Blank bulk data cards are ignored by NASTRAN.
\(325^{\prime}\) *** USER FATAL MESSAGE 325 , BAD DATA \(\emptyset R\) FØRMAT \(\emptyset R\) N@NUNIQUE NAME. DMI ******. See bulk data card description in Section 2.4 of the User's Manual.

326 *** SYSTEM FATAL MESSAGE 326, NØ R@@M IN /XDPL/ FØR DMI ******. Overflow of Data Pool Table. See Section 2 of the Programmer's Manual.

327 *** USER FATAL MESSAGE 327, BAD DATA ØR FØRMAT ØR N@NUNIQUE NAME. DMIG ******. See bulk data card description in Section 2.4 of the User's Manual.

328 *** SYSTEM FATAL MESSAGE 328, ILLEGAL ENTRY T \(\emptyset\) IFS3P. IFP code error.

329 *** USER FATAL MESSAGE 329, ØNLY ØNE (1) AXIC CARD ALLØWED. See bulk data card description in Section 2.4 of the User's Manual.

330 *** SYSTEM FATAL MESSAGE 330, NØ RØ@M IN C@RE FØR PARAM CARDS.
Change overlay or increase core size.

331 *** USER FATAL MESSAGE 331, IMPR@PER PARAM CARD ******.
See bulk data card description in Section 2.4 of the User's Manual.

332 *** USER FATAL MESSAGE 332, AXIC CARD REQUIRED.
The presence of any conical shell data cards requires the presence of an AXIC card. See the AXIC bulk data card description in Section 2.4 of the User's Manual.

501 *** SYSTEM FATAL MESSAGE 501, MED TABLE INCØRRECT FØR THIS SØLUTIØN.
Input to subroutine XSBSET is incorrect. Look for format error in array SS.
```

 502 *** USER FATAL MESSAGE 502, ILLEGAL SUBSET NUMBER F\emptysetR THIS S\emptysetLUTI\emptysetN.
 User specified an incorrect subset number on S\emptysetL control card.
 503 *** USER FATAL MESSAGE 503, ILLEGAL S\emptysetLUTI\emptysetN NUMBER.
User specified an incorrect solution number on S\emptysetL control card.
504 *** USER FATAL MESSAGE 504, CANN\emptysetT CHANGE FR\emptysetM S\emptysetLUTI\emptysetN *** T\emptyset S\emptysetLUTI\emptysetN ***.
505 *** USER FATAL MESSAGE 505, CONTRQL CARD **** IS ILLEGAL.
Card preceding Message 505 cannot be processed correctly.
506 *** USER FATAL MESSAGE 506, CONTR\emptysetL CARD **** DUPLICATED.
Card preceding Message 506 cannot be input more than once.
507 *** USER FATAL MESSAGE 507, ILLEGAL SPECIFICATI@N \emptysetR F\emptysetRMAT \emptysetN PRECEDING CARD.
508 *** USER FATAL MESSAGE 508, PRØBLEM TAPE MUST BE ØN PHYSICAL TAPE FØR CHECKPØINTING. User requested checkpointing (i.e., CHKPNT YES) therefore Problem Tape must be setup on tape drive.
509 *** USER FATAL MESSAGE 509, WRØNG ØLD PRØBLEM TAPE M@UNTED. ØLD PR@BLEM TAPE ID = ********, ********,**/**/**, REEL NQ. = ***.
The 01d Problem Tape identification does not match the identification on the RESTART restart card.
510 *** SYSTEM FATAL MESSAGE 510, CHECKPØINT DICTI@NARY EXCEEDS C@RE SIZE - REMAINING RESTART CARDS IGN@RED.
You have run out of open core. If approach is DMAP try putting restart deck before DMAP sequence. If this does not solve problem, or if approach is not DMAP, then you must decrease size of restart deck.
511 *** SYSTEM FATAL MESSAGE 511, DMAP SEQUENCE EXCEEDS CØRE SIZE - REMAINING DMAP INSTRUCTIØNS IGN@RED.
You have run out of open core. Split the DMAP sequence somewhere prior to where Message 511 was printed out.
512 *** USER FATAL MESSAGE 512, $\emptyset L D$ PRØBLEM TAPE IS MISSING AND IS NEEDED FØR RESTART.
The Problem Tape corresponding to identification on RESTART control card must be setup on the unit assigned to the 01d Problem Tape.

```

513 *** USER FATAL MESSAGE 513, ALTER SEQUENCE NUMBERS ARE ØUT ØF ØRDER.

514 *** USER FATAL MESSAGE 514, ENDALTER CARD IS MISSING. Alter deck must end with ENDALTER control card.

515 *** USER FATAL MESSAGE 515, END INSTRUCTIØN MISSING IN DMAP SEQUENCE. DMAP sequence must end with END control card.

516 *** USER FATAL MESSAGE 516, UMF TAPE MUST BE M@UNTED \(9 N\) PHYSICAL TAPE DRIVE. The UMF tape must be setup on the unit assigned to it.

517 *** USER FATAL MESSAGE 517, WRØNG UMF TAPE M@UNTED - TAPE ID = ****.
The tape identification number on the UMF tape does not match the tape identification number on the UMF control card.

518 *** USER FATAL MESSAGE 518, CANN0T USE UMF TAPE FØR RESTART.

519 *** USER FATAL MESSAGE 519, ID CARD MUST PRECEDE ALL ØTHER C@NTRØL CARDS.

520 *** USER FATAL MESSAGE 520, CØNTRØL CARD **** IS MISSING.
The control card mentioned is required for this problem.

521 *** USER FATAL MESSAGE 521, SPECIFY A SØLUTIØN ØR A DMAP SEQUENCE BUT NØT BØTH.
You must either select a DMAP sequence from the library by using the \(\mathrm{S} \emptyset \mathrm{L}\) control card or by supplying your own DMAP sequence. Do one or the other, but not both.

522 *** USER FATAL MESSAGE 522, NEITHER A SØL CARD NØR A DMAP SEQUENCE WAS INCLUDED.
See Message 521.

523 *** USER FATAL MESSAGE 523, ENDALTER CARD ØUT ØF ØRDER.
ENDALTER control card must be preceded by the ALTER DECK.

524 *** SYSTEM FATAL MESSAGE 524, ALTERNATE RETURN TAKEN WHEN \(\emptyset P E N I N G\) FILE ****.
This occurs if file name is not in FIST or the end of tape was reached while writing on the file. The file name should correspond to one of the permanent entries in the FIST.

525 *** SYSTEM FATAL MESSAGE 525, ILLEGAL FgRMAT ENCøUNTERED WHILE READING FILE ****.
File is not in the correct format. Either the wrong tape was mounted or it does not contain what you think it should.

526 *** USER FATAL MESSAGE 526, CHECKPØINT DICTIØNARY ØUT \(\emptyset F\) SEQUENCE - REMAINING RESTART CARDS IGN@RED.

The checkpoint dictionary which follows the RESTART control.card must be sequenced according to first number on each card.

527 *** USER FATAL MESSAGE 527, DUPLICATE SUBSET NUMBER *****.

601 *** USER FATAL MESSAGE 601, THE KEYW@RD \(\emptyset N\) THE ABØVE CARD IS ILLEGAL \(\emptyset R\) MISSPELLED. SEE THE FØLLØWING LIST FØR LEGAL KEY WØRDS.

Case control expects each card to begin with a keyword (usually 4 characters in length). Your card does not. User Message 612 will list the legal keywords along with a brief description of function. To remove the error, consult Message 612 or NASTRAN case control card descriptions, User's Manual Section 2.3, and spell your request correctly.
 IS LEGAL. THE LAST FgUND WILL BE USED.

Remove the card with the duplicate meaning. Note that some cards have alternate forms.

\section*{NASTPAN SYSTEM AND USER MESSAGES}

603 *** USER FATAL MESSAGE 603, THE ABØVE CARD DØES NØT END PRØPERLY. CØMMENTS SHØULD BE PRECEDED BY A DQLLAR SIGN.
Case control cards of the form, name = value, should not contain more than one value. Consult your NASTRAN Case Control Deck document, User's Manual Section 2.3, for a complete description of the card or precede your comments with a dollar sign.

604 *** USER FATAL MESSAGE 604, THE AB \(\emptyset V E\) CARD HAS A NQNINTEGER IN AN INTEGER FIELD. Consult your NASTRAN Case Control Deck document, User's Manual Section 2.3, for legal values.

605 *** USER FATAL MESSAGE 605, A SYMSEQ OR SUBSEQ CARD APPEARS WITHØUT A SYMCØM \(\emptyset R ~ S U B C \emptyset M ~ C A R D . ~\) SYMSEQ or SUBSEQ cards must appear in a subcase defined by a SYMCØM or SUBCØM card. Check your Case Control Deck order and relabel your combination subcase.

606 *** USER FATAL MESSAGE 606, A REQUEST FQR TEMPERATURE DEPENDENT MATERIALS \(\emptyset C C U R S ~ A T ~ T H E ~\) SUBCASE LEVEL. ØNLY ØNE ALLOWED PER PRØBLEM.
Only one temperature field for materials is allowed per NASTRAN run. The last specified will be used for the entire run. If additional ones are desired, a modified restart is in order.

607 *** USER FATAL MESSAGE 607, A REPCASE SUBCASE MUST BE PRECEDED BY A SUBCASE \(\emptyset R\) SYM SUBCASE. A REPCASE subcase is an attempt to reoutput the previously computed case, therefore it cannot be the first subcase.

608 *** USER FATAL MESSAGE 608, THE SET ID SPECIFIED ØN THE AB \(\emptyset V E\) CARD MUST BE DEFINED PRI \(\emptyset R\) TO THIS CARD.
Set identification numbers must be specified prior to their use. Also sets specified within a subcase die at the end of the subcase. Redefine set (or define set) or move set out of subcase.

609 *** USER FATAL MESSAGE 609, SUBCASE DELIMITER CARDS MUST HAVE A UNIQUE IDENTIFYING INTEGER. Subcase type cards must have an identifying integer. These numbers must be strictly increasing. Renumber your subcase cards. The use of a nonblank delimiter (e.g., "=") will also cause this message to occur.

610 *** USER FATAL MESSAGE 610, THE VALUE FØLLØWiNG THE EQUAL SIGN IS ILLEGAL.
Case control cannot identify the \(B C D\) value after the equal sign. Consult NASTRAN case control card descriptions, User's Manual Section 2.3, for a full description of the card.

611 *** USER FATAL MESSAGE 611, TEN CARDS HAVE ILLEGAL KEY W@RDS. NASTRAN ASSUMES BEGIN BULK CARD IS MISSING. IT WILL NØW PRØCESS YØUR BULK DATA.
Only ten key words may be misspelled. A common source of this error may be the omission of the ØUTPUT(PLØT) or ØUTPUT(XYØUT) delimiter cards.

612 *** USER FATAL MESSAGE 612, --LIST OF LEGAL CASE CØNTROL MNEM9NICS.
This message is caused by Messages 601 or 611.

513 *** USER FATAL MESSAGE 613, THE ABØVE SET CØNTAINS 'EXCEPT' WHICH IS NOT PRECEDED BY 'THRU'. Only identification numbers included in THRU statements may be excepted. Simplify your SET request.

614 *** USER FATAL MESSAGE 614, THE ABØVE SET IS BADLY SPECIFIED.
The grammar of the SET list is so confused that IFP1 cannot continue. Simplify the SET list.

615 *** USER FATAL MESSAGE 615, AN IMPRØPER \(\emptyset R\) NØ NAME GIVEN T \(\emptyset\) THE ABØVE SET.
SET lists must have integer names. This SET list does not have one. SET \(10=\) is the correct format. Give the SET a correct integer name.

616 *** USER FATAL MESSAGE 616, 'EXCEPT' CANNOT BE FØLL \(\varnothing W E D\) BY 'THRU'. LIST EXPLICITLY ALL EXCEPTIDNS.
EXCEPT in SET list can only be followed by integers. An integer larger than THRU pair terminates THRU. Either list exceptions explicitly, use 2 'THRU's or terminate first THRU.

617 *** USER FATAL MESSAGE 617, A N@NP@SITIVE INTEGER APPEARS IN A PØSITIVE PØSITIQN.
Most integer values in case control must be positive. The above card either has a negative integer or a \(B C D\) value in a positive position. Check the Case Control Deck documentation in Section 2.3 of the User's Manual for the proper card format.

618 *** USER FATAL MESSAGE 618, PLøTTER ØUTPUT IS REQUESTED BUT NØ PLøT TAPE IS SET UP. Neither PLT1 or PLT2 is a physical tape. Remove the plot control packet or set up the appropriate tape.

619 *** USER WARNING MESSAGE 619, SET MEMBER *** BELØNGS TØ *** THRU ***.
A set member is already included in a THRU. The individual member will be absorbed in the THRU.

620 *** USER WARNING MESSAGE 620, DUPLICATE *** IS IN SET LIST.
A set member is listed twice. The second reference will be deleted.

621 *** USER WARNING MESSAGE 621, INTERVAL *** THRU *** \(\emptyset V E R L A P S\) INTERVAL *** THRU ***. THE MAXIMUM INTERVAL WILL BE USED.

625 *** USER FATAL MESSAGE 625, SUBCASE ID'S MUST BE LESS THAN \(99,999,999\).
Reduce the size of your subcase identification number. Note also that \(B C D\) subcase identification numbers are not legal.

626 *** USER FATAL MESSAGE 626, SUBCØM SUBCASE DØES NØT HAVE A SUBSEQ CARD.
A SUBCDM SUBCASE must contain a SUBSEQ card to define the linear combination coefficients.

627 *** USER FATAL MESSAGE 627, THE ABØVE SUBCASE HAS BØTH A STATIC LøAD AND A REAL EIGENVALUE METHØD SELECTIØN -- REM@VE @NE.

The Buckling Rigid Format (5) requires two subcases: one for Statics and one for Buckling. Both a load and a method selection cannot take place in the same subcase.

628 *** USER FATAL MESSAGE 628, THERMAL, DEFORMATIØN, AND EXTERNAL LØADS CANNØT HAVE THE SAME SET IDENTIFICATIQN NUMBER.

Set id's specified on the LØAD, TEMP (LØAD), and DEFØRM Case Control Cards must be unique.
629 *** USER HARNING MESSAGE 629, ECHØ CARD HAS REPEATED ØR UNRECØGNIZABLE SPECIFICATION DATAREPEATED SPECIFICATIONS WILL BE IGN@RED, UNRECgGNIZABLE SPECIFICATIONS WILL BE TREATED AS SORT.:

675 *** USER FATAL ERRØR MESSAGE 675, AB@VE CARD DØES NØT BEGIN WITH A N@NNUMERIC WØRD.

676 *** USER FATAL ERRØR MESSAGE 676, **** IS NØT RECØGNIZED ØN ABØVE CARD.

677 *** USER FATAL ERR@R MESSAGE 677, ILLEGAL VALUE SPECIFIED.

678 *** USER FATAL ERR@R MESSAGE 678, *** CØNTRADICTS PREVIØUS DEFINITIØN.

679 *** USER FATAL ERRØR MESSAGE 679, *** DELIMETER ILLEGALLY USED.

680 *** USER FATAL ERR@R MESSAGE 680, **** ILLEGAL IN STATEMENT.

681 *** USER FATAL ERR@R MESSAGE 681, **** IS ILLEGAL IN STATEMENT.

682 *** USER FATAL ERRØR MESSAGE 682, **** IS ILLEGAL IN STATEMENT.

683 *** USER FATAL ERRØR MESSAGE 683, TøØ MANY SUBCASES. MAXIMUM \(=200\) ØN ANY \(\emptyset N E ~ X Y-\emptyset U T P U T\) CØMMAND CARD.

684 *** USER FATAL ERRØR MESSAGE 684, SUBCASE-ID IS LESS THAN 1 gR IS NøT IN ASCENDING ORDER.

685 *** USER FATAL ERRØR MESSAGE 685, **** = PøINT 9 R ELEMENT ID IS ILLEGAL (LESS THAN 1).

686 *** USER FATAL ERRØR MESSAGE 686, NEGATIVE \(\emptyset R\) ZER \(\emptyset\) C \(\emptyset M P \emptyset N E N T S ~ A R E ~ I L L E G A L . ~\)

687 *** USER FATAL ERRØR MESSAGE 687, ALPHA-CØMP@NENTS ARE NØT PREMITTED FØR STRESS \(\emptyset R\) FØRCE XY-ØUTPUT REQUESTS.

688 *** USER FATAL ERRØR MESSAGE 688, **** CØMPØNENT NAME NØT RECØGNIZED.

689 *** USER FATAL ERRØR MESSAGE 689, LAST CARD ENDED WITH A DELIMETER BUT NØ CØNTINUATIØN CARD WAS PRESENT.

690 *** USER FATAL ERR@R MESSAGE 690, TYPE \(\emptyset F\) CURVE WAS N@T SPECIFIED. (E.G. DISPLACEMENT, STRESS, ETC.).

691 *** USER FATAL ERR@R MESSAGE 691, M@RE THAN 2 ØR UNEQUAL NUMBER ØF CØMPØNENTS F@R IDENTIFICATIØN NUMBERS WITHIN A SINGLE FRAME.

692 *** USER FATAL ERR@R MESSAGE 692, XY- \(\emptyset U T P U T\) CØMMAND IS INCØMPLETE.
693 *** USER FATAL ERRØR MESSAGE 693, INSUFFICIENT CØRE FØR SET TABLE.

694 *** USER FATAL ERRØR MESSAGE 694, AUTØ ØR PSDF REQUESTS MAY NØT IUSE SPLIT FRAME, THUS ØNLY QNE CØMPØNENT PER ID IS PERMITTED.

695 *** USER FATAL ERRØR MESSAGE 695, CØMP@NENT VALUE = **** IS ILLEGAL FØR AUTØ ØR PSDF VECTØR REQUESTS.

696 *** USER FATAL MESSAGE 696, CØMPØNENT VALUE = ******** IS ILLEGAL FØR VECTØR TYPE SPECIFIED.

969 *** USER FATAL ERROR MESSAGE 969, CØMP@NENT VALUE = **** IS ILLEGAL FØR VECTØR TYPE SPECIFIED.

975 *** USER WARNING MESSAGE 975, XYTRAN D@ES NØT RECØGNIZE **** AND IS IGNØRING:
976 *** USER WARNING MESSAGE 976, ØUTPUT DATA BLøCK **** IS PURGED. XYTRAN WILL PRØCESS ALL REQUESTS \(\emptyset T H E R ~ T H A N ~ P L \emptyset T . ~\)

977 *** USER WARNING MESSAGE 977, FØLLøWING NAMED DATA BLØCK IS NØT IN S \(\emptyset\) RT2 FØRMAT.
978 *** USER WARNING MESSAGE 978, XYTRAN M 9 DULE FINDS DATA RL \(\emptyset C K\) ( \(* * * *\) ) PURGED, NULL, \(\emptyset R\) INADEQUATE, AND IS IGN@RING XY-ØUTPUT REQUEST FØR - **** - CURVES.

979 *** USER WARNING MESSAGE 979, AN XY-ØUTPUT REQUEST FQR PØINT ØR ELEMENT ID **** - **** CURVE IS BEING PASSED QVER. THE ID CØULD NØT BE FØUND IN DATA BLØCK ****.

980 *** USER WARNING MESSAGE 980 , INSUFFICIENT CØRE Tø HANDLE ALL DATA FØR ALL CURVES \(\emptyset F\) THIS FRAME ID = **** CØMP@NENT = **** DELETED FR@M ØUTPUT.

981 *** USER WARNING MESSAGE 981 , CØMPQNENT \(=* * * *\) FØR ID \(=* * * *\) IS Tø日 LARGE. THIS C@MPQNENTS CURVE NØT ØUTPUT.

982 *** USER WARNING MESSAGE 982, FØRMAT ØF SDR3 INPUT DATA BLØCK **** DØES NØT PERMIT SUCCESSFUL SØRT2 PRØCESSING.

983 *** USER WARNING MESSAGE 983, SDR3 HAS INSUFFICIENT CØRE TØ PERF@RM SØRT2 \(9 N\) INPUT DATA BLøCK **** \(\emptyset R\) DATA BLøCK IS NØT IN C \(\emptyset R R E C T\) FØRMAT.

\section*{DIAGNOSTIC MESSAGES}

984 *** USER WARNING MESSAGE 984 , SDR3 FINDS \(\emptyset U T P U T\) DATA BLøCK **** PURGED.

985 *** USER WARNING MESSAGE 985, SDR3 FINDS SCRATCH **** PURGED.

986 *** USER WARNING MESSAGE 986, INSUFFICIENT CดRE FดR SDR3.

991 *** USER WARNING MESSAGE 991, XYPLøT INPUT DATA FILE **** NØT FØUND. XYPLØT ABANDØNED. The input data file probably has been purged and there were no plots to be done.

992 *** USER WARNING MESSAGE 992, XYPL \(\emptyset T\) INPUT DATA FILE I.D. RECØRDS TضØ SH@RT. XYPL \(\emptyset T\) ABAND@NED.

The input data file records have invalid word counts and further plotting is not feasible.

993 *** USER WARNING MESSAGE 993, XYPL \(\emptyset T\) FØUND ØDD NØ. ØF VALUES FØR DATA PAIRS IN FRAME ****, CURVE ND. ****. LAST VALUE IGN@RED.
May indicate a bad input file, but plotting continues.

994 *** USER WARNING MESSAGE 994, XYPL \(\emptyset \mathrm{T}\) ØUTPUT FILE NAME **** NØT FØUND. XYPLØT ABANDQNED. A magnetic tape for plotting has not been properly set up and further plotting is useless.

995 *** USER WARNING MESSAGE 995, XYPLØT HAS ILLEGAL PLØTTER NUMBER = **** FR@M INPUT DATA FILE. PLØTTER NØ. **** ASSUMED.
Probable cause is the user not setting up the proper plotter number in the Case Control Deck. The plotting will be done on the plotter most commonly used at the installation.

996 *** USER WARNING MESSAGE 996, SPECIFIED PL \(\emptyset T T E R\) PAPER SIZE TØD SMALL. XYPL \(\emptyset T\) ASSUMES DIMENSIØN IS 8 INCHES.
Message is for table plotter only. Assumption is made that plotter paper will be at least as large as stated. In any event the table plotter will have an inch margin on all sides.

997 *** USER WARNING MESSAGE 997, Nの. ***. FRAME NØ. **** INPUT DATA INCØMPATIBLE. ASSUMPTIØNS MAY PRODUCE INVALID PLDT.
\(N \varnothing\). *** may take any value from 1 to 4 with the following meaning:
1. Specified \(X\) maximum equal \(X\) minimum. If this value is zero, then \(X\) maximum is set to 5.0 and \(X\) minimum to -5.0 , otherwise 5 times the absolute value of \(X\) maximum is added to \(X\) maximum and subtracted from \(X\) minimum.
2. Specified \(X\) maximum is smaller than \(X\) minimum. The values are reversed.
3. Same meaning as number 1 except for \(Y\) maximum and \(Y\) minimum.
4. Same meaning as number 2 except for \(Y\) maximum and \(Y\) minimum.

\section*{6．2．2 Executive Module Messages}

1001 ＊＊＊SYSTEM FATAL MESSAGE 1001，DSCAR N甲T FØUND IN DPL． ØSCAR file not present（destroyed）in Data Pool Dictionary．

1002 ＊＊＊SYSTEM FATAL MESSAGE 1002，DSCAR CQNTAINS NØ MøDULES． XSFA found no modules on ØSCAR needing file allocation．

1003 ＊＊＊SYSTEM FATAL MESSAGE 1003，PØØL CDULD NQT BE DPENED． Data Pool File（PQQL）not present（destroyed）in FIST．

1004 ＊＊＊SYSTEM FATAL MESSAGE 1004，ILLEGAL EDF ØN PøØL．
End－Of－File encountered before ØSCAR file reached on Data Pool．

1011 ＊＊＊SYSTEM FATAL MESSAGE 1011，MD ØR S＠S TABLE QVERFLøW．
Module description or serial øSCAR table overflowed．

1012 ＊＊＊SYSTEM FATAL MESSAGE 1012，PØøL CØULD NØT BE ØPENED．
Data Pool File（PDOL）not present（destroyed）in FIST．

1013 ＊＊＊SYSTEM FATAL MESSAGE 1013，ILLEGAL E＠R \(9 N\) PØØL．
DSCAR record has illegal format．

1014 ＊＊＊SYSTEM FATAL MESSAGE 1014，PQQL FILE MIS－POSItIqNED．
OSCAR（PDDL）file not at position passed in XSFA calling sequence．
\(10<1\)＊＊＊SYSTEM FATAL MESSAGE 1021，FIAT QVERFLøWED．
FIAT／XFIAT／Table overflowed－reduce number of logical files．See Section 2 of the Programmer＇s Manual．

1031 ＊＊＊SYSTEM FATAL MESSAGE 1031，DPL ØVERFL＠W．
Data Pool Dictionary／XDPL／overflowed－increase complied size．See Section 2 of the Progranmer＇s Manual．

1032 ＊＊＊SYSTEM FATAL MESSAGE 1032，Pø日L QR FILE BEING PØØLED／UN－PØ日LED CQULD NøT BE DPENED． Files not present（destroyed）in FIST．

1033 ＊＊＊SYSTEM FATAL MESSAGE 1033，ILLEGAL EØF 9N FILE BEING Pø0LED． File being pooled has illegal format．

1034 ＊＊＊SYSTEM FATAL MESSAGE 1034，ILLEGAL EØR 9N FILE BEING Pø0LED．
File being pooled has illegal format（bad header）．

\section*{DIAGNOSTIC MESSAGES}
\begin{tabular}{|c|c|}
\hline \[
1035 \text { * }
\] & \begin{tabular}{l}
＊＊＊SYSTEM FATAL MESSAGE 1035，EQUIV INDICATED，N＠NE FØUND． \\
Fille（data block）equivalence not found as indicated by XSFA．
\end{tabular} \\
\hline 1041 ＊ & SYSTEM FATAL MESSAGE 1041，ØLD／NEW PØ日L CØULD NØT BE ØPENED． Files not present（destroyed）in FIST． \\
\hline 1051 ＊ & \begin{tabular}{l}
＊＊＊SYSTEM FATAL MESSAGE 1051，FIAT ØVERFLØW． \\
FIAT／XFIAT／overflowed－reduce number of logical files．See Section 2 of the Programmer＇s Manual．
\end{tabular} \\
\hline 1101 ＊ & USER FATAL MESSAGE 1101，CØULD NØT ØPEN FILE NAMED Data block has not been generated． \\
\hline 1102 ＊＊ & \begin{tabular}{l}
＊＊＊SYSTEM FATAL MESSAGE 1102 ，C COULD NפT ØPEN FILE NAMED \(\square\) \\
Problem Tape（NPTP）or Pool Table（PD冃L）File linkage is broken．Look for error in ／XFIST／，／XPFIST／or／XXFIAT／．
\end{tabular} \\
\hline 1103 ＊ & ＊＊＊SYSTEM FATAL MESSAGE 1103，UNABLE T甲 PQSITIØN DATA PøøL FILE CØRRECTLY． Contents of／XDPL／does not correspond to contents of PD0L file． \\
\hline 1104 ＊＊ & SYSTEM FATAL MESSAGE 1104，FDICT TABLE IS INCORRECT． Subroutine XCHK is not generating FDICT correctly． \\
\hline 1105 ＊ & USER FATAL MESSAGE 1105，CANNØT FIND DATA BLøCK NAMED HEADER RECØRD＝ Data block name or equivalenced data block name must match header record． \\
\hline 1106 ＊＊ & USER FATAL MESSAGE 1106，CHECKP＠INT DICTI甲NARY ØVERFLøWED THERE IS Nø MøRE CØRE AVAILABLE． Restart problem from this point with dictionary available． \\
\hline \[
1107 \text { ** }
\] & SYSTEM FATAL MESSAGE 1107，CANNØT FIT DATA BLøCK NAMED＊＊＊＊＊＊＊＊\(\emptyset N\) TWØ PRØBLEM TAPE REELS． Use full tape reels for Problem Tape． \\
\hline 1108 ＊＊ & \begin{tabular}{l}
SYSTEM FATAL MESSAGE 1108，PURGE TABLE ØVERFLøWED． \\
Reduce the number of data blocks being checkpointed at one time by replacing a single CHKPNT instruction with two CHKPNT instructions ．
\end{tabular} \\
\hline 1109 ＊＊ & SYSTEM FATAL MESSAGE 1109，CANN＠I FIND DATA BLgCK NAMED NXPTDC HEADER REC＠RD＝ Problem Tape is not positioned correctly for reading NXPTDC．Problem is in subroutine which previously wrote NXPTDC onto Problem Tape．Suspect modules are XGPI，XCEI or XCHK． \\
\hline
\end{tabular}

\section*{NASTRAN SYSTEM AND USER MESSAGES}

1126 *** SYSTEM FATAL MESSAGE 1126 , ADDRESS \(\emptyset F\) BUFFER LESS THAN ADDRESS \(\emptyset F / X N S T R N /\). Highly unlikely. Program bug or machine error.

1127 *** SYSTEM FATAL MESSAGE 1127, BUFFER ASSIGNED. EXTENDS INTØ MASTER INDEX AREA. Calling program bug in buffer allocation or first word of /SYSTEM/ has been altered.

1128 *** SYSTEM FATAL MESSAGE 1128 , 9 N AN 9 PEN CALL WITHØUT REWIND, THE BLøCK NUMBER READ D@ES NøT MATCH EXPECTED VALUE.

Probable I/Ø error.

1129 *** SYSTEM FATAL MESSAGE 1129, \(\emptyset N\) A CALL WRITE THE WØRD C@UNT IS NEGATIVE.
Definite calling program error.

1130 *** SYSTEM FATAL MESSAGE 1130 , 9 N A CALL READ THE C@NTRQL W@RD AT WHICH THE FILE IS PØSITIØNED IS NØT ACCEPTABLE.

Attempt to read string formatted record which is not allowed.

1131 *** SYSTEM FATAL MESSAGE 1131, L \(\emptyset G I C A L ~ R E C \emptyset R D ~ T R A I L E R ~ N \emptyset T ~ R E C \emptyset G N I Z A B L E ~ A S ~ S U C H . ~\)
Probable GIN@ bug or hardware error.

1132 *** SYSTEM FATAL MESSAGE 1132, UNRECØGNIZABLE CØNTRض் WØRD DU̇RING PRØCESSING DF A BCKREC CALL.

Probable GIN@ bug or hardware error.

1133 *** SYSTEM FATAL MESSAGE 1133, AFTER A PØSITIØNING CALL TØ IØ6600, DURING PRØCESSING \(\emptyset F\) A BCKREC CALL THE BLØCK READ WAS NØT THE EXPECTED QNE.

Probable 106600 bug or possible \(1 / \emptyset\) error.

1134 *** SYSTEM FATAL MESSAGE 1134 , CALL SKPFIL IN A FØRWARD DIRECTI@N ØN A FILE NøT ØPENED FØR ØUTPUT IS NØT SUPP@RTED.

1135 *** SYSTEM FATAL MESSAGE 1135 , FILPøS WAS CALLED 9 N A FILE \(\emptyset P E N E D\) FØR \(\emptyset U T P U T\).

1136 *** SYSTEM FATAL MESSAGE 1136, ENDPUT WAS CALLED WITH BLøCK (8) \(=-1\).
Most likely PUTSTR was not called first.

1137 *** SYSTEM FATAL MESSAGE 1137, MøRE TERMS WRITTEN IN STRING THAN WERE AVAILABLE Tø WRITE. Most likely subroutine logic error.

1138 *** SYSTEM FATAL MESSAGE 1138 , CURRENT BUFFER PØINTER EXCEEDS LAST DATA W@RD IN BLØCK.
Probably a bug in PUTSTR in the computation of the number of terms available to write in a string.
\[
6.2-18 a(12 / 31 / 74)
\]

\section*{DIAGNOSTIC MESSAGES}

1139 *** SYSTEM FATAL MESSAGE 1139 , 9 N AN INITIAL CALL TØ GETSTR, THE RECØRD IS NØT P@SITIØNED AT THE COLUMN HEADER.

Either the record is not a string formatted record, or the calling routine has not made a proper sequence of GETSTR, ENDGET calls.

1140 *** SYSTEM FATAL MESSAGE 1140, STRING DEFINITI@N W@RD NØT RECØGNIZABLE.
Probable cause is a failure to call ENDGET to complete processing of the previous string.

1141 *** SYSTEM FATAL MESSAGE 1141 , FIRST W@RD \(\emptyset F\) A D \(\emptyset U B L E\) PRECISIØN STRING IS N \(\emptyset T\) \(\emptyset N\) A D \(\emptyset U B L E\) PRECISION BØUNDRY.

This error is probably due to a bug in any of PUTSTR, \(\emptyset P E N\) or NASTI 10 , all of which have responsibility for insuring proper alignment.

1142 *** SYSTEM FATAL MESSAGE 1142 , CURRENT BUFFER PØINTER IS BEYOND RANGE \(\emptyset F\) INFØRMATIØN IN BUFFER.

Either an attempt to read beyond end-of-information or a GIN \(\emptyset\) logic bug.

1143 *** SYSTEM FATAL MESSAGE 1143, ØN AN INITIAL CALL. Tø GETSTB, THE FILE IS NØT PøSITIØNED AT AN ACCECTABLE PØINT.

File should be positioned at a beginning of record or end-of-file.

1144 *** SYSTEM FATAL MESSAGE 1144 , END- \(\emptyset F-S E G M E N T\) C \(\emptyset N T R \emptyset L\) w \(\emptyset R D\) SH@ULD HAVE IMMEDIATELY PRECEDED CURRENT PØSITIפN AND IT DID NQT.

GINØ logic error.

1145 *** SYSTEM FATAL MESSAGE 1145, CQLUMN TRAILER N@T FØUND.
Previous record to be read backwards is not a string formatted record.

1146 *** SYSTEM FATAL MESSAGE 1146, PREVI@US RECQRD TØ BE READ BACKWARDS WAS NQT WRITTEN WITH STRING TRAILERS.

1147 *** SYSTEM FATAL. MESSAGE 1147, STRING RECØGNITIØN WøRD NØT RECøGNIZED.
A subroutine may not have called GETSTB to indicate completion of processing of previous string or a bug in GETSTB logic.

1148 *** SYSTEM FATAL MESSAGE 1148, RECØRD C@NTRØL WØRD NØT IN EXPECTED PØSITIQN.
Logic error in GETSTB or PUTSTR when string was written.

1149 *** SYSTEM FATAL MESSAGE 1149, RECTYP WAS CALLED FØR A FILE \(\emptyset P E N E D\) FOR \(\emptyset U T P U T\). Not allowed.

1150 *** SYSTEM FATAL MESSAGE 1150 , RECTYP MUST BE CALLED WHEN THE FILE IS PØSITIQNED AT THE BEGINNING \(\emptyset F\) A RECØRD.

1151 *** SYSTEM FATAL MESSAGE 1151, ØN A CALL TØ ØPEN THE BUFFER ASSIGNED ØVERLAPS A PREVIØUSLY ASSIGNED BUFFER.

1152 *** SYSTEM FATAL MESSAGE 1152, CALL TØ ØPEN F@R AN ALREADY ØPEN FILE.

1153 *** SYSTEM FATAL MESSAGE 1153, FILE NØT פPEN.

1154 *** SYSTEM FATAL MESSAGE 1154 , GINØ REFERENCE NAME NØT IN FIST \(9 R\) FILE NØT \(\emptyset P E N\).

1155 *** SYSTEM FATAL MESSAGE 1155, CALL Tø GETSTR ØCCURRED WHEN THE FILE WAS PØSITI@NED AT END- \(\varnothing\) F-FILE.

1156 *** SYSTEM FATAL MESSAGE 1156, ATTEMPTED TØ WRITE 9 N AN INPUT FILE.

1157 *** SYSTEM FATAL MESSAGE 1157, ATTEMPTED TØ READ FRØM AN QUTPUT FILE.

1158 *** SYSTEM FATAL MESSAGE 1158, A CALL Tø BLDPK \(\emptyset R\) PACK IN WHICH EITHER TYPIN \(\emptyset R\) TYPดUT IS ØUT \(\emptyset F\) RANGE.

1159 *** SYSTEM FATAL MESSAGE 1159, RØW PØSITIØNS \(\emptyset F\) ELEMENTS FURNISHED TØ ZBLPKI \(\emptyset R\) BLDPKI ARE N@T IN M@NØTØNIC INCREASING SEQUENCE.

1160 *** SYSTEM FATAL MESSAGE 1160, \(\emptyset \mathrm{N}\) A CALL T \(\emptyset\) BLDPKN, FILE NAME D \(\emptyset E S\) N \(\emptyset T\) MATCH PREVIØUS CALLS. BLDPK was not called prior to call to BLDPKN.

1161 *** SYSTEM FATAL MESSAGE 1161, A CALL T \(\emptyset\) INTPK \(\emptyset R ~ U N P A C K ~ I N ~ W H I C H ~ T Y P \emptyset U T ~ I S ~ \emptyset U T ~ \emptyset F ~ R A N G E . ~\)

1162 *** SYSTEM FATAL MESSAGE 1162 , \(\emptyset N\) AN ATTEMPT T \(\emptyset\) READ A SUBINDEX AT THE TIME \(\emptyset F\) A CALL T \(\emptyset\) \(\emptyset P E N\) AN END- \(\emptyset F-F I L E\) WAS ENCØUNTERED \(\emptyset R\) WR@NG NUMBER \(\emptyset F\) W@RDS READ.

The file has never been written and 106600 failed to detect it; possible \(1 / \emptyset\) error.

1163 *** SYSTEM FATAL MESSAGE, A READ ATTEMPT WHEN THE C@RRESP@NDING SUBINDEX IS ZERØ.
Normally this indicates an attempt to read past the end-of-information. However, if called from FILPQS, suspect is subroutine error in saving and returning a correct file position.

1164 *** SYSTEM FATAL MESSAGE, FØLLOWING A READ ATTEMPT \(\emptyset N\) AN INDEXED FILE, EITHER AN:END- \(\emptyset F-F I L E\) WAS ENCØUNTERED \(\emptyset R\) THE NUMBER \(\emptyset F\) WgRDS READ WAS INCØRRECT.

I/ \(\varnothing\) error.
*** SYSTEM FATAL MESSAGE 1165, QN AN ATTEMPT Tø READ A SEQUENTIAL FILE, AN END- \(\varnothing \mathrm{F}-\mathrm{FILE}\) \(\emptyset R\) AN END- \(\emptyset F-I N F \emptyset R M A T I \emptyset N\) WAS ENC \(\emptyset U N T E R E D\).

1166 *** SYSTEM FATAL MESSAGE 1166 , \(\emptyset N\) AN ATTEMPT TØ READ A SEQUENTIAL FILE, A LØNG RECØRD WAS ENCØUNTERED.

1167 *** SYSTEM FATAL MESSAGE 1167, ØN AN ATTEMPT Tø READ A SEQUENTIAL FILE A SH@RT RECøRD WAS ENCØUNTERED.

1168 *** SYSTEM FATAL MESSAGE 1168, A CALL TØ I 96600 WITH \(\emptyset P C \emptyset D E=5\) (FØRWARD SPACE) IS NØT SUPPØRTED.

1169 *** SYSTEM FATAL MESSAGE 1169, ILLEGAL CALL TYPE, LØGIC ERR@R IN I 196600.

1170 *** SYSTEM FATAL MESSAGE 1170 , ILLEGAL CALL TØ NASTIØ, LøGIC ERRØR IN IØ6600.

1171 *** SYSTEM FATAL MESSAGE 1171, ØN A P@SITI@N CALL, THE BLØCK NUMBER REQUESTED IS NØT FØUND IN CQRE WHEN IT IS EXPECTED THERE.

Either the caller has written in the area furnished to NASTID or there is a logic error in NASTID.

1172 *** SYSTEM FATAL MESSAGE 1172, WHEN ATTEMPTING TØ READ A NEW INDEX, THE NUMBER ØF WøRDS RETURNED WAS INCgRRECT. Either an I/ \(\varnothing\) error or logic error in NASTID.

1201 *** SYSTEM FATAL MESSAGE 1201, FIAT ØVERFL@W.
FIAT /XFIAT/ overflowed - reduce number of logical files. See Section 2.4 of the Programmer's Manual.

1202 *** SYSTEM FATAL MESSAGE 1202, DPL ØVERFLøW.
Data Pool Dictionary /XDPL/ overflowed - increase compiled size. See Section 2.4 of the Programmer's Manual.

1300 *** SYSTEM FATAL MESSAGE, END-ØF-FILE WAS CALLED \(\cap N\) A FILE \(\emptyset P E N\) F 9 R INPUT.

1301 *** SYSTEM FATAL MESSAGE, END-OF-FILE ENCAUUNTERED.
An error in the calling program caused an unexpected end-of-file.

1302 *** SYSTEM FATAL MESSAGE, ZERØ LENGTH REC@RD SEGMENT ENCØUNTERED.
A zero length record segment occurred before the last record in a block.

1303 *** SYSTEM FATAL MESSAGE, ATTEMPT TØ GET A STRING PRIQR TD INFØRMATIDN.
There is an error in the calling program.

1304 *** SYSTEM FATAL MESSAGE, UNRECØGNIZED CQNTRgL WQRD.
The calling program may have overwritten a buffer.

\section*{NASTRAN SYSTEM AND USER MESSAGES}

1305 *** SYSTEM FATAL MESSAGE, BL.øCK NUMBER CHECK FAILED.
In the process of making a data block core resident, the block number did not have the expected value.

1306 *** SYSTEM FATAL MESSAGE, BLøCK NUMBER IN BLøCK T \(\emptyset\) BE WRITTEN D \(\emptyset E S\) N \(\emptyset T\) MATCH NUMBER IN FILE CØNTRめL BLØCK.

1307 *** SYSTEM FATAL MESSAGE, BL \(\emptyset C K\) NUMBER \(\emptyset F\) BL \(\emptyset C K\) T \(\emptyset\) BE WRITTEN IS N \(\emptyset T\) IN CURRENT UNIT. The block number was not in the current unit and not equal to the block number in the preceeding unit.

1308 *** SYSTEM FATAL MESSAGE, ATTEMPT Tף READ BEYøND DȦTA.

1309 *** SYSTEM FATAL MESSAfE, C \(\emptyset R E\) RESIDENT DATA BLgCK Number DgES NgT MATCH NIMBER IN FILE CØNTRØL BLøCK.

1310 *** SYSTEM FATAL MESSAGE, PดINTER TØ NEXT CØRE RESIDENT DATA BLøCK IS ZERด Next block should be in core.

1311 *** SYSTEM FATAL MESSAGE, BLøCK NUMBER Tø BE READ IS NøT INCLUDED IN CURRENT CHAIN \(\emptyset F\) UNITS.

1312 *** SYSTEM FATAL MESSAGE, BLØCK NUMBER ØF BLøCK READ FRØM DISK DØES NØT MATCH NUMBER IN FILE CØNTRQL BLDCK.

1313 *** SYSTEM FATAL MFSSAGE, PØINTER TØ CØRE RESIDENT DATA BLØCK IS PØSITIØNED PRIØR Tの INFØRMATIØN.

1314 *** SYSTEM FATAL MESSAGE, ATTEMPT T \(\emptyset\) PGSITION A FILE \(\emptyset P E N E D ~ T \emptyset\) WRITE.

1315 *** SYSTEM FATAL MESSAGE, BLØCK NUMBER N@T FØUND.
Logic error in an attempt to position a core resident data block.

1316 *** SYSTEM FATAL MESSAGE, NØ DATA EVENT CONTR \(\emptyset L\) BL \(\emptyset C K\) AVAILABLE.

1317 *** SYSTEM FATAL MESSAGE, ERRØR IN INTERNAL SUIBRØUTINE IN NASTIØ.

1318 *** SYSTEM FATAL MESSAGE, ATTEMPT TØ READ BEYØND END- \(\varnothing\) F-DATA.

1319 *** SYSTEM FATAL MESSAGE, DCB SYNCHR@NØUS ERR@R DETECTED.
Data control block improperly written.

1320 *** SYSTEM FATAL MESSAGE, FIRST TERM IN RØW IS NØT A DIAGØNAL TERM.

1321 *** SYSTEM FATAL MESSAGE, FIRST TERM IN R@W IS NØT A DIAGØNAL TERM.

1322 *** SYSTEM FATAL MESSAGE 1322, BAD STATUS RETURN ON A NTRAN READ CALL.
Possible I/Ø error.

1323 *** SYSTEM FATAL MESSAGE 1323, END- \(\emptyset F-D A T A ~ E N C Q U N T E R E D\).
The unit on which the end-of-data occurred is not a tape.

1324 *** SYSTEM FATAL MESSAGE 1324, INCØRRECT WØRD CØUNT ØN A NTRAN READ CALL.
Number of words read by NTRAN is incorrect.

1325 *** SYSTEM FATAL MESSAGE 1325, BAD STATUS RETURN \(9 N\) A NTRAN WRITE CALL.
Possible I/Ø error.

1326 *** SYSTEM FATAL MESSAGE 1326 , INCøRRECT NUMBER 9 F WøRDS PASSED BY NTRAN.

1327 *** SYSTEM FATAL MESSAGE 1327, ILLEGAL RETURN FRQM FWDREC.

1701 *** SYSTEM WARNING MESSAGE 1701, AVAILABLE CØRE EXCEEDED BY ********* LINE IMAGE BLØCKS.

1702 *** SYSTEM INFØRMATIØN MESSAGE 1702, UTILITY MØDULE SEEMAT WILL ABANDØN PRØCESSING DATA BLDCK ********.

1703 *** USER WARNING MESSAGE 1703, PRECEDING BULK DATA DECK HAS BEEN CANCELED AND WILL NøT APPEAR ON USER MASTER FILE.

The preceding Bulk Data Deck contains errors which preclude its inclusion on the User Master File. Appropriate error messages should appear in the echo of the Bulk Data Deck. Any subsequent Bulk Data Decks will be placed on the User Master File if error-free.

1704*** USER FATAL MESSAGE 1704, ILLEGAL TID VALUE ØN UMF CARD.
The TID value used on all UMF cards must be the same for any run and must match the TID value on the UMF tape being input. See Section 2.5 of the User's Manual for details.

1705 *** Reserved for future implementation in the User Master File Editor.

1706 *** Reserved for future implementation in the User Master File Editor.

\section*{DIAGNOSTIC MESSAGES}

1707 *** SYSTEM FATAL MESSAGE 1707, UMFEDT - UNEXPECTED EØF FROM READ.
The occurence of this message indicates a program failure in the User Master File Editor subroutine UMFEDT.

1708 *** SYSTEM FATAL MESSAGE 1708, UMFEDT - UNEXPECTED E@R FROM READ.
The occurence of this message indicates a program failure in the User Master File Editor subroutine UMFEDT.

1709 *** SYSTEM FATAL MESSAGE 1709, UMFEDT UNABLE TØ ØPEN ØNE \(\emptyset F\) THE PERMANENT NASTRAN FILES UMF, NUMF, OR NPTP.

1710 *** Reserved for future implementation in the User Master File Editor.

1711 *** USER FATAL, MESSAGE 1711, NØ TAPE SETUP FØR EITHER UMF \(9 R\) NUMF. THE USER MASTER FILE EDITøR REQUIRES AT LEAST ØNE ØF THESE TAPES TØ BE SET UP.
The tape (s) required must be appropriate to the requested action. See Section 2.5 of the User's Manual for details.

1712 *** Reserved for future implementation in the User Master File Editor.

1713 *** Reserved for future implementation in the User Master File Editor.

1714 *** Reserved for future implementation in the User Master File Editor.

1715 *** Reserved for future implementation in the User Master File Editor.

1716 *** Reserved for future implementation in the User Master File Editor.

1717 *** USER WARNING MESSAGE 1717, REQUEST TØ ADD DECK WITH PRØBLEM IDENTIFICATIØN NØ. = ****
(1) CØNFLICTS WITH IMPLIED REQUEST T \(\emptyset\) C \(\emptyset P Y\) THE SAME PRØBLEM FRØM THE UMF. THE NEW DECK WILL BE USED.
This message will occur whenever a deck is added whose PID value is the same as that of a problem already existing on the old User Master File.

1717 *** USER WARNING MESSAGE 1717, ILLEGAL PLØTTER SPECIFIED FØR SEEMAT (********).
(2)

1718 *** USER WARNING MESSAGE 1718, REMØVE REQUEST FØR PR@BLEM **** IS ØUT \(\emptyset F\) SEQUENCE \(\emptyset R\) NØT \(\emptyset N\) UMF.
User Master File Editor control cards must form an increasing sequence. See Section 2.5 of the User's Manual for details.

1719 *** USER WARNING MESSAGE 1719, LIST REQUEST FØR PRØBLEM **** IS ØUT ØF SEQUENCE ØR NØT \(\emptyset N\) UMF. Use Master File Editor control cards must form an increasing sequence. See Section 2.5 of the User's Manual for details.

\section*{NASTAN SYSTEM AND USER MESSAGES}

1720 *** USER WARNING MESSAGE 1720, PUNCH REQUEST FØR PRØBLEM **** IS ØUT ØF SEQUENCE \(\emptyset R\) NØT \(\emptyset N\) UMF.
User Master File Editor control cards must form an increasing sequence. See Section 2.5 of the User's Manual for details.

1720 *** USER WARNING MESSAGE 1720; PLØT FILE - **** N@T SET UP.
(2)

1721 *** USER FATAL MESSAGE 1721, PRØBLEM WITH PID = **** IS NØT ØN UMF ØR CARD IS ØUT ØF SEQUENCE. User Master File Editor control cards must form an increasing sequence. See Section 2.5 of the User's Manual for details.

1722 *** USER FATAL MESSAGE 1722 , NUMF TAPE ID HAS ALREADY BEEN SPECIFIED.
The tape id value for the New User Master File (NUMF) may only be specified once. See Section 2.5 of the User's Manual for details. -

1723 *** USER FATAL MESSAGE 1723, NUMF TAPE ID MAY NפT BE RESPECIFIED.
The tape id value for the New User Master File (NUMF) may only be specified once. See Section 2.5 of the User's Manual for details.

1724 *** USER WARNING MESSAGE 1724, PUNPRT REQUEST F@R PR@BLEM **** IS ØUT ØF SEQUENCE ØR NØT ØN
(1) UMF.

User Master File Editor control cards must form an increasing sequence. See Section 2.5 of the User's Manual for details.

1724 *** USER WARNING MESSAGE 1724, L@GIC ERRØR AT STATEMENT ***** IN SUBRØUTINE SEEMAT.
(2)

1725 *** Reserved for future implementation in the User Master File Editor.

