
( N A S A - C R - 1 4 5 3 3 3 )  EFXCF 2 FOTCECRPFT N78-30042 
S I E U L A T I C N  ZCCEL, VL .q*E 1: E Y G I ~ E E B 1 Y G  

* DOC'JREN'IAIICI  Final Trchtical Seport  
(Lockheed-Califcrcia Co.,  3 u r t a n k . )  2 7 2  F Unclas 
!I< L 1 2 / H F  b 0 1  C F C L  c i a  ~ 3 1 6 2  2 8 5 8 7  

VOLUME I - E161NEERIN6 DOCUMENTATION. 

LOCKHEEDCALIFORNIA CO. 
P.O. BOX 561 
BURBANK, CALIF. 91520 

CONTRACT NAS1-14570 
JUNE 1978 

National k0fNutict and 
Space Administration 

L.*R.wwohclcn# 
Mpton, Virginia 23665 

https://ntrs.nasa.gov/search.jsp?R=19780022099 2020-03-22T03:48:17+00:00Z
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REXOR I1 ROTORCRAFT SIMULATION MODEL* 

Voluute I - Engik~eerilig Documentation 

J. S. Reaser and P. H. Kretsinger 

Lockheed-Califb r n i  a Canpany 

This report describes a generalized format ro torcraf t  nonlinear 
stmulation cal led REXOR 11. The program models single main ro tor  vehicles 
with up t o  seven main r o t e r  blades. Wings, two horizontal t a i l  planes, 
and auxil iary thrus tors  may be included t o  model a var ie ty  of compound 
helicopter configurations. 

Program output is  primarily i n  the  form of machine p lot ted  time his- 
t o r i e s  specified from a signal  l i s5 .  This list is, i n  turn,  user selected 
from a s e t  of computation variables used by the  progrm. 

LIST OF SlXBOLS 

The symbols used i n  the  REXOR 11 equations are quite numerous. In  order t o  
keep the  catalog of symbols t o  manageable propcirtions the  following l ist  
is divided according t o  the  discussion i n  Section 3. Namely, a list of 
basic symbols is given, followed by subscripts ,  superszriyts,  and post- 
scr ip ts .  8unconforming cases of usage together with complicated o r  
obscure subscripting are fully annotated i n  the  basic l ist .  

SYMBOLS 

t~ arbi t rary  vector 

a 
s speed of sound, m / s  

a 2 
0 acceleration vector, m / s  ( ft/s ) 

a 
1 

longitudinal component of blade f i r s t  harmonic flapping, 1-@ 

[A] generalized mass element matrix 

4,2,3 
modal variables 

*ln generalized displacement of n thb lade ,  f i r s t  mode 

*The contract research e f fo r t  which has lead t o  the  resu l t s  i n  t h i s  report  
was financially supported by USARTL ( AVRADCOM) Structures Laboratory. 



generalized displacement of nth blade, second mode 

generelicad displacement of nth blade, third mode 

cosine component of blab first harmonic cyclic, rad 

number of main rotor blades; arbitrary vector 

dissipation function 

sine component of blade first harmonic cyclic, rad 

blade segment chord, m ( ft ) 

damping matrix 

aerodynamic drag coefficient 

aerodynamic lift coefficient 

aerodynamic pitching moment coefficient 

power coefficient 

thrust coefficient 

linear damping, N/m/s j lb/ft/s) 

rotary damping, N-m/rad/s ( ft-lb/rad/s ) 

blade bending to feathering couplings 

lift deficiency function 

infinitesimal increment 

increment in rotor, radius, m (ft) 

increment in time 

derivative with respect to time 

swashplate to feather gear ratio, zero collective 

swashplate to feather gear ratio slope with collective 

pitch horn effective crank arm, m (ft) 

2 2 blade bending stiffness distribution, 8.-m (lb-ft ) 

ground effect factor for main rotor 



factor;  force, N (lb) 

force components along X,Y,Z direct ions,  I ( lb )  

generalized force about 4 ,  8, t# axis  

feathering mode generalized force 

2 gravity,  m / s 2  ( f t / s  1 

gravity components along X ,Y ,Z direct ions 

gear r a t i o  

generalized force vector 

angular acceleration p a r t i a l  product 

2 2 blade torsional  s t i f fness ,  N-m (lb - f t  ) 

2 2 = rm.  1 xi , k g 3  (slug-ft ) 

2 2 = mi yi2, kg-m (slug-ft ) 

2 2 = Em. Zi , kg-m2 (slug-ft ) 
1 

2 2 = Emi Xi Yi , kg-m (slug-ft ) 

2 2 = xmi xi Zi, kg-m (slug-ft ) 

uni t  vector 

unit  vector 

advance r a t i o  

number of blade rad ia l  s t a t ions ;  reduced f'requency, 
rad/s; unit  vector 

spring matrix 

blade spring matrix element 



s-hub axis -, k# (slugs) - of is purticle or blade -&, kg (slugs) 

ii2c#rrUzed mass matrix elacat 

low~k rbout X,Y,Z axis, B-m (f't-lb) 

n-r of system puticles 

main rotor pitch rosrcnt inflov, d s  ! f i l s )  



main rotor roll rrrarnt inflow, m/s (ft/s) 

generalized forcing function 

avodJrnaaic prcssun times reference wing area, kg ( lb)  

totel  d n  rotcr aemdpamic loads r t r i x  

tail  rotor torque, E0-m (rt-lb) 

general vector; radius of cuwature, f't; aagular velocity 
about ' axis, rdsec ;  notation f o r  (x,Y,z) 

s t a t i c  blade shape 

vector displacement of par t ic le  p in X,Y ,Z ?%xis system 

vector displ6cesuent of x,y,z origin in X,Y,Z system 

gyro damper coupling ra t ios  

Laplace miable, path of =tion of par t i c le  p 

blade spline length along neutral d s  locii, a (ft) 

kinetic energy, 8-m ( ft-lb) 

transfornation of coordinates r a t r i x  

velocity i n  X direction, 4 s  ( f t / s )  

potential energy function, N-m (ft-lb) ; s t r a in  energy, S m  (ft-lb) 

air velocity on blade element, m/s (f t /sec)  

velocity i n  Y direction, m / s  ( f t / sec)  

trajectory velocity 

velocity i n  Z direction, m / s  ( f t l sec)  

main rotor collective inflow, m!s ( f t j s ec )  

t a i l  rotor :ollective inflow, m/a ( f t / sec)  

motion i n  X direction, rn (f t )  ; blade span location 



coordimate biractiao; uds; deilection, m (f't); l o e m t i o m ,  
r (ft); emas product 

blde rrdial station of arrcp md jog, r (ft) 

-4- p.m. = (-1 
-1 rotor laq~&tudbal force, r (Ib) 

motloat ia Y dhwtion, a (ft) 

coordinate direction; ads; dhflection, r (it); location, r (ft) 

ten8icm torsion prcL outboard cnd .lod.l cocfiicicnts 

differerne between Y direction bca+dom of cg mad mutml 
uis points of blade element, 8 (ft) 

lotion in 2 dirtcticm 

coordinate directijn; uis; deflection, r (a); location, r (fi) 

relatiire swashplate vertical djsplaccrent vith respect to 
+& hub, r (ft) 

tension-torsion pnck outboard end mdal coefficients 

teetering rotor uudersling, r (ft) 

hub set distance above f'uselage set, r (fi) 

hub set distance above svashplate set, r (it) 

m e  of attack, rad 

angle of attack vith hub set, rad 

sideslip angle, rad 

blade feathering angle, rad 

feathering/pitch-horn bending or dynamic torsion 
generalized coordinate displaceaent 

bide droop relative to precone angle, rad 



blade sweep angle, rad; dynamic stall deley, s 

t ra jec tory  path angle with F, set, rad 

l i m i t  deflection, rad; freeplay, rad; small incr-nt 

tai l  ro tor  p i tch  - f l a p  coupling 

dovnvash fac tor  of ving on horizontal tail 

vector notation of 0, 0 ,  It 

rotat ion about Y axis,  rad 

collect ive blade angle, rad 

s ides l ip  a t  blade element, rad 

3 air density, kgh , ( s l q s / f t 3 )  

time constant, s; natural  perisd, s 

feathering axis precone, rad 

rotat ion about X axis,  rad 

feathering angle, rad 

feathering angle of blade element of n s  blade, rad 

blade roo; reference feather angle, rad 

blade torsion,  rad 

SM 3f blade t v i s t  arid torsion,  rad 

wake angle of main rotor ,  rad, !&g) 

rotat ion about Z axis, rad; s ides l ip  angle with hub set, rad 

control input axis rotat ion from Swashplate, rad 

pitch lead angle, red, (deg) 

t ra jec tory  path yaw with  E set, rad 

main rotor  apparent airflow angle, rad 

rotat ional  speed, rad/s; angular velocity, rad/s; 
natural  frequency, rad/s 



a 

SUBSCRIPTS 

a 

A 

b 

BmD 

BLE 

B h  

C 

(X; 

CORR 

Du 

Dm 

E 

sac 

EST 

F 

FA 

PB 

m 

FR 

G 

GFa 

SFB 

CSP 

partial derivative, derivation 

rrbitrary coordinate se t  r 

drrc to r+ro&mmics 

arkitrary cocrdlnste se t  b 

associated vi th blade elast ic  bending 

blade element coordinate system 

blade reference axis system for the n s  blade 
associated v i t h  pilot control input, chordvise 

associated vith center cf gravity location 

cc rrect ive , correct ion 

referring t o  downvash 

referring to dynamic caqmnent 

earth axis 

associated vith poverplant - engine 

estimated 

fusezage axis; associated v i th  blade feathering 

referring to  blade feather axis 

associated v i t h  feedback 

associated v i t h  feathering of the n E  blade 

due +A friction 

referring t o  gyro or gyro coordinate system 

associated with gas generator section of powerplant 

associated vi t h  gyro control feedback 

gyro to  swashplate connection 



Jn  

B 

LAG 

L r n T  

m 

1m 

n 

NA 

rim 

NO 

m 

OB 

om 

P 

PH 

r 

R 

r e l a t i n g  t o  gyro gimbal &?balance 

r e fe r r ing  t o  hub o r  pr inc ipa l  reference axis system 

associated with horizontal  tail 

r e f e r r ing  t o  inf lov,  p a r t i c l e  

r e f e r r ing  t o  inboard fea ther  bearing loca t ion  

s?ritlg matrix index 

associated v i t h  bla;e attachment joggle 

associdted v i t h  gyro end of  feedback rod linkage 

associated v i t h  feedback rod cozing from t h e  n G  blade 

generalized mass index 

associated v i t h  lead-lag damper 

s ignifying limiting value 

blade mode index, spr ing matrix index 

associated with main ro to r  

blade nmber  index 

r e f e r r  irg t o  blade segment neut ra l  ax i s  

neviy datemined value 

no& ( t o  a i r f low)  component 

per taining t o  nonroiating v d u e  

re fer r ing  t o  o ~ t b o a r d  fea ther  bearing loca t ion  

value from previous time s t e p  

associated v i t h  propel ler ;  perpendicular blade component 

r e f e r r ing  t o  p i t c h  horn 

generalized mass index 

re fer r ing  t o  rotGr axis system 



REF 

R# 

S 

STEADY 

SV 

T 

associated vi th  blade feather reference value 

referring t o  control gyro feedback lever moment 

referring t o  blade spanvise velocity; general mode; s ta t ic ;  
structural; shaft 

referring t o  blade segment shear center 

referring t o  swashplate 

collarsnd to swashplate 

referring t o  svashplate l i m i t  stop 

steady component 

referring t o  blade sweep angle location 

associated vi th  trajectory path relating t o  E axis; 
tangential blade component; blade torsion; blade twist 

associated with the t a i l  rotor 

i n i t i a l  o r  trim value 

associated with blade twis:  (bu i l t  i n )  

relating t o  control gyro unbalance 

associated with unsteady component 

associated with vertical  t a i l  

associated with the wing 

relating t o  component i n  X direction 

relating t o  component i n  Y direction 

relating t o  aerodynamic component i n  Y direction 

relating to  component in Z direction 

relating to  aerodynamic component in  Y direction 



(nought) associated with co l l ec t ive  value, coordinate axis 
value, with respect  t o  pr inc ipa l  reference ax i s ,  blade 
root sunnnat ion 

1,293 with respect  t o  blade modes 1, 2, or 3 

1s f i r s t  harmonic component shaft a x i s  fea ther ing  

1/4 c v i t h  respect  t o  blade 1/4 chord 

3/4 c v i t h  respect t o  blade 3/4 chord 

8 ~ ~ n  associated with t h e  feathering mode of  t h e  n t h  blade 

4 r e l a t i ng  t o  compcent i n  t h e  d i r ec t ion  

6 r e l a t i n g  t o  component i n  t h e  6 d i r ec t ion  

# r e l a t i n g  t o  component i n  t h e  $I d i r ec t ion  

SUPERSCRIPTS 

1 r e f e r r ing  t o  i n e r t i a l  reference 

T matrix transpose 

( -  1 (bar ) average quant i ty  

( ' 1  (prime) slope with respect t o  blade span 

( * )  (dot ) time der iva t ive  of bas ic  quant i ty  

(.. (double dot ) second time der iva t ive  

(-1 matrix inverse 

(+I  vector quant i ty  

POSTSCRIPTS 

( i )  

(n)  

blade r a d i a l  s t a t i o n  index 

blade number index 



1. INTRODUCTION 

1.1 Scope of the  REXOR I1 Prog2-am 

REXQR 11 is a ro torcraf t  analysis  t o o l  which has resulted from applying an 
interdiscipl inary math modeling philosophy. The RMOR I1 math model is  
v r i t t e n  for  a s ing le  ro tor  hel icopter  v i t h  capabil i ty f o r  analysis  of hinge- 
less o r  hinged ro tor  systems v i t h  conventional controls.  This hel icopter  
may be conventional i n  design, winged, or  compounded. The main ro to r  may 
have a maximum of seven blades. The model is broken dour. in to  the  three  
major categories shovn i n  Figure 1. These categcries are the  zantrol  system, 
the  ro tor ,  and the  body. 

Figure 1 indicates the  manner i n  which these components are re la t ed  t o  
one another as u t i l i zed  ir the c '-rsis . Tfie analysis is the  simulation of 
a; en t i r e  a i r c r a f t ,  vhich incluc deta i led  dynamic descript ion of the  
;cotor and control system as wel; . conventional six-degree-of-freedom 
body dynamic description which operares i n  two nodes iden t i f i ed  as TRIM 
and F L Y .  In the TRIM mode, the a i r c r a f t  i s  cons5raiced t o  a prescribed 
s t a t i c  f l i g h t  coudition while the controls are act ivated end the  r o t o r  is 
allowed t o  respond t o  obtain a force and mment equilibrium of the aircraf-u 
a t  t h a t  s t a t i c  condition. In t h e  PLY rode the  e n t i r e  a i r c r a f t  is f r e e  t o  
respond dynamically t o  control inputs  o r  t o  any other a r b i t r a r y  inputs  such 
as gusts. P i lo t  inputs can be any s ingle  o r  multiple control  manipulation 
i n  the  fom of simple steps or  pulses, doublets, s t i c k  stirs, o r  other 
t ransient  input within t h e  capab i l i t i e s  of t h e  control system simulated. 
As a result, t rans ient  loads and resul t ing  e i r c r a f t  and ro tor  dynauic re- 
sponse can be obtained. For correlat ion purposes, ac tual  f l i g h t  test con- 
t r o l  motions can be used as input t o  provide comparative r e s p n s e  data. 
Additionally, gust inputs and other  types of external  exci ta t ions  can be 
applied d i rec t ly  t o  the  ro tor  and/or airC A rame . 

1.2 RFX3R I1 Capabilities 

E X O R  I1 is  a deta i led  ro torcraf t  math model simulation with pa r t i cu la r  
emphasis on the  main ro tor  mechanics. The progrem is  par t icular ly  valu- 
able i n  a detai led exploristion of ro tor  charac ter is t ics  of proposed de- 
signs, i n  identifying problem areas  and verifying f ixes  i n  f l i g h t  test 
development programs. A case h is tory  i s  given i n  Reference 1. 





Typical REXOR I1 applicat ions a r e  l i s t e d  below. 

a Rotor s t a b i l i t y  as a f'unction of f l i g h t  speed, maneuvers, 
ro to r  rpm, nonlinear blade aerodynamics 

a Rotor/body s e n s i t i v i t y  and d iss ipa t ion  capacity as a function 
of gusts arld ~ i l o t  control  inputs 

a Effects  o f  design parenieters (mechanical and e l a s t i c  
couplings, controls ,  e t c .  ) on ro to r  s t a b i l i t y  and load 
5ens i t i v i ty  

a Correlation and check of spec ia l ized  dynamic models. 

Handling Qua l i t i e s  : 

a Vehicle response t o  p i l o t  cont ro l  inputs f o r  vehicle  f l i g h t  
conditions,  speed, a l t i t u d e ,  ro to r  rpm, design parameter 
var i at i ons 

Vehicle s t a b i l i t y  as function of speed, r o t o r  rpm, f l i g h t  
conditions,  design parameters 

Effect of  design parameter var iat ions on h a n a i n g  q u a l i t i e s  

a Development and checking of  handling q u a l i t i e s  models. 

Fai lure  Analysis : 

a Effect  o f  l o s s  o f  one inplane danper on subsequent f l i g h t  
time h is tory  

a Blade p r o j e c t i l e  h i t  and ensuing events 

Blade s t r i k e  and resu l t ing  ro t cz  t rack .  

Ferformance : 

Correlation and independent check of performance models, 
p a r t i c - d a r l y  i n  regions of F.i ghly nonlinear blade aerodynami c  
operation ( r e t r ea t ing  blade stall  and compressibili ty e f f e c t s )  

a Develop da t a  f o r  performaxe models f o r  use i n  nonlinear 
a r e  as 



Loads : 

Steady-state r o t o r  loads as a function of r o t o r  rpm, f i i g h t  
veloci ty ,  cont ro l  t r i m  s e t t i n g s  

Dynamic r o t o r  Loads a filnction of r o t o r  rpm, f l i g h t  velc- 
c i t y ,  vehicle  maneuvers, p i l o t  cont ro l  inputs  

Rotor/fuselage clearances as a function of speed, vehicle  
maneuvers, ro to r  rpm, g i l ~ t  cont ro l  inputs ,  f i i , @ t  
configuration 

Rotor/ fuselage/wing design c h ~ r a c t e r i s t i c s  requirements as  
functions of rn&Teuver load f ac to r ,  cont ro l  commands ( see  
Reference 2 ) . 

1.3  Improper Application REXOR I1 

While RMOR I1 is capable of performing a number of ana lys is  tasks ,  t h e  
progrrm range o f  use is  ce r t a in ly  not all inclusive.  Examples of types 
of  use where R E i i c R  I1 e i t h e r  wouldn't work w e l l  o r  uauld be impract ical  a r e  
given below. 

REXOR I1 is an extensive math model and, as such, may consume a considerable 
amount of computer t i m e  t o  execute a case. Therefore, the  program is not 
intended as a paamet r i c  design ana lys is  t oo l ,  bu t  ra ther  as a device t o  
ver i fy  the correctness of a parametric s e l ec t ion  process. 

RMOR I1 does not t r e a t  blade-to-blade vortex in te rac t ion .  This condition 
limits the  v a l i d i t y  o f  the  v ibra t ion  so lu t ion  i n  the t r .msi t ion  f l i g h t  
regime. 

REXOR 11 typ ica l ly  uses twenty o r  l e s s  blade r a d i a l  s t a t i ons .  The computer 
blade deflect ions show good cor re la t ion  t o  measured da t a  with t h i s  modcl- 
ing. However, s ince  shear  i s  a f i r s t  der iva t ive ,  and moment is  a second 
der iva t ive  of def lec t ion  iiata, care  needs t o  be exercised i n  t h e i r  use 
(Reference 3). 

1 . 4  The REXOR I1 Report and I t s  Use 

This repor t  is presented i n  three  volumes. 

Volume I 

A develo~fnent o f  ro to rc ra f t  mechanics and aerodynamics including 
a d e r i v ~ c i o n  of the equations of  motion from first pr inc ip les .  



