General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MONTE CARLO SIMULATION OF THE CLASSICAL TWO-DIMENSIONAL ONE COMPONENT PLASMA

BY

R.C. Gann, ${ }^{*}$ Sudip Chakravarty, and G.V. Chester

Laboratory of Atomic and Solid State Physics

Cornell University
Ithaca, New York 14853
(NASA-CR-157467) MONTE CARLO SIMULATION OF THE CLASSICAL TWO-DIMENSIONAL ONE COMPONEnT plasma (Cornell univ., Ithaca, N. CSCI. 201

N78-29911 WC $\mathrm{E} 04 / \mathrm{MF}$ An

ABSTRACT

We have used Monte Carlo simulation, lattice dynamics in the harmonic approximation, and solution of the hypernetted chain equation to study the classical two-dimensional one component plasma. We find a fluid phase for $I=e^{2}(\pi n)^{\frac{1}{2}} / k_{B} T \leq 125 \pm 15$ and a sol id phase for higher I. The solid phase shows directional long range order. In the solid phase positional long range order is lost as the thermodynamic limit is approached. We also present the results of calculation of the thermodynamic functions and one and two particle correlation functions.

I. INTRODUCTION

This paper is concerned with the properties of a two-dimensional one component plasma. Our system consists of a single species of charged particles immersed in a uniform neutralizing background. The particles interact via a $1 / r$ potential, where r is the two-dimensional separation. Our calculations are limited to ranges of temperature and density such that quantum effects are unimportant. We have made calculations of the equation of state In the fluid phase using both the hypernetted chain equation (HNC) and Monte Carlo simulations. Our calculations in the crystal phase were done by Monte Carlo methods.

There are two reasons why we find such a system interesting. First It can be considered as an idealized model of a bound suriace layer of electrons above liquid helium four. Second there have been extensive simulations of the properties of the three-dimensional one component plasma. The extension to two dimensions may provide insight into the behavior of both systems.

We begin by briefly reviewing the state of our knowledge of the electron surface layer above liquid helium four. Several years ago Crandall and Williams ${ }^{1}$ suggested that under favorable circumstances electrons trapped on the surface of liquid helium might crystallize to form a two-dimensional electron solid. Since in most experimental situations the density of electrons can be changed by several orders of magnitude, it was hoped that the so called Wigner crystal ${ }^{2}$ might be within experimental reach. This led to a great deal of theoretical and experimental activity in the following gears, and Chaplik ${ }^{3}$ suggested that a similar crystallization can occur in the inversion layer near the surface of a semiconductor. In the helium context a model of a chargecompensated one component system of N electrons confined to an area A at a temperature T interacting with $1 / r$ potential can be and has been considered as the canonical model: ${ }^{4-7}$

- In this paper we consider only the classical behavior of the model.

This is appropriate for the electron surface layer above liquid helium in the usual experimental regime. However, our model is not appropriate for the problem of the metal-oxide-silicon inversion layer where the electrons form a degenerate quantum system.

Although studies by Brown and Grimes ${ }^{3}$ of cyclotron resonance
in a tipped magnetic field have shown that the electron motion on the surface of liquid helium is two dimensional, it is clear that for a strong clamping field (most experiments require a clamping field in order to localize the electrons layer for a reasonable amount of time) one needs in principle to take into account the coupling in the perpendicular direction, for example the deformation of the helium surface. However, the characteristic dimensions are such that the interelectronic spacing $\left(\sim 10^{4} \mathrm{~A}\right)$ is much larger than the spread in the charge density in the direction perpendicular to the surface ($\sim 10^{2} \mathrm{~A}$) so that the system can be considered to be essentially two-dimensional. Therefore the model of a two-dimensional electron gas, neutralized by a uniform positive background, and interacting by a e^{2} / r potential is probably a reasonable first approximation to the experimental situation. The system is characterized by the dimensionless quantity $\Gamma=e^{2} / a k_{B} T$, where $a=(\pi n)^{\frac{1}{2}}$ and $n=N / A$.

The simulations that have been made on the three-dimensional one component plasma have established its equation of state, the phase boundary between the crystal and liquid phases, and the two particle correlation function at several densities and temperatures. In addition, Lindemann's ratio at melting has been found to be 0.17 ---rather close to the values for other inverse power potentials. The height of the first peak of the structure factor at freezing was found to be close to 2.85 ---again close to the values for other potentials. In view of these results it seemed worthwhile to carry out a similar study of the two-dimensional one component plasma. In particular we
were interested in determining whether the two-dimensional system would undergo a phase transformation to a crystalline phase. To our knowledge there has not been any calculation comparing the free energies of the solid and the liquid phases which 1s, after all, the basic method to locate this phase transition. In this paper we present such a qaloulation. We employ both the hypernetted chain integral equation and the Monte Carlo technique to calculate the free energies. We have computed the thermodynamic functions and correlation functions over a wide range of $\Gamma, I \leq \Gamma \leq 300$. A recent publication by Totsuji 10 contains Monte Carlo results for the thermodynamic functions and pair correlation funotion for $0.15 \leq \Gamma \leq 50$. Within the range of 5 our results are generally in good agreement with those of Totsuji. On the other hand our results are quite different from a very recent computer experiment ${ }^{11}$ which employed a special type of molecular dynamics method (PPM: Particle-Particle/Particle-Mesh). Contrary to the λ point transition obtained there we tentatively find a first order transition, our transition being roughly 20% higher in Γ; namely $\Gamma=125$. Our results are qualitatively similar to the corresponding three-dimensional calculations of Hansen ${ }^{12}$ and Pollock and Hansen ${ }^{13}$. We find that tho triangular lattice is stable and have calculated the harmonic phonon dispersion laws for such a lattice. We also find that the two-dimenstonal square lattice is dynamically unstable. Our calculations for the harmondc solidare in agreement with a recent calculation by Bonsal1 and Maradudin ${ }^{14}$.

Before proceeding further we should comment on the existence of twodimensional crystalline order. Some years ago Mermin ${ }^{15}$ published a rigorous proof, based on Bogolyubov's inequality, that two-dimensional systems cannot display long range crystalline order. The proof had two limitations. First, and probably less important, the interaction potential was assumed to fall off faster than $1 / r^{2}$. Second, the result only applies in the themodynamic
limit. When the same mathematical methods are applied to a large but finite system one finds that no inconsistency arises from the assumption of crystalline order. Thus any system that can be studied in the laboratory or in a computer simalation can exhibit crystalline order. We do indeed find a stable crystal phase in our simulations, however,it does have unusual proper ies. These are described in sections VI and VII.

The plan of our paper is as follows, after formulating the problem in section II, sections III and IV are devoted to the calculations of the thermodynamic functions in the liquid and solid phases respectively. In the liquid phase we present results for both the $H N C$ method and MC simulations. Section V is devoted to the determination of the phase boundary between the crystal and fluid phases. Lindemann's ratio and its dependence on the size of the system are discussed in section $V I$. The one and two particle distribution functions are presented in section VII.

II. FORMULATION OF THE PROBLEM

Consider a system of N electrons obeying classical statistics, confined to an area A, and neutralized by a uniform positive background. The Hamiltonian, apart from the kinetic energy, which does not enter into our considerations, is then

$$
\begin{equation*}
H_{I}=\sum_{i<j} \frac{e^{2}}{r_{i j}}-\frac{1}{2} \operatorname{Nnv}(0) \tag{2.1}
\end{equation*}
$$

where, the last term, arises from the interaction of electrons with the unfform positive background. Here $r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|$ is the tivo-dimensional separation and $n=N / A$ is the area density of electrons. The Fourier transform of e^{2} / r potential in two dimensions is given by

5

$$
\begin{equation*}
v(k)=e^{2 r} \frac{e^{i \vec{k} \cdot \vec{r}}}{x} d^{2} r=\frac{2 \pi e^{2}}{k} \tag{2.2}
\end{equation*}
$$

Once again $\vec{k}=\left(k_{j, k}\right)$ is a two-dimensional vector. For the problem of electrons bound to the surxace of hellum four one should use the "renormalized" charge ${ }^{7}$

$$
\begin{equation*}
\left.\vec{e}^{2}=e^{2} \Gamma_{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)^{-1}\right] \tag{2.3}
\end{equation*}
$$

where we have assumed that uniform media with delectric constants E_{1} and sa IIll the adjacent half spaces. The thermodynamics of this one component alassical electron plasma is determined by a single dimensionless parameter,

$$
\begin{equation*}
m=\frac{e^{2}}{k_{B}^{T a}} \tag{2,4}
\end{equation*}
$$

Where k_{B} is the Boltzmann constant, T the temperature and a is the average むnterparticle distanca determined by $n=1 .\left(\Gamma^{2}\right)$. The completr solution of the problen therefore reduces to the calculation of averages of the kind

$$
\begin{equation*}
<D>=\int P\left(r_{I}+\ldots r_{N}\right) \exp \left[-\frac{1}{k_{B}^{T}} \sum_{1<j} v\left(r_{1, J}\right)\right] d^{2} r_{I} \ldots d^{2} x_{N} Q_{Y} \tag{2,5}
\end{equation*}
$$

where

$$
Q_{N}=j \cdots \int \exp \left(-\frac{1}{k_{B}} \sum_{4<j} v\left(x_{1 j}\right) d^{2} x_{1} \ldots d^{2} r_{N}\right.
$$

The two particle distribution funcition is given by

$$
\begin{equation*}
P\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{N(N-1)}{Q_{N}}, \ldots \exp ^{[}-\frac{1}{k_{B} T} \sum_{1<j} v\left(x_{1 j}\right)^{7} d^{2} r_{3} \ldots d^{2} r_{n} \tag{2,6}
\end{equation*}
$$

For the liquid phase $p\left(\vec{x}_{1}, \vec{x}_{2}\right)=n^{2} g\left(x_{12}\right)$, where $s(x)$ is the paix corxelation Iunction.