1726 *** Reserved for future implementation in the User Master File Editor.

1727 *** Reserved for future implementation in the User Master File Editor.

1728 *** SYSTEM FATAL ERRØR 1728, UMFEDT UNABLE TØ LØCATE BULK DATA ØN NPTP.

1729 *** Reserved for future implementation in the User Master File Editor.

1730 *** Reserved for future implementation in the User Master File Editor.

1731 *** Reserved for future implementation in the User Master File Editor.

1732 *** Reserved for future implementation in the User Master File Editor.

1733 *** Reserved for future implementation in the User Master File Editor.

1734 *** Reserved for future implementation in the User Master File Editor.

1735 *** Reserved for future implementation in the User Master File Editor.

1736 *** USER FATAL ERRØR 1736, BAD USER MASTER FILE EDITØR DATA CARD.
See Section 2.5 of the User's Manual for instructions for using the User Master File Editor.

1737 *** Reserved for future implementation in the User Master File Editor.

1738 *** USER FATAL MESSAGE 1738, UTILITY MøDULE INPUT FIRST PARAMETER VALUE *** \(\emptyset U T\) gF RANGE. In the test problem generating version of utility module INPUT, the first parameter value specifies the specific problem type as follows:
1. Laplace circuit (an \(N \times N\) array of scalar points connected by scalar springs and optionally by scalar masses).
2. Rectangular frame made from BARs or R \(\emptyset D\) s.
3. Rectangular plate made from QUAD1 elements.
4. Rectanqular plate made from TRIA1 elements.
5. \(N\)-segment string modeled with scalar elements.
6. N-cell beam made from BAR elements.
7. \(N\)-order full matrix generator with optional load.
8. N-spoke bicycle wheel.

1739 *** SYSTEM FATAL MESSAGE 1739, UNABLE TØ ØPEN FILE ***.
This message can occur if a required output file is purged in utility module INPUT.

1740 *** SYSTEM FATAL MESSAGE 1740, E@F ENC@UNTERED.
An unexpected End-Of-File has been encountered while reading an input data block in utility module INPUT.

1741 *** SYSTEM FATAL MESSAGE 1741, E@R ENCØUNTERED.
An unexpected End-Of-Logical Record indicator has been encountered while reading an input data block in utility module INPUT.

1742 *** SYSTEM FATAL MESSAGE 1742 , N \(\emptyset\) DATA PRESENT.
Utility module INPUT - input data block contains no data records.

1743 *** SYSTEM FATAL MESSAGE 1743, E@F FR@M FWDREC.
Utility module INPUT encountered an End-Of-File on an input data block while attempting to read past the header record.

1744 *** USER FATAL MESSAGE 1744, DATA CARD(S) ******** GENERATED BY UTILITY M@DULE INPUT NØT ALL@WED IN BULK DATA.
Module is not capable of integrating same card type from two sources.

1745
Message 1745 is reserved for utility module INPUT.

\subsection*{6.2.3 Functional Module Messages}

2001 *** USER FATAL MESSAGE 2001, SEQGP CARD REFERENCES UNDEFINED GRID PØINT ****.

2002 *** SYSTEM FATAL MESSAGE 2002, GRID PØINT **** NØT IN EQEXIN.
This message indicates a program design error in GP1.

2003 *** USER FATAL MESSAGE 2003, CDQRDINATE SYSTEM **** REFERENCES UNDEFINED GRID P@INT ****. Applies to CøRD1j definitions.

2004 *** \(\underset{\substack{\text { USE** }}}{ }\) FATAL MESSAGE 2004, CØØRDINATE SYSTEM **** REFERENCES UNDEFINED CØØRDINATE SYSTEM ****.
Applies to C@RD2j definitions.

2005 *** SYSTEM FATAL MESSAGE 2005, INCØNSISTENT CØØRDINATE SYSTEM DEFINITION.
At least one coordinate system cannot be tied to the basic system. See Section 4.21.7 of the Programmer's Manual.

2006 *** USER FATAL MESSAGE 2006, INTERNAL GRID PDINT **** REFERENCES UNDEFINED CDØRDINATE SYSTEM
The grid point whose internal sequence number is printed above references an undefined coordinate system in either field 3 or field 7 of a GRID card.

2007 *** USER FATAL MESSAGE 2007, ELEMENT **** REFERENCES UNDEFINED GRID P \(\emptyset\) INT \(* * * *\).

2008 *** USER FATAL MESSAGE 2008, LØAD SET **** REFERENCES UNDEFINED GRID PØINT ****.

2009 *** USER FATAL MESSAGE 2009, TEMP SET **** REFERENCES UNDEFINED GRID PQINT ****.

2010 *** USER FATAL MESSAGE 2010, ELEMENT **** REFERENCES UNDEFINED PR@PERTY ****.

2011 *** USER FATAL MESSAGE 2011, NØ PR@PERTY CARD FØR ELEMENT TYPE ****.

2012 *** USER FATAL MESSAGE 2012, GRID PDINT **** SAME AS SCALAR PDINT.
Identification of grid and scalar points must be unique.

\section*{DIAGNOSTIC MESSAGES}

2013 *** USER WARNING MESSAGE 2013, NØ STRUCTURAL ELEMENTS EXIST.
Model checked for structural elements.

2014 *** SYSTEM FATAL MESSAGE 2014, LØGIC ERRØR IN ECPT CØNSTRUCTIØN.
The spill logic in the construction of the skeleton (TAIB) has failed. Problem should be referred to maintenance programming staff. A temporary fix may be available if additional storage can be provided to NASTRAN e.g., by increasing the region size (IBM 360).

2015 *** EITHER N \(\emptyset\) ELEMENTS CØNNECT INTERNAL GRID PØINT ******** \(\emptyset\) R IT IS CØNNECTED Tด A RIGID ELEMENT \(\emptyset R\) A GENERAL ELEMENT.

The message is a warning only since the degrees of freedom associated with the point may be removed by multipoint constraints or in other ways. The internal identification number is formed by assigning to each grid point and scalar point one of the integers \(1,2,---\) according to its resequenced position. It may be determined from data block EQEXIN via a DMAP TABPT instruction.

2016 *** USER INFØRMATIØN MESSAGE 2016, GIVENS TIME ESTIMATE IS ******** SECQNDS. CØRE AT A PRøBLEM SIZE DF ********.

2016 *** USER FATAL MESSAGE 2016, NØ MATERIAL PRØPERTIES EXIST.
(2)

2017 *** USER FATAL MESSAGE 2017, MATSI CARD REFERENCES UNDEFINED MATI **** CARD.
The user should check that all MATSI cards reference MATl cards that exist in the Bulk Data Deck.

2018 *** USER FATAL MESSAGE 2018, MATS2 CARD REFERENCES UNDEFINED MAT2 **** CARD.
The user should check that all MATS2 cards reference MAT2 cards that exist in the Bulk Data Deck.

2019 *** USER FATAL MESSAGE 2019, MATT1 CARD REFERENCES UNDEFINED MAT1 **** CARD.

The user should check that all MATTI cards reference MATl cards that exist in the Bulk Data Deck.

2020 *** USER FATAL MESSAGE 2020, MATT2 CARD REFERENCES UNDEFINED MAT2 **** CARD.

The user should check that all MATT2 cards reference MAT2 cards that exist in the Bulk Data Deck.

\section*{NASTRAN SYSTEM AND USER MESSAGGS}

2021 *** SYSTEM FATAL MESSAGE 2021, BAD GMMAT CALLING SEQUENCE.
The calling sequence of the subroutine which call either subroutine GMMATD or GMMATS defined a nonconformable matrix product. The subroutine examines the transpose flags in combination with the orders of the matrices to make sure that a conformable matrix product is defined by this input data. This test clearly is made for purposes of calling routine checkout only. No tests are made, nor can they be made, to insure that the calling routine has provided sufficient storage for arrays.

2022 *** SYSTEM FATAL MESSAGE 2022, SMA-B SCALAR PØINT INSERTIØN LØGIC ERRØR.
Problem error in creating the ECPT data block in module TAI. Use the TABPT module to print ECPT.

2023 *** SYSTEM FATAL MESSAGE 2023, DETCK UNABLE TO FIND PIVDT POINT **** IN GPCT.
Probable error in creating the ECPT data block in module TAI. Use the TABPT modute to print ECPT.

2024 *** USER FATAL MESSAGE 2024, ØPERATIØN CØDE ******** NØT DEFINED FØR MØDULE PARAM.
The use of \(V, N, S U B\) rather than \(C, N, S U B\) can cause this.
```

2025 *** USER FATAL MESSAGE 2025, UNDEFINED C\emptyset\emptysetRDINATE SYSTEM ****.
The coordinate system identification number transmitted via ECPT(1) could not be found
in the CSTM array. The user should check coordinate system numbers used on bulk data
cards against those defined on CORDIC, C\RDIR, etc., bulk data cards to insure that
there are no undefined coordinate systems.
2026 *** USER FATAL MESSAGE 2026, ELEMENT **** GE@METRY YIELDS UNREAS@NABLE MATRIX.
Referenced element geometry and/or properties yields a numerical result which causes an
element stiffness or mass matrix to be undefined. Possible causes include, but are not
limited to, (1) the length of a rod or bar is zero because the end points have the same
coordinates, (2) the sides of a triangle or quadrilateral are collinear which leads to a
zero cross product in defining an element coordinate system, or (3) the bar orientation
vector is parallel to the bar axis. Check GRID bulk data cards defining element end
points for bad data.
2027 *** USER FATAL MESSAGE 2027, ELEMENT **** HAS INTERI\emptysetR ANGLE GREATER THAN 180 DEG. AT GRID
P\emptysetINT ****.
SHEAR or TWIST panel element with the referenced element number has been defined with
the four grid points out of the proper cyclical order. See bulk data card definitions
for CSHEAR and CTWIST cards.
2028 *** SYSTEM FATAL MESSAGE 2028, SMA3A ERRØR NØ. ****.
Internal logic error in subroutine SMA3A of module SMA3. Possible error in generation
of the GEI data block. Use the TABPT module to print GEI.
2029 *** USER FATAL MESSAGE 2029, UNDEFINED TEMPERATURE SET ****.
The referenced temperature set had no default temperature defined. Define a temperature
or default temperature for each grid point in the model.
2030 *** SYSTEM FATAL MESSAGE 2030, BAD GPTT.
The format of the GPTT data block is incorrect. Use the TABPT module to print the GPTT
data block.
2031 *** USER FATAL MESSAGE 2031, ELEMENT **** UNACCEPTABLE GE@METRY.
2032 *** USER FATAL MESSAGE 2032, ELEMENT **** UNACCEPTABLE GEQMETRY.
2033 *** USER FATAL MESSAGE 2033, SINGULAR H-MATRIX FØR ELEMENT ****.
2034 *** SYSTEM FATAL MESSAGE 2034, ELEMENT **** SIL'S D\emptyset N\emptysetT MATCH PIV\emptysetT.
Possible error in generation of the ECPT data block. Use the TABPT module to print ECPT.
2035 *** USER FATAL MESSAGE 2035, QUADRILATERAL **** INTERI\emptysetR ANGLE GREATER THAN 180 DEG.
2036 *** USER FATAL MESSAGE 2036, SINGULAR MATRIX FØR ELEMENT ****.
2037 *** USER FATAL MESSAGE 2037, BAD ELEMENT **** GE@METRY.

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{2038 *** SYSTEM FATAL MESSAGE 2038, SINGULAR MATRIX FØR ELEMENT ****.} \\
\hline 2039 * & *** & USER FATAL MESSAGE 2039, ZERØ SLANT LENGTH FØR HARM@NIC **** \(\emptyset \mathrm{F}\) CC@NEAX ****. \\
\hline \multicolumn{3}{|l|}{2040 *** USER FATAL MESSAGE 2040, SINGULAR MATRIX FØR ELEMENT ****.} \\
\hline \multicolumn{3}{|l|}{2041 *** USER FATAL MESSAGE 2041, A MATTו,MATT2,MATT3 OR MATSI CARD REFERENCES TABLE NUMBER **** WHICH IS NØT DEFINED 9 N A TABLEM1, TABLEM2, TABLEM3, TABLEM4 \(\emptyset \mathrm{K}\) TABLESI CARD.} \\
\hline & & The user must insure that all table identification numbers on MATTI, MATT2, MATT3, or MATSI cards reference tables which exist in the Bulk Data Deck. \\
\hline \multicolumn{3}{|l|}{2042 *** USER FATAL MESSAGE 2042, MISSING MATERIAL TABLE **** FØR ELEMENT ****.} \\
\hline \multicolumn{3}{|l|}{The referenced material table identification number is missing. The user should check to see that all element property bulk data cards (e.g., PBAR, PRDD) reference material card identification numbers for material property cards that exist in the Bulk Data Deck.} \\
\hline \[
\begin{gathered}
2043 \text { * } \\
(1)
\end{gathered}
\] & *** & USER WARNING MESSAGE 2043, ØFP HAS INSUFFICIENT CのRE FøR \(\emptyset\) NE GINØ BUFFER **** ØFP NØT EXECUTED. \\
\hline \multicolumn{3}{|l|}{2043 *** USER FATAL MESSAGE 2043, MISSING MATERIAL TABLE ********.
(2)} \\
\hline \multicolumn{3}{|l|}{2044 *** USER FATAL MESSAGE 2044, UNDEFINED TEMPERATURE SET ****.} \\
\hline & & The referenced temperature set was selected in the Case Control Deck but not defined in the Bulk Data Deck. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2045 ***}} & USER FATAL MESSAGE 2045, TEMPERATURE UNDEFINED AT GRID P@INT WITH INTERNAL INDEX *** \\
\hline & & Temperatures must be defined at all grid points in a selected temperature set. The grid point whose internal index was printed had no temperature defined and a default temperature was not supplied for the selected temperature set. \\
\hline \multicolumn{2}{|l|}{2046 ***} & USER FATAL MESSAGE 2046, UNDEFINED ELEMENT DEFØRMATIØN SET ****. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2047 ***}} & USER FATAL MESSAGE 2047, UNDEFINED MULTIPØINT CøNSTRAINT SET ****. \\
\hline & & A multipoint constraint set selected in the Case Control Deck could not be found in either an MPC or MPCADD card or a set referenced on a MPCADD card could not be found on an MPC card. \\
\hline \multicolumn{2}{|l|}{2048 ***} & USER FATAL MESSAGE 2048, UNDEFINED GRID P@INT **** IN MULTI-PØINT CØNSTRAINT SET ****. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2049 ***}} & USER FATAL MESSAGE 2049, UNDEFINED GRID PØINT **** HAS AN ØMITTED Cø@RDINATE. \\
\hline & & An ØMIT or ØMITl card references a grid point which has not been defined. \\
\hline
\end{tabular}


2068 *** USER FATAL MESSAGE 2068, UNDEFINED GRID PØINT **** IN TRANSFER FUNCTION SET ****.

2069 *** USER FATAL MESSAGE 2069, UNDEFINED GRID PØINT **** IN TRANSIENT INITIAL C@NDITION SET ****.

2070 *** USER FATAL MESSAGE 2070, REQUESTED DMIG MATRIX **** IS UNDEFINED.

2071 *** USER FATAL MESSAGE 2071, DYNAMIC L \(\emptyset A D\) SET **** REFERENCES UNDEFINED TABLE ****.

2072 *** SYSTEM WARNING MESSAGE 2072, CARD TYPE *** NØT FØUND ØN DATA BLØCK.
This warning message is issued when the trailer bit for the card type \(=1\) but the corresponding record is not on the data block.

\section*{NASTRAN SYSTEM AND USER MESSAGES}

2073 *** USER INFØRMATIØN MESSAGE 2073, MPYAD METH@D = ****, N \(\emptyset\). \(甲\) F PASSES \(=* * * *\).
This message gives the method selected and number of passes required.

2074 *** USER FATAL MESSAGE 2074, UNDEFINED TRANSFER FUNCTI@N SET ****.

2075 *** SYSTEM ØR USER DMAP FATAL MESSAGE 2075, IMPRØPER VALUE **** FØR FIRST PARAMETER IN DMAP INSTRUCTION SDR2.

2076 *** USER WARNING MESSAGE 2076, SDR2 ØUTPUT DATA BLøCK N@. 1 IS PURGED.

2077 *** USER WARNING MESSAGE 2077, SDR2 ØUTPUT DATA BL@CK N@. 2 IS PURGED.

2078 *** USER WARNING MESSAGE 2078, SDR2 ØUTPUT DATA BLØCK NØ. 3 IS PURGED.

2079 *** USER WARNING MESSAGE 2079, SDR2 FINDS THE -EDT-, -EST-, QR -GPTT- PURGED ØR INADEQUATE AND IS THUS NØT PRØCESSING ANY REQUESTS FØR STRESSES \(\cap R\) FØRCES.

2080 *** USER WARNING MESSAGE 2080, SDR2 ØUTPUT DATA BLØCK NØ. 6 IS PURGED.

2081 *** USER FATAL MESSAGE 2081, NULL DIFFERENTIAL STIFFNESS MATRIX.
Differential stiffness is not defined for all structural elements. Only the following elements are defined for differential stiffness calculations: RDD, TUBE, SHEAR (but not TWIST) panels, triangular and quadrilateral membranes (TRMEM, TRIA2, QDMEM, QUAD2), and BAR. The combination two dimensional elements TRIA1 and QUADI, are defined only if their membrane thickness is nonzero. The user has not included any of these elements in his model and therefore a null differential stiffness matrix was generated.

2083 *** USER FATAL MESSAGE 2083, NULL DISPLACEMENT VECTØR.
The displacement vector for the linear solution part of a static analysis with differential stiffness problem, or the incremental displacement vector in a piecewise linear analysis rigid format problem is the zero vector. Check loading conditions.

2084 *** SYSTEM FATAL MESSAGE 2084, DSMG2 LQGIC ERR@R ****.
Incompatible input and output pairs in the DMAP calling sequence to module DSMG2. See the module description for DSMG2 in the Programmer's Manual.

2085 *** USER INFØRMATI@N MESSAGE 2085, **** SPILL, NPVT ****.
During processing of the ECPT data block in module ****, so many elements were attached to the referenced pivot point (NPVT) that module spill logic was initiated.

2086 *** USER INFØRMATIDN MESSAGE 2086, SMA2 SPILL, NPVT ****.
See explanation for Message 2085.

2087 *** SYSTEM FATAL MESSAGE 2087, ECPT CQNTAINS BAD DATA.
Use the TABPT module to print the ECPT data block.
\begin{tabular}{|c|c|}
\hline \[
2088 \text { *** }
\] & \begin{tabular}{l}
USER FATAL MESSAGE 2088, DUPLICATE TABLE ID ****. \\
All tables must have unique numbers. Check für uniqueness.
\end{tabular} \\
\hline 2089 *** & USER FATAL MESSAGE 2089, TABLE **** UNDEFINED. \\
\hline & The table number in the list of table numbers input to subroutine PRETAB via argument 7 was not found after reading the DIT data block. Check list of tables in the Bulk Data Deck. \\
\hline 2090 *** & \begin{tabular}{l}
SYSTEM FATAL MESSAGE 2090, TABLE DICTI甲NARY ENTRY **** MISSING. \\
Logic error in subroutine PRETAB, or open core used by PRETAB has been destroyed.
\end{tabular} \\
\hline 2091 *** & \begin{tabular}{l}
SYSTEM FATAL MESSAGE 2091, PLA3, BAD ESTNL EL ID ****. \\
ESTNL data block is not in expected format. Use TABPT module to print the ESTNL data block.
\end{tabular} \\
\hline 2092 *** & SYSTEM WARNING MESSAGE 2092, SDR2 FINDS A SYMMETRY SEQUENCE LENGTH = **** AND AN INSUFFICIENT NUMBER ØF VECTØRS AVAILABLE = **** WHILE ATTEMPTING T \(\emptyset\) CØMPUTE STRESSES AND FORCES. ALL FURTHER STRESS AND FØRCES CØMPUTATIØN TERMINATED. \\
\hline 2093 *** & USER FATAL MESSAGE 2093, NØLIN CARD FR@M NØLIN SET **** REFERENCES GRID PøINT **** UD SET. \\
\hline 2094 *** & USER WARNING MESSAGE 2094, SUBRØUTINE TABFMT, KEYNAME ******** NøT IN LIST øF AVAILABLE KEYNAMES. *** LIST QF RECDGNIZED KEYNAMES FDLLOWS. \\
\hline & The TABPRT Module can only be used to print certain table data blocks. For table data blocks not appearing in the list, use the TABPT Module. \\
\hline 2095 *** U & USER WARNING MESSAGE 2095, SUBRøUTINE TABFMT, PURGED INPUT. \\
\hline 2096 *** U & USER WARNING MESSAGE 2096, SUBRØUTINE TABFMT, EØF ENCØUNTERED. \\
\hline 2097 *** US & USER WARNING MESSAGE 2097, SUBRØUTINE TABFMT, EØR ENCØUNTERED. \\
\hline 2098 *** U & USER WARNING MESSAGE 2098, SUBRØUTINE TABFMT, INSUFFICIENT CØRE. \\
\hline 2099 *** US & USER WARNING MESSAGE 2099, SUBRØUTINE TABFMT, KF \(* * * * * * * * * * . ~\) \\
\hline 2101A *** & \begin{tabular}{l}
USER FATAL MESSAGE 2101A, GRID PGINT **** CQMPQNENT *** ILLEGALLY DEFINED IN SETS ****. \\
The above grid point and component has been defined in each of the above dependent subsets. A point may belong to at most one dependent subset.
\end{tabular} \\
\hline 2101B *** & USER FATAL MESSAGE 2101B, SCALAR PØINT **** ILLEGALLY DEFINED IN SETS ****. \\
\hline 2102 *** U & USER WARNING MESSAGE 2102, LEFT-HAND MATRIX RøW PøSITIØN **** ØUT \(\emptyset F\) RANGE - IGNøRED. A term in the \(A\) matrix whose row position is larger than the stated dimension was detected and ignored. \\
\hline
\end{tabular}

2103 *** SYSTEM FATAL MESSAGE 2103, SUBRØUTINE MAT WAS CALLED WITH INFLAG=2, THE SINE \(\emptyset F\) ANGLE \(X\), MATERIAL \(\emptyset\) RIENTATI \(\emptyset N\) ANGLE, N \(\emptyset N Z E R \emptyset\), BUT \(\operatorname{SIN}(X) * * 2+C \emptyset S(X) * * 2\) DIFFERED FR \(\emptyset M 1\) IN ABSOLUTE VALUE BY M@RE THAN . 0001.
A check is made in MAT to insure that ABS(SIN(THETA)**2+CØS(THETA)**2-1.00) .LE . . 0001 when INFLAG \(=2\). The calling routine did not set SINTH and C@STH cells in /MATIN/ properly.

2104 *** USER FATAL MESSAGE 2104, UNDEFINED CDORDINATE SYSTEM ****.
See the explanation for Message 2025.

2105 *** USER FATAL MESSAGE 2105, PL甲AD2 CARD FRØM LøAD SET **** REFERENCES MISSING \(\emptyset R\) N \(\emptyset N-2-D\) ELEMENT ****.
PLØAD2 cards must reference two-dimensional elements.

2106 *** USER FATAL MESSAGE 2106, LØAD CARD DEFINES NQNUNIQUE L@AD SET ****.

2107 *** USER FATAL MESSAGE 2107, EIG-CARD FRQM SET **** REFERENCES DEPENDENT CØQRDINATE ØR GRID PØINT ****.
When the point option is used on an EIGB, EIGC or EIGR card, the referenced point and component must be in the analysis set for use in normalization.

2108 *** USER FATAL MESSAGE 2108, N XY-PLØTTER HAS BEEN SPECIFIED T THIS PØINT.

2109 *** USER FATAL MESSAGE 2109, NØ GRID, SCALAR \(\emptyset R\) EXTRA PØINTS DEFINED.
 PRØCESSING \(\emptyset F\) THIS DATA BLØCK IS ABAND@NED.

\section*{DIAGNOSTIC MESSAGES}

2111 *** USER WARNING MESSAGE 2111, BAR **** CQUPLED BENDING INERTIA SET T 0.0 IN DIFFERENTIAL STIFFNESS.

The coupled bending inertia term on a PBAR card, if nonzero, is set to zero in the differential stiffness routine for the BAR.

2112 *** SYSTEM FATAL MESSAGE 2112, UNDEFINED TABLE ****.
The referenced table number could not be found in core.

2113 *** USER FATAL MESSAGE 2113, MATERIAL ****, A N@N-MAT1 TYPE, IS NØT ALLØWED TØ BE STRESS DEPENDENT.

Only MATl material cards may be present in a piecewise linear analysis problem.

2114 *** USER FATAL MESSAGE 2114 , MATT3 CARD REFERENCES UNDEFINED MAT3 **** CARD.
The user should check that all MATT3 cards reference MAT3 cards that exist in the Bulk Data Deck. This can also happen if ID noted by \(* * * *\) could not be found on MATl card (see Message 2042).

2115 *** USER FATAL MESSAGE 2115, TABLE **** (TYPE ****) ILLEGAL WITH STRESS-DEPENDENT MATERIAL.
Only TABLES1 cards may be used to define stress-strain curves for use in piecewise linear analysis.

2116 *** SYSTEM FATAL MESSAGE 2116, MATID **** TABLEID ****.
The referenced material table identification number could not be found among the set of all MATl cards in core.

2117 *** USER FATAL MESSAGE 2117, TEMPERATURE DEPENDENT MATERIAL PR@PERTIES ARE NØT PERMISSIBLE IN A PIECEWISE LINEAR ANALYSIS PRØBLEM. TEMPERATURE SET \(=* * * *\).

User should redefine his problem without temperature dependent material properties.

2118 *** USER INFØRMATIØN MESSAGE 2118, SUBRØUTINE GP4PRT, - DIAG 21 SET-DØF VS. DISP SETS FØLLØWS.

2119 *** USER INFØRMATIØN MESSAGE 2119 , SUBRØUTINE GP4PRT, - DIAG 22 SET-DISP SETS VS. D@F FØLLØWS.

2120 *** USER FATAL MESSAGE 2120, MØDULE VEC - BØTH SUBSET BITS ARE N@N-ZERØ. I **********.

2121 *** USER FATAL MESSAGE 2121, MøDULE VEC - B \(\emptyset\) TH SUBSET BITS ARE ZERØ. I **********.

2122 *** USER FATAL MESSAGE 2122, MØDULE VEC - SET X BIT IS ZERØ BUT SUBSET XO BIT IS NØT. I **********

2123 *** USER FATAL MESSAGE 2123, MøDULE VEC - SET X BIT IS ZERØ BUT SUBSET XI BIT IS NØT. I **********.

2124 *** USER WARNING MESSAGE 2124, M@DULE VEC - NR=0, ØUTPUT WILL BE PURGED.

2125 *** USER WARNING MESSAGE 2125, M@DULE VEC - NZ=0, ØUTPUT WILL BE PURGED.

2126 *** USER FATAL MESSAGE 2126, MØDULE VEC UNABLE TØ ØPEN GINØ FILE **** DATA BLØCK ********. (1)

2126 *** USER FATAL MESSAGE 2126, UNDEFINED MATERIAL FQR ELEMENT ********. (2)

2127 *** SYSTEM FATAL MESSAGE 2127, PLA2 INPUT DATA BLØCK N@. **** IS PURGED.
Data blocks DELTAUGV and DELTAPG cannot be purged. See module description for PLA2 in Section 4 of the Programmer's Manual.

2128 *** SYSTEM FATAL MESSAGE 2128, PLA2 ØUTPUT DATA BLØCK NØ. **** IS PURGED.
Data blocks UGVI, PGVI cannot be purged. See module description for PLA2 in Section 4 of the Programmer's Manual.

2129 *** SYSTEM FATAL MESSAGE 2129, PLA2, ZERØ VECTØR ØN APPENDED DATA BLØCK NØ. ****.
Zero displacement vector found on UGV1 data block output from PLA2. Possible system failure.

\section*{NASTRAN SYSTEM AND USER MESSAGES}
\begin{tabular}{|c|c|}
\hline 2130 *** & USER FATAL MESSAGE 2130, ZERØ INCREMENTAL DISPLACEMENT VECTØR NØT ADMISSIBLE AS INPUT Tø M@DULE PLA2. \\
\hline & See discussion of the Piecewise Linear Analysis rigid format. \\
\hline 2131 *** & USER FATAL MESSAGE 2131, NøN-SCALAR ELEMENT *** REFERENCES A SCALAR PØINT. \\
\hline & An element which must be attached to a geometric grid point has been attached to a scalar point. No geometry data can be inferred. \\
\hline 2132 *** & USER FATAL MESSAGE 2132, N@N-ZERø SIngle pøINT CONSTRAINT VALUE SPECIFIED BUT DATA BLøCK YS IS PURGED. \\
\hline & Many rigid formats do not support constrained displacements (especially dynamic solutions) An attempt to specify a constrained displacement in these cases results in this message. \\
\hline 2133 *** & USER FATAL MESSAGE 2133, INITIAL C@NDITION IN SET **** SPECIFIED FøR P@INT N@T IN ANALYSIS SET. \\
\hline & Initial conditions can only be specified for analysis set points. Therefore the point/ component mentioned on TIC cards must belong to the D or \(H\) sets. \\
\hline 2134 *** & USER FATAL MESSAGE 2134, LøAD SET *** DEFINED FøR BøTH GRAVITY AND N@N-GRAVITY LøADS. \\
\hline & The same load set identification number cannot appear on both a GRAV card and another loading card such as FØRCE or MØMENT. To apply both a gravity load and a concentrated load simultaneously the LøAD card must be used. \\
\hline 2135 * & USER FATAL MESSAGE 2135, DLØAD CARD *** HAS A DUPLICATE SET ID FOR SET ID ***. \\
\hline & The Li set ID's on a DLØAD card are not unique. See DLøAD card description in the User's Manual. \\
\hline 2136 *** & USER FATAL MESSAGE 2136, SET ID *** HAS BEEN DUPLICATED @N A DLøAD, RLøAD1,2 or TLøAD1,2 CARD. \\
\hline & All dynamic load set ID.'s must be unique. \\
\hline 2137 *** & USER FATAL MESSAGE 2137, PRØGRAM RESTRICTIØN F@R MøDULE SSG1 - ØNLY 100 L甲AD SET ID'S ALLøWED. DATA CøNTAINS **** LøAD SET ID'S. \\
\hline & Reduce the number of Load Set ID's. \\
\hline 2138 *** & USER FATAL MESSAGE 2138, ELEMENT IDENTIFICATION NUMBER **** IS TوØ LARGE. \\
\hline & Element identification numbers (on connection cards) must be less than 16,777,215. \\
\hline 2139 *** & USER FATAL MESSAGE 2139, ELEMENT **** IN DEF@RM SET **** IS UNDEFINED. \\
\hline & A selected element deformation set includes an element twice, includes a non-existent element, or includes a non-one-dimensional element. \\
\hline
\end{tabular}

\footnotetext{
element, or includes a non-one-dimensional element.
}


2160 *** USER FATAL MESSAGE 2160, BAD GEØMETRY \(\emptyset R\) ZER \(\emptyset\) C \(\emptyset E F F I C I E N T\) F \(\emptyset R\) SL \(\emptyset T\) ELEMENT NUMBER ******************.

2161 *** SYSTEM WARNING MESSAGE 2161, PARTITIØN FILE, **** IS ØF SIZE ********** RØWS BY *********** CDLS. PARTITIØNING VECT \(\emptyset R S\) INDICATE THAT THIS PARTITIØN SHØULD BE ØF SIZE ********** RøWS BY ********** CØLUMNS FØR A SUCCESSFUL MERGE.

2162 *** SYSTEM WARNING MESSAGE 2162, THE FØRM PARAMETER AS GIVEN TD THE MERGE MQDULE IS INCøNSISTENT WITH THE SIZE ØF THE MERGED MATRIX, HØWEVER IT HAS BEEN USED. FØRM = **********, SIZE = ********** RØWS BY ********** CのLUMNS.

2163 *** SYSTEM WARNING MESSAGE 2163, THE FØRM PARAMETER AS GIVEN T T THE MERGE MgDULE HAS N@T BEEN SET, ØR IS \(\emptyset F\) ILLEGAL VALUE. THE FØRM \(\emptyset F\) THE MERGED MATRIX HAS BEEN SET = **********.

2164 *** SYSTEM WARNING MESSAGE 2164, THE TYPE PARAMETER AS GIVEN TØ THE MERGE M@DULE HAS NØT BEEN SET ØR IS \(\emptyset F\) ILLEGAL VALUE. THE TYPE \(\emptyset F\) THE MERGED MATRIX HAS BEEN SET T \(\emptyset\) REAL-SINGLEPRECISION.

2165 *** USER FATAL MESSAGE 2165, ILLEGAL GEØMETRY \(\emptyset R\) ZER \(\emptyset\) CØEFFICIENT F \(\emptyset R\) SLØT ELEMENT NUMBER ******************。

2166 *** SYSTEM WARNING MESSAGE 2166, MATRIX T \(\emptyset\) BE PARTITIØNED IS ØF SIZE ********** RØWS BY ********** CØLUMNS. RØW PARTITIØN SIZE IS ********** CØLUMN PARTITIØN SIZE IS ********** (INCøMPATIBLE).

2167 *** SYSTEM WARNING MESSAGE 2167, THE TYPE PARAMETER AS GIVEN T \(\emptyset\) THE PARTITIØNING MDDULE HAS NØT BEEN SET \(\emptyset R\) IS \(\emptyset F\) ILLEGAL VALUE. THE TYPE \(\emptyset F\) THE PARTITIØNS HAS BEEN SET TØ REAL-SINGLE-PRECISIØN.

2168 *** SYSTEM WARNING MESSAGE 2168, THE FØRM PARAMETER AS GIVEN TØ THE PARTITIØNING MØDULE FØR SUB-PARTITIØN ******** IS INCØNSISTENT WITH ITS SIZE. FØRM = ***********, SIZE = ********** ROWS BY *********** CDLUMNS.

2169 *** SYSTEM WARNING MESSAGE 2169, THE FØRM PARAMETERS AS GIVEN TD THE PARTITIØNING MØDULE FØR SUB-PARTITIØN ******** HAS N \(\emptyset T\) BEEN SET \(\emptyset R\) IS \(\emptyset F\) ILLEGAL VALUE. IT HAS BEEN RESET = **********.

2170 *** SYSTEM FATAL MESSAGE 2170, B \(\emptyset T H\) THE R@W AND CøLUMN PARTITIØNING VECTØRS ARE PURGED AND ØNLY ONE MAY BE.

2171 *** SYSTEM WARNING MESSAGE 2171, SYM FLAG INDICATES Tø THE PARTITIØN QR MERGE MøDULE THAT A SYMMETRIC MATRIX IS Tø BE ØUTPUT. THE PARTITIØNING VECTØRS ******** H@WEVER DØ NØT CØNTAIN AN IDENTICAL NUMBER \(\emptyset F\) ZERØS AND NØN-ZERØS.

2172 *** SYSTEM WARNING MESSAGE 2172, RØW AND CØLUMN PARTITIONING VECTØRS DØ NØT HAVE IDENTICAL \(\emptyset\) RDERING \(\emptyset F\) ZER \(\emptyset\) AND N@N-ZER \(\emptyset ~ E L E M E N T S, ~ A N D ~ S Y M ~ F L A G ~ I N D I C A T E S ~ T H A T ~ A ~ S Y M M E T R I C ~\) PARTITION \(\emptyset R\) MERGE IS T \(\emptyset\) BE PERFQRMED.

2173 *** SYSTEM WARNING MESSAGE 2173, PARTITIØNING VECT@R FILE **** CØNTAINS ********** CØLUMNS. ØNLY THE FIRST COLUMN IS BEING USED.

2174 *** SYSTEM WARNING MESSAGE 2174, PARTITIØNING VECTØR ØN FILE **** IS NØT REAL-SINGLE ØR REALDดUBLE PRECISIØN.

2175 *** SYSTEM FATAL MESSAGE 2175, THE RØW PØSITIØN ØF AN ELEMENT ØF A CØLUMN QN FILE **** IS GREATER THAN NUMBER \(\emptyset F\) R \(\emptyset W S\) SPECIFIED BY TRAILER.

2176 *** SYSTEM FATAL MESSAGE 2176, FILE **** EXISTS BUT IS EMPTY.

2177 *** USER INFØRMATIØN MESSAGE 2177, SPILL WILL ØCCUR IN SYMMETRIC CØMPLEX DECØMPØSITIØN.

2178 *** SYSTEM FATAL MESSAGE 2178, GINØ REFERENCE NAMES, IMPRØPER FØR SUBRØUTINE FILSWI.

2179 *** SYSTEM FATAL MESSAGE 2179, ERR@R DETECTED IN FUNCTIQN FQRFIL ****, **** NØT IN FIST.

2180 *** USER WARNING MESSAGE 2180, SYMMETRIC DECØMPดSITIØN 9F A MATRIX WH@SE FดRM IS SQUARE (BUT NØT SYMMETRIC) WILL BE ATTEMPTED.

2181 *** SYSTEM FATAL MESSAGE 2181, SCDCMP CALLED TØ SØLVE A \(1 \times 1\) @R \(2 \times 2\) MATRIX.

2182 *** USER WARNING MESSAGE 2182, SUBRØUTINE ******** IS DUMMY. ØNLY QNE \(\emptyset F\) THESE MESSAGES WILL APPEAR PER ØVERLAY \(9 F\) THIS DECK.

2183 *** USER WARNING MESSAGE 2183, SYMMETRIC DECØMPดSITIØN \(\emptyset F\) A MATRIX WHØSE FØRM IS SQUARE (BUT NØT SYMMETRIC) WILL BE ATTEMPTED.

2184 *** SYSTEM WARNING MESSAGE 2184, STRESS @R F@RCE REQUESTS FgR ELEMENT TYPE = **************** WILL NØT BE HØNØRED AS THIS ELEMENT IS UNDEFINED Tø SDR2.

St.ress and force requests for fluid, mass, damping, plotel, and heat boundary elements are automatically ignored.

2187 *** USER FATAL MESSAGE 2187, INSUFFICIENT WØRKING CØRE Tø HøLD FØRTRAN LØGICAL RECØRD. LENGTH ØF W@RKING C \(\emptyset R E=* * * * * * * * * *\). LENGTH DF FØRTRAN LØGICAL RECDRD = **********.

2188 *** USER INFØRMATION MESSAGE 2188, UNUSED CDRE = ********** W甲RDS.

2189 *** USER INFØRMATION MESSAGE 2189, ADDITIØNAL CØRE REQUIRED TØ AVØID SPILL = ********** (DECIMAL) WØRKS.

2190 *** SYSTEM FATAL MESSAGE 2190, ILLEGAL VALUE FOR KEY = **********. EXPECTED VALUE = **********

2191 *** USER WARNING MESSAGE 2191, ELEMENT TYPE ********** IS PRESENT AND IS BEING IGN@RED BY SMAI SINCE ØPTION PARAM = ********.

2192 *** USER FATAL MESSAGE 2192. UNDEFINED GRID PØINT, ********, IN RIGID ELEMENT, ********.

\section*{NASTRAN SYSTEM AND USER MESSAGES}
\begin{tabular}{|c|c|}
\hline 2193 *** & USER FATAL MESSAGE 2193, A REDUNDANT SET \(\emptyset\) F RIGID BøDY MøDES WAS SPECIFIED FøR THE GENERAL ELEMENT. \\
\hline & Only a non-redundant list of rigid body modes is allowed to appear in the \(u_{d}\) set when the \(S\) matrix is to be internally calculated in subroutine TAICA. \\
\hline 2194 *** & USER FATAL MESSAGE 2194, A MATRIX D IS SINGULAR IN SUBRøUTINE TAICA. \\
\hline & While attempting to calculate the [S] matrix for a general element in TAICA, it was discovered that the matrix \(D_{d}\) which relates \(\left\{u_{b}\right\}\) to \(\left\{u_{d}\right\}\) was singular and could not be inverted. \\
\hline 2195 *** & USER WARNING MESSAGE 2195, ILLEGAL VALUE FQR P4 = ******. \\
\hline 2196 *** & USER WARNING MESSAGE 2196, DUMMY SUBRøUTINE TimtS3. DUMMY SUBRQUTINE TIMTS4. DUMMY SUBRQUTINE TIMTS5. \\
\hline 2197 *** & SYSTEM FATAL MESSAGE 2197, ABØRT CALLED DURING TIME TEST \(\emptyset \mathrm{F}\) *********. \\
\hline 2198 *** & SYSTEM FATAL MESSAGE 2198, INPUT DATA BLøCK, ******** HAS BEEN PURGED. \\
\hline 2199 *** & SYSTEM FATAL MESSAGE 2199, SUMMARY/ ØNE \(\emptyset R\) MøRE \(\emptyset F\) THE AB \(\emptyset V E ~ F A T A L ~ E R R \emptyset R S ~ W A S ~\) ENCØUNTERED IN SUBRØUTINE ********. \\
\hline 2200 *** & USER FATAL MESSAGE 2200. INCФNSISTENT RIGID BøDY SYSTEM. \\
\hline 2201 *** & USER FATAL MESSAGE 2201. REQUIRED DATA BLØCK FQR GINØ FILE, ***, IS PURGED IN SUBRQUTINE ********. \\
\hline 2202 *** &  \\
\hline 2203 *** & USER FATAL MESSAGE 2203. PARAMETER, ***, FOR SUBSTRUCTURE ID ******** INDICATES IT IS AN IDENTICAL SUBSTRUCTURE BUT INPUT DATA BL \(\emptyset C K ~ \emptyset F ~ P R E V I \emptyset U S ~ S U B S T R U C T U R E ~ I S ~ P U R G E D . ~\) \\
\hline 2204 *** & USER FATAL MESSAGE 2204. PARAMETER, ***, HAS A VALUE \(9 F\) ********, BUT C \(\quad\) RRRESPQNDING INPUT DATA BLøCK, ***, IS NØN-PURGED. \\
\hline 2205 *** & USER WARNING MESSAGE 2205. *** SUBSTRUCTURE HAVE BEEN SPECIFIED. Nø WØRK CAN BE DgNE FØR THIS CASE. \\
\hline 2206 *** & USER FATAL MESSAGE 2206. PARAMETERS ** AND ** HAVE THE SAME SUBSTRUCTURE ID VALUES. \\
\hline 2207 *** & USER FATAL MESSAGE 2207. n \(\emptyset\) SAME DATA SUPPLIED @R gENERATED F@R PVEC RUN - EXECUTION TERMINATED. \\
\hline
\end{tabular}
```