Volume I1 

The development a ~ d  explanation of the computer code required t o  
implement the equations o f  motion. 

A user ' s  manual containing a d e s ~ r i p t i o n  of  code input /output  end 
in s t ruc t ions  t o  operate t he  program. 

Volume I is  intended t o  be a s e l f - su i ' l c i en t  guide t o  t he  math development 
of the  equations o f  motion and is  the  reference background a s  such. Volume 
I1 gives  t he  locat ion of computation elements, and serves  t o  l oca t e  elements 
f o r  inspect ion o r  modii'ication. Volume I11 presents  c~rmal  program operation 
plus troubleshooting gu' 3e mater ia l  required f o r  day-to-day program use. 



2. BASIC COWUTATIONAL IDEA 

2.1 Modal S o l u t i o ~  - Overviev 

Tile a i r c r a f t  i s  describe3 dynamically by an array of fully-coupled degrees of 
freedom. In addition t o  the  s i x  degrees of freedom of t h e  P ~ s e l a g e  principal  
reference axes, s i x  degrees of freer'.cn describe ro tor  hub to fuselage deflect ion 
aue t o  shaft  bending and transmiasFon mount motion. Rotor/engine speed is  a 
degree of freedom. The contrci  cvashplate has three  degrees of freedom. 
Motion of each of the  main ro tor  blades is  described by th ree  coupled flap- 
wise aid inplane mdes and a p i tch  horn bending degree 3f freedm. which couples 
blade feathering t o  t h e  swashlplate. The t o t a l  nmber of degrees of freedom 
possible is 16 + hb, where b is  t h e  number of Slades. 

The blade modes a re  primitive modes i n  t h a t  they a re  de:ermitee from a 
lumped parameter analysis a t  a se1ect:d ro tor  speed and col lec t ive  blade 
angle, hereafter  referred t o  as t he  reference feather  angle. The general- 
ized s t i f f h e s s  matrix i s  computed using these ro ta t ing  modes and contains 
only the  s t ruc tu ra l  s t i f fness  of the  blades and hub. This fcrmulation 
ensures proper in te rna l  and external  force and moment balance. The model 
deflections outboard of the  feather  hinge a r e  ro ta ted  through the  actual  
feather angle less the mference feather  angle. T h ~ s ,  blade element 
deflections outboard of the  feathering hinge due t o  modal displacements are  
defined t o  remain aligned with s coordinate ax i s  system which i s  orthogonal 
t o  a plarie containing the  instaneous deformed fea ther  axis  ant?. rotated through 
t h e  instantaneous feather  angle l e s s  t h e  reference f .ather angle. As a resu l t ,  
t h e  in te rna l  s t r a i n  energy ir t h e  blade due t o  un i t  model displacements i s  in- 
variant  with variat ion i n  blade angle. This technique permits t h e  highest 
resolution of motion arid forces f c r  t h e  blade with an assumed mode sol.ution 
f o r  a given number of modes. 

2.2 b e r g y  Methods Development 

The equations of.motion f o r  3ElCOR I1 are  developed from Lagrange's equations, 
which is ar? energy approach. If one can express t h e  k inet ic ,  potent ia l ,  and 
f i s ~ i p a t i v e  energies of a system i n  addition t o  t h e  work done by external  
"orces, then Lagrange's equations i;rc'iile a powerfil nethod f o r  developing 
he equations of motion. 

The dynamic equations of motion a r e  w:it+,en i n  matrix form as  



vkrt [ A ]  is a square matrix of  gzm=alized aass elements, { '6 1. is a columu 
vector of accelerations of t h e  generalized coordinates and 1 G 1 is a c o l ~  
vector derived fmm t h e  Xagraagian e n e r a  functions, d iss ipat ion function and 
generalized forces, waich take the  fona: 

The C Q U ~ ~ ~ ~ E E  cf m t i o n  a re  solved using a t k e  history s ~ l u t i o n  with rotor  
aziaxth arigie increments r e q ~ r e d  t o  provide a s t ab le  sollrtion at  the  highest 
ftcqueccy n d e  presect. 

2.3 Calci;latian of Rotor Xode 2isplacenonts, Velocities, and Accelerations 

31 a rotor  s h u l a t i o n  or t h i s  type, it is d i f f i c u l t  t o  compute the proper dis- 
placesent veloci t ies  and accelerations and associated i n e r t i a  and aerodynamic 
forces and merits vhich are required f ~ r  kigh resolution of t h e  blade feather- 
ing maents. ?%is requires exacting aer>dynamic data as w e l l  as a precise 
statesaeat of the  f n e r t i a l  loadings. To es tabl ish  t h e  feathering moaaents due 
t o  these loads, the  r e l a t i m s h i p  betveen the  feather ax i s  and i h e  point o? ap- 
p l i c a t i m  of the  loads must be precisely determined. This is accaarplished by 
a very sccu-rate -ic construction of t h e  undefomed blade and a superposi- 
t ion  3," the blade e l a s t i c  bending on t h i s  shape. In  order t o  achieve the  
highest resolution of the  gredfcted blade shape and feather ax i s  position, t h e  
blade modes are defined at approximately the  t r i m  col lec t ive  blade angle. The 
blade s t a t i c  position is  a l so  constructed a t  t h i s  blade angle. Blade element 
displacements, velocit ies ,  and accelerations are then ccmputed from t h e  cam- 
bined s t a t i c  shape, the  e l e s t i c  blade motion, and blade feathering with re- 
spect t o  the reference feather angle. 

The aerodynamic description used i n  t h e  analysis is composed of a rotor  inflov 
model, nonlinear s t=@ and unsteady blade elemrnt aerociynmics, nonlinear 
fuselage aerodymaic c ~ a c t e r i s t i c s  , rotor/body aerodynaniic interference, and 
auxiliary airloads from the  ta i l  rotor  91ld t a i l  surfaces. The main ro tor  down- 
vash effec t  on the wing and horizontal tail  angles of a t tack is an empirical 
functicn cf =tor thrus t  and forward velocity. The nonlinear fuselage aercdy- 
neaics n a y  be inputted as tables  of actual  wind tunnel t e s t  data. 

The a i rc ra r t  primary control systems are simulated from the  p i l o t  control 
levers operating through e b o s t  sys tes  i n  al l  cc?trol axes. Gearing and 
gains i n  the coct ro l  path a r e  inputs t o  the  analysi:: and m:iy be eas i ly  changed 
for  studying the  e f fec t s  of design changes i n  the ccl+.rol system. 

Coatrol servos are simulated by first-order lags with r a t e  limits and with 
so f t  and hard physical stops. Contr-l s t i f fnesses  i n  col lec t ive  aid cyclic 
pitch axes of the main rotor  are  included i n  the  dynamic equations of motior,. 



2 4 output 

Thc analysis is a time history solution of the  equations of motion. REXOR TI 
does not directly process the  resul ts  of the  solution process for  output, ~t 
creates au output file of user selected parameters vhich are correlated by 
the colaputstion time step. Prom t h i s  data bank t h e  recorded signals can be 
selected fo r  tabular or plotted output. Assuming a good selection of param- 
e te rs  is chosen t o  be recorded, the user i n  an interactive mode may select  
as l i t t le  or as much of the information for  vieving as  ie needed. Thus a 
?lonfiguration can be examined t h o r o w  vithout having t o  rerun the case 
to select additional output. 



Tht notation wed in RMOR XI generally follow vht could be t e m d  KASA 
notation. In general: 

a Axis systems use a right-hand t r i a d  X, Y,  Z 

a Rotations about these axes are a l s o  a right-hand triad 8 ,  9 ,  it 

a Rotstion r a t e s ,  again a right-hand triad,- p, q, r 

a Velocity components of X, Y ,  2 are u, v, w. 

3.1 Subscripting Botaticm 

Subscripttng is used ss a rule in REXOR I1 t o  -her i d e n t i e  a variable .  
Superscripts except i n  a feu column vectors are reserved t o  denote r a i s i n g  
to a power. The subscr ip t ing  can man: 

a Type of element ; F f o r  fuselage, SP fcr swashplate, for 
tail m t o r ,  R fo r  ro to r ,  e t c .  

Coordinate system referecce; BIn for  b i d e  axis, Y f o r  hub axis, 
R f o r  mtor axis ,  e t c .  

Modal i d e n t i f i e r s .  

3.1.1 Biade number. - The blade ncdal i d e n t i f i e r  t n i c d l y  is of t h e  form 

Am 
. Whore n is t h e  blade na&r. 

3.1.2 Mcde number. - Also fro= Am, m is t h e  node nunber, and is  keyed t o  

t h e  symbol A. A represents  blade bending nodes ( 3 ) .  Therefore n can be 

1 t3 3. 

3.1.3 W e  type. - Other than blade ben2ing the remaicing blade mode is 

torsion,  and is separately i d e ~ t i f  i ed  as 3 PHn ' Honblade modes are ident i -  

f ied  by the  d i rec t ion  and subscripted a x i s  of co t ion .  Samples  a r e  JIR fo r  

ro ta t ion  of t h e  ro to r  and eS fo r  shaf t  pitching. 



3-1.4 &!neralized mass, damper, spring, forces. - The generalized masses - 
are denoted as ?4 doubly subscripted by the  two modes ac t ive  f o r  t h a t  mass. 
Examples are H and MA 

0 -  
This scheme is a l s o  used f o r  other  elements 

's's ma H 
of the  equations of notion, dampers (C) , springs (K), forces (P) - mte t h e  
forces a re  a column vector and singly subscripted. 

3.1.5 Forces and rmments. - In  t h e  process of forming t h e  equations of 
motion many subelements of forces and momcnts are fonaed, t rans la ted  and 
combined. Several l eve l s  of subscript i cg  may ex i s t  i n  perforaing t h i s  
process. The guidelines t o  the  layering are: 

First level denotes the  direct ion o r  axis  system that the  quantity 
is formed in. m l e s  ai-e X and BLE. 

Second is the  axis system i n ~ i v e d  o r  axis system being t rans la ted  
to, depending on the specif icat ion of the first level .  The seccnd 
l eve l  may also  be specif ied as 0 o r  nought, t o  indica te  the 
value is a: the coordinate system origin. This notation is used 
to show an i n e r t i a l  reference and blade root summation quant i t ies-  

Ihe t h i r d  level, ~;sually outside a series of bracketed quanfi t ies ,  
shovs the blade number being computed, o r  the  overall coorditate 
system in  use for  the computation at ha&. 



Ir.1 Introduction 

Prior  t o  developing the  equations of  motion, a system of coordinate s e t s  
with a description of t h e  elements of the  system i n  these sets and the  
interrelat ionship of the  sets is required. 

1.2 Coordinate Sets  

4.2.1 Fuselage coordinates !$, Yp, ZF). - The bselage X and Z axes l i e  i n  

the  Fuselage plane of s-etry. The location of t h e  or ig in  is arbi t rary .  See 

Figure 2. The coordinates form a right-hand t r i a d  XF, Yp, ZF. Notations fo r  

ve loci t ies  ui=h respect t o  ea r th  of these  cocrdinates are e i t h e r  i, ip, if 
o r  uF, vF, wF. A conventional double dot notation is used f o r  acceleration. 

Aiier ro ta t ions  of the set follow conventional prac t ice  of r o l l  r igh t  OF, 

p i tch  up OF, and yaw r igh t  *p. Rates of ro ta t ion  are e i t h e r  denoted by dot 

notation or b, i+, rF. Angular accelerat ion is double dot notat ion of  t h e  .. .. -I 

ro ta t ion  o r  dot notation or t h e  rates. 4F, BF, *F o r  $, $, iF. 
Suzerous aerodynamic t e r n s  =e referenced t o  t h e  fuselage set. Figure 3 
shows the  reiatfonship of airf low t o  t h i s  se t .  The tcnponents of airflow, 
a lso  noted ss %, vF, wF, are defined v i t h  respect t o  t h e  fuselage set by 

an angle of a t tack  a, and a s ides l ip  angle 8. The angle of  a t tack  is  t h e  
arcsin of the  r a t i o  of tbe ve r t i ca l  caoponent and the  vector sun of t h e  X 
and Z components. ?he s ides l ip  is t h e  Y cgnponent of airf low i n  relatior! 
t o  the t o t a l  vector airflow sun. The angle of a t tack  is pos i t ive  (p i t ch  up) 
of t h e  fuselage set with respect t c  t h e  airflow. The s ides l ip  is posi t ive 
{yaw l e 3 )  fo r  the  airlQiow r e l a t i v e  t o  t h e  set. The ai r f low is the vector 
SUE of t h e  fuselage s e t  i n e r t i a l  motion and flow f i e l d s  f r m  other  parts of 
the  vehicle, such as main rotor  dovnwssh. 

11.2.2 Hub coordlurtes (%, Yg, 5). - The hub set or ig in  is  e t  t h e  top  of 

the  nain ro tor  m a s t ,  but does nct rora te  v i t h  the  mast. 

Airflow information is referenced t o  the  hub s e t  fo r  use i n  t h e  main ro tor  
aerodynamic calculations. The reference scheme is  shown on Figure h .  For 
components of airflow u v w with respect t o  the  h ~ b  set, an angle of E' H7 H 



Figure 2. - Coordinate systems-fuselage set. 



(FORWARD) XF, u F 
'F* "F (RIGHT) 

ZPWF (DOWN) 

a = W~ 
; f i  = sin-' 

' F 

Figure 3. - Coordinate systems fuselage axis to airmass. 



YH. v (RIGHT) 

t/uH2 + rH2 + wH2 

ZH' w~ (DOWN) 

a2 = sin 
W~ H 

; I, = ,n-' 
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Figure 4 .  - Coordinate systems - hub axis to airmass. 



a t t ack  u2, and s i d e s l i p  Ji a r e  defined. The generati61 conventions a r e  d i f f e r e n t  
f r o m  t he  fuselage a i r f low reference i n  order t o  c l e a r l y  separate  t h e  inplane 
and outplane a i r f low components. 

-. .2.3 Shaft coordinates ( X  s,  Us, Zs). - The shaft axes a r e  an intermediate 

s e t  betveen t n e  hub and fuselage sets, see  Figure 5 .  The g-etry is  de ter -  
niced by the  d is tances  (Xo,  

'0, '0 IF-H and ( x ~ ,  YO,Zo)S-H t h a t  t h e  hub o r i g i n  

i s  loca tea  from t h e  fuselage and sha f t  axes and by t h e  ro t a t ion  ($o ,  B o ,  

'+o)S-l! 
of t h e  shaf t  axes from t h e  Piselage axes. The hub axes are p a r a l l e l  

t o  t h e  shaf t  axes. 

The e l a s t i c  def lec t ions  due t o  motions of t he  shaft  and transmissicn suspen- 
s i cn  a r e  given by t h e  s e t  of coordinates ( X  S~ Ys Zs, (0,. 6,r gS . The hub 

is assumed t o  move a s  a r i g i d  body with respect t o  t h e  sha f t  a x i s  o r ig in .  

b.2.k l o t o r  coordinates (5, Y R ,  z*). - The undeflected ro to r  set has t h e  

sme c r i g i n  as t h e  hub s e t .  See Figure 6. The $ and YR axes r o t a t e  with 

t h e  blade number 1 reference a x i s  system. A t  9R = 0, t h e  5 and ZR axes a r e  

aligned but point  i n  a d i rec t ion  c2posi te  t o  t h e  Y and Z axes. The ro ta -  
-?? H 

t i o n  of t h e  ro to r  s e t  i s  measured counterclockwise ( C C T ~ )  from t h e  -$ a x i s  

by t h e  angle 

k . 2 . 5  Blade coordinates (XELSn, Y ET,n' 'BL~ 
1 .  - To kcoktcep t h e  de f l ec t i cns  

properly fo r  a l l  t h e  main ro to r  blades,  s e t s  equivalent co t h e  r o t o r  s e t  
a r e  created f o r  each blade. These a r e  t h e  BLn s e t s ,  where n i s  t h e  biade 
number (counted clockwise from blade number one).  A l l  BLn s e t s  a r e  iden- 
t i c a l  except f o r  an azimuthal ro t a t ion  (n - 1) A*, where A$ i s  t h e  in t e r -  
blade angular spacing. The ro t a t ion  i s  about t h e  Z ax i s .  :?ate t h a t  B h  

R 
s e t s  a r e  r c t a t i n g  coordinates and have a common Z ax i s .  

5.2.6 Blade element coordinates ( X  
BLE' 'BLE' 'ELE ). - The blade element s e t  

o r ig in  i s  iocated a t  t h e  center  of g rav i ty  of an element of a p a r t i c u l a r  
blade. See Figure 7. Reference t o  a column vector subscripted by BLE i s  
used t o  d e n ~ t e  t h e  blade element located by t h e  blade element s e t  o r ig in .  
The right-hand coordinate t r i a d  of t h i s  s e t  has t h e  X a x i s  p a r a l l e l  t o  t h e  
ioca l  quarter  chord l i n e ,  t h e  Y a x i s  along the  chord l i n e  toward t h e  leading 
edge. The Z a x i s  is mutually perpendicular and pointed up. The BLE s e t  i s  
used t o  t rack  t h e  l o c a l  feather  angle, t o  develop aerodynamic and dynamic 
loading t e rns .  



(b) SHAFT AND TRANSMISSION DEFLECTIONS 

Figure 5. - Coordinate systems - hub, shaft, and fuselage sets.  



a. ROTOR AND HUB AXlS SETS 

b. ROTOR AND BLADE AXlS SETS 

(DOWN) 

iTH STATION 

Figure 6- - Coordinate systems - ro to r ,  blade, 
and blade element s e t s .  



AXIS 

BLADE STATfON K 

Figure 7 .  - Coordinate systems - blade element s e t .  



The BLE s e t  o r ig in  f o r  each blade element spec i f i e s  t h e  element c.g. with 
respect t o  t h e  quarter  chord, and i n  terms of t h e  BLE d i r ec t ions ,  i . e . ,  
f o r  t h e  Kth element t he  pas i t i on  coordinates a r e  SY(K) and SX(K) where 
SX(K) i s  t h e  blade r a d i a l  s t a t i on .  Transformations t o  t h e  nei l t ra l ,  no- 
s t r e t c h  ax i s  a r e  mace t o r  X def lec t ions .  Note: The quar te r  chord i s  
merely a  convenient reference datum, and does not convey any mociel 
l imi ta t ions  o r  assumptions. 

4.2.7 Freestream ( e a r t h )  s e t  ( X E ,  YE, LEI. - The freestream s e t  i s  essen- 

t i a l l y  t h e  e a r t h  o r  i n e r t i a l  s e t  inasm~ch a s  t h e  a x i s  alignments a r e  t h e  
seme. However, t h e  freestream s e t  can assume any or ig in .  Thus t h e  use of 
t h e  s e t  i s  t o  reference t h e  loca l  grav i ty  vector and/or an absolute  angular 
displacement o r  l i n e a r  ve loc i ty  accelerat iou of another s e t .  A s  shown on 
Figure 8,  t h e  ZE a x i s  po in ts  down toward l o c a l  gravi ty.  Other s e t s  r e f e r -  

ence t o  t h e  E s e t ,  as t h e  F s e t  shown here,  may assume any s t a r t i n g  value 
of r o l l  and p i t ch  such a s  t h e  t r i m  i n i t i a l  conditions.  The r e l a t i v e  o r i -  
en ta t  ion changes with progressing time of f l i g h t .  

With t h e  freestream s e t  or ig in  located coincident with t h e  fuselage s e t ,  

t h e  components of fuselage s e t  veloci ty  i n  E s e t  a r e  uE, vE, wE. These 

camponents combine i n t o  a t r a j ec to ry  ve loc i ty  5 and path . The 5 
t r a j ec to ry  path is  yawed r i g h t  $ arid pitched up 

T Y~ 
f roa  the E s e t .  

See Figure 9. 

4.2.8 Swashplate coordinates (xSp, Y zSp). - AS shown on Figure 10, t h e  
SP ' 

SP se t  o r ig in  i s  located i n  l i n e  with t h e  Z ax i s  and above t h e  hub set a H 
distance Z 

OSP ' 
The SP s e t  does not r o t a t e  with the  ro to r  sha f t .  For no 

deflect ion of t he  SP s e t ,  t h e  X and Y axes have t h e  same alignment as the  
X and Y of t h e  hub s e t .  