Before we proceed any further we should point out that the summation of the ring diagrams (random phase approximation) produces a divergent free energy and therefore the result analogous to Debye-Hickel limit in three dimensions does not exist. In fact it is easy to mimic the corresponding three-dimensional calculation ${ }^{16,17}$ to obtain

$$
\frac{Q_{N}}{\mathrm{~N}!}=\mathrm{N} \log (1 / \mathrm{n})+1+W, \quad \begin{align*}
& \text { ORIGINAL PAGE IS } \tag{2.7}\\
& \text { OF POOR QUALITY }
\end{align*}
$$

where W is the contribution of the ring diagrams

$$
\begin{equation*}
W=W_{r i n g}^{2 D}=\frac{1}{4 \pi n} \int_{0}^{q} m\left[\frac{2 \pi n e^{2}}{k_{B} T} \frac{1}{q}-\log \left(1+\left(\frac{2 \pi n e^{2}}{k_{B} T}\right) \frac{1}{q}\right)\right] d q \tag{2,8}
\end{equation*}
$$

which diverges as $q_{m} \rightarrow \infty$. This is different irom the behavior of the corresponding three-dimensional integral:

$$
W_{r i n g}^{3 D}=\frac{1}{4 \pi^{2} n} \int_{0}^{\infty} q^{2}\left[\left(\frac{4 \pi n e^{2}}{k_{B} T}\right) \frac{1}{q^{2}}-\log \left(1+\left(\frac{4 \pi n e^{2}}{k_{B} T}\right) \frac{1}{q^{2}}\right)\right] d q
$$

This high q (small r) divergence for the contribution of the ring diagrams to the energy has also been noticed by Totsuji ${ }^{18}$. He has, however, shown that if one includes the simplest set of next order diagrams then the divergence is cancelled. His results can be expressed as a small expansion for the excess internal energy,

$$
\begin{align*}
\frac{\|^{e x}}{N k_{B}^{T}}= & \Gamma^{2}(2 \Omega n+2 \gamma-1+2 \pi n 2)+ \tag{2.9}\\
& \Gamma^{4}\left[-8(\ln \pi)^{2}+8(1-2 \gamma) \ln [+4(1-2 \gamma) 2 \pi 2]+\ldots\right.
\end{align*}
$$

where Y is Euler's constant.
xII. LIQUID PRASE CALCULATIUNS

Qiven the paix oorrelation function $8(x)$ then the excess internal energy y is zavell by,

$$
\begin{equation*}
\frac{U^{e x}}{\sqrt{k_{B}}}=-\int_{0}^{a z}(x(x)-1) d x=\frac{m}{2} \int_{0}^{\infty} d k[S(k)-1] \tag{3,1}
\end{equation*}
$$

where $s(k)$) s the structure factor detined by

$$
\begin{equation*}
s(k)=1+2 \int_{0}^{4} \quad u_{0}(k x)[(t)-11 d x \tag{3.2}
\end{equation*}
$$

where $J_{0}(x)$ is the zeroth order Bessel function. The pressure obtained from the vixial theorem is

$$
\begin{equation*}
\frac{p A}{\sqrt{k}_{n^{2}}}-1+\frac{U^{e x}}{2 k^{n}} \tag{3,3}
\end{equation*}
$$

and excese free energy hayten by

The ldead gat Free energy $f^{\text {in }}$ is given by
or, in une undta,

$$
\begin{equation*}
\frac{p^{4 d}}{N_{B^{T}}}=2 k^{n}-m-1+x^{n}\left(\frac{k_{B}^{T}}{k_{y}}\right) \tag{3,6}
\end{equation*}
$$

Equations (3.1) to (3.6) are the relations we use in our liquid phase calculations.
A. The Hypernetted Chain Method

The hypernetted chain equation has been very successiul ${ }^{19}$ in predicting the propertios of the dense one component plasma in three dimensions. In this subsection we shall present the results for the two-dimensional case. The hypernetted chain integral equation for the pair correlation function is defined by the following two equations

$$
\begin{align*}
& s(r)-1=a(r)+n j d \vec{r}^{\prime}\left[s\left(r^{\prime}\right)-1\right] c\left(\left|\vec{r}-\vec{r}^{\prime}\right|\right) \tag{35}\\
& \text { in } g(r)=s(r)-1-a(x)-\frac{v(r)}{k_{B}^{T}}, \tag{3,3}
\end{align*}
$$

where $\mathrm{c}(\mathrm{r})$ is the direct correlation function. This equation is difilicult to solve for long range interactions. Following the method used recently by Springer, et al ${ }^{20}$ we carry out a subtraction procedure to rewrite the equations In terms of short range quantities. We decompose the original potential $v(x)$ Into long and short range parts

$$
\begin{equation*}
v(r)=v_{1 x}(x)+v_{s x}(r)=\frac{\Gamma}{x} \operatorname{erf}(b x)+\frac{\Gamma}{x}[1-\operatorname{arf}(b r)] \tag{3.0}
\end{equation*}
$$

The parameter b is for the moment arbitrary, We denote the sum of nodal dagrams by $\mathrm{N}(\mathrm{x})$:

$$
\begin{equation*}
N(x)=g(x)-1-q(x) \tag{3.10}
\end{equation*}
$$

and decompose $N(r)$ into short and long range parts

$$
\begin{equation*}
N_{s r}(r)=N(r)-v_{1 r}(r) \tag{3.11}
\end{equation*}
$$

Since at large $r, N(r) \sim \Gamma / r, N_{S r}(r)$ is short ranged. Similarly for the direct correlation function $c(r)$ we have

$$
\begin{equation*}
c_{s r}(r)=c(r)+v_{1 r}(r) \tag{3.12}
\end{equation*}
$$

It is now easy to see that Eqs. (3.5) and (3.6) can be solved by Fourier transforms. The set of equations to be solved are

$$
\begin{align*}
& N_{s r}(k)=\frac{c_{S r}(k)\left[c_{s r}(k)-\frac{2 \Gamma}{5} \operatorname{Errc}(k / 2 b)\right]-\frac{2 \Gamma}{r} \operatorname{Erfc}(k / 2 b)}{1-\left[c_{s r}(k)-\frac{2 \Gamma}{r} \operatorname{Erfc}(k / 2 b)\right]} \tag{3.13}\\
& g(r)=\exp \left[N_{S r}(r)-v_{S r}(r)\right] \tag{3.14}\\
& c_{S r}(r)=g(r)-1-N_{S r}(r) \tag{3.15}
\end{align*}
$$

where

$$
\begin{equation*}
c_{s r}(k)=n \int e^{i \vec{k} \cdot \vec{r}_{c}}(r) d^{2} r=4 \pi \int_{0}^{\infty} J_{0}(k r) r c_{s r}(r) d r, \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{S r}(k)=n \int e^{i \vec{k} \cdot \vec{r} N_{s r}(r) d^{2} r=4 \pi \int_{0}^{\infty} J_{0}(k r) r N_{S r}(r) d r} \tag{3.17}
\end{equation*}
$$

fe is blear from Sys. (3.7-3.16) that the uriginal zquation has been east into a form which involves only short range functions, and the mumerical transforms san thererore be calculated much more readyly. The method is similar to the Avald technique for andeulating lactice sums, and depends on an optinum choice of the parametex b such that the functions are short ranged In both k and $:$ space. The remadning problam is to calculate the fankel transiorms accarately. Since we will need to take transtorms back and forth betwoen $:$ and k space, it is mportant that the alyoxithm proseryes the orthogountity of Bessel functions. Such an alrort thin has been worked ouc by Lado ${ }^{-2}$. A signdetwant improvement or the securacy was abtained by calculatiag che zaros of the Sessel function to machine accuracy. Machine memory limitactons essentialay restricted us to a maximun of 900 points in x and k space. Qur results are prasented at the and of this section,
B. Monte Carlo Merhod

Qur ac simulations wera perromed in the the-honored manner pioneered by Metropolis ot an ${ }^{\text {ne }}$. Each run had a given number of partacies N, a siven area A, and a cised value or m. The area d was chosen to be a rectangle Gapable of accomodating a sectuon or orangular elose-packed lattice wich periodio boundary sondichons. To minimine surface effects the rectangla was chosen to be nearly square with the ratio or the x and y edges as

$$
\begin{equation*}
\frac{L_{x}}{L_{y}}=\frac{\frac{3}{2}}{2} \tag{3,1,9}
\end{equation*}
$$

fons shape enabled us to maka runs with $4 n^{2}(n=1,2,3, \ldots)$ particies.