2208 *** USER FATAL MESSAGE 2208. END \emptysetF FILE ENC\emptysetUNTERED \emptysetN GIN\emptyset FILE, ***, IN SUBR\emptysetUTINE ********.
2209 *** USER FATAL MESSAGE 2209. END \emptysetF REC\emptysetRD ENC\emptysetUNTERED \emptysetN GIN\emptyset FILE, ***, IN SUBR\emptysetUTINE
******.
2211 *** USER FATAL MESSAGE 2211. L\emptysetGIC ERR@R IN ********.
2213 *** USER FATAL MESSAGE 2213. ILLEGAL SAME DATA. PSEUD\emptysetSTRUCTURE C\emptysetNTAINS INC\emptysetRRECTLY
CQUPLED SUBSTRUCTURES.
2251 *** USER WARNING MESSAGE 2251. PHYSICALLY UNREALISTIC VALUE FØR NU ØN MAT1 CARD ********.
VALUE = ****************.
2252 *** USER FATAL MESSAGE 2252. GINØ FILE,***, IS PURGED.
2253 *** USER FATAL MESSAGE 2253. ILLEGAL VALUE F@R QNE 9R M@RE INPUT PARAMETERS - ********** ********** **********).
2254 .*** USER FATAL MESSAGE 2254. END- \varnothing F-FILE ØN GIN@ FILE ***.
2255 *** USER FATAL MESSAGE 2255. GINØ FILE 102 HAS CのNTRøL RECORD $\emptyset F$ LENGTH, ***** / EXPECTED LENGTH $9 F$ C $\emptyset N T R \emptyset L$ REC $\emptyset R D$ IS *****.

```

2256 *** USER FATAL MESSAGE 2256. N@N-UNIQUE FIRST GRØUP ENTRY. THE TWØ GRØUPS FØLL@W.

2257 *** USER WARNING MESSAGE 2257, SET **** REFERENCED ON SPLINE CARD **** IS EMPTY.
While processing the SET1 or SET2 card referenced on the SPLINEi card, no included grid points were found. If SETI was used, either no points were included or they were all scalar points. If SET2 was used, the volume of space referenced did not include any structural grid points. This may occur if a tapered element is extended too far. The spline is omitted from the problem and processing continues.

2258 *** USER FATAL MESSAGE 2258, SET **** REFERENCED ON SPLINE CARD **** NØT FQUND.
The necessary SET1 or SET2 card was not found. Include the proper set card.
2259 *** SYSTEM FATAL MESSAGE 2259, PDINT ASSIGNED TD BDX **** FDR CAERO1 **** NDT IN EQAERD.
No internal \(k\) point could be found for external box. If box number is okay, module APD is in error; if box number is bad, module GI is in error.

2260 *** USER FATAL MESSAGE 2260, SINGULAR MATRIX DEVEL@PED WHILE PRØCESSING SPLINE ****
Matrix developed by SSPLIN or LSPLIN (depending on type of spline) could not be inverted; possibly for the Surface Spline all points lie in a straight line, or not enough points are included.

\section*{NASTRAN SYSTEM AND USER MESSAGES}
\begin{tabular}{|c|c|}
\hline 2261 & USER fatal message 2261, PLANE gF Linear SPLine **** Perpendicular tø PLane øF aerø ELEMENT **** \\
\hline & Y-axis of linear spline was perpendicular to connected element and could not be projected onto element. \\
\hline 2262 *** & USER FATAL MESSAGE 2262, SPLINE **** INCLUDES AERØ BØX INCLUDED ØN AN EARLIER SPLINE. \\
\hline & Two splines are attached to the same box. Splines may be connected to the same structural grid point but not the same aerodynamic grid point. This type of error checking will stop with one error, so check this spline and subsequent splines (sorted) for overlaps before resubmitting. \\
\hline 2263 * & USER FATAL MESSAGE 2263, INSUFFICIENT CøRE TØ PRØCESS SPLINE **** \\
\hline & Depending on type of spline and input options, subroutine SSPLIN, or LSPLIN would not have had enough core for this spline. Either allow more core or break this spline into smaller splines. \\
\hline 2264 *** & SYSTEM FATAL MESSAGE 2264, NUMBER ØF RøWS CøMPUTED (****) WAS GREATER THAN SIZE REQUESTED FOR QUTPUT MATRIX (****) \\
\hline & Module ADD determines size of output matrices (j set size). Sum of number of rows added by different method total more than maximum allowed. \\
\hline 2265 * & USER FATAL MESSAGE 2265, METHøD **** FØR AERØELASTIC MATRIX GENERATIØN IS NØT IMPLEMENTED \\
\hline & A nonimplemented method for computing these matrices was input. \\
\hline 2266 *** & USER FATAL MESSAGE 2266, \(\emptyset \mathrm{NE}\) ØR MøRE \(\emptyset \mathrm{F}\) THE FØLLØWING FLFACT SETS WERE NØT FØuND *** ** \\
\hline & One or more of the FLFACT ID's on the flutter data card could not be found. Include all sets mentioned. \\
\hline
\end{tabular}

2267 *** USER FATAL MESSAGE 2267, INTERPØLATIØN METHØD **** UNKNØWN.
Matrix interpolation method on FLUTTER card is not implemented.

2268 *** USER FATAL MESSAGE 2268, FMETHØD SET **** NØT FØUND.
FLUTTER data card for FMETHØD = **** in case control could not be found.

2269 *** USER FATAL MESSAGE 2269, FLUTTER METHØD **** NØT IMPLEMENTED.
Flutter analysis method on FLUTTER data card is not implemented.

2270 *** USER FATAL MESSAGE 2270, LINEAR INTERPØLATIGN WITH \(\quad\) OUT ENØUGH INDEPENDENT MACH NUMBERS EQUAL T \(\emptyset\) DEPENDENT MACH ****

Linear interpolation is for points with the same Mach number, and less than two more found from the QHHL list which matched the requested Mach on an FLFACT list.

2271 *** USER FATAL MESSAGE 2271, INTERPØLATIØN MATRIX IS SINGULAR.
Possibly for the surface spline, all the Mach numbers were the same, or for either method, not enough points were included.
\begin{tabular}{|c|c|}
\hline 2288 *** & SYSTEM FATAL MESSAGE 2288. **** READ INC@RRECT NUMBER W@RDS (**** ****). Subroutine **** read **** words on the **** card which is incorrect. \\
\hline \multirow[t]{2}{*}{2289 ***} & \begin{tabular}{l}
USER FATAL MESSAGE 2289. **** INSUFFICIENT C \(\emptyset\) RE (****). **** \(=\) MATERIAL, **** \(=\) \\

\end{tabular} \\
\hline & Module \(9 P T P R 1\) or \(\emptyset P T P R 2\) gives the open core available and the pointers to the start of each contiguous section of core. \\
\hline \multirow[t]{2}{*}{2290 ***} & USER FATAL MESSAGE 2290. THE FØLLøWING ILLEGAL ELEMENT TYPES FØuND Øn PLIMIT CARD. \\
\hline & This message is followed by a list of element types. Processing of legal element types continues so as to discover other errors. \\
\hline \multirow[t]{2}{*}{2291 ***} & USER FATAL MESSAGE 2291, PLIMIT RANGE INCøRRECT F9R **** THRU **** AND **** THRU ****. \\
\hline & Property identification numbers are repeated. The first pair is rejected and processing of the remaining ranges continues to discover other errors. \\
\hline \multirow[t]{2}{*}{2292 ***} & USER FATAL MESSAGE 2292. INSUFFICIENT C@RE F@R PLIMIT DATA, ELEMENT ****, **** W@RDS SKIPPED. \\
\hline & The element type **** being processed exceeded core by **** words. Processing of other element types continues to discover additional requirements. \\
\hline \multirow[t]{2}{*}{2293 ***} & USER FATAL MESSAGE 2293. N@ PID ENTRIES @N PLIMIT CARD (****). \\
\hline & A PLIMIT card of element type **** had no property entries. \\
\hline \multirow[t]{2}{*}{2294 ***} & USER FATAL MESSAGE 2294. DUPLICATE **** THRU **** RANGE F@R ELEMENT **** REJECTED plimit. SCAN cgntinued. \\
\hline & Property identification numbers are repeated for element type ****. \\
\hline \multirow[t]{2}{*}{2295 ***} & USER FATAL MESSAGE 2295. Nø ELEMENTS EXIST FøR ØPTIMIZATI¢N. \\
\hline & A non-null property card and its corresponding material stress limit is needed. In subroutine 9 PT2A stress data is also required. \\
\hline \multirow[t]{2}{*}{2296 ***} & USER FATAL MESSAGE 2296. INSUFFICIENT C@RE **** (****), ELEMENT ****. \\
\hline & Subroutine **** has insufficient core when loading element type or number ****. Elements are read into core by element type (see /GPTAT/ sequence) then by sequential element number. \\
\hline 2297 *** & SYSTEM FATAL MESSAGE 2297. INCØRRECT LøGIC FØR ELEMENT TYPE ****, ELEMENT ****, (****) Subroutine (****) has sequential element search. Element type can be found in /GPTAI/. \\
\hline 2298 *** U & \begin{tabular}{l}
USER FATAL MESSAGE 2298. INSUFFICIENT CDRE **** (****), PROPERTY ****. \\
Subroutine **** (core ****) had insufficient core when loading property ****.
\end{tabular} \\
\hline
\end{tabular}
\[
6.2-28 f(12 / 31 / 74)
\]


\section*{DIAGNOSTIC MESSAGES}

2321 *** USER FATAL MESSAGE 2321, Nの FLUTTER CARDS FQUND.
Flutter analysis requires at least one FLUTTER card.
2322 *** USER FATAL MESSAGE 2322, NEITHER MKAERØ1 ØR MKAERD2 CARDS FØUND.
Either MKAERD1 or MKAERD2 cards are required.
2323 *** USER FATAL MESSAGE 2323, PAERØ1 CARD Nø. XXXXXXX REFERENCED BY CAERØ1 CARD ND. XXXXXXX BUT DDES NDT EXIST.

CAERØ1 card points to missing PAERØ1 card.

2324 *** USER FATAL MESSAGE 2324, CAERØ1 ELEMENT NØ. XXXXXXX REFERENCED ØN A SPLINE 1 CARD DØES NøT EXIST.

Either a SPLINE1 or a SPLINE2 card references a CAERØ1 card which is missing.

2325 *** USER FATAL MESSAGE 2325, CAERD1 ELEMENT NØ. XXXXXXX REFERENCED ØN A SET2 CARD DDES NDT EXIST.

A SET2 card points to a CAERØ1 which was not included.

2326 *** USER FATAL MESSAGE 2326, CAERØ1 ELEMENT NØ. XXXXXXXX REFERENCES AEFACT CARD NØ. XXXXXXX WHICH DØES NDT EXIST.

The listed CAERØl card requires one AEFACT card for LCH@RD or LSPAN.
2327 *** USER FATAL MESSAGE 2327, CAERØ1 ELEMENT ND. XXXXXXX REFERENCES AEFACT CARD NØ. XXXXXXX WHICH DDES NDT EXIST.

The listed CAERØl card requires one AEFACT card for LCH@RD or LSPAN.

2328 *** USER FATAL MESSAGE 2328, SETI AND SPLINEI CARDS REQUIRED.
At least one SET1 or SET2 card and at least one SPLINE1 or SPLINE2 card required.

2329 *** USER FATAL MESSAGE 2329, DUPLICATE EXTERNAL ID ND. XXXXXXX GENERATED.
The external ID's assigned to each generated box must be unique.

2330 *** USER FATAL MESSAGE 2330, SETI CARD N@. XXXXXXXX REFERENCES EXTERNAL ID N@. XXXXXXXX WHICH DØES NØT EXIST.

External ID on SETl card does not exist as structural grid point.

2331 *** USER FATAL MESSAGE. 2331, BØX PICKED ØN SPLINE CARD NØ. XXXXXXX NØT GENERATED BY CAERØ CARD NØ. XXXXXXX.

SPLINE card XXXXXXX points to a box which was not generated by the CAER \(\emptyset\) card.

2332A *** USER FATAL MESSAGE 2332. DEPENDENT MPC C@MP@NENT HAS BEEN SPECIFIED TWICE. SIL VALUE

2332 B *** USER WARNING MESSAGE 2332. INVALID INPUT DATA DETECTED IN DATA BLøCK, ****, PRØCESSING STØPPED FØR THIS DATA BLØCK.
\begin{tabular}{|c|c|}
\hline 2333 *** & USER INFØRMATI@N MESSAGE 2333. MŋDULE DDRMM TERMINATED WITH VARIABLE IERR@R = ******** \\
\hline 2334 *** & USER WARNING MESSAGE 2334. ILLEGAL MAJ@R \(9 R\) MIN@R \(9 F P-I D\) IDENTIFICATIONS = \(\quad\) ********** ********** DETECTED IN DATA BLøCK, ****, PRØCESSING \(\emptyset F\) SAID DATA BLøCK DISCØNTINUED. \\
\hline 2335 *** & USER WARNING MESSAGE 2335. THE AMgUNT gF DATA IS NפT C〇NSISTENT FgR EACH EIGENVALUE IN DATA BLøCK **** PRøCESSING \(\emptyset F\) THIS DATA BLøCK TERMINATED. \\
\hline 2336 *** & USER WARNING MESSAGE 2336. A CHANGE IN WøRD 2 ØF THE ØFP-ID RECØRDS \(9 F\) DATA BLøCK **** HAS BEEN DETECTED. PRøCESSING \(\emptyset F\) THIS DATA BLøCK HAS BEEN TERMINATED. \\
\hline 2337 *** & USER WARNING MESSAGE 2337. DATA BLøCK **** CAN NøT BE PRøCESSED DUE Tø A CøRE INSUFFICIENCY ØF APPRDXIMATELY ********** DECIMAL WØRDS. \\
\hline 2338 *** & USER WARNING MESSAGE 2338. DATA BLøCK **** MAY NøT BE FULLY CØMPLETED DUE TØ A CøRE INSUFFICIENCY ØF APPR@XIMATELY ********** DECIMAL WgRDS. \\
\hline 2339 *** & USER WARNING MESSAGE 2339. A CHANGE IN WøRD 2 \(9 F\) THE ØFP-ID RECØRDS \(\emptyset F\) DATA BLøCK **** HAS BEEN DETECTED. PRøCESSING \(\emptyset F\) THIS DATA BLDCK HAS BEEN TERMINATED. \\
\hline 2340 *** & SYSTEM WARNING MESSAGE 2340. MgDULE **** ****, HAS BEEN REQUESTED TØ D UNSYMMETRIC DECQMPQSITI@N \(0 F\) A SYMMETRIC MATRIX. \\
\hline 2341 *** & USER WARNING MESSAGE 2341. MgDULE **** **** HAS BEEN FURNISHED A SQUARE MATRIX MARKED UNSYMMETRIC FØR SYMMETRIC DECØMPØSITIQN. \\
\hline 2342 *** & USER WARNING MESSAGE 2342. UNRECØGNIZED DMAP APPR@ACH PARAMETER = ********. \\
\hline 2343 *** & SYSTEM WARNING MESSAGE 2343. DATA BLøCK, *****, IS EITHER NØT -EQEXIN- ØR PØSSIBLY INCDRRECT. \\
\hline 2344 *** & SYSTEM WARNING MESSAGE 2344. GPFDR FINDS ELEMENT = **** ****, HAS AN ECT ENTRY LENGTH Tض LONG F@R A PR@GRAM LøCAL ARRAY. \\
\hline 2345 *** & SYSTEM WARNING MESSAGE 2345. GPFDR FINDS AND IS IGNøRING UNDEFINED ECT DATA WITH LDCATE NUMBERS \(=* * * * * * * * ~ * * * * * * * * ~ * * * * * * * * . ~\) \\
\hline 2346 *** & SYSTEM WARNING MESSAGE 2346. GPFDR FINDS DATA FQR EL-TYPE \(=\) **********, IN DATA BLDCK, ********** NøT T BE IN AGREEMENT WITH THAT WHICH IS EXPECTED. \\
\hline 2347 *** & SYSTEM WARNING MESSAGE 2347. GPFDR FINDS TøØ MANY ACTIVE CøNNECTING GRID PøINTS FØR ELEMENT ID = **********. \\
\hline 2348 *** & SYSTEM WARNING MESSAGE 2348. GPFDR DØES NפT UNDERSTAND THE MATRIX-DICTI甲NARY ENTRY F@R ELEMENT ID = **********. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 2349 * & SYSTEM WARNing MESSAGE 2349. GPFDR FINDS AN ELEMENT ENTRY C@NNECTING PIVgT SIL = \(* * * * * * * * * *\), \(\emptyset\) N DATA BLDCK ***** T \(\varnothing\) LARGE FØR A LøCAL ARRAY. ENTRY IS BEING IGN@RED. \\
\hline 2350 *** & SYSTEM WARNING MESSAGE 2350. GPFDR CANNøT FIND PIVøT SIL = ***********, AM@NG THE SILS ØF ELEMENT ID = *********** AS READ FRØM DATA BLøCK, *****, ENTRY THUS IGN@RED. \\
\hline 2351 *** & USER INFØRMATION MESSAGE 2351. A FØRCE CONTRIBUTIØN DUE TØ ELEMENT TYPE = **** ****, ØN PØINT ID = **********, WILL NØT APPEAR IN THE GRID-PØINT-FØRCE-BALANCE SUMMARY. \\
\hline 2352 *** & SYSTEM WARNING MESSAGE 2352. GPFDR IS N@T ABLE TØ FIND PIVøT SIL = ********** AS READ FROM DATA BL@CK ***** IN TABLE \(9 F\) SILS. \\
\hline 2353 *** & \begin{tabular}{l}
USER WARNING MESSAGE 2353. INSUFFICIENT C \(\emptyset\) RE T \(\emptyset\) H \(\emptyset L D\) ALL N NON-ZER \(\emptyset\) APP-L@AD AND F- \(\emptyset F-S P C\) ØUTPUT LINE ENTRIES \(\emptyset F\) GRID-PØINT-FØRCE-BALANCE REQUESTS. S \(\emptyset M E\) P \(\emptyset I N T S ~ R E Q U E S T E D ~ F \emptyset R ~\) \\

\end{tabular} \\
\hline 2354 *** & USER WARNING MESSAGE 2354. GPFDR MgDULE IS UNABLE TD CøNTINUE AND HAS BEEN TERMINATED DUE T ERR \(\emptyset\) MESSAGE PRINTED AB@VE \(\emptyset R\) BELOW THIS MESSAGE. THIS ERR@R ØCCURRED IN GPFDR C \(\emptyset D E\) WHERE THE VARIABLE -NERR@R- WAS SET \(=* * * * *\). \\
\hline 2355 * & USER FATAL MESSAGE 2355, GRID PØINT CØØRDINATES ØF ELEIMENT ******** ARE IN ERR \(\emptyset\) R. ØNE \(\emptyset R\) M \(\emptyset R E ~ \emptyset F\) THE R-CØØRDINATES ARE ZER \(\emptyset\) \(\emptyset\) R NEGATIVE. \\
\hline 2357 ** & USER WARNING MESSAGE 2357. QNE VECTØR (DEFAULT) WILL BE CQMPUTED IN THE CØMPLEX REGIQN. If more than one vector is desired from the Hessenburg method, make a specific request on the EIGC card. \\
\hline 2358 *** & USER WARNING lilessage 2358, SYMmetric script-af matrix (HREE) ASSUMED in radmtx. \\
\hline 2359 *** & USER ! 4 ARNING MESSAGE 2359, COL *****, R9W ***** 9 F RADMTX IS NEGATIVE. \\
\hline 2360 *** & USER FATAL MESSAGE 2360, TØTAL VIEW FACT@R (FA/A), FØR ELEMENT ******** IS ************** (ELEMENT AREA IS **************). \\
\hline & Provides view factors and areas for all elements with a view factor greater than 1.01. This message is also a WARNING for all elements with a view factor between . 99 and 1.01 provided the NASTRAN card, \(\operatorname{SYSTEM}(58)=1\), is included in the deck. \\
\hline 2361 *** & USER INFøRMATION MESSAGE 2361, **** ELEMENTS HAVE A TøTAL VIEW FACTøR (FA/A) LESS than 0.99, ENERGY MAY BE LDST TØ SPACE. \\
\hline & Provides the total number of elements with a view factor less than . 99. \\
\hline 2362 *** & USER FATAL MESSAGE 2362, CHBDY CARDS WITH DUPLICATE IDS FØUND IN EST, CHBDY ID NUMBER = **********. \\
\hline 2364 *** & \begin{tabular}{l}
USER FATAL MESSAGE 2364, GRID PØINT CØØRDINATES ØF ELEMENT ********* ARE IN ERRØR. \\

\end{tabular} \\
\hline
\end{tabular}

NASTRAN SYSTEM AND USER -MESSAGES

2365 *** USER WARNING MESSAGE 2365, INSUFFICIENT CØRE FØR HESSENBURG METH \(\emptyset\). SWITCHING TO INVERSE PØWER.

2366 *** USER FATAL MESSAGE 2366, REGI@N IMPR@PERLY DEFINED \(\emptyset N\) EIGC CARD.
If insufficient core has caused an automatic switch from Hessenburg method to Inverse Power Method, the EIGC card must have the region(s) defined (they are ignored for the Hessenburg method). Either increase core to use the Hessenburg method or define the region(s) for Inverse Power.

2367 *** USER WARNING MESSAGE 2367, FREQUENCY F1 (FIELD 4) \(9 N\) THE EIGR BULK DATA CARD IS NEGATIVE. IT IS ASSUMED T \(\emptyset\) BE ZER \(\emptyset\) F \(\emptyset R\) CALCULATIØN PURP \(\emptyset S E S\).

2382 *** USER WARNING MESSAGE 2382, ELEMENT MATRICES FDR ELEMENTS CØNGRUENT TØ ELEMENT ID = ***** ***** WILL BE RE-CØMPUTED AS THERE IS INSUFFICIENT CØRE AT THIS TIME TØ HØLD C@NGRUENCY MAPPING DATA.
 ID \(=* * * * * * * * * *\). ELEMENT MATRICES F \(\emptyset R\) THIS ELEMENT WILL, THEREF@RE, BE RE-CØMPUTED.
 ITS ELEMENT MATRICES WILL BE RE-CQMPUTED AS THERE IS INSUFFICIENT C CQRE AT THIS TIME TØ PERFØRM CØNGRUENCY MAPPING CØMPUTATIØNS.

3001 *** SYSTEM FATAL MESSAGE 3001, ATTEMPT TØ ØPEN DATA SET *** IN SUBRØUTINE ****** WHICH WAS NDT DEFINED IN FIST.

Subroutine did not expect data block to be purged. Check data block requirements for module. This message is also a WARNING when STRESS output is requested in a heat transfer problem.

3002 *** SYSTEM FATAL MESSAGE 3002, EØF ENCØUNTERED WHILE READING DATA SET ********(FILE ***) IN SUBRQUTINE ******.

This message is issued when an End-Of-File occurs while trying to skip the header record. The data block is not in the proper format.

3003 *** SYSTEM FATAL MESSAGE 3003, ATTEMPT T \(\emptyset\) READ PAST THE END \(\emptyset F\) A LøGICAL REC \(\emptyset\) RD IN DATA SET ********(FILE ***) IN SUBRØUTINE ********.
This message is issued when the file is positioned at the beginning of a logical record and the record does not contain at least three words. Data block is not in proper format.

3004 *** \(\underset{\substack{\text { SYst* }}}{\text { SYSTEM FATAL MESSAGE } 3004 \text {, INCØNSISTENT TYPE FLAGS ENCØUNTERED WHILE PACKING DATA SET }}\) ****.

3005 *** USER FATAL MESSAGE 3005, ATTEMPT TØ ØPERATE 9 N SINGULAR MATRIX **** IN SUBRØUTINE ****.
A diagonal term does not exist for a column of (U). This is normally detected in DEC@MP implying care was not taken in processing singular matrices in the calling routine.

3006 *** SYSTEM FATAL MESSAGE 3006, BUFFER ASSIGNED WHEN OPENING DATA BLØCK **** FILE (****) CØNFLICTS WITH BUFFERS CURRENTLY ØPEN.
Computation of buffer pointers or allocation of open core is in error.

3007 *** SYSTEM FATAL MESSAGE 3007, ILLEGAL INPUT TØ SUBRDUTINE ****.
Subroutine **** has encountered data which it cannot process. This error should not be caused by user input data. A system or programming error is indicated. Go directly to the subroutine listing or jescription to determine the exact cause of the problem.
\(30 C 8\) *** SYSTEM FATAL MESSAGE 3008, INSUFFICIENT CQRE AVAILABLE FØR SUBRØUTINE ********.
This message implies that the particular subroutine does not have sufficient core to meet \(i\) ts demands. The subroutine or module description should be consulted to determine the core requirements.

A conflict exists between the SGIN \(\emptyset\) subroutine for the UNIVAC 1108 and the resident NTRAN \(\$\). Either recode SGINØ or remove the PLØT request from the NASTRAN job.

3010 *** SYSTEM FATAL MESSAGE 3010, ATTEMPT TØ MANIPULATE DATA SET ********(FILE ***) BEFQRE 9 PENING FILE.
An operation other than ØPEN or CLØSE is requested on a file which is not defined in the FIST.

\section*{NASTRAN SYSTEM AND USER MESSAGES}

3011 *** SYSTEM FATAL MESSAGE 3011, ATTEMPT T \(\emptyset\) WRITE A TRAILER 9 N FILE *** WHEN IT HAS BEEN PURGED.

The file did not exist in the FIST when WRTTRL was called.

3012 *** SYSTEM FATAL MESSAGE 3012, ATTEMPT TØ ØPEN DATA SET ********(FILE ***) WHICH HAS ALREADY BEEN ØPENED.
GINØ ØPEN was called while the file was already open.

3013 *** SYSTEM FATAL MESSAGE 3013, ATTEMPT TØ READ DATA SET ********(FILE ***) WHEN IT WAS ØPENED FOR QUTPUT.

GINØ was called to READ a data block opened for output.

3014 *** SYSTEM FATAL MESSAGE 3014, ATTEMPT T0 WRITE DATA SET ********(FILE ***) WHEN IT WAS OPENED FOR INPUT.
GIND was called to WRITE a data block opened for input.

3015 *** SYSTEM FATAL MESSAGE 3015, ATTEMPT T \(\emptyset\) FWDREC ØN DATA SET ********(FILE ***) WHEN IT WAS ØPENED FQR ØUTPUT.
GINØ was called to FWDREC a file opened for output.

3016 *** SYSTEM FATAL MESSAGE 3016, **** MATRIX IS NØT IN PRØPER FØRM IN SUBRØUTINE ****.
This implies that the input matrix is not in the proper form or type acceptable to the subroutine. Check the trailer information on the matrix and the subroutine description for the discrepancy.

3017 ***. USER WARNING MESSAGE 3017 , \(\emptyset N E\) ØR MØRE GRID PØINT SINGULARITIES HAVE NØT BEEN REM@VED BY SINGLE \(9 R\) MULTI-PØINT CดNSTRAINTS.

Singularities or near singularities may exist at the grid point level. The listed singularities should be examined for data errors. The check performed here is neither necessary nor sufficient for a singular matrix.

3018 *** SYSTEM FATAL MESSAGE 3018, M@DULE *********, SEQUENCE Nの. ***, REQUIREMENTS EXCEED AVAILABLE FILES.
Segment File Alloctor (SFA) did not have sufficient logical files available to fill the request of the module. Cut module requirements or increase the logical files within the computer system. See Section 5 of the Programmer's Manual.

3019 *** USER FATAL MESSAGE 3019, MAXIMUM LINE CØUNT EXCEEDED IN SUBRØUTINE **** LINE CØUNT EQUALS ****.

The total number of lines written on the system output file has exceeded the set limit (default value is 20,000 ). If you wish to increase this value, include a card of the form "MAXLINES=n" in your Case Control Deck.

3020 *** SYSTEM FATAL MESSAGE 3020, GNFIST ØVERFL \(\emptyset W E D\) FIST TABLE AT SEQUENCE N@. *** DATA SET ********.

Generate FIST (GNFIST) routine overflowed FIST /XFIST/. Increase complied size. See Section 2 of the Programmer's Manual.

3021 *** SYSTEM FATAL MESSAGE 3021, FILE *** NØT DEFINED IN FIST.
An operation other than \(\emptyset P E N\) or CLØSE is requested on a file which is not defined in the FIST.
 A PREVIøUS MgDULE IN THE CURRENT DMAP RQUTE.

Segment File Allocator (SFA) detected that an input data block to a future module has not been generated. If the future module requires that this data block exist, the module may terminate with a fatal error.

This message may occur (and most often does) when the Segment File Allocator has removed from its tables (due to a need for more room) previously purged data blocks. In this case no error or even a warning is implied.

3023 *** USER INFØRMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECØMPOSITION OF DATA BLØCK ******** ( \(N=* * * * *\) ) TIME ESTIMATE \(=* * * * * * *\)
C AVG = ****** \(\quad\) S AVG \(=* * * * * * \quad\) PC MAX \(=\) ******
PC AVG = ******
ADDITI@NAL C@RE \(=\) *******
PC GRQUPS = ******
SPILL GRDUPS \(=* * * * * *\)
C MAX = ******
PREFACE LØØPS \(=* * * * * *\)
\(N\) is the number of rows in the data block; TIME is the estimate (in seconds) to perform the decomposition; C AVG is the average number of active columns per pivot row; PC AVG is the average number of passive columns at each active termination point; SPILL GRDUPS is the number of spill groups; S AVG is the average number of rows in each spill group; ADDITIØNAL C \(\emptyset R E\) (positive) is the amount of core required to avoid spill, (negative) is the amount of unused core; C MAX is the maximum number of active columns in any one pivot row; PC MAX is the maximum number of passive columns at any one active column termination point; PC GRØUPS is the number of active column termination points; PREFACE LOQPS is the number of times the preface of the decomposition subroutine is executed.

3024 *** USER INFØRMATIØN MESSAGE 3024, THE BANDWIDTH ØF MATRIX **** EXCEEDS THE MAXIMUM BANDWIDTH. A MAXIMUM BANDWIDTH \(\emptyset F\) **** WILL BE USED.

This message indicates that a matrix has scattered terms way off the diagonal (i.e., a large bandwidth). Instead of searching all combinations of \(B\) and \(C\), the search is started at the maximum bandwidth.

3025 *** SYSTEM FATAL MESSAGE 3025, ILLEGAL INDEX IN ACTIVE R@W @R COLUMN CALCULATI@N IN ****. Possible machine error. Rerun problem. If error persists, a code error exists in the decomposition routine.

3026 *** SYSTEM FATAL MESSAGE 3026 , MATRIX **** EXCEEDS MAXIMUM ALLøWABLE SIZE FØR BANDWIDTH PLUS ACTIVE C \(\emptyset L U M N S . ~ B M A X ~=~ * * * *, ~ C M A X ~=~ * * * * . ~\)

Sufficient space was not reserved for the generation of the B vs. C vector. SDCØMP should be recompiled to increase BMAX and CMAX.

3027 *** USER INFØRMATIØN MESSAGE 3027, **** DECØMPØSITI@N TIME ESTIMATE IS ******** SECØNDS.
Gives the estimated time required for a decomposition in seconds and the type of matrix, i.e., complex, real. (double or single precision), symmetric or unsymmetric.

3028 *** USER INFQRMATION MESSAGE 3028, B = ****, BBAR \(=* * * *, C=* * * *, C B A R=* * * *, ~ R=* * * *\)
Gives the upper bandwidth (B), lower bandwidth (BBAR), number of active columns (C), and active rows (CBAR) used in the unsymmetric decomposition.

3029 *** SYSTEM FATAL MESSAGE 3029, PHYSICAL END-ØF-FILE ENCØUNTERED ØN DATA SET **** (FILE ****). Since logical End-of-files are used by GIN \(\emptyset\), a physical End-of-File indicates an attempt to read beyond valid data.

3030 *** USER WARNING MESSAGE 3030, \(\emptyset F P\) UNABLE T \(\emptyset\) PRØCESS DATA BLøCK. A TABLE \(\emptyset F\) THE DATA BLøCK FQLLØWS.

Same as message 3032.

3032 *** USER FATAL MESSAGE 3032, UNABLE TØ FIND SELECTED SET (****) IN TABLE (****) IN SUBR@UTINE (****).
A particular set used in the problem was not included in the data. Good examples are loads, initial conditions, or frequency sets. Include the required data or change the Case Control Deck to select data already in problem. Set zero (0) has a special meaning. A set selection was required, but none was made. For example, no METH \(\varnothing D\) was selected for an eigenvalue extraction problem.

This message can also indicate that a LØAD card has referenced another L \(Q A D\) card, which is not permitted.

3033 *** USER FATAL MESSAGE 3033, SUBCASE ID **** IS REFERENCED ØN ØNE ØR M@RE RANDPS CARDS BUT IS NØT A CURRENT SUBCASE ID.
The RANDPS set selected can only reference subcase identification numbers included in the current loop. All subcases in which the direct input matrices or transfer functions do not change are run together. Either add a subcase with referenced identification number, change your RANDPS cards or change the identification numbers on your current subcases.

3034 *** USER WARNING MESSAGE 3034, ØRTH@G@NALITY CHECK FAILED, LARGEST TERM \(=\) **** EPSI \(=\) ****. The off-diagonal terms of the modal mass matrix are larger than the user input criteria on the EIGB or EIGR bulk data card. The eigenvectors are not orthogonal to this extent. This nonorthogonality is especially important if a modal formulation is contemplated.

3035 *** USER INFØRMATIØN MESSAGE 3035, FØR LØAD ** EPSILØN SUB E=*****.
This is an informative message reflecting the accumulated round-off error of the static solution.

3036 *** SYSTEM FATAL MESSAGE 3036, DATA SET ******** IS REQUIRED AS INPUT BUT HAS NØT BEEN GENERATED \(\emptyset R\) PURGED.
The above mentioned data set is not accounted for on the ØPTP checkpoint dictionary. The message indicates a failure of the File Name Table. As an interim measure the user can use the ALTER feature to execute the proper module to create the needed data set.

3037 *** SYSTEM FATAL MESSAGE 3037 , JØB TERMINATED IN SUBRØUTINE ****.
This message designates the subroutine in which the program terminated. It should be preceeded by a user message which explains the cause of the termination. The module in which the program terminated can be found by examining the online time messages.

3038 *** SYSTEM FATAL MESSAGE 3038, DATA SET *** DØES NФT HAVE MULTIREEL CAPABILITY.
Computer hardware/software does not support multireel files.

3039 *** SYSTEM FATAL MESSAGE 3039, ENDSYS CANNØT FIND SAVE FILE.
File cannot be found to save and restore executive tables during link switching.

3040 *** SYSTEM FATAL MESSAGE 3040, ATTEMPT T \(\emptyset\) WRITE DATA SET ******** (FILE ***) WHEN IT IS AN INPUT FILE.
Input data blocks for a module (100 . LT. NAME .LT. 200) may be read only.

3041 *** USER WARNING MESSAGE 3041, EXTERNAL GRID PØINT *** DØES NØT EXIST \(\emptyset R\) IS NØT A GEØMETRIC GRID PøINT. THE BASIC ØRIGIN WILL BE USED.

The reference grid point specified on the PARAM GRDPNT card for weight and balance calculations in GPWG cannot be used.

3042 *** USER WARNING MESSAGE 3042, INCDNSISTENT SCALAR MASSES HAVE BEEN USED. EPSILDN/DELTA = *****.
The GPWG has detected inconsistant scalar masses. Direct masses have been used. Skew inertia's will result. Examine your scalar masses and CØNM1 cards.

3043 *** USER FATAL MESSAGE 3043, UNCØNNECTED EXTRA PØINT (M@DAL CØØRDINATE=***) HAS BEEN DETECTED BY SUBRØUTINE ****.
Extra points must be connected via Direct Matrix Input (or Transfer Functions) in modal transient or frequency response.

3044 *** USER FATAL MESSAGE 3044, A PØINT ØN NØNLINEAR LØAD SET **** NØLIN **** IS NØT AN EXTRA PØINT. ØNLY EXTRA PØINTS MAY HAVE NØNLINEAR LØADS IN A M@DAL FØRMULATIØN.

Modal transient analysis (Rigid Format D-12) will support nonlinear loads only on extra points. Pick another nonlinear load set.

3045 *** USER WARNING MESSAGE 3045, INSUFFICIENT TIME Tø CØMPLETE THE REMAINING ** SøLUTIQN(S) IN MØDULE ***.

The time specified on the NASTRAN TIME card has expired in the named module. The module will be terminated. NASTRAN will continue running until the time on the job card expires. Restart to obtain print-out, complete solutions or rerun problem.

3046 *** USER FATAL MESSAGE 3046, YOUR SELECTED L@ADING CØNDITIØN, INITIAL CØNDITIØN, AND NØNLINEAR FØRCES ARE NULL. A ZERØ SØLUTION WILL RESULT.

Transient solution must have one of the above nonzero.

3047 *** USER FATAL MESSAGE 3047, N \(\emptyset\) MøDES WITHIN RANGE AND LMøDES=0. A MøDAL FØRMULATIØN CANNQT BE MADE.

The modes used for a modal formulation must be selected by a PARAM card. Set LFREQ, HFREQ or LMQDES to request modes.

3048 *** SYSTEM FATAL MESSAGE 3048, BUFFER CØNTRØL W@RD INCØRRECT FØR GINØ **** ØPERATIØN ØN DATA BLDCK ****.
The buffer control word has been destroyed outside of GIN or an attempt to READ a file opened to WRITE or similar error has occurred.

3049 *** SYSTEM FATAL MESSAGE 3049, GINØ UNABLE TØ PØSITIØN DATA BLØCK **** CØRRECTLY DURING **** ØPERATIØN.

A block number read does not match the expected block number. The file has been repositioned outside the GINØ environment or a machine or operating system error has occurred.

3050 *** USER FATAL MESSAGE 3050, INSUFFICIENT TIME REMAINING FØR DECØMPØSITIØN, ****. TIME ESTIMATE IS **** SECONDS.
The time estimated for a decomposition exceeds the remaining time. Increase the time estimate for the run.
\[
6.2-32(3 / 1 / 71)
\]

\section*{NASTRAN SYSTEM AND USER MESSAGES}

3051 *** USER FATAL MESSAGE 3051, INITIAL CØNDITIØN SET **** WAS SELECTED FØR A MøDAL TRANSIENT PRØBLEM. INITIAL CØNDITIØNS ARE NØT ALLØWED IN SUCH A PRØBLEM.

3052 *** USER WARNING MESSAGE 3052, A RANDØM REQUEST FØR CURVE TYPE - **** -, PØINT - **** CØMPØNENT - **** -, SPECIFIES TØØ LARGE A CØMPØNENT ID. THE LAST CØMP@NENT WILL BE USED.

3053 *** USER WARNING MESSAGE 3053, THE ACCURACY @F EIGENVALUE **** IS IN DQUBT. GIVENS-QR FAILED T \(\emptyset\) CDNVERGE IN **** ITERATIONS.

Each eigenvalue is computed to the precision limits of each machine consistent with the maximum number of iterations allowed. A programming change would be required to increase the maximum iteration parameter.

3054 *** USER WARNING MESSAGE 3054, THE ACCURACY \(\emptyset F\) EIGENVECT \(\emptyset R\) **** C \(\emptyset\) RRESPØNDING T \(\emptyset\) THE EIGENVALUE **** IS IN DØUBT.

The eigenvector failed to converge in the allowable number of iterations. Particular attention should be given to the off-diagonal terms of the modal mass matrix (MI) to determine if this vector is orthogonal to the remaining vectors. These terms will be computed and checked if field 9 on the EIGR card contains a nonzero value. The message is expected in the case of close or multiple eigenvalues, even though the vectors are properly computed.

3055 *** USER FATAL MESSAGE 3055 , AN ATTEMPT TØ MULTIPLY ØR MULTIPLY AND ADD NØN-CØNFØRMABLE MATRICES TØGETHER WAS MADE IN M@DULE ******.

The multiply/add subroutine requires conformable matrices. There are two possible equations
1. \([X]=[A][B]+[C]\)

The number of columns of [ \(A\) ] must be equal to the number of rows of [B] and the number of columns of [C] must be equal to the number of columns of [ \(B\) ] and the number of rows of [C] must be equal to the number of rows of [A].
2. \([X]=[A]^{\top}[B]+[C]\)

The number of rows of [ \(A\) ] must be equal to the number of rows of [ \(B\) ]; the number of columns of [C] must be equal to the number of columns of \([B]\) and the number of rows of [C] must be equal to the number of columns of [A].

3056 *** USER FATAL MESSAGE 3056 , N \(\emptyset\) MASS MATRIX IS PRESENT BUT MASS DATA IS REQUIRED.
An operation with the mass matrix is required, such as a gravity loading condition, but none was created. A typical cause is the omission of RHØ on the MATl card.

3057 *** USER FATAL MESSAGE 3057, MATRIX **** IS NØT PØSITIVE DEFINITE.
A Cholesky decomposition was attempted on the above matrix, but a diagonal term was negative or equal to zero, such that the decomposition failed.

\section*{DIAGNOSTIC MESSAGES}


3073 *** USER FATAL MESSAGE 3073, N \(\emptyset\)-HBDY- ELEMENT SUMMARY DATA IS PRESENT FOR ELEMENT ID \(=\) ********, WHICH APPEARS ON A -RADLST- BULK DATA CARD.

3074 .*** USER FATAL MESSAGE 3074, CQLUMN ******** ØF THE Y MATRIX IS NULL.
3075 *** USER FATAL MESSAGE 3075, INTERMEDIATE MATRIX Y IS SINGULAR.

3076 *** SYSTEM FATAL MESSAGE 3076 , GPTT DATA IS NØT IN SØRT BY INTERNAL ID.
3077 *** USER FATAL MESSAGE 3077, THERE IS N \(\emptyset\) GRID P \(\emptyset\) INT TEMPERATURE DATA \(\emptyset R\) DEFAULT TEMPERATURE DATA FØR SIL PØINT ******** AND PØSSIBLY ØTHER PØINTS.

3078 *** USER FATAL MESSAGE 3078 , Nの GPTT DATA IS PRESENT F@R TEMPERATURE SET ********.
3079 *** USER FATAL MESSAGE 3079 , THERE ARE NØ -HBDY- ELEMENTS PRESENT.

3080 *** USER FATAL MESSAGE 3080 , INTEGER VALUES \(\emptyset F\) EMISSIVITY ENCØUNTERED ********** ELEMENT ID = **********.

3081 *** SYSTEM FATAL MESSAGE 3081, INCDNSISTENT USET DATA DETECTED.

3082 *** USER WARNING MESSAGE 3082, M = **********, \(N=\) **********. More than one \(n\)-set degree-of-freedom is associated with an m-set degree-of-freedom. The term associated with the m-n indices given in the message is ignored.

3083 *** USER FATAL MESSAGE 3083, UM PØSITIØN = **********, SIL = **********. An m-set degree-of-freedom is not expressed in terms of an \(n\)-set degree-of-freedom.

3084 *** USER FATAL MESSAGE 3084 , THERE IS N \(\emptyset\) TEMPERATURE DATA FØR SIL NUMBER **********.
3085 *** USER FATAL MESSAGE 3085, THE PF LøAD VECT@R IS EITHER PURGED ØR NULL.

3086 *** USER INFØRMATI@N MESSAGE 3086, ENTERING SSGHT EXIT MØDE BY REASON NUMBER 1 (N@RMAL
(1) CØNVERGENCE).

3086 *** USER INFØRMATIØN MESSAGE 3086, ENTERING SSGHT EXIT M@DE BY REAS@N NUMBER 2 (MAXIMUM
(2) ITERATIØNS).

3086 *** USER INFØRMATI@N MESSAGE 3086, ENTERING SSGHT EXIT M@DE BY REAS@N NUMBER 3 (DIVERGING
(3) SØLUTIQN).

3086 *** USER INFØRMATIØN MESSAGE 3086, ENTERING SSGHT EXIT MøDE BY REAS \(\emptyset\) N NUMBER 4 (INSUFFICIENT
(4) TIME).

3086 *** USER INFØRMATIØN MESSAGE 3086, ENTERING SSGHT EXIT MØDE BY REASØN NUMBER 5 (MAXIMUM
(5) CØNVERGENCE).
1. Normal convergence occurs when the solution meets the convergence criteria defined by the parameter EPSHT.
2. Iterations are terminated when the number defined by the parameter MAXIT is attained.
3. Iterations are terminated when the solution diverges.
4. Iterations are terminated when there is insufficient time to complete the next loop.
5. Iterations are terminated when there is no change to the solution vector but the parameter EPSHT criteria was not met.

3087 *** USER FATAL MESSAGE 3087, TEMPERATURE SET ********** IS NøT PRESENT IN GPTT DATA BLøCK

3088 *** USER FATAL MESSAGE 3088, ILLEGAL GEØMETRY FØR REVØLUTI@N ELEMENT ****.

3089 *** USER FATAL MESSAGE 3089, ILLEGAL GEØMETRY FØR TRIANGLE ELEMENT ****.

3090 *** USER FATAL MESSAGE 3090, ILLEGAL GEØMETRY FØR QUAD. ELEMENT ****.

3091 *** SYSTEM WARNING MESSAGE 3091, A TRAPRG ELEMENT = ************** DØES NØT HAVE SIDE 1-2 PARALLEL Tø SIDE 3-4.

3092 *** USER FATAL MESSAGE 3092 , TRIRG \(\emptyset\) R TRAPRG ELEMENT \(=* * * * * * * * * * * * * * ~ P \emptyset S S E S S E S ~ I L L E G A L\) GEDMETRY.

3093 *** SYSTEM FATAL MESSAGE 3093, ELEMENT = ******** REAS \(\wp\) N \(=\) ******.
1. Less than 2 points have been referenced.
2. Unable to locate SIL value.
3. Unrecognized form for element.
4. Illegal number of points for this form of the element.
5. Illegal number of points for this form of the element.

3094 *** SYSTEM FATAL MESSAGE 3094, SLT LØAD TYPE ********** IS N@T RECఏGNIZED.

3095 *** USER WARNING MESSAGE 3095, ELEMENT TYPE ********* WITH ID = *********, AND APPEARING \(\emptyset N\) EITHER A QVECT, QBDY1, QBDY2, \(\emptyset R\) QVøL LøAD CARD HAS THE SAME ID AS AN ELEMENT \(\emptyset F\) ANØTHER TYPE AND IS NØT BEING USED FQR L@ADING.

3096 *** USER FATAL MESSAGE 3096, ELEMENT ID = ********** AS REFERENCED QN A QVQL, QBDY1, QBDY2, \(\emptyset R\) QVECT LØAD CARD CØULD NØT BE FØUND AM@NG ACCEPTABLE ELEMENTS FØR THAT LØAD TYPE.

3097 *** USER FATAL MESSAGE 3097, CØLUMN ****** IS SINGULAR. UNSYMMETRIC ******** DECØMP ABØRTED.

USER FATAL MESSAGE 3097, C \(\quad\) LUMN ****** IS SINGULAR. SYMMETRIC ********** DECØMP ABØRTED.

When a matrix being read in is singular (null column or for symmetric decomposition a zero diagonal) the internal column number and type of decomposition is identified. The message does not appear for special cases such as less than three columns or for proportional rows.

3098 *** USER FATAL MESSAGE 3098, QDMEM2 ELEMENT STIFFNESS ROUTINE DETECTS ILLEGAL GEQMETRY FØR ELEMENT ID = ***********.
\begin{tabular}{|c|c|}
\hline 3099 * & USER FATAL MESSAGE 3099, ELEMENT STIFFNESS CดMPUTATION FØR QDMEM2 ELEMENT ID = ********** IS IMPØSSIBLE DUE TØ SINGULARITY IN CONSTRAINT EQUATIØN. \\
\hline 3100 *** & USER WARNing MESSAGE 3100, ELEMENT THERMAL LØAD CØMPUTATIØN FøR qDMEM2 ELEMENT ID = ********** FINDS ILLEGAL GEøMETRY THUS NØ LøADS ØUTPUT FøR ELEMENT-ID NøTED. \\
\hline 3101 *** & USER WARNING MESSAGE 3101, SINGULARITY \(\emptyset R\) BAD GE \(\emptyset M E T R Y\) F \(\emptyset R\) QDMEM2 ELEMENT \(I D=\) ********* STRESS \(\emptyset\) R FØRCES WILL BE INCØRRECT. \\
\hline 3102 (1) & *** SYSTEM FATAL MESSAGE 3102. LDGIC ERROR EMA- ****. \\
\hline 3102 (2) & *** USER WARNING MESSAGE 3102, SUBRDUTINE TRHTIC, UNSTABLE TEMP. VALUE ØF *************** ****, CQMPUTED FOR TIME STEP ***** AT PDINT NUMBER ****** IN THE ANALYSIS STEP. \\
\hline 3103 (1) & *** USER WARNING MESSAGE 3103. EMGCØR ØF EMG MøDULE FINDS EITHER ØF DATA BLøCKS **** \(\emptyset R\) **** ABSENT AND THUS ****, MATRIX WILL NøT BE FØRMED. \\
\hline 3103 (2) & *** USER FATAL MESSAGE 3103, SUBRØUTINE TRHTIC TERMINATING DUE TØ ERRØR CØuNT FØR MESSAGE 3102. \\
\hline & This occurs for 10 errors detected in the temperature computation. \\
\hline 3104 *** & SYSTEM WARNING MESSAGE 3104. EMGCøR FINDS SET (ASSUMED DATA BL \(0 C K\) *****) MISSING. EMG MøDULE CØMPUTATIQNS LIMITED. \\
\hline 3105 *** & SYSTEM FATAL MESSAGE 3105. EMGPR FINDS ELEMENT \(\emptyset F\) TYPE \(=\) ******** ******** UNDEFINED IN EST DATA BLØCK AND/ดR ELEMENT RQUTINE. \\
\hline 3106 *** & SYSTEM FATAL MESSAGE 3106. EMGPRØ FINDS THAT ELEMENT TYPE ********** HAS EST ENTRIES Tø LARGE T \(\emptyset\) HANDLE CURRENTLY. \\
\hline 3107 *** & SYSTEM INFøRMATI甲N MESSAGE 3107. EMGøLD IS PRØCESSING ELEMENTS \(\emptyset F\) TYPE \(=* * *\), BEGINNING WITH ELEMENT ID = **********. \\
\hline 3108 *** & SYSTEM FATAL MESSAGE 3108. EMG@UT RECEIVES ILLEGAL FILE TYPE = **********. \\
\hline 3109 *** & SYSTEM FATAL MESSAGE 3109. EMGQUT HAS BEEN SENT AN INVALID DICTI@NARY WפRD-2 = ********** FRDM ELEMENT ID = **********. \\
\hline 3110 *** & SYSTEM FATAL MESSAGE 3110. EMG@ut has been CAlLed Tø WRITE AN INCøRRECT NUMBER øF WgRDS FØR ELEMENT ID = **********. \\
\hline 3111 *** & system fatal message 3111. Invalid number gr partitigns were sent emgaut far element ID = ********** WITH RESPECT T DATA BLØCK TYPE = ***. \\
\hline 3112 *** & USER INFQRMATION MESSAGE 3112. ELEMENTS CØNGRUENT TO ELEMENT ID = *********** WILL BE RE-CØMPUTED AS THERE IS INSUFFICIENT C@RE AT THIS MgMENT TO HDLD DICTIQNARY DATA. \\
\hline 3113A*** & SYSTEM INFøRMATIQN MESSAGE 3113. EMGPRø PRøCESSING **** PRECISIDN ELEMENTS \(\emptyset F\) TYPE ******** STARTING WITH ID ********. \\
\hline
\end{tabular}

31138*** SYSTEM WARNING MESSAGE 3113. EMG@LD HAS RECEIVED A CALL FØR ELEMENT ********** WHICH IS \(\emptyset F\) ELEMENT TYPE ********** AND N \(\varnothing\) T HANDLED BY EMGøLD. ELEMENT IGN@RED.

3114 *** SYSTEM FATAL MESSAGE 3114. EMG@LD C@MPATIBILITY RØUTINE CAN NØT HANDLE THE QUANTITY @F CØNNECTIØNS FOR SILS ELEMENT **********.

3115 *** USER WARNING MESSAGE 3115. EMGOLD FINDS ELEMENT TYPE ********** PRESENT IN A HEAT FQRMULATIØN AND IS IGNQRING SAME.

3116 *** SYSTEM FATAL MESSAGE 3116. ELEMENT ID ********** SENDS BAD SIL TØ R@UTINE EMGIB.

3118 *** USER FATAL MESSAGE 3118. RØD ELEMENT NØ. ********* HAS ILLEGAL GE@METRY \(\emptyset R\) CØNNECTI@NS.

3119 *** USER FATAL MESSAGE 3119. INSUFFICIENT CØRE TØ PRØCESS RØD ELEMENTS.

3120 *** USER WARNING MESSAGE 3120. IMPRØPER CØNNECTIQN @N CELAS ELEMENT, **********.

3123 *** USER FATAL MESSAGE 3123. PARAMETER NUMBER ***** N@T IN DMAP CALL.

3124 *** USER FATAL MESSAGE 3124. PARAMETER NUMBER ***** IS NQT A VARIABLE.

3125 *** SYSTEM FATAL MESSAGE 3125. INVALID TABLE NUMBER. ***********, IS N 0 . *****, of \(* * * * *\), PASSED TØ PRETABLE.

3128 *** SYSTEM WARNING MESSAGE 3128. **** **** AND **** **** ARE EQUIVALENT LABELS. CØNSULT B \(\emptyset T H\) F \(\emptyset R\) INTERCHANGEABLE XREF.

3131 *** USER FATAL MESSAGE 3131. INPUT STIFFNESS AND MASS MATRICES ARE NØT COMPATIBLE.
The matrices must be the same size to properly perform matrix operations.

3199 *** USER WARNING MESSAGE 3199. N@N-FATAL MESSAGES MAY HAVE BEEN LØST BY ATTEMPTING TØ QUEUE MDRE THAN ***** MESSAGES.

3300 *** SYSTEM WARNING MESSAGE 3300. INVALID PARAMETER **** **** SUPPLIED T \(\square\) M \(\emptyset D U L E\) DIAG@NAL, CØLUMN SUBSTITUTED.

4000 *** USER WARNING MESSAGE 4000, ØNE SIDE ØF ELEMENT ******** CØNNECTING FQUR PØINTS IS NØT APPRØXIMATELY PLANAR.

Check CWEDGE and CHEXAi cards for order of grid point identification numbers, or incorrect grid point identification numbers.

4001 *** USER FATAL MESSAGE 4001, ELEMENT *********** DØES NØT HAVE C@RRECT GE@METRY.

4002 *** USER FATAL MESSAGE 4002, MøDULE SSG1 DETECTS BAD \(\emptyset R\) REVERSED GEØMETRY FØR ELEMENT ID ********.

Check CWEDGE and CHEXAi cards for order of grid point identification numbers or incorrect grid point identification numbers. Subtetrahedra must have nonzero volume.

4003 *** USER FATAL MESSAGE 4003, AN ILLEGAL VALUE OF -NU- HAS BEEN SPECIFIED UNDER MATERIAL ID ******** F
Solid WEDGE and HEXAi elements must not have Poisson's Ratio equal to 0.5.

4004 *** USER FATAL MESSAGE 4004, MØDULE SMA1 DETECTS BAD ØR REVERSED GEØMETRY FØR ELEMENT ID ********.

Check CWEDGE and CHEXAi cards for order of grid point identification numbers, or incorrect grid point identification numbers. Subtetrahedra must have nonzero volume.

4005 *** USER FATAL MESSAGE 4005, AN ILLEGAL VALUE OF -NU- HAS BEEN SPECIFIED UNDER MATERIAL ID ******** FQR ELEMENT ID ********.
Solid TETRA elements must not have Poisson's Ratio equal to C.5.

4010 *** USER FATAL MESSAGE 4010, TEMPP3•BULK DATA CARD WITH SETID = ******** AND ELEMENT ID = ******** DØES NØT HAVE ASCENDING VALUES SPECIFIED FØR Z.

4011 *** USER FATAL MESSAGE 4011, ELEMENT TEMPERATURE SET \(* * * * * * * *\) C 0 NTAINS MULTIPLE TEMPERATURE DATA SPECIFIED F 0 R ELEMENT ID ********.
Temperature for element is specified on more than one bulk data card.

4012 *** USER FATAL MESSAGE 4012, THERE IS N \(\emptyset\) ELEMENT, GRID PØINT, ØR DEFAULT TEMPERATURE DATA FØR TEMPERATURE SET ******** WITH RESPECT TØ ELEMENT ********.

4013 *** USER FATAL MESSAGE 4013, PROBLEM LIMITATION OF 66 TEMPERATURE SETS HAS BEEN EXCEEDED.

4014 *** SYSTEM FATAL MESSAGE 4014, RØUTINE EDTL DETECTS BAD DATA ØN TEMPERATURE DATA BLøCK FØR SET ID = ********. Data block GPTT should be investigated.

4015 *** SYSTEM WARNING MESSAGE 4015, ELEMENT THERMAL AND DEFØRMATIØN LØADING NØT CØMPUTED FØR. ILLEGAL ELEMENT TYPE ******** IN MgDULE SSGI.

Only certain elements have algorithms for enforced deformation or thermal loading. This element type will not produce a load. Check DEFØRM and TEMPP1, TEMPP2, TEMPP3, and TEMPRB bulk data cards.

4016 *** USER FATAL MESSAGE 4016, THERE IS NØ TEMPERATURE DATA FØR ELEMENT ******** IN SET ********.

4017 *** USER FATAL MESSAGE 4017, THERE IS NØ TEMPERATURE DATA FØR ELEMENT ******** IN SET ********.

4018 *** USER FATAL MESSAGE 4018, A SINGULAR MATERIAL MATRIX -D- FØR ELEMENT ********* HAS BEEN DETECTED BY RØUTINE SSGKHI WHILE TRYING Tø CØMPUTE THERMAL LøADS WITH TEMPP2 CARD DATA. The element bending load - curvature relation is at fault and cannot be inverted.

4019 *** SYSTEM FATAL MESSAGE 4019, SDR2E DETECTS INVALID TEMPERATURE DATA FQR ********. Data block table GPTT should be investigated.

4020 *** SYSTEM FATAL MESSAGE 4020, TAIA HAS PICKED UP TEMPERATURE SET ******** AND NØT THE REQUESTED SET ********.

The requested temperature set Id. for temperature dependent material properties can not be found in data block GPTT.

4021 *** SYSTEM FATAL MESSAGE 4021, TA1B HAS PICKED UP TEMPERATURE SET ******** AND NØT THE REQUESTED SET ********.

The requested temperature set Id. for temperature dependent material properties can not be found in data block GPTT.

4022 *** USER FATAL MESSAGE 4022, TA1B FINDS NØ ELEMENT, GRIDPØINT, ØR DEFAULT TEMPERATURE DATA FQR ELEMENT ID = ********.

\section*{NASTRAN SYSTEM AND USER MESSAGES}
\begin{tabular}{|c|c|}
\hline 4023 *** & USER FATAL MESSAGE 4023, TAIA FINDS N \(\emptyset\) ELEMENT, GRIDPøINT, \(\emptyset R\) DEFAULT TEMPERATURE DATA FQR ELEMENT ID = ********. \\
\hline 4024 *** & USER FATAL MESSAGE 4024, Nø CYJøIN CARDS WERE SUPPLIED. \\
\hline 4025 *** & USER FATAL MESSAGE 4025, NØ SIDE 1 dATA FØuND. \\
\hline 4026 *** & USER FATAL MESSAGE 4026, TøØ MANY SIDE 1 CARDS. \\
\hline 4027 *** & USER FATAL MESSAGE 4027, NUMBER ØF ENTRIES IN SIDE 1 NøT EQUAL T \(\emptyset\) NUMBER IN SIDE 2. \\
\hline 4028 *** & USER FATAL MESSAGE 4028, THE CØDE FØR GRID PØINT, ********** DØES NפT MATCH THE CØDE FgR GRID PøINT **********. \\
\hline & A GRID point on SIDE 1 must be connected to a GRID point on SIDE 2 and a SCALAR point on SIDE 1 must be connected to a SCALAR point on SIDE 2. \\
\hline 4029 *** & USER FATAL MESSAGE 4029, GRID PØINT, ********** APPEARS IN B \(¢\) TH SIDE LISTS. \\
\hline 4030 *** & USER WARNING MESSAGE 4030, CØMP@NENT *** ØF GRID P@INTS, ********** AND ********** CANNDT BE CQNNECTED. \\
\hline 4031 *** & USER FATAL MESSAGE 4031, INSUFFICIENT CøRE = **** Tø READ DATA Øn AXIF CARD. \\
\hline 4032 *** & USER WARNING MESSAGE 4032, NØ C@MPØNENTS ØF GRID P@INTS, ********** AND ********** WERE CONNECTED. \\
\hline 4033 *** & \begin{tabular}{l}
USER FATAL MESSAGE 4033, CØØRDINATE SYSTEM ID = **** AS SPECIFIED ØN AXIF CARD IS NØT PRESENT AMØNG ANY \(\emptyset F C \not C R D 1 C, C \emptyset R D 1 S, ~ C \emptyset R D 2 C\), \(\emptyset R\) CØRD2S CARD TYPES. \\
Cylindrical type assumed for continuing data check.
\end{tabular} \\
\hline 4034 *** & USER FATAL MESSAGE 4034, INSUFFICIENT CQRE = **** Tø HØLD GRIDB CARD IMAGES. \\
\hline 4035 *** & USER FATAL MESSAGE 4035, THE FLUID DENSITY HAS NQT BEEN SPECIFIED @N A BDYLIST CARD AND THERE IS NØ DEFAULT FLUID DENSITY SPECIFIED QN THE AXIF CARD. \\
\hline 4036 *** & USER FATAL MESSAGE 4036, INSUFFICIENT CøRE Tø BUILD BøUNDARY LIST TABLE. \\
\hline 4037 *** & USER FATAL MESSAGE 4037, GRID PØINT ********** IS LISTED MORE THAN ØNCE. \\
\hline 4038 *** & USER FATAL MESSAGE 4038, RINGFL CARD HAS ID = **** WHICH HAS BEEN USED. An identification number of a RINGFL card is not unique. \\
\hline 4039 *** & USER FATAL MESSAGE 4039, NØ CØØRDINATE SYSTEM DEFINED FØR GRID PøINT **********. \\
\hline
\end{tabular}

4040 *** USER FATAL MESSAGE 4040, ID = **** APPEARS \(\emptyset N\) A BDYLIST CARD, BUT N \(\emptyset\) RINGFL CARD IS PRESENT WITH THE SAME ID.

4041 *** USER FATAL MESSAGE 4041, ID = **** IS ØUT \(9 F\) PERMISSABLE RANGE ØF 1 to 499999. The identification number of a RINGFL is too large to be processed.

4042 *** USER FATAL MESSAGE 4042, CDORDINATE SYSTEM IS CYLINDRICAL BUT RINGFL CARD ID = **** HAS A NØNZERØ X2 VALUE.

The azimuthal angle of a RINGFL point must be zero.

4043 *** USER FATAL MESSAGE 4043, C \(\operatorname{Cg}\) RDINATE SYSTEM IS SPHERICAL BUT RINGFL CARD ID \(=* * * *\) HAS A NQNZERØ X3 VALUE.

The azimuthal angle of a RINGFL point must be zero.

4044 *** USER FATAL MESSAGE 4044, RINGFL CARD ID = **** HAS SPECIFIED A ZERØ RADIAL LøCATIØN.

4045 *** USER FATAL MESSAGE 4045, THE B@UNDARY LIST ENTRY FØR ID = **** HAS A ZERØ CR@SS-SECTI@NAL LENGTH.

A hydroelastic boundary can not be defined between two RINGFL points having the same location. Check BDYLIST and RINGFL.

4047 *** USER FATAL MESSAGE 4047, INSUFFICIENT C \(\emptyset\) RE Tø HøLD RINGFL IMAGES.

4048 *** USER FATAL MESSAGE 4048, THE FLUID DENSITY HAS NØT BEEN SPECIFIED ØN A FSLIST CARD AND THERE IS N \(\emptyset\) DEFAULT. FLUID DENSITY SPECIFIED ØN THE AXIF CARD.

\section*{NASTRAN SYSTEM AND. USER MESSAGES}

4049 *** USER FATAL MESSAGE 4049, INSUFFICIENT C \(\emptyset\) RE T T BUILD FREE SURFACE LIST TABLE.

4050 *** USER FATAL MESSAGE 4050 , FSLIST CARD HAS INSUFFICIENT IDF DATA, ØR FSLIST DATA MISSING. A referenced RINGFL point doesn't exist or the FSLIST card is in error. At least two points must be defined.

4051 *** USER FATAL MESSAGE 4051, AN MPC CARD HAS A SET ID SPECIFIED \(=102\). SET 102 IS ILLEGAL WHEN FLUID DATA IS PRESENT
This set identification number is reserved for internal use in hydroelastic problems.

4052 *** USER FATAL MESSAGE 4052, IDF = **** \(\emptyset \mathrm{N}\) A FREEPT CARD D \(\emptyset E S\) N \(\emptyset\) T APPEAR 9 N ANY FSLIST CARD. A referenced RINGFL point must also appear on a FSLIST card.

4053 *** USER FATAL MESSAGE 4053, INSUFFICIENT CØRE T \(\emptyset\) PERFØRM \(\emptyset P E R A T I \emptyset N S ~ R E Q U I R E D ~ A S ~ A ~ R E S U L T ~ \emptyset F ~\) FREEPT \(\emptyset R\) PRESPT DATA CARDS.

4054 *** USER FATAL MESSAGE 4054, SET ID \(=102\) MAY NOT BE USED FOR SPC CARDS WHEN USING THE HYDROELASTIC-FLUID ELEMENTS.
This set identification number is reserved for internal use in hydroelastic problems.

4055 *** USER FATAL MESSAGE 4055, SET ID \(=102\) MAY NØT BE USED FØR SPC CARDS WHEN USING THE HYDR \(\emptyset E L A S T I C-F L U I D ~ E L E M E N T S\).
This set identification number is reserved for internal use in hydroelastic problems.

4056 *** USER FATAL MESSAGE 4056, RECORD ID **** **** IS ØUT ØF SYNC ØN DATA BLØCK NUMBER **** AN IFP4 SYSTEM ERRQR.

The record identification numbers are the values of LøCATE record ID. The data block numbers are the GINØ file numbers. Error implies that IFP4 is possibly operating on the wrong data block. This system error should not occur. Message comes from IFP4B.

4057 *** USER FATAL MESSAGE 4057, GRIDB CARD WITH ID \(=* * * *\) HAS A REFERENCE IDF \(=* * * *\) WHICH DOES NØT APPEAR IN A BØUNDARY LIST.

4058 *** USER FATAL MESSAGE 4058, THE FLUID DENSITY HAS NØT BEEN SPECIFIED ดN A CFLUID CARD WITH ID = *** AND THERE IS NØ DEFAULT QN THE AXIF CARD.

4059 *** USER FATAL MESSAGE 4059, THE FLUID BULK MøDULUS HAS NØT BEEN SPECIFIED ON A CFLUID CARD WITH ID = **** AND THERE IS N \(\emptyset\) DEFAULT 9 N THE AXIF CARD.

4060 *** SYSTEM FATAL MESSAGE 4060, CØØRDINATE SYSTEM = **** CAN NØT BE FØUND IN CSTM DATA. Data blocks MATPØDL or CSTM have been changed illegally.

4061 *** SYSTEM FATAL MESSAGE 4061, CØNNECTED FLUID PØINT ID = **** IS MISSING BGPDT DATA. Data blocks MATPOŋL or BGPDT have been changed illegally.

4062 *** USER FATAL MESSAGE 4062, DMIG BULK DATA CARD SPECIFIES DATA BLøCK **** WHICH ALS \(\emptyset\) APPEARS \(9 N\) A DMIAX CARD.

One direct input matrix may not be specified by both types of bulk data cards.

4063 *** USER FATAL MESSAGE 4063, ILLEGAL VALUE **** FØR PARAMETER CTYPE.

4064 *** USER FATAL MESSAGE 4064, ILLEGAL VALUES ******** F®R PARAMETERS NSEGS, KMAX.

4065 *** USER FATAL MESSAGE 4065, ILLEGAL VALUE ******** FøR PARAMETER NLøAD.

4066 *** USER FATAL MESSAGE 4066, SEC甲ND ØUTPUT DATA BLøCK MUST N@T BE PURGED.
The transformation matrix between physical and symmetric components does not exist. Ensure the number of Case Control subcases is specified correctly and that the component loads are properly ordered.

4067 *** USER FATAL MESSAGE 4067, VIN HAS ******** CQLS, GCYC HAS ******** RøWS.
Follows message 4064 indicating the illegal values for NSEGS and KMAX.

4081 *** USER FATAL MESSAGE 4081, AXSLøT DATA CARD IS NøT PRESENT \(\emptyset R\) IS INCØRRECT.
Acoustic analysis data is present and this data card is necessary.

4082 *** USER FATAL MESSAGE 4082, INSUFFICIENT C@RE TO HØLD ALL GRIDS CARD IMAGES.
Executive Module IFP5 must hold this data in core. Increase core size or decrease amount of data.

4083 *** USER FATAL MESSAGE 4083, INSUFFICIENT CQRE T \(\emptyset\) H \(\emptyset \mathrm{L}\) ALL GRIDF CARD IMAGES.
Executive Module IFP5 must hold this data in core. Increase core size or decrease amount of data.

4084 *** USER FATAL MESSAGE 4084, INSUFFICIENT CØRE Tø HQLD ALL GRIDF CARD IMAGES BEING CREATED INTERNALLY DUE Tø GRIDS CARDS SPECIFYING AN IDF.

Executive Module IFP5 is creating GRIDF cards from GRIDS cards. Increase core size.

4085 *** USER FATAL MESSAGE 4085, INSUFFICIENT C \(\emptyset\) RE T \(\emptyset\) C \(\emptyset\) NSTRUCT ENTIRE B \(\emptyset\) UNDARY TABLE F \(\emptyset R\) SLBDY dATA CARDS.

Executive Module IFP5 requires five words of core for each entry in the SLBDY cards.

4086 *** USER FATAL MESSAGE 4086, CELAS2 DATA CARD HAS ID \(=\) XXX WHICH IS GREATER THAN 10000000 , and 10000000 IS THE LIMIT FØR CELAS2 ID WITH ACØUSTIC ANALYSIS DATA CARDS PRESENT.

Executive Module IFP5 is generating CELAS2 images and a possible conflict of ID numbers exists.

4087 *** USER FATAL MESSAGE 4087, SLbDY ID = XXX DgES NפT APPEAR \(9 N\) ANY GRIDS DATA CARD.
The SLBDY data card has a point listed which does not exist in the data.

4088 *** USER FATAL MESSAGE 4088, ØNE \(\emptyset R\) M \(\emptyset R E \emptyset F\) THE FØLLØWING ID-S NØT EQUAL T \(\emptyset-1\) HAVE INC \(\emptyset R R E C T\) \(\emptyset R \mathrm{~N} \emptyset\) GEØMETRY DATA. \(I D=X X X, I D=X X X, I D=X X X\).

The listed GRIDS points may have a bad radius or a slot width greater than geometrically possible.

4089 *** USER FATAL MESSAGE 4089, RH \(\emptyset\) AS SPECIFIED \(\emptyset N\) SLBDY \(\emptyset R\) AXSLøT DATA CARD IS 0.0 FØR ID = XXX.

A value of density is required to formulate the slot boundary matrix terms.

4090 *** USER FATAL MESSAGE 4090, ØNE \(\emptyset F\) THE FØLLØWING NØN-ZERØ IDENTIFICATIØN NUMBERS APPEARS \(\emptyset N\) S@ME CØMBINATIØN GRID, GRIDS, \(\emptyset R\) GRIDF BULK DATA CARDS. \(I D=X X X, I D=X X X, I D=X X X\).

All GRID, SPØINT, EPØINT, GRIDS, and GRIDF data cards should have unique identification numbers.
```