4 . 3  Degrees of Freedom 

The degrees of freedom of  t h e  REXOR I1 equations a r e  defined a s  t he  general- 
ized coordinate var iables  of t he  s e t  of equations of motion t o  be deuel- 
oped in  Section 5. These degrees of freedom f u l l y  describe the  motion of 
+he physical elements of t he  modeled he l icopter ,  but each d i rec t ion  of 
. ) t ion of the  hel icopter  may not have a  degrec? of freedom d i r e c t l y  asso- 

c ia ted  with it. The physical motions may he described by a s e r i e s  of 
modal var iables  (Section 5.4) o r  through a s e t  of transformations and com- 
binat ions of the  degrees of freedom as  developed i n  Sections 4 . 4  ar-d 4.5. 



ORIGIN OF EARTH (INERTIAL) 
SYSTEM MAY BE INS-.-ANTANEOCSLY 
ALIGNED WITH ANY SYSTEM 

*H 
(DOWN) 

Figure 8. - Coordinate systems - freestream (earth) 
t o  pr icc ipa l  reference axis .  



(RIGHT) 

f i ~ r e  9. - Coordinat systecs - trajectory path to freestrear. axis. 
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(FORWARD) XH 

Y~ 
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F i g u r e  10. - Swashplate  c o o r d i n a t e  s y s t e m .  



The REXOR TI ro to rc ra f t  simulation ana lys is  can be applied t o  descr ibe t h e  
vehicle-rotor-control system dynamic L-tsponse f o r  up t o  16+ 4b (vhere b is 
t h e  number of blades) fully-coupled degrees of  freedom. These include t h e  
normal s i x  r i g i d  body o r  ve09cle degrees of freed-; r o t o r  speed; provisions 
for  up t o  twenty-eight degrees of freedam defining ro+,or blade ~ o t i o n  (four  
d e  degrees of freedom f o r  seven blade maximum). Three swashplate degrees- 
of-freedm and s i x  f o r  describing shaftl transmission deflect ion.  The equa- 
t i o n s  of motion are wri t ten i n  a general f o m  s o  that add i t i ona l  degrees-of- 
f r eedm can be add& i f  desired. The curren t  degrees-of-freedm are l i s t e d  
in Figure Lf. The d i s c u s s i o ~  followiqg descr ibes  thee: i n  Cetail. 

4.3.1 Vehicle o r  r i g i d  body. - The s i x  r i g i d  body degrees-of-freedom; three 
t r ans l a t ions ,  and three ro t a t ions ,  are defined as motions of t h e  fuselage o r  
pr inc ipa l  reference a x i s  systeze, Sect ion 1.2.2, ref a t i v e  t o  f r e e s t r e a s  
( i n e r t i a l  reference datua. Translat ional  displacements (X ,  Y, 2 )  of the CF 
or ig in  o f  t h e  fuselage coordinate,  and ro t a t iona l  Cisplaceqents ( 4, 0, .; :iF 

a b u t  t h e  F ~ s e l a g e  axes descr ibe these  degrees of freed=. See F i g w e  8. 
A s  mentioned i n  Sect ion L .2 .'; , t h e  f r ee s t r e=  set may instantaneously assme 
any reference point ; +herefore,  only t h e  time der iva t ives  of (X, Y , Z and 

( 6, 8, 6 ) bave s ignif icance.  In  order t o  l o c a t e  t h e  d i r ec t ion  of t h e  
H 

gnrvi ty vector r e l ~ t i v e  t o  t h e  hub, a running ca lcu la t ion  of t h e  Ehler 
W e s  QE, eE, 'tE ~ s s t  be made. Since these  are not degrees of freedon and 

therefore  not calculated i n  t h e  equations of not ion,  they  must be ca lcu le ted  
outs ide t h e  dynmic equations as t h e  tine h i s to ry  prcceeds. ' i e n  t h e  l z i t i a l  
o r ien ta t ion  of t h e  hu'o is  defined, OE, eE,  =d jlE a r e  known and t h e i r  

chacging values nay be ca lcu ia te9  by in tegra t ing  t h e  hub r o t a t i z n  rates i n  
t h e  e a r t h  o r  f reestre-  axes. 

4.3.2 Rotor. - The ro t a t ion  f o r  t h e  ro to r  degree of fre&.m t i R  is  define5 - 
as motion of t h e  ro to r  coordinate system r e l a t i v e  t o  t h e  hub a...is sgste~.  
This is sho-m i n  Figure 6. This f igure  a l so  ind ica tes  t h e  cb-e f r o z  S 
d o n  t o  Z up ax is ,  vhrch is equivalent t o  a 180-degree pos i t i ve  ro t a t ion  
about t h e  Y axis .  Note: Rotor ro t a t ion  a l s o  includes biade feathering 
from svashplate r o t a t  ioc i n  aed i t  ion t o  blade root  r o t a t  ion. 

L.3 .3  Shaft o r  trans?r.issioc def lec t ions .  - Shaft o r  tr&,?smission degrees- 
of-freedom are defined as motions of t h e  hub coordinates r e l a t i v e  t o  t h e  
shaft a x i s  systea.  Hence, as shown i n  F i g ~ r e  4 ,  hub not ions are dependent 
var iables  which a r e  functions of t h e  shaft  def lec t icns .  
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4.3.4 S a d e s .  - Each blade's mation r e l a t i v e  t o  t h e  r o t o r  coordinate system 
is defined i n  terms of four generalize6 coordinates.  These cons i s t  of t h r e e  
blade bending modes and a cmbined feathering,  p i t c h  a m  bending mode, o r  a 
tor s ion node. 

3 . 1  alade bend iq .  - Blade motion due t o  blade bending i s  defined by 
t h e  generalize6 medal coordinates A which t y p i c a l l y  represent  a coupled 

mn 
first *plane bending node, a coupled f i r s t  f l apv i se  bending mode, a ~ d  a 
ccupled second f lapuise  bending mode. Ord i r a r i l y  i n  a modid analys is ,  t h e  
e f f e c t s  of cent r iEugd and s t r u c t w a i  s t i f f ~ e s s  are 1-aped toee ther  i n to  a 
generaiized s t i f f n e s s  which is sinply t h e  m o C d  na tu ra l  frequency squared 
tkes  t h e  generalize& mass. In  cont ras t  t 3  t h i s ,  t h e  REXOE! 11 analys is  sep- 
a r a t e ly  t r e a t s  t h e  s t r a i n  energy o r  s t r u c t u r a l  s t i f f n e s s  i n  each mode and 
t h e  s t i f f en ing  due t o  t h e  cent r i fuga l  force  f i e l d .  This provides t h e  capa- 
b i l i t y  of being ab le  t o  account f o r  t h e  perfociic va r i a t i on  of s t i f f n e s s  i n  
t h e  &es due t o  t h e  reor ien ta t ion  of t h e  c e n t r i f q a l  force  f i e l d  wit:, re- 
spect t~ t h e  blade pr inc ipa l  axis due t o  v-iations i n  blade angle.  This 
fea ture  can be inportant  i n  t h e  study of subharconic s t a b i l i t y  vhere t h e  
perioZic var ia t ion  of coe f f i c i en t s  m.y be i ~ p o r t a n t ,  but it a l s o  p e r z i t s  
being able t o  nake ra ther  l a rge  changes i n  ro to r  s p e d  and c o l l e c t i v e  blade 
=.gle vithoilt k v i n g  t o  change b l a e  rr.odal data .  

?!oiie shapes and ca tu ra l  f r e q ~ e n c i e s  a r e  i n i t i a l l y  detemined f o r  a t v i s t e d  
bide at o r  near t h e  co l l ec t ive  b i d e  angle and r o t o r  speed t o  be analyzed. 
9;ch e f f e c t s  a s  precone, blade sweep, blade droop, and blade angle varia- 
t i o n  are inclxded i n  t h e  REXCR I1 anaiys is  and couple t h e  i n i t i a l l y  ~ r t h o g o n a l  
codes. ?he e l a s t i c  ben5ing c o n t r i b ~ t i o n  due t o  t h e  nodal def lec t ions  is 
calculated r e l a t i v e  t o  t he  blade* s s t a t i c  shape. 

A s  previously noted, t h e  blade modes a r e  i n i t i a l l y  defined a t  sone r e fe r -  
ence feathering angle,  + R E F '  A s  t i n e  progresses i n  t h e  ana iys i s ,  t h e  blade 

feather  angle va r i e s  about t h i s  reference pos i t icn .  The node shapes a r e  
correspondingly transforner2 t o  accoutt  fo r  t h e  d i f fe rence  between t h e  i n -  
stantaneous feathering angle and %he reference feathering angie,  a t  t h e  
stme time accounting f o r  other  e f  i'ects such as t h e  s t a t i c  and instantaneous 
shape of t h e  blades. This yielCs t h e  roda l  coe f f i c i en t s  ( p a r t i a l  deriva- 
t i v e s )  t h a t  r e l a t e  blade element notion t o  t h e  blade bending generai lzet  
coordinates as a function of t i n e .  

The v e r t i c a i  and inplane blade element va r i a t i ona l  scotions, 6Y. and dZ 
I i ' 

can be wri t ten as follows: 



vhtre t h e  given or  input partial derivatives are t h e  true nodal coeff i c i e s t s  
of the  orthogonal modes fo r  t h e  blade in an undefora!ed shape, with no s t a t i c  
geme+ry accounted for ,  and at t h e  ro tor  speed and col lec t ive  angle f o r  which 
the blade modes vere i n i t i a l l y  calculated. 

The orthogonal bending modes used i n  t h e  analysis  are i l l u s t r a t e d  i n  Fig- 
ures 12, 13, and 14.  Observe t h a t  t h e  root  boundary conditions fo r  t h e  
modes may be cantilevered o r  art iculated.  

Rote tha t  i n  addition t o  t h e  no&al bending respcases, Yi and Zi, t h e  span- 

vise  motion of each blade e l a e n t  is alsc detemiled ,  and blade feathering 
due t~ pitch-lag and pitch-fiap kinematic coup1 ~lg ef fec t s  are a l so  accounted 
for  i n  each blade bending mode. This feathering is added t o  t h a t  due t o  
sweshplate motion a s  is  blade fea ther i ra  dce t o  f l e x i b i l i t y .  

This sodal data is developed t o  t h e  form used i n  t h e  blade equations in 
Section k .5.5. The discussion of modes is carried on from a m t h  view- 
point i n  Sectian 5.4. 

k.3.4.2 Pitch horn bending - dynamic torsion. - The remaining mode per 
blade, p i tch  horn tending, is comprised of e i the r  a blade feathering drive 
f l e x i b i l i t y  w i t h  a torsionally r ig id  blade c r  an uncoiipled tors ion d e .  
Examining the  first a l ternat ive ,  the  svashplate posi t  ion determines the 
srimary blade feathericg notion. In  additioc, t h e  linkage between t h e  
smashplate and t h e  blade (see Figure 15)  has f l e x i b i l i t y  i n  t h e  p i tch  link, 
pitch horn, and cuff.  The feathering or  p i tch  horn bending degree-of- 
freedoia therefore can be r ig id  blade feathering motion outbo--d of t h e  
blade cuff coupled with a net inboa~d s t i f fness .  Inboud of t h e  blade 
cuff ,  featherfng f l e x i b i l i t y  r esu l t s  from the  p i tch  l i n k ,  b i tch  l i n k  
bearings, p i tch  h s m ,  and cuff ,  The relat ionship betveen blade feathering, 

4ms and motion of t h i s  deeree-of-freedom, 
' ~ n  is  defined as t h e  partial 



Figure 12. - First inplane mode. 

Figure 13.  - First f lap  mode. 

Figure 14 .  - Second f l a p  node. 



/ 
SWASHPLATE ATTACH 

Figure 1 5 .  - Blade, p i tch  horn, and feather hinge geometry. 



.Alternatively, t h i s  degree of freedom. Bm, can be a d i s t r i bu ted  to r s iona l  

response of t h e  blade based upon defining an uncoupled dynamic to r s ion  mode. 
The se lec t ion  of t h e  degree-of-freedom representat ion is made on t h e  bas i s  
of t h e  type of ana lys is  being performed. The mode defined is  uncoupled i n  
t h e  sense t h a t  it is  not a function of t h e  f lappicg o r  lead-lag modes. 

An opt ional  quasi-steady to r s iona l  response of t h e  blade may be used i n  
conJunction with p i t ch  horn bending. This is superimposed on t h e  r i g i d  
blade feathering and permits a d i s t r i bu ted  to r s iona l  response a l t e r n a t i v e  
of t h e  blade reac t ing  t h e  spanvise var ia t ion  of appl ied to r s iona l  momen- s 
from aerodynamics, c o r i o l i s ,  and cent r i fuga l  force  t e rns .  The blade t o r -  
s ional  response at t h e  itL blade s t a t i o n  is computed from t h e  following 
equat ion : 

l : i p M 4 ( x ) ~  
' ~ i  r T S+1 m o t  

X x T  

vhere S is t h e  Lapldce operator ,  and T, i s  the  time constant associated 
I 

with blade to r s iona l  response. This ea-uatiorl is implemented numcr icd ly  
i n  t h e  EEXOA II p r o g r x .  

To a id  i n  program t rouble  shooting t h e  p i t ch  horn bending representat ion 
( v i t n  o r  vi thout  quasi-s tat ic  t o r s i o n )  may a l s o  be operated as a quc si- 
s t a t i c  degree of freedon without second-order response. 

L.3.5 Swashplate. - The swashplate has t h ree  degrees of freedom: ' SP ' 
eSps and ZSp. Rotations @ md 8 are Euler angles def ining t h e  or ienta-  SP SP 
t i o n  of svashpiate coordinates r e l a t i v e  t o  t h e  hub. Likewise, t h e  t r ans l a -  
t i o n  defines v e r t i c a l  displacement of t h e  swashplate r e l a t i v e  t o  t h e  hub 

"SP 
ax is .  These -.re shown schematically i n  Figure 10. 

1.4 General Mot ion and Coordinate Transformations 

In Cevelopment of t h e  equations of motion, it is convenient ts wr i t e  the  
forces ,  moments, ve loc i t i e s ,  and accelerat ions i n  coordinatz systems 
r e l a t ed  t o  separate  elements of t h e  system. C ~ s i d e r  t h e  concept of 
general space motion of a p a r t i c l e .  



h .h .1 General case of space motion. - For the  general case of spsce motion, 
a part icle,  p, moves v i t h  respect t o  a reference axis  system vhich is, i n  
turn, i n  motion with respect t o  a fixed coordinate systam. This is i l lus -  
trated i n  Figure 16 where the  fixed or i ne r t i a l  coordinate system i s  des- 
ignated by capi ta l  letters X, Y, 2, and the  moving coordinate system is 
designated by lower case l e t t e r s  x, y, z. The moving coordinate system is 

-+ rotating a t  an angular velocity , o. The vector I: may, i n  general, vary i n  
magnitude and direction, both of which can be referenced v i t h  respect t o  
the fixed X, Y, Z axes. 

Thus, the  absolute motion of the  par t ic le  p, referred t o  the ine r t i a l  
X, Y, Z axes, is equal t o  the  motion of the  par t i c le  re la t ive  t o  t he  
moving coordinate axes x, y, z plus the  motion of the  moving axis  system 
with respect t o  iner t i a l  space. 

Figure 16. - General case of space motion i n  terms of moving coordinate 
axes x, y , z and iner t i a l  axes X,  Y ,  2. 



To visual ize the  motion of the  p a r t i c l e  p, let  its motion with respect 
tc the  raving axis  system be indicated along a curve s f ixed i n  the  
moving axis  system, x, y,  z. An observer s i t t i n g  on the  moving axis 
system would therefore see  only the  motion of p along the  curve %. 

From Figure 16, the  posi t ion of p r e l a t i v e  t o  t h e  x, y, z axes is represented 
by the  vector 

where i, j, and k a r e  un i t  vectors along x, y, z, and therefore must 
be t rea ted  as variables due t o  t h e i r  changing direct ion.  Differentiat ing 
+ 
r~ resu l t s  i n  

+ 2 + * g = z x I  and - -  & + +  - w X 1, Since - d t  d t  - w x k, t h i s  expression can be 

wri t ten as 

+ + - +  -+ + + -+ + . . 
r = x i  + ij + i k  + w x ( x i  + yj + zk) 

In  t h i s  equation, the  f i r s t  term, r represents tfie veloci ty p r e l a t ive  
+ + 

t o  the  rotat ing axis ,  x, y, z. The second term, w x r, i s  the  velocity 

of the  point i n  the  moving coordinate system due t o  the  ro ta t ion  w.  The 
-b 

absolute o r  i n e r t i a l  velocity of the  point p i s  obtained by adding 
+ ' 

the  velocity of the  origin R~ of the moving axis  system t o  k, or: 

where 

and 
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The inertial accelerations of the point p can now be determined by 
simply differentiating this expression with respect to time. Performing 
this differentiation yields 

+ + -b ? 
where the terms w x w x r and o x r represent accelerations of the 

-b 

coincident point in the moving axis system, is the acceleration of p 
+ -b 

relative to the moving axes, x, y, z, and 2o x r is the coriolis 

acceleration which is directed normal to the plane containing the vectors 
+ -b 

w and the relative velocity r, as given by the right-hand rule. 

The vectors expressed in the preceding equations are in the most general 
form for defining the motion of a particle moving in a moving coordinate 
system. All special cases can be deduced f-om these equations. 

For convenience, the time derivative equations can be expanded in matrix 
form. The inertial or absolute velocity and acceleretions of the particle 
p, written in expanded matrix form, are given by: 

and 



Performing t h e  indicated matrix mul t ip l ica t ion  gives: 

and 

4.4.2 Coordinate transformations - Euler angles.  - To descr ibe  motions i n  
one coordinate system i n  terms of motions i n  another coordinate system, 
Euler angles 0, 8, and $ with t h e  appropriate  subscr ip ts  a r e  introduced. 
These angles can be applied t o  def ine t h e  r c t a t i o n  of one coordinate system, 
x, y, z ,  r e l a t i v e  t o  another coordinate reference frame, X,  Y ,  Z. Since t h e  
development contained i n  t h i s  report  u t i l i z e s  these  angles  i n  r e l a t i n g  
coordinate systems, a b r i e f  explanation i s  given here. 

Rotational displacement of a coordinate system can be represented by t h e  
t h r e e  ro t a t iona l  displacements 4 ,  8, and $, as shown i n  Figure 17 .  The 
order  of ro ta t ion  i s  not important a s  long a s  t h e  sequence se lec ted  re- 
mains consis tent  and the  reverse order i s  used when ;-otating back t o  t h e  



AXES (X, Y, Z)b DEFINED RELATIVE TO REFERENCE 

AXES (X, Y, Z) , BY EULER ANGLES 4,6 , ~ k  

Figure 17. - Rotational displacement of  a coor?.inate system. 
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original position. In this analysis, the rotations start v r t b  aisplace- 
meat about the x  is, then a rotation 0 about the new y =is, 
folluued by a rotation @ about the new or final z axis unless geometry 
or physical consideratious of t5e noeeled part dictates another order. 

This mans the (x. I, ?)a cwmnates can be rotated ilto the 

(X, Y, ZIb axis system as follows: 

cosv sin* cos8 0 -sine 0 [Ib = [-'re T* 1 L ~ n B  :sJ [ -::: :I]{:] a 

and the inverse transfornation can be written as 

where 



0 cose 0 sine cos* -sin# 

i;a-bl-l = [n ,: -;I : L][sr.. c:. 3 
?ly i~spec'iLcrc, then, it can be seen that 

inverse of [T] = transpose of [T] 

Carrying out the injlicated matrix multiplication yields the transformation 
natrix [T] : 

(cos~lcos6 ) (sf n4sinBcos~cos+sin~) (-sin0cos+cosllr+sin+sinjr) 

(-sin+cos0 (-sin~sin~sin8+cos#cos~ ) ( sin~si~8cos++cos~sin~ ) 

(sine) (-cosBsin9 ) ( C O S ~ C O S ~  ) 1 
Using this transformation, the inertial veiocities and accelerations of a 
point or particle be written in one coordinate system in terms of those in 
the other coordirate system as follcvs: 



and inversely, 

L.S.3 Angular ve loc i t i e s  and accelerat ions - general.  - I o r  t h e  general 
case,  ccnsider t h e  coordinates i n  t h e  previous sec t ion ,  and l e t  (p ,  q, rIa 
ana (p, q, rIb k t h e  respect ive angular v e l o c i t i e s  of  and about t h e  

(x ,  y ,  z) and (s, y, a )  axis sys+,ems. Also, assume t h a t  t h e  EUer angles a b 
are varying with time ( 6 ,  0,  and 6). and l e t  (x, y ,  2). be t h e  reference 

coordinate set with (x, y, z ) ~  coordinate set moving r e l a t i v e  t o  it. This 

is i l l u s t r a t e d  i n  Figure 13. 