Due to the long range nature of the potential, the intaraction of each particle with the other ($N-1$) particles in the basic rectangle, with all images of the Y particles, and with the uniform nautralizing background must ald be included. This complete interaction can be written as

$$
\begin{equation*}
v(\vec{r})=\frac{r}{\lambda^{\prime}} \frac{r}{\left|\vec{r}+L_{x} \vec{\lambda}^{\prime}\right|}-\frac{r}{L_{x}^{L_{y}}} \cdot \frac{d^{2} o}{|\vec{r}+\vec{p}|} \tag{3.20}
\end{equation*}
$$

where λ^{\prime} is the set of vectors generated by the basis vectors (1,0) and ($0, ~, ~ 3,2$) and where $\overrightarrow{\vec{r}}$ is the distance vector between the two particles. This interparticle potential may be afliciantly handled via the Evald techuique ${ }^{23}$. The compuration proceeds in a similar way to the $3 D$ case ${ }^{12}$. The result is

$$
\begin{align*}
& \left.\leq \exp \left(-2 \pi \pm \frac{\vec{\lambda}^{\prime \prime} \cdot \vec{x}}{L_{x}}\right)\right], \tag{3.21}
\end{align*}
$$

where the second sum is over a recipracal lattice with basis (1,0) and ($0,2,3$). The prime on that sum denotes the exclusion of the term with $\vec{R}^{\prime \prime}=(0,0)$. The parameter a may be varied to achieve a balance in the rates of convergence of the two sums.

Even with the appilcation of the Bwald technique equation (3.21) is unacceptably slow for MC calculations. To make the calculation more efficient $v(\vec{r})$ is split into two parts. The first gart consists of the spherfeally symmetric $\left(\vec{\lambda}^{\prime}=0\right)$ term which is tabulated with a 35,000 point mesh. The remaining part of $v(\vec{r})$, which is invariant under reilections ($x-\infty, y--y$) and inverstons $(\vec{r}-\vec{r})$, is tabulated on a 151×171 point grid. With inear interpolation applied to each part of $v(\vec{x})$ the potential energy of a configura-
tion may be efficiently calculated with an error of approximately 0.001\%, which we found to be negligible.

If we now include the interaction of each particle with its own images we obtain the total interaction energy of a configuration of the N particles and images as
minhal PiuE is

$$
\begin{equation*}
\frac{v}{k_{B} T}=\sum_{i<j} \frac{v\left(\vec{r}_{i j}\right)}{k_{B}^{T}}+\frac{V^{\prime}}{k_{B}^{T}} \tag{3.22}
\end{equation*}
$$

The constant term is just half the Madelung energy os a rectangular lattice with sides L_{x} and L_{y}. In our units

$$
\begin{equation*}
\frac{V^{\prime}}{\mathrm{Nk}_{\mathrm{B}}{ }^{T}}=-1.09653 \Gamma\left(\frac{T}{L_{x} L_{y}}\right)^{\frac{1}{2}} \tag{3.23}
\end{equation*}
$$

In our MC calculation the center of mass is not fixed. To correct for this effect the difference between the MC value for the excess internal energy $U^{M C} / \mathrm{NKT}$ and the static energy U_{o} / NKT of a periect triangular close-packed lattice must be multiplied by $N(N-1)^{24}$. If we follow Hansen ${ }^{12}$ and call the difference between the excess internal energy and the static energy the thermal contribution ($\mathrm{U}^{\text {th }}$) to the excess internal energy

$$
\begin{equation*}
\frac{U^{t h}}{\sqrt{k_{B}} T}=\left(\frac{U^{M C}}{\sqrt{k_{B}}}-\frac{U_{0}}{N k_{B}} \frac{N}{N-1}\right. \tag{3.24}
\end{equation*}
$$

Our excess internal energy is then

$$
\begin{equation*}
\frac{U^{e x}}{N k_{B}^{T}}=\frac{U^{\text {th }}}{N k_{B}^{T}}+\frac{U_{0}}{\sqrt[N k]{B}} \text {. } \tag{3.25}
\end{equation*}
$$

Here the static lattice energy is given by hadi the Madelung anergy of the triangular close-packed lattice.

$$
\begin{equation*}
\frac{U_{O}}{N_{B}} T^{T}-1.106103 \Gamma \tag{3,3}
\end{equation*}
$$

The IIquid phase Monta Carlo runs were made with 16, 36, 64, and 100 particles. These numbers of particles, while small for three-dimensional work, are reasonable for two dimensions. The startiag conifgurations for the rums ware afther atriangular close-packed lattiee ox a quasi-random conilguration. For anch run approximately 13,000 moves per particle were made and on the average 30% of these moves were accepted. Or these approxim mately 3,000 moves per particle wexe disearded in order to allow the system to lose its memory of its originad contifuration and reach an "equilibrium state." Since the amount of coniduration space to be sampled is considerably reduced in two dimensions over three dimensions these runs represent very long Markov chatns when judged by standards nomally applied in three dimensions. Runs of this length are needed to accurately determine the thermal portion of the axcess futornal energy which is only about 1 舞 or the total excass internad anorgy. From block averaging we estimate that our onloulated excess themal anergtas have orroxs of the order of 1 .

For the small Γ region extects due to the small numbers of particher are not really significant; even the 16 particle xuns show little erfect due to the small size. For the largest values of T number dependence becomes mueh
 In the anergy, is essentially eliminated by the time 100 paxticles ia reached. The most conventent way of dealing with the HNC and MC resulte is When a simpla and accurate ilttiag function.

The sumat P expangion of Totsujtis, mentioned in soction Ix, gives us the low P behavior of the excesa luternal anergy. However, this expansiton la not socurate Rox 5 above 0.3. We have Itthed our MC and mic data up to a value of 5 of 0.5 by the admplo expedient of addar a tarm of to equation (2.9).
 have a second inttragi fomala for values of m in the zange 0.45 to 130 . It is based on Hansen's ${ }^{19}$ three-dimenatonal roxk and the fact that

$$
\begin{equation*}
\operatorname{Lim}_{m} \frac{u^{e x}}{\sqrt{h_{B} T}}=\frac{U_{0}}{\sqrt{k k}_{B^{T}}}=-1.106 \mathrm{~m} \tag{3.37}
\end{equation*}
$$

The Iomula ia

$$
\begin{equation*}
\frac{4 a^{x}}{N_{B}} r^{2} \Gamma^{2}\left[\frac{a_{7}}{a_{2}+T}+\frac{a_{3}}{\left(a_{4}+\Gamma\right)^{m}}+\frac{a_{5}}{\left(a_{6}+m\right)^{3}}+\frac{a_{7}}{\left(a_{3}+\Gamma\right)^{a}}\right] \tag{3,28}
\end{equation*}
$$

Whene the walue of a is fixed by equation (3, 26). This foxmula accurately pepxoduces both sur MC and HNC results whthe parameters styen in table I. Qux MC results aye presonted in table ir and siguse i.