4091 *** USER FATAL MESSAGE 4091, BAD GE\emptysetMETRY \emptysetR ZER\emptyset C\emptysetEFFICIENT F\emptysetR SL\emptysetT ELEMENT NUMBER XXX.
The listed CSL\emptysetT3 or CES\emptysetT4 element has its connected points defining zero area or its density equal to zero.
4100 *** SYSTEM FATAL MESSAGE 4100, ØUTPUT3 UNABLE T\emptyset ØPEN DATA BL\emptysetCK ********.
4101 *** SYSTEM FATAL MESSAGE 4101, \emptysetUTPUT3 UNABLE T\emptyset FIND NAME F\emptysetR DATA BL\emptysetCK ********************.
4102 *** SYSTEM FATAL MESSAGE 4102, \emptysetUTPUT3 E\emptysetF.
4103 *** USER INF\emptysetRMATI\emptysetN MESSAGE 4103, \emptysetUTPUT3 HAS PUNCHED MATRIX DATA BL\emptysetCK ******** \emptysetNT\emptyset
DMI CARDS.
4104 *** USER FATAL MESSAGE 4104, ATTEMPT T\emptyset PUNCH M@RE THAN }9999\mathrm{ DMI CARDS F@R A SINGLE MATRIX.
4105 *** USER INF\emptysetRMATIQN MESSAGE 4105, DATA BL\emptysetCK ******** RETRIEVED FROM USER TAPE ****
NAME \emptysetF DATA BL\emptysetCK WHEN PLACED \emptysetN USER TAPE WAS ********.
4106 *** SYSTEM FATAL MESSAGE 4106, M\emptysetDULE INPUTTI - SH@RT REC.
4107 *** SYSTEM FATAL MESSAGE 4107, SUBR\emptysetUTINE INPTTI UNABLE T\emptyset \emptysetPEN NASTRAN FILE ****.
4108 *** SYSTEM FATAL MESSAGE 4108, SUBR\emptysetUTINE INPTTI UNABLE T\emptyset \emptysetPEN \emptysetUTPUT DATA BL\emptysetCK ****.
4109 *** SYSTEM FATAL MESSAGE 4109, UNEXPECTED E\emptysetF IN SUBR\emptysetUTINE INPTT1.
4110 *** SYSTEM FATAL MESSAGE 4110, UNEXPECTED E\emptysetR IN SUBR\emptysetUTINE INPTTו.
4111 *** USER FATAL MESSAGE 4111, M\emptysetDULE INPUTT1 IS UNABLE T\emptyset SKIP F\emptysetRWARD ********** DATA BL\emptysetCKS
ON PERMANENT NASTRAN FILE **** NUMBER \emptysetF DATA BL\emptysetCKS SKIPPED = *****.
4112 *** USER FATAL MESSAGE 4112, M\emptysetDULE INPUTT1 - ILLEGAL VALUE F\emptysetR SEC\emptysetND PARAMETER =
********************。
4113 *** USER FATAL MESSAGE 4113, M\emptysetDULE INPUTT1 - ILLEGAL VALUE F\emptysetR FIRST PARAMETER =
*******************.
4114 *** USER INF\emptysetRMATI\emptysetN MESSAGE 4114, DATA BL\emptysetCK ******** WRITTEN @N NASTRAN FILE ****,
TRL = ************.
4115 *** SYSTEM FATAL MESSAGE 4115, M\emptysetDULE \emptysetUTPUT1 - SH\emptysetRT REC.
4116 *** SYSTEM FATAL MESSAGE 4116, SUBR\emptysetUTINE \emptysetUTPTI UNABLE T\emptyset \emptysetPEN INPUT DATA BL\emptysetCK*****.
4117 *** SYSTEM FATAL MESSAGE 4117, SUBR\emptysetUTINE \emptysetUTPTI UNABLE T\emptyset \emptysetPEN NASTRAN FILE ****.

```
\[
6.2-38(6 / 1 / 72)
\]

\section*{NASTRAN SYSTEM AND USER MESSAGES}

\begin{tabular}{|c|c|c|}
\hline 4136 * & & USER FATAL MESSAGE 4136, USER TAPE ID CØDE - ******** - DøES NØT MATCH THIRD INPUTTI DMAP PARAMETER - ******** -. \\
\hline 4137 * & *** & USER WARNING MESSAGE 4137, ALL ØUTPUT DATA BLøCKS FøR INPUTT1 ARE PURGED. \\
\hline 4138 * & *** & USER WARNING MESSAGE 4138, DATA BLøCK ******** (DATA BLØCK CØUNT = ***** HAS PREVIØUSLY beEn retrived frgm user tape **** and will be igngred. \\
\hline 4139 * & *** & USER INFøRMATIØN MESSAGE 4139, DATA BLøCK ******** RETRIEVED FR@M USER TAPE **** (DATA BLØCK CØUNT = *****) \\
\hline 4140 * & *** & USER WARNING MESSAGE 4140, SECØNDARY VERSION ØF DATA BLøCK HAS REPLACED EARLIER ¢NE. \\
\hline 4141 * & *** & USER WARNING MESSAGE 4141, ØNE ØR MøRE DATA BLøCKS NøT FØUND ØN USER TAPE. \\
\hline 4142 * & *** & USER FATAL MESSAGE 4142, ØNE ØR M@RE DATA BLØCKS NØT FØUND ØN USER TAPE. \\
\hline 5000 * & *** & USER FATAL MESSAGE 5000, NEG. \(\emptyset R\) ZERØ RADIUS DETECTED FØR CFLUID2 ELEMENT. ELEMENT N@. \\
\hline 5001 * & *** & USER FATAL MESSAGE 5001, NEG. ØR ZERØ RADIUS DETECTED FØR CFLUID3 \(\emptyset R ~ C F L U I D 4 ~ E L E M E N T . ~\) ELEMENT NØ. ****. \\
\hline 5002 * & *** & uSER FATAL MESSAGE 5002, interiøR angle greater than gr equal tø 180 degrees. cFluida ELEMENT N \(\emptyset . \quad * * * *\). \\
\hline 5011 * & *** & USER FATAL MESSAGE 5011, FIRST PARAMETER ***** NE TRAILER RECDRD PARAMETER *****. \\
\hline 5012 ** & *** & USER FATAL MESSAGE 5012, ENTRY ***** ¢F SIL TABLE INCøMPATIBLE WITH NEXT ENTRY. \\
\hline
\end{tabular}

6001 *** USER FATAL MESSAGE 6001 , SUBSTRUCTURE DATA IS REQUIRED WITH THIS APPRØACH.
The program expects a SUBSTRUCTURE card following the CEND card if APP DISP, SUBS was used.

6002 *** USER WARNING MESSAGE 6002, INCDRRECT PHASE DATA
The second word on the substructure command should be PHASEi, \(i=1,2,3\). The default is 2.

6003 *** USER FATAL MESSAGE 6003. ILLEGAL CØMMAND \(\emptyset R\) ØPTIQN DEFINED \(9 N\) PREVIØUS CARD.
The program does not recognize the previous card. If any "subcommand" cards follow this error, they may produce this message until a legitimate command card is encountered.

6004 *** USER WARNING MESSAGE 6004, ND PREFIX DEFINED AFTER EQUIVALENCE CDMMAND.
A non-basic substructure requires a prefix for the equivalent lower level basic substructures. A basic substructure does not require the prefix.

6005 *** USER FATAL MESSAGE 6005, ILLEGAL \(\emptyset R\) MISSING INPUT DATA GIVEN FØR PREVIØUS CØMMAND.
Either the basic command data is insufficient or mandatory additional sübcommands are missing.

6006 *** USER FATAL MESSAGE 6006, DMAP ALTERS INTERFERE WITH SUBSTRUCTURE ALTERS.
The DMAP instruction numbers on the user ALTER data card overlaps or conflicts with the sections automatically modified. Use DIAG 23 to print the DMAP ALTER package or see Section 5.5.

6007 *** SYSTEM FATAL MESSAGE 6007, IMPROPER FILE SETUP FOR ****.
An external \(1 / \varnothing\) operation has been defined but the file is missing or the card is improper.

6008 *** USER FATAL MESSAGE 6008, ILLEGAL INPUT @N THE PREVI@US C@MMAND. MISSING FILE NAME F@R I/ \(\varnothing\) OPERATION.

6009 *** SYSTEM FATAL MESSAGE 6009, UNRECØVERABLE ERRQR CØNDITIØNS IN SUBRØUTINE ASDMAP.

6010 *** SYSTEM FATAL MESSAGE 6010, ILLEGAL VARIABLE T \(\emptyset\) BE SET IN DMAP STATEMENT, (N).
The system has been encountered illegal type of word to be inserted in a DMAP sequence. Could possibly occur if a floating point number were used instead of an integer on an input card.

6011 *** USER FATAL MESSAGE 6011, MISSING PASSW@RD ØR SØF DATA.
The \(S \emptyset F\) and PASSW \(\emptyset R D\) cards are mandatory. At least one \(S \emptyset F\) file ( \(S \emptyset F(1)\) must be defined.

6012 *** SYSTEM FATAL MESSAGE 6012, FILE=**** IS PURGED ØR NULL AND IS REŞUIRED IN PHASE
SUBSTRUCTURE ANALYSIS.

6013 *** USER FATAL MESSAGE 6013, ILLEGAL TYPE ØF PøINT DEFINED FØR SUBSTRUCTURE ANALYSIS. P \(\emptyset I N T\) NUMBER=*********.

\section*{DIAGNOSTIC MESSAGES}

\footnotetext{
6014 *** USER FATAL MESSAGE 6014, INSUFFICIENT CØRE TO L@AD TABLES IN MDDULE SUBPH1, CØRE=********. 6015 *** USER FATAL MESSAGE 6015, TØØ MANY CHARACTERS TØ BE INSERTED IN A DMAP LINE. N=***, A BCD word has been defined with too many characters to fit the space in the DMAP. (Usual limit = 8.) Message could also occur if block data subprogram ASDBD has an error.

6016 *** USER FATAL MESSAGE 6016, TDD MANY DIGITS TD BE INSERTED IN DMAP VALUE=***. An integer is limited to eight digits.

6022 *** USER FATAL MESSAGE 6022, SUBSTRUCTURE ***, GRID PØINT ***, CØMP@NENT ***, REFERENCED \(\emptyset N\) *** CARD D@ES NØT EXIST IN SØLUTI@N STRUCTURE ***.

6050 *** USER WARNING MESSAGE 6050, REQUESTED PLDT SET NØ. ******************* HAS NQT BEEN DEfINED.
}

\section*{NASTRAN SYSTEM AND USER MESSAGES}


\section*{DIAGNOSTIC MESSAGES}


\section*{NASTRAN SYSTEM AND USER MESSAGES}

6228 *** USER INF@RMATIØN MESSAGE 6228, SUBSTRUCTURE *** IS ALREADY EOUIVALENT TØ SUBSTRUCTURE ***. @NLY ITEMS NØT PREVIØUSLY EXISTING FØR *** HAVE BEEN MADE EQUIVALENT.

6229 *** USER INFØRMATIØN MESSAGE 6229, SUBSTRUCTURE *** HAS BEEN REMAMED TØ ***.

6230 *** USER UARNING MESSAGE 6230, SUBSTRUCTURE *** HAS NøT BEEN REMAMED BECAUSE *** ALREADY EXISTS ØN THE SØF.

6231 *** USER WARNING MESSAGE 6231, INSUFFICIENT CDRE AVAILABLE \(\emptyset R\) ILLEGAL ITEM FØRMAT REQUIRES AN UNFØRMATTED DUMP T \(\emptyset\) BE PERFQRMED FØR ITEM *** \(\emptyset F\) SUBSTRUCTURE ***.

6301 *** SYSTEM FATAL MESSAGE 6301, DATA MISSING IN GD MDDE FQR SUBSTRUCTURE ***, ITEM ***. Item was created in dry run mode and has no real data.

6302 *** SYSTEM FATAL MESSAGE 6302, *** IS ILLEGAL MATRIX TYPE F@R MgDULE C@MB2.

6303 *** SYSTEM FATAL MESSAGE 6303, HØRG TRANSFØRIMATION MATRIX FOR SUBSTRUCTURE *** CANN@T BE FQUND DN S@F.

6304 *** SYSTEM FATAL MESSAGE 6304, M@DULE C@MB2 INPUT MATRIX NUMBER *** F@R SUBSTRUCTURE *** HAS INCDMPATIBLE DIMENSIONS.
Matrix dimensions conflict with those of its \(H\) or \(G\) transformation matrix.

6305 *** SYSTEM WARNING MESSAGE 6305, RECØRD NUMBER *** \(\emptyset F\) CASESS IS N \(\emptyset T\) A RECØVER RECØRD. IT IS A *** RECØRD.
The step parameter for module RCØVR is incorrect. It should be the CASESS record number of a recover record.

6306 *** USER WARNING MESSAGE 6306, ATTEMPT TØ RECØVER DISPLACEMENTS FØR NØN-EXISTANT SUBSTRUCTURE ***.

6307 *** USER WARNING MESSAGE 6307, WHILE ATTEMPTING TØ RECØVER DISPLACEMENTS F \(\emptyset R\) SUBSTRUCTURE ***, THE DISPLACEMENTS FØR SUBSTRUCTURE *** WERE FØUND TØ EXIST IN DRY RUN FØRM ØNLY. Before you can recover displacements of any substructure, you must first perform an actual solution. See RUN substructure command.

6308 *** USER WARNING MESSAGE 6308, NØ S@LUTIØN AVAILABLE FRØM WHICH DISPLACEMENTS FØR SUBSTRUCTURE *** CAN BE RECØVERED. HIGHEST LEVEL SUBSTRUCTURE FØUND WAS ***.

Solve the highest level substructure found or combine it to an even higher level and solve.

6309 *** SYSTEM FATAL MESSAGE 6309, INSUFFICIENT TIME REMAINING Tø RECDVER DISPLACEMENTS DF SUBSTRUCTURE *** FRØM TH@SE ØF SUBSTRUCTURE ***. (PR@CESSING USER RECQVER REQUEST FØR SUBSTRUCTURE ***.)

6310 *** SYSTEM WARNING MESSAGE 6310, INSUFFICIENT SPACE \(\emptyset N\) S \(\emptyset F\) Tø RECØVER DISPLACEMENTS \(\emptyset F\) SUBSTRUCTURE *** FRØM THØSE ØF SUBSTRUCTURE *** WHILE PRØCESSING USER RECØVER REQUEST FQR SUBSTRUCTURE ***.

Use the \(S \emptyset F\) substructure command and increase the size of the \(S \emptyset F\) and/or add more \(S \emptyset F\) units. Alternately, use EDIT to remove unwanted data.

6311 *** SYSTEM WARNING MESSAGE 6311, SDCØMP DECØMPØSITIØN FAILED ØN KØØ MATRIX FØR SUBSTRUCTURE ***.

6312 *** USER INFØRMATI@N MESSAGE 6312, LEVEL *** DISPLACEMENTS F@R SUBSTRUCTURE *** HAVE BEEN RECØVERED AND SAVED \(\emptyset N\) SØF.

6313 *** SYSTEM WARNING MESSAGE 6313, INSUFFICIENT C \(\emptyset\) RE F \(\emptyset R\) RCØVR M@DULE WHILE TRYING T \(\emptyset\) PR@CESS PRINTØUT DATA BLøCKS FØR SUBSTRUCTURE ***.

6314 *** SYSTEM WARNING MESSAGE 6314, ØUTPUT REQUEST CANNøT BE H@N@RED. RCØVR MøDULE ØUTPUT DATA BLøCK *** IS PURGED.
 FINAL SøLUTIQN STRUCTURE ***.

6316 *** USER WARNING MESSAGE 6316, RCDVR MøDULE IS UNABLE TØ FIND L@AD SET *** F@R SUBSTRUCTURE
 STRUCTURE ***.

6317 *** SYSTEM WARNING MESSAGE 6317, RECØVER ØF DISPLACEMENTS FØR SUBSTRUCTURE *** ABØRTED.

6318 *** SYSTEM WARNING MESSAGE 6318, ØUTPUT REQUEST FØR REACTION FØRCES IGN@RED.

6319 *** SYSTEM WARNING MESSAGE 6319, DISPLACEMENT MATRIX FDR SUBSTRUCTURE *** MISSING. DISPLACEMENT ØUTPUT REQUESTS CANNØT BE H@N@RED AND SPCFØRCE ØUTPUT REQUESTS CANNØT BE HØNØRED UNLESS THE REACTIØNS HAVE BEEN PREVIØUSLY CØMPUTED.

6320 *** SYSTEM WARNING MESSAGE 6320, LØADC DATA MISSING FØR SUBSTRUCTURE ***, EXTERNAL STATIC LØAD SET ***.
No LØADC bulk data cards can be found on GEOM4 or GEØM4 is purged.

6321 *** USER INFØRMATIØN MESSAGE 6321, SUBSTRUCTURE PHASE 3 RECØVER FØR FINAL SøLUTIØN STRUCTURE *** AND BASIC SUBSTRUCTURE ***.

6322 *** SYSTEM FATAL MESSAGE 6322, SØLN ITEM HAS INCØRRECT RIGID FØRMAT NUMBER. PHASE 2 RIGID FQRMAT WAS *** AND PHASE 3 IS ***.

The Rigid Format of Phase 3 must be the same as that used in Phase 2 to obtain the solution.

6323 *** USER WARNING MESSAGE 6323, N@ EIGENVALUES FØR THIS SØLUTIØN.

6324 *** USER FATAL MESSAGE 6324, PHASE 3 RECQVER ATTEMPTED FØR N@N-BASIC SUBSTRUCTURE ***. Substructure Phase 3 can be executed only for basic substructures.

6325 *** USER WARNING MESSAGE 6325, SUBSTRUCTURE PHASE 1, BASIC SUBSTRUCTURE *** ALREADY EXISTS ON S \(\emptyset F\). ITEMS WHICH ALREADY EXIST WILL NפT BE REGENERATED.
Use DESTR \(\emptyset Y\) or EDIT to remove items which are to be regenerated.

6326 *** USER WARNING MESSAGE 6326, SUBSTRUCTURE ***, ITEM *** ALREADY EXISTS \(\emptyset N\) S \(\wp\) F.
Follows message 6325, above.

6327 *** USER INFQRMATION MESSAGES 6327, SUBSTRUCTURE ***, SUBCASE *** IS IDENTIFIED BY *** SET *** IN LøDS ITEM. REFER T T THIS NUMBER \(\emptyset N\) L \(\emptyset A D C\) CARDS.

6328 *** SYSTEM FATAL MESSAGE 6328, MøRE THAN 100 SUBCASES DEFINED. SGEN PRØGRAM LIMIT EXCEEDED. To increase this limit to more than 100 subcases, change the dimensions of local arrays LØAD, MPC, and SPC in subroutine SGEN and change the IF test which causes termination.
\[
6.2-47(3 / 1 / 76)
\]
```