Figure 18. - Relationship of Euler angle and coordinate 
systeo sr,gular rates. 



From t h i s  figure, the following can be written. 

D i f f e r e n t i a t i x  tcis expression with respect t o  t i m e  results i n  angular 

accelerations (p ,  q, f Ib i n  terms o f  the reference coordinate system 

angular ve loc i t i e s  and scceleraticns.  This results i n  the following: 



These equations represent a general form fo r  defining aagular veloci t ies  
and accelerations of one axis  system rota t ing re la t ive  t o  another axis  
system, whict i n  turn is  i n  motion. 

A special  case i s  the  angular veloci t ies  of system b with zero Euler angles. 

b.5 Relative Motions and Transformations Used i n  the  Equations of  Motion 

In t h i s  sec t ioc  the  i n e r t i a l  l inea r  and angular ve loc i t i e s  and accelera- 
t ions  of major components of t h e  vehicle, a r e  present&. Also included is 
the  Bevelopnent of coordinate trcu~sformations t h a t  r e l a t e  motion i n  one 
axis  system t o  another. Motion of t h e  principal  reference ax i s  system in 
re la t ion  t o  the  ear th  i s  described. Motion of each camponent o r  reference 
axis  systen i s  then defined i n  terms of t h e  degrees of freedom. 

L. 5.1 Fuselage motion i n  i n e r t i a l  space. - A t  each ins tant  i n  time t h e  
fuselage ax i s  (Section 4.2.1) is  re la ted  t o  an i n e r t i a l  coordinate ax i s  
system. Ine r t i a l  accelerations of the  fuselage ax i s  system a r e  defined 
by the  vector 

where the quanti t ies  represent t h e  tots: i n e r t i a l  acceleration of the 
generalized coordinates of the  vehicle as  defined by motion of the  
principal coordinate axis  system. 



Orientation of this system relative to the earth is specified by Euler 

angles eE, Bq, and * as seen in Figure 8. The sequence and defini- E 
tion of these angles is *g (yaw), BE (pitch), Og (roll). Rote that the 

sequence of rotations is opposite to that given by Figure 17. The 

angular rates, pF, qF, rF, of the fuselage or principal reference axis 

system with respect to the inenial cmrdinate system can be written as 

This equation can be revritten to solve Tor $E, BE, and 3 as 
E 

The Euler a:.;les defining orientation of the principal reference axis 
system with respect to the earth is next obtained by integrating the rates 
with respect to tice, or 



Aagular veloci t ies  of the  f ~ s e l a g e ,  w i t h  respect t o  the  i n e r t i a l  axes 

reference system, pF, qF, rp, are defined i n  terms of the  degrees of freedom 

where 

Linear veloci t ies  of the  fuselage o r  principal  axis  system are nar determined. 
The f i r s t  three quanti t ies  of the  fuselage axis  acceleration vector represent 
the l inea r  i n t e r i a l  acceleration of the  fuselage. For a system i n  motion, t h e  - -. I 
i n e r t i a l  acceleration, a 

0 '  
at t h e  or ig in  of the system is defined, 

based on t h e  vector algebra of Sect ion 4.4.1, as 

-b .. d?, 
where a i s  - 

0 d t  
is the r a t e  of change of velocity, Vo, of the  or ig in  

of the  moving coordinate :;-stem a d  w is  the  ro ta t ional  velocity of the  
moving coordinate system, both re la t ive  t o  the  earth.  Now defining: 



gives 

Ran t h i s  equc-tion, then, t h e  rate of change of velocity of t h e  moving 
coordinate reference system becomes 

This set of accelerations and t h e  time in tegra l  represent airflow accelera- 
t i o n  and velocity incident on t h e  helicopter. 

A separate s e t  of accelerations is carried through the  analysis  which contain 
the  acceleration due t o  gravity. Ordinarily, gravity is t rea ted  as a force 
of mg on the  right-hand s ide  of the  equations. However, the  graviLetiona1 
term can be accounted for  by defining 

where %, gyF, gZP ere the  three components of the gravity vector t o  be 

defined. The acceleration on the  l e f t  may be defined as being i n  earth- 

i n e r t i a l ,  E I ,  axes. 



The logic behind this substitution is as follows. For a rigid body in 
motion, the equilibrium equations can be written as 

where 

- - 
FX, Fy, and Fz represent the external forces acting on the body, exclusive 

of gravitational forces. 

Subtracting the gravitational vector from each side of the previous 
equations yields: 

vhich by inspection gives 



Rearranging these  equations y ie lds :  

The f i r s t  terms on the  r i g h t  s ide  of t h e  e q ~ a t i o n  a r e  i d e n t i f i e d  with t h e  
proposed g rav i t a t i ona l  accelerat ion de f in i t i on  o f  Equation 41. 

'Making the s i lbst i tut ion:  

I n  t h i s  equation, t h e  accelerat ions xE1, and 2:; are t h e  degree- OF OF' 
of-freedom accelerat ions of t h e  pr inc ipa l  reference ax i s  system used i n  
t h e  REXOR I1 analysis.  These accelerat ions represent t h e  i n e r t i a l  accel- 
e ra t ions  plus t h e  equivalent accelerat ions of t h e  reac t ion  force t o  
gravity.  Thus, gravi ty i s  an equivalent acce lera t ion  applied t o  t h e  
reference coordinate ax i s  system. Via coordinate system referencing,  
every mass element on the  vehicle i s  therefore  acted upon by t h i s  accel- 
e ra t ion .  This avoids including gravi t a t i o n s l  force as an ex terna l  force 
individual ly applied t o  each xtiass element. 

The gravi ta t iona l  vector a t  the  fuselsge is  simply t h e  gravi ty vector  i n  ea r th  
ax is  transformed t o  t he  fuselage ax is  system through t h e  Euler angle ro t a t ions  



where 

The velocities of the principal axis system are obtained by integrating 
the rates of change of velocity with time, or 

These velocities in earth coordinates can be written as 

which can be integrated to give the position of the system relative to the 
earth. Doing this yields 



4.5.2 Hub motions i n  i n e r t i a l  space. - The geometry of t h e  hub, shaft  and 
fuselage i s  described i n  Sections 4.2.1 through 4.2.3. Forming t h e  motions 
of t h e  hub f i r s t  requi res  knowledge of t h e  shaf t  s e t  motions and shaft  
generalized coordinates. The transform from fuselage t o  sha f t  s e t ,  TF-S , [ I 
involves ro tor  tilt alignaent data  4o and 6 . Elas t i c  motions of t h e  

S O s  

transmission suspension, and consequently t h e  hub, a r e  described by t h e  
generalized coordinates (X, Y ,  3,  0, 6, $IS which a r e  measured with respect 

t o  t h e  shaf t  (S)  s e t .  The transform from shaf t  t o  hub, FSeH] i s  a function 

of t h e  generalized coordinate angles ($,  8, $)S. 

The development s t a r t s  w i t h  fuselage t o  shaf t  s e t  r e l a t i o n s  : 

r9 
I-" 

Noting t h e  following t r ans  formations : 



Applied t o  hub set  equet ions : 



F o d n g  the relat ive location of  the hub ir fuselage coordinates: 

Locking at en&irt infomation i n  the hub set: 



0 C O S ~  s i n e  0 

cost3 0 -sin3 0 -sin4 cos 



1.. 5.3 Motion of ro tor  coordinate exis .  - The ro tor  coordinate ax i s  s y s t m  
is S ~ O M  i n  Figure 6. Note tha t  the  ro tor  coordinate ax i s  s y s t a  is rotated 
~ 8 0  degrees about the  Y ax i s  r e l a t ive  t o  t h e  hub a x i s  system a% t h e  t h e  
*.en the  ro tor  is  at azimuth position zero. That is, X and Z change direc- 
t ions.  The ro tor  coordinate system then ro ta te s  through t h e  angle &R fron; 
t h i s  posi t  ion. 

Thc sequence 9f ro ta t ion  i n  going from hub t o  ro tor  coordinates cons is ts  of 
f i r s t  a 1804egree 8 ro ta t ion ,  f~ l l0W"d by t h e  JIR rotat ion.  Follouing tke  

convention estabiished i n  Section f i . k . 2  f o r  Euler angles: 

where the l a s t  matrix represents the 180-uegree 8 rotat ion.  Tine rrext 

matrix is the rotor  rotat ion,  vR = Ck di. 

Since the  origins of t3e ro tor  coordinate system and the  principal  refer-  
eLce axis  systen are ccinciiient, the l i n e a r  ve loci t ies  and accelerations 
of t h e  origin of the  ro tor  =owdinate system can be d i rec t ly  wri t ten as: 



Noting gravity has been treated as an equivalent acceleration in the hub 
generalized coordinate accelerations. This same equivalent acceleration 

-7 -. .- .- Ll 
is included in (Xo, Yo, z ~ ) ~ .  the rotor coordinate accelerations. 

The angular velocities , pR, qR, rR, and accelerations, pR, G ,  cR of 

the rotor coordinate systen are determined; again noting the rotation 
order. The rotor coordinate system angular veiocities are: 

L.ikevise, accelerations of the rotor coordinate system are: 

The above equations then define the coordinate transformation from hub to 
rotor coordinates; arid rotor =is system linear and angdar velocities and 
accelerations in terns of velocities ar.d accelerations af hub and the rotor 

3egrees of freedom eR. 



ir .5.L B l a d e  coordinate r e l a t i v e  t o  ro tor  coordinstes. - Since eaeh blade 
has its o m  blade reference system, as shown i n  Figure 6, the & and YBb 

axes =e rotated v i t h  respect t o  t h e  XR and YR axes a z h t h a l l y  by an angle 

& defined by t h e  equation 

where b is the  number of' blades and n is t h e  blade number. This equation 
s t a t e s  t h a t  the su and 5, and t k e  YBLl and the Y axes ere coincident. R 

The transfomations bttmri t h e  ro tor  coordinate a x i s  system and t h e  blade 
coordinate axis  sys t tns  are defined by the  equation 

qote t h a t  these equations define blaae one as being s t r a igh t  aft at tim? 
zero. 



In the blade referenze axes, the velocities and accelerations of the 
origin of the blade reference axis system become: 

and 

Likewise, the angular vel~cities and accelerations of the blade reference 
axis systems became: 

and 



4.5.5 Blade element mot ion. - The folloving blade mot ion description, due 
t o  t h e  involved nature c.? t h e  geometry, is rather lengthy. F i r s t ,  i n  t h i s  
development , the  motion of t h e  blade v i t h  respect t o  t h e  re la t ive  blade 
coordirutes is given. This motion is the sum of s t a t i c  and mdal deflcc- 
t ions.  Them the  re la t ion  t o  fieestrcam coordinates is caaaputed. Partial 
derivatives are extracted from the transformations f o r  use i n  t h e  equations 
of motion of the  blade in sect ion 5.6. 

The blade element motions fo r  t h e  ntA blade a r e  defined r e l a t i v e  t o  t h e  
blade (Bb) coordinate reference axes (Figure 6). The blade element rela- 
t i v e  motions are functions of t h e  s t a t i c  sbcpe, of blade feathering and 
torsional  deflection, and of blade bending of t h e  coupled inplane and 
flappirlg modes. 

The s t a t i c  shape includes such items as blade twLst, +TW' hub precone 

m e ,  8a, blade droop angle rela3ive t o  t h e  precone angle, y, blade 

sweep angle, =o* feathering axis  precone, 
*FA* the  blade featteri'ag 

angle, and the  blaCe element center  of gravity location. 

The blade motions about t h i s  s t a t i c  shape include the  e f fec t s  of t h e  

three blade k t d i n g  modes, Aln, A2n and A 3n, blade feathering, OF* 
and blade t o r s i . ~ n a l  deflection, +t. 

The blade element motions a re  now defined. The blade s t a t i c  position i n  
t h e  blade reference axis systen is f i r s t  developed. The blade bending and 
feathering deflections are then introduced. Both deflect ions and slopes 
a re  developed and then these equations are dif ferent ia ted  with respect t o  
time $0 obtain the blade element l inea r  and angular veloci t ies  and 
accelerations. 

The blade elenient l inea r  motions are  developed i n  blade ( B L ~ )  coordinates 
and the  blade element angular veloci t ies  and accelerations are 5eveloped 
i n  blade eleatent (BLE) coordinates. The coordinate transformation 

is a l so  defined t o  permit the  transformation of the 

i n e r t i a l  velociti<s and accelerations from one axis  system t o  the other. 
The development of the  blade re la t ive  motion equations now starts with 
the  description of the  shape of t h e  blade. 



4.5.5.1 Blade s t a t i c  stape. - Blade elemental motion is defined a s  motion of 
the blade 9lement reference axis  system which has its o r ig in  a t  the  blade 
element center  of gravity. The blade eerodynamic reference ax i s  is selected 
ss the  114 chord. Likewise, the  geometry m d  dynamics a r e  referenced t o  the  
1 / 4  chord, though any reference l i n e  could have been used. S ta r t ing  v i t h  t h e  
s t r a igh t  untwisted blade v i t h  the  blade l / h  chord lying along the  5Ln "is 

as i n  Figure 19, the blade element cg an6 blade element coordinate axis system 
or ig in  a re  defined by the  coincident point defined by the  vector 

BLn 

i n  blade coordinates. Thd dimension X (i)BLn i s  the  undeformed spawise  
CG 

locat ion of the  cglblade element origin. The dimension ~ ~ ~ ( i ) ~ ~  is t h e  

chordwise location of t h e  c.g./blade element axis  system or ig in  forward of 
the  blade 114 chcrd and ZCG(i)gl, i s  any ver t i ca l  o f f se t  of the  c.g./blade 

element origin with respect t o  the  reference chord plane oi? the  bl6de. 

Now, introducing blade t w i s t  by ro ta t ing  about the  XBLn ax i s  through the  

loca l  blade t w i s t  angles, Figure 20, r e su l t s  in: 

The Roman numeral subscript I denotes the  f i r s t  of a sequence of s te- t ic  l i n e  
transformations. 



. Figure 19. - Blade element c.g./origin location in blade coordinates. 

~BLE BLADE ELEMENT y 
I A / O f  PARTICLE m, 

Figure 20. - Effect of blade twist on location of blade element 
c.g./axis system origin. 



A t  t h i s  point the  subscripting, BLE w i l l  be dropped t o  simplify t h e  aeveiop- 
ment. Revr i t iw  the above equation, we have: 

Introducing blade ccning, BO, r e s u l t s  i n  t h e  locat ion of t h e  blade as shown 

i n  Figure 21. This r e su l t s  in: 

The next item of s t a t i c  geometry tha t  is cousidered is  blade droop, y, and 
then blade sweep, lo. These rotat ions are shown i n  Figure 22. Note t h a t  

since the  blade sweep and droop angles ere introduced a t  a distance XSW out 

on the  blade, it is f i r s t  necessary to  t r ans fe r  axes t o  t h i s  location before 
making the  rotat ions.  Therefore, the  blade displacements outboard c f  
Stat ion XSW become: 

cosy 0 siny 

cosy 



Figure 21. - Blade precone angle, 6 0' 

Figure 22. - Blade sweep, T and blade droop, y .  0 ' 



A t  t h i s  same s t a t i o n ,  provisions a r e  introduced t o  allow f o r  o f f s e t s  of t h e  
blade i n  both the  v e r t i c a l  and horizontal  d i rec t ions  by Z and Y J 0s Joe' - - 

respect ively.  These o f f s e t s  a r e  shown i n  Figure 23. These o f f s e t s  represent  
displacement of the  blade 1 /4  chord with respect  t o  t h e  blade precone l i n e  a t  
blade s t a t l o n  XSW. 

Introduction these o f f s e t s ,  then, and t r ans fe r r ing  back t o  t he  center  o f  rota-  
t i o n  through XSW r e s u l t s  i n  t h e  descr ipt ion of t h e  blade displacements out- 

board of s t a t i o n  Y3W, including t h e  e f f e c t s  of  precone, sweep, droop, and 

o f f se t  sf t h e  blade from t h e  precone l i n e .  

Figure 23. - Introduction cf  blade l / r  chord o f f s e t ,  Y and Z 
with respect t o  precone l i ne .  Jog J 0s 



A t  t h i s  p o i n t ,  a reminder t h a t  t h e  p ~ i o r  development r e p r e s e n t s  t h e  b lade  
displacement inboard o f  S t a t i o n  XSW and t h e  above equat ion outboard o f  

S t a t i o n  XSW. Therefore,  irrboard o f  S t a t i o n  XSW: 

Outboard o f  S t a t i o n  XSW: 

With t h i s  i n  mind, t h e  remaining developing of inc iud ing  t h e  e fTec t s  o f  I 
f e a t h e r i n g  axis s t a t i c  precone and b lade  re fe rence  f e a t h e r  ang le  i n  desc r ib ing  
t h e  s t a t i c  b lade p o s i t i o n  continues.  No d i s t i n c t i o n  w i l l  b e  made i n  t h e  f o l -  
lowing developments between inboard o f  S t a t i o n  XSW and outboard of S t a t i o n  %we 
Figure 24 shows how blade f e a t h e r i n g  is introduced. The a x i s  system i s  t r a n s -  
l a t e d  t o  a po in t  p which is loca ted  at  t h e  i n t e r s e c t i o n  o f  t h e  precone l i n e  
and t h e  f e a t h e r i n g  a x i s .  The l o c a t i o n  of t h i s  po in t  i s  a d i s t a n c e  1 along 

P 
t h e  cone l i n e ,  as shown i n  t h i s  f i g u r e .  The blade i s  f i r s t  r o t a t e d  t o  t h e  
f e a t h e r  a x i s  ; then r o t a t e d  about t h e  reference f e a t h e r i n g  angle ,  4 

REF' t h e  

f e a t h e r i n g  angle  f o r  which t h e  blade modes a r e  defined.  Doing t h i s  resul ts  in :  



FEATHERING AXIS 

Figure 24. - Point  p and f e ~ t h e r i n g  a x i s  precor?  PFA. 

This equat ion def ines  t h e  l o c a t l o r  o f  t h e  s t a t i c  shape o f  t h e  blade i n  an  
a x i s  system w i - 3  t h e  y-axis h o r i z o n t a l  and t h e  x-axis a l lgned  with t h e  b l ~ i e  
s t a t i c  f e a t h e r i n g  a x i s .  Transforming now back through t h e  f e a t h e r i n g  a x i s  
precone angle  and t r a n s l a t i n g  back t o  t h e  r o t o r  s h a f t  c e n t e r l i n e  r e s u l t s  i n  
t h e  s t a t i c  shape of t h e  blade def ined i n  blade coordinates ,  o r  

where subscr ip t  S r e f e r s  t o  blade s t a t i c  o r  u n d e f ~ r m ~ d  shape. Combining 
equat ions  developed so f a r  result : , ,  then,  i n  t h e  fol lcwing two equat ions  which 
represen t  t h e  s t a t i c  shape o f  t h e  blade f o r  both  inboard and outboard o f  
b lade s t a t i o n  XSW. 





Outboard of Station YZW: 

-sin? cosy 0 s iny 

cos 8 FA 
-siny cosy 

These two equations ther define czrpletely the s t a t i c  snape of tte 'lade. 
The d:;-.lopment w i l l  not pro=eed. to include the blade beniling or ehstic de- 
formati~rr. .iowever, before ~r0ceeair.g with t h i s ,  the static location of the 
blade feathering bearing is deficed ~Ince these v i l l  be -GS& in  the d e v e l o p  
m11t that r'ollovs . 