We have oupeuhated the excegs free enexry of the lidqutd phase by using equathon (3,4) with equathons (2,9) and (9,23). We swtech becween pquathon (2, 2) and equation (3,29) at for 0,45. 0ux free enexgy is then given by

$$
\begin{align*}
& \frac{y^{e x}}{N_{k} a^{T}} a \Gamma^{2}[4 x+y-1+\ln 2] \\
& +P^{2}\left[-2\left(2^{2}\right)^{2}+(3-2 y) 2 r+(1-2 y)\left(2 r^{2}-1\right)-1\right] \tag{3.29}\\
& +\frac{o r^{6}}{3}
\end{align*}
$$

cor $0 \leq r \leq r_{0}$ and by

$$
\begin{aligned}
\frac{F^{e x}}{N_{B}^{T}} & =\frac{F_{0}^{e x}}{N_{B}^{T}}+a_{1}\left[\Gamma-\Gamma_{0}+a_{2} n\left(\frac{a_{2}+\Gamma_{0}}{a_{2}+\Gamma}\right)\right] \quad \text { ORIGINAL PAGE IS } \\
& +a_{3}\left[2 n\left(\frac{a_{4}+\Gamma}{a_{4}+\Gamma}\right)-\frac{\Gamma}{a_{4}+\Gamma}+\frac{\Gamma_{0}}{a_{4}+\Gamma_{0}}\right] \\
& +a_{5}\left[\frac{a_{6}}{2}\left(\frac{1}{\left(a_{6}+\Gamma\right)^{2}}-\frac{1}{\left(a_{6}+\Gamma_{0}\right)^{2}}\right)-\left(\frac{1}{1+a_{6}}-\frac{1}{1+a_{6} \Gamma}\right)\right] \\
& +a_{7}\left[\frac{a_{8}}{3}\left(\frac{1}{\left(a_{8}+\Gamma\right)^{3}}-\frac{1}{\left(a_{8}+\Gamma_{0}\right)^{3}}\right)-\frac{1}{3}\left(\frac{1}{\left(a_{8}+\Gamma\right)^{2}}-\frac{1}{\left(a_{8}+\Gamma_{0}\right)^{2}}\right)\right]
\end{aligned}
$$

for $\Gamma_{0} \leq \Gamma \leq 130$, where $F_{0}^{e x} / N k_{B} T i s$ given by equation (3.29) evaluated Por $T=\Gamma_{0}$. Our results for the free energy are tabulated in table 2 and displayed graphically in figure 2. We agree well with the resultg of Totsuji ${ }^{10}$ for the iree energy. It should be noted
that our Monte Carlo runs are approximately ten times longer than his. For this reason we believe our data is more accurate.

The excess specific heat at constant area may be calculated by differentiating the excess internal energy

$$
\begin{equation*}
\frac{C_{A}^{e x}}{N_{B}}=-\Gamma^{2} \frac{\partial}{\partial \Gamma}\left[\frac{1}{\Gamma} \frac{U^{e x}}{N k_{B}} T\right] \tag{3.31}
\end{equation*}
$$

In the region $0 \leq T \leq 0.45$ we obtain

$$
\begin{align*}
\frac{C_{A}^{e x}}{N k_{B}} & =-\Gamma^{2}[2 \gamma+1+\ln 4+2 \ell n] \\
& +\Gamma^{4}\left[(2 \gamma-1) 4(2+3 \ell n 2)+8(6 \gamma-1) \ln \Gamma+24\left(\ell n \Gamma^{2}\right]-5 c \Gamma^{6}\right. \tag{3.32}
\end{align*}
$$

and for $0.45 \leq \Gamma \leq 130$ we get

$$
\begin{array}{r}
\left.\frac{e^{8 x}}{N k_{B}}=\Gamma^{3 \Gamma} \frac{a_{1}}{a_{2}+\Gamma}+\frac{2 a_{3}}{\left(a_{4}+\Gamma\right)^{3}}+\frac{a_{5}}{\left(a_{6}+\Gamma\right)^{3}}+\frac{4 a_{7}}{\left(a_{3}+\Gamma\right)^{4}}\right] \tag{3.33}\\
-\Gamma\left[\frac{a_{1}}{a_{2}+\Gamma}+\frac{a_{3}}{\left(a_{4}+\Gamma\right)^{2}}+\frac{a_{3}}{\left(a_{6}+\Gamma\right)^{3}}+\frac{a_{7}}{\left(a_{3}+\Gamma\right)^{4}}\right]
\end{array}
$$

The equation of state follows from the virial theorem, equation (3.3).
Table a contains out results for the spectifa heat, Figure 3 shows our results for $C_{\text {i }}$ using the fitting formula and from direct Monte Cario calculam tions. The lattor calculation is dieftcult due to the large fluctuations in the data and our results are preliminary in nature. We will discuss them in more detail in saction V.
IV. SOLID PHASE CALCULATIONS

A combination of lattice dynamies and MC methods was used to compute the propertias af the solid phase. The lattice dynamics calculation was pertormed In the manner of Bonsali and Maradudin ${ }^{24}$. The techniqua of spocial points ${ }^{25}, 26$ was used to afifotently caiculate vartous thermodynamic functions by averagiag functions of the drequenctes over the first Brillouin zona, The lattioe dymamis calculations provided us with approximations for the free anergy and othex thermodynamic functions and the root menn square deviation of particios from
 Iatexnal energteg, and the vne and two paxtwole distrybution funotions Rov the axystallina phasin. From thege resudta we vaduladtad the ryat enexgy And speoteto heat, These MO oaloudations wewe pertoxuod in the game way as in the hoquit phase wh the thateoptwon that aly funs waxe started froul a

 and 300.

A contex of mast worreothon was applded tuat as in ohe liyuad phame. The Sependence ot the thexmorynamie glantittea on the number ot paxtioles in the

 predtocton of hammondu lattioa dynamica tox the wxoest dutarnat enorgy ia
 In the haxmonxe appraxtmation the botak rae anergy in fiven by at
 two branchem. In the shastual limit we get
where $\omega_{0}^{2}=\frac{e^{2}}{\mathrm{ma}^{3}}$. In our units we obtain:

$$
\begin{equation*}
\frac{F^{\text {Harm }}}{\sqrt{k_{B}^{T}}} \overline{\bar{N}} \frac{U_{0}}{k_{B}^{T}}+\frac{1}{N} \sum_{q j} n_{j} \frac{\omega_{j}(q)}{\omega_{0}}+32 n \Gamma-2 n 2+2 n\left(\frac{k_{B}^{T}}{R_{y}}\right) \tag{4.4}
\end{equation*}
$$

The values of the sums over frequencies is given for various grids in the first Brillouin zone in Table 3.

The harmonic approximation for the excess specific heat is

$$
\begin{equation*}
\frac{C_{A}^{\text {Harm }}}{N k_{B}}=I \tag{4.5}
\end{equation*}
$$

We can also calculate in the harmonic approximation root-mean-square deviation of particles from their lattice sites, $\gamma^{H}{ }^{27}$ It is given by

$$
\begin{equation*}
\left(y^{H}\right)^{2}=\left\langle r^{2} / d^{2}\right\rangle=\frac{h}{m} \frac{1}{2 N} \sum_{q j} \frac{1}{w_{j}(q)} \operatorname{coth}\left(\frac{h \omega_{j}(q)}{2 k_{B} T}\right) \tag{4,6}
\end{equation*}
$$

where d is the near neighbor distance. In the classical linit this becomes

$$
\begin{equation*}
\left(Y^{H}\right)^{2}=\left\langle r^{2} / d^{2}\right\rangle=\frac{1}{\Gamma} \frac{\sqrt{3}}{2 \pi} \frac{1}{N} \sum_{q j}\left(\frac{\omega_{0}}{\omega_{j}(q)}\right)^{2} \tag{4.7}
\end{equation*}
$$

This result is tabulated for varying numbers of points in the Brillouin zone in Table 5.

An important point to note is that the small q behavior of $w_{j}(q)$ is 3.4

$$
\begin{align*}
& w_{1}(q) \propto \sqrt{ } q \\
& w_{2}(q) \propto q \tag{4.8}
\end{align*}
$$

Thus, the harmonic approximation predicts a logarithmic divergence, as the thermodynamic limit is approached, of γ^{H} due to the small q behavior of
$\omega_{2}(q)$. This divergence has been seen ${ }^{28}$ in molecular dynamics studies of crystalline systems of hard disks ranging in size from 100 to approximately 7,000. We have no reason to believe that it will not occur in our system. This means that Lindemann's ratio is not independent of the size of the system in two dimensions. We give a more detailed discussion of these matters in Section VI.

Our solid phase MC results are tabulated in Table 4 , together with some of the lattice dynamics predictions. Our MC results are vell parameterized by adding a small anisarmonic correction to the harmontc excess internal energy (4.1)

$$
\begin{equation*}
{\frac{U}{N k_{B}}}_{T^{e x}}^{=} \frac{U^{H a r m}}{N k_{B} T}+a \Gamma^{-1}+b \Gamma^{-2} \tag{4.9}
\end{equation*}
$$

The anharmonic contribution is the first part of an expansion in powers of T or inverse powers of Γ. The values of a and b which we ind are 5.0 and 560. The internal energy 1s displayed in Figure 1.

Given our simple result for the excess internal energy the other thermodynamic functions follow directly. We assume that in the infinite Γ limit the harmonic free energy becomes the exact free energy. Hence, we may obtain the free energy for finite I by integrating the anharmonic correction to obtain

$$
\begin{equation*}
\frac{F^{\text {tot }}}{N k_{B}^{T}}=\frac{F^{\text {harm }}}{N k_{B}^{T}}+\int_{\infty}\left(a \Gamma^{-1}+b \Gamma^{\prime-2}\right) \frac{d \Gamma^{\prime}}{\Gamma^{\prime}}=\frac{F^{\text {harm }}}{N b T}-a \Gamma^{-1}-d b \Gamma^{-2} \tag{4.10}
\end{equation*}
$$

The Iree energy is plotted in figure 2. By difterentiating the excess internal energy according to Eq. (3.31) we obtain the excess specific heat of the solid phase,

$$
\begin{equation*}
\frac{C^{e x}}{A_{B}}=1+2 a \Gamma^{-1}+3 b I^{-2} \tag{4.11}
\end{equation*}
$$

Figure 3 shows this function and also our result for C_{A} from direct Monte Carlo computation.