6329 *** USER FATAL MESSAGE 6329, SUBSTRUCTURE ***, REFERENCED @N *** CARD, IS N\emptysetT A CØMP\emptysetNENT
BASIC SUBSTRUCTURE \emptysetF S\emptysetLUTI\emptysetN STRUCTURE ***.
6330 *** USER FATAL MESSAGE 6330, S\emptysetLUTI\emptysetN SUBSTRUCTURE *** .- *** AND *** CARDS CANN\emptysetT BE USED
T\emptysetGETHER. USE EITHER \emptysetNE, BUT N\emptysetT B\emptysetTH.
6331 *** USER FATAL MESSAGE 6331, S\emptysetLUTI\emptysetN SUBSTRUCTURE *** -- L\emptysetADC SET *** REFERENCES UNDEFINED
L\emptysetAD SET *** \emptysetF BASIC SUBSTRUCTURE ***.
6332 *** SYSTEM FATAL MESSAGE 6332, CAN'T FIND L@AD VECT\emptysetR NUMBER *** IN L\emptysetAD MATRIX \emptysetF ***
C\emptysetLUMNS BY *** R\emptysetWS F\emptysetR S\emptysetLUTI\varrhoN STRUCTURE ***.
The L\emptysetDS item and PVEC item are inconsistent. Possibly they were generated in different
Phase 1 runs for a component basic substructure where the Case Control definition of
external loads, thermal loads, or element deformations was changed.
6333 *** USER FATAL MESSAGE 6333, *** IS AN INVALID F\emptysetRMAT PARAMETER F\emptysetR M\emptysetDULE EXI\emptyset.
6334 *** USER WARNING MESSAGE 6334, EXI\emptyset DEVICE PARAMETER SPECIFIES TAPE, BUT UNIT *** IS NØT A
PHYSICAL TAPE.
6335 *** USER WARNING MESSAGE 6335, *** IS AN INVALID DEVICE F\emptysetR M@DULE EXI\emptyset.
6336 *** USER INF\emptysetRMATI\emptysetN MESSAGE 6336, EXI\emptyset FILE IDENTIFICATI\emptysetN. PASSW\emptysetRD ***. DATE ***. TIME
** ** **.
6337 *** USER INF\emptysetRMATI\emptysetN MESSAGE 6337, *** BL\emptysetCKS (*** SUPERBL\emptysetCKS) \emptysetF THE S\emptysetF SUCCESSFULLY
DUMPED T\emptyset EXTERNAL FILE ***.
6338 *** USER WARNING MESSAGE 6338, *** IS AN INVALID M\emptysetDE PARAMETER F@R M\emptysetDULE EXI\emptyset.
6339 *** USER WARNING MESSAGE 6339, *** IS AN INVALID FILE P\emptysetSITI\emptysetNING PARAMETER F\emptysetR M\emptysetDULE EXI\emptyset.
6340 *** USER WARNING MESSAGE 6340, SUBSTRUCTURE *** ITEM *** PSEUD\emptyset-EXISTS \emptysetNLY AND CANN\varrhoT BE
CØPIED ØUT BY EXI\emptyset.
6341 *** USER INF\emptysetRMATIQN MESSAGE 6341, SUBSTRUCTURE *** ITEM *** SUCCESSFULLY C\emptysetPIED FR\emptysetM *** T\emptyset
6342 *** USER WARNING MESSAGE 6342, S\emptysetF REST\emptysetRE \emptysetPERATI@N FAILED. THE RESIDENT S\emptysetF IS N\emptysetT EMPTY.
Use the NEW option on the S\emptysetF substructure command to create a "new" S\emptysetF.
6343 *** SYSTEM WARNING MESSAGE 6343, *** IS NØT AN EXTERNAL SøF FILE.
Either (1) tape contained no data, (2) first record read was not an ID or header record, (3) tape was incorrectly positioned, or (4) GINØ buffer size was changed.

```


NASTRAN SYSTEM AND USER MESSAGES
\begin{tabular}{|c|c|}
\hline 6345 * & USER WARNING MESSAGE 6345, SUBSTRUCTURE *** ITEM *** IS DUPLICATED @N EXTERNAL FILE ***. ØLDER VERSI \(\emptyset\) (***, ***) IS IGN@RED. \\
\hline 6346 ** & USER WARNING MESSAGE 6346, SUBSTRUCTURE *** ITEM *** NøT C@PIED. IT ALREADY EXISTS @n the SøF. \\
\hline 6347 ** & USER INFøRMATI¢N MESSAGE 6347, SUBSTRUCTURE *** ADDED T¢ THE S¢F. \\
\hline 6348 ** & USER WARNING MESSAGE 6348, SUBSTRUCTURE *** ITEM *** NのT FØUND 9N EXTERNAL FILE ***. \\
\hline 6349 * & USER INFØRMATIØN MESSAGE 6349, CØNTENTS ØF EXTERNAL S@F FILE *** FØLLØW. \\
\hline 6350 * & USER WARNING MESSAGE 6350, S \(\emptyset F\) APPEND \(\emptyset F\) FILE *** FAILED. "text" "text" explains why the append operation failed. \\
\hline 6351 ** & USER WARNING MESSAGE 6351, DUPLICATE SUBSTRUCTURE NAME *** FØUND DURING SøF APPEND ØF FILE ***. THE SUBSTRUCTURE WITH THIS NAME gn the file being Appended Will be prefixed with "Q" \\
\hline 6352 ** & USER INFØRMATIØN MESSAGE 6352, EXTERNAL SøF FILE *** SUCCESSFULLY APPENDED Tø THE RESIDENT SøF. \\
\hline 6353 ** & USER INFØRMATIØN MESSAGE 6353, SUBSTRUCTURE *** ITEM *** HAS BEEN SUCCESSFULLY CØMPRESSED. \\
\hline 6354 * & USER INFØRMATIØN MESSAGE 6354, THERE ARE *** FREE BLøCKS (*** WøRDS) ØN THE RESIDENT SøF. \\
\hline 6355 * & SYSTEM INFØRMATIØN MESSAGE 6355, EXIØ TERMINATED WITH ERR@RS. DRY RUN M@DE ENTERED. The parameter DRY has been set to -2 to prevent matrix operations from occurring downstream in this run. \\
\hline 6356 * & USER WARNING MESSAGE 6356, *** IS AN INVALID UNIT FØR MøDULE EXIØ, EXTERNAL FØRMAT. \\
\hline 6357 * & USER INFØRMATIØN MESSAGE 6357, SUBSTRUCTURE *** ITEM *** SUCCESSFULLY CØPIED FR@M *** Tø ***. \\
\hline 6359 & USER INFORMATIQN MESSAGE 6359, SUBSTRUCTURE *** WAS QRIGINALLY A SECQNDARY SUBSTRUCTURE. \(\emptyset N\) THIS S \(\varnothing F\), IT IS A PRIMARY SUBSTRUCTURE. \\
\hline 6361 ** & USER INFØRMATION MESSAGE 6361, PHASE 1 SUCCESSFULLY EXECUTED FØR SUBSTRUCTURE ***. \\
\hline 6362 ** & USER FATAL MESSAGE 6362, MPCS SET *** IS ILLEGAL. SUBSTRUCTURE *** GRID PØINT *** CøMPøNENT *** SIGNIFIES A NøN-UNIQUE DEPENDENT DEGREE ØF FREEDgM. \\
\hline 6365 * & USER WARNing MESSAGE 6365, REQUESTED QUTPUT SET ID *** IS NפT DECLARED IN CASE C@NTRøL, ALL ØUTPUT WILL BE PRøDUCED. \\
\hline
\end{tabular}

6366 *** USER WARNING MESSAGE 6366, THE RECØVER ØUTPUT CØMMAND S@RT MUST APPEAR BEFØRE THE FIRST BASIC SUBCØMMAND. ANY ØTHER SØRT CØMMANDS ARE IGNØRED.
6367. *** USER WARNING MESSAGE 6367, ILLEGAL FØRMAT ØN THE RECØVER ØUTPUT CØMMAND ***, CØMMAND IGNORED.

6368 *** USER WARNING MESSAGE 6368, THE SUBSTRUCTURE *** APPEARING gN A BASIC CØMMAND IS NØT A C \(\emptyset M P \emptyset N E N T\) \(\emptyset F * * *\). ALL \(\emptyset U T P U T\) REQUESTS UNTIL THE NEXT BASIC, PRINT, \(\emptyset R\) SAVE ARE IGN@RED.

6501 *** USER FATAL MESSAGE 6501, THE MANUAL C@MBINE \(\emptyset P T I \emptyset N\) HAS BEEN SPECIFIED, BUT N \(\emptyset\) CØNNECTI \(\emptyset\) SET WAS GIVEN.

6502 *** USER FATAL MESSAGE 6502, NØ NAME HAS BEEN SPECIFIED FØR THE RESULTANT CØMBINED PSEUDDSTRUCTURE.

6504 *** USER FATAL MESSAGE 6504, A TøLERANCE MUST BE SPECIFIED FØR A CØMBINE ØPERATIØN.

6505 *** USER FATAL MESSAGE 6505, THE SYMMETRY ØPTIØN *** CפNTAINS AN INVALID SYMBøL.

6506 *** USER FATAL MESSAGE 6506, THE C \(\emptyset M P \emptyset N E N T\) SUBSTRUCTURE *** IS NØT ØNE \(\emptyset F\) TH \(\emptyset S E\) \(\emptyset \mathrm{N}\) THE CQMBINE CARD.

6507 *** USER FATAL MESSAGE 6507, THE SUBSTRUCTURE *** DQES NØT EXIST ØN THE S \(\emptyset F\).

6508 *** USER FATAL MESSAGE 6508, THE NAME SPECIFIED FØR THE RESULTANT PSEUDØSTRUCTURE ALREADY EXISTS 9 N THE S@F.

6510 *** USER FATAL MESSAGE 6510, THE REQUESTED CQMBINE ØPERATIดN REQUIRES SUBSTRUCTURE BULK DATA WHICH HAS NØT BEEN GIVEN.

6511 *** USER FATAL MESSAGE 6511, THE REQUESTED TRANS SET ID *** HAS NDT BEEN DEFINED BY BULK DATA.

6512 *** USER FATAL MESSAGE 6512, REDUNDANT CDNNECTIØN SET ID'S HAVE BEEN SPECIFIED.

6513 *** USER FATAL MESSAGE 6513, THE TRANS SET ID *** REQUESTED BY A GTRAN BULK DATA CARD HAS NØT BEEN DEFINED.

6514 *** USER FATAL MESSAGE 6514, ERRQRS HAVE BEEN FØUND IN THE MANUALLY SPECIFIED CØNNECTIØN ENTRIES. SUMMARY FØLLØWS.

6515 *** USER FATAL MESSAGE 6515, GRID PDINT *** BASIC SUBSTRUCTURE *** DQES NØT EXIST.

6516 *** USER INFØRMATION MESSAGE 6516, ALL MANUAL CØNNECTIØNS SPECIFIED ARE ALLØWABLE WITH RESPECT Tø TØLER.

6517 *** USER FATAL MESSAGE 6517, THE BASIC SUBSTRUCTURE *** REFERRED T \(\emptyset\) BY A RELES BULK DATA CARD CANNØT BE FØUND IN THE PR@BLEM TABLE \(\emptyset F\) C \(\emptyset N T E N T S\).

6518 *** USER FATAL MESSAGE 6518, CØMPøNENT SUBSTRUCTURE *** ALREADY HAS AN H@RG ITEM.

6519 *** USER FATAL MESSAGE 6519, REDUNDANT NAMES FØR RESULTANT PSEUDØSTRUCTURE HAVE BEEN SPECIFIED.

6520 *** USER FATAL MESSAGE 6520, REDUNDANT VALUES FØR TØLER HAVE BEEN SPECIFIED.

6521 *** USER INFØRMATION MESSAGE 6521, MØDULE CØMB1 SUCCESSFULLY CØMPLETED.
\[
6.2-51 \quad(3 / 1 / 76)
\]

6522 *** USER FATAL MESSAGE 6522, THE BASIC SUBSTRUCTURE *** REFERRED TØ BY A CONCT1 BULK DATA CARD CANNØT BE FØUND IN THE PROBLEM TABLE ØF CØNTENTS.

6523 *** USER FATAL MESSAGE 6523, THE BASIC SUBSTRUCTURE *** REFERRED TØ BY A CØNCT BULK DATA CARD CANNØT BE FØUND IN THE PRØBLEM TABLE ØF CØNTENTS.
 THE CURRENT MPY3 EXECUTIØN.

6525 *** USER INFØRMATIØN MESSAGE 6525; ESTIMATED TIME F@R THE CURRENT MPY3 EXECUTION IS ********* SECØNDS.

6526 *** USER INFØRMATIQN MESSAGE 6526, THE CENTER MATRIX IS TดØ LARGE FØR IN-CØRE PRØCESSING. ØUT-ØF-CØRE PRØCESSING WILL BE PERFØRMED.

6528 *** USER FATAL MESSAGE 6528, INCØMPATIBLE LØCAL CØØRDINATE SYSTEMS HAVE BEEN FØUND. CØNNECTIØN \(\emptyset F\) PØINTS IS IMPØSSIBLE, SUMMARY FØLLOWS.

6530 *** USER FATAL MESSAGE 6530, THE BASIC SUBSTRUCTURE *** REFERRED TØ BY A GTRAN CARD CANNØT BE FØUND IN THE PRØBLEM TABLE ØF CØNTENTS.

6531 *** USER FATAL MESSAGE 6531, N \(\emptyset\) CØNNECTIØNS HAVE BEEN FØUND DURING THE AUTØMATIC CØNNECTIØN PRØCEDURE.

6532 *** USER FATAL MESSAGE 6532, THE GNEW ØPTI@N IS NØT CURRENTLY AVAILABLE.

6533 *** USER FATAL MESSAGE 6533, ØPTIØNS PA HAS BEEN SPECIFIED BUT THE LØAP ITEM ALREADY EXISTS FØR SUBSTRUCTURE ***.

6534 *** USER FATAL MESSAGE 6534, ØPTIØNS PA HAS BEEN SPECIFIED BUT THE SUBSTRUCTURE *** D@ES NØT EXIST.

6551 *** USER FATAL MESSAGE 6551, MATRIX B IN MPY3 IS NØT SQUARE.

6553 *** USER FATAL MESSAGE 6553, NØ. ØF RØWS \(\emptyset F\) MATRIX A IN MPY3 IS UNEQUAL T \(\emptyset\) N \(\emptyset\). \(\emptyset\) C \(\emptyset L U M N S\) \(\emptyset F\) MATRIX B.

6554 *** USER FATAL MESSAGE 6554, NØ. \(\emptyset F\) CØLUMNS \(\emptyset F\) MATRIX E IN MPY3 IS UNEQUAL T \(\emptyset\) N \(\emptyset\). \(\emptyset F ~ C \emptyset L U M N S\) ØF MATRIX A.

6555 *** USER FATAL MESSAGE 6555, MATRIX E IN MPY3 IS NØT SQUARE FØR A(T)BA + E PR@BLEM.

6556 *** USER FATAL MESSAGE 6556, NØ. ØF RØWS ØF MATRIX E IN MPY3 IS UNEQUAL TØ NØ. ØF RØWS \(\emptyset F\) MATRIX B FØR BA + E PRØBLEM.

6557 *** USER FATAL MESSAGE 6557, UNEXPECTED NULL CØLUMN \(\emptyset F A(T)\) ENC \(\emptyset U N T E R E D\).

\section*{NASTRAN SYSTEM AND USER MESSAGES}

6601 *** USER FATAL MESSAGE 6601, REQUEST T \(\emptyset\) REDUCE PSEUDQSTRUCTURE *** INVALID. DQES N@T EXIST QN THE S@F.

6602 *** USER FATAL MESSAGE 6602, THE NAME *** CANNØT BE USED FØR THE REDUCED PSEUDØSTRUCTURE. IT ALREADY EXISTS \(\emptyset N\) THE S \(\emptyset F\).

6603 *** USER FATAL MESSAGE 6603, A B \(\emptyset\) UNDARY SET MUST BE SPECIFIED FØR A REDUCE ØPERATI@N.

6604 *** USER WARNING MESSAGE 6604, A BøUNDARY SET HAS BEEN SPECIFIED FØR ***, BUT IT IS NØT A CØMP@NENT \(\emptyset F\) THE PSEUDØSTRUCTURE BEING REDUCED. THE BØUNDARY SET WILL BE IGN@RED.

6605 *** USER WARNING MESSAGE 6605, A BØUNDARY SET HAS BEEN SPECIFIED FQR *** BUT IT IS NดT A PHASEI BASIC SUBSTRUCTURE. THE BØUNDARY SET WILL BE IGNQRED.

6606 *** USER FATAL MESSAGE 6606, BØUNDARY SET *** SPECIFIED IN CASE CØNTRØL HAS NØT BEEN DEFINED BY BULK DATA.
No BDYC bulk data has been entered.

6607 *** USER FATAL MESSAGE 6607, N \(\emptyset\) BDYS \(\emptyset R\) BDYSI BULK DATA HAS BEEN INPUT T \(\emptyset\) DEFINE B \(\emptyset U N D A R Y\) SET ***.

6608 *** USER FATAL MESSAGE 6608, THE REQUEST FØR BØUNDARY SET ***, SUBSTRUCTURE *** WAS NØT DEFINED.

6609 *** USER INFØRMATI白 MESSAGE 6609, N \(\emptyset\) B \(\emptyset U N D A R Y\) SET HAS BEEN SPECIFIED FØR CØMPØNENT *** \(\emptyset F\) PSEUDØSTRUCTURE ***. ALL DEGREES ØF FREEDØM WILL BE REDUCED.

6610 *** USER WARNING MESSAGE 6610, DEGREES \(\emptyset F\) FREEDØM AT GRID PØINT *** CØMPØNENT SUBSTRUCTURE *** INCLUDED IN A B \(\emptyset\) UNDARY SET D \(\emptyset\) NØT EXIST. REQUEST WILL BE IGN@RED.

6611 *** USER FATAL MESSAGE 6611, GRID PØINT *** SPECIFIED IN BØUNDARY SET *** FØR SUBSTRUCTURE *** DQES NQT EXIST.

6612 ***̌ USER FATAL MESSAGE 6612, THE REDUCE ØPERATIQN REQUIRES SUBSTRUCTURE BULK DATA WHICH HAS NØT BEEN GIVEN.

6613 *** USER FATAL MESSAGE 6613, F@R RUN \(=\mathrm{G} \emptyset\), THE REDUCED SUBSTRUCTURE *** MUST ALREADY EXIST.

6614 *** USER FATAL MESSAGE 6614, ILLEGAL \(\emptyset R\) N@N-EXISTANT STRUCTURE NAME USED ABØVE.

6615 *** USER FATAL MESSAGE 6615, ILLEGAL B@UNDARY SET IDENTIFICATIØN NUMBER.

6616 *** USER INFORMATIØN. MESSAGE 6616, MøDULE REDUCE SUCCESSFULLY CØMPLETED.

\section*{diagnostic messages}

6900 *** USER INFgRMATIQN MESSAGE 6900, L@ADS HAVE BEEN SUCCESSFULLY APPENDED F@R SUBSTRUCTURE ***.

6901 *** USER INFØRMATIØN MESSAGE 6901, ADDITI@NAL L@ADS HAVE BEEN SUCCESSFULLY MERGED FØR SUBSTRUCTURE.

6951 *** USER FATAL MESSAGE 6951, INSUFFICIENT CØRE T \(\emptyset \emptyset A D\) TABLES. IN M@DULE LØDAPP, CØRE \(=\) ***. 6952 *** USER FATAL MESSAGE 6952, REQUESTED SUBSTRUCTURE *** D@ES NøT EXIST.

6953 *** SYSTEM FATAL MESSAGE 6953, A WR@NG CØMBINATIØN \(\emptyset F\) LøAD VECTØRS EXISTS FØR SUBSTRUCTURE ***.

7019 *** USER INFØRMATIØN MESSAGE 7019. M@DULE DSCHK IS EXITING FØR REAS@N *** \(9 N\) ITERATIØN NUMBER ****** / PARAMETER VALUES ARE AS FQLLQWS D@NE = **********, SHIFT = **********, DSEPSI = ***************.

See Section 3.5 for a discussion of Rigid Format 4 output features.

\section*{NASTRAN DICTIONARY}

\subsection*{7.1 NASTRAN DICTIONARY}

This section contains descriptions of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms. The first column of the Dictionary contains the NASTRAN terms in alphabetical order. The second column contains a code indicating a general category for each term. The codes and categories, along with general references to the Programmer's Manual and User's Manual, are as follows:
\begin{tabular}{lll} 
Code & \multicolumn{1}{c}{ Category } & General Reference \\
IA & Input - Executive Control & UM-2.2 \\
IB & Input - Bulk Data & UM-2.4 \\
IC & Input - Case Control & UM-2.3 \\
EM & Executive Module & \\
FMH & Functional Module - Heat & UM-5.3.4 \\
FMS & Functional Module - Structural & PM-4 \\
FMM & Functional Module - Matrix Operation & PM-4 \\
FMU & Functional Module - User & UM-5.3.1 \\
FMX & Data Block - Matrix & UM-5.3.2 \\
DBM & Data Block - Matrix List & UM-5.3.3 \\
DBML & Data Block - Table & PM-2 \\
DBT & Parameter Name & PM-2 \\
P & Parameter set by user & PM-2 \\
PU & Rigid Format Label & UM-3 \\
PH & Common Phrase or Term & UM-3 \\
M & Miscellaneous &
\end{tabular}

The third column of the Dictionary contains a definition or description of the terms given in the first column. References to the User's Manual are indicated by UM-i and the Programmer's Manual by PM-i, where \(i\) is the section number of the manual. References to particular rigid formats are indicated by \(D-i\) where \(i\) is the displacement approach rigid format number.
\begin{tabular}{|c|c|c|}
\hline A & P & Parameter value used to control utility module MATGPR print of A-set matrices. \\
\hline ABFL & DBM & [ \(\mathrm{b}_{\mathrm{b}, \mathrm{fl}}\) ]-Hydroelastic boundary area factor matrix. \\
\hline AbFLT & DBM & Transpose of [ \(A_{b, f l}\) ] \\
\hline ACCE & IC & Abbreviated form of ACCELERATION. \\
\hline ACCELERATION & IC & Output request for acceleration vector. (UM-2.3, 4.2) \\
\hline ACPT & DBT & Aerodynamic Connection and Property Data. \\
\hline Active Column & PH & Column containing at least one nonzero term outside the band. \\
\hline ADD & FMM & Functional module to add two matrices together. \\
\hline ADD & M & Parameter constant used in utility module PARAM. \\
\hline ADD5 & FMM & Functional module to add up to five matrices together. \\
\hline Adumi & IB & Defines attributes of dummy elements 1 through 9. \\
\hline AEFACT & IB & Specifies box division points. \\
\hline AERD & DBT & Aerodynamic Matrix Generation Data. \\
\hline AERD & IB & Gives basic aerodynamic parameters. \\
\hline AJJL & DBML & Aerodynamic Influence Matrix List. \\
\hline ALL & IC & Output request for all of a specified type of output. \\
\hline Alledge tics & IC & Request tic marks on all edges of \(X-Y\) plot. \\
\hline Alter & IA & Alter statement for DMAP or rigid format. \\
\hline ALWAYS & P & Parameter set to -1 by a PARAM statement in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline AMg & FMS & Aerodynamic Matrix Generator. \\
\hline AMP & FMS & Aerodynamic Matrix Processor. \\
\hline AND & M & Parameter constant used in executive module PARAM. \\
\hline AQUT\$ & M & Indicates restart with solution set output request. \\
\hline APD & FMS & Aerodynamic Pool Distributor. \\
\hline APP & IA & Control card which specifies approach (DISP or DMAP). \\
\hline APPEND & M & File may be extended (see FILE). \\
\hline ASET & IB & Analysis set coordinate definition card. \\
\hline ASETI & IB & Analysis set coordinate definition card. \\
\hline AUTD & IC & Requests \(X\)-Y plot of autocorrelation function. \\
\hline AUT® & DBT & Autocorrelation function table. \\
\hline
\end{tabular}
\begin{tabular}{lll} 
AXES & IC & Defines orientation of object for structure plot. \\
AXIC & OBT & \begin{tabular}{l} 
Generated by Input File Processor 3 (IFP3) for axisymmetric \\
conical shell problems.
\end{tabular} \\
AXIC & IB & \begin{tabular}{l} 
Axisymmetrical conical shell definition card. When this \\
card is present, most other bulk data cards may not be used.
\end{tabular} \\
AXIF & IB & \begin{tabular}{l} 
Controls the formulation of a hydroelastic problem.
\end{tabular} \\
AXISYM\$ & M & \begin{tabular}{l} 
Indicates restart with conical shell or hydroelastic \\
elements.
\end{tabular} \\
AXISYMMETRIC & IC & \begin{tabular}{l} 
Selects boundary conditions for axisymmetric shell problems \\
or specifies the existence of hydroelastic fluid harmonics.
\end{tabular} \\
AXSL \(\varnothing T\) & IB & \begin{tabular}{l} 
Controls the formulation of acoustic analysis problems.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline B & PH & Upper semiband of matrix \\
\hline B2DD & DBM & [ \(8_{d d}^{2}\) ] - Partition of direct input damping matrix. \\
\hline B2PP & DBM & \(\left[\mathrm{B}_{\mathrm{pp}}^{2}\right]\) - Direct input damping matrix for all physical points. \\
\hline B2PP & IC & Selects direct input matrices - input on DMIG bulk data cards for use in Dynamics Rigid Formats (D-7 thru D-12). \\
\hline B2PP\$ & M & Indicates restart with change in direct input damping matrices. \\
\hline BAA & DBM & [ \(\mathrm{Baa}_{\mathrm{a}}\) ] - Partition of damping matrix \\
\hline BALL EDGE TICS & IC & Request for all edge tic marks to be plotted on lower frame of an \(X-Y\) plot. \\
\hline BAR & IC & Requests structure plot for all bar elements. \\
\hline BARDR & IB & Bar orientation default definition. \\
\hline BBAR & PH & Lower semiband of matrix. \\
\hline BDD & DBM & \(\left[B_{d d}\right]\) - Damping matrix used in direct formulation of dynamics problems (D-7 thru D-9). \\
\hline BDEBA & P & Parameter used to indicate equivalence of BDD and BAA. \\
\hline BDPØロL & DBT & Hydroelastic boundary description table. \\
\hline BDYLIST & IB & Structure-fluid hydroelastic boundary definition. \\
\hline BEGIN & EM & The first DMAP statement is always BEGIN. \\
\hline BEGIN BULK & IB & Control card which marks the end of the case control deck. Cards following this card are assumed to be bulk data cards. \\
\hline BETA & P & Factor in integration algorithm in transient heat transfer analysis. \\
\hline BFF & DBM & \(\left[B_{f f}\right]\) - Partition of damping matrix. \\
\hline BGG & DBM & \(\left[\mathrm{B}_{\mathrm{gg}}\right]\) - Damping matrix generated by Structural Matrix Assembler. \\
\hline BGPA & DBT & Basic Grid Point Definition Table - aerodynamics. \\
\hline BGPDT & DBT & Basic grid point definition table. \\
\hline BHH & DBM & [ \(\mathrm{B}_{\mathrm{hh}}\) ] - Partition of damping matrix. \\
\hline BKLO & P & Constant parameter value used in functional module SDR2 in the Buckling Analysis Rigid Format (D-5). \\
\hline BKLI & P & Constant parameter value used in functional module SDR2 in the Buckling Analysis Rigid Format (D-5). \\
\hline BL & IC & Requests Benson Lehner plotter. \\
\hline BLANK FRAMES & IC & Requests blank frames between structure plots (UM-4.1). \\
\hline BLEFT TICS & IC & Request for left edge tic marks to be plotted on bottom frame of an X-Y plot. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline BMG & FMS & Generates DMIG card images describing interconnection of fluid and structure. \\
\hline BNN & DBM & [ \(\mathrm{B}_{\mathrm{nn}}\) ] - Partition of damping matrix. \\
\hline BØTH & IC & Bulk data echo option - Requests both unsorted and sorted printout of bulk data deck. \\
\hline BPI & IC & Bits per inch - Plot tape density must be specified on control cards in addition to this data card. The required value will vary from one installation to another. \\
\hline BQG & DBM & Single-point forces of constraint for a Buckling Analysis problem (D-5). \\
\hline BRIGHT TICS & IC & Request for right edge tic marks to be plotted on bottom frame for \(X-Y\) plot. \\
\hline BUCKLING & IA & Selects rigid format for buckling analysis. \\
\hline BUCKLING & P & Constant parameter value used in functional module READ in the Buckling Analysis Rigid Format (D-5). \\
\hline BUCKLING & P & Used in printing rigid format error messages for Buckling Analysis (D-5). \\
\hline Bulk Data Deck & PH & The third of the three data decks necessary to run a problem under the NASTRAN system. This deck begins with the BEGIN BULK card and ends with the ENDDATA card, and contains the data of the mathematical model. The format of each bulk data card is fixed field, 8 or 16 columns for each value. \\
\hline BXHH & DBM & Total modal damping matrix - h set. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline C & M & Used in parameter section of DMAP statement. Indicates that parameter is a constant. \\
\hline C & PH & Symbol for active column in triangular decomposition ( \(\bar{C}\) used for active rows). \\
\hline CAERด1 & IB & Defines aerodynamic macro-element. \\
\hline CALCOMP & IC & Request California Computer plotter. \\
\hline CAMERA & IC & Selects one or both of the two cameras for the SC 4020 cathode. ray tube electronic plotter. This information must usually also be given to the plotter operator on the run submittal slip which will vary from one installation to another. (UM-4) \\
\hline CARDNQ & P & Parameter used to accumulate a count of all card output punched except the NASTRAN restart dictionary. \\
\hline CASE & FMS & Extracts user request from CASECC for current loop in dynamics rigid formats ( \(D-7\) thru \(D-12\) ). \\
\hline Case Control Deck & PH & The second of the three data decks necessary to run a problem under the NASTRAN system. It contains cards which select particular data sets from the Bulk Data Deck, output request cards and titling information. Cards in this deck are free field. \\
\hline CASECC. & DBT & Case control data block. \\
\hline CASEXX & DBT & Case control data bluck as modified by functional module CASE. \\
\hline CASEYY & DBT & Appended case control data table. \\
\hline CASEZZ & DBT & CASEYY reduced to 9 PREQ list. \\
\hline CAXIF2 & IB & Acoustic core element connection definition card. \\
\hline CAXIF3 & IB & Acoustic triangular element connection definition card. \\
\hline CAXIF4 & IB & Acoustic quadrilateral element connection definition card. \\
\hline CBAR & IB & Bar element connection definition card. \\
\hline CCONEAX & IB & Axisymmetrical conical shell element connection card. \\
\hline CDAMP1 & IB & Scalar damper connection definition card. \\
\hline CDAMP2 & IB & Scalar damper property and connection definition card. \\
\hline CDAMP3 & IB & Scalar damper connection definition card (connecting scalar points). \\
\hline CDAMP4 & IB & Scalar damper property and connection definition card (connecting scalar points). \\
\hline CDUMi & IB & Defines definition card for dummy elements 1 through 9. \\
\hline CEAD & FMS & Complex Eigenvalue Analysis - Displacement. \\
\hline CEIG & P & Parameter used in SDR2 in Complex Eigenvalue Analysis (D-7 and D-10). \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline CEIGN & P & Parameter used in VDR in Complex Eigenvalue Analysis (D-7 and \(D-10\) ). \\
\hline CELAS 1 & IB & Scalar spring connection definition card. \\
\hline CELAS2 & IB & Scalar spring property and connection definition card. \\
\hline CELAS3 & IB & Scalar spring connection definition card (connecting scalar points). \\
\hline CELAS4 & IB & Scalar spring property and connecting definition card (connecting scalar points). \\
\hline CEND & IA & The last card of the Executive Control Deck. \\
\hline CFLUID2 & IB & Fluid core element connection definition card. \\
\hline CFLUID3 & IB & Fluid triangular element connection definition card. \\
\hline CFLUID4 & IB & Fluid quadrilateral element connection definition card. \\
\hline CHBDY & IB & Boundary element connection definition card for heat transfer analysis. \\
\hline Checkpoint & PH & The process of writing selected data blocks onto the New Problem Tape for subsequent restarts. \\
\hline CHEXAT & IB & Hexahedron element connection definition card - five tetrahedra. \\
\hline CHEXA2 & IB & Hexahedron element connection definition card - ten tetrahedra. \\
\hline CHKPNT & EM & Checkpoint module. \\
\hline CHKPNT & IA & Request for checkpoint execution. \\
\hline CLAMA & DBT & Complex eigenvalue output table. \\
\hline CLAMAL & DBT & Appended case control data table. \\
\hline CLAMAL. 1 & DBT & CLAMAL reduced to 0 FREQ list. \\
\hline CLEAR & IC & Causes all parameter values used for \(X-Y\) plots to be reset to their default values except plotter and the titles (UM-4.2). \\
\hline CMASS 1 & IB & Scalar mass connection definition card. \\
\hline CMASS2 & IB & Scalar mass property and connection definition card. \\
\hline CMASS 3 & IB & Scalar mass connection definition card (connecting scalar points). \\
\hline CMASS4 & IB & Scalar mass property and connection definition card (connecting scalar points). \\
\hline CMETH@D & IC & Complex eigenvalue analysis method selection. \\
\hline CMETHOD\$ & M & Indicates restart with change in complex eigenvalue analysis method selection. \\
\hline CMPLEV & P & Parameter used in GKAD to indicate complex eigenvalue problem. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline Cold Start & PH & A NASTRAN problem initiated at its logical beginning. A cold start will never use an 0ld Problem Tape but it may create a New Problem Tape for subsequent restarts. \\
\hline CQLOR & IC & Selects ink color for table plotters (UM-4.1). \\
\hline COND & EM & Conditional transfer \\
\hline CQNMI & IB & Structural mass element connection definition card. \\
\hline CONM2 & I8 & Structural mass element connection definition card. \\
\hline CONRDD & IB & Rod element property and connection definition card. \\
\hline COnR@D & IC & Requests structure plot for all CDNRDD elements. \\
\hline CORDIC & IB & Cylindrical coordinate system definition (by grid point ID). \\
\hline CORDIR & IB & Rectangular coordinate system definition (by grid point ID). \\
\hline CORDIS & IB & Spherical coordinate system definition (by grid point ID). \\
\hline CORD2C & IB & Cylindrical coordinate system definition (by coordinates). \\
\hline CORD2R & IB & Rectangular coordinate system definition (by coordinates). \\
\hline CORD2S & IB & Spherical coordinate system definition (by coordinates). \\
\hline COSINE & IC & Indicates cosine boundary conditions for conical shell problem. \\
\hline CDUPMASS & P & Parameter used to request coupled mass. \\
\hline CPBAR & P & Selects coupled mass option for BAR element. \\
\hline CPHID & DBM & Complex Eigenvectors - solution set. \\
\hline CPHIHI & DBM & PHIHL reduced to \(\emptyset\) FREQ list. \\
\hline CPHIP & DBM & Complex Eigenvectors - physical set. \\
\hline CPQDPLT & P & Selects coupled mass option for QDPLT element. \\
\hline CPQUADI & P & Selects coupled mass option for QUADI element. \\
\hline CPQUAD2 & P & Selects coupled mass option for QUAD2 element. \\
\hline CPRQD & P &  \\
\hline CPTRBSC & \(p\) & Selects coupled mass option for TRBSC element. \\
\hline CPTRIA1 & P & Selects coupled mass option for TRIA1 element. \\
\hline CPTRIA2 & P & Selects coupled mass option for TRIA2 element. \\
\hline CPTRPLT & P & Selects coupled mass option for TRPLT element. \\
\hline CPTUBE & P & Selects coupled mass option for TUBE element. \\
\hline CQDMEM & IB & Quadrilateral membrane element connection definition card. \\
\hline CQDMEMI & IB & Isoparametric quadrilateral membrane element connection definition card. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|}
\hline CQDMEM2 & IB \\
\hline CQDPLT & IB \\
\hline CQUADI & IB \\
\hline CQUAD2 & IB \\
\hline CRØD & IB \\
\hline CSHEAR & IB \\
\hline CSLøT3 & IB \\
\hline CSLøT4 & IB \\
\hline CSTM & DBT \\
\hline CSTMA & DBT \\
\hline CTETRA & IB \\
\hline CT@RDRG & IB \\
\hline CTRAPRG & IB \\
\hline CTRBSC & IB \\
\hline CTRIA1 & IB \\
\hline CTRIA2 & IB \\
\hline CTRIARG & IB \\
\hline CTRMEM & IB \\
\hline CTRPLT & IB \\
\hline CTUBE & IB \\
\hline CTWIST & IB \\
\hline CURVLINESYMB \(\emptyset\) L & IC \\
\hline CVISC & IB \\
\hline CWEDGE & IB \\
\hline
\end{tabular}

Quadrilateral membrane element connection definition card. Quadrilateral bending element connection definition card. General Quadrilateral element connection definition card. Homogeneous quadrilateral element connection definition card. Rod element connection definition card. Shear panel element connection definition card. Triangular slot element connection definition card for acoustic analysis.

Quadrilateral slot element connection definition card for acoustic analysis.

Coordinate System Transformation Matrices.
Coordinate System Transformation Matrices - Aerodynamics.
Tetrahedron element connection definition card.
Toroidal ring element connection card.
Trapezoidal ring element connection card.
Basic bending triangular element connection definition card.
General triangular element connection definition card.
Homogeneous triangular element connection definition card. Triangular ring element connection card. Triangular membrane element connection definition card. Triangular bending element connection definition card. Tube element connection definition card. Twist panel element connection definition card. Request to connect points with lines and/or to use symbols for \(X-Y\) plots.

Viscous damper element connection definition card. Wedge element connection definition card.
\begin{tabular}{lll} 
& P & \begin{tabular}{l} 
Parameter value used to control utility module MATGPR print \\
of solution set matrices.
\end{tabular} \\
DAREA & \\
Data Block & IB & \begin{tabular}{l} 
Dynamic load scale card.
\end{tabular} \\
& PH & \begin{tabular}{l} 
Designates a set of data (matrix, table) occupying a file. \\
A file is "allocated" to a data block and a data block is \\
"assigned to a file.
\end{tabular} \\
Data Pool File
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DESTRY & \(p\) & Appended AJJL parameter. \\
\hline DET & 18 & ```
Eigenvalue analysis method option - determinant (see EIGR,
EIGB, EIGC).
``` \\
\hline DIFF & P & Parameter used in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline DIFFERENTIAL STIFFNESS & IA & Selects rigid format for static analysis with differential stiffness. \\
\hline DIFFSTIF & P & Parameter used in the PRTPARM module in the Differential Stiffness Rigid Format (D-4). \\
\hline DIRCEAD & P & Used in printing rigid format error messages for direct complex eigenvalue analysis (D-7). \\
\hline DIRECT & P & Parameter used to indicate direct formulation of dynamics problems (D-7 thru D-9). \\
\hline DIRECT CDMPLEX EIGENVALUES & IA & Selects rigid format for direct complex eigenvalue analysis. \\
\hline DIRECT FREQUENCY RESPONSE & IA & Selects rigid format for direct frequency and random response. \\
\hline DIRECT TRANSIENT RESPONSE & IA & Selects rigid format for direct transient response. \\
\hline DIRFRRD & P & Used in printing rigid format error messages for direct frequency response. \\
\hline DIRTRD & P & Used in printing rigid format error messages for direct transient response (D-9). \\
\hline DISP & IA & Displacement approach to structural analysis. \\
\hline DISP & IC & Abbreviated form of DISPLACEMENT. \\
\hline DISPLACEMENT & IC & Request for output of displacement vector or eigenvector. (UM-2.3, 4.2) \\
\hline DIT & DBT & Direct Input Table. \\
\hline DIV & P & Parameter constant used in utility module PARAM. \\
\hline DLøAD & IB & Dynamics load assembly definition. \\
\hline DLøAD & IC & Dynamic load set solution request. \\
\hline DL@AD\$ & M & Indicates restart with change in dynamic load set request. \\
\hline DLT & DBT & Dynamic Loads Table. \\
\hline DM & DBM & [D] - Rigid body transformation matrix. \\
\hline DMAP & IA & Approach option (Direct Matrix Abstraction Program). \\
\hline DMAP Instruction & PH & A statement in the DMAP Language. \\
\hline DMAP Language & PH & Data block-oriented language used by the NASTRAN Executive System to direct the sequence and flow of modules to be executed. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{lll}
DMAP Loop & PH & \begin{tabular}{l}
A DMAP sequence to be repeated, initiated with a LABEL DMAP \\
instruction and terminated by a REPT DMAP instruction.
\end{tabular} \\
DMAP Module. & PH & A module called by means of a DMAP instruction. \\
DMAP Sequence & PH & A set of DMAP instructions. \\
DMI & IB & \begin{tabular}{l}
Direct Matrix Input (data block is defined and used by user).
\end{tabular} \\
DMIAX & IB & \begin{tabular}{l}
Direct Matrix Input - Axisymmetric, used in dynamic rigid \\
formats (D-7 thru D-12).
\end{tabular} \\
DMIG & IB & \begin{tabular}{l}
Direct Matrix Input - used in dynamic rigid formats (D-7 \\
thru D-12).
\end{tabular} \\
DPD & FMS & Dynamic Pool Distributor.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DPH & M & Data Pool Housekeeper - Executive routine. \\
\hline DPHASE & IB & Dynamic load phase lead card. \\
\hline DSO & P & Parameter used in functional module SDR2 in the Differential Stiffness Rigid Format (D-4). \\
\hline DS1 & \(p\) & Parameter used in functional module SDR2 in the Differential Stiffness Rigid Format (D-4). \\
\hline DSCD & IC & Abbreviated form of DSCøEFFICIENT. \\
\hline DSC0\$ & M & Indicates restart with change in differential stiffness load factors. \\
\hline OSCDEFFICIENT & IC & Selects set of differential stiffness factors which have been input on DSFACT cards. \\
\hline DSCØSET & P & Differential Stiffness coefficient set number. Used in the Differential Stiffness Rigid Format (D-4). \\
\hline DSFACT & IB & Differential stiffness factor set definition card. \\
\hline DSL0@P & P & Controls DMAP looping in the Differential Stiffness Rigid Format (D-4). \\
\hline DSMG1 & FMS & Differential Stiffness Matrix Generator - Phase 1. \\
\hline DSMG2 & FMS & Differential Stiffness Matrix Generator - Phase 2. \\
\hline DTI & IB & Direct Table Input - means by which user may directly input any table data block. \\
\hline DUMMDD1 & FMX & This module is reserved for user implementation. \\
\hline DUMM9D2 & FMX & This module is reserved for user implementation. \\
\hline DUMM9D3 & FMX & This module is reserved for user implementation. \\
\hline DUMM9D4 & FMX & This module is reserved for user implementation. \\
\hline Dummy Element & PH & Provision for user to insert additional finite element into the NASTRAN element library. \\
\hline Dump & PH & Printed output of contents of all, or a portion, of main memory at some point in the problem solution. \\
\hline DYNAMICS & DBT & Generated by the Input File Processor (IFP) for Real Eigenvaiue, Buckling, or any of the Dynamics Rigid Formats (D-3, D-5 and D-7 thru D-12). \\
\hline DIJE & DBM & Downwash factors due to extra points - real. \\
\hline D2JE & DBM & Downwash factors due to extra points - complex. \\
\hline DIJK & DBM & Real part of downwash matrix. \\
\hline 02JK & DBM & Imaginary part of downwash matrix. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline E & P & Parameter value used by MATGPR to print matrices associated with extra points. \\
\hline EAI & IC & Requests EAI 3500 plotter. \\
\hline ECH \(\emptyset\) & IC & Ouput request statement for echo of bulk data. \\
\hline ECPT & DBT & Element Connection and Properties Table. \\
\hline ECPTNL & DBT & Nonlinear subset of the ECPT. This data block is used only in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline ECPTNLI & DBT & Updated version of the ECPTNL data block. Used only in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline ECPTNLPG & P & Error flag for the Piecewise Linear Analysis Rigid Format (D-6). If all elements in a piecewise linear analysis problem are linear, this error flag is set and a DMAP exit occurs. \\
\hline ECT & DBT & Element Connection Table. \\
\hline ECTA & DBT & Element Connection Table - Aerodynamics. \\
\hline EDT & DBT & Enforced Deformation Table - generated by Input File Processor. \\
\hline EED & DBT & Eigenvalue Extraction Data table (D-3, D-5, D-7, D-10, D-11, D-12). \\
\hline EIGB & IB & Real eigenvalue extraction data for buckling analysis (D-5). \\
\hline EIGC & IB & Complex eigenvalue extraction data card (\(\mathrm{D}-7\) and \(\mathrm{D}-10\)) . \\
\hline EIGP & IB & Complex eigenvalue pole definition card (\(\mathrm{D}-7\) and D-10). \\
\hline EIGR & IB & Real eigenvalue extraction data for normal mode analysis (D-3, D-10 thru D-12). \\
\hline ELEMENTS & IC & Used in element set definition for structure plot. \\
\hline ELFORCE & IC & Ouput request card for element forces. (UM-2.3, 4.2). \\
\hline ELSETS & DBT & Element plot set connection tables. \\
\hline ELSTRESS & IC & Request for output of element stresses.(UM-2.3, 4.2) \\
\hline END & IA & END is the last statement in all DMAP sequences. \\
\hline ENDALTER & IA & Last card of alter packet. \\
\hline ENDDATA & IB & End of Bulk Data Deck. \\
\hline EDF & PH & End-of-File. \\
\hline EPØINT & IB & Extra point definition card - used in dynamics problems only. \\
\hline EPSHT & P & Used in convergence tests for nonlinear heat transfer analysis. \\
\hline EPSILQN SUB E (\(\varepsilon_{e}\)) & PH & Error ratio computed in SSG3. \(\varepsilon_{e}=\varepsilon_{\ell}\) if the referenced load is \(\left\{P_{\ell}\right\}\) and \(\varepsilon_{e}=\varepsilon_{0}\) if the referenced load is \(\left\{P_{0}\right\}\). See page 3.2-10 for mathematical definition of \(\varepsilon_{0}\) and \(\varepsilon_{\ell}\). \\
\hline EPT & DBT & Element Property Table - output by Input File Processor. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline EQAERØ & DBT & Equivalence between external points and scalar index values Aerodynamics. \\
\hline EQDYN & DBT & Equivalence of internal and external indices - dynamics. \\
\hline EQEXIN & DBT & Equivalence of internal and external indices. \\
\hline EQUIV & EM & Equivalence data blocks. \\
\hline Equivalence & PH & Data blocks are considered equivalenced when references to their equivalent names access the same physical data file. \\
\hline ERR@R1 & L & Label used when rigid format errors are detected. \\
\hline ERR@R2 & L & Label used when rigid format errors are detected. \\
\hline ERRQR3 & L & Label used when rigid format errors are detected. \\
\hline ERR@R4 & L & Labe1 used when rigid format errors are detected. \\
\hline ERRQR5 & L & Label used when rigid format errors are detected. \\
\hline ERR@R6 & L & Label used when rigid format errors are detected. \\
\hline EST & DBT & Element Summary Table. \\
\hline ESTL & DBT & Element Summary Table for Linear elements. Used only in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline ESTNL & DBT & Element Summary Table for Nonlinear elements. Used only in the Piecewise Linear Analysis Rigid Format (\(D-6\)). \\
\hline ESTNL] & DBT & Updated version of the ESTNL data block. Used only in the Piecewise Linear Analys is Rigid Format (D-6). \\
\hline EXCEPT & IC & Forms exceptions to string of values in set declarations. \\
\hline EXCLUDE & IC & Used in set definition for structure plots. \\
\hline Executive & PH & \begin{tabular}{l}
1. Executive Control Deck \\
2. NASTRAN Executive System
\end{tabular} \\
\hline Executive Control Deck & PH & The first of the three data decks necessary to run a problem under the NASTRAN system. This deck begins with the ID card and ends with the CEND card. Among other things, cards in this deck select the solution approach and rigid format to be used, limit the execution time, and control checkpointing and restart. \\
\hline Executive System & PH & The Executive System initiates a NASTRAN problem solution via the Preface, allocates files to data blocks during problem solution, controls the sequence of the modules to be executed, and providés for problem restart capability. \\
\hline EXIT & EM & Program termination DMAP statement. \\
\hline External Sort & PH & Order of grid, scalar and extra points determined by the user's numerical order of point identification. \\
\hline Extra Point & PH & A "point" which is defined on an EPØINT bulk data card. . An extra point has no geometrical coordinates, defines only one degree of freedom of the model and is used only in dynamics solutions. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline F & P & Parameter value used by MATGPR to print F-set matrices. \\
\hline FAI & FMS & Flutter Analysis - Phase 1. \\
\hline FA2 & FMS & Flutter Analysis - Phase 2. \\
\hline FBS & FMM & Forward and Backward Substitution. \\
\hline FE & P & Parameter used by MATGPR to print out FE-set matrices. \\
\hline FIAT & M & File Allocation Table. Core resident executive table where data block names, status of the data blocks (assigned to a file, purged, equivalenced, etc.) and trailer for the data blocks are stored. \\
\hline FILE & IA & Term appearing on the checkpoint dictionary cards indicating the file number (internal) associated with a particular data block. \\
\hline FILE & M & The FILE DMAP statement specifies data block characteristics such as TAPE, SAVE, and APPEND. \\
\hline File & PH & Designates an auxiliary storage area or unit. \\
\hline FIND & IC & Selects parameters for structure plot. \\
\hline FINIS & L & Label used in all displacement rigid format DMAPs to terminate execution of DMAP. \\
\hline Finite Element & PH & Idealized unit of a structural model that represents the distributed elastic properties of a structure. \\
\hline FIST & M & File Status Table. Core resident executive table where internal file names and pointers to the FIAT, pertaining only to the module being executed, are stored. \\
\hline FLAGS & IA & Term appearing on the checkpoint dictionary cards indicating the status of a data block (equivalenced or not). \\
\hline FLFACT & IB & Specifies densities, Mach numbers and frequencies. \\
\hline FLIST & DBT & Flutter Control Table. \\
\hline FLøضP & P & Flutter loop counter/control. \\
\hline FLSYM & IB & Structural symmetry definition card for use in hydroelastic problems. \\
\hline FLUID & IC & Indicates hydroelastic harmonic degrees of freedom. \\
\hline FLUTTER & IB & Defines flutter data. \\
\hline FMETH@D & IC & Flutter Analysis Method Selection. \\
\hline FMgDE & P & Mode number of first mode selected by user in modal dynamics formulations. \\
\hline FøRCE & IB & Static load definition (vector). \\
\hline FØRCE & IC & Request for output of element forces. \\
\hline F@RCE 1 & IB & Static load definition (magnitude and two grid points). \\
\hline
\end{tabular}
\begin{tabular}{lc}
FQRCE2 & IB \\
FQRCEAX & IB \\
FREEPT & IB \\
FREQ & IB \\
FREQ\$ & M \\
FREQ1 & IB \\
FREQ2 & IB \\
FREQRESP & P \\
FREQUENCY & IC \\
FRL & DBT \\
FRQSET & P \\
FRRD & FMS \\
FSAVE & DBT \\
FSLIST & IB \\
Functional Module & PH
\end{tabular}

Static load definition (magnitude and four grid points).
Static load definition for conical shell problem.
Defines point on a free surface of a fluid for output purposes.
Frequency list definition.
Indicates restart with change in frequencies to be solved.
Frequency list definition (linear increments).
Frequency list definition (logarithmic increments).
Parameter used in SDR2 to indicate a frequency response problem.
Selects the set of frequencies to be solved in frequency response problems.

Frequency Response List.
Used in FRRD to indicate user selected frequency set. Frequency and Random Response - Displacement approach. Flutter Storage Save Table.

Defines a free surface of a fluid in a hydroelastic problem.
An independent group of subroutines that perform a structural analysis function.
\begin{tabular}{|c|c|c|}
\hline G & P & \begin{tabular}{l}
1. Parameter used by MATGPR to print G-set matrices. \\
2. Parameter used to input uniform structural damping coefficient (D-7 thru D-9).
\end{tabular} \\
\hline GEI & DBT & General Element Input. \\
\hline GENEL & IB & General element definition. \\
\hline GEØM1 & DBT & Geometric data input table - generated by the Input File Processor. \\
\hline GEOM2 & DBT & Connection input table - generated by the Input File Processor. \\
\hline GE®M3 & DBT & Static load and temperature input table - generated by the Input File Processor. \\
\hline GEØM4 & DBT & Displacement sets definition input table - generated by the Input File Processor. \\
\hline GI & FMS & Geometry Interpolator. \\
\hline GINØ & M & General input/output. GINØ is a collection of subroutines which is the input/output control system for NASTRAN. \\
\hline GINØ Buffer & PH & Storage reserved in open core for each GIN \(\emptyset\) file opened. The size of the buffer is machine dependent. \\
\hline GIND File Number & PH & File number used internally in DMAP modules to access data blocks. \\
\hline GIV & IB & Eigenvalue analysis method option - Givens (see EIGR). \\
\hline GKAD & FMS & General [K] Assembler - Direct. \\
\hline GKAM & FMS & General [K] Assembler - Modal. \\
\hline GM & DBM & [\(G_{m}\)]- multipoint constraint transformation matrix. \\
\hline GMD & DBM & \(\left[G_{m}^{d}\right]\) - mulitpoint constraint transformation matrix used in dynamic analysis. \\
\hline GNFIAT & M & Generate FIAT. The preface routine which generates the initial FIAT. \\
\hline \(G \emptyset\) & DBM & [\(G_{0}\)] - structural matrix partitioning transformation matrix. \\
\hline G9D & DBM & [\(\mathrm{G}_{0}^{\mathrm{d}}\)] - Structural matrix partitioning transformation matrix used in dynamic analysis. \\
\hline GP1 & FMS & Geometry Processor - part 1. \\
\hline GP2 & FMS & Geometry Processor - part 2. \\
\hline GP3 & FMS & Geometry Processor - part 3. \\
\hline GP4 & FMS & Geometry Processor - part 4. \\
\hline GPCT & DBT & Grid Point Connection Table. \\
\hline GPDT & DBT & Grid Point Definition Table. \\
\hline GPI & M & General Problem Initialization (see XGPI). \\
\hline GPL & DBT & Grid Point List. \\
\hline
\end{tabular}
\[
7.1-14(3 / 1 / 76)
\]