Referring to Figure 25, it can be seen that the s t a t i c  posttion of the inboard 
feather Learip4 location cac be vr i t ten  as: 

The s t a t i c  location of  the outboard feather bearing is: 

Xith these ae f in i t i oc s ,  the analysis will not proceed to include the e f f e c t s  
of blade bending, blade feathering, and torsional def lect ion.  

zsl* 
A 

0 

I8 FEATHERING 
BEARING 

Figwe 25. - Sta t i c  feather bear in^ gecL-.etry. 



4.5 .5 .2  Blade shape - e l a s t i c  deformation. - In t h e  foregoing deve lopen t ,  
t he  ana lys is  has proceeded i n  a cnppletelg rigorous fashion. A t  t h i s  point ,  
though, a depnrtive from a conpletely rigorous simulation of the elemental 
blade motions w i l l  be xade. It w i l l  be assumed, as far as blade e l a s t i c  de- 
formation i s  concerned, t h a t  t h e  cosine o f  angles,  l i k e  prccone less droop, 
blade sweep, e l a s t i c  f l a~ , ? ing ,  and e l a s t i c  inplane s lopes,  but  not blade 
feathering is approximately equal t o  1, and therefore,  t h e  blatie e l a s t i c  de- 
flec),ions, y and z ,  i n  blade coordinates, w i l l  be assume2 t o  be equal tc those 
i n  t h e  s t a t i c  blade element coorciinatas. This assumption i~ a reasonably 
va l id  assuuption and is completely consis tent  with standard p rac t i ce  i n  t h e  
matiematical representat ion of  blacie element aot ions.  

Additionally, as f a r  as t h e  e f f e c t  on s t n c t u i i a l  a x i s  r eo r i en t a t ion  due t o  
blade 7 ro ta t ion ,  t he  efLCect due t o  blade l e s s t i c  t w i s t  is considered t o  be 
mall cmparet2 :o that due t o  blade cyc l i c  and co l l ec t ive  feathering. Also it 
w i l l  be assumed that t he  contr ibut ions t o  blade Y and Z motion are s m a l l  due 
t o  blade to r s iona l  notion, o the r  tkan t h a t  due t o  l o c a l  cen ter  o f  g rav i ty  
o f f s e t  . 
Kith these ax-m?t ions  in mind, blade e l a s t i c  t r l d i n g  w i l l  now be introduced. 
The c c n t r i b ~ t i o n  t o  e l a s t i c  blade bending is si--1.y 

0 

7 

Bin 3n 

Hote tha t  X cr s?anvise motions a r e  not includet? i n  t h i s  equation. Blade 
spanvise motion w i l l  be determines separately by u t i l i z i n g  blade s lope d=t& 
t o  deternine t h e  change ir. t h e  7ro:ected blade length upon t h e  blade X axis .  
k'ith t h i s  i n  ninc, t h e  t o t a l  Y snC Z blade ~ o t i o n s  including blade knd ing ,  
but  not ye t  iccluding blade feathering o r  blede e l a s t i c  t w i s t ,  is s t r i c t l y  
the smr. of the  previor ;~  static line expressions and t h e  modal deflect ion.  
filaae to rs iona l  de f l ec t io r  is t r ea t ed  cis an inciependent degree of freedc-1, 
and tflerefore is not includet  as -art of these  blade modes. Cosbining the 
previous s t a t i c  def lec t ion  with the nods1 def lec t ions  gives: 



4.5.5.3 Blade feathering. - Blade feathering is  r e l a t i v e  t o  t h e  reference 
feathering a ~ l e  @REF. The fea ther  angle,  then, as f a r  as blade motion i s  

concerned, is  due t o  t he  d i f fe rence  i n  t h e  t o t a l  r'eather angle P F  and t h e  

reference fee tner  angle 4 

The blade feathering motion is introduced s imi l a r ly  t o  t he  way t h e  blade 
reference feathering angle w a s  introduced, except t h a t  t he  feather axis slopes 
are due t o  t he  s t a t i c  pos i t ion  as w e l l  as due t o  e l a s t i c  deformatior, In both 
the  f lapvise and inplane deflect ion.  

If we l e t  Z'FA and Y'I;'A represent  t h e  instantaneous v e r t i c a l  and inplane s l o ~ e s  

of t he  feathering ax is ,  then t r ans fe r r ing  t o  t h e  inboard feathering bearing, 
making the  ro ta t ions  through 2' and Y' t o  the  fea ther ing  ax is ,  ro t a t ing  FA FA 
through the  d e l t a  fea ther  angle -(o - 5  ) of - A  OF, ro t a t ing  back through F REF 
- Y f  and -Z' ane then t r ans fe r r ing  back t o  t he  BLn ax i s  system r e s a l t s  

FA FA 
i n  t h e  de f in i t i on  of  t h e  disrlacecierits i n  blade ax i s  coordinates.  

Hovever, before proceeding with t h i s ,  t h e  feathering a x i s  s lopes Y *  and 
FA - 9 

" FA 
a r e  defined. The slopes are simply defined as t h e  d i f f e r ecce  i n  the  

t o t a l  s t a t i c  ard e l a s t i c  def iect ior ,  of  t he  outboard aEd inboard fea ther  bear- 
ings divided by t h e  spanuise dis tance betveen the  bearings. m e n  f r w  f ig-  
ure 25 and t h e  bearing s t a t i c  locat ion equatioc: 

and 



where i n  terms of the s t a t i c  an3 modal def lec t ions  

and 

In the development that fol low-,  t h e  time derivat ives  of Y '  and Z'FA are FA 
required, so  therefore, they are now defined. Taking the first and second 
time derivat ives  of the slope equations y i e lds  

Y', ? :YSg - YIB) / CCS(Y'~) kg (102) 

and 



vhere 

and where 

Transferring the blade displacements a s  indicated a b v e  t o  the  inboard feather 
bearing, trensfornir& t o  the feathering ax i s ,  and performing the feathering 
rotat icn a s  discussed ear l ier ,  y ie lds  the following equation which def i ce s  
the blade displacerrents in  blade ax is  cooreinates: 



0 -sinZ1 COSY ' -sinY ' 

cosz ' 
FA 

BLn 

1 0 COSY IFA ~ i n Y ' ~ ~  0 

cosA4. -~i:4~][-sin:~~ C O S : ~  I] 
sinA4, c c 0 s 4 0 ~  

1 

'!%is equation then g i se s  t he  blade displacement i n  blade coordizstes ,  includ- 
ing t h e  e f f e c t s  of the  s t a t i c  shape, blade bending, and blade s t a t i c  t w i s t .  
The e f f e c t  of blade e l a s t i c  t w i s t  is  nov considered. 

4.5.5.4 Blade e l a s t i c  t v i s t .  - Bfade motion due to  blade e l s s t i c  t w i s t  is 
accountet for  bj going Sack t o  the  s t a t i c  twis t  equation. Blade e l a s t i c  i w i s t ,  
+ i s  assw-ed t o  t e  Ci rec t ly  scperpositionahle v i t h  blade s t a t i c  o r  blade 
T 

pretwist ,  Ow, except t h a t  the  s t a t i c  pretwist  takes place about t he  l / 4  chord, 

and the  blade e l a s t i c  t w i s t  takes place about the  blade element shear center .  
This is  shown i n  Figure 26. From t h i s  f i gu re  it can 3e  seen t h a t  previous 
s t a t i c  t w i s t  eq ta t ion  caL be rewr i t tec  as:  



S.C. - -=9. 

0 * ' 0 /' 
'I* ' B L ~  

Y(iIsc 

8) B L A M  PRElWlSf. $('Im. ABOUT BLADE REFERENCE AXIS 

b) BLADE ELASTIC TWIST. Q(iIT ABOUT BLADE SHEAR CENTER 

Figure 26. - Blade static pretwi ;, 
O?W 

an3 elastic t w i s t ,  $ T. 



I f  we l e t  aT = (@T + *9TU) then t h i s  equation becsiues 

4.5.5.5 Final  blade element Y ,  Z displacement equatidn. - Suos t i tu t ing  t h e  
above eqaation i n  t h e  previous development sequence y i e l d s  t h e  blade dis-  
placement equation which includes the  e f f e c t  of t h e  s t a t i c  shape 9f blade 
bending, of  blade feather ing,  and o f  blade e l a s t i c  t w i s t .  

However, b e f ; ~ e  proceeding v i t h  these subs t i t u t i ons ,  the  following column 
vector  is def i tnd  t o  simplify t h e  notation. 



The t o t a l  blade element displacement equation  become^: 

where : 



Note t h a t  f o r  convenience o f  us ing t h e  condensed mat r ix  n o t a t i o n  discussed 
above, t h e  most genera l  v e c t o r s  f o r  such terms a s  P p ,  XsWs ZJog, and YSC have 

been used. A s  can b e  seen i n  t h i s  equat ion,  t h e s e  have a l l  been t r e a t e d  as 
ful.1 vectors .  Making t h e  appropr ia te  s u b s t i t u t i o n s  o f  course  w i l l  r e s u l t  in 
t h e  express ions  previously  obtained.  

I t  i s  noted t h a t  t h e  eq-lation is w r i t t e n  f o r  t h e  r e l a t i v e  displacement of 
po in t s  on t h e  blade outboard o f  S t a t i o n  XsW. Inboard of t h a t  s t a t i o n ,  t h e  

displacements a r e  determined from t h e  previous *nboard equat ion o r  simply by 
zeroing o u t  such terms as bJogi and /rsNJ and s u b s t i t u t i n g  un i t  d iagonal  

t rmsfonna t ions  f o r  and [ y]  i n  +.he f u l l  equation.  Following e i t h e r  

approach y i e l c s  t h e  blade displacement equat ion f o r  p o i n t s  inboard of 
S t a t i o n  %W; o r  

The ith s t a t i o n  b lade  d i s p l a c e ~ e n t s ,  Y and 2 ,  i n  b lade  coordinates  f o r  p o i n t s  
on t h e  blade both  outboard a?a inboard o f  s t a t i o n  XSW a r e  then def ined.  

4.5.5.6 Blade element Y and Z r e l a t i v e  v e l o c i t i e s  and acce le ra t ions .  - The 
blade element coordinate  a x i s  system l i n e a r  Y and Z v e l o c i t i e s  r e l a t i v e  t o  t h e  
blade re fe rence  a x i s  system can be found by d i f f e r e n t i a t i n g  t h e  p o s i t i o n  
equation wi th  respec t  t o  time. Note t h a t  no d i s t i n c t i o n  w i l l  be made a t  t h i s  
point  between outboard o r  inboard o f  s t a t i o n  XSW, b u t  us ing t h e  equat ion f o r  

displacements outboard o f  t h i s  s t a t i o n  and a s  d iscussed e a r l i e r ,  zeroing ou t  
c e r t a i n  terms, r e s u l t s  i n  t h e  equat ions  f o r  v e l o c i t i e s  o r  a c c e l e r a t i o n s  o f  
p o i n t s  inboard o f  t h a t  s t a t i o n .  
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Not. i n  t he  above equation t h a t  t he  [:J matrices a r e  not time der iva t ives  of 

t h e  [Tc] matrices but a r e  der iva t ives  of  t h e  transformation matrices wi+.h re- 

spect t o  t he  transformation angle 5. This i s  a r r ived  a t  by making t h e  sab- 
s t i t u t i o n  tha t :  

and 

Taking t h e  time der iva t ive  again of Equation 113 yie lds  t h e  blade elenent  
Y and Z l i n e a r  accelerat ions r e l a t i v e  t o  t h e  b h d e  reference ax i s  sys t s l .  

' "FA [kZliA]T pyli*]T [TA$F]T F Y l F I ]  [TZtFA] 







'fhcse equations define the blade e la ta t  re la t ive  displeccacnt veloci t ies  and 
accelerations, respectively, required by the  blade ine r t i a l  velocity equations 
develop& shortly. h t e  tha t  i n  the preceding 

written for  the nLh blade, and vi th  the exception of the 

4.5.5.7 Bfa& a s r e n t  slopes. - The blade e l a e a t  Y' and 2' s l o p s  are 
deterained by d i t fuen t i a t i ng  the deflection equation v i t h  respect t o  the nth 
blade radial distance, ItBEp. These i o d a t i o n s  are used for quasi-static 

torsion formulation and output. Perforsing the  required differentiat ion for  
points alorrg t h e  bide reference l ine:  

where 



h .5.5.8 Transfoxmat ion from blade-to-blade element coordinates. - I n  t h i s  
section, the  transformation matrix f o r  the  blade root t o  the  i t h  blade element 
m t i o n  w i i l  be developed. Each blade w i l l  have its o m  transformation matrix 
fo r  each i t h  blade s ta t ion .  The transformation matrIx v i l l  i n i t i a l  
developed the  t r m s f o m  fran blade element t o  blade coordinates, 

The transformation matrix, [ TBLE-BLn ] , e m  be de-eloped by refer r ing  t o  t h e  

developnent of the  deflect ion equatfons. The first ro ta t ion  from blade ele- 
ment to blade coordinates i s  through t h e  combined t w i s t  w e ,  -QT; t h e  second 

ro ta t ion  is thmugh t h e  negative of the  precone, BO; the  t h i r d  through t h e  

negative of thw sveep and droop angles, r0 ,  y ;  the  fourth through the  feather- 

izg  ax i s  angle, 'FA; the  f i f t h  through t h e  negative of the  reference feather- 

ing angles 4REF; and t he  s i x t h  back through t h e  negative of the  feathering 

axis  Frecone angle, BFA. 

These rotat ions then define the  transformation fi-om blade element t o  blade 
coordinates, including the  e f fec t s  of the  s t a t i c  shape of t h e  blade, p re tv i s t ,  
precone, weep, droop, etc. Also included is t h e  e f fec t  of blade e l a s t i c  
twist. Again note t h a t  f o r  s ta t ions  inboard of Stat ion XSW, the  sweep and 

droog angles, r and y ,  respectively must be set t o  zero In t he  fornulation o f  
0 

t he  transformation matrix as i n  the  def in i t ion  of the  blade displacements and 
blade slopes. This portion of the  transformation matrix which includes the  
s t a t i c  blade shape and combined t w i s t  is defined as follows: 

The next two rotat ions from blade element t o  blade coordinates are due t o  the  
e l a s t i c  blade bending slopes. Since Y'Bm and ZVBEm a r e  motions of the  

blade elenients with respect t o  the  blade, then t o  transform from blade elanent 
t o  blade coordinates requires negative ro ta t ions  of Y '  

BEND and ZVBm t o  be 
included. Finally, the  blade feathering ro ta t ion  from t h e  reference feather  
angle must be included. The f i n a l  transformation then, from blade element t o  
blade coordinates, i s  defined by the  following equation: 



and 

and again where 

inboard of Station XSW. 



Also: 

The inverse o r  transpose of t h i s  equation y ie lds  the  transformation from blade 
t o  blade elemeat coordinates, or: 

again vhere 

inboard of s t a t ion  XS. 

4.5.5.9 Blade element angular veloci t ies  and accelerations. - b a r n  t he  f o r e  
7 

going discussion, the blade element angular veloci ty vector can be determined. 
Start ing with the  angular ve loc i t i e s  (p,  q, r)BLn of the  blade reference ax i s  

system and systematically and progressively transforming these veloci t fes  
through each axis  rotat ion and adding the  respective angular veloci ty assod 
ciated with each of the  indicated angular rotat ions,  results i n  the  following 
equation for  the  blade element angular veloci t ies .  



Bote t h a t  i n  t h i s  equation, s t a r t ing  on the  right-hand s ide  v i t h  the  quant i t ies  
i n  the innermost brackets, t h e  blade reference system angular veloci t ies  a re  
first transformed through the  increment of feathering ax i s  flapping slope due 
t o  bending, Z I m ,  and then the  feathering axis  flapping angular velocity, 

-2' is added. Minus is  used since 2' is a negative O rotat ion.  Next, t h e  
FA' 

resul tant  V vector is transformed thro*lgh and YgFA is added. This is  

then transformed throu(th the de l t a  feathering angle, A O F ,  and t h e  feathering 

angular velocity, $F, is added. This is then transformed back through the 

increments of feathering ax i s  slopes due t o  blade bending, giving t h e  veczor: 



which represents the  blade element angular ve loc i t i e s  due t o  combined blade 
feathering and blade reference axis  system angular ve loci t ies .  

Next, the  e f fec t s  of blade bending F-t each blade s t a t ion  are introduced. The 
above vector is f i r s t  transformed through the  loca l  blade element flapwise 
bending slope, ZPBm, and then the  angular velocity, -Z'Bm, is added. This 

r e s u l t  is transformed through the  blade element inplane bending slope, Y '  BHJD' 
and the  in?lane angular veloci ty due t o  blade bending, Y ' ~ ~ '  is added, re- 
sul t ing  i n  the  t o t a l  vector l e s s  the i n i t i a l  transformation str ing.  This 
vector represents the  blade eiement angular ve loc i t i e s  due t o  the  combined 
e f fec t s  of the  blade reference axis  system angular ve loc i t i e s  of +,he blade 
feathering angle and of t h e  blade angular ve loci t ies  due t o  blade e l a s t i c  
bending. The remaining transformations then include the  s t a t i c  e f f e c t s  of 
the  blade feathering axis  precone, BFA, the  blade reference feathering angle, 

'REF' blade sweep, T blade droop, y ,  and blade o r  hub precone, 8 , and tk-, 0' 0 
combined e f fec t  of blade s t a t i c  and e l a s t i c  t w i s t ,  represented by (O Finally, T* 
t he  blade e l a s t i c  t w i s t  angular velocity, (OT, is  added, giving the  t o t a l  

blade element angular ve loci t ies ,  13 BLE 

Also note, a s  indicated before, the matrix T [ TI r.03 has the  value calculated 

i f  X is  greater  than XSW and has the  value of unity i f  X is  inboard of  

s t a t ion  XSW. 



At this point is has been assucd that the contributions of ktFA and itpA 

are small compared to the other contributfons to q [:I . This assumption 
BLE 

is supported by referring to the final form of the development. First 

of all, both of these vectors are small compared to , vhich is funda- 

BLn 
mentally the rotational speed of the rotor. Also, both of the feathering 
axis flapping and inplane angular velocities are first added and then trans- 
formtd through the delta feathering angle and then subtracted, meaning tbat 
f'undarentally the principal magnitude or component contributions due to YtFA 

and Z'FA are self-cancelling. 

With the above assumption: 

BLE ' BEND 

BLn 



where : 

and : 

The blade element angular accelerat ions can now be determined by d i f f e r e n t i a t -  
ing t h i s  equation with respect  t o  time. Again, as i n  t h e  case of t h e  angular 
ve loc i t i e s ,  t h e  contr ibut ions due t o  time der iva t ives  of  t h e  fea ther ing  a x i s  
flapping and inplane slope changes due t o  bending are neglected. W i t ?  t h i s  
assumption, t he  time der iva t ive  is: 

BLE ' BEND 
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where : 



4.5.5.10 Blade element X notions. - Ir t h e  previous development, t h e  equations 
d id  not account f o r  t he  blade element displacement, ve loc i ty ,  and acce lera t ion  
i n  the  spanwise o r  X-direction. The method used t o  def ine these  is  one of 
taking the  neut ra l  ax i s  as t h e  ax i s  of no s t r e t c h  and de t eming  t h e  pro jec t ion  
of t h i s  ax i s  onto the  X-axis a s  t he  blade bends. This project ion,  then, is  
the  spanwise o r  X loca t ion  of  t he  neut ra l  a x i s  i n  blade cmrdina tes .  The r a t e  
of change of t h i s  project ion i s  the  spanvise r e l a t i v e  ve loc i ty  and t h e  second 
r a t e  of change is  t h e  spanwise r e l a t i v e  acce lera t ion  of the blade element 
neut ra l  ax i s  loca t ion  o r  point.  The motions a r e  then transformed t o  t h e  cen- 
t e r  of grav i ty  t o  obta in  t h e  spanwise motion o f  t h e  o r i g i n  of t h e  blade ele- 
ment reference axis.  