V. THE PHASE TRANSITION

Using the free energies calculated in the preceeding sections we searched for a phase transition between the liquid and solid phases. Looking at table 2 we see that for the 100 particle system the liquid free energy is lower than the solid free energy for $[$ below about 130 . However, this crossover point is extremely sensitive to the free energies. An error of only 0.04% in the total free energy or 0.7% in the excess thermal free energy would shift the melting point Γ by 15 . Doing a double tangent construction to determine the width of the two phase region shows that the melting and freezing points are only separated by about 0.1 in Γ.

Since the free energies lie so close it is worthwhile to seek confirmation of the location of the phase transition by looking at the behavior of systems which were started from a perfect crystal and allowed to melt. The 100 particle system started at $\Gamma=130$ achieved an equilibrium value of the root mean square deviation of . 158. This system was allowed to age for 13,000 moves per particle. The $\Gamma=120$ particle system melted after about 2000 moves per particle. In our $N=64$ particle runs the same behavior was observed with the $\Gamma=130$ system attaiaing an equilibrium root mean square deviation of 0.153 . Hence, the phase transitton probably lies below a value of Γ of 130 and above a Γ of 120. Since metastability appears to be much less of a problem with softer potentials in two and three dimensions and the free energies are difficult and expensive to compute for such potentials,monitoring the stability of the crystal lattice is a sensible alternative for soft-potentials. The quantity Γ is essentially a measure of the ratio of the potential and kinetic energies of the plasma. We therefore see that the system crystallizes when the potential energy is approximately one hundred times larger than the kinetic energy. This, to us, somewhat surprising result is very similar to that found in three dimensions.

Hockney and Brown ${ }^{11}$ found a second order phase transition at $\Gamma=95 \pm 2$ in a molecular dynamics simulation involving 10,000 particles. We have made several careful runs in the neighborhood of $\Gamma=95$ but have found no signs of any anomaly in either the free energy or the internal energy. In figure 3 and table 2 we have presented the results of a direct calculation of the specific heat at constant area based on the fluctuations in internal energy:

$$
\begin{equation*}
\left.\frac{C_{A}^{e x}}{N k_{B}}=\frac{\Gamma^{2}}{N}\left\langle\left(\sum_{i<j} v\left(\vec{r}_{i j}\right)\right)^{2}\right\rangle-\left\langle\sum_{i<j} v\left(\vec{r}_{i j}\right)\right\rangle^{2}\right] \tag{5.1}
\end{equation*}
$$

Calculation of the specific heat in this fashion is inevitably noisy but our results are clearly incompatible with the results of Hockney and Brown ${ }^{11}$. They performed their calculation by starting at a low temperature, or high value of Γ, with a crystal with several grain boundaries and then increasing the temperature in steps. We interpret the discrepancy with our results as showing that they did not give their system time to achieve equilibrium at the various temperatures. It is hard to blame the discrepancy in the difference in numbers of particles; we do not see how a system which melts at a value of I of 120 for 100 particles could remain stable at a Γ of 100 for 10,000 particles. As the next section will show, traditional indicators of crystalline order, such as the mean square deviation of particles from their latice sites, increase with the number of particles for fixed Γ. We know of no quantity which indicates increased order as the number of particles increases, in two-dimensional systems. The order of the phase transition is an important question. A recent discussion by Kosterlitz and Thouless ${ }^{29}$ argues that melting in two dimensions for short range forces is caused by the appearance of free dislocations as a result of the breakup of pairs (or higher combinations) of dislocations with opposing Burger's vector. Their calculation results in an analytic specific heat at the transition but the approximations they make are of the type which could easily mask
a weak singularity. A recent calculation by Nelson ${ }^{30}$, yields an essential singularity in the specific heat. snother calculation by Holz and Medeires 31 argues for a first order phase transition with short range forces and gives a rationalization for the second order phase transition observed by Hockney and Brown ${ }^{11}$.

Young ${ }^{32}$ has performed a calculation, similar to that of Nelson ${ }^{30}$, paying particular attention to the angular forces between dislocation pairs, and finds qualitatively similar results. Most recently Halperin and Nelson ${ }^{33}$ have argued that two-dimensional melting occurs in two staps. They propose that at a low temperature the breakup of dislocation pairs leads to a transition to a "liquid crystal" phase and at higher temperature the dissociation of diselination pairs Yields an isotropic iluid.

We thus find the theoretical situation to be less than completely clear, especially for long range forces. Our results are compatible with a first order phase transition but our total iree energy curves cross with a difierence In slope of 0.03%. It may be argued that iftting the equation of state data biases ane toward a fisst order phase transition and we are unwiling to state an order for our phase transition. All we can say is that in the thermodynamic quantities we have calculated we see no indication of any divergences.

It is our conviction that the way to proceed at this point is to attempt to use molecular dynamies to investigate the mechanism of melting and we are starting further work along these lines.
VI. LINDEmANN'S Ratio and size dependeice

In table 4 we show values of the root mean square displacement of electrons from their original lattice sites. All of these values are for 64 or 100 particle systems with periodic boundary conditions. Emamination of these quantities shows that melting occurs for a root mean square displacement of $16 \pm .01$ in terms of the near neighbor distance. This quantity is known as Lindemann's
ratio. However, as we will see, this statement is an over simplification of the situation in two dimensional crystals.

Over 40 years ago Peierls 34 and Landau ${ }^{35}$ argued that there would be no true long range two-dimensional crystalline order. Peierls produced an argument based on the harmonic approximation and Landau used his theory of second order phase transitions. Ten years ago these arguments were made rigorous by Mermin who proved that, for every $\vec{k} \neq 0$, the Fourfer component ρ_{K} of the density must vanish in the thermodynamic limit. More precisely he showed that

$$
\begin{equation*}
\rho_{\vec{k}} \leqslant(\ln (N))^{-\frac{1}{2}} \tag{6.1}
\end{equation*}
$$

where $\rho_{\vec{k}}=\frac{1}{N}<\sum_{i=1}^{N} e^{-i \vec{k} \cdot \vec{s}_{i}}>$.

He also showed that

$$
\begin{equation*}
<|\vec{U}(\vec{R})|^{2} S^{\frac{1}{2}} . . \text { const }(\ln \mathrm{N})^{\frac{1}{2}} \tag{6.3}
\end{equation*}
$$

where $\vec{U}(\vec{R})$ is the deviation of the particle from the lattice point at \vec{R}.
This proof is valid for potentials $\sigma(\mathrm{r})$ for which

$$
\begin{equation*}
\phi(\vec{r})-\lambda \vec{r}^{2}\left|\nabla^{2} \phi(\vec{r})\right| \tag{6.4}
\end{equation*}
$$

is integrable at $\vec{r}=\infty$ and positive and nonintegrable at $\vec{r}=0$, both for $\lambda=0$ and some positive finite value of λ. The $1 / r$ potential does not meet the first criterion. Hence, the question as to whether the two-dimensional one component plasma can display long rangecrystalline order has not been rigorously answered at present. We do, however, find the Landau-Peierls 34,35 argument very convincing.

To investigate this question we have performed a series of monte Carlo
calculations at a value of $[$ equal to 200 and with the number of particles varying from 16 to 1024. The root mean square deviation is plotted against $(\ln (N))^{\frac{1}{2}}$ in figure 4. For comparison the result of a lattice dynamics calculation is shown on the same graph. Due to the extremely lengthy calculations required to achieve convergence of this quantity we were not able to obtain more than a lower bound for the cases of $\mathrm{N}=512$ and $\mathrm{N}=1024$. It is seen that the points from $N=16$ to $N=256$ are compatible with the $\mathrm{en}(\mathrm{N})$ behavior but do not definitely rule out the approach of the root mean square deviation a constant value. We plan more work on this question in the near future.

In figures 5 and 6 we have displayed plots of the distribution of particles about their lattice sites for N values of 144 and 1024. The
increase in the mean square deviation can be clearly seen. The one particle distribution functions are displayed in figure 8.