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline GPLA & DBT & Grid Point List - Aerodynamics. \\
\hline GPLD & DBT & Grid Point List used in dynamic analysis. \\
\hline GPSETS & DBT & Grid point plot sets. \\
\hline GPSP & FMS & Grid Point Singularity Processor. \\
\hline GPST & DBT & Grid Point Singularity Table. \\
\hline GPTT & DBT & Grid Point Temperature Table. \\
\hline GPWG & FMS & Grid Point Weight Generator. \\
\hline GRAV & IB & Gravity vector definition card. \\
\hline GRDPNT & P & Used in all displacement rigid formats to specify execution of the grid point weight generator (GPWG) by the user. A positive value references a grid point of the structural model. A value of zero indicates the origin of the basic coordinate system. \\
\hline GRDSET & IB & Grid point default definition card. \\
\hline GRID & IB & Grid point definition card. \\
\hline Grid Point & PH & A point in Euclidean 3 dimensional space defined on a GRID bulk data card. A grid point defines 6 degrees of freedom, 3 translational and 3 rotational. \\
\hline GRID PØINTS & IC & Used in set definition for structure plots. \\
\hline GRIDB & IB & Grid point definition card for hydroelastic model. \\
\hline GRIDF & IB & Grid point definition card for axisymmetric fluid cavity. \\
\hline GRIDS & IB & Grid point definition card for slotted acoustic cavity. \\
\hline GTKA & DBM & Aerodynamic transformation matrix - k-set to a-set. \\
\hline HARMONICS & IC & Controls number of harmonics output in axisymmetric shell problems and hydroelastic problems. \\
\hline HB2DD & DBM & \[
\left[\mathrm{B}_{\mathrm{dd}}^{2}\right] \text { - Partition of heat capacity matrix. }
\] \\
\hline HB2PP & DBM & \(\left[\mathrm{B}_{\mathrm{pp}}^{2}\right]\) - Partition of heat capacity matrix. \\
\hline HBAA & DBM & [\(\mathrm{Baa}_{\mathrm{aa}}\)] - Partition of heat capacity matrix. \\
\hline HBDD & DBM & [\(\mathrm{B}_{\mathrm{dd}}\)] - Partition of heat capacity matrix. \\
\hline HBFF & DBM & \(\left[\mathrm{B}_{\mathrm{ff}}\right]\) - Partition of heat capacity matrix. \\
\hline HBGG & DBM & \[
\left[\mathrm{B}_{\mathrm{gg}}\right] \text { - Heat capacity matrix. }
\] \\
\hline HBNN & DBM & [\(B_{n n}\)] - Partition of heat capacity matrix. \\
\hline HDLT & DBT & Dynamic loads table for heat transfer analysis. \\
\hline Header record & PH & Initial record of a data block. Typically a header record contains only 2 BCD words, the alphanumeric name of the data block. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline HEAT & IA & Selects heat transfer analysis on APProach card. \\
\hline HFREQ & P & High frequency limit for modal formulation of dynamics problems (D-10 thru D-12). \\
\hline HK2DD & DBM & [\(K_{d d}^{2}\)] - Partition of heat conductivity matrix. \\
\hline HK2PP & DBM & \(\left[K_{p p}^{2}\right]\) - Partition of heat conductivity matrix. \\
\hline HKAA & DBM & [\(K_{a a}\)] - Partition of heat conductivity matrix. \\
\hline HKDD & DBM & [\(K_{d d}\)] - Partition of heat conductivity matrix. \\
\hline HKFF & DBM & \(\left[K_{f f}\right]\) - Partition of heat conductivity matrix. \\
\hline HKFS & DBM & [\(\mathrm{K}_{\mathrm{fs}}\)] - Partition of heat conductivity matrix. \\
\hline HKGG & DBM & [\(\mathrm{K}_{\mathrm{gg}}\)] - Heat conductivity matrix, including estimated linear component of radiation. \\
\hline HKGGX & DBM & \[
\left[K_{g g}^{x}\right] \text { - Heat conductivity matrix. }
\] \\
\hline HKNN & DBM & [\(K_{n n}\)] - Partition of heat conductivity matrix. \\
\hline HQEFIX & DBT & Heat flux output table for CHBDY elements. \\
\hline HPDØ & DBM & \(\left\{P_{d}^{0}\right\}\) - Partition of dynamic load vector. \\
\hline HPDT & DBM & \(\left\{\mathrm{P} \mathrm{f}_{\}}\right\}\)- Partition of dynamic load vector. \\
\hline HPPD & DBM & \(\left\{\mathrm{P}_{\mathbf{p}}^{\mathbf{O}}\right\}\) - Partition of dynamic load vector. \\
\hline HPS \(\emptyset\) & DBM & \(\left\{\mathrm{P}_{\mathrm{s}}^{0}\right\}\) - Partition of dynamic load vector. \\
\hline HQGE & DBM & [\(Q_{g e}\)] - Element radiation flux matrix for heat transfer analysis. \\
\hline HRAA & DBM & [\(R_{a a}\)] - Partition of radiation matrix. \\
\hline HRDD & DBM & [\(R_{d d}\)] - Partition of radiation matrix. \\
\hline HRFF & DBM & [\(R_{f f}\)] - Partition of radiation matrix. \\
\hline HRGG & DBM & \(\left[R_{g g}\right]\) - Radiation matrix for heat transfer analysis. \\
\hline HRNN & DBM & \(\left[R_{n n}\right]\) - Partition of radiation matrix. \\
\hline HSLT & DBT & Static heat flux table. \\
\hline HTOL & DBT & List of output time steps for heat transfer. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline IC & IC & Transient analysis initial condition set selection. \\
\hline ID & IA & The first card of any data deck is the identification (ID) card. The two data items on this card are \(B C D\) values. \\
\hline IFP & EM & Input File Processor. The preface module which processes the sorted Bulk Data Deck and outputs various data blocks depending on the card types present in the Bulk Data Deck. \\
\hline IFP1 & EM & Input File Processor 1. The preface module which processes the Case Control Deck and writes the CASECC, PCDB and XYCDB data blocks. \\
\hline IFP3 & EM & Input File Processor. 3. The preface module which processes bulk data cards for a conical shell problem. \\
\hline IFP4 & EM & Input File Processor 4. The preface module which processes bulk data cards for a hydroelastic problem. \\
\hline IMAG & IC & Output request for real and imaginary parts of some quantity such as displacement, load, single point force of constraint element force, or stress. \\
\hline IMPL & P & Parameter constant used in executive module PARAM. \\
\hline INCLUDE & IC & Used in set definition for structure plots. \\
\hline INERTIA & P & Used in printing rigid format error messages for Static Analysis with Inertia Relief (D-2). \\
\hline INERTIA RELIEF & IA & Selects rigid format for static analys is with inertia relief. \\
\hline INPT & M & A reserved NASTRAN physical unit (Tape) which must be set up by the user when used. \\
\hline INPUT & FMU & Generates most of bulk data for selected academic problems. \\
\hline Input Data Block & PH & A data block input to a module. An input data block must have been previously output from some module and may not be written on. \\
\hline Input Data Cards & PH & The card input data to the NASTRAN system are in 3 sets, the Executive Control Deck, the Case Control Deck, and the Bulk Data Deck. \\
\hline INPUTT 1 & FMU & Reads data blocks from GIND-written user tapes, \\
\hline INPUTT2 & FMU & Reads data blocks from FØRTRAN-written user tapes. \\
\hline INPUTT3 & FMX & Dummy user input module. \\
\hline INPUTT4 & FMX & Dummy user input module. \\
\hline Internal Sort & PH & Same order as external sort except when SEQGP or SEQEP bulk data cards are used to change the sequence. \\
\hline INV & IB & Inverse power eigenvalue analysis option - specified on EIGR, EIGB or EIGC cards. \\
\hline IRES & P & Causes printout of residual vectors in statics rigid formats when set nonnegative via a PARAM bulk data card. (D-1, D-2, D-4, D-5, D-6). \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline JUMP & EM & Unconditional transfer DMAP statement. \\
\hline JUMPPLøT & P & Parameter used by structure plotter modules PLTSET and PLøT. \\
\hline K2DD & DBM & [\(K_{d d}^{2}\)] - Partition of direct input stiffness matrix. \\
\hline K2DPP & DBM & \(\left[K_{p p}^{2 d}\right]\) - Direct input stiffness matrix for all physical points \\
\hline K2PP & DBM & \(\left[K_{p p}^{2}\right]\) - Direct input stiffness matrix for all physical points. \\
\hline K2PP & IC & Direct input stiffness matrix selection. \\
\hline K2PP\$ & M & Indicates restart with change in direct input stiffness matrices. \\
\hline K2XPP & DBM & \(\left[K_{p p}^{2 x}\right]\) - Direct input stiffness matrix excluding hydroelastic boundary stiffness matrix. \\
\hline K4AA & DBM & \(\left[K_{a a}^{4}\right]\) - Partition of structural damping matrix. \\
\hline K4FF & DBM & [\(K_{f f}^{4}\)] - Partition of structural damping matrix. \\
\hline K4GG & DBM & \(\left[K_{\mathrm{gg}}^{4}\right]\) - Structural damping matrix generated by :Structural Matrix Assembler. \\
\hline K4NN & DBM & \(\left[K_{n n}^{4}\right]\) - Partition of structural damping matrix. \\
\hline KAA & DBM & [\(K_{a a}\)] - Partition of stiffness matrix. \\
\hline KBFS & DBM & \(\left[K_{f s}^{b}\right]\) - Partition of combination of elastic stifffness matrix and differential stiffness matrix. \\
\hline KBFL & DBM & [\(K_{b, f \ell}\)] - Hydroelastic boundary stiffness matrix. \\
\hline KBLL & DBM & [\(\mathrm{K}_{\ell \ell}^{\mathrm{b}}\)] - Combination of elastic stiffness and differential stiffness used in static analysis with differential stiffness. \\
\hline KBSS & DBM & \(\left[K_{S S}^{b}\right]\) - Partition of combination of stiffness matrix and differential stiffness matrix. \\
\hline KDAA & DBM & \(\left[K_{a a}^{d}\right]\) - Partition of differential stiffness matrix. \\
\hline KDAAM & DBM & \(-\left[K_{a a}^{d}\right]\) - Differential stiffness matrix used in formulation of buckling problems (D-5). \\
\hline KDAMP & PU & Method of computing damping. \\
\hline KDD & DBM & [\(K_{d d}\)] - Stiffness matrix used in direct formulation of dynamics problems (\(D-7\) thru D-9). \\
\hline KDEK2 & P & Parameter indicating equivalence of KDD and K2DD. \\
\hline KDEKA & P & Parameter indicating equivalence of KDD and KAA. \\
\hline KDFF & DBM & \(\left[K_{f f}^{d}\right]\) - Partition of differential stiffness matrix. \\
\hline KDFS & DBM & \(\left[K_{f s}^{d}\right]\) - Partition of differential stiffness matrix. \\
\hline KDGG & DBM & \(\left[K_{g g}^{\text {d }}\right]\) - Differential stiffness matrix prepared by Differential Stiffness Matrix Generator \\
\hline KONN & DBM & \(\left[K_{n n}^{d}\right]\) - Partition of differential stiffness matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline KDSS & DBM & [\(K_{s S}^{\mathrm{d}}\)] - Partition of differential stiffness matrix. \\
\hline KFF & DBM & \(\left[K_{f f}\right]\) - Partition of stiffness matrix. \\
\hline KFS & DBM & \(\left[\mathrm{K}_{\mathrm{fs}}\right.\)] - Partition of stiffness matrix. \\
\hline KGG & DBM & \(\left[K_{\mathrm{gg}}\right]\) - Stiffness matrix generated by Structural Matrix \\
\hline KGGL & DBM & \(\left[K_{g g}^{\ell}\right]\) - Stiffness matrix for linear elements. Used only in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline KGGLPG & P & Purge flag for KGGL matrix. If set to -1 , it implies that there are no linear elements in the structural model. (D-6) \\
\hline KGGNL & DBM & \(\left[K_{g g}^{n l}\right]\) - Stiffness matrix for the nonlinear elements. Used in the Piecewise Linear Analysis Rigid Format only. (D-6). \\
\hline KGGSUM & DBM & Sum of KGGNL and KGGL. Used in the Piecewise Linear Analysis Rigid Format only. (D-6). \\
\hline KGGX & DBM & \(\left[K_{g g}^{x}\right]\) - Stiffness matrix excluding general elements. \\
\hline KGGXL & DBM & \(\left[K_{g g}^{x \ell}\right]\) - Stiffness matrix for linear elements (excluding general elements). Used in the Piecewise Linear Rigid Format only. (D-6). \\
\hline KHH & DBM & [\(K_{h h}\)]. - Stiffness matrix used in modal formulation of dynamics problems (D-10 thru D-12). \\
\hline KLL & DBM & [\(K_{\ell \ell}\)] - Stiffness matrix used in solution of problems in static analysis (\(D-1, D-2, D-4, D-5, D-6\)). \\
\hline KLR & DBM & [\(K_{\ell r}\)] - Partition of stiffness matrix. \\
\hline KNN & DBM & [\(K_{n n}\)] - Partition of stiffness matrix. \\
\hline Køø. & DBM & [\(K_{00}\)] - Partition of stiffness matrix. \\
\hline KRR & DBM & [\(K_{r r}\)] - Partition of stiffness matrix. \\
\hline KSS & DBM & [\(K_{s s}\)] - Partition of stiffness matrix. \\
\hline KXHH & DBM & Total modal stiffness matrix - h-set. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline L & P & Parameter value used by MATGPR to print L-set matrices. \\
\hline LABEL & EM & DMAP location. \\
\hline LABEL & IC & Defines third line of titles to be printed on each page of printer output. Also used on plots. \\
\hline LABEL & IC & Requests identification of grid points and/or elements on structure plot. \\
\hline LAMA & DBT & Real eigenvalues. \\
\hline LBLi & L & A label used in displacement approach rigid formats where \(\mathbf{i}\) represents one or more characters used to form unique labels. \\
\hline LBLL & DBM & [\(\left.L_{l \ell}^{\mathrm{b}}\right]\)]-Lower triangular factor of [\(\left.\mathrm{K}_{\ell \ell}^{\mathrm{b}}\right]\). \\
\hline LEFT TICS & IC & Request for tic marks to be plotted on left hand edge of frame for X-Y plots. \\
\hline LFREQ & P & Low frequency limit for modal formulation of dynamics problems (D-10 thru D-12). \\
\hline LGPWG & L & Label used in conjunction with the Grid Point Weight Generator. \\
\hline LINE & IC & Number of data lines printed per page of printer output. It should be set to 50 for \(11 \times 17\) inch paper, and to 35 for \(81 / 2 \times 17\) inch paper. \\
\hline LLL & DBM & \(\left[L_{\ell \ell}\right]\) - Lower triangular factor of [\(K_{\ell \ell}\)]. \\
\hline LMФDES & P & Number of lowest modes for modal formulation of dynamics problems (\(D-10\) thru D-12). \\
\hline LDAD & IB & Static load combination definition. \\
\hline LøAD & IC & Static load set selection. \\
\hline LøAD\$ & M & Indicates restart with change in static load set request. \\
\hline LøGARITHMIC & IC & Requests logarithmic scales for \(X-Y\) plots. \\
\hline LQGPAPER & IC & Requests logarithmic paper for \(X-Y\) plots. \\
\hline Løø & DBM & \(\left[\mathrm{L}_{00}\right]\) - Lower triangular factor of [\(\mathrm{K}_{00}\)]. \\
\hline LOPP1\$ & M & Indicates looping problem in modified restart. (PM-4.3.7.1) \\
\hline LøØPBGN & L & Signifies the beginning of the Piecewise Linear Analysis Rigid Format DMAP Loop. (D-6). \\
\hline LDQPEND & L & Signifies the end of the Piecewise Linear Analysis Rigid Format DMAP loop. (D-6). \\
\hline LØØP\$ & M & Indicates looping problem in modified restart. (PM-4.3.7.1) \\
\hline LQWER TICS & IC & Request for tic marks to be plotted on bottom edge of frame for X-Y plots. \\
\hline LUSET & P & Order of USET. \\
\hline LUSETA & P & Number of degrees of freedom in the pa displacement set. \\
\hline LUSETD & p & Order of USETD. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline M & P & Parameter value used by MATGPR to print M-set matrices. \\
\hline M2.DD & DBM & \(\left[M_{d d}^{2}\right]\) - Partition of direct input mass matrix. \\
\hline M2DPP & DBM & \(\left[M_{p p}^{2 d}\right]\) - Direct input mass matrix for all physical points from \\
\hline M2PP & DBM & \(\left[M_{p p}^{2}\right]\) - Direct input mass matrix for all physical points. \\
\hline M2PP & IC & Direct input mass matrix selection. \\
\hline M2PP\$ & M & Indicates restart with change in direct input mass matrices. \\
\hline MAA & DBM & [\(\mathrm{Maa}_{\text {] }}\)] - Partition of mass matrix. \\
\hline MASS & IB & Eigenvector normalization option - used on EIGR card. \\
\hline MATI & IB & Material definition card for isotropic material. \\
\hline MAT2 & IB & Material definition card for anisotropic material. \\
\hline MAT3 & IB & Material definition card for orthotropic material. \\
\hline MAT4 & IB & Thermal material definition card for isotropic material. \\
\hline MAT5 & IB & Thermal material definition card for anisotropic material. \\
\hline MATGPR & FMU & Utility module for printing matrices. \\
\hline MATPØØL & DBT & Grid point oriented direct input matrix data pool, output by Input File Processor and used by functional module MTRXIN. \\
\hline MATPRN & FMU & Utility module for printing matrices. \\
\hline MATPRT & FMU & Utility module for printing matrices. \\
\hline Matrix Control Block & PH & A seven word array, the first word is a GINØ file number, and words 2 through 7 comprise a matrix trailer. \\
\hline Matrix Data Block & PH & A data block is classified as a matrix if and only if it is generated by one of the NASTRAN matrix packing routines, PACK or BLDPK. \\
\hline Matrix Decomposition & PH & A factorization of a matrix \(K\) so that \(K=L U\) where \(L\) is a unit lower triangular matrix and \(U\) is an upper triangular matrix. \\
\hline MATS 1 & IB & Specifies table references for stress-dependent material properties. \\
\hline MATTI & IB & Specifies table references for temperature-dependent isotropic material properties. \\
\hline MATT2 & IB & Specifies table references for temperature-dependent anisotropic material properties. \\
\hline MATT3 & IB & Specifies table references for temperature-dependent orthotropic material properties. \\
\hline MATT4 & IB & Specifies table references for temperature-dependent isotropic, thermal material properties. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline MATT5 & IB & Specifies table references for temperature-dependent, anisotropic, thermal material properties. \\
\hline MAX & IB & Eigenvector normalization option - used on EIGR, EIGB and EIGC cards. \\
\hline MAXIMUM DEFØRMATIØN & IC & Indicates scále for deformed structure plots. \\
\hline MAXIT & P & Limits maximum number of iterations in nonlinear heat transfer analysis. \\
\hline MAXLINES & IC & Maximum printer output line count - default value is 20000. \\
\hline MCE 1 & FMS & Multipoint Constraint Eliminator - part 1. \\
\hline MCE2 & FMS & Multipoint Constraint Eliminator - part 2. \\
\hline MDD & DBM & [\(M_{d d}\)] - Mass matrix used in direct formulation of dynamics problems (D-7 thru D-9). \\
\hline MDEMA & P & Parameter indicating equivalence of MDD and MAA. \\
\hline MDLCEAD & P & Used in printing rigid format error messages for modal complex eigenvalue analysis (\(D-10\)). \\
\hline MDLFRRD & P & Used in printing rigid format error messages for modal frequency response (D-11). \\
\hline MDLTRD & P & Used in printing rigid format error messages for modal transient response (D-12). \\
\hline MERGE & FMM & Matrix merge functional module. \\
\hline METHØD & IC & Selects method for real eigenvalue analysis. \\
\hline METHøD\$ & M & Indicates restart with change in eigenvalue extraction procedures. \\
\hline MFF & DBM & \(\left[M_{f f}\right]\) - Partition of mass matrix. \\
\hline MGG & DBM & \(\left[M_{g g}\right]\) - Mass matrix generated by Structural Matrix Assembler. \\
\hline MHH & DBM & [\(M_{h h}\)] - Mass matrix used in modal formulation of dynamics problems (D-10 thru D-12). \\
\hline MI & DBM & [m] - Modal mass matrix. \\
\hline MKAERD1 & IB & Provides table of Mach numbers and reduced frequencies (\(k\)). \\
\hline MKAERØ2 & IB & Provides list of Mach numbers (\(m\)) and reduced frequencies (\(k\)). \\
\hline MLL & DBM & [\(M_{\ell \ell}\)] - Partition of mass matrix. \\
\hline MLR & DBM & \(\left[M_{\ell r}\right]\) - Partition of mass matrix. \\
\hline MNN & DBM & \(\left[M_{n n}\right]\) - Partition of mass matrix. \\
\hline MDA & DBM & [\(\bar{M}_{0 a}\)] - Partition of mass matrix. \\
\hline MgDA & FMX & This module is reserved for user implementation. \\
\hline MøDACC & FMS & Mode Acceleration Output Reduction ModuTe. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline M9DAL & IC & Requests structure plots of mode shapes. \\
\hline M9DAL & P & Indicates modal as opposed to direct formulation of dynamics problems. (D-10 thru D-12). \\
\hline M@DAL C®MPLEX EIGENVALUES & IA & Selects rigid format for modal complex eigenvalue analysis. \\
\hline MĐDAL FREQUENCY RESP@NSE & IA & Selects rigid format for modal frequency and random response. \\
\hline M@DAL TRANSIENT RESPØNSE & IA & Selects rigid format for modal transient response. \\
\hline MgDB & FMX & This module is reserved for user implementation. \\
\hline M9DC & FMX & This module is reserved for user implementation. \\
\hline M9DEL & IC & Indicates model number of structure plotter. \\
\hline MgDES & IA & Selects rigid format for normal mode analysis. \\
\hline MgDES & IC & Dupliçates output requests for eigenvalue problems. \\
\hline MgDES & P & Used in printing rigid format error messages for normal modes analysis (D-3). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Modified Restart & PH & Restarting (see Restart) a NASTRAN problem and redirecting its solution by changing the rigid format and/or selected input data. \\
\hline Module & PH & A logical group of subroutines which performs a defined function. \\
\hline MgMAX & IB & Conical shell moment definition card. \\
\hline MOMENT & IB & Static moment load definition (vector). \\
\hline MgMENT 1 & IB & Static moment load definition (magnitude and two grid points). \\
\hline MQMENT2 & IB & Static moment load definition (magnitude and four grid points). \\
\hline MDD & DBM & [\(M_{00}\)] - Partition of mass matrix. \\
\hline MPC & IB & Multipoint constraint definition. \\
\hline MPC & IC & Multipoint constraint set request. \\
\hline MPC\$ & M & Indicates restart with change in multipoint constraints. \\
\hline MPCADD & IB & Multipoint constraint set definition. \\
\hline MPCAX & IB & Conical shell multipoint constraint definition. \\
\hline MPCF1 & P & No multipoint constraints. \\
\hline MPCF2 & P & No change in multipoint constraints for loop. \\
\hline MPL & PH & Module properties list. The MPL defines each DMAP module's name, the number of input, output and scratch files required and the parameter list. It is used by the preface module XGPI to generate the ØSCAR. \\
\hline MPT & DBT & Material Properties Table - output by Input File Processor. \\
\hline MPY & M & Parameter constant used in executive module PARAM. \\
\hline MPYAD & FMM & Performs multiply-add matrix operation. \\
\hline MR & DBM & [\(\left.m_{r}\right]\) - Rigid body mass matrix. \\
\hline MRR & DBM & [\(M_{r r}\)]- Partition of mass matrix. \\
\hline MTRXIN & FMS & Selects direct input matrices for current loop in dynamics problems (D-7 thru D-12). \\
\hline MX & IC & Indicates negative \(x\)-axis direction for structure plot. \\
\hline MXHH & DBM & Total modal mass matrix - h -set. \\
\hline MY & IC & Indicates negative y -axis direction for structure plot. \\
\hline \(M Z\) & IC & Indicates negative z-axis direction for structure plot. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline \(N\) & M & Used in parameter section of DMAP statement. Indicates that parameter may not be given an initial value with a PARAM bulk data card. \\
\hline \(N\) & P & Parameter value used by MATGPR to print N -set matrices. \\
\hline NASTPLT & IC & Requests NASTRAN general purpose plotter. \\
\hline NASTRAN & M & Acronym for NAsa STRuctural ANalysis program. \\
\hline NASTRAN Data Deck & PH & The composite deck consisting of the Executive Control Deck, the Case Control Deck, and the Bulk Data Deck. This deck, when preceeded by any necessary operating system control cards, constitutes the complete card input for a NASTRAN run (PM-5). \\
\hline :NE & P & Parameter value used by MATGPR to print out NE-set matrices. \\
\hline NEEIGV & P & Number of real eigenvalues found. \\
\hline NEVER & P & Set to +1 by a DMAP PARAM statement in the Piecewise Linear Analysis Rigid Format (D-6). \\
\hline New Problem Tape & PH & See Problem Tape. \\
\hline NJ & P & Number of degrees of freedom in the \(j\) displacement set. \\
\hline NK & P & Number of degrees of freedom in the \(k\) displacement set. \\
\hline NLFT & DBT & Nonlinear function table. \\
\hline NLLøAD & IC & Requests nonlinear load output for transient problems. \\
\hline \(N \varnothing\) & IA & Option used on CHKPNT card, indicates that no checkpoint is desired. \\
\hline N0A & P & Indicates no constraints applied to structural model. \\
\hline NØABFL & P & No fluid-structure interface in a hydroelastic problem. \\
\hline NQB2PP & P & No direct input damping matrix. \\
\hline N@BGG & P & No viscous damping matrix (\(\mathrm{D}-7\) thru D-9). \\
\hline NaCSTM & P & No Coordinate System Transformation Matrices. \\
\hline NøD & P & No output request that is limited to independent degrees of freedom. \\
\hline NQDJE & PU & Positive value selects D1JE and D2JE from INPUTT2. \\
\hline NøDLT & P & No Dynamic Loads Table. \\
\hline NQEED & P & No Eigenvalue Extraction Data \\
\hline NQELMT & P & No elements are defined. \\
\hline NOFL & P & No fluid-structure interface and no fluid gravity in a hydroelastic problem. \\
\hline N@FRL & P & No Frequency Response List. \\
\hline NøGENEL & P & No general elements. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NGGPDT & P & No Grid Point Definition Table. \\
\hline .ngGrav & P & No gravity loads. \\
\hline NøK2dPP & P & No direct input stiffness matrix from Bulk Data Deck. \\
\hline NøK2PP & P & No direct input stiffness matrices. \\
\hline NøK4GG & P & No structural damping matrix. \\
\hline N@KBFL & P & No fluid gravity or structural interface in a hydroelastic problem. \\
\hline \(\mathrm{N} \emptyset \mathrm{L}\) & P & No independent degrees of freedom. \\
\hline NQLIN1 & IB & Nonlinear transient dynamic load set definition card. \\
\hline NøLIN2 & IB & Nonlinear transient dynamic load set definition card. \\
\hline NøLIN3 & IB & Nonlinear transient dynamic load set definition card. \\
\hline NøLIN4 & IB & Nonlinear transient dynamic load set definition card. \\
\hline NQL0@P\$ & M & Indicates restart of problem without DMAP loop. (PM-4.3.7.1). \\
\hline NQM2DPP & P & No direct input mass matrix from Bulk Data Deck. \\
\hline N甲M2PP & P & No direct input mass matrices. \\
\hline ngMGG & P & If functional module SMA2 generates a zero mass matrix, NøMGG is set to -1 . Otherwise, it is set to +1 . \\
\hline nøMgD & P & Mode acceleration data recovery not requested. \\
\hline ngncup & P & Indicates diagonal MHH, BHH, and KHH allowing uncoupled solution in TRD and FRRD. \\
\hline ngne & IC & Override for output and bulk data deck echo requests. \\
\hline nønLFT & p & No nonlinear function table. \\
\hline ngnLinear & IC & Selects nonlinear load for transient problems. \\
\hline N@NLSTR & P & No stress output request for nonlinear elements (D-6). \\
\hline NgP & M & Parameter constant used in executive module PARAM. \\
\hline \(N \emptyset\) & P & No output request involving dependent degrees of freedom or stresses. \\
\hline NgPSDL & P & No Power Spectral Density List. \\
\hline ngrmal mgoes & IA & Selects rigid format for normal mode analysis. \\
\hline NQSET & P & No dependent coordinates. \\
\hline NQSIMP & P & No structural elements are defined. \\
\hline NQS@RT2 & P & No request for output sorted by point number or element number. \\
\hline NQSR & P & No single-point constraints or free body supports. \\
\hline NøT & M & Parameter constant used in utility module PARAM. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline N9TFL & P & No Transfer Function List. \\
\hline NØTRL & \(p\) & No Transient Response List. \\
\hline NQUE & P & No extra points introduced for dynamic analysis. \\
\hline NØXYCBD & P & -1 indicates no XY output requests. \\
\hline NPLALIM & P & Set by module PLAl as the Piecewise Linear Analysis Rigid Format DMAP loop counter. (D-6) \\
\hline NPTP & M & New Problem Tape - a reserved NASTRAN physical unit (TAPE) which must be set up by the user when used. \\
\hline NSIL & P & Order of SIL table. \\
\hline NSKIP & P & Locate current boundary conditions in Case Control. \\
\hline NUMF & M & New User Master File - used only when operating NASTRAN as a user master file editor. (See UMFEDIT). A reserved NASTRAN physical unit (tape) which must be set up by the user when used. \\
\hline NVECTS & P & Number of eigenvectors found. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline 0 & P & Parameter value used by MATGPR to print \(\emptyset\)-set matrices. \\
\hline ¢BEF1 & DBT & Element force output table (D-5). \\
\hline ¢BES 1 & DBT & Element stress output table (D-5). \\
\hline ØBQG1 & DBT & Forces of single point constraint output table (D-5). \\
\hline DCEIGS & DBT & Complex eigenvalue summary table (\(\mathrm{D}-7, \mathrm{D}-10\)) \\
\hline ØCPHIP & DBT & Complex eigenvector output table (D-7, D-10). \\
\hline \(\emptyset E F 1\) & DBT & Element force output table (D-1, D-2, D-4, D-5, D-6). \\
\hline QEF2 & DBT & Element force output table - S¢RT2 (D-9, D-12). \\
\hline QEFB1 & DBT & Element force output table (D-4). \\
\hline QEFC1 & DBT & Element force output table - complex (D-7, D-8, D-10, D-11). \\
\hline ØEFC2 & DBT & Element force output table - complex - S@RT2 (D-8, D-11). \\
\hline QEIGS & DBT & Real Eigenvalue summary output table (D-3, D-5). \\
\hline ØES 1 & DBT & Element stress output table (D-1, D-2, D-4, D-5, D-6). \\
\hline 9ES2 & DBT & Element stress output table - S@RT2 (D-9, D-12). \\
\hline صESB1 & DBT & Element stress output table (D-4). \\
\hline 9ESC1 & DBT & Element stress output täble - complex (D-7, D-8, D-10, D-11). \\
\hline DESC2 & DBT & Element stress output table - complex - S@RT2 (D-8, D-11). \\
\hline QFP & FMS & Output File Processor. \\
\hline ØFREQ & IC & Output Frequency set. \\
\hline ØFREQUENCY & IC & Selects from the solution set of frequencies a subset for output requests. \\
\hline \(\emptyset\) GPST & DBT & Grid point singularity output table. \\
\hline \(\emptyset\) GPWG & DBT & Grid point weight generator output table. \\
\hline 01d Problern Tape & PH & See Problem Tape. \\
\hline \(\emptyset \mathrm{L}\) ¢ AD & IC & Request for output of external load vector. \\
\hline QMIT & IB & Omitted coordinate definition card. \\
\hline QMIT & P & Indicates no omitted coordinates. \\
\hline QMIT1 & IB & Omitted coordinate definition card. \\
\hline gMITAX & IB & Omitted coordinate definition card for conical shell problems. \\
\hline 9 OLES & DBT & Output table for nonlinear element stresses (D-6). \\
\hline Open Core & PH & A contiguous block of working storage defined by a labeled common block, whose length is a variable determined by the NASTRAN executive routine CDRSZ. \\
\hline \(\emptyset \mathrm{PG} 1\) & DBT & Static load output table (\(\mathrm{D}-1, \mathrm{D}-2, \mathrm{D}-4, \mathrm{D}-5, \mathrm{D}-6\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline QPHID & DBT & Output table for complex eigenvectors - solution set (D-7). \\
\hline ФPHIG & DBT & Eigenvector output table (\(\mathrm{D}-3, \mathrm{D}-5\)). \\
\hline 9PHIH & DBT & Output table for complex eigenvectors - solution set (\(\mathrm{D}-10\)) . \\
\hline \(\emptyset \mathrm{PNL} 1\) & DBT & Output table for nonlinear loads - solution set, SØRTl (D-9, D-12). \\
\hline ØPNL2 & DBT & Output table for nonlinear loads - solution set, SøRT2 (D-9, D-12). \\
\hline 9PP1 & DBT & Dynamic load output table (\(\mathrm{D}-9, \mathrm{D}-12\)) . \\
\hline 9PP2 & DBT & Dynamic load output table - S¢RT2 (D-9, D-12). \\
\hline \(\emptyset \mathrm{PPCI}\) & DBT & Dynamic load output table - S¢RT1, complex (D-8, D-11). \\
\hline 9PPC2 & DBT & Dynamic load output table - S@RT2, complex (D-8, D-11). \\
\hline QPTP & M & 01d Problem Tape - a reserved NASTRAN physical unit (tape) which must be set up by the user when used. \\
\hline ØQBGI & DBT & Forces of single-point constraint output table (D-4). \\
\hline QQG1 & DBT & Single-point constraint force output table (D-1, D-2, D-4, D-5, D-6). \\
\hline QQP 1 & DBT & Single-point constraint force output table S@RT1 (D-9, D-12). \\
\hline QQP2 & DBT & Single-point constraint force output table S \(\emptyset R T 2\) (D-9, D-12). \\
\hline 90 PCl & DBT & Single-point constraint force output table - complex, S@RTI (D-7, D-8, D-10, D-11). \\
\hline QQPC2 & DBT & Single-point constraint force output table - complex, SøRT2 (D-7, D-8, D-10, D-11). \\
\hline \(\emptyset R\) & M & Parameter constant used in executive module PARAM. \\
\hline QRIGIN & IC & Locates origin for structure plot. \\
\hline ØRTHØGRAPHIC & IC & Specifies orthographic projection for structure plot. \\
\hline صSCAR & PH & Operation sequence control array. Executive table residing on the Data Pool File which contains the sequence of operations to be executed for a problem solution. The ØSCAR is an expansion of a DMAP sequence, either input by the user or extracted from a rigid format, in internal format. \\
\hline QUBGVI & DBT & Displacement vector output table (\(\mathrm{D}-4\)) . \\
\hline OUDV1 & DBT & Displacement vector output table - solution set, S@RTl (D-9). \\
\hline QuDV2 & DBT & Displacement vector output table - solution set, S@RT2 (D-9). \\
\hline DUDVCI & DBT & Displacement vector output table - solution set, SøRT1, complex (\(D-8,0-11\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Qudvc2 & DBT & Displacement vector output table - solution set, S@RT2, complex (D-8, D-11). \\
\hline QugV1 & DBT & Displacement output table (\(\mathrm{D}-1, \mathrm{D}-2, \mathrm{D}-4, \mathrm{D}-5, \mathrm{D}-6\)). \\
\hline QuHV1 & DBT & Displacement vector output table - solution set, S@RT1 (D-12). \\
\hline OUHV2 & DBT & Displacement vector output table - solution set, S¢RT2 (D-12). \\
\hline QuHVC1 & DBT & Displacement vector output table - solution set, SØRT1, complex (D-11). \\
\hline QUHVC2 & DBT & Displacement vector output table - solution set, S@RT2 complex (D-11). \\
\hline Qupvi & DBT & Displacement vector output table - S¢RT1 (D-9, D-12). \\
\hline QupV2 & DBT & Displacement vector output table - S¢RT2 (D-9, D-12). \\
\hline QUPVC1 & DBT & Displacement vector output table - complex, S@RT1 (D-8, D-11). \\
\hline QUPVC2 & DBT & Displacement vector output table - complex, S¢RT2 (D-8, D-11). \\
\hline QuTPUT & FMX & This module is reserved for user implementation. \\
\hline QUTPUT & IC & Marks beginning of printer output request packet - optional. \\
\hline Output Data Block & PH & A data block output from a module. A data block may be output from one and only one module. Having been output, it may be used as an input data block as many times as necessary. \\
\hline QUTPUT 1 & FMU & Writes data blocks on GIN \(\emptyset\)-written user tapes. \\
\hline Qutput2 & FMU & Writes data blocks on F@RTRAN-written user tapes. \\
\hline QUTPUT3 & FMU & Punches matrices on DMI cards. \\
\hline QUTPUT4 & FMX & Dummy user output module. \\
\hline QUTPUT (PLDT) & IC & Marks beginning of output request packet for structure plots. \\
\hline OUTPUT (XYØUT) & IC & Marks beginning of output request packet for X-Y plots. \\
\hline QUTPUT (XYPLQT) & IC & Marks beginning of output request packet for X-Y plots. \\
\hline ØVG & DBT & Output aeroelastic curve requests (\(V-\mathrm{g}\) or V -f). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline P & P & Parameter value used in MATGPR to print P-set matrices. \\
\hline Packed Format & PH & A matrix is said to be in packed format if only the nonzero elements of the matrix are written. \\
\hline PAPER SIZE & IC & Selects paper size for structure plots using table plotters. \\
\hline PARAM & FMU & Performs specified operations on DMAP parameters. \\
\hline PARAM & IB & Parameter definition card. \\
\hline Parameter & PH & A FgRTRAN variable communicated to a DMAP module by the NASTRAN Executive System through blank common. A parameter's position in the DMAP calling sequence to a modute corresponds to the position of the parameter in blank common at module execution time. \\
\hline PARAML & FMU & Selects parameters from a user input matrix or table. \\
\hline PARAMR & FMU & Performs specified operations on real or complex parameters. \\
\hline PARTN & FMM & Matrix partitioning functional module. \\
\hline PBAR & IB & Bar property definition card. \\
\hline PBL & DBM & A scalar multiple of the PL load vector. Used only in the Differential Stiffness Rigid Format (D-4). \\
\hline PBS & DBM & A scalar multiple of the PL load vector. Used only in the Differential Stiffness Rigid Format (D-4). \\
\hline PCDB & DBT & Plot control data block (table for use with structure plotter functional module PLTSET). \\
\hline PCONEAX & IB & Conical shell element property definition card. \\
\hline PDAMP & IB & Scalar damper property definition card. \\
\hline PDF & DBM & Dynamic load matrix for frequency analysis. \\
\hline PDT & DBM & Linear dynamic load matrix for transient analysis. \\
\hline PDUMi & IB & Property definition card for dummy elements 1 through 9. \\
\hline PELAS & IB & Scalar elastic property definition card. \\
\hline PEN & IC & Selects pen size for structure plots using table plotters. \\
\hline PENSIZE & IC & Selects pen size for \(X-Y\) plots using table plotters. \\
\hline PERSPECTIVE & IC & Specifies perspective projection for structure plots. \\
\hline PFILE & P & Parameter used by PLøT module. \\
\hline PG & DBM & Incremental load vector used in Piecewise Linear Analysis (D-6). \\
\hline PG & DBM & Statics load vector generated by SSG1. \\
\hline PG1 & DBM & Static load vector for Piecewise Linear Analysis (D-6). \\
\hline PGG & DBM & Appended static load vector (D-1, D-2). \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{lcl}
PGVI & DBM & \begin{tabular}{l}
Matrix of successive sums of incremental load vectors used \\
only in Piecewise Linear Analysis Rigid Format (\(D-6)\).
\end{tabular} \\
PHASE & IC & \begin{tabular}{l}
Requests magnitude and phase form of complex quantities.
\end{tabular} \\
PHBDY & IB & \begin{tabular}{l}
Boundary element property definition card for heat transfer \\
analysis.
\end{tabular} \\
PHIA & DBM & {\(\left[\phi_{a}\right]\) - Real eigenvectors - solution set. } \\
PHID & DBM & {\(\left[\phi_{d}\right]\) - Complex eigenvectors - solution set, direct formulation. } \\
PHIDH & DBM & {\(\left[\phi_{d n}\right]\) - Transformation matrix between modal and physical } \\
coordinates.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PHIG & DBM & \(\left[\phi_{g}\right]\) - Real eigenvectors. \\
\hline PHIH & DBM & [\(\phi_{h}\)] - Complex eigenvectors - solution set, modal formulation. \\
\hline PHIHL & DBM & Appended complex mode shapes - h -set. \\
\hline Physical Points & PH & Grid points and extra scalar points introduced for dynamic analysis. \\
\hline PIECEWISE LINEAR & IA & Selects rigid format for piecewise linear analysis. \\
\hline Pivot Point & PH & The first word of each record of the GPCT and ECPT data blocks is called the pivot point. \\
\hline PL & DBM & \(\left\{P_{\ell}\right\}\) - Partition of load vector. \\
\hline PLA & P & Used in printing rigid format error messages for Piecewise Linear Analysis (D-6). \\
\hline PLAI & FMS & Piecewise Linear Analysis - phase 1. \\
\hline PLA2 & FMS & Piecewise Linear Analysis - phase 2. \\
\hline PLA3 & FMS & Piecewise Linear Analysis - phase 3. \\
\hline PLA4 & FMS & Piecewise Linear Analysis - phase 4. \\
\hline PLACDUNT & P & Loop counter in Piecewise Linear Analysis (D-6). \\
\hline PLALBL2A & L & Used in the Piecewise Linear Analysis Rigid Format only. (D-6) \\
\hline PLALBL3 & L & Used in the Piecewise Linear Analysis Rigid Format only. (D-6) \\
\hline PLALBL4 & L & Used in the Piecewise Linear Analysis Rigid Format only. (D-6) \\
\hline PLCØEFFICIENT & IC & Selects the coefficient set for Piecewise Linear Analysis problems. \\
\hline PLFACT & IB & Piecewise Linear Analysis factor definition card. \\
\hline PLI & DBM & \(\left\{P_{\ell}^{i}\right\}\) - Partition of inertia relief load vector. \\
\hline PL@AD & IB & Pressure load definition (D-1, D-2, D-4, D-5, D-6). \\
\hline PL@AD2 & IB & Element pressure loading for two-dimensional elements (\(D-1\), D-2, D-4, D-5, D-6). \\
\hline PL®T & FMS & Structure plot generator. \\
\hline PLøT & IC & Execution card for structure plotter. \\
\hline PLøT\$ & M & Indicates restart with a structure plot request. \\
\hline Plot Tapes & PH & Magnetic tapes containing NASTRAN generated data to drive offline plotters. PLTl is the name of the BCD plot tape, used by the EAI 3500, and PLT2 is the name of binary plot tape, used by the SC-4020. \\
\hline PLøTEL & IB & Plot element definition card used to define convenient reference lines in structure plots. \\
\hline PLøTTER & IC & Used to select one of several available plotters for structure plotter. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PLØTX] & DBT & Messages from plot module concerning action taken by the structure plotter in processing undeformed structure plots. \\
\hline PLØTX2 & DBT & Messages from plot module concerning action taken by the structure plotter in processing deformed structure plots. \\
\hline PLSETNØ & P & Set number on a PLFACT bulk data card chosen by the user in his case control deck. Used only in Piecewise Linear Analysis (D-6). \\
\hline PLTI & M & A reserved NASTRAN physical unit (tape) which must be set up by the user when used - see Plot Tapes. \\
\hline PLT2 & M & A reserved NASTRAN physical unit (tape) which must be set up by the user when used - see Plot Tapes. \\
\hline PLTFLG & P & Parameter used by PL®T module. \\
\hline PLTPAR & DBT & Plot control table. \\
\hline PLTSET & FMS & Plot set definition processor. \\
\hline PLTSETX & DBT & Error messages for plot sets. \\
\hline PLTTRAN & FMS & Prepares data blocks for acoustic analysis plots. \\
\hline PLTTRAN & FMS & Transforms grid point definition tables for scalar points into a format for plotting. \\
\hline PMASS & IB & Scalar mass property definition card. \\
\hline PNLD & DBM & \{ \(\left.\mathrm{P}_{\mathrm{d}}^{\mathrm{n}}\right\}\) - Nonlinear loads in direct transient problem. \\
\hline PNLLH & DBM & \(\left\{\mathrm{P}_{\mathrm{h}}^{\mathrm{n}}\right\}\) - Nonlinear loads in modal transient problem. \\
\hline Pø & DBM & \(\left\{\mathrm{P}_{0}\right\}\) - Partition of load vector. \\
\hline PøI & DBM & \{P \(\left.\mathbf{0}_{\mathbf{0}}^{\mathbf{i}}\right\}\) - Partition of inertia relief load vector. \\
\hline PØINT & IB & Eigenvalue analysis normalization option for eigenvectors see EIGR, EIGC, EIGB cards. \\
\hline PDINTAX & IB & Conical shell point used for data recovery. \\
\hline POQL & M & Pool tape used by file allocator. \\
\hline POUT\$ & M & Indicates restart with a printer output request. \\
\hline PPF & DBM & Dynamic loads for frequency response. \\
\hline PPHIG & DBM & Eigenvector components used to plot deformed shape. (D-3, D-5). \\
\hline PPT & DBM & Linear dynamic loads for transient analysis. \\
\hline PQDMEM & IB & Quadrilateral membrane element property definition card. \\
\hline PQDMEM 1 & IB & Isoparametric quadrilateral membrane element property definition card. \\
\hline PQDMEM2 & IB & Quadrilateral membrane element property definition card. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PQDPLT & IB & Quadrilateral bending element property definition card. \\
\hline PQUADI & IB & General quadrilateral element property definition card. \\
\hline PQUAD2 & IB & Homogeneous quadrilateral element property definition card. \\
\hline PREC & P & Precision of computer \(\begin{aligned} & \text { IBM }=2 \\ & \text { UNIVAC } \\ & \\ & C D C=1\end{aligned}\) \\
\hline Preface & PH & Executive routines which are executed prior to the execution of the first module in a DMAP sequence. The Preface consists of the executive routines necessary to generate initial NASTRAN operational data and tables. The primary Preface routines are GNFIAT, XCSA, IFPT, XS@RT, IFP, IFP3, and XGPI. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline PRESAX & IB & Defines static pressure loading for the conical shell element. \\
\hline PRESPT & IB & Defines a point in a hydroelastic model for output purposes. \\
\hline PRESSURE & IC & Request for output of pressure and displacement vector or eigenvector for a hydroelastic problem. \\
\hline PRINT & PU & Controls printing of flutter summary. \\
\hline Problem Tape & PH & A.magnetic tape containing data necessary for NASTRAN problem restarts. A tape being generated is designated as the New Problem Tape (NPTP) and its content is largely controlled by the DMAP instruction CHKPNT. This same tape when used as input to a subsequent NASTRAN restart is designated as the 01d Problem Tape (\(\varnothing\) PTP). \\
\hline . PRØD & IB & Rod property definiton card. \\
\hline PRØJECTI@N PLANE SEPARATI@N & IC & Separation of observer and projection plane for structure plots. \\
\hline PRTMSG & FMS & Message generator. \\
\hline PRTPARM & FMU & Prints DMAP diagnostic messages and parameter values. \\
\hline PS & DBM & \(\left\{P_{s}\right\}\) - Partition of static load vector. \\
\hline PSDF & DBM & Power Spectral Density Function table. \\
\hline PSDF & IC & Request for output of Power Spectral Density Function in Random Analysis (D-9, D-11). \\
\hline PSDL & DBT & Power Spectral Density List. \\
\hline Pseudo Modified Restart & PH & Restarting (see Restart) a NASTRAN problem and redirecting its solution but only affecting output data. \\
\hline PSF & DBM & Partition of load vector for transient analysis. \\
\hline PSHEAR & IB & Shear panel property definition card. \\
\hline PST & DBM & Partition of linear load vector for transient analysis. \\
\hline PT¢RDRG & IB & Toroidal ring property definition card. \\
\hline PRTBSC & IB & Basic bending triangular element property definition card. \\
\hline PTRIA1 & IB & General triangular element property definition card. \\
\hline PTRIA2 & IB & Homogeneous triangular element property definition card. \\
\hline PTRMEM & IB & Triangular membrane element property definition card. \\
\hline PTRPLT & IB & Triangular bending element property definition card. \\
\hline PTUBE & IB. & Tube property definition card. \\
\hline PTWIST & IB & Twist panel property definition card. \\
\hline PUBGV1 & DBT \({ }^{\prime}\) & Displacement vector components used to plot deformed shape (D-4, D-5). \\
\hline PUGV & DBT & Displacement vector components used to plot deformed shape (\(\mathrm{D}-1 ; \mathrm{D}-2\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PUGV1 & DBT & Displacement components used to plot deformed shape (D-6). \\
\hline PUNCH & IC & Output media request (PRINT or PUNCH). \\
\hline PURGE & EM & DMAP statement which causes conditional purging of data blocks. \\
\hline Purge & PH & A data block is said to be purged when it is flagged in the FIAT so that it will not be allocated to a physical file and so that modules attempting to access it will be signaled. \\
\hline PVISC & IB & Viscous element property definition card. \\
\hline PVT & PH & Parameter value table. The PVT contains BCD names and values of all parameters input by means of PARAM bulk data cards. It is generated by the preface module IFP and is written on the Problem Tape. \\
\hline P1 & PU & INPUTT2 rewind option. \\
\hline P2 & PU & INPUTT2 unit number. \\
\hline P3 & PU & INPUTT2 tape ID. \\
\hline QBDY 1 & IB & Defines uniform heat flux into HBDY elements. \\
\hline QBDY2 & IB & Defines grid point heat flux into HBDY elements. \\
\hline QBG & DBM & Single point forces of constraint in the Differential Stiffness Rigid Format (D-4). \\
\hline QDMEM & IC & Requests structure plot for all QDMEM elements. \\
\hline QDMEM 1 & IC & Requests structure plot for all QDMEMI elements. \\
\hline QDMEM2 & IC & Requests structure plot for all QDMEM2 elements. \\
\hline QDPLT & IC & Requests structure plot for all QDPLT elements. \\
\hline QG & DBM & Constraint forces for all grid points. \\
\hline QHBDY & IB & Defines thermal load for steady-state heat conduction. \\
\hline QHHL & DBML & Aerodynamic matrix list - h-set. \\
\hline QJHL & DBML & Aerodynamic transformation matrix between \(h\) and \(j\) sets. \\
\hline QP & DBM & Constraint forces for all physical points. \\
\hline QPC & DBM & Complex single point forces of constraint for all physical points. \\
\hline QR & DBM & \(\left\{\mathrm{q}_{\mathbf{r}}\right\}\) - Determinant support forces. \\
\hline QS & DBM & \(\left\{\mathrm{q}_{s}\right\}\) - Single-point constraint forces. \\
\hline QUAD1 & IC & Requests structure plot for all, QUAD1 elements. \\
\hline QUAD2 & IC & Requests structure plot for all QUAD2 elements. \\
\hline QVECT & IB & Defines thermal vector flux from distant source. \\
\hline QVQL & IB & Defines volume heat generation. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline R & P & Parameter value used by MATGPR to print R-set matrices. \\
\hline R1 & IC & Request for \(X-Y\) plot of the first rotational component (UM-4.2). \\
\hline R1IP & IC & Request for \(X-Y\) plot of the first rotational component imaginary and phase angle (UM-4.2). \\
\hline R1RM & IC & Request for \(X-Y\) plot of the first rotational component real and magnitude (UM-4.2). \\
\hline R2 & IC & Request for \(X-Y\) plot of the second rotational component (UM-4.2). \\
\hline R2IP & IC & Request for \(X-Y\) plot of the second rotational component imaginary and phase angle (UM-4.2). \\
\hline R2RM & IC & Request for \(X-Y\) plot of the second rotational component real and magnitude (UM-4.2). \\
\hline R3 & IC & Request for \(X-Y\) plot of the third rotational component (UM-4.2). \\
\hline R3IP & IC & Request for \(X-Y\) plot of the third rotational component imaginary and phase angle (UM-4.2). \\
\hline R3RM & IC & Request for \(X-Y\) plot of the third rotational component real and magnitude (UM-4.2). \\
\hline RADLIN & P & Controls linearization of radiation effects in transient heat transfer analysis. \\
\hline RADLST & IB & List of radiation areas. \\
\hline RADMTX & IB & Radiation exchange coefficients. \\
\hline RAND®M & IC & Selects the RANDPS and RANDT cards to be used in random analysis. \\
\hline RANDØM & FMS & Random response solution generator. \\
\hline RANDPS & IB & Power spectral density specification. \\
\hline RANDT 1 & IB & Autocorrelation function time lag. \\
\hline RANDT2 & IB & Autocorrelation function time lag. \\
\hline RBMG1 & FMS & Rigid body matrix generator - part 1. \\
\hline RBMG2 & FMS & Rigid body matrix generator - part 2. \\
\hline RBMG3 & FMS & Rigid body matrix generator - part 3. \\
\hline RBMG4 & FMS & Rigid body matrix generator - part 4. \\
\hline READ & FMS & Real Eigenvalue Analysis - Displacement. \\
\hline REAL & IC & Requests real and imaginary form of complex quantities. \\
\hline REAL EIGENVALUES & IA & Selects rigid format for normal mode analysis. \\
\hline REEL & IA & Term appearing on the checkpoint dictionary cards indicating the physical reel on which a data block appears. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Reentry Point & PH & The point in the DMAP sequence at which a problem terminated and hence the point at which it can be restarted (see Restart). \\
\hline REGION & IC & Specifies portion of frame to be used for structure plot. \\
\hline REIG & P & Parameter used in SDR2 to indicate Normal Mode Analysis (D-3). \\
\hline REPCASE & IC & Allows another output request for the previous subcase (D-1, D-2). \\
\hline REPEAT & P & Controls looping in Static Analysis (\(\mathrm{D}-1, \mathrm{D}-2\)). \\
\hline REPEATD & P & Controls looping in Static Analysis with Differential Stiffness (D-4). \\
\hline REPEATE & P & Controls looping in Complex Eigenvalue Analysis (D-7, D-10). \\
\hline REPEATF & P & Controls looping in Frequency Response Analysis (\(\mathrm{D}-8, \mathrm{D}-11\)). \\
\hline REPEATT & P & Controls looping in Transient Response Analysis (D-9, D-12). \\
\hline REPT & EM & DMAP statement to conditionally repeat a loop. \\
\hline RESP@NSE & J' & Request for \(X-Y\) plot of any response outputs from transient or frequency response analysis (D-8, D-9, D-11, D-12). \\
\hline RESTART & IA & First control card of checkpoint dictionary. Contains identification of checkpoint tape. \\
\hline Restart & PH & Initiating a NASTRAN problem solution at a place other than its logical beginning by utilizing an 01d Problem Tape created during a previous run. \\
\hline RFQRCE & IB & Rotational force definition card. \\
\hline RF@RCE\$ & M & Indicates restart with change in rotational force. \\
\hline RG & DBM & Multipoint constraint equations. \\
\hline RIGHT TICS & IC & Request for tic marks to be plotter on right hand edge of frame for \(X-Y\) plots. \\
\hline Rigid Format & PH & A fixed prestored DMAP sequence and its associated restart tables which perform a specific problem solution. \\
\hline Rigid Format Switch & PH & A type of restart (see Restart) in which the problem is changed from one Rigid Format to another. \\
\hline RINGAX & IB & Conical shell ring definition card. \\
\hline RINGFL & IB & Hydroelastic axisymmetric point definition card. \\
\hline RLØAD1 & IB & Frequency response loâd set definition. \\
\hline RLøAD2 & IB & Frequency response load set definition. \\
\hline RMG & FMH & Radiation matrix generator - generates [\(\mathrm{R}_{\mathrm{gg}}\)]. \\
\hline RøD & IC & Requests structure "plot for ail \(\mathrm{R} \cap \mathrm{D}\) elements. \\
\hline RUBLV ... & DBM & Residual vector - Differential Stiffness Rigid Format (D-4). \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{lll}
RULV & DBM & Residual vector for independent degrees of fredom. \\
RUøV & DBM & \begin{tabular}{l}
Residual vector for omitted degrees of freedom.
\end{tabular} \\
RXY & IC & \begin{tabular}{l}
Requests vector sum of \(X\) and \(Y\) deformation components for \\
structure plot.
\end{tabular} \\
RXYZ & IC & \begin{tabular}{l}
Requests vector sum of \(X, Y\) and \(Z\) deformation components for \\
structure plot.
\end{tabular} \\
RXZ & IC & \begin{tabular}{l}
Requests vector sum of \(X\) and \(Z\) deformation components for \\
structure plot.
\end{tabular} \\
RYZ & IC & \begin{tabular}{l}
Requests vector sum of \(Y\) and \(Z\) deformation components for \\
structure plot.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline S & P & Parameter value used by MATGPR to print S-set matrices. \\
\hline SACCE & IC & Abbrecivated form of SACCELERATION. \\
\hline SACCELERATION & IC & Output request for solution set acceleration vector. (UM-2.3, 4.2) \\
\hline SAVE & EM & DMAP statement which causes current value of parameter to be saved. \\
\hline SAVE & M & Save data block for possible looping in DMAP sequence (see FILE). \\
\hline SC & IC & Selects SC 4020 plotter. \\
\hline Scalar Point & PH & A point which is defined on an SPøINT, CELAS1, CELAS2, CELAS3, CELAS4, CMASS1, CMASS2, CMASS3, CMASS4, CDAMP1, CDAMP2, CDAMP3, or CDAMP4 bulk data card. A scalar point has no geometrical coordinates and defines only one degree of freedom of the model. \\
\hline SCALE & IC & Selects scale for structure plot. \\
\hline SCEI & FMS & Single-point Constraint Eliminator. \\
\hline SDAMP & IC & Modal structural damping table selection. \\
\hline SDAMP\$ & M & Indicates restart with change in modal damping. \\
\hline SDAMPING & IC & Selects table which defines damping as a function of frequency in modal formulation problems. \\
\hline SDISP & IC & Abbreviated form of SDISPLACEMENT. \\
\hline SDISPLACEMENT & IC & Output request for solution set displacement vector. (UM-2.3, 4.2) \\
\hline SDR1 & FMS & Stress Data Recovery - part 1. \\
\hline SDR2 & FMS & Stress Data Recovery - part 2. \\
\hline SDR3 & FMS & Stress Data Recovery - part 3. \\
\hline SDRHT & FMH & Heat flux data recovery. \\
\hline SECTAX & IB & Defines conical shell sector for data recovery. \\
\hline SEEMAT & FMU & Prints pictorial representation of matrix showing location of nonzero elements. \\
\hline SEM1 & M & The NASTRAN Preface. \\
\hline SEQEP & IB & Extra point resequencing. \\
\hline SEQGP & IB & Grid or scalar point resequencing. \\
\hline SET & IC & Definition of a set of elements, grid and/or scalar and/or extra points, frequencies, or times to be used in selecting output. \\
\hline SETI & IB & Defines a set of structural grid points by a list. \\
\hline SET2 & IB & Defines a set of structural grid points by aerodynamic macro elements. \\
\hline SETVAL & FMU & Parameter value initiator. \\
\hline SHEAR & IC & Requests structure plot for all shear panel elements. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SIGMA & P & Defines Stefan-Boltzmann constant in heat transfer analysis. \\
\hline SIL & DBT & Scalar Index List for all grid points. \\
\hline SILA & DBT & Scalar Index List - Aerodynamics. \\
\hline SILD & DBT & Scalar Index List for all grid points and extra scalar points introduced for dynamic analysis. \\
\hline SILGA & DBT & Scalar Index List - Aerodynamic boxes only. \\
\hline SINE & IC & Conical shell request for sine set boundary conditions. \\
\hline SINGLE & P & No single-point constraints. \\
\hline SKIP BETWEEN FRAMES & IC & Request to insert blank frames on SC 4020 plotter for \(X-Y\) plots. \\
\hline SKJ & DBM & Integration matrix. \\
\hline SKPMGG & P & Parameter used in statics to control execution of functional module SMA2. \\
\hline SLBDY & IB & Defines list of points on interface between axisymmetric fluid and radial slots. \\
\hline SLøAD & IB & Scalar point load definition. \\
\hline SLT & DBT & Static Loads Table. \\
\hline SMAT & FMS & Structural Matrix Assembler - phase 1 - generates stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}\right]\) and structural damping matrix \(\left[\mathrm{K}_{\mathrm{gg}}^{4}\right]\). \\
\hline SMA2 & FMS & Structural Matrix Assembler - phase 2 - generates mass matrix \(\left[\mathrm{M}_{\mathrm{gg}}\right]\) and viscous damping matrix \(\left[\mathrm{B}_{\mathrm{gg}}\right]\). \\
\hline SMA3 & FMS & Structural Matrix Assembler - phase 3 - add general element contributions to the stiffness matrix \(\left[\mathrm{K}_{\mathrm{gg}}\right]\). \\
\hline SMP 1 & FMS & Structural Matrix Partitioner - part 1. \\
\hline SMP2 & FMS & Structural Matrix Partitioner - part 2. \\
\hline SMPYAD & FMM & Performs multiply-add matrix operation for up to five multiplications and one addition. \\
\hline S \(\emptyset \mathrm{L}\) & IA & Specifies which rigid format solution is to be used when APP is DISPLACEMENT. \\
\hline Solution Points & PH & Points used in the formulation of the general K system. \\
\hline SøLVE & FMM & Solves a set of linear algebraic equations. \\
\hline S@RTl & IC & Output is sorted by frequency or time and then by external ID. \\
\hline S@RT2 & IC & Output is sorted by external ID and then by frequency or time. \\
\hline S@RT3 & M & Output is sorted by individual item or component and then by frequency or time. \\
\hline SPC & IB & Single-point constraint and enforced deformation definition. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SPC & IC & Single-point constraint set selection. \\
\hline SPC\$ & M & Indicates restart with change in single-point constraint set selection. \\
\hline SPC1 & IB & Single-point constraint definition. \\
\hline SPCADD & IB & Single-point constraint set combination definition. \\
\hline SPCAX & IB & Conical shell single-point constraint definition. \\
\hline SPCF & IC & Abbreviated form of SPCFØRCE. \\
\hline SPCFORCE & IC & Single-point constraint force output request. (UM-2.3,4.2) \\
\hline Spill & PH & Secondary storage devices are used because there is insufficient main storage to perform a matrix calculation or a data processing operation. \\
\hline SPLINE & DBT & Splining Data Table. \\
\hline SPLINE1 & IB & Defines surface spline. \\
\hline SPLINE2 & IB & Defines beam spline. \\
\hline SPOINT & IB & Scalar point definition card. \\
\hline SSG1 & FMS & Static Solution Generator - part 1. \\
\hline SSG2 & FMS & Static Solution Generator - part 2. \\
\hline SSG3 & FMS & Static Solution Generator - part 3. \\
\hline SSG4 & FMS & Static Solution Generator - part 4. \\
\hline SSGHT & FMH & Solution generator for nonlinear heat transfer analysis. \\
\hline STATIC & IC & Requests deformed structure plot for problem in Static Analysis. \\
\hline STATICS & IA & Selects statics rigid format for heat transfer or structural analysis. \\
\hline STATICS & P & Parameter used in SDR2 to indicate Static Analysis. \\
\hline STEADY STATE & IA & Selects rigid format for nonlinear static heat transfer analysis. \\
\hline STEREØSCØPIC & IC & Requests stereoscopic projections for structure plot. \\
\hline STRESS & IC & Element stress output request. (UM-2.3, 4.2) \\
\hline Structural Element & PH & One of the finite elements used to represent a part of a structure. \\
\hline SUBCASE & IC & Subcase definition. \\
\hline SUBCOM & IC & This subcase is a linear combination of previous subcases. \\
\hline SUBSEQ & IC & Specifies coefficients for SUBCØM subcases. \\
\hline SUBTITLE & IC & Output labeling data for printer output. \\
\hline SUPAX & IB & Ficticious support for conical shell problem. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline SUP@RT & IB & Ficticious support definition card. \\
\hline SVECTQR & IC & Request for output of eigenvectors in the solution set (D-7, \(D-10)(U M-2.3,4.2)\). \\
\hline SVELD & IC & Abbreviated form of SVELOCITY. \\
\hline SVELDCITY & IC & Requests velocity output for solution set. (UM-2.3, 4.2) \\
\hline SYM & IC & Symmetry subcase delimiter card. \\
\hline SYMBDLS & IC & Requests symbols at grid points on structure plot. \\
\hline SYMCDM & IC & Assembly of symmetry subcase delimiter card. \\
\hline SYMSEQ & IC & Assembly value of symmetry combination card. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline T1 & IC & Request for \(X-Y\) plot of the first translational component (UM-4.2). \\
\hline TIIP & IC & Request for \(X-Y\) plot of the first translational component imaginary and phase angle (UM-4.2). \\
\hline TIRM & IC & Request for \(X-Y\) plot of the first translational component real and magnitude (UM-4.2). \\
\hline T2 & IC & Request for \(X-Y\) plot of the second translational component (UM-4.2). \\
\hline T2IP & IC & Request for \(X-Y\) plot of the second translational component imaginary and phase angle (UM-4.2). \\
\hline T2RM & IC & Request for \(X-Y\) plot of the second translational component real and magnitude (UM-4.2). \\
\hline T3 & IC & Request for \(X-Y\) plot of the third translational component (UM-4.2). \\
\hline T3IP & IC & Request for \(X-Y\) plot of the third translational component imaginary and phase angle (UM-4.2). \\
\hline T3RM & IC & Request for \(X-Y\) plot of the third translational component real and magnitude (UM-4.2). \\
\hline TA] & FMS & Table Assembler. \\
\hline TABDMP1 & IB & Tabular structural damping function for modal formulation (D-10, D-11, D-12). \\
\hline Table Data Block & PH & A data block which is in tabular form rather than matrix form. \\
\hline TABLED1 & IB & Dynamic load tabular function (\(D-8, D-9, D-11, D-12\)). \\
\hline TABLED2 & IB & Dynamic load tabular function (\(D-8, D-9, D-11, D-12\)). \\
\hline TABLED3 & IB & Dynamic load tabular function (\(D-8, \mathrm{D}-9, \mathrm{D}-11, \mathrm{D}-12\)). \\
\hline TABLED4 & IB & Dynamic load tabular function (\(\mathrm{D}-8, \mathrm{D}-9, \mathrm{D}-11, \mathrm{D}-12\)). \\
\hline TABLEMT & IB & Material property tabular function. \\
\hline TABLEM2 & IB & Material property tabular function. \\
\hline TABLEM3 & IB & Material property tabular function. \\
\hline TABLEM4 & IB & Material property tabular function. \\
\hline TABLES 1 & IB & Stress-dependent material tabular function for use in Piecewise Linear Analysis (D-6). \\
\hline TABPCH & FMU & Punches selected tables on DTI bulk data cards. \\
\hline TABPRT. & FMU & Formats selected table data blocks for printing. \\
\hline TABPT & FMU & Table printer. \\
\hline TABRND1 & IB & Tabular function for use in Random Analysis (\(\mathrm{D}-8, \mathrm{D}-11\)). \\
\hline TABRND2 & IB & Tabular function for use in Random Analysis (D-8, D-11). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TABRND3 & IB & Tabular function for use in Random Analysis (\(\mathrm{D}-8, \mathrm{D}-11\)). \\
\hline TABRND4 & IB & Tabular function for use in Random Analysis (\(\mathrm{D}-8, \mathrm{D}-11\)). \\
\hline TABS & P & Defines absolute reference temperature in heat transfer analysis. \\
\hline TALL EDGE TICS & IC & Request for plotting all edge tic marks on upper half frame for X-Y plots. \\
\hline TAPE & M & Write data block on physical tape (see FILE). \\
\hline TCURVE & IC & Curve title for X-Y plot. \\
\hline TEMP & IB & Grid temperature definition card. \\
\hline TEMPAX & IB & Temperature definition for conical shell problem. \\
\hline TEMPD & IB & Grid default temperature definition card. \\
\hline TEMPERATURE & IC & Selects the temperature set to be used in both material property calculation and thermal loading. \\
\hline TEMPLD\$ & M & Indicates restart with change in thermal set for static loading. \\
\hline TEMPMT\$ & M & Indicates restart with change in thermal set for material properties. \\
\hline TEMPMX \$ & M & Indicates restart with change in thermal field with thermally dependent material properties. \\
\hline TEMP (L甲AD) & IC & Temperature set selection (applies to thermal load generation only). \\
\hline TEMP(MAT) & IC & Temperature set selection (applies to material properties only). \\
\hline TEMPP 1 & IB & Plate element temperature definition card. \\
\hline TEMPP2 & IB & Plate element temperature definition card. \\
\hline TEMPP3 & IB & Plate element temperature definition card. \\
\hline TEMPRB & IB & One-dimensional element temperature definition. \\
\hline TF & IB & Dynamic transfer function definition. \\
\hline TF\$ & M & Indicates restart with change in transfer function set selection. \\
\hline TFL & IC & Transfer function set selection. \\
\hline TFPD日L & DBT & Transfer function pool. \\
\hline THERMAL & IC & Request for output of temperature vector in thermal analysis (UM-2.3). \\
\hline THRU & IC & Forms strings of values within set declarations. \\
\hline TIC & IB & Transient Initial Condition set definition card. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TIME & IA & User time estimate for problem. This card is required in Executive Control Deck. Integer time value is in minutes. \\
\hline TITLE & IC & Output labeling data for printer output. \\
\hline TLEFT TICS & IC & Request for tic marks to be plotted on left hand edge of top half frame for X-Y plot. \\
\hline TLDADI & IB & Transient load set definition card. \\
\hline TLØAD2 & IB & Transient load set definition card. \\
\hline Trailer & PH & A six word control block associated with a data block. \\
\hline TRANRESP & P & Parameter used in SDR2 to indicate Transient Response Analysis (D-9, D-12). \\
\hline TRANSIENT & IA & Selects rigid format for transient heat transfer analysis. \\
\hline TRBSC & IC & Requests structure plot for all basic bending triangle elements. \\
\hline TRD & FMS & Transient Response - Displacement. \\
\hline TRHT & FMH & Integrates dynamic equation for heat transfer analysis. \\
\hline TRIA1 & IC & Requests structure plot for all TRIAI elements. \\
\hline TRIA2 & IC & Requests structure plot for all TRIA2 elements. \\
\hline TRIGHT TICS & IC & Request for tic marks to be plotted on right hand edge of top half frame for \(X-Y\) plots. \\
\hline TRL & DBT & Transient Response List. \\
\hline TRLG & FMH & Generates dynamic heat flux loads. \\
\hline TRMEM & IC & Requests structure plot for all triangular membrane elements. \\
\hline TRNSP & FMM & Transpose functional module. \\
\hline TRPLT & IC & Request structure plot for all TRPLT elements. \\
\hline TSTART & P & CPU time at start of flutter loop. \\
\hline TSTEP & IB & Transient time steps for integration and output. \\
\hline TSTEP & IC & Transient time step set selection. \\
\hline TSTEP\$ & M & Indicates restart with change in transient time step set selection. \\
\hline TUBE & IC & Requests structure plot for all TUBE elements. \\
\hline TWIST & IC & Requests structure plot for all TWIST elements. \\
\hline TYPE & IC & Indicates paper type for structure plots. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline UBGV & DBM & Displacement vector for all grid points (D-4). \\
\hline UBLL & DBM & [\(\left.U_{\ell \ell}^{\mathrm{b}}\right]\) - Upper triangular factor of [\(\mathrm{K}_{\ell \ell}^{\mathrm{b}}\)]. \\
\hline UBLV & DBM & Displacement solution vector (D-4). \\
\hline UBDQV & DBM & Scalar multiple of UøめV in Differential Stiffness Rigid Format (D-4). \\
\hline UDET & IB & Selects unsymmetric decomposition option for determinant method of real eigenvalue analysis. \\
\hline UDVIT & DBM & Displacement, velocity and acceleration solution vectors in a transient analysis problem - S@RT1. (D-9) \\
\hline UDV2T & DBM & Displacement, velocity and acceleration solution vectors in a transient analysis problem - SøRT2 (D-9). \\
\hline UDVF & DBM & Displacement solution vector in a frequency response problem (D-8). \\
\hline UDVT & DBM & Displacement, velocity and acceleration solution vectors in a transient analysis problem (D-9). \\
\hline UEVF & DBM & Displacement vector for extra points in a frequency response problem (D-11). \\
\hline UEVT & DBM & Displacement vector for extra points in a transient response problem (D-12). \\
\hline UGV & DBM & Displacement vector for all grid points (D-1, D-2, D-4, D-5). \\
\hline UGV1 & DBM & Successive sums of incremental displacement vectors. Piecewise Linear Analysis Rigid Format only (D-6). \\
\hline UHVF & DBM & Modal frequency response solution vectors (\(\mathrm{D}-11\)). \\
\hline UHVT & DBM & Modal transient response solution vectors (D-12). \\
\hline UINV & IB & Selects unsymmetric decomposition option for inverse power method of eigenvalue analysis. \\
\hline ULL & DBM & [\(U_{\ell \ell}\)] - Upper triangular factor of [\(\mathrm{K}_{\ell \ell}\)]. \\
\hline ULV & DBM & Displacement solution vector in static analyses (D-1, D-2, D-4, D-5). \\
\hline UMERGE & FMM & Functional module to merge column matrices based on U-set. \\
\hline UMF & IA & Requests User Master File as input source. \\
\hline UMF & M & User Master File, a reserved NASTRAN physical unit (tape) which must be set up by the user when used. \\
\hline UMFEDIT & IA & Requests User Master File operational mode of NASTRAN. \\
\hline Unmodified Restart & PH & Restarting (see Restart) a problem without changing any data, other than output requests, of the previous run. \\
\hline Unpool & PH & Remove data block from Pool Tape and place on a file for use by a functional module. \\
\hline UNS@RT & IC & Requests unsorted echo of Bulk Data Deck (ECHD=UNS@RT). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Uゆロ & DBM & [\(\mathrm{U}_{00}\)] - Upper triangular factor of [\(\mathrm{K}_{00}\)]. \\
\hline uøøV & DBM & Partition of displacement solution vector. \\
\hline UPARTN & FMM & Functional module to partition matrices based on U-set. \\
\hline UPPER TICS & IC & Request for tic marks to be plotted on upper edge of frame for \(X-Y\) plot. \\
\hline UPV & DBM & Transient solution vectors for all physical points. \\
\hline UPVC & DBM & Frequency response solution vectors for all physical points. \\
\hline USET & DBT & Displacement set definitions. (PM-1.7.3) \\
\hline USETA & DBT & Displacement set definitions table - Aerodynamics. \\
\hline USETD & DBT & Displacement set definitions including extra scalar points introduced by dynamic analysis. (PM-1.7.3) \\
\hline V & M & Used in parameter section of DMAP statement. Indicates that parameter is variable and may be changed by module. If changed value is to be used in subsequent DMAP instruction, it must be saved (see SAVE). \\
\hline VANTAGE PgINT & IC & Location of observer for structure plot. \\
\hline VDR & FMS & Vector Data Recovery. \\
\hline VEC & FMU & Creates partitioning vector based on USET. \\
\hline VECTQR & IC & Request for output of eigenvectors from real or complex eigenvalue analysis (\(D-3, D-5, D-7, D-10\)). \\
\hline VECTOR & IC & Requests deformations on structure plot with vectors. \\
\hline VELD & IC & Abbreviated form of VELDCITY. \\
\hline VELDCITY & IC & Output request statement for velocity vector. (UM-2.3, 4.2) \\
\hline VFS & DBM & Partitioning vector for heat transfer analysis. \\
\hline VIEW & IC & Rotation of object for structure plot. \\
\hline VISC & IC & Request structure plot for all viscous damper element. \\
\hline VPS & M & See XVPS. \\
\hline VREF & PU & Velocity division factor. \\
\hline W3 & P & Pivotal frequency for uniform structure damping in the direct formulation of transient response problems (D-9). \\
\hline W4 & P & Pivotal frequency for element structural damping in the direct formulation of transient response problems (D-9). \\
\hline WTMASS & P & Weight to mass conversion factor used in SMA2 and GPWG. Default value is 1.0. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline \(X\) & IC & Requests X vector for deformed structure plot. \\
\hline XAXIS & IC & Request for drawing of X-axis for \(X-Y\) plot. \\
\hline XBAXIS & IC & Request for drawing of X-axis on bottom half frame for X-Y plot. \\
\hline XBGRID LINES & IC & Request for drawing grid lines for \(X\)-axis on bottom half frame for X-Y plot. \\
\hline XCSA & EM & Executive Control Section Analysis. The preface module which processes the Executive Control Deck and prepares the control file on the New Problem Tape. \\
\hline XDIVISIØNS & IC & Request for division marking on X-axis. \\
\hline XGPI & EM & Executive General Problem Initialization. The preface module whose principal function is to generate the OSCAR. If the problem is a restart, XGPI initializes data blocks and named common blocks for proper restart. \\
\hline XGRID LINES & IC & Request for grid lines to be drawn on \(X\)-axis for \(X-Y\) plots. \\
\hline XINTERCEPT & IC & Specifies intercept of Y -axis on X -axis. \\
\hline XLDG & IC & Request for logarithmic scales in X-direction. \\
\hline XMAX & IC & Do not plot points whose \(X\) value lies above this value. \\
\hline XMIN & IC & Do not plot points whose \(X\) value lies below this value. \\
\hline XPAPER & IC & Specifies length of paper in X-direction for table plotter. \\
\hline XQHHL & P & Appended QHHL data parameter. \\
\hline XSFA & EM & Executive Segment File Allocator - the administrative manager of data blocks for NASTRAN. \\
\hline XSøRT & EM & Executive sort routine - the preface module which reads and sorts the Bulk Data Deck and writes the sorted Bulk Data Deck on the New Problem Tape. \\
\hline XTAXIS & IC & Request for drawing of \(X\)-axis on top half frame. \\
\hline XTGRID LINES & IC & Request for drawing of grid lines on top half frame. \\
\hline XTITLE & IC & \(X\)-axis title for \(X-Y\) plots. \\
\hline XVALUE PRINT SKIP & IC & Request to suppress labeling tic marks over the specified interval. \\
\hline XVPS & M & Variable Parameter Set Table. Executive table needed for restart. (PM-2.4) \\
\hline XY & IC & Requests \(X\) and \(Y\) vectors for deformed structure plot. \\
\hline XYCDB & DBT & SØRT3 type output requests (XYPLØTTER, XYPRINTER, Random Request). \\
\hline XYøUT & IC & Request to generate \(X-Y\) plots. \\
\hline XY甲UT\$ & M & Indicates restart with an \(X-Y\) plot request. \\
\hline XYPEAK & IC & Request to print the maximum and minimum values of the specified response. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline XYPL®T & FMS & \(X-Y\) plot generator. \\
\hline XYPLQT & IC & Request to generate \(X-Y\) plots. \\
\hline XYPLTF & DBT & XYPLDT input data block. (D-8, D-11) \\
\hline XYPLTFA & DBT & XYPL \(\emptyset\) T input data block. (\(\mathrm{D}-8, \mathrm{D}-11\)) \\
\hline XYPLTR & DBT & XYPL@T input data block. (D-8, D-11) \\
\hline XYPLTT & DBT & XYPLDT input data block. (D-9, D-12) \\
\hline XYPLTTA & DBT & XYPLøT input data block. (D-9, D-12) \\
\hline XYPRINT & IC & Request to tabulate \(X Y\) pairs on the printer. \\
\hline XYPRNPLT & FMU & Dummy output module. \\
\hline XYPUNCH & IC & Request to punch XY pairs. \\
\hline XYTRAN & FMS & XY output translator. \\
\hline XYZ & IC & Requests \(X\); \(Y\) and \(Z\) vectors for deformed structure plot. \\
\hline XZ & IC & Requests \(X\) and \(Z\) vectors for deformed structure plot. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{|c|c|c|}
\hline \(Y\) & IC & Requests \(Y\) vector for deformed structure plot. \\
\hline \(Y\) & M & Used in parameter section of BMAP statement. Indicates that parameter may be given an initial value with a PARAM bulk data card. \\
\hline YAXIS & IC & Request for drawing of \(Y\)-axis. \\
\hline YBDIVISİNS & IC & Request for division marking on \(Y\)-axis of lower half frame. \\
\hline YBGRID LINES & IC & Request for grid lines to be drawn on \(Y\)-axis of lower half frame. \\
\hline YBINTERCEPT & IC & Specifies intercept of X-axis on Y-axis on lower half frame. \\
\hline YBLøG & IC & Request for logarithmic scales in \(Y\)-direction on lower half frame. \\
\hline YBMAX & IC & Do not plot points whose \(Y\) value lies above this value for lower half frame. \\
\hline YBMIN & IC & Do not plot points whose \(Y\) value lies below this value for lower half frame. \\
\hline YBS & DBM & Scalar multiple of YS matrix. Used in Differential Stiffness Rigid Format only. (D-4). \\
\hline YBTITLE & IC & Y -axis title on lower half frame. \\
\hline YBVALUE PRINT SKIP & IC & Request to suppress labeling tic marks over the specified interval. \\
\hline YDIVISIQNS & IC & Request for division marking on \(Y\)-axis. \\
\hline YES & IA & Option used on CHKPNT card, indicates that checkpoint is desired. \\
\hline YGRID LINES & IC & Request for grid lines to be drawn on \(Y\)-axis. \\
\hline YINTERCEPT & IC & Specifies intercept of \(X\)-axis on \(Y\)-axis. \\
\hline YLøG & IC & Request for logarithmic scales in Y-direction. \\
\hline YMAX & IC & Do not plot points whose \(Y\) value lies above this value. \\
\hline YMIN & IC & Do not plot points whose \(Y\) value lies below this value. \\
\hline YPAPER & IC & Specifies length of paper in Y-direction for table plotter. \\
\hline YS & DBM & \(\left\{Y_{s}\right\}\) - Constrained displacement vector. \\
\hline YTDIVISİNS & IC & Request for division marking on \(\gamma\)-axis for upper half frame. \\
\hline YTGRID LINES & IC & Request for grid lines to be drawn on \(Y\)-axis for upper half frame. \\
\hline YTINTERCEPT & IC & Specifies intercept of \(X\)-axis on \(Y\)-axis for upper half frame. \\
\hline YTITLE & IC & Y-axis title. \\
\hline YTLQG & IC & Request for logarithmic scales in Y-direction for upper half frame. \\
\hline
\end{tabular}