In  Figure 27, t he  deflected neut ra l  a x i s  is shows as a funct ion o f  blade radius.  
The (i-1) and ith s t a t i o n  a r e  shown. It can be seen from t h i s  figure t h a t  as 
s A ( i - 1 )  approaches %A( i )  , then t h e  d e l t a  length of t h e  blade 

( s m ( i )  - S ( i - l ) ) ,  can be wr i t ten  as: 
NA 

k N A ( i )  - ~ ~ ~ ( i - 1 ) ) ~  = (5A(i) - 5f,(i-l))2 BLn + (YNA( i )  - Y N A ( i - 1 )  

Z N p l ( i )  - ZNA(i-1) 2 ) BLn 

Rearranging t h i s  equation and summing from t h e  blade root  t o  t h e  k th  blade - 
s t a t i o n  yields:  

- i )  - - . (ZNA(i)  - iNAi i -1)  
BLn )zL.]'" 

and 



NEUTRAL AXIS 

0 

Figure 27. - Ne~ltral a x i s  vs  blade radius.  

Likewise, 

sNA(i) is simply t h e  blade length t o  t h e  itJ s t a t i o 2  measured along the  neu t r a l  

ax i s  and Y ( i )  and 2 ( i )  a r e  t h e  Y and Z loca t ions  of t he  neu t r a l  ax i s  i n  
N A ~ ~ n  N A ~ ~ n  

the  blade coordinate ax i s  system f o r  t h e  n G b l a d e .  These displacement=, 
along with t h e i r  der iva t ives ,  w i l l  be defined l a t e r .  F i r s t ,  however, by 
taking t h e  f i r k t  and second time der iva t ive  of X equation, t h e  spanwise velo- 
c i t i e s  and ~ c c e l e r a t i o n s  o f  t he  blade element neut ra l  ax i s  point  a r e  deter- 
mined and a r e  given by the following t w o  equations. 

x N A ~ ~ n  ( l ~ ] = =  [ - k N A ( i ) - y N A ( i - l ) )  BLn (iNA(i1 -iNA(i-l) )BLn 
( i )  - XNA(i-1) 

BLn 



( i )  - ~ ~ ( i - 1 ) ) ~  - ( ~ ( i )  - L ( i - 1  2 
BLn BLn 

1=2 
- h ( i - 1  

BLn 

i - i -  f a ( ~ ) - ' i ( i - l ) )  
- BLt. BLn - 

- i - i  (i,(i) 
BLn 

If yom(i) is the distance s l o w  the i t h  - blade element chcrd l i n e  Im the  

blade element reference axis  origin or  center of gravity to the  3 l sde  el-nt 
neutral axis, then the blade element neutral a x i s  motions can be written i n  
terms of the blade element motions as: 

z,( t 1 
BLn BLE 



Referring to Sccticn k.5, the  t i m e  derivative of the above tqurt ion is: 

and l ikevise, t h e  second tiree derivative is: 

These three equations, then, define t h e  Y aDd 2 dssplacenents, ve loci t ies ,  
and accelerations of the  neutral  ax i s  point used i n  the X equations and t i m e  
derivatives. Also, the  incraaents of spamrise motions diie t o  t h e  o f f se t  
between the center of gravity and neutral axis  are defined by these same 
three equations. This increment represents the  motion of t h e  neutral  axis  
r e la t ive  to t h e  blade reference axis  origin,  therefore, the  span motion a t  
t b e  center of gravity is detenained by subtracting A from the  spanwise 
m t i o n  of the  neutral  axis,  or: 

-. 
( i )  = GA(i)  - A 5  ( i )  

*BL~ BLr. %~ri 



These equations, then, e l o w  vftii the previo-1s expressions for  X rraO "L de- 
f ine the blade elanent re la t ive  displscemcnt , velcrt i ty ,  and acctleratfon re- 
to rs  required for the t o t a l  iner t i a l  =cars which follow. 

L .5.5 .ll Blade motion i n  absolute coordinates. - To this point the blsde 
element motion has been defined i n  terms of the  Slade axis or re la t ive  coordi- 
nates. The elemcncs defined are: 

blade element re la t ive  veloci + ies 

and blade element re la t ive  accelerations 

B h  

Using the method of Section 4.4.1, expressions in  freestream (absolute) coordi- 
nates can be written for use in  the equations of motion. The blade e lawnt  
velocity becomes: 



The blade element accelerations are: 

BLn , BLn 9 

and matching rotation terms are defined in Section 4.5.4 i n  terms of rotor 
axis terms which are i n  turn related to the principal (hub) reference axis. 



4.5.6 Svashplate motion. - As shown i n  Figure 19, t h e  svas5plate reference 
axis  system is  defined v i t h  t h e  Z-axis down. The motion of the  svashplate 
reference system is deffned by three generalized coordinate displaceaents, 
ZSp, 4sp, and BSp, which zove re la t ive  t o  the  hub axis s y s t a .  

The rotat ions +SP and 0 are taken i n  the same order as shovn i n  SP 
Figure 16 and therefore, from Section 4.4.3 t h e  angular veloci t ies  art: 

where iSP is the  rotat ional  speed of the  swashplate, and 

where G R  is the  ro ta t ional  speed of the rotor. Note no coupling i s  pm- 

vided for  shaft motion, the  assumption being t h a t  swashplate motions r e l a t i v e  

to t h e  hub due t o  shaft  motions have been designed out of t h e  system. 

As indicated before, the  chosen swashplate axes do not r o t a t e  at t h e  ro ta t ional  

speed isp- However, t h e  t o t a l  angular veloci t ies  r e f l ec t  the  ro ta t ional  



rate lSp. Therefore, the total  angular rates of the nnrhplate 

in swashplate axes are obtain& with ill = 0.  This gives 

BoLvotating swashplate an@- velocities, subscripted SF', src o'trtsined 

g dtlctine 6, above. 

The mashplate angular accelerations can be similarly detenained by 

evaluating the general expression at + = liSp= 0. This yields:  1 SP = + [El +SP + i s [  cos e g -="" [/;I 
SP -sinesp~ 



The vertical velocities and accelerations of the swashplate are simply 
defined as: 

and 

It is noted in these equations that the Z-axis motion is assumed to 
remain parallel to the hub Z axis. 

The svashplate angular displacements are obtained by integrating the 
argular velocities, or: 

and 

Likewise, the vertical displacement of the svashplate relative to the 
hub is: 



1.5.7 Blade feathering motion. - The feathering occurring at the feather 
bearings, Figure  15, i s  taken to be the sum of the mtions of the following 
dynamic and kinennetic elenants: 

Swashpiate - collective coseaaad 

Swashplate - cyclic coma& 

Blade bending to feathering couplings 

e Elastic pitch horn and associated-mqonents 

The total feathering response is: 

Velocities and accelerations are formed by differentiation. The desired 
relations are: 



and f o r  accelerat ions : 

a + h  
+ p1s cos ( #BLn + $R) - 31S + +,j 5 + - I i l n  

The comenanded cyc l i c  blade angles are: 

cos* PH 

where t h e  angle JlpH is  t h e  p i t ch  horn-swashplate connection l ead  t o  

feather  axis .  See Figure 28. Th i s  angle is  computed as a s t a t i c  value. 
It should be noted t h a t  some hub configurations car ry  t h e  p i t c h  horn 
toward t h e  blade t r a i l i n g  edge. These configurations are entered i n  
R M O R  I1 by forming t h e  supplement of JlpH. 

= 180 - $J,, (degrees) ( 170 ) 

This angle gives t h e  cor rec t  modeling of t h e  sense of ro t a t ion  
reversa l  with the  t r a i l i n g  p i tch  horn geometry. 

The ve loc i t i e s  and a c c e l e r a t i ~ n s  of t h e  command cyc l i c  are obtained by 
d i f fe ren t ia t ion .  



-a+-*--- ---f AXIS (UNDER 
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i. ROTATING SYSTEM VIEW 

Figure 28. - Pitch horn blade feathering phase angle. 



and 

cos* PH 

cos* PH -sin$pH 

cos* 

cos* 

The ove ra l l  coupling (swashplate t o  fea ther ing)  gear  r a t i o ,  d/e,  is 
expressed as a s t a t i c  term plus a  f i r s t -order  co l l ec t ive  correct ion.  

The co l l ec t ive  is: 

The swashplate v e r t i c a l  motion, ZSp, i s  developed i n  Section 4.5.6. The 

value e  i s  the  s t a t i c  e f fec t ive  crank (p i t ch  horn) arm about t h e  blade 
fea ther  ax is .  This crank length is entered as a negative number f o r  a 
t r a i l i n g  p i t ch  horn geometry t o  give the  proper sense of co l l ec t ive  f o r  
swashplate v e r t i c a l  t r ans l a t ion .  



Taking time derivatives: 

a'h a+, 
The blade bending t o  feathering coupling f ~ t o r s  are - - 

aA1 
' aA2 9 and 

- fo r  the  f i r s t ,  second, and t h i r d  blade modes. The blade bending modes 
a A3 

a re  described without a torsion component; t h i s  al.l..ows freedom in  varying the  
blade sweep, droop, jog, o r  other geometric parameters without new input 
data fo r  the  blade mode shape. The torsion e i t h e r  is calculated separately 
along the  blade proper or as a blade root  component by p i t ch  horn bending. 
The coupling fac tors  a r e  intended t o  add a feathering componeat t o  the  blade 
mode which would ex i s t  even with no tors ion  o r  feathering moments. A s  such, 
they are  i n  e f fec t  the  6 3, a2, etc.,  coupling usually described i n  the  

l i t e ra tu re .  These couplings are usually determined a s  a function of the 
distance from the  f l a p  o r  inplane mechanical o r  v e r t i c a l  hinge t o  a pi tch 
horn projection. 



5 .  EQUATIONS OF MOTION 

5.1 Introduction 

With the coordinate systems and transformation between systems well in 
hana, the development can proceed to the equations of motion. The 
development yields a set of second-order differential equations with time 
varying coefficients. These equations are formulated using the energy 
approach in a form credited to Lagrange. The solution to the system of 
equations is in the time domain by numerical integration. The result is a 
time history of the displacements, velocities, accelerations, and loads of 
the components of the helicopter modeled in detail, and the program 
treats each blade separately. 

In the fcllcwing development a Lagrangian approach to system modeling is 
applied to a set of p~int masses and then extended to discrete masses and 
inertias. The result is a set of generalized mass and force expressions. 
In REXOR (Reference 4 )  these expl ?ions are programmed directly, element by 
element. In REXOR I1 extensive us, is made of matrix notation both in tiescrip- 
tion and programming. The trmsitior~ to matrix notation is given at the end 
of section 5.3. 

5.2 Energy Approach to Development of Equations of Motion 

There are two basic approaches to developing the equations of motion for 
a physical system. These are: 

Vector summation of forces 

Energy approach 

Given an equal set of conditions, limitations, and assumptions, both pro- 
cedures should result in zquivalent sets of equations. The difference is 
in the ease of arriving at a conplete set of equations. Note that force is 
a vector,whereas energy is a scalar quantity. Therefore, in dealing in 
terms of energy, less information regarding direction needs to be handled. 
Also the systematic nature of the energy approach reduces the risk of 
error. As stated by Lagrange (Mecanique Andlytique , 1788 ) , "The methods 
which I present here do not require either constructions or reasonings of 
geometrical or mechanical nature, but only algebraic operations proceeding 
~fter a regular and uniform plan". 

The starting point of this development is Lagrange's equation. It may be 
derived by postulating Newton's second law, or from ?la; ,on's principle. 
Lagrange's equation may be written in the followSng f r , r ~ , :  



where 

T is  k ine t i c  energy 

q is  a generalized coordinate 

U i s  po ten t i a l  energy function 

p is  t h e  generalized force, derfzed f r o m  t he  v i r t u a l  work, 6k, and 

is  defined by t h e  equation 

Equation 177 will now be developed in to  the  form as applied i n  RMOR 11. 
This form bears a c lose  resem?lance t o  a force balance equation, but i s  
derived from energy c o n s i d e r a t i ~ n s .  For c l a r i t y ,  t h e  aevelopment i s  first 
shown f o r  a set o f  d i s c r e t e  mass p a r t i c l e s ,  then, i n  t h e  sec t ion  t h a t  
follows, i s  extended t o  t he  d i s t r i bc t ed  elemental masses o f  t h e  PAXOR I1 
wjdeling and t o  t he  i t e r a t i v e  so lu t ion  scheme used. 

In  a conventional manner t h e  equation is  formulated i n  terms af generalized 
coordinates. These coordinates a r e  a function of t i m e ,  and c ~ m p l e t e l y  
define the  system. They a r e  g e n e r a l b  not d i r ec t ly  i d e n t i f i a b l e  as a 
physical quantity.  

The physical parameters o r  elemental coordinates a r e  defined t o  be func- 
t i o n s  of t h e  gener'alized coordinates and i n  turn  a function of t i m e .  
Consider a system t o  be composed of p a r t i c l e s  whose physical. coordinates 
a r e  a function of n generalized coordinates.  For t h e  i t h p a r t i c l e :  

Note: a Cartesian coordinate s e t  i s  se lec ted ,  and used i n  REXOR 11. However, 
t he  argument i s  t r u e  f o r  an a r b i t r a r y  coordinate s e t .  



The functional relationship of the physical or constrained coordinates and 
generalized coordinstes yields : 

The t h e  dependence is iq'tcit in the increments of the generalized 
coordinates. m e  equatior? is strictly true for infinitesimal Increrents. 
IE iEXOR 11 the generalizcC coorfinates are distinct f m a  physicaf cocfrdinrtes 
in t3e atsin mtor blade descriptions. Here the generalized coordinates 
are blade modal variables. The mdal variables re2resent tangible ~efiec- 
tiom of the blde frclll a --eference positfon, and as such are sma l l  but 
not infinitesimal variables. 

As the variables are a function of tine: 

In terns of the it2 p u t i c l e  tSe k i r ~ + i c  enerar for the system may be 
identified as: 



Touard t he  par t icular  firmulation o f  Iagrangefs equation used i n  REXOR 11, 
the first two terms o f  the  previously stated form, Equation 117, are 
developed : 

P e r f ~ m i n g  these operations for  the  it1 p a r t i c l e  case and t h e  rth gen- 
eral ized coordinate and summing over the  system yields:  

A useful math operation of  cancellat ion of  t h e  dots  is aeveloped p r io r  to  
proceeding. Recall : 

The? also 

This is a lso  t rue  for  y and z and for  the double dot terms i n  x, y 
and z. 

An operation t o  reverse the  order o f  spacial and temporal d i f f e ren t i a t ion  
is required. lb s b w  t h i s  the  t i m e  derivat ive o f  a p a r t i a l  is taken a s  



Bext the spacial derivative of xi is given as 

Eov since 

the order of spacial differentiation is re%*=-rsible 

and hence 

SMlar relations exist for yi and z 
i ' 

Proceeding on vith the kinetic erergy terms: 

Using the relationship for cancelling dots in pertials, reversing the order 
of differentiation and cancelling terms gives 



Then from Equrtion ln, Lagrange's Equation i n  constrained coordinates 
v i t h  point masses becomes 

Aiso, i n  t h e  same vein of defining the  generalized coordinates, the  
relat ionship between the  elemental and generalized forces can be developed. 
This r e l a t i i x h i p  is developed from the  def in i t ion  o f  v i r t u a l  work on a 
p a r t i c l e  as the  sca lar  product o r  the  applied force and an i n f i n i t e s i n a l  
displacement. Theremore f o r  the  t o t a l  system of  I elements, 

Using the  def in i t ion  o f  QI from Quat ion 178 gives: 

Subst i tut ing Equation 203 i n t o  Equation 201 y ie lds  the  f i n a l  form of the  
Iagrange energy equation i n  constrained coordinates for  point masses, which 
is i n  the  form from which the  mCR I T  Equations ~f motion are developed. 
Egking t h i s  subs t i tu t ion  rrnd rear rmaing the  equation y ie lds  

a:: 

i=l 



The above equation is the bas is  for  t h e  e n t i r e  derivation of t h e  equations 
of motion of REXOR 11. Eote t h a t  this equation is writ ten for discrete ele- 
ment messes and discre te  forces. Also, at any i n s t s a t  i n  t i m e  all o f  the 

ingredients required to define t h e  elemental a c c e l a t i o l s ,  ii, yi, gi, 
are not known. Specif ical ly,  t h e  generalized coordinate displacements and 

velocit ies ,  end <, are kncm at a, ins, i n  t, but the  generalized 

coordinate accelerations, e, rear in  to be determined a t  t h e  t i m e  t h e  

eler~ental  accelerations are computed. 

The follovlng section presents t h e  manner i n  vhich the  foregoing equation 
set is adapted t o  the  REXOR I1 numerical solution t o  solve the cquilibriur 
equations o r  equations o f  motions for  t h e  generalized coordinate accelera- 
tions. This development is first presented i n  the  simpler form, fo r  
c la r i ty ,  fo r  d iscre te  mass elements and forces and then i n  expanded form 
t o  include elemental d is t r ibuted masses and applied mments. 

5.3 I t e ra t ive  - Concept and Equation Set Solution Nethod 

Given a set of  equations as developed i n  t h e  previous section, the  n u t  
s tep  i s  t o  establish a method of  solution. The solution process is 
defined as solving the  equation s e t  for  the  accelerations, integrat ing 
the  accelerations for  updated velocity, and position; then subst i tut ing 
the  integrands back into the  equations to deternine new values of  
accelerations. 

The first s tep  of the  process is to define e x ~ l i c i t ' l v  t.hc ncrelera+.iona 

from t h e  equation set. In t h e  process of implementing t h e  RB(OR 11 equations, 
it is  desirable to handle the  accelerations a s  an estimated plus a correc- 
t i v e  term. I n  generalized coordinates then w e  can write 

NEW CORR . 
This operatior. proceeds on a sequential t i m e  basis. For each increment 
advance i n  t i m e ,  t h e  previous 'NEW' becomes t h e  'OLD'. In  REXOR 11, t h e  the 
increment corresponds with a step azimuthal advance of the  main ro tor  



blades.  However, t h i s  need not be t h e  case.  The 'HEW' acce lera t ions  must 
be used i n  t he  numerical in tegra t ion  process to de f ine  the general ized 
coordinate ve loc i t i e s  and displacements. But i f  s o m e  form of a predic tor  
on acce lera t ions  is used then the  'OLD' would be t h i s  predicted value and 

. i n  t h i s  case it muld be an estimated, 'EST', value. 

Using t h e  notation 'OLD' and 'EST' interchangeably t h e  l i n e a r  elemental 
acce lera t ions  can be v r i t t e n  a t  t i m e  t as 

EST 

where t h e  estimated accelerat ions &re determined using t h e  generalized 

displacements and ve loc i t i e s  , qr and <, a t  time t , and t h e  generalized 

coordinate acce lera t ions  Q, e i t h e r  estimated o r  from one previous time 

step i n  t he  numerical i n t eg ra t i cn  process. 

Then, at any given in s t an t  i n  t ime vhere t h e  'EST' elemental accelerat ions 
are thus ly  determined, t he  cor rec t ive  elemental acce lera t ions ,  !x, y, i')i CORR 
can be wri t ten as a Function of t h e  generalized coordinate co r r ec t ive  
accelerat ions.  

[ J  - - 4 

CORR 

-- a 
i 

"CORR + - * - + - %  a% CORR 



Now making the substitution of Equations 203 and 207 into Equation 201 
A.om the previous section and rearranging terms yie lds  the m e  

equation for the ccordinate in terms of the estimated elemental 

accelerations and the corretive generalized coordinate accelerations. 

Fi 

[tixi- - Fx i ); + (+ii EST -.X+pi EST -\R] i 
i=l 



-sent ed The equations of motion f o r  t he  system can mw be combined and pr-  
i n  matrix form. 

m 

+ r WING ] 
MATRIX 

. 1 -1 STIFFNESS 
MATRIX 

4 

where t h e  matrices, Mrk, Crk and Sk w i i :  be defined i n  t h e  following 

discussion. Eowever before proceeding with t h i s ,  F ~ u a t i o n  210 is now 
rearranged in to  t h e  form ac tua l ly  used i n  t h e  numerical process i n  REXOR 11. 
The equation is solved i n  terms of  t h e  cor rec t ive  acce lera t ions .  