In his paper Mermin ${ }^{15}$ pointed out that two-dimensional crystals, while not possessing true long range translational order, may have long range orientational order. If $\vec{R}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}$ and $\vec{r}(\vec{R})=\vec{R}+\vec{U}(\vec{R})$ then in the harmonic approximation

$$
\begin{equation*}
\Delta^{2}=\left\langle\left[\vec{r}\left(\vec{R}+\vec{a}_{1}\right)-\vec{r}(\vec{R})\right] \cdot\left[\vec{r}\left(\vec{R}^{4} \vec{a}_{1}\right)-\vec{r}(\vec{R})\right]\right\rangle-\left|\vec{a}_{1}\right|^{2} \text { as }|\vec{R}-\vec{R}|-\infty \tag{6.5}
\end{equation*}
$$

In figure 7 we show the results for Δ^{2} at $\Gamma=200$ for various numbers of particles. It is seen that this quantity rapidly approaches a constant value independent of N .

We believe that we have establis'sed that the lattice displacements in the one component plasma behave in a very similar way to those of the hard disk system ${ }^{28}$. There is a loss of translational long range order as the size of the system increases. On the other hand there appears to be long range orientational order. The full implications of this observation must await a more detailed investigation of larger systems.

VII. ONE AND TWO PARTICLE DISTRIBUTION FUNCTIONS

In figure 3 we have plotted the distribution function, $n(r)$, for particles about their lattice sites. The single particle distribution function is defined so that $n(r) d \vec{r}$ is the probability of finding a particular particle witiin a volume element $d \vec{r}$ at a point removed from the lattice site by a displacement \vec{r}. The logarithm of $n(r)$ has been plotted as a function of the distance from the lattice site squared. Hence, if the distribution of particles about their lattice sites were Gaussian, the points would fall on a straight line. The normalization has been arbitrarily chosen so that $n(r)=1$ for the point with the smallest value of r.

Two effects are illustrated in this plot. For the two plots with $\mathrm{N}=64$ we can see the effect of lowering Γ from 300 to 200 . In addition, the effect or changing N irom 64 to 1024 for $\Gamma=200$ is evident. In none of the cases is n(r) truly Gaussian. The result for $\Gamma=300$ is approximately Gaussian but the results for $\Gamma=200$, although more spread out than $n(r)$ for $E=300$, appear to be cutoff more steeply than a Gaussian distribution. Our results contrast with the results of Young and Alder ${ }^{2 S}$ who ifnd that densely packed hard disks form a Gaussian distribution but that at lower density the distribution decays more slowly than a Gaussian distribution. Thus, the considerable differences between hard disks and $1 / \mathrm{r}$ particles seem to produce opposite deviations from Gaussian behavior as the melting transition is approached.

The radial distribution function $g(r)$ is defined by the equation,

$$
\begin{equation*}
g(r)=\frac{N(N-1)}{\rho^{2}} \frac{1}{Q_{N}} \int \ldots \int \exp \left[-\Sigma \sum_{i<j} v\left(r_{i j}\right)\right] d \vec{r}_{3} \ldots d \vec{r}_{N} \tag{7.1}
\end{equation*}
$$

We have calculated values for $g(r)$ function for $\Gamma=36,5=90$, and $\Gamma=120$. These are tabulated in table 6 and plotted in figures 9,10 , and 11 . For $\bar{m}=90$ the HNC result for $g(r)$ is plotted for comparison with the Monte Carlo result. The perhaps surprising feature is that $g(r)$ shows considerably more structure
than the corresponding values of $g(x)$ given by Hansen ${ }^{12}$ for the three-dimensional case. This, however, mary be a general feature of two-dinensional simple fluids as both Fehder ${ }^{36}$ and Tsien and Vaileau ${ }^{37}$ found the height of the fingt peak in $g(r)$ to fiall between 3 and $\& f o r$ two-dimensional LennardJones Iluids. The $B N C$ result for $g(r)$ shown for $E=90$ also shows correspondingly more structure than three-dimensional kNC results.

Finally, we have also calculated the structure lactor $S(k)$ which is dafined via

$$
\begin{equation*}
S(k)=\frac{1}{N}<p_{k}-\vec{k}> \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
o_{k}=\sum_{i=1}^{N} e^{ \pm \vec{k} \cdot \overrightarrow{\mathbf{r}}_{i}} \tag{7.3}
\end{equation*}
$$

The \vec{k} vectors used are those corresponding with the reciprocal lattice generated via the periodic boundary conditions associated with the M-particle basic Monte Carlo rectangle. To determine $S(k)$ we directiy used the definition (7.2) with (7.3). In Table 7 and $1 i g u r e s ~ 12$ and 13 our results for $S(k)$ are illustrated for $T=36$ and $T=90$. For $T=90$ we also present the result of dur GNC calculation. Just as in the case of $g(r)$ these show more structure than the three-dimensional results of Hansen ${ }^{12}$. We found it difiticult to get a good estimate of the height of $S(k)$ at the ifrst peak but it is clear that it will be larger than the value of 2,35 found at ireezing in many threedimensional systems ${ }^{39}$.

The Debye-riickel result for $S(k)^{6}$

$$
\begin{equation*}
S(k)=\frac{k}{k+2 \Gamma} \tag{7,4}
\end{equation*}
$$

provides the correct low k behavior for $S(k)$. However, for our smallest values of k the Monte Carlo values of $S(k)$ have already risen above the Debye-Hückel

VIII. CONCLUSIONS

In this paper we have presented the results of a Monte Carlo calculation of th: properties of particles interacting via the $1 / r$ potential in two dimensions. In particular, we have emphasized the nature of the ordered phase and attempted to show how the dimensionality has influenced the nature of the order. The second main point is the phase transition itself. Much work is currently underway in two-dimensional melting and much remains to be done. We hope that experimentalists will soon observe an ordered phase of twodimensional electrons. This sbould be possible with lower temperature experiments as higher values of T can be achieved at lower densities. In addition, as figure 14 shows, quantum effects, as measured by the ratio of r_{s} and the de Broglie thermal wavelength, will become less important in the neighborhood of the phase transition if it is observed at lower temperatures.

One of us (SC) would like to thank Chia-Wei Woo and the Materials Research Center of Northwestern University for their help during the early days of this work.

This work was supported primarily by the National Science Foundation through the Cornell Materials Science Center Grant No. DMR-76-81083, technical report $\# 3074$ and by the National Aeronautics and Space Administration Grant No. NGR-33-010-188.
*
Present address: Department of Physics, Hartwick College, Oneonta, New York 13820.

[^0]
Rafinances

1. R.s. Grandaza and R. Whatams, Phys. Lett. A 34, 404 (1971).
2. E.P. Whanex, Traus. Faxaday Soc. 3a, 678 (2958).
3. A.V. Chaplik, Sov, Phys. $=5$ Mrp 35, 395 (1971).
4. R.S. Cxandady, Phys, Rov. A B, 2136 (1973),

5. A. L, Fettar, Phys. Rav, B 10, 3739 (1974).
6. M. W. Cold, Rey, Mod. Phys. 40, 401 (1974).
7. T,R. Brow and C.0. Wrimes, Phyia, Rev, Lett. 29, 12s3 (1972).
Q. X.P. Monaxkha and Y.B. Shalkn, Sov. Pkys. - JEXP 41, 220 (2976).
8. H. Totang, Phys. Rev. A17, 39s (1978).
9. R.iV, Hocknay and T.R. Brown, J. Phys. C 3, 1813 (1975).
10. J. P. Mansen, Phys. Rex. A S, 3093 (1970).
11. E.L. Pollock and J.P, Hansen, phya, Rew. A s, 3110 (2973).
12. L. Bonsadi and Avi. Maradudan, Phys, kev, B 15, 1969 (2977).
13. N.D. Mermin, Phya. Rev, IT1, 972 (1968).
14. P. Debya and E. Hickeh, phystk, Z. 2d, 185 (1923).
15. R.A. Brout and P. Carrutherg, feotures on the Many-mieceron Problem (Tatersetonea, New romk. 1963).

16. K.C. NE, N. Chem. Phys. 6, 2680 (197d).
17. J.F. Springer, M.A. Pokrant, and F.A. Stevens, Ur., J. Chem. Phys. 38, $1869(2973)$.
18. F. Lado. x, Comp. Phys. B. 417 (1971).
 4. Chem, Phys. 21. 2087 (1953).
 and T.W. Delwotte, Physter as, 309 (295").
19. W.G. Hoover, M. Ross, K.W. Johnson, D. Henderson, J.A. Barker, and
B.C. Brown, J. Chem. Phys. 52, 4931 (1970).
20. D.J. Chadi and M.L. Cohen, Phys. Rev. B 8, 5747 (1973).
21. S.L. Cunningham, Phys. Rev. B10, 4988 (1974).
22. A.A. Maradudin, E.W. Montroll, and G.H. Weiss, Theory of Lattice Dynamics In the Harmonic Approximation (Academic, New York, 1963).
23. D.A. Young and B.J. Alder, J. Chem. Phys. 60, 1254 (1974).
24. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
25. D.R. Nelson, to be published.
26. A. Holz and J.T.N. Medelros, Phys. Rev. B17, 1161 (1973).
27. A.P. Young, to be published.
28. B.I. Halperin and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
29. R.E. Peierls, Helv. Phys. Acta 7, 81 (1923); Ann. Inst. Henri Poincare 5, 177 (1935).
30. L.D. Landau, Phys. Z. Sowjet 11, 26 (1937).
31. P.L. Fehder, J. Chem. Phys. 52, 791 (1970).
32. F. Tsein and J.P. Valleau, Mol. Phys. 27, 177 (1974).
33. J.P. Hansen and D. Schiff, MoI. Phys . 25, 1281 (1973).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

The excess thermal internal energy as a fuaction of Γ. The points are the results of Monte Carlo calculations with the triangles representing a 16 particle system, the circles a 36 particle system, the squares a 64 particle system and the diamonds a 100 particle system.