\section*{NASTRAN DICTIONARY}
\begin{tabular}{lll}
YTMAX & IC & \begin{tabular}{l}
Do not plot points whose \(Y\) value lies above this value for \\
upper half frame.
\end{tabular} \\
YTMIN & IC & \begin{tabular}{l}
Do not plot points whose \(Y\) value lies below this value for \\
upper half frame.
\end{tabular} \\
YTITLE & IC & \begin{tabular}{l}
Y-axis title for upper half frame.
\end{tabular} \\
YTVALUE PRINT SKIP & IC & \begin{tabular}{l}
Request to suppress labeling tic marks over the specified \\
interval for upper half frame.
\end{tabular} \\
YVALUE PRINT SKIP & IC & \begin{tabular}{l}
Request to suppress labeling tic marks over the specified \\
interval.
\end{tabular} \\
\(Y Z\) & IC & \begin{tabular}{l}
Requests \(Y\) and \(Z\) vectors for deformed structure plot.
\end{tabular}
\end{tabular}

IC Requests \(Z\) vector for deformed structure plot.
U.S. Government Printing Office: 1976-638-171/64 Region 3-II

\title{
THE NASTRAN USER'S MANUAL \\ (Level 16.0 Supplement)
}

July 1976

A new \(S \emptyset F\) composed of five physical files would be declared as follows:
\[
\begin{aligned}
& S \emptyset F(1)=S \emptyset F 1,200, N \subseteq W \\
& S \emptyset F(2)=S \emptyset F 2,200 \\
& S \emptyset F(3)=S \emptyset F 3,400 \\
& S \emptyset F(4)=S \emptyset F 4,600 \\
& S \emptyset F(5)=S \emptyset F 5,700
\end{aligned}
\]

All data stored on the \(S \emptyset F\) is accessed via the substructure name. For each substructure, various types of S \(\mathrm{S} \rho\) data may be stored. These types of data are called items and are accessed via their item names. Thus, the substructure name and item name are all that is required to access any block of data on the S@F. The items which can be stored for any substructure are described in Table 2. The program automatically keeps track of the data, stores the data as it is created, and retrieves these data when required. The user's only responsibility is to maintain the file. It must be accessible by the system when needed. The user must remove items already created in the event input errors were detected during processing or if that data is no longer needed for subsequent analyses.

Figure 4. Substructure Operating File (SDF).

\subsection*{1.14.3 The Case Control Deck for Substructuring Analyses}

The Case Control Deck controls loading conditions, constraint set selection, output requests, and so forth in a substructuring analysis just as in a non-substructuring analysis. However, in a substructuring analysis, there are very important relationships among the Case Control Decks to be input for the three Phases of a substructuring analysis. Compatibility among the substructuring Phases must be maintained for load sets, constraint sets, and subcase definitions. This section will describe how the Case Control Deck should be used for each of the three Phases.

\section*{STRUCTURAL MODELING}

\subsection*{1.14.3.1 Phase 1}

The following requirements must be satisfied by the Case Control Deck in Phase 1:
1. Constraint set selections (MPC, SPC) must be above the subcase level. That is, only one set of constraints is allowed in Phase 1 for all loading conditions.
2. One subcase must be defined for each loading condition which is to be saved on the SøF. The loading condition may consist of any combination of external static loads, thermal loads, element deformation loads, or enforced displacements. Loading conditions which are not saved on the \(S \emptyset F\) in Phase 1 cannot be used in any solution in Phase 2.

\subsection*{1.14.3.2 Phase 2}

The Phase 2 Case Control Deck is exactly like the Case Control used in a non-substructuring analysis. It is only needed, however, if plots are requested or when there is a SQLVE command in the Substructure Control Deck. In this latter case, the subcase definitions, load and constraint set selections, etc. are used in the usual fashion to control the solution process.

Case Control output requests are honored only if there is a PRINT subcommand under the RECDVER command in the Substructure Control Deck. If a RECØVER command with a PRINT or SAVE subcommand is used for a solution obtained in a previous execution, the Case Control should be identical (except for output requests) to that used to obtain that solution.

\subsection*{1.14.3.3 Phase 3}

The following requirements must be satisfied by the Case Control Deck in Phase 3:
1. Constraint sets (MPC, SPC) must be identical to those used in Phase 1 for this substructure.
2. The subcase definition for load set IDs must be identical to those used in Phase 1 for this substructure including those for appended loads, if any. All load definitions must appear in the order generated.
3. The subcase definition for the Phase 3 output requests for solution vectors generated in Phase 2 must be merged with the above subcase definition for load set IDs. Note, the \(\emptyset L \emptyset A D\) output requested in Phase 3 will correspond to the load factors defined during Phase 2 solution, not those defined by Phase 3 Case Control.

\section*{AUTOMATED MULTI-STAGE SUBSTRUCTURING}

The number of Phase 3 subcases required is the maximum of those defined in Phase 1 and Phase 2. All output requests will correspond to the Phase 2 subcase sequence, starting with the first subcase defined in Phase 3. It is essential to assign the same thermal and element deformation loadings to the same subcase in both Phase 1 and Phase 2 in order to provide the correct Phase 1 load data to the Phase 3 output processing of element stresses.

\subsection*{1.14.4 Example of Substructure Analysis}

This example illustrates a simple substructuring analysis. Figure 5 a shows two basic substructures, TABLE and LEGS. Note that these structures have different basic coordinate systems as shown in the figure. Figure 5b shows a combined structure which is assembled from the basic substructures. The entire data decks to generate and analyze this structure are listed in Tables 3-6. These include the data for the generation of the basic substructures in Phase 1 , the assembly of the complete structure, solution, and data recovery in Phase 2 , and the data recovery in Phase 3. The remainder of this section is devoted to a detailed description of each of the data decks used in this analysis.

STRUCTURAL MODELING

a. Phase 1 basic substructures.

b. Phase 2 combined substructure.

Figure 5. Substructure example problem.

\section*{NASTRAN DATA DECK}

\subsection*{2.1 GENERAL DESCRIPTION OF DATA DECK}

The input deck begins with the required resident operating system control cards. The type and number of these cards will vary with the installation. Instructions for the preparation of these control cards should be obtained from the programming staff at each installation.

The operating system control cards are followed by the NASTRAN Data Deck (see Figure 1), which is constructed in the following order (depending on the particular job requirements):
1. The NASTRAN Card
2. The Executive Control Deck
3. The Substructure Control Deck
4. The Case Control Deck
5. The Bulk Data Deck
6. The INPUT Module Data Card(s)

The NASTRAN card is used to change the default values for certain operational parameters, such as buffer size and machine model number. The NASTRAN card is optional, but, if present, it must be the first card of the NASTRAN Data Deck. The NASTRAN card is a free-field card (similar to cards in the Executive Control Deck). Its format is as follows:

NASTRAN \(^{\text {keyword }}{ }_{1}=\) value, keyword \(_{2}=\) value, . . .
The most frequently used keywords are as follows:
1. BUFFSIZE - Defines the number of words in a GINØ buffer. Usually this value is standardized at any particular installation. However, the desired value may be different from the default value of 1803 (IBM), 1183 (CDC) and 871 (UNIVAC). In any event, related runs, such as restarts and User Master File runs, must use the same BUFFSIZE for all parts of the runs.
2. CØNFIG - Defines the model number of the configuration for use in timing equations for matrix operations. Entries exist for the following configurations:
MACHINE
CONFIG

IBM 360/370
\begin{tabular}{rc}
0 (default) & 91,95 \\
3 & 50 \\
4 & 65 \\
5 & 75 \\
6 & 85 \\
7 & 195 \\
9 & 155 \\
10 & 165
\end{tabular}
2.1-1 (7/4/76)
\begin{tabular}{lcc}
MACHINE & CQNFIG & MQDEL NQ. \\
CDC 6000 & 0 (default) & 6600 \\
UNIVAC 1100 & 6 (default) & 6400 \\
& & \(1108 / 1110\)
\end{tabular}

The machine type is automatically determined by NASTRAN. If the model number is the default, the CONFIG keyword is not needed on the NASTRAN card. It is important to indicate the proper configuration; otherwise, all time-dependent matrix decisions will be incorrect.
3. \(M \emptyset D C \emptyset M(i)\) - Defines a nine-word array for module communications. Currently, only \(\operatorname{M\emptyset DC\emptyset M(1)~is~supported.~If~} \operatorname{M\emptyset DC\emptyset M(1)}=1\), diagnostic statistics from subroutine SDCDMP are printed.
4. HICØRE - Defines the amount of open core available to the user on the UNIVAC 1100 series machines. The user area default is nominally 65 K decimal words. The ability to increase this value may be installation limited.
5. FILES - Establishes NASTRAN permanent files as being disk files rather than tape files. The FILES are PØПL, ØPTP, NPTP, UMF, NUMF, PLTI, PLT2, INPT, INP1, INP9. Multiple file names must be enclosed with parentheses such as FILES = (UMF,NPTP). The FILES parameter(s) must be last on the NASTRAN card. Note the plot files, PLT1 and PLT2, are not supported on the UNIVAC, therefore a physical tape must be assigned prior to job execution.

Additional information for all NASTRAN card options is given in Section 6.3.1 of the Programmer's Manuat.

The Executive Control Deck begins with the NASTRAN ID card and ends with the CEND card. It identifies the job and the type of solution to be performed. It also declares the general conditions under which the job is to be executed, such as, maximum time allowed, type of system diagnostics desired, restart conditions, and whether or not the job is to be checkpointed. If the job is to be executed with a rigid format, the number of the rigid format is declared along with any alterations to the rigid format that may be desired. If Direct Matrix Abstraction is used, the complete DMAP sequence must appear in the Executive Control Deck. The executive control cards and examples of their use are described in Section 2.2.

\subsection*{2.7 SUBSTRUCTURE CONTROL DECK}

The Substructure Control Deck options provide the user commands needed to control the execution of NASTRAN for automated multi-stage substructure analyses. These commands are input on cards with the same format conventions as are used for the normal NASTRAN Case Control Deck.

Initiation of a substructure analysis is achieved via the Executive Control Deck command (see Section 2.1):

APP DISPLACEMENTT,SUBS
This command directs NASTRAN to automatically generate the required DMAP sequence of alters to the specified Rigid Format necessary to perform the operations requested in the Substructure Control Deck. Following the Substructure Control Deck in the NASTRAN input data stream comes the standard Case Control Deck which specifies the loading conditions, omit sets, method of eigenvalue extraction, element sets for plotting, plot control, and output requests, etc.

The Substructure Control Deck commands are summarized in Table 1 where they are listed under one of three categories according to whether they:
1. Specify the phase and mode of execution
2. Specify the substructuring matrix operations
3. Define and control the substructure operating file (S甲F)

Several commands have associated with them a set of subcommands used to specify additional control information appropriate to the processing requested by the primary command. These subcommands are defined together with the alphabetically sorted descriptions of their primary commands in Section 2.7.3. Examples utilizing these commands are presented in Section 1.

The sections that follow discuss the interaction between the substructure commands and the standard case control commands, the translation of substructure commands into DMAP ALTER sequences, and the format conventions to be used. The bulk data cards provided for substructure analyses are included with the standard bulk data descriptions in Section 2.3 and they are summarized for convenient reference in Table 2.

Table 1. Summary of substructure commands.
A. Phase and Mode Control
\begin{tabular}{ll}
SUBSTRUCTIRE \# & - Defines execution phase (1, ?, or 3) (Required) \\
ØPTIØNS & - Defines matrix ontions (K, M, P, or PA) \\
RUN & - Limits mode of execution (DRY, FD, DRYGQ, STEP) \\
ENDSUBS \(\#\) & - Terminates Substructure Control Deck (Required)
\end{tabular}
B. Substructure Operations
\begin{tabular}{|c|c|}
\hline Cambime & Combines sets of substructures \\
\hline MAME* & - Nlames the resultina substructure \\
\hline TดLERAICE* & - Limits distance between automatically connected arids \\
\hline Cgniect & - !efines sets for manually connected grids and releases \\
\hline Q:IJTPUT & - Specified ontional output results \\
\hline CDIPDNENT & - Identifies component substructure for special processing \\
\hline TRANSFORM & - Defines transformations for named component substructures \\
\hline SY:MTRANSFOR! & - Soecifies symmetry transformation \\
\hline SEARCH & - Limits search for automatic connects \\
\hline EQUIV & - Creates a new equivalent substructure \\
\hline PREFIX* & - Prefix to rename equivalenced lower level substructures \\
\hline REDUCE & - Reduces substructure matrices \\
\hline HAME* & - :lames the resulting substructure \\
\hline BGUNDARY* & - Defines set of retained dearees of freedom \\
\hline QutpIit & - Specifies optional output requests \\
\hline RSAVF. & - Save REDUCE decomposition product \\
\hline SqLVE & - Initiates substructure solution (statics or normal modes) \\
\hline RECDVER & - Recovers Phase 2 solution data \\
\hline SAVE & - Stores solution data on SQF \\
\hline PRINT & - Stores solution and prints data requested \\
\hline DISP & - Displacement outnut renuest \\
\hline SPCF & - Reaction force output request \\
\hline QLAAD & - Applied load output request \\
\hline BASIC & - Rasic substructure for outnut requests \\
\hline S@RT & - Output sort order \\
\hline SUBCASES & - Subcase outnut request \\
\hline MODES & - Modes output request \\
\hline RANIE & - Mode range output request \\
\hline BRECQVER & - Basic suhstructure data recovery, Phase 3 \\
\hline PLDT & - Initiates substructure undeformed nlots \\
\hline
\end{tabular}
\# Mandatory Control Cards * Required Subcommand

Table 1. Summary of substructure commands (continued).

Substructure Command CØMBINE - Combine Sets of Substructures

Purpose: This operation will perform the operations to combine the matrices and loads up to seven substructures into matrices and loads representing a new pseudostructure. Each component structure may be translated, rotated, and reflected before it is connected. The user may manually select the points to be connected or direct the program to connect them automatically.

\section*{Request Format:}
\(\operatorname{CaMbine}\left(\left\{\frac{\text { AUTด }}{\text { MAN }}\right\},\left\{\begin{array}{l}X \\ Y \\ Z\end{array}\right\}\right)\) name1, name2, etc.

Subcommands:
\begin{tabular}{lll}
NAME & \(=\) new name (required) \\
TØLERANCE & \(=\varepsilon \quad\) (required) \\
CØNNECT & \(=n\) & \\
ØUTPUT & \(=m_{1}, m_{2}, \ldots\)
\end{tabular}

Each individual component substructure may have the following added commands:
\begin{tabular}{rl}
CDMPDNENT & \(=\) name \\
TRANSFDRM & \(=m\) \\
\(\cdots\) & \\
SYMTRANSFQRM & \(=\left\{\begin{array}{c}X \\
Y \\
Z \\
X Y \\
X Z \\
Y Z \\
X Y Z\end{array}\right\}\). \\
SEARCH & \(=\) namej, namek, etc.
\end{tabular}

Definitions:
AUTØ/MAN - Defines method of connecting points. If AUTØ is chosen, the physical location of grid points is used to determine connections. If MAN, all connections are defined on CØNCT or CØNCTl bulk data.
\(X, Y, Z\)
- Are used on CØMBINE card for searching geometry data for AUTØ connections. Denotes preferred search direction for processing efficiency.
name1, name2, etc. - Unique names of substructures to be combined. Limits are from one to seven component structures.
new name - Defines name of combination structure (required).
\(\varepsilon \quad-\) Defines limit of distance between points which will be automatically connected (real >0).
\(\mathrm{n} \quad\) - Defines set number of manual connections and releases specified on bulk data cards, CØNCT, CØNCT1, and RELES.
name
- On CØMPØNENT card defines which substructure (name1, etc.) to which the following data is applied.
- Set identification number of TRANS and FTPAN bulk data cards which define the orientation of the substructure and/or selected qrid points relative to new basic coordinates.
\(X, Y, \ldots X Y, \ldots X Y Z\) - Defines axis (or set of axes) normal to the plane(s) of symmetry in the new basic coordinate system. The displacement and location coordinates in these directions will be reversed in sign.
namej
- Limits the automatic connection process such that only connections between component "name" and these structures are produced. Multiple search commands may appear for any one component (see Note 4).
\(m_{1}, m_{2}\), etc. - Optional output requests (see Note 5).
Motes: 1. The automatic connections are produced by first sorting the orid point coordinates in the specified coordinate direction and then searchinn within limited groups of coordinates. If the boundary of a substructure to be connected is alioned primarily along one of the coordinate axes, this axis should be used as the preferred search direction. If the boundary is parallel with, say, the yz plane and all boundary coordinates have a constant \(x\) value, then the search should be specified along either the \(y\) or the \(z\) axis.
2. The transformation (TRAMS) data defines the orientation of the component substructure (old basic) in terms of the new basic coordinate system. All grid points originally. defined in the old basic system will be transformed to the new basic system. Points defined in local coordinate systems will not be transformed unless otherwise specified on a GTRAM card, and their directions will rotate with the substructure.
3. The SYMTRAIFGRI1 (or SYMT) renuest is primarily used to produce symmetric reflections of a structure. This is usually nreceded by an Enlliv command to produce a new, unique substructure name. Note that the results for the new reflected substructure mav reference a left-handed coordinate system wherever local coordinate systems are retained during the transformation. However, those coordinates which are originally in the old basic or are newly snecified via a fiTRA! card are automatically transformed to a right-handed coordinate sustem of the combined structure during the combination process.
4. If any search option is present then all connections between substructures must be specified explicitly with SEARCH commands. Only those combinations specified will be searched for possible connects. Symmetric connects need not be declared (i.e., CDilPDMENT A SEARCH B implies CDIPDNENT B SEARCH A). The user is warned that care must be taken to assure all proner connections of substructures should any SEARCH commands be utilized.
5. The following output requests are available for the COMBINE operation (* marks recommended output options):
\begin{tabular}{|c|c|}
\hline CODE & OUTPIIT \\
\hline 2* & SQF table of contents \\
\hline 3 & CDncti bulk data summary \\
\hline 4 & Cgict bulk data summary \\
\hline 6 & fTRA:I bulk data summary \\
\hline 7* & TRAMS bulk data summary \\
\hline 9 & RELES bulk data summary \\
\hline 11 & Summary of automatically-cenerated connections (in terms of internal point numbers) \\
\hline 12* & Complete connectivity map of final combined pseudostructure defining each internal noint in terms of the arid noint In and component substructure it represents \\
\hline
\end{tabular}

SUBSTRIICTURE CGITTROL DECK
\(\left.\begin{array}{ll}13 & \text { The EOSS item } \\
14 & \text { The BGSS item } \\
15 & \text { The CSTM item } \\
16 & \text { The PLTS item } \\
17 & \text { The LgnS item }\end{array}\right\}\)\begin{tabular}{l}
Output printed is formatted SQF data \\
for the newly created oseudostructure \\
(See Section 1.14 for definitions)
\end{tabular}

Examples:
1. CDMBIME PANEL SPAR

TDLE \(=.0001\)
NAME = SECTA
2. CØMBINE (AUTด,Z) TAMKI, TANK2, BILLKHD

MAME = TANKS
TALE \(=.01\)
CQMPDNENT TARKI
TRAN \(=4\)
SEARCH \(=\) PULKKHD
CØ!PQNEAT TANK?
SEARCH \(=\) BIJLKHD
3. COMBIME (MAN) LHINT, RUING

TØLE \(=1.0\)
NA:价 \(=\) UIING
CAMPANENT LUING
SYMT \(=\gamma\)

\section*{NASTRAN DATA DECK}

\section*{Substructure Command DELETE}

Purpose: To delete individual substructure items from the \(S \emptyset F\).

Request Format:
DELETE name, item, item2, item3, item4, item5

Subcommands: None

Definitions:
name - Substructure name
item1, item2,... - Item names (HØRG, KMTR, LøDS, SØLN, etc.)

Plotes: 1. DELETE may be used to remove from one to five items of any single substructure.
2. For primary substructures, items of related secondary substructures are removed only if the later point to the same data (KMTX, MMTX, etc.).
3. For secondary and image substructures, no action is taken on items of related substructures, i.e., items of equivalenced substructures or higher or lower level substructures.
4. See the EDIT and DESTRØY commands for other means of removing substructure data.

Substructure Command EDIT - Selectively Removes Data from SøF File

Purpose: To permanently remove selected substructure data from the S \(\overline{\mathrm{F}} \mathrm{F}\).

Request Format:
EDIT (opt) name

Subcommands: None

Definitions:
name - Name of substructure.
opt - Integer value reflecting combinations of requests. The sum of the following integers defines the combination of data items to be removed from the \(S \emptyset F\).
\begin{tabular}{rl}
\(\frac{\text { QPT }}{1}\) & Items Removed \\
2 & Stiffness Matrix (KMTX) \\
4 & Mass Matrix (MITX) \\
8 & Soad Data (LØDS, LQAP, PVEC, PAPP) \\
16 & Transformation Matrices defining next level (HQRR, UPRT, PQVE, PQAP, LMTX) \\
32 & All items for the substructure \\
64 & Appended loads data (LDAP, PAPP, PDAP)
\end{tabular}

Notes: 1: The user is cautioned on the removal of the H\&RG matrix data. These matrices are required for the recovery of the solution results.
2. For primary substructures; items of related secondary substructures are removed only if they point to the same data (KMTX, ! IITX, etc.).
3. For secondary and image substructures, no action.is taken on items of related substructures, i.e., items of equivalenced or higher or lower level substructures.
4. If the EDIT feature is to be employed, the user should consider also using SØFØUT to ensure the existence of backup data in the event of an error.
5. See DELETE and DESTRDY for other means of removing substructure data.

Substructure Command EQUIV - Create a New Equivalent Substructure

Purpose: To assign an alias to an existing substructure and thereby create a new equivalent substructure. The new secondary substructure may be referenced independently of the original primary substructure in subsequent substructure commands. However, the data actually used in substructuring operations is that of the primary substructure.

\section*{Request Format:}

EQUIV namel, name2

Subcommands:
PREFIX \(=p\)

Definitions:
p - Single BCD character.
namel - Existing primary substructure name.
name2 - New equivalent substructure name.

Notes: 1. A substructure created by this command is referred to as a secondary substructure.
2. All substructures which were used to produce the primary substructure will produce equivalent image substructures. The new image substructure names will have the prefix \(p\).
3. A DESTRDY operation on the primary: substructure data will also destroy the secondary substructure data and all image substructures.
4. An EDIT or DELETE opeartion on the primary substructure will not remove data of the secondary substructure and vice versa.

Substructure iKode Control ØPTIØNS - Defines Matrix Types

Puroose: This allows the user to selectively control the type of matrices being processed.

Request Format:
ØPTI \(\emptyset \mathrm{NS} \quad \mathrm{ml}, \mathrm{m} 2, \mathrm{~m} 3\)

Subcommands: Hone

Definition:
\(\mathrm{ml}, \mathrm{m} 2, \mathrm{~m} 3\) - Any combination of the characters \(K, 4\), and either \(P\) or PA, where:
\[
\begin{aligned}
& K=\text { Stiffness Matrices } \\
& \because=\text { Mass Matrices } \\
& \mathrm{P}=\text { Load Matrices } \\
& \mathrm{PA}=\text { Appended Load Vectors }
\end{aligned}
\]

Notes: 1. The default depends on the iNASTRAN rigid format:
\begin{tabular}{cc}
Rigid Format & Default \\
1-Statics & \(K, p\) \\
2 - Inertia Relief & \(K, M, P\) \\
3 - Normal Modes & \(K, M\)
\end{tabular}
2. In a Phase 1 execution, Rigid Formats 1 and 3 will provide only two of the matrices, as shown above. In Rigid Format 1 , the mass matrix is not generated. In Rigid Format 3 , the loads matrix is not generated. An error condition will result unless the user adds the required DMAP alters to provide the requested data.
3. Stiffness, mass, or load matrices must exist if the corresponding \(K, M, P\), or \(P A\) option is requested in the subsequent Phase 2 run.
4. Platrices or loads may be modified by rerunning the substructure sequence for only the desired type. However, the old data must be deleted first with the EDIT or DELETE command. See Section 1.14 for the actual item nanies.
5. The append load option, PA, is used when additional load sets are required for solution, and it is not desired to regenerate existing loads. To generate these new load vectors, re-execute all required Phase 1 runs with the new load sets and \(\varnothing\) PTI \(\varnothing N=P A\). Then, repeat the Phase 2 operations with \(\emptyset P T I \emptyset N=P A\). At each step, the new vectors are appended to the existing loads so that all load vectors will be available in the SøLVE stage.
6. Each \(\emptyset P T I \emptyset N\) command overrides the preceding command to control subsequent steps of the substructure process.
7. When executing the S \(\emptyset L V E\) command, the option selected must provide the matrices required for the rigid format being executed.

\section*{Substructure Operating File Declaration PASSW@RD}

Purpose: This declaration is required in the substructure command deck. The password is written on the \(S \emptyset F\) file and is used to protect the file and insure that the correct file is assigned for the current run.

\section*{Request Format:}

PASSWØRD password

Subcommands: None

Definition:
password - BCD password for the \(S \emptyset F\) (8 characters maximum). See the \(S \emptyset F\) file declaration card description.

Substructure Command PLDT - Substructure Plot Command

Purpose: This operation is used to plot the undeformed shape of a substructure which may be composed of several component substructures. This command initiates the execution of a plot at any stage of the substructure process. The actual plot commands; origin data, etc., must be included in the normal case control data.

\section*{Request Format}

PLDT name

Subcommands: None

Definitions:
name - Name of component substructure to be plotted.

Notes: 1. The set of elements to be plotted will consist of all the elements and grid points saved in Phase 1 for each basic substructure comprising the substructures named in the PLØT command. (Only one plot set from each basic substructure is saved in Phase 1.)
2. The structure plotter output request packet, while part of the standard Case Control Deck, are treated separately in Sections 4.2 and 4.3, respectively.

Substructure Command RECØVER- Phase ? Solution Data Recoverv

Purpose: This operation recovers displacements and boundary forces on specified substructures in the Phase 2 execution. The results are saved on the \(S \cap f\) file and they may be printed upon user request. This command should be input after the SDLVE command to store the solution results on the SDF file.

Request Format:
RECQVER s-name

Subcommands:
SAVE = name
PRINT = name
DISP \(=\left\{\begin{array}{c}\text { ALL } \\ n \\ \text { MPNE }\end{array}\right\}\)
SPCF \(=\left\{\begin{array}{c}A L L \\ n \\ M(\emptyset M E\end{array}\right\}\)
\(\emptyset L \emptyset A D=\left\{\begin{array}{c}A L L \\ n \\ \angle Q N E\end{array}\right\}\)
BASIC = b-name
for static analysis only:
SøRT \(=\left\{\begin{array}{l}\text { SUPCASE } \\ \text { SUBSTRUCTURE }\end{array}\right\}\)
SUBCASES \(=\left\{\begin{array}{c}\frac{A L L}{n} \\ \text { M1 } 1 \mathrm{NE}\end{array}\right\}\)
for dynamic analysis only:
SØRT \(=\{\) IИDES SUBSTRUCTURE \(\}\)
MØDES \(=\left\{\begin{array}{c}\frac{A L L}{n} \\ \text { UQNE }\end{array}\right\}\)
RANGE \(=\lambda_{1}, \lambda_{2}\)

Definitions:
s-name - Name of the substructure named in a prior SQLVE command from which the solution results are to be recovered.
name - Name of the component structure for which results are to be recovered. May be the same as "s-name".
b-name - Name of component basic substructure that following output requests are to apply to.
ALL \(\quad\) Output for all points will be produced.
NONE . - No output is to be produced.
n - Set identification number of a SET card anpearing in Case Control. Dnly output for those points, subcases, or modes whose identification number appears on this SET card will be produced.
\(\lambda_{1}, \lambda_{2}-\) Range of eigenvalues for which output will be produced. If only \(\lambda_{1}\) is present the range is assumed to be \(0-\lambda_{1}\).
SUBCASE - All outnut requests for each subcase will appear together.
MODES - All output requests for each mode will appear together.
SUBSTRUCTIJRE - All output requests for each basic substructure will appear together.

Output Requests: Printed output produced by the RECQVER PRINT command can be controlled by requests present in either Case Control or the RECDVER command in the Substructure Control Deck. If no output requests are present, the PRINT commant is equivalent to SAVE and no output will be printed.

The RECQVER output options described above may anpear after any PRINT command. These output requests will then override any Case Control requests. The output requests for any. PRINT command can also be specified for any or all basic component substructures of the results being recovered. These requests will then override any requests in Case Control or after the PRINT command.

Example of output control:
\(\left.\begin{array}{c}\text { RECDVER SQLSTRCT } \\ \text { PRINT ABSC } \\ \text { SQRT }=\text { SUBSTRUCTIJRE } \\ \text { DISP }=A L L \\ D L \emptyset A D=10 \\ \text { BASIC } A \\ \text { DISP }=5 \\ \text { BASIC } C \\ \emptyset L D A D=N \emptyset N E \\ \text { SURCASES }=20 \\ \text { ABC }\end{array}\right\}\) basic defaults for ARDC output

Notes: 1. SAVE will save the solution for substructure "name" on the SøF. PRINT will save and print the solution.
2. If the solution data already exists on the \(S \emptyset F\), the existing data can be printer without costs of regeneration with the PRINT command.
3. For efficiency, the user should order multiple SAVE and/or PRINT commands so as to trace one branch at a time starting from his solution structure.
4. Reaction forces are computed for a substructure only if (1) the substructure is named on a PRIIIT subcommand and, (2) an output request for SPCFORCE exists in the Case Control or the RECOVER command.
5. All set definitions should appear in Case Control to ensure their availability to the RECOVER module.
6. The S \(\emptyset R T\) output option should only appear after a PRIMT command. Any S \(\emptyset R T\) commands appearing after a BASIC command will be ignored.
7. If both a MøDES request and a RANGE request appear for dynamic analysis, both requests must be satisfied for any output to be produced.
8. The media, print or punch, where ourtput is produced is controlled through Case Control requests. If no Case Control requests are present, the default of print is used.

\section*{Examples:}
1. Create a new \(S \emptyset F\) file with a filename of \(S \emptyset F 1\) and catalogue it.

REQUEST (S \(\emptyset F 1, * P F)\)
NASTRAN.
CATALØG(SØF1, username)
789
\(\vdots\)
NASTRAN data cards including the S \(\emptyset F\) declaration --
\(\operatorname{SOF}(1)=S \emptyset F 1,1000, N E W\)
\(\vdots\)
6789
2. Use of an existing SゆF file with a filename of \(A B C D\).

ATTACH (ABCD, username)
NASTRAN.
EXTEND (ABCD)
789
\(\vdots\)
NASTRAN data cards including the S \(\wp F\) declaration --
\(\mathrm{S} \emptyset \mathrm{F}(1)=\mathrm{ABCD}, 1000\)
\(\vdots\)
6789
UNIVAC 1108/1110
The filename used on the S \(\emptyset F\) declaration must specify one of the NASTRAN user files INPT, INP1,..., INP9.

Examples:
1. Create a new SØF file named INPT.
@ASG,U INPT., F///1000
@HDG,N
@XQT *NASTRAN.LINKI
NASTRAN FILES=INPT
NASTRAN data cards including the SøF declaration --
\(\mathrm{S} \emptyset \mathrm{F}(1)=\) INPT, 400 , NEW
\(\vdots\)
@ADD,P *NASTRAN.CØNTRL
@FIN
2. Use of an existing \(\varsigma \emptyset F\) file with a filename of INP7.
@ASG,AX INP7.
@HDG, N
@XQT *NASTRAN.LINKI
NASTRAN FILES=INP7
NASTRAN data cards including the S \(\wp F\) declaration --
S甲F (1)=INP7,250
\(\vdots\)
©AOD,P *NASTRAN.CONTRL
@FIN

The file name used on the SQF declaration must specify a FØRTRAN unit by using the form FTxx from the table of allowable file names shown below which correspond to the direct access devices that are supported under the S \(\emptyset F\) implementation. The allocation of space for the direct access FQRTRAN data sets can be made in terms of blocks, tracks or cylinder. If the allocation is in blocks, the block size in the space allocation corresponds to (BUFFSIZE-4)*4 bytes where BUFFSIZE is the GIN \(\varnothing\) buffer size found in SYSTEM(1).