The cor rec t ion  terms come from an inversion ( o r  simultaneous equation, 
Cholesky method) operation on t h e  model equation set. 

A s  indicated before estimated acce lera t ions  i n  physical  coordinates come 
from the  'EST' o r  'OLD' generalized coordinate acce l e ra t iocs  and t h e  cur- 
r e n t  generalized coordinate v e l c c i t i e s  and displacements. ?'he in tegra t ion  
p a r t  o f  t he  so lu t ion  operation suspl ies  t h e  (q) and (q) data.  

-1 

The whole package operates i n  a cyc l i ca l  fashion, as shorn  i n  Figure 29. 
Arranging the  so lu t ion  sequence as  such gives it some important a t t r i b u t e s  
and advantages. 

' 
N ax. 

[ t i x i =  - ~.i) + 

i=l 

F i r s t ,  t o  determine t h e  cor rec t ive  accelerat ion,  t h e  inverted mass matrix 
premult ipl ies  t he  difference of applied and estimated r e a c t i v e  forces  
represented by the  quant i ty  i n  t h e  la rge  brackets on the  right-hand s i d e  

bs MATRIX ]] N axi 

&g [(+im - F * , ) ~  + 

\ 

I r k  DAMPIBG MATRIX 1 :] +[Krk MATRIX STIFFNES I[!] 
I 

' 



NEW ACCELERATION 
REPUCES OLD 
ACCELERATION 

FORM NEW ALCELERATION 
FROM OLD AND CORRECTION 
TERMS 

TIME 

CORRECTION TERMS 

INTEGRATE NEW 
ACCELERATION TO 
FORM VELOCITY AND 
POSITION TERMS 

SUBSTITUTE ACCELERATION, 
VELOCITY AND POSITION 
DATA BACK INTO EQUATION 
SET 

Figure 29. - Equation solution locp. 



of Equation 211. With t h e  usual, small, in tegra t ion  s t e p s  t hese  
d i f fe rences  w i l l  be r e l a t i v e l y  s m a l l .  Therefore, inaccuracies  i n  t h e  
mass matrix o r  i ts  inversion process only s l i g h t l y  a f f e c t  t h e  t o t a l  
accelerat ion determination. This means approximations and s impl i f ica t ions  
t o  t he  mass matrix are acceptable.  I n  some instances,  a diagonal mass 
matrix w i l l  g ive  convergence t o  t he  required solut ion.  

Second, a s  w i l l  be shown i n  t h e  Section 5.4, (blade equations sec t ion) ,  
carrying t h e  runnicg accelerat ion i n  elemental coordinates  allows f o r  t h e  
simple separat ion of the cent r i fuga l  and s t r u c t u r a l  s t i f f n e s s  o f  t h e  r o t o r  
blades which has important advantages which have been discussed. Also, 
t h e  aerodynamic loading terms, already by nature i n  physical coordinates,  
art e a s i l y  accounted for.  

In t h e  ac tua l  appl ica t ion  of Equation 211 t o  RMOR 11, d i s t r i bu ted  e l a a t n t a l  
r i g i d  body masses are associated v i t h  each coordinate point  and applied 
m m n t s  i n  addi t ion t o  forces  at each coordinate poin t  are accounted for .  

Referring back t o  Equation 203 t h e  generalized force,  Q1, from vir tual  

work can be simply wr i t ten  i n  t h e  following form t o  account f o r  appl ied 
mments a t  each of the  it!l g r i d  points  as - 

The te~lns of Equation 200 i n  Equation 204 can be developed f o r  t h e  d is -  
t r i bu ted  masses by going back t o  t h e  elemental acce lera t ion  equation, 
Equation 1 3  of Section 4.4.1 wnich is  repeated here,  i n  a rearranged 
form, f o r  c l a r i t y  of t h i s  development. 



For distributed masses of a r i g i d  body v i t h  coordinate point and system 
embedded i n  the body : 

and Equation 214 oecomes: 

2 2 
-x( r +q 1 + ypq + zpr 1; .. 1 = 1: . . 1' +(a  - y(r2+p21 + 2 z q r ) +  2 1' : 
x ~ r  + yqr - z(p +q ) ~i - xq 

How, remabering that for a point mass, 

and 



?he t o t a l  p a r t i a l  der iva t ives  r e l a t i n g  t h e  motion of t h e  coordinate poin t  
cnd s e t  imbedded within each elemental body and t h e  motion o f  t he  
generalized coordinate becomes 

where on the  r i g h t  s ide  of these  equations, x, y ,  and z represent  t h e  
loca t ion  of  the  d i s t r i bu ted  masses wit.hin t h e  r i g i d  body elemental mass, 

and x 0' Yo and z represent  t he  moti:n o f  t h e  mass element reference 
0 

point.  

For each jth coordinate of t h e  system, t h e  elements of 
Equation 200 can be wr i t ten  by subs t i t u t ion  of Equations 216, 223, 
224 and 225. This gives 



FEil!i1 i=l .. a% 

EST ai .I 



"wrpanding and i d e n t i a i n g  mass xriament and m n t  of inertia terers : 

EST 

2 2 
IY7(? +q 

I r a & -  
y aqr 
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and f inal ly  collecting and grouping terms yie lds  the iiarl and complete 
definition o f  the terms o f  &-uatlon 211 for tic es t imted  elements1 
a c c e l m t i o n s  . 

2 2 
-(r +Q 1 pq-i 



vhere i n  t h i s  case  the  sumnation represents  summation over t h e  jth 

i=l 

r i g i t  beebr element. Yitfi t n i s  i n  mini. s u b s t i t ~ t i n g  E=_uatioas 228 arid 
1-3 beck i n t o  &-cation 201 :.-ields t h e  c a q l e t t  form of t h e  hpmage 
energy equation i n  constrained coordinates v i t h  d i s t r i bu ted  e l ~ e n t a l  
masses and forces  from vhich t h e  REXOR 11 equations of  motion arc all devel- 
oped. Also imlud ing  these  terms as well as t h e  mcmnent terms of mu- 
t i o n  213 i n  Equation 511 yielOs t h e  f i n a l  form of t h e  equation as used 
i n  F.9-02 11. This f o w  vill be presented fo l lov ing  t h e  development of the 
generalizefi mss dampinq and s t i f f n e s s  matrices. 

Frcn Equation 209 it is easily seen, by examining t h e  coe f f i c i en t s  of 
t h e  cor rec t ive  acce lera t ions  t h a t  generalized mass matrix elements, 

M 
rk' 

car? be wr i t ten  as 

This equation is f o r  point  masses. Actua l l j ,  as discussed e a r l i e r ,  t h e  
RZXOR I1 equations nodel a set o f  d i s t r i b u t e d  masses character ized by an 
ove ra l l  mass, center  of  grav i ty ,  and mnen t  of  i n e r t i a  values.  A s  shovn 
i n  t h e  previous sect ion,  extension *A t h e  d i s t r i bu ted  mass form is  made 
by describing t h e  p r t i c l e  absoiute  c o c ~ d i n a t e s  i n  terms o f  t h e  pos i t ion  
of  a r e i a t i v e  cclcrdinate s e t  'n i n e r t i a i  space and She p a r t i c l e  pos i t i on  i n  
terms of  t h i s  r e l a t i v e  s e t  as developed i n  Section 4.4. For a r i g i d  body 
t h e  assaciated r e l a t i v e  set and tke  p a r t i c l e  a s soc i a t e i  with t he  b o a  main- 
t a i n  a fixed re la t ionship .  The smming over t he  p a r t i c l e s  of t h e  system 
then becones a sm over pr3diicc: s ~f =asses and l e ~ g t h s  y ie ld ing  mass 
mnen t  and mment o f  i n e r t i a  te rns .  

The pass elements can be &-:eloped. by subs t i t u t ing  the  p a r t i a l  der iva t ives  
deveioped in  the  preceding discussion. These p a r t i a l s  descr ibe both t he  
notion o f  t he  mass element reference and a l so  the  d i s t r i bu ted  masses within 
t h e  r i g i d  body elemental masses. 



Substituting these partials, Equations 223, 224 and 225 in the 
generalized nvrss expression,  Equation 229 yields: 



and using moment of i n e r t i a  and mass moment d e f i n i t i o n s :  

and i s  ident i f i ed  as a generalized mass. For orthogonal systems 
Mrk is 

zero except f o r  r = k. The development o f  REXOR I1 is mostly nonorthogonal 
coordinates,  therefore,  t h e  generalized mass matrix has many off-diagonal 
terms. 

Similarly ,  terms can be developed for t h e  s t r a i n  ( p t e n t i a l )  energy and 
damping functions.  



n ae. n 

k=l k=l 

Def ice 

N ax. ax ayi ayi 32. az 
1 i --+k -- 1 i -- 

Xi 3% agk Yi a g  aq, + kzi 3% as, 

Similarly for dampirig : 



The s t i f fness  and d,ampiag matrix tenas in REXOR I1 are defined with reference 
t o  r e l a t i v e  coordinates; which parallels the  physical configuration. The 
coordinates used v i t h  these terms then should be on a r e l a t i v e  basis.  
This statement a t  f i r s t  appears to be contradictory to t h e  pracise o f  t h e  
equation development. However, i f  these matrix terns vere defined on an 
absolute basis  the  terms other than those associated v i t h  a r e l a t i v e  
motion would be identical ly zero. The integrat ion of  t h e  accelerations 
produces changes i n  velocity and position. These changes v i t h  t h e  proper 
s t a r t ing  reference are t h e  r e l a t i v e  coordinates and ve loc i t i e t .  

Equation 211 is now repeated here i n  a s l igh t ly  expanded form t o  include 
the  e f fec t  of applied elemental moments, Muation 213, and dis t r ibuted 
elanental  nasses, wuation 228. 

i i 
i=l EST 
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Even though vas defined as the generalized forces of the system, for 

the purpose of further development and of the application of the  above 
equation in  the  HMCR 11 malysis,  each l i ne  in  the  large brackets on the  
right side of Equation 236 vi l l  hereafter be referred t o  as a generalize6 
force or a generalized del ta  force and w i l l  be referred t o  by t h e  symbol, 
FR, in  the  following developtent. 

In REWOR 11 use is made of matrix notation t o  produce compact partial 
derivative, generalized mass and generalized force expressions. The 
partial derivative set 

is replaced by 

Usually the generalized coordinates q are grouped as three l inear  plus 
three rotational motions. The f u l l  partial derivative for system coordi- 
nate A and generalized coordinate set B is: 

The generalized mass expression (Equation 231) can be rewritten as: 



'Ihe generalized delta force, A . can k expressed in  matrix notation for 
coatribution of coordinate set 



5.4 Overview of Rotor-Blade Hodel 

Many elements of the rotorcraft can be directly modeled folloving the 
methods developed in Sections 5 through 5.2 and systemtized in Section 5.5. 
Hovever, there are enough special considerations and concepts involved in 
modeling the individual blades and combined rotor to justify a separate sec- 
tion to address these topics. 

5.b.1 Concept of modes. - The basic textbook principles governing solutions 
for eigenvalues (natural frequencies) and eigenvectors (mode shapes) for 
syst& of several degrees of freedom can bc-applied to those of-many degrees 
of freedom. For each independent degree of freedom there is an additional 
natural frequency and mode shape. 

Ree vibrations of continuous systems such as beams, or for example the 
helicopter fuselage, or rotor blades, are generally analyzed mathematically 
by reducing the system to a systcm of discrete masses and elastic 
constraints. 

5. b -2 Blade bending - modal variable. - The blade is a twisted rotating 
beam and its analysis requires considering the coupled flapvise-chordwise- 
torsional response of the blade. For the-~EXo~ 11- analysis, coupled f lapwise- 
chordwise mode shapes are used, upon vhich is superimposed one of a nunber 
of torsional response representations of varying complexity (Sections 4.3.4, 
5.4.7, 5.6.5, and 5.6.6). 

If one applies generalized coordinates, each blade mode in the analysis 
may be treated as a single degree of freedom. The generalized coordinates 
are called normal coordinates for the special case when the moCes are 
orthogonal, in which case the generalized mass matrix reduces to a diagonal 
matrix, as Cces the generalized stiffness matrix. 

Thc REXOR 11 analysis uses blade modes calculated for the blade at a fixed 
rpa, fixed cou zctivc, .. -4 i~ an unswtpt, unconed orientation. Since the 
program allows for variation of all of these parameters, which is accounted 
for in the overall RM O R  I1 analysis, the predetermined modes become non- 
orthogonal as used in the program. Thus, blade motion is effectively 
described by a set of modal variables, each representing a characteristic 
frequency, and a set of modal coefficients that describe the relative 
amplitude of oscillation for each blade segment and each frequency. 

Since the modes are nonorthogonal, we will find in REXOR 11, as would be 
expected in such a case, off-diagonal coupling terms in both the gen- 
eralized mass and stiffness matrices. It can redily be shown in cases 



where generalized or normal coordinates are applied, that relatively few 
modes need be taken to define accurately the tian-history of blade deflec- 
tion. This assumes that the primary frequencies of excitation fall vithin 
the range of modes considered. 

5.4.3 Blade mode generation. - The blade modes can be determined by cray 
appropriate classical method of analysis for coupled flapvise-inplane bending 
beams. The only requirements is a cantilever (hinge or hingeless) boundary 
condition for the modes and t3at the terms included in the homogenous part 
of equations 28 and 29 of Reference 5 be accounted for. These equations art 
repeated here for convenience, Flapvise: 

2 2 [(EI~ cos 8 + E12 sin 8)vn + (El2 - EI1) sin8 co.8 v*' I ** 

and inplanewise: 

2 [(EI~ - sin$ cose v** + sin 6 + cos 8)vW I n  

5.4.4 Modal coefficients. - Several additional points need to be made 
regarding modes in order that the equation development be properly understood. 
First, the same modal coefficients apply to the first and second time 
derivatives of the function, since 



Then 

Second, t h e  motion is not necessar i ly  confined t o  one d i rec t ion .  A given 
modal frequency may exc i t e  o r  couple with motions i n  other  d i rec t ions .  
For exatnple: 

5 . h . 5  Independent blades. - In R M O R  I1 t h e  blade motions are computed and 
tracked individually.  One s e t  of equations operates on a blade i n  BLE 
coordinates a s  explained : Section 5.4.11. The r e s u l t  f o r  a t i m e  s t e p  is  
s tored i n  BLn coordinates fo r  t h a t  blade. The operating set i n  ELE 
coordinates then performs t h e  computation: f o r  t h e  next blade i n  turn .  

5.4.6 Blade element aerodynamic forces - overview. - The functions FXi , 
& 

F FZi, and moment terms from Section 5.2 a r e  pr imari ly  aerodynamic 
yi ' 

loads f o r  t h e  blade equations. These loads a r e  derived from blade i n e r t i a l  
veloci ty  (equivalent t o  a i r  ve loc i ty  ) and t a b l e  lookup aerodynamic 
coe f f i c i en t s  as given i n  Section 6.  



5.4.7 Blade torsional response. 

5.b.7.1 Pitch torn bendiq, - Several alternate approaches to modeling blade 
feathering dynamics exist in REXOR TI. One approach is to assume the blade 
is torsionally rigid, and that the flexibility is in the pitch horn. 

5.4.7.2 Quasi-static bl.e.de torsion. - The blade pitch horn bending descrip- 
tion is il~proved by the addition of a blade twist dependent on the moment 
loading. This quasi-static torsion is computed by integrating the blade 
pitching moment times the torsional flexibility from tip into the root. 
 e eve loped in Sections 4.3.4 and 5.6.5. ) 

5.4.7.3 Dynamic blade torsion. - A third approach to blade torsional response 
in REXOR is au uncoupied torsional mode which operates as additional blade 
twist. n i s  naterial is developed in Section 5.6. 

5.4.8 Radial integration. - For each element cf a rotor blade the equations 
of motion are formed per Bection >.'d.9. As briefly touched on in Sec- 
tion 5.4.6 these data are formed in tiLE axis. These elements are summed to 
total equations for each blade in BLn coordinate at the blade root. This is 
explained in Sections 5.6.3 and 5.6.4. These blade root s~mmations are also 
used in the fuselage axis (Section 5.8). 

5.5 E~uation System Development 

5.5.1 Reference to base operation matrix. - The equatian of motion, as 
developed ir. Sections 5.2 and 5.3 an3 as presented in most general form by 
Equation 236, may be given in ab5reviated form as 

CORR EST 

The Mrkts are the generalized mass matrix elements, the Fr's are the 

generalized forces, and the qrVs the generalized coordinates or degrees 

of freedom. As explained previously, the Frts are the complete set of 



externa l  forces  and i n t e r n a l  reac t ions  computed with estimated values of 
t h e  accelerat ions,  qrEsT's. a t  t h e  next t i m e  point.  The qrCORRts a r e  

then correct ions t o  t h e  estimated values. 

The ge1,eralized mass, Mrk, i s  aeveloped i n  Section 5.3. The gene.ralized 

force  may be expanded as (using t h e  point  mass form): 

The i n e r t i a ,  damping, and e l a s t i c  terms a r e  developed fur ther  i n  Sec- 
t i o n  5.3 (see Equation 236). The f r i c t i o n  force  FFR , t he  aerodynamic 

r 
ex terna l  forces  FA , and the  p i l o t  cont ro l  force; Fc a r e  described a s  

r r 
needed. Note t h a t  t he  poten t ia l  energy and d iss ipa t ion  terms have been 
d i r e c t l y  included i n  t h e  force expression. Where t h e  s t i f f n e s s  and damping 
matrices a r e  simple diagonals, t h i s  is  done. In  t h e  case of  t h e  blade 
equations t h e  d i s t i n c t  s t i f f n e s s  and damping matrix form ( sec t ion  5.3) i s  
computed before combining a l l  t he  applied forces ,  i n t e rna l  reac t ions ,  
s t i f f n e s s  and damping terms in to  an ove ra l l  force.  

5.5.2 Organization by d e ~ r e e s  of freedom. - In developing t h e  equations of 
motion the re  a r e  t h ree  types of ingredients  needed: 

Generalized masses 

Generalized forces  

P a r t i a l  der ivat ives  (used i n  both o f  t h e  above items ) 

The equation development can then p r x e e d  w i t l ,  these  ingredients  along one 
of two l i g e s  of organization. 

For every major ro to rc ra f t  piece (fuselage,  ro to r ,  e t c .  1, compute 
a l l  t he  ingredients  and s o r t  according t o  degree o i  freedom f o r  
equation use. 



For every degree-of--freedoni group, sort through the  rotorcraft  
pieces for applicable ingredients. Sortiag is miniad because of 
close association ot degrees of freedan and coPponent parts. 

The l a t t e r  developetcat is used here. The degrees of f'reedan modeled are 
given i n  Figure 11. 

The f ~ l l o v i n g  subsectioos vill describe the  app;-opriste partial differen- 
t iat ions,  the generalized masses, and the generalized forces f n  deta i l .  
b h  gezra l ized  mass couples the iner t i a  of one generalized coordinate 
with w t h e r  or iZself. The algebraic equations fo r  each generalized n s  
ail be given only once. If the reader cannot find a particular mass 
e l e a t  -mder one =&section, he sho-dd look ifito the  other sv&section 
reiating to  the coupled generalized coordinate. 

5.5.3 Rsrtial irerivatives. - Yne qeneralized stssscs and forces use partial 
derivatives vhich cescr jc the  variationdl motion of each micdl asss element 
i n  rectangAar coordinates re la t ive  to  the  motion of each gencralixed coordi- 
nate. l?~e partis1 derivatives rco-uired are determined from the generslized 
mass and force q r e s s i c n s  for  distributed masses of SectC4n 5.2. The partial. 
sluivrt ives an w i l y  ecustructed fraa the  coordinate trunsfornraticts vhich 
havebc+ndevcloped. 

I n  developing the sotions of a physical mass elemeat re la t ive  t o  a gen- 
eralizeS coomli~ate, s n*aber of transforms may be used. These can be 
categorizd as ei ther  l i ~ e a r  o r  N e r  axes transforns vhich ei ther  displace 
vithout rotation or ra ta te  -Athout displacentnt. The overall partial w i l l  
be the ? ,duct  o r  partials associated e th  each of these transfonss. The 
typical form of these pan i a l a  vill now be ill'xstrated. 