The excess thermal free energy as a function of Γ. The circles give the results of a calculation based on the hypernetted chain integral equation, the triangles show the results of the Monte Carlo Iiquid state calculation, the diamonds show the predictions of lattice dymamics in the harmonic approximation, and the squares show the results of our Monte Carlo solid state calculations.

The excess specific heat as a function of Γ. The points give the result of direct Monte Carlo calculation based on equation (5.1). The solid line shows the result of calculatiag the specific heat via equations (3.33) and (4.11) which were obtained from fitting the Monte Carlo results for the internal energy. The root mean square deviations of particles from their lattice sites as a function of the square root of the logarithm of the number of particles. The root mean square deviation is measured in terms of the near neighbor distance, d. The solid circles are the results of Monte Carlo calculations for $16,36,64,100$, 144, 256,576 , and 1024 particles. The point for 1024 particles represents only a lower bound. The circles represent the prediction of lattice dynamics in the harmonic approximation. The squares represent the results of a molecular dynamics calculation for hard disks by Young and Alder ${ }^{28}$. The hard disk calculations
have $V / V_{0}=1.20$ where V_{0} is the close packed volume.

F1g. 5

F1g. 6

F1g. 7

F1g. 8

This ifgure shows the superimposed positions of the particles for 100 difierent Monte Carlo configurations, each separated by 4 passes. A pass is defined as one attempted move per particle. In this simulation $\Gamma=200$ and $N=144$. Roughly speaking, this represents a short time picture of the crystal. Jhis figure shows the superimposed positions of the particles for 100 difierent Monte Carlo configurations, each separated by 4 passes. A pass is defined as one attempted move per particle. In this case $\Gamma=300$ and $N=1024$. It this İgure is compared with figure 5 , the additional effect of the long wavelength phonons for 1024 particles may be seen. To see the long wavelength oscillations in particle positions look down the rows from a vantage point almost in the plane of the paper. The angular correlation Δ^{2}, dexined in equation (6.3), as a function of the distance, R, between pairs of particles for $\Gamma=200$. Both Δ^{2} and R are measured in terms of the near neighbor distance. The results are tior Monte Carlo calculations with $144,256,576$, and 1024 particles. In each case Δ^{2} difiers only very slightly from 1 , thus demonstrating the angular order observed in the crystal.

The single particle distribution function as a function of r where r is measured in units of the near neighbor distance. The triangles are for 1024 particles with $\Gamma=200$, the squares are for 64 particles $w t h \Gamma=200$, and the circles are for 64 particles $\Gamma=300$. The normalization has been chosen so that $n(r)=1$ for the first point.

F18. 9

FIg. 10

F18. 11

Fis. 12

P18. 13

E14. 14

The radial distribution function, $g(r)$, as a function of interparticle distance. The points were produced via Monte Carlo calculation with 100 particles and are for $\Gamma=36$. The distance is measured in terms of the ion sphere radius, $a=1 /(\mathrm{Tn})^{\frac{1}{2}}$, where a is the density.

The radial distribution function, $s(r), f o r y=90$. The triangles are the results of Monte Carlo simulation with 100 particles and the circles were calculated by solving the hypernetted chain equation. Distances are measured in terms of the fon sphere radius.

The radial distribution Iunction, $g(x)$, for $\Gamma=120$. The points sre the result of Monte Carlo simulation with 100 particles. Distance is mensured in terms of the ion sphere radius. The structure factor, $S(k)$, for $\Gamma=36$. The points resulted from Monte Carlo calculation with 100 particles. The wavenumber, k, is measured in texms of the inverse ion sphere radius.

The structure factor, $s(k)$, for $\Gamma=90$. The triangles are the result of Monte Carlo calculation while the circles ware calculated via solution of the hypernetted chain integral equation. The ravenumber, k, is measured in terms of the inverse ion sphere radius.

A density versus temperature plot which shows the location of the predicted phase transition. only the region of temperature greater than about $1^{\circ} \mathrm{K}$ and density less than approximately $2 \times 10^{9} \mathrm{~cm}^{-2}$ have been explored experimentaliy. The line where the de Broglie thermal wavelength is one quarter of the near neighbor distance has been included to sive an indication of the region where quantum mechanical effects become important.

TABLE I

Fitting parameters for the liquid phase results:

$$
c=-9.290414
$$

	MC	HNC
a_{1}	-1.106103	-1.102071
a_{2}	.765873	.799066
a_{3}	.775448	.951230
a_{4}	.261904	.201743
a_{5}	-1.202048	-1.593872
a_{6}	.957986	.131187
a_{7}	-	-.232854
a_{8}	-	.536553

Solid phase parameters: $a=4.986, b=561.1$

TABLE II

N	I	$U^{\mathrm{th} / \mathrm{Nk}_{B} T}$	$\mathrm{F}^{\text {tot }} / \mathrm{Nk}_{\mathrm{B}} \mathrm{~T}$	$C_{A}^{\text {ex } / \mathrm{Nk}_{B}}$
64	1	. 32	- . 61	. 16
64	2	. 43	- 1.46	. 26
64	5	. 61	- 4.30	. 40
64	10	. 75	- 9.36	. 52
64	20	. 91	- 19.84	. 66
64	30	1.01	- 30.52	. 76
64	40	1.08	- 41.28	. 82
64	50	1.14	- 52.09	. 89
100	60	1.19	- 62.93	. 94
64	70	1.23	- 73.81	1.00
100	80	1.25	- 84.70	. 37
64	90	1.29	-95.61	1.16
100	100	1.33	-106.54	1.06
100	110	1.34	-117.47	1.36
100	120	1.32	-123.42	1.37

The thermodynamic functions of the liquid phase. The internal energy has had the ideal gas and static lattice contributions subtracted from it and the specific heat has had the ideal gas contribution subtracted. The number of particles, N, is the number of particles in the Monte Carlo run.

TABLE III

\underline{N}	$\left\langle u_{0}^{2} / \omega^{2}\right\rangle$	< $\left.\omega_{0} / \omega\right\rangle$	$40 / \omega_{0}{ }^{*}$	$\left\langle\ln \left(10 / \omega_{0}\right)\right\rangle$
4	6.63	3.13	1.67	-. 599
16	3.38	3.39	1.63	-. 677
36	10.38	3.49	1.63	-. 693
64	11.43	3.53	1.63	-. 698
100	12.25	3.56	1.63	-. 700
144	12.91	3.58	1.63	-. 702
196	13.47	3.59	1.63	-. 702

The results of our lattice dyamics calculation are presented in the following table. N represents the number of points summed over in the Brillouin zone. The angular prackots denote the average of the various functions of irequency. The characteristic frequency $\omega_{0}^{2}=e^{2} / \mathrm{ma}^{3}$.

TABLE IV

N	Γ	$U^{t h} / N_{B} T$	$F^{t o t} / N_{B} T$	$C_{A}^{e x} / N_{B} T$

The thermodynamic functions of the solid phase. The internal energy has had the ideal gas and static lattice contributions subtracted from it and the specific heat has had the ideal gas contribution subtracted. The number of particles, N, is the number of particles in the Monte Carlo run. The column headed $\left\langle r^{2} / d^{2}\right\rangle$ gives the root mean square deviation of particles from their lattice sites.

TABLE V

N	$\left.<r^{2} / d^{2}\right\rangle_{\text {MC }}$	$\left\langle r^{2} / d^{2}\right\rangle_{L D}$
	.09	.11
36	.10	.12
64	.11	.12
100	.12	.13
144	.12	.13
256	.13	.14
512	.13	.14
1024		.13

This table gives the root mean square deviation it particles from their lattice sites for $\Gamma=200$ and various numbers of particles in the basic MC rectangle. The predictions of lattice dynamics in the hamonic approximation are also presented.