In order to use the SQF on IBM computers, it is necessary to specify the PARM on the EXEC PGM=NASTRAN card. This PARM sets the amount of core (in bytes) NASTRAN releases to the operating system for system use and FQRTRAN buffers. The following formula should be used to determine the value for the PARM:
\[
\text { PARM }=\left\{\begin{array}{l}
\left(4096+m^{\star}((\text { BUFFSIZE-4 })+64)\right) \star 4 \text { single buffering, BUFNN }=1 \\
\left(4096+m^{\star}(2 *(\text { BUFFSIZE-4) }+96)) * 4 \text { double buffering, BUFN } \varnothing=2\right.
\end{array}\right.
\]
where \(m=\) number of physical datasets comprising the \(S \emptyset F\).
Examples:
1. Create a new SøF data set with a filename of FTll.
//NSG \(\emptyset\) EXEC NASTRAN, PARM.NS='C \(\emptyset R E=(, 24 K)\) '
//NS.FTIIF001 DD DSN = User Name, UNIT=2314, V \(\emptyset L=S E R=\) User No.,
// DISP=(NEW,KEEP), SPACE=(TRK,(1000)), DCB=BUFN \(=1\)
//NS.SYSIN DD *
NASTRAN BUFFSIZE \(=1826\)
:
NASTRAN data cards including the S \(\emptyset F\) declaration --
\(\mathrm{SOF}(1)=\mathrm{FT} 11\), , NEW
!
/*
Notes:
1. The S \(\emptyset F\) parameters - filename, filesize, and (\(\emptyset L D / N E W\)) are positional parameters. The filesize parameter is not required for IBM \(360 / 370\) computers, but its position must be noted if NEW is coded for the SQF file.
2. The dataset disposition must be DISP \(=\) (NEW, KEEP) when the S@F dataset is created. However, an existing \(S \emptyset F\) dataset may be re-initialized by coding NEW on the \(S \emptyset F\) declaration in the NASTRAN data deck. In this case, the disposition on the DD card must be coded DISP \(=\emptyset\) LD.
2. Use of an existing SøF dataset with a filename of FT23.
//NS EXEC NASTRAN, PARM.NS='C \(\emptyset\) RE \(=(, 72 K)^{\prime}\)
//NS.FT23F001 DD DSN = User Name, UNIT=3330, VøL=SER=User No.,
// \(D C B=B U F N \emptyset=1\), DISP= \(\emptyset L D\)
//NS.SYSIN DD *
NASTRAN BUFFSIZE=3260
\(\mathrm{S} 0 \mathrm{~F}(1)=\mathrm{FT} 23\)
\(\vdots\)
/*

SUBSTRUCTURE CONTROL DECK
\begin{tabular}{|c|c|c|c|}
\hline SøF File Name & FyRTRAN Unit DDName & S@F File Name & FØRTRAN Unit DDName \\
\hline FT02 & FT02F001 & FT16 & FT16F001 \\
\hline FT03 & FT03F001 & FT17 & FT17F001 \\
\hline FT08 & FT08F001 & FT18 & FT18F001 \\
\hline FT09 & FT09F001 & FT19 & FT19F001 \\
\hline FT10 & FT10F001 & FT20 & FT20F001 \\
\hline FT11 & FTllF001 & FT21 & FT21F001 \\
\hline FT 12 & FT12F001 & FT22 & FT22F001 \\
\hline FT15 & FT15F001 & FT23 & FT23F001 \\
\hline Note: A & \(10 \mathrm{~S} p \mathrm{~F}\) file & d in any & ubstructuring \\
\hline
\end{tabular}

\section*{SUBSTRUCTURE CONTROL DECK}

Substructure Command SøFPRINT

Purpose: To print selected contents of the \(\$ \varnothing F\) file for data checking purposes.

\section*{Request Format:}

S@FPRINT(opt) name, iteml, item2, etc.

Subcommands: None

Definitions:
\begin{tabular}{rl}
opt \(\quad\) integer, & control option, default \(=0\). \\
opt & \(=1:\) prints data items only \\
opt & \(=0:\) prints table of contents \\
opt & \(=-1:\) prints both
\end{tabular}
name
- Name of substructure for which data is to be printed.
iteml, item2 - S \(\emptyset \mathrm{F}\) item name, used only when opt \(\neq 0\), limit \(=5\) (See Table 2, Section 1.14).

Notes: 1. If only the table of contents is desired (opt \(=0\)), this command may be coded:

\section*{SOFPRINT TOC}

On the page heading for the table of contents, the labels are defined as follows:
IS - Image substructure flag. 0 - not an image substructure
1 - image substructure
SS - Secondary substructure number (successor)
PS - Primary substructure number (predecessor)
LL - Lower level substructure number
CS - Combined substructure number
HL - Higher level substructure number

Substructure Command SØLVE - Substructure Solution

Purpose: This command initiates the substructure solution phase. The tables and matrices for the pseudostructure are converted to their equivalent NASTRAN data blocks. The substructure grid points referenced on bulk data cards SPCS, MPC, etc., are converted to pseudostructure scalar point identification numbers. The NASTRAN execution then proceeds as though a normal structure were being processed.

Request Format:
S@LVE name

Subcommands: None (Case Control and Bulk Data decks control the operations.)

\section*{Definition:}
name - Name of pseudostructure to be analyzed with NASTRAN.

Notes: 1. Before requesting a SøLVE, the user should check to be sure that all necessary matrices are available on the SøF file. For instance, loads and stiffness matrices are necessary in statics analysis. Mass and stiffness matrices are necessary in eigenvalue analysis, etc.

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.2 DMAP RULES}

Grammatically, DMAP instructions consist of two types: Executive Operation Instructions and Functional Module Instructions. Grammatical rules for these two types of instructions will be discussed separately in subsequent sections.

Functional modules are arbitrarily classified as structural modules, matrix operation modules, utility modules, or user-generated modules.

The DMAP sequence itself consists of a series of DMAP instructions or statements, the first of which is BEGIN or XDMAP and the last of which is END. The remaining statements consist of Executive Operation instructions and Functional llodule calls.

\subsection*{5.2.1 DMAP Rules for Functional Module Instructions}

The primary characteristic of the Functional Module DMAP instruction is its prescribed format. The general form of the Functional Module DMAP statement is:

MOD
\[
\mathrm{I} 1, \mathrm{I} 2,---, \mathrm{Im} / \varnothing 1, \emptyset 2,---, \varnothing \mathrm{n} / \mathrm{a} 1, \mathrm{~b} 1, \mathrm{p} 1 / \mathrm{a} 2, \mathrm{~b} 2, \mathrm{p} 2----/ \mathrm{az}, \mathrm{bz}, \mathrm{pz} \$
\]
where \(M \emptyset D\) is the DMAP Functional Module name, Ii; \(i=1, m\) are the Input Data Block names, \(\theta_{i} ; \mathbf{i}=1, n\) are the Øutput Data Block names, and ai,bi,pi; \(\mathbf{i}=1, z\) are the Parameter Sections.

In the general form shown above, commas (,) are used to separate several like items while slashes (/) are. used to separate sections from one another. The module name is separated from the rest of the instruction by a blank or a comma (,). The dollar sign. (\$) is used to end the instruction and is not required unless the instruction ends in the delimiter / . Blanks may be used in conjunction with any of the above delimiters for ease of reading.

A functional module communicates with other modules and the executive system entirely through its inputs, outputs and parameters. The characteristics or attributes of each functional module are contained in the Module Properties List (MPL) described in Section 2.4 of the Programmer's Manual and are reflected in the DMAP Module Descriptions that follow in Section 5.3 and in the Module Functional Descriptions contained in Chapter 4 of the Programmer's Manual. The module name is a BCD value (which consists of an alphabetic character followed by up to seven additional alphanumeric characters) and must correspond to an entry in the MPL. A Data Block name may be either a \(B C D\) value or null. The absence of a \(B C D\) value indicates that the Data Block is not needed for a particular application.
5.2.1.1 Each Functional Module DMAP statement must conform to the MPL regarding:
1. Name spelling
2. Number of input data blocks
3. Number of output data blocks
4. Number of parameters
5. Type of each parameter

Note: See Sections 5.2.1.3 and 5.2.1.4 for allowable exceptions to these rules.

\subsection*{5.2.1.2 Functional Module Names}

The only functional Module DMAP names allowed are those contained in the MPL. Therefore, if a user wishes to add a module, he must either use one of the User Module names provided (see Section 5.6) or add a name to the liPL. The Programmer's Manual should be consulted when adding a new module to NASTRAN.

\subsection*{5.2.1.3 Functional Module Input Data Blocks.}

In most cases an input data block should have been previously defined in a DMAP program before it is used. However, there may be instances in which a module can handle, or may even expect, a data block to be undefined at the time the module is initially called. An input data block is previously defined if it appears as an output data block in a previous DMAP instruction, as output from the Input File Processor, any user-input (via Bulk Data Cards) DMI or DTI data block name, or exists on the 01d Problem Tape in a restart problem. Although the number of data blocks is prescribed, if any number of final data blocks are null, they may be omitted from the section. For example, the module TABPT, which uses five input data blocks, may be defined by:
\[
\text { TABPT GEØM1,,,, // } \$
\]
or

\section*{TABPT GEQMI // \$}

A potentially fatal error message (See Section 5.2.1.7) will be issued at compilation time to warn the user that a discrepancy in the data block name list has been detected. This is also true in the event that a previously undefined data block is used as input. Also, see the "error-level" option on the XDMAP compiler option card which may be invoked by the user to terminate execution in the event of such errors.

\subsection*{5.2.1.4 Functional Module Output Data Blocks}

In general, a data block name will appear as output only once. However, there are cases in which an output data block may be of no subsequent use in a DMAP program. In such a case the name may be used again, but caution should be used when employing such techniques. Although the number of output data blocks is prescribed, the data block name list may be abbreviated in the manner of Section 5.2.1.3. Potentially fatal error messages will warn the user if possible ambiguities may occur from these usages.

\subsection*{5.2.1.5 Functional Module Parameters}

Parameters may serve many purposes in a DMAP program. They may pass data values into and/or out from a module, or they may be used as flags to control the computational flow within the module or the DMAP program. There are two allowable forms of the parameter section of the DMAP instruction. The first explicitly states the attributes of the parameters, while the second is a briefer simplified specification. The general form of the formal parameter section is
/ai,bi,pi /
where the allowable parameter specifications are:
\[
\begin{aligned}
& a i= \begin{cases}v & \begin{array}{l}
\text { Parameter value is variable and may be changed } \\
\text { by the module dur.ing execution. }
\end{array} \\
C . & \begin{array}{l}
\text { Parameter value is prescribed initially by the } \\
\text { user and is an unalterable constant. }
\end{array} \\
S & \begin{array}{l}
\text { Parameter is of type } V, \text { and will be saved } \\
\text { automatically at completion of module. } \\
\\
\end{array} \quad \begin{array}{l}
\text { See description of the SAVE instruction. }
\end{array}\end{cases} \\
& b i= \begin{cases}y & \text { Initial parameter value may be specified on a } \\
& \text { PARAM Bulk Data card. } \\
N \quad & \text { Initial parameter value may not be specified on } \\
& \text { a PARAM Bulk Data card. }\end{cases} \\
& \mathrm{pi}= \begin{cases}\text { PNAME }=-v & \begin{array}{l}
\text { PNAME is a BCD name selected by the user to } \\
\text { represent a given parameter. }
\end{array} \\
\text { PNAME } & \\
v & \end{cases}
\end{aligned}
\]

The default values for ai and bi depend on the value given for pi, as described below. The three forms available for pi require additional clarification. The symbol ' \(v\) ' represents an
actual numeric value for the parameter and may be used only when \(\mathrm{ai}=\mathrm{C}\) and \(\mathrm{bi}=\mathrm{N}\). The other forms will be clarified by the examples found at the end of this section. Each parameter has an initial value which is established when the DMAP sequence is compiled during execution of the NASTRAN preface. The means by which initial values are established for all DMAP parameters will. be explained by the symbolic examples that follow. The value used at execution time may differ from the initial value if and only if the module changes the value, if ai = "V", and the parameter name appears in a SAVE (see Section 5.7) instruction immediately following the module.

The formal parameter specifications defined above can, in frequently encountered instances, be greatly simplified. Situations where these simplifications may be used are:
1. / C,N,v / can be written as /v/

The value ' \(v\) ' is written exactly as it would be in the formal specification with the exception of BCD constant parameters, in which case the BCD string is, enclosed by : asterisks, i.e., / *STRING* / .
2. / V,N, PNAME / can be written as / PNAME /
/V,N, PNAME=V / can be written as / PNAME=v / .
Again, in the case where the value ' \(v\) ' appears, it is written exactly as in the case of the formal specification. In this case, \(B C D\) strings are not delimited by asterisks.
3. / (default value) / can be written as //

If a particular parameter has a predefined default value specified in the Module Properties List (MPL), and the user wishes to choose this value, then it is necessary only to code successive slashes. If a parameter does not have a default value, an error message will be issued.

Six parameter types are available and the type of each parameter is given in the MPL and may not be changed. The types and examples of values as they would be written in DMAP are given below:
Parameter Type
Integer
Real.
BCD
Double Precision
Complex Single Precision
Complex Double Precision

Value Examples
\begin{tabular}{ccc}
7 & -2 & 0 \\
-3.6 & \(2.4+5\) & \(0.01-3\) \\
VARO1 & STRING3 \(\quad\) B3R56 \\
\(2.5 D-3\) & \(1.354 D 7\) \\
& & \((1.0,-3.24)\) \\
& & \((1.23 D-2,-3.67 D 2)\)
\end{tabular}

Many possible forms of the parameter section may be used. The following examples will help to clarify the possibilities.
// This is equivalent to / \(C, N, v /\) where \(v\) is the MPL default value which must exist.
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{\(/ \mathrm{C}, \mathrm{Y}, \mathrm{V}\)} & Constant input parameter \\
\hline & Examples: / C, N, 0 / \(\mathrm{C}, \mathrm{N}, \mathrm{BKLO} / \mathrm{C}, \mathrm{N},(1.0,-1 . C)\) \\
\hline & \[
/ 0 / * \text { BKLO }^{*} /(1.0,-1.0)
\] \\
\hline & In the examples shown, both in formal and simplified form, the values 0 (integer), BKLO (BCD), and 1.0-il.0 (complex single precision) are defined. \\
\hline / C,Y,PNAME & Constant input parameter; MPL default value is used unless a PARAM Bulk Data card referencing. PNAME is present. Error condition is detected if either no PARAM card is present or if no MPL default value exists. \\
\hline / C,Y,PNAME=v & Constant input parameter; the value \(v\) is used unless a PARAM Bulk Data card referencing PNAME is present. \\
\hline \multirow[t]{2}{*}{/ V.,Y;PNAME or / V,Y,PNAME=v} & Variable parameter; may be input, output, or both; initial value is the first of 1. value from the most recently executed SAVE instruction, if any \\
\hline & \begin{tabular}{l}
2. value from PARAM. Bulk Data card referencing PNAME will be used if present in Bulk Data Deck \\
3. \(v\), if present in DMAP instruction \\
4. MPL default value, if any \\
5. 0
\end{tabular} \\
\hline & If: a parameter is output from a functional module and if the output value is to be carried forward, a SAVE instruction must immediately follow the DMAP instruction in which the parameter is generated. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
/ V,N,PNAME \\
or \\
/ PNAME
\end{tabular}} & Variable parameter; may be input, output, or both; initial value is the first of 1. value from the most recently executed SAVE instruction, if any \\
\hline & 2. v, if present in DMAP instruction \\
\hline or & 3. MPL default value, if any \\
\hline / V,N,PNAME=V & 4. 0 \\
\hline or PNAME = v & \\
\hline
\end{tabular}

\subsection*{5.2.1.6 DMAP Compiler Options - The XDMAP Instruction (see Section 5.7)}

The user has the ability to elect several options when compiling and executing a DMAP program by including an XDMAP compiler option instruction in the program. Similarly, the Rigid Formats may be altered by replacing the BEGIN statement with XDMAP to invoke the same options. The available options are:
```

G $\emptyset$ (default) or $N \emptyset G \emptyset$

```

The \(G \emptyset\) option compiles and executes the program, while \(N \emptyset G \emptyset\) terminates the job at the con-
clusion of compilation.
LIST or NQLIST (default).
This option produces a DMAP program source listing.
DECK or N@DECK (default)
This option will produce a punched card deck of the program.
QSCAR or NOQSCR (default)
If the \(\emptyset S C A R\) option is selected, a complete listing of the Operation Sequence Control Array will be given.

REF or NפREF (default)
This option will product a complete cross reference of variable parameters, data block names, and module calls for the DMAP program.

ERR=0 or 1 or \(\underline{2}\) (default)
This option specifies the error level, '0!' for WARNING, '1' for PQTENTIALLY FATAL, and '2' for FATAL ERROR MESSAGE, at which termination of the job will occur, see Section 5.2.1.7 for further explanation.

The complete description of the XDMAP card may be found in the DMAP Module Description section. Note that an XDMAP card need not appear when all default values are elected, but may be replaced with a BEGIN instruction.

\subsection*{5.2.1.7 Extended Error Handling Facility}

There are three levels of error messages generated during the compilation of a DMAP sequence. These levels are WARNING MESSAGE, PØTENTIALLY FATAL ERR \(\emptyset R\) MESSAGE, and FATAL ERRØR MESSAGE. The user has, through available compiler options, the ability to specify the error level at which the job will be terminated. (See Section 5.2.1.6 for the manner of specification.) The class of \(P \emptyset T E N T I A L L Y\) FATAL ERR \(\emptyset R\) MESSAGES is generated by certain compiler conveniences which, if not fully understood by the user, could cause an erroneous or incorrect execution of the DMAP sequence. The default value for the error level is that of the FATAL ERRDR.

\subsection*{5.2.2 DMAP Rules for Executive Operation Instructions}

Each executive operation statement has its own format which is generally open-ended, meaning the number of inputs, outputs, etc. is not prescribed: Executive operation instructions or statements are divided into general categories as follows:
1. Declarative instructions FILE, BEGIN, LABEL, XDMAP, and PRECHK which aid the DMAP compiler and the file allocator as well as provide user convenience.
2. Instructions CHKPNT, EQUIV, PURGE, and SAVE which aid the NASTRAN Executive System in allocating files, interfacing between functional modules, and in restarting a problem.
3. Control instructions REPT, JUMP, CØND, EXIT, and END which control the order in which DMAP instructions are executed.

The rules associated with the executive operation instructions are distinct for each instruction and are discussed individually in Section 5.7.

\section*{DMAP RULES}

\subsection*{5.2.3 Techniques and Examples of. Executive Module Usage}

Even though the DMAP program may be interpretable by the DMAP compiler it does not guarantee that the program will yield the desired results. Therefore, this section is provided to acquaint the DMAP programmer with techniques and examples used in writing DMAP programs. In particular, the instructions REPT, FILE, EQUIV, PURGE, and CHKPNT will now be discussed in some detail. The DMAP modules available are listed in Section 5.3.

\subsection*{5.3 INDEX OF DMAP MODULE DESCRIPTIONS}

Descriptions of all nonstructurally oriented Modules are contained herein, arranged alphabetically by category as indicated by the lists below. Descriptions for the structurally oriented modules are contained in Section 4 of the Programmer's Manual. They are listed here in order to provide a complete list of all NASTRAN Modules. Additional information regarding nonstructurally oriented modules is also given in Section 4 of the Programmer's Manual.

Matrix Operation Modules (12)
(See Section 5.4)
\begin{tabular}{ll}
ADD & PARTN \\
ADD5 & SMPYAD \\
DECØMP & S \(\emptyset V E\) \\
FBS & TRNSP \\
MERGE & UMERGE \\
MPYAD & UPARTN
\end{tabular}

User Modules (14)
(See Section 5.6)
\begin{tabular}{|c|c|}
\hline DDR & MODA \\
\hline DUMMDDI & MODB \\
\hline DUMMDD2 & MODC \\
\hline DUMM0D3 & QUTPUT \\
\hline DUMMDD4 & ØUTPUT4 \\
\hline INPUTT3 & PARTVEC \\
\hline INPUTT4 & XYPRNPLT \\
\hline
\end{tabular}

Utility Modules (25)
(See Section 5.5)
\begin{tabular}{ll}
CQPY & PARAMR \\
DIAGØNAL & PRTPARM \\
INPUT & PVEC \\
INPUTT1 & SCALAR \\
INPUTT2 & SEEMAT \\
MATGPR & SETVAL \\
MATPRN & SWITCH \\
MATPRT & TABPCH \\
QUTPUT1 & TABPRT \\
QUTPUT2 & TABPT \\
QUTPUT3 & TIMETEST \\
PARAM & VEC \\
PARAML &
\end{tabular}

Executive Operation Modules (14)
(See Section 5.7)
\begin{tabular}{ll}
BEGIN & JUMP \\
CHKPNT & LABEL \\
CØND & PRECHK \\
END & PURGE \\
EQUIV & REPT \\
EXIT & SAVE \\
FILE & XDMAP
\end{tabular}

Structurally Oriented Modules (68)
(See Section 4 of the Programmer's Manual)
\begin{tabular}{|c|c|c|c|}
\hline BMG & GPCYC & PLA4 & SMA 1 \\
\hline CASE & GPFDR & PLDT & SMA2 \\
\hline CEAD & GP1 & PLTSET & SMA3 \\
\hline DDR1 & GP2 & PLTTRAN & SMP1 \\
\hline DDR2 & GP3 & PRTMSG & SMP2 \\
\hline DDRMM & GP4 & RANDGM & SSGHT \\
\hline DPD & GPSP & RBMG 1 & SSG1 \\
\hline DSCHK & GPWG & RBMG2 & SSG2 \\
\hline DSMG1 & MCE 1 & RBMG3 & SSG3 \\
\hline DSMG2 & MCE2 & RBMG4 & SSG4 \\
\hline EMA & MTRXIN & READ & TAI \\
\hline EMG & \(\emptyset F P\) & RMG & TRD \\
\hline FA1 & \(\emptyset \mathrm{PTPR1}\) & SCEI & TRHT \\
\hline FA2 & ØPTPR2 & SDR1 & TRLG \\
\hline FRRD & PLAT & SDR2 & VDR \\
\hline GKAD & PLA2 & SDR3 & XYPLøT \\
\hline GKAM & PLA3 & SDRHT & XYTRAN \\
\hline
\end{tabular}
5.3-1 (7/4/76)

In the examples that accompany each description, the following notation is used:
1. Upper case letters and special symbols in the DMAP calling sequence must be punched as shown except for data block names, parameter names, and label names which are symbolic.
2. Lower case letters represent constants whose permissible values are indicated in the descriptive text.

Due to the many possible forms which may be used when writing parameters, a variety of arbitrarily selected forms will be used in the examples. This does not imply that the form. used. in any example is required or that it is the only acceptable form allowed.

The terms form, type, and precision are used in many functional module descriptions. By form is meant one of the following:
\begin{tabular}{ll}
Form & \multicolumn{1}{c}{ Meaning } \\
\hline 1 & Square \\
2 & Rectangular \\
6 & Symmetric
\end{tabular}

By type is meant one of the following:
\begin{tabular}{cc}
Type & Meaning \\
1 & Real, single precision \\
2 & Real, double precision \\
3 & Complex, single precision \\
4 & Complex, double precision
\end{tabular}

By precision is meant one of the following:
\begin{tabular}{cc}
Precision Indicator & Meaning \\
1 & Single precision numbers \\
2 & Double precision numbers
\end{tabular}

\subsection*{5.5 UTILITY MODULES}
\begin{tabular}{|c|c|c|}
\hline Module & Basic Function & Page \\
\hline COPY & Generate a physical copy of a data block & 5.5-2 \\
\hline DIAG®NAL & Strip diagonal from matrix & 5.5-2a \\
\hline INPUT & Generate most of bulk data for selected academic problems & 5.5-3 \\
\hline INPUTTI & Read data blocks from GINØ-written user tapes & 5.5-4 \\
\hline INPUTT2 & Read data blocks from FORTRAN-written tapes & 5.5-10 \\
\hline MATGPR & Print Matrices with Grid Point Identification & 5.5-13 \\
\hline MATPRN & Print Matrices & 5.5-15 \\
\hline MATPRT & Print Matrices associated only with geometric grid points & 5.5-16 \\
\hline QUTPUT1 & Write data blocks via GINø onto user tapes & 5.5-17 \\
\hline QUTPUT2 & Write data blocks via FØRTRAN onto user tapes & 5.5-24 \\
\hline ØUTPUṪ3 & Punch matrices onto DMI cards & 5.5-28 \\
\hline PARAM & Manipulate Parameter values & 5.5-30 \\
\hline PARAML & Selects parameters from a user input matrix or table & 5.5-32 \\
\hline PARAMR & Performs specified arithmetic, logical and conversion operations on real or complex parameters & 5.5-33 \\
\hline PRTPARM & Print parameter values and DMAP error & 5.5-35 \\
\hline PVEC & Substructure Analysis Partitioning Vector Data Generator & 5. 5-37 \\
\hline SCALAR & Convert Matrix element to parameter & 5.5-39 \\
\hline SEEMAT & Generate Matrix Topology Displays & 5.5-40 \\
\hline SETVAL & Set parameter values & 5. 5-43 \\
\hline SWITCH & Interchange two data block names & 5.5-43a \\
\hline TABPCH & Punch NASTRAN tables on DIT cards & 5.5-44 \\
\hline TABPRT & Print selected table data blocks using readable format & 5.5-45 \\
\hline TABPT & Print table data blocks & 5.5-47 \\
\hline TIMETEST & Provides NASTRAN system timing data & 5.5-48 \\
\hline VEC & Generate partitioning vector & 5.5-49 \\
\hline
\end{tabular}

Utility modules are an arbitrary sub-division of the Functional Modules and are used to output matrix and table data blocks and to manipulate parameters.

The data block names corresponding to the various matrix and table data blocks used in the. Rigid Format DMAP sequences may be found in Section 3 or in the NASTRAN mnemonic dictionary, Section 7.

\section*{DIRECT FATRIX ABSTRACTION}
I. NAME: CØPY
II. PURPOSE: To generate a physical copy of a data block.
III. DMAP CALLING SEQUENCE:

CDPY DB1 / DB2 / PARAM \$
IV. INPUT DATA BLOCKS:

DB1 - Any NASTRAN data block
V. OUTPUT OATA BLOCKS:

DB2 - Any valid NASTRAN data block name
VI. PARAMETERS:

PARAM - If PARAM < 0 the copy will be performed - integer, input, default \(=-1\).
VII. : METHOD: If PARAM \(\geq 0\) a return is made, otherwise a physical copy of the input data block is generated.
VIII. REMARKS:
1. The input data block may not be purged.

\section*{UTILITY :IODULES}
I. NAME: DIAGONAL (Strip diagonal from matrix)
II. PURPOSE: To remove the real part of the diagonal from a matrix, raise each term to a specified power, and output a column vector or square symmetric matrix.
III. DMAP CALLING SEQUENCE:

DIAGØNAL A/B/C,Y,ØPT=CØLUMN/V,Y,PØWER=1. \$
IV. INPUT DATA BLOCKS:

A - can be any square or diagonal matrị.
V. OUTPUT DATA BLOCKS:
\(B\) - is either a real column vector or symmetric matrix containing the diagonal of \(A\).
VI. PARAMETERS:

ØPT - Input-bcd, default=CØLUMN
\(='\) CøLUMN' - produces column vector output (labeled as a general rectangular matrix)
='SQUARE' - produces square matrix (labeled a symmetric matrix)
PQWER - Input-real single precision, default \(=1\). Exponent to which the real part of each diagonal element is raised.
VII. REMARKS:
1. The module checks for special cases of \(P \emptyset W E R=0.0,0.5,1.0\), and 2.0.
2. The precision of the output matrix matches the precision of the input matrix.
I. NAME: SETVAL (Set Values)
II. PURPQSE: Set DMAP Parameter variable values equal to other DMAP Parameter variables or DMAP Parameter constants.
III. DMAP CALLING SEQUENCE:
SETVAL //V,N,X1/V,N,A1/ \begin{tabular}{r}
\(V, N, X 2 / V, N, A 2 /\) \\
\(V, N, X 3 / V, N, A 3 /\) \\
\(V, N, X 4 / V, N, A 4 /\) \\
\(V, N, X 5 / V, N, A 5 \$\)
\end{tabular}
IV. INPUT DATA BLDCKS: None
v. ØUTPUT DATA BLØCKS: None
VI. PARAMETERS:

X1, X2, X3, X4, X5 Output, integers, variables
\(A 1, A 2, A 3, A 4, A 5 \quad\) Input, integers; default values \(=1\), variables or constants.
VII. METH \(\emptyset\) : This module sets \(X 1=A 1, X 2=A 2, X 3=A 3, X 4=A 4\), and \(X 5=A 5\). Only two parameters need be specified in the calling sequence (\(X 1\) and \(A 1\)).
VIII. REMARKS:
1. A SAVE instruction must immediately follow the SETVAL instruction if the output parameter values are to be subsequently used.
2. See PARAM for an alternate method of defining parameter values.
3. As an example, the statements

SETVAL //V,N,XI / V,N,A1 / V,N,X2 / C,N, 3 \$
SAVE \(\quad X 1, \times 2 \$\)
are equivalent to the statements
PARAM // \(\mathrm{C}, \mathrm{N}, \mathrm{ADD} / \mathrm{V}, \mathrm{N}, \mathrm{XI} / \mathrm{V}, \mathrm{N}, \mathrm{Al} / \mathrm{C}, \mathrm{N}, \mathrm{O} \$\)
PARAM // \(C, N, N \emptyset P / V, N, X 2=3 \$\)

DIRECT IATRIX ABSTRACTION
I. NAME: SWITCH
II. PURPOSE: To interchange two data block names.
III. DMAP CALLING SEQUENCE:

SWITCH DBT,DB2 // PARAM \$
IV. INPUT DATA BLOCKS:
\(\left.\begin{array}{l}\text { DB1 } \\ \text { D82 }\end{array}\right\}\) Any NASTRAN data blocks
V. OUTPUT DATA BLOCKS: None
VI. PARAMETERS:

PARAM - If PARAM < 0 the switch will be performed - integer, input, default=-1.
VII. METHOD: If PARAM \(\geq 0\) a return is made, otherwise the names of the data blocks are interchanged. All attributes of the data within the blocks remains constant, only the names are changed.
VIII. REMARKS:
1. Neither input data block may be purged.
2. This option is of use in iterative DMAP operations.
I. NAME: TABPCH (Table Punch)
II. PURPOSE: To punch NASTRAN tables onto- DTI cards in order to allow transfer of data from one NASTRAN run to another, or to allow user postprocessing.
III. DMAP CALLING SEQUENCE:

TABPCH TAB1,TAB2,TAB3,TAB4,TAB5 // C,N,A1/C,N,A2/C,N,A3/C,N,A4/C,N,A5\$
IV. INPUT DATA BLOCKS:

TABI
TAB2
TAB3 Any NASTRAN Tables
TAB4
TAB5
V. OUTPUT DATA BLOCKS:

None - All output is punched onto DTI cards.
VI. PARAMETERS:

A1, A2, A3, A4, A5 -- Input - BCD - Defaults are 'AA', 'AB', 'AC', 'AD', 'AE'. These parameters are used to form the first two characters (columns 74,75) of the continuation field for each table respectively.
VII. REMARKS:
1. Any or all tables may be purged.
2. Integer and \(B C D\) characters will be punched onto single-field cards. Real numbers will be punched onto double-field cards. Their formats are I8, 2A4, El6.9.
3. Up to 99,999 cards may be punched per table.
4. Currently, twice the entire record must fit in open core.
5. Tables with 1 word BCD values (ELSETS) cannot be punched correctly.
VIII.

EXAMPLES:
TABPCH EST,,,, // C,N,ES \$ will punch the EST onto cards with a continuation neumonic of \(+E S_{b b b b}{ }^{i}\) (where \(i\) is the sequence number).

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.7 EXECUTIVE OPERATION MODULES}
\begin{tabular}{|c|c|c|}
\hline Module & Basic Function & Page \\
\hline BEGIN & Always first in DMAP; begin DMAP program & 5.7-2 \\
\hline CHKPNT & Write data blocks on checkpoint tape if checkpointing & 5.7-3 \\
\hline COND & Conditional forward jump & 5.7-4 \\
\hline END & Always last in DMAP; terminates DMAP execution & 5.7-5. \\
\hline EQUIV & Assign another name to a data block & 5.7-6 \\
\hline EXIT & Conditional DMAP termination. & 5.7-7 \\
\hline FILE & Defines special data block characteristics to DMAP compiler & 5.7-8 \\
\hline JUMP & Unconditional forward jump & 5.7-9 \\
\hline LABEL & Defines DMAP location & 5.7-10 \\
\hline PRECHK & Predefined automated checkpoint & 5.7-10a \\
\hline PURGE & Conditional data block elimination & 5.7-11 \\
\hline REPT & Repeat a series of DMAP instructions & 5.7-12 \\
\hline SAVE & Save value of output parameter & 5.7-13 \\
\hline XDMAP & Controls the DMAP compiler options & 5.7-14 \\
\hline
\end{tabular}

All modules classified as Executive Operation Modules are individually described in this section. Additional discussions concerning the interaction of the Executive Modules with themselves and with the NASTRAN Executive System are contained in Section 5.2.3.
I. NAME: BEGIN (Begin DMAP Program)
II. PURPOSE: BEGIN is a declarative DMAP instruction which may be used to denote the beginning of a DMAP program.
III. DMAP CALLING SEQUENCE:

BEGIN \$
IV. REMARKS:
1. BEGIN is a non-executable DMAP instruction which is used only by the DMAP compiler for information purposes.
2. Either a BEGIN card or an XDMAP card is required when selecting APP DMAP in the Executive Control Deck. This is followed by DMAP instructions up to and including the END card.
3. The use of BEGIN implicitly elects all compiler defaults. (See XDMAP instruction.)

\section*{EXECLTITVE OPERATION MODULES}
I. NAME: CHKPNT (Checkpoint)
II. PURPOSE: Causes data blocks to be written on the New Problem Tape (NPTP) to enable the problem to be restarted with a minimum of redundant processing.
III. DMAP CALLING SEQUENCE:

CHKPNT D1,D2,..., DN \$
where \(\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{DN}(\mathrm{N} \geq 1)\) are data blocks to be copied onto the problem tape for use in restarting problem.

\section*{IV. RULES:}
1. A data block to be checkpointed must have been referenced in a previous PURGE, EQUIV, or functional module instruction.
2. CHKPNT cannot be the first instruction of a DMAP loop.
3. Data Blocks generated by the Input File Processor (including DMI's and DTI's) should not be checkpointed since they are always regenerated on restart.
4. Checkpointing only takes place when a New Problem Tape (NPTP) is set up and the Executive Control Card CHKPNT YES appears in the Executive Control Deck. Otherwise, the CHKPNT instructions are ignored.
5. For each data block that is successfully checkpointed, a card of the restart dictionary is punched which gives the critical data for the data block as it exists on the Problem Tape.
6. For data blocks that have been purged or equivalenced, an entry is made in the restart dictionary to this effect. In these cases data blocks are not written on the Problem Tape.
V. REMARKS:
1. See the PRECHK instruction for an automated CHKPNT capability.
I. NAME: CDND (Conditional Transfer)
II. PURPDSE:To alter the normal order of execution of: DMAP modules by conditionally transferring program control to a specified location in the DMAP program.
III. DMAP CALLING SEQUENCE:

C@ND \(n, V\) \$
where:
1. \(n\) is a \(B C D\) label name specifying the location where control is to be transferred. (See the LABEL instruction.).
2. \(V\) is a \(B C D\) name of a variable parameter whose value indicates whether or not to execute the transfer. If \(V<0\) the transfer is executed.
IV. EXAMPLE:

BEGIN \$

COND LI,K \$
M@DULE1 \(A / B / V, Y ; P 1\) \$

LABEL L1 \$
MODULEN X/Y \$

END \$
If \(K \geq 0\), M \(\varnothing\) DULE1 is executed. If \(K<0\) control is transferred to the label Ll and MgDULEN is executed.
V. REMARKS:

Only forward transfers are allowed. See the REPT instruction for backward transfers.

\section*{EXECUTIVE OPERATION MODULES}
I. NAME: END (End DMAP Program)
II. PURPGSE: Denotes the end of a DMAP program.
III. DMAP CALLING SEQUENCE:

END \$
IV. NQTES:
1. The END instruction also acts as an implied EXIT instruction.
2. The END card is required whenever the analyst selects APP DMAP in his Executive Control Deck.
I. NAME: EQUIV (Data Block Name Equivalence)
II. PURPOSE: To attach one or more equivalent (alias) data block names to an existing data block so that the data block can be referenced by several equivalent names.
III. DMAP CALLING SEQUENCE:

EQUIV DBN1A,DBN2A, DBN3A / PARMA / DBN1B,DBN2B / PARMB \$

Note: The number of data block names (DBNij) prior to each parameter (PARMj) and the number of such groups in a particular calling sequence are variable.
IV. INPUT DATA BLOCKS:

DBNTA, DBN2A, etc. - Any data block names appearing within the DMAP sequence. The ist data block name in each group (DBNIA and DBNIB in the examples above) is known as the primary data block and the 2nd, etc. data block names become equivalent to the primary (depending on the associated parameter value). These equivalenced data blocks are known as secondary data blocks.
V. OUTPUT DATA BLOCKS: (None specified or permitted)
VI. PARAMETERS:

PARMA, etc. - One required for each set of data block names.
VII. METHOD: The data block names in each group are made equivalent if the value of the associated parameter is \(<0\). If a number of data blocks are already equivalenced and the parameter value is \(\geq 0\), the equivalence is broken and the data block names again become unique. If the data blocks are not equivalenced and the parameter value is \(\geq 0\), no action is taken.

VIII REMARKS:
1. An EQUIV statement may appear at any time as long as the primary data block name has been previously defined.
2. If an equivalence is to be performed at all times, i.e., the parameter value is always negative, it is not necessary to specify a parameter name. For example,

EQUIV DB1,DB2 // DB3,DB4 \$
I. NAME: PRECHK (Predefined Automated Checkpoint)
II. PURPOSE: To allow the user to specify a single, or limited number, of checkpoint declara-
tions thereby removing the need for a large number of individual CHKPNT instructions to
appear in a DMAP program.
III. DMAP CALLING SEQUENCE:

PRECHK name list \$
PRECHK ALL \$
PRECHK ALL EXCEPT name list \$
where name is a list of data block names separated by commas and not exceeding 50 data
blocks per command.
IV. REMARKS:
1. PRECHK is, in itself, a non-executable DMAP instruction which actuates the automatic generation of explicity CHKPNT instructions during the DMAP compilation.
2. Any number of PRECHK declarations may appear in a DMAP program. Each time a new statement is encountered the previous one is invalidated. The PRECHK END \$ option will negate the current PRECHK status.
3. CHKPNT instructions may be used in conjunction with PRECHK declarations. The CHKPNT instruction will override any PRECHK condition. For example, if the PRECHK ALL EXCEPT option is in effect, a data block named in the excepted list may still be explicitly CHKPNTed.
4. PRECHK automatically CHKPNTs all output data blocks from each functional module or purge instruction, and all secondary data block of an EQUIV instruction.

\section*{EXECUTIVE OPERATION MODLLE}
I. NAME: PURGE (Explicit Data Block Purge)
II. PURPOSE: To flag a data block so that it will not be assigned to a physical file.
III. DMAP CALLING SEQUENCE:

PURGE DBN1A, DBN2A,DBN3A / PARMA / DBN1B,DBN2B / PARMB \$

Note: The number of data block names (\(D B N_{i j}\)) prior to each parameter (PARM \(_{j}\)) and the number of groúps of datá block names and parameters in a particular calling sequence is variable.
IV. INPUT DATA BLOCKS:

DBNIA,DBN2A, etc. - Any data block names appearing within the DMAP sequence.
V. OUTPUT DATA BLOCKS: (None specified or permitted)
VI. PARAMETERS:

PARMA, etc. - One required for each group of data block names.
VII. METHOD: The data blocks in a group are purged if the value of the associated parameter is < 0. If a data block is already purged and the parameter value is \(\geq 0\), the purged data block is unpurged so that ift may be subsequently reallocated. If the data block is not purged and the parameter value is \(\geq 0\), no action is taken.
VIII. REMARKS:
1. If a purge is to be made at all times, i.e., the parameter value is always negative, it is not necessary to specify a parameter name. For example,

PURGE DB1,DB2,DB3,DB4 \$

\section*{I. NAME: REPT (Repeat)}
II. PURPOSE: To repeat a group of DMAP instructions a specified number of times.
III. DMAP CALLING SEQUENCE:

REPT \(n, c \$\) or REPT \(n, p \$\)
where:
1. \(n\) is a BCD name appearing in a LABEL instruction which specifies the location of the beginning of a group of DMAP instructions to be repeated. (See LABEL instruction.)
2. \(c\) is an integer constant hard coded into the DMAP program which specifies the number of times to repeat the instructions.
3. \(p\) is a variable parameter set by a previously executed module specifying the number of times to repeat the instructions.
IV. EXAMPLE:

\section*{BEGIN \$}

LABEL LT \$
MgDULE1 A/B/V,Y,P1 \$
-
MDDULEN B/C/V,Y,P2 \$
REPT L1,3 \$

END \$
```

BEGIN \$
MODULEI X/Y/V,Y,NL\emptyset\emptysetP \$
LABEL L1 \$
MODULE1 A/B/V,Y,P1 \$
MODULE N B/C/V,Y,P2 \$
REPT LI,NL\emptyset\emptysetP \$
END \$

```
or

\section*{V. REMARKS:}
1. REPT is placed at the end of the group of instructions to be repeated.
2. When a variable number of loops is to be performed as in the second example above, the value of the variable at the first time the REPT instruction is encountered will determine the number of loops. This number will not be changed after the initial assignment.
3. A C〇ND (conditional jump) instruction may be used to exit from the loop if desired.
4. In the first example, the instructions M@DULE1 to MODULEN will be repeated three times (i.e., executed four times).

\section*{EXECUTIVE OPERATION IPDULE}
I. NAME: SAVE (Save Variable Parameter Values)
II. PURPOSE: To specify which variable parameter values are to be saved from the preceding functional module DMAP instruction for use by subsequent modules.
III. DMAP CALLING SEQUENCE:

SAVE VI,V2,...,VN \$
where the \(V 1, V 2, \ldots, V N(N>0)\) are the \(B C D\) names of some or all of the variable parameters which appear in the immediately preceding Functional Module DMAP instruction.
IV. REMARKS:
1. A SAVE instruction must immediately follow the functional module instruction wherein the parameters being saved are generated.
2. See Section 5.2.1.5 for a description of the alternate method of saving parameter values by means of the parameter specification statement.
I. NAME: XDMAP (Execute DMAP Program)
II. PURPOSE: To control the DMAP compiler options.
III. DMAP CALLING SEQUENCE:

where:
```

GQ - compile and execute program (default)
$N \varrho G \emptyset$ - compile only and terminate job.
ERR - defines the error level at which suspension of execution will occur.
$E R R=0$ Warning error level
1 Potentially Fatal error level
2 Fatal error level (default)
LIST - a listing of the DMAP program will be printed.
NØLIST - no listing (default)
DECK - a deck of the DMAP program will be punched.
N@DECK - a deck will. not be punched (default)
ØSCAR - detailed listing of $\emptyset S C A R$ (Operation Sequence Control Array), the output of
the DMAP compiler.
NØØSCR - no DSCAR listing (default)
REF - a cross reference listing of the program will be printed.
N@REF - no cross reference (default)

```
IV. REMARKS:
1. The XDMAP card is optional and may be replaced by a BEGIN instruction. But, one or the other MUST appear in an APP DMAP execution.
2. The XDMAP instruction is non-executable and is used to control the above options by the DMAP compiler.
3. If all defaults are chosen the instruction need not appear, use BEGIN instead.
4. The DMAP compiler option defaults can also be overriden with DIAG 14 (DMAP listing), DIAG 17 (punch DMAP deck), and DIAG 4 (\(\varnothing S C A R\) listing) in the Executive Control Deck. However, the option summary, printed before the DMAP source, will not change to reflect DIAG selections.

\section*{DIRECT MATRIX ABSTRACTION}

\subsection*{5.8 EXAMPLES}

In order to facilitate the use of DMAP, several examples are provided in this section. The user is urged to study these examples both from the viewpoint of performing a sequence of matrix operations and that of a DMAP flow. In addition, some examples have been written to illustrate the improved DMAP syntax.

\subsection*{5.8.1 DMAP Example}

\section*{Objective}
1. Print the contents of table data block \(A\).
2. Print matrix data blocks \(B, C\), and \(D\).
3. Print values of parameters Pl and P 2 .
4. Set parameter P3 equal to -7.
\begin{tabular}{|c|c|c|c|}
\hline BEGIN & \$ & XDMAP & \$. \\
\hline TABPT & A, , , // \$ & TABPT & A // \$ \\
\hline MATPRN & B,C,D, /// \$ & MATPRN & B, C, D // \\
\hline PRTPARM & // C,N,O/C,N,P1\$ & PRTPARM & // 0 / *P1* \$ \\
\hline PRTPARM & // C,N,0 / C,N,P2 \$ & PRTPARM & // 0 / *P2* \$ \\
\hline PARAM & // C, N, NQP / V,N, P3=-7 \$ & PARAM & // *NØP* / P3=-7 \$ \\
\hline END & \$ & END & \$ \\
\hline
\end{tabular}

\section*{Remarks:}
1. To be a practical example, a restart situation is assumed. The user is cautioned to remember to reenter at DMAP instruction 2 by changing the last reentry point in the restart dictionary.
2. In the alternate form, the omission of trailing commas in the TABPT and MATPRN instructions will generate PØTENTIALLY FATAL ERR \(\emptyset\) R messages alerting the user to possible errors in the data block name list.

\subsection*{5.8.2 DMAP Example}

Let the constrained miatrix \(\left[K_{\ell \ell}\right]\) and the load vector \(\left\{P_{\ell}\right\}\) be defined by means of DMI bulk data cards. The following DMAP sequence will perform the series of matrix operations.
\[
\begin{aligned}
\left\{u_{1}\right\}= & {\left[K_{\ell \ell}\right]^{-1}\left\{P_{\ell}\right\} } \\
\{r\}= & {\left[K_{\ell \ell}\right]\left\{u_{1}\right\}-\left\{P_{\ell}\right\} } \\
\{\delta u\}= & {\left[K_{\ell \ell}\right]^{-1}\{r\} } \\
\left\{u_{2}\right\}= & \left\{u_{1}\right\}+\{\delta u\} \\
& \operatorname{Print}\left\{u_{2}\right\}
\end{aligned}
\]

BEGIN \$
SØLVE KLL,PL/UI/C,N,1/C,N,1/C,N,1/C,N,1\$
MPYAD KLL, UT, PL/R/C,N,O/C,N,1/C,N,-1\$
SQLVE KLL,R/DU/C,N,I \$
ADD UT,DU/U2 \$
MATPRN U2,,,, // \$
END \$

XDMAP \$
S@LVE KLL,PL/U1/1/1/1/1\$ MPYAD KLL,U1,PL/R/0/1/-1\$
or SQLVE KLL,R/DU/1\$
ADD U1,DU /U2 \$
MATPRN U2 // \$
END \$

\section*{Remarks:}
1. \(\left[K_{\ell \ell}\right]\) is assumed symmetric.
2. In the example above, KLL will be decomposed twice. A more efficient DMAP sequence, which requires only a single decomposition for this problem is given below.

BEGIN \$
DECDMP KLL / LLLL,ULL \(\$\).
FBS LLL,ULL,PL/U1/C,N,1/C,N,1/C,N,1/C,N,1\$
MPYAD KLL,UI,PL/R/C,N,O/C,N,1/C,N,-1\$
FBS LLL,ULL,R/DU \$
ADD U1,DU/U2\$
MATPRN U2,,,, // \$
END \$

XDMAP \$
DECDMP KLL /LLL,ULL \(\$\)
FBS .. \(\mathrm{LLL}, \mathrm{ULL}, \mathrm{PL} / \mathrm{U1} / 1 / 1 / 1 / 1 \$\)
MPYAD KLL,U1,PL/R/0/1/-1\$
or
FBS LLL,ULL,R/DU \$
ADD UI,DU/U2 \$
MATPRN U2 // \$
END \$
5.8.9 DMAP Example to Compute the \(r\)-th Power of a Matrix [Q]
\begin{tabular}{|c|c|c|c|}
\hline Begin & \$ & & \\
\hline MATPRN & Q,, , , //\$ & & \\
\hline PARAM & \(/ / C, N, N \emptyset P / V, N, T R U E=-1 \$\) & & \\
\hline PARAM & // C,N,SUB / V,N,RR / V,Y,R=-1/C,N,2 & \$ & \\
\hline PARAM & // C,N,NøP / V,N,FALSE=+1 \$ & & \\
\hline ADD & Q, / QQ \$ & & \\
\hline LABEL & DØIT \$ & . & \\
\hline EQUIV & QQ,P / FALSE \$ & & \\
\hline MPYAD & Q,QQ, / P / C,N, 0 \$ & & \\
\hline EQUIV & P,QQ / TRUE \$ & & \\
\hline PARAM & // C,N,SUB / V,N,RR / V,N,RR / C,N,1 \$ & & \\
\hline COND & STØP,RR \$ & & \\
\hline REPT & DOIT,1000000 \$ & & \\
\hline LABEL & stge \$ & BEGIN & \$ \\
\hline MATPRN & P, ,, , //\$ & MATPRN & Q // \$ \\
\hline END & \$ & PARAM & // *SUB* /.RR / V, \(Y, R=-1 / 2\) \$ \\
\hline & or & CDPY & Q/P\$ \\
\hline & & LABEL & \(T \emptyset P \$\) \\
\hline & . & MPYAD & Q,P / PP / O\$ \\
\hline & & SWITCH & P,PP // \$ \\
\hline & . & REPT & TØP, RR \$ \\
\hline & & MATPRN & P // \$ \\
\hline & & END & \$ \\
\hline
\end{tabular}

Notes:
1. The matrix [Q] is assumed input via DMI bulk data cards.
2. The parameter R is assumed input on a PARAM bulk data card.
3. A logical flow diagram for this DMAP is shown in the following sketch.
4. The improved DMAP to perform the same operation can be done with substantially fewer commands.
```


[^0]:    *IBM 360,370 only.

[^1]:    *See the BARดR card for default options for fields 3, 6, 7, 8 and 9.

[^2]:    * A grounded terminal is a scalar point or coordinate of a geometric grid point whose displacement is constrained to zero.

[^3]:    * A grounded terminal is a scalar point or coordinate of a geometric grid point whose displacement is constrained to zero.

[^4]:    * A grounded terminal is a scalar point or coordinate of a geometric grid point whose displacement is constrained to zero.