Monte Carlo

$\underline{~}$	$\underline{\mathrm{g}} \mathrm{r} ; \Gamma=36)$	$g(r ; \Gamma=90)$	\underline{r}	$g(r ; \Gamma=36)$	$g(r ; r=90)$
1.06	. 01	. 00	4.31	. 89	. 71
1.11	. 02	. 00	4.37	. 89	. 71
1.17	. 06	. 00	4.43	. 89	. 71
1.23	. 13	. 60	4.48	. 89	. 72
1.28	. 25	. 01	4.54	. 91	. 76
1.34	. 44	. 05	4.60	. 93	. 79
1.40	. 66	. 16	4.66	. 95	. 84
1.46	. 94	. 37	4.71	. 95	. 89
1.51	1.22	. 73	4.77	. 98	. 94
1.57	1.46	1.21	4.83	1.00	1.00
1.63	1.68	1.72	4.89	1.02	1.06
1.69	1.81	2.18	4.94	1.03	1.11
1.74	1.87	2.49	5.00	1.05	1.15
1.80	1.86	2.63	5.06	1.05	1.18
1.86	1.81	2.55	5.11	1.06	1.21
1.91	1.71	2.33	5.17	1.07	1.22
1.97	1.57	2.06	5.23	1.06	1.22
2.03	1.44	1.75	5.28	1.06	1.22
2.09	1.30	1.45	5.34	1.06	1.19
2.14	1.17	1.20	5.40	1.05	1.17
2.20	1.06	. 99	5.46	1.04	1.14
2.26	. 95	. 81.	5.51	1.03	1.10
2.31	. 87	. 70	5.57	1.02	1.06
2.37	. 79	. 60	5.63	1.01	1.03
2.43	. 75	. 52	5.69	1.00	. 99
2.48	. 70	. 48	5.74	. 99	. 95
2.54	. 67	. 45	5.80	. 98	. 92
2.60	. 66	. 44	5.86	. 98	. 89
2.66	. 66	. 44	5.91	. 97	. 87
2.71	. 66	. 45	5.97	. 97	. 85
2.77	. 69	. 47	6.03	. 96	. 85
2.83	. 72	. 52	6.09	. 96	. 85
2.39	. 76	. 56	6.14	. 96	. 85
2.94	. 80	. 64	6.20	. 97	. 87
3.00	. 87	. 71	6.26	. 97	. 89
3.06	. 92	. 30	6.31	. 97	. 91
3.11	. 99	. 91	6.37	. 98	. 93
3.17	1.04	1.03	6.43	. 98	. 95
3.23	1.09	1.14	6.48	1.00	. 98
3.28	1.14	1.25	6.54	1.00	1.01
3.34	1.17	1.35	6.60	1.01	1.03
3.40	1.19	1.44	6.66	1.01	1.06
3.46	1.21	1.48	6.71	1.02	1.07
3.51	1.21	1.49	6.77	1.03	1.10
3.57	1.19	1.48	6.83	1.02	1.10
3.63	1.19	1.45	6.89	1.02	1.11
3.69	1.17	1.39	6.94	1.02	1.10
3.74	1.13	1.31	7.00	1.02	1.10
3.80	1.10	1.22	7.06	1.02	1.09
3.86	1.06	1.14	7.11	1.01	1.08
3.91	1.03	1.06	7.17	1.01	1.06

TABLE VI
(continued)
\underline{r}
3.97
4.03
4.09
4.14
4.20
4.26
g(r; $\Gamma=36$
1.00
.96
.94
.92
.91
.90

$g(1 ; ~ Y=90) ~$	\underline{r}
. 97	7.23
. 90	7.28
. 84	7.34
. 79	7.40
. 75	7.46
. 72	7.51

ORIGINAL PAGE IS OF POOR QUALITY

$g(r ; \Gamma=36)$	$g(r ; \Gamma=90)$
1.00	1.05
1.00	1.03
1.00	1.01
1.00	.99
.99	.98
1.00	.97

Monte Carlo
\underline{r}
7.57
7.63
7.69
7.74
7.80
7.86
7.91
7.97
8.03
8.09
8.14
$\mathbf{8 . 2 0}$
$g(r ; \Gamma=36)$
.99
.99
.99
.99
.99
.99
.99
.99
1.00
.99
.99
1.00
$g(r ; \Gamma=90)$
.94
.94
.93
.92
.92
.93
.93
.94
.95
.97
.98
.99

$g(r ; ~ \Gamma=120)$	\underline{T}	$g(r ; ~ \Gamma=90)$
. 01	1.17	. 01
. 20	1.30	. 12
1.31	1.44	. 67
2.72	1.57	1.53 .
2.68	1.70	2.20
1.70	1.84	1.96
. 90	1.97	1.61
. 51	2.10	1.25
. 36	2.24	. 98
. 35	2.37	. 80
. 44	2.50	. 70
. 63	2,64	. 65
. 94	2.77	. 66
1.30	2.90	. 72
1.56	3.04	. 83
1.59	3.17	. 99
1.41	3.31	1.14
1.12	3.44	1.24
. 85	3.57	1.25
. 66	3.71	1.19
. 59	3.84	1.10
. 64	3.97	1.02
. 78	4.11	. 95
. 99	4.24	. 90
1.20	4.37	. 88
1.32	4.51	. 88
1.31	4.64	. 91
1.20	4.77	. 95
1.06	4.91	1.00
. 94	5.04	1.05
. 83	5.18	1.07
. 77	5.31	1.08
. 78	5.44	1.06
. 86	5.58	1.04
. 98	5.71	1.01
1.12	5.84	. 98
1.19	5.98	. 97
1.19	6.11	. 96
1.12	6.24	. 96

TABLE VI
(continued)

Mypernetted Chain

$\underline{\Sigma}$	$g(r ; m=120)$	$\underline{5}$	$g(7 ;=90)$
7.24	1.03	6.38	.97
7.39	. 95	6.51	. 98
7.54	.39	6.64	1.00
7.59	. 37	6.78	1.02
7.35	. 88	6.97	1.02
8.00	. 92	7.05	1.03
8.15	. 99	7.13	1.02
		7.31	1.02
		7.45	1.00
		T. 5.5	. 99
		7.71	. 99
		7.85	. 98
		7.98	. 28
		3.11	. 99
		8.25	. 99
		S. 38	1.00

Monte Carlo and hypernetted chain results for the radial distribution function, $g(r)$, for $\Gamma=36,90$, and 120 . Distance ts given in units of the fon sphere radius.

Monte Carlo
Hypernetted Chain Equation

$\underline{\mathbf{k}}$	S(k; $\quad \mathrm{I}=36)$	S(k; $\Gamma=90$)
1.40	. 04	. 02
1.69	. 06	. 02
1.96	. 09	. 04
2.16	. 12	. 05
2.36	. 16	. 08
2.55	. 23	. 10
2.72	. 32	. 16
2.86	. 41	. 21
3.02	. 63	. 35
3.14	. 78	. 52
3.29	1.11	. 83
3.43	1.43	1.46
3.52	1.80	2.04
3.66	1.94	3.37
3.78	2.08	3.36
3.88	2.05	2.89
3.99	1.98	2.41
4.08	1.81	1.90
4.22	1.49	1.38
4.29	1.38	1.24
4.38	1.27	. 95
4.50	1.10	. 87
4.59	1.06	. 75
4.66	. 97	. 69
4.76	. 93	. 67
4.84	. 91	. 64
4.98	. 81	. 56
5.03	. 81	. 60
5.15	. 78	. 53
5.27	. 76	. 57
5.36	. 75	. 53
5.75	. 74	. 54
5.58	. 74	. 57
5.74	. 76	. 62
5.91	. 76	. 63
6.10	. 80	.71
6.36	. 87	. 82
6.77	. 97	1.06

\underline{L}	S(k; $\Gamma=90$)
0.75	.01
0.90	. 01
1.06	. 01
1.22	. 02
1.37	. 0 :
1.53	. 03
1.69	. 04
1.85	. 05
2.00	. 06
2.16	. 09
2.32	. 12
2.47	.37
2.63	. 24
2.79	. 34
2.95	. 51
3.10	. 78
3.26	1.18
3.42	1.69
3.57	2.14
3.73	2.26
3.89	2.07
4.04	1.75
4.20	1.45
4.36	1.23
4.52	1.06
4.67	. 94
4.83	. 85
4.99	. 79
5.14	. 75
5.30	. 73
5.46	. 71
5.62	. 71
5.77	. 72
5.93	. 73
6.09	. 76
6.24	. 80
6.40	. 84
6.56	. 90
6.72	. 96
6.87	1.03
7.03	1.10
7.19	1.15
7.34	1.19
7.50	1.20

Mcnte Carlo and hypernetted chain results for the structure factor, $S(k)$, for $\Gamma=36,90$, and 120. Wavenumber is measured in terms of the inverse ion sphere racius.

(1)

[^0]: +Present address: Department of Physics, University of California at san Diego, La Jolla, California 92093.