To obtain the par t ia ls ,  the equations relat ing the  velocit ies an obtained 
first. Reviewing Sectioxis k.b.1 aaa b.h.2, the  velocity relat ions of 
interest  are restated. For l inear transforms: 



and 'ar Eu-ler transfonw 

[l =MIa (239 1 

[!Ib=[! a +,T+l[[i/ a + ~ T O 1 [ [ ~ ~  a +LTJ[!~]] a {240) 

The pvt-ills of interest are conveniently organized into 3 by 3 matrices. 
They are for the linear transform: 





For Euler angles defined i n  reversed order or reversed sign the last matrix 
will differ. Note by inspection that r o t q  to l inear  derivatives such 

as - are e:l rem. The derivatives can be strung together to get motion 
ax 

in a third axis c relatLve to motion in axis a. Abbreviating the 
matrices : 

assuming in gener-il 

r = r ( r  
b b a* 'a) 

and 



The abbreviations used are 

and 

Transformations may involve linear and rotational operations. Partial 
derivatives shoving the combined operations may be generated usiag a 
linear trsasfom frola set a to b, folloved by a rotation *om b to c. 
This sequence gives: 

5.5.b Generalized masses. - As discussed before, the helicopter is assumed 
to consist of a finite nmber of mass elements. They are the 

a fuselage 

a tail rotor 

a engine rotor 

a swashplate 

fixed hub {all parts that do not feather) 

a k mass elements on each of b blades. 



Tht reader should realize the ~ s s  matrix is symuetric f r a a  the definition 
of Equation (209) end interchange of the order of differentiation. 

C&ly the elements in the diagonal and the upper right triangle trill be 
given in the folloving sections. 

Each of these nuus elenents must be summed for each of the generalized mass 
matrix elements. Each mass is handled with the distributed mass Hrk relation 

cf Section 5.2. Fortunately, only the fuselage requires the full equation. 
Tbt center-of-gravity terms 3rop out if the mass motion is determined at the 
center of gravity. '?his situation is tree for the blade line vhich passes 
through the center of gravity of the blade section mass elements. Only the 
fuselage, the suashplste and the shaft/%ranslsission hsve reference axis origin 
off the center of gravity. Another simplification is that cross products of 
inertia exist only for the fuselage and the shaft/transmission. Each blade 
mass element is considered to be in the shape of a rod lying along the chord 
at the blade statioa in question. 

Certain small tews and factors are dropped from the generalized masses. 
As discussed in Section 5.3, the equtions of motion are solved for small 
incremental corrections to the accelerations. With this formulation the 
messes car. tolerate ap?roximations as contrasted to the generalized forces. 

5.5.5 Cenerali zec? forces. - The equation foreulation, Section 5.3, requires 
that precision be used in compiling the generalized forces per Equation 247, 
exponded per Section 5.3, Equation 236, to include rigid body distributed 
nuus elanests. This foxuulstion includes for each degree of freedom: 

&tion over all mass eiements of the mass t5,mes inertial 
acceltretion times ?a tial deriva'ive. (Section 5.3 expression 
for distributed masses. ) 

External (aerodynamic ) loadings times a partial derivative. 

Potential enera and damping terns or assembled stiffness and 
damping term with partial derivatives (Sectioc 5.3). 

For some degrees ~f freedom the applicable mass elements and the total 
integration are directly written as final results vhich can be verified 
by inspection. Degrees of freedom that properly include sunmation over the 
main rotor blades involve so= extensive numerical integrations and com- 
plicated coordinate transfomations. 



5.6 Blade Bending and Torsion Equations 

5.6.1 Blade radial  summation. - The contribution !'ran all the  iadividual 
blade sections a re  summed t o  give the blade generalized masses and forces. 
These are  give^ for blade root, bending, feethering, and torsion motions, 
The blade root values are then trsnsfonaed to the f i na l  degree of ikeedom 
variables by partial derivatives. The sunrstion is carried out over all 
elattents of the rotorcraft, including the  independent blades. Due to the 
relative isolation of one blade's modes hrrm another, only the 4 by 4 submass 
matrices along the diagonal of the bb by bb rotor ikatrix are filled, vhve 
b is the number of blades. 

5.6.2 Partial derivatives. - The generalized masses and forces u t i l i ze  
par t ia ls  relating the X, Y, Z, 0, 6, and $i l inea r  aad rot- motion of each 
blade element t o  the blade bending, blade torsion, bcdy, rotor, and swash- 
plate degrees of freedam. Only the blade bending, torsion, and feetheriag 
partials are derived i n  t h i s  section; the blade partials for  other degrees 
of freedom are t o  be found ic t h e l r  respective sections. 

A3 developed i n  Section b. 3.4, the blade torsion may be aodeled either as 
a pitch horn bending or  &T micoupled ciynwc torsion wde .  For t he  fumer 

case the partial - is a bla&e spanvise constant multiplier t o  suama- 
a 8 ~ ~ n  

tions which couple ir, the feather a?gle. In tne latter case, - is a 
a 3 ~ ~  

functior! of span and blade nmber. 

The first p a r t i a l s  t o  be =cnsidereZ are those relating motions at say 
poit:t i cz the blade t o  the  rigid body =totion of tke blade root. These 
partials are: 



Bote that b, YBLE and ZBLp are expressed in black root coordinates; 

while *BLEs BBLE and trBm are in terms of blade element axes aligned 

vith the blade element princjpel axes. 

Iext consider the blade Y and Z bending response with respect to the 
blade bending modes. A numb..- of equations caii be used to develop the 
required expressions. The veLocZty egusrtions from Section 4.5.5 are 
selected for ease of analysis. U s i r .  cancellation of the dots 
(%:tion 5 .2 ) :  

BLn BLn 



aA 
mn BLn 

BLn 

gives : 



vhere 

[rSgL. ] = ['BFJT [T4mIT EBF*] [[TTJT [.y]T 

[r..JT [ L e a T  [rcGml - [[.%J' - [.*d'l (.scI] 
- [i JT  [-I) + [fjB J [rsu] + [rJog] 

- E B J T  Ill + [[.BJT [rp 1 - [r'B]] 

a 0 ~  aOF - are input data. 
=2' and - a A3 

The angular derivatives with respect to the blade bending modes Lire also 
constructed in the velocity form. 

BLE 

Note that the angular derivatives, being applied to local segments, are 
presented in BLE axis. Referring to Equation 132: 



Gives : 



Also note that i n  the same context and argument o f  Section 4 .5 .5  the 

feathering ax i s  slopes,  YtFA and ZtFA have been neglected i n  the above 

angular part ia l s .  

Derivatives with respect t o  the blade f ea ther iw  are a l so  constructed 
using cancellation of the dots.  

gives  : 



Similar ly,  f o r  angular motion: 

The p a r t i a l s  developed with respect t o  4 are used d i r e c t l y  i n  swash- Fn 
p l a t e  and ro tor  summations a s  well as some of  t h e  following mass and fo rce  

%n terms. Some terms r equ i r e  a fur ther  compounding der iva t ive ,  - , fo r  
a ' P H ~  

t h e  case  o f  t h e  p i t c h  horn bending tors ion  option. Taking t h e  deg o of  
freedom t o  be p i t c h  horn a n ~ d  ar def lec t ion  about t h e  fea ther  ax i s ,  the 
constant i s  approximately l / e .  For t h e  dynamic tors ion  opt ion  a d i f f e r e n t  
s e t  o f  mss formulations is  used i n  terms of  BLE ax i s ,  obviat ing t h e  
need for  t h e  compounded der iva t ive .  A s  in+ica ted  i n  Section 4.5.5, 
expressions inboard o f  X equal expressions outboard of  X with 

S W SW 

and 



Blade X motions must now be accounted f o r .  The a s s w p t i o n  of t he  neut ra l  
ax i s  a s  t h e  ax i s  of no s t r e t c h  is discussed i n  Section h.5.5 and the  
derivat ion of  t h e  X motions shown. The equation fo r  the ~ r t i a l s  i n  
BLn a x i s  f o r  a  point  on the  neut ra l  ax i s  i s  taken from t h e  formulation f o r  
the  X ve loc i t i e s :  

and 

(""b) = 0 

Bln 

The program da ts ,  however, i s  a t  t h e  blade cen te r4 f -g rav i ty  a x i s .  The 
t r ans fe r  is: 

"'\I ; . . 

BLn BLn 



where the right-hand s ide  elements are Section 4.5.5 and the prwfous 

dwelopent o f  this section. Ibc distance ~ i i ) ~ ~  = I ( i jm - l(i)= 
BLE 

is the distance the neutral axis is f r o m  the center-of-gradty axis, 

art i 1, az( 2 1- 
ps1';irt foruud. 'Iht partials and 'A. are used in the aAm 

a x  i 1 t a x 0  1, is thn tb. preediug equation for 'ffucace in X 
aAmn - aAbm 

motions between the reference and the neutral axis ,  and is subt-tad frcm 
the ncrttral axis mtiorts : 

to obtain a center-of-gravity d u e .  

ax(r), 
T k  spanvise variatf on o f  X vi5h iestbersng, -., em k derived 

ax( i 1, 
ia a mn~er  similar tc . The fomulations a-e: 

aAlp, 



and 

az( i-l ! 

The program assumes t o  be zero LOCi- generalized mass c a i c a a -  

tions. This i s  done because ~f the  l a t i tude  possibLe i n  t h e  generalized 
masses and the  stcon5 orOer nature of  the  tern. In contrast ,  t h e  derivative 

(%) is retained. - partid(-) is set t o  unity for t- 
BLn 

genercrlized mss terms. The full equations are use2 for a l l  these terms i n  
deterxining the  generalized forces. 

A s k p l e  parti6.l derir-ative is a l so  needed when flPb is defined as dynamic 

torsion. Sirce torsion cccurs; al9ng t h e  bent and tv i s t ed  blade l i r e ,  i n  
blade element axis  BLE, oniy the  ve r t i ca i  cr normal t o  chord ~ lo t ion  of the  
shear c a t e r  is of i n t c x a % ,  hence, 



~ ~ B L E  - is progmn input for the torsion mde shape, 
abm 

Use is mnde of a tlade mode t o  blade feathering partial derivative array to 
produce a colopsct development. This array is simply by definition: 

Additional p a r t i d  se ts  which are cs& to  expedite the mass and force 
expression deveiopent are: 



5.6 .3  Generalized masses. - The blade generalized masses i n  conjunction 
v i t h  partial derivat ives couple blade feathering, blade tors ion ,  blade bend- 
ing, f b t l a g e  motions. A l l  t he  blade generalized mnsses t h a t  assumcd t o  

%.,E exist are given i n  t h e  following table.  A s  mentioned before - is 
' 

*BLE 
assumed zero and - is assumed one i n  the  program, although it is given 

i n  the  table. The blade has a rotary i n e r t i a  about the  center  of gravity 
axis & . The blade a l so  has i n e r t i a  I about a v e r t j  c a l  axis.  

BLE =BLE 

Table 1 lists all t h e  tens c o u ~ l i n g  rotary motion at the  blade root ,  
M acb siuilar terns. Eovcver, not a l l  listed are used, as ce r t a in  

'Ha 'BL~ 
approximations are made i n  developing t h e  principal  ax i s  generalized masses 
vhich reduce the  number of  blade coupling generalized ~ s e s  needed. Since 
the 188~s matrix operates on t h e  accelerat ion e r r o r  term ra ther  than the  t o t a l  
acceleration, these approximations do not de t rac t  f r ~  t he  va l id i ty  of t h e  
r e su l t s  produced. 



TABLE . - BLAPE CEHERALI- NASm 

Bla3e Root Cowling - 

Peather Coupling 



TABLE 1. - Continued 
Feather Coupling (Continued) 

(298 

( 299 ) 

M 
QhCh 

i=l 

(300) 

BLn 

M~ 4 mn Fa 
i=l 

( 301 ) 

* -- 



TABLE 1. - Continued 

Blade Bending Coup1 ing 

% A OBLn mn = $ m(i)(*) BLn 

k 

OBLn mn 

5 A OBLn mn BIA 

Bmn Defined As Dynamic Pitch Hgrn Bending 

24, 
X - L A  

M~ B 
- 

mn PHn = M ~ m n ~ F n  



I TABLE 1. - Concluded I 
- -  - 

B ~ m  Defined As Qrnmic Pitch Horn Beading (continued) 

*PH~ Defined As Qynamic 'Ibrsion 

(used in mashplate) ( 312 j 



To save ccnuptation time some of the masses generated by the blade inter- 
gration and summation process i n  Table 1 a m  saved as a pseudo mass associated 
v i th  a f i c t i t i c a s  rotor coordinate (R). Thus for  any given time step the sum 
of the rotor blades can be treated a s  an equivalent mass matrix: 

The couplings of the pseudo rotor coordinate t o  blade and hub c3ordinates a re  
also formed as an intermediate step t o  save repetitious blade integration. 



is the feather and bending coupljng tenns for 

the nth matie. Ie.. 

( 315 1 

In addition t o  the r b i d  body motion blade coupling matrix. 

blade mode coupling matrix. [sLBL] . w i l l  be used i n  the subsequent 

developsent 



5.6.4 Generalized forces. - The development herein proceeds by f i r s t  deriving 
the equations for  the  loads on an individual blade elemect. The blade element 
loads a r e  composed of aerodynamic and i n e r t i a l  components conveniently found 
i n  e i the r  the  blade root axes BLn o r  the  blade element axes BLE. The loads 
v i l l  be summed i n  Bln axes v i th  the  appropriate transformation. The desired 
equations are: 

I IFx( i ) ~ ~ ~ l  [( + rt ) ~ m ]  

F ~ (  "BLE = - m(i) ~ ( i ) ~ ~ ~  T ~ ~ n - ~ L E  F (iJBLE ( 317 

F ~ (  i IBLE Z( i IBLE Fa( i lBLE 
BLn BLn 

The aerodynamic loads a re  i n  BLE axes alignment about the  blade reference 
datum l i n e  which is  the quarter chord. A t ransfer  through the  distance 

i s  made t o  the aerodynamic moment. To put the  data on a common 
Y c ~ B L E  



basis with dynamic terms. The blade aerodynamics is  d e t a i l &  i n  
Section 6. Since only the  blade sec t ion  pi tching moment is  considered, 

= %LE 
= 0 .  Note t h e  blade element is  assumed configured as a 

chordwise rod f o r  i n e r t i a ;  hence 

A number of blade summations a r e  desired. A 1 1  w i l l  be made i n  BLn axes 
along the  center-of -gravity axis .  The loads a t  t h e  pr inc ipa l  reference 
axes and f o r  ro to r  tilt make use of t h e  blade roo t  shears  and moment. 
These a r e  simply t h e  sum of t h e  k t o t a l  blade elements, 

and l ikewise f o r  root  moments. 

The surmnations i l l u s t r a t e d  above a r e  f o r  t h e  t o t a l  i n e r t i a l  acd aerodynamic 
components. I n  a similar manner, the blade root  aerodynamic losds  a r e  
derived. The blade root  loads a r e  summed over all t h e  blade t o  give main 
aerodynamic loads f o r  downwash computations ( s ec t ion  6.2.2) i n  t h e  manner 
t h e  t o t a l  main ro to r  loads are found i n  Section 5.9. 



Total main ro to r  root  loads a r e  formed from t h e  blade roo t  shears and momznte. 
Usicg the pseudo ro to r  coordinate: 

Feathering moments are used by the  swashplate equations of motion. These 
moments a re :  

where 



Oniy t h e  X component i s  used by the  program. Thc equations above t rans-  
f e r  t h e  summed blade loads t o  t h e  inboard bea r i r a ,  .'!en transform them t o  
feathering axes. Using t h e  blade root  loads i s  :. . i e 2 t  when one r e c a l l s  
t h a t  t h e  blade is defined as those port ions t h a t  -. r feathered;  t h e  f ixed 
hub is  excluded. 

The blade bendi-,- generalized forces  a r e  now presented. I y a re :  

The po ten t i a l  energy is  given as : 

where 

K = 
mj 

(327) 

ROOT 

are inputs  calculated external  t o  t h e  program from a bcrqing beam model. 

EIn and EIZZ a r e  t h e  f lapping and chord s t i f f n e s s  abc -t axes aligned 

with t h e  blade element p r inc ipa l  axes. The chord snd f lapping moments, 

and MZ r e f l e c t  t h e  contr ibut ion of t h e  bending moment from t h e  i 
i 

( o r  j) mode. The in tegra t ion  goes from root  t c  t i p .  The K ' s  a r e  
evaluated for  whatever :ormalized modes a r e  used a s  program input .  

The last equation can be derived from the  B e r n o u l l i - N e r  l a w  fo r  bending 
beams : 



where r is a radius of cu,-vstsre. The strain lerw is 

S u b s t l x t i n g  ic from the Btrmulli-Mer lev and noting that dS = rydo = 

r-d* * 
d 

Partid d i f f e r t x t i a t i o n  gives 

3csiderLcg the a m e r t s  as a li~ear sua of ccqmnes?ts fiyua each bending 
nrcte, .Joe ias:  

a d  l f k e u i s e  for  ,&. T3en. by subst i tut icn ,  t* desired et;uaticm is obtained. 
& 

5.6.L.1 Blase m t f o n  b p i n g .  - 2r blade motitxi t?a~ping is nodeled by strt;c- - 
tit-cf r impir~; ,  aerohynaci? crag:  r4, azrd a ?a=-hanical Upr-r for lead--lag 
mtions. T!I~ acrcdymziic ;lar;pirg is accounted for i n  the aerumanic blade 
fo&s dex-clc@ i;: Lectiel: 6.2. 

The s t r ~ c t ~ z d l  f~ctor i s  <ssumed propor+, io~al  to the spring 'ate coaiponents 
of - ' q~p , t i cn  327- The coefficients X ca? be  d i r e c t l y  i d e n t i f i e d  v i t h  the  

rs? 
coe:ficicrts " tevzfazed in Sectfoo 5.3, Eqw.;ic=ls 2 3  and 236 The required rk 
c'93pin.z c~ef . ' - lc i tnts ,  C =e tfier. til: ?roduct of t k  pro~ortionality factcr, rk' 

is then: 



A lead-lag mechanical damper is usually r rotrry  o r  l inear  notion device em- 
ploying dss tmwric ,  dry frici;ion, or  viscous energy absorbing mechauisr. 
Tht device is ou_Jled a b u t  the blade lead-1% hiuge or point of lead-lag 
rotion slope by a linkage array. REXOR I1 models a r o t a q  viscous cbrpcr 
amanted abo& r given blade location fo r  which the inplane &@pe is specified 
as 8 function of the bladr modal variables. Fbr an articulated blade, t h i s  
w i l l  simply be the rotion of the I d - l a g  hi-. The &per has a pressure 
re l ie f  valve so tba t  an i n i t i a l  -ping rate, CuGl, is replaced by CuG. 
a m  r rt motion rate, i ~ ~ .  

Given the slope xate data, $ , f a  b l a b  n at the damper location, c, the  
c . , 

Bey~nd the pressure relief opening point the  damping contribution is 



The generalized f a r c e  is developed fo r  pit.ch fiorn bending and dy;ramic 
t.orsion. For p i t ch  horn bendirg, 

F€? 
= p  -, 

PHn " P H ~  PHn ' P H ~  

where M, is  t h e  t o t a l  f e s the r  mcment a s  derived i n  Sect ion 5.10. For 
r n 

t he  uncoupled dynamic t o r s ion  opt ion,  

i n  BIZ axes. Since t h e  blade e l e e n t s  loads a r e  derived i n  3Ln axss, 
t he  t ransfern  

BLn 

is  c e d e d .  The spr! r ? ?  cocstant  cec be in te rpre ted  as 

vhere ti;e general ize2 =ass is , -cxpted c o r , ~ i n w u s l y  and w is t h e  
'PH 

nautral  freq-~eccj- o f  t he  ucccxpled tcrs? on =ode, a progrm input 
constant.  

5.6.5 Wesi - s t a t i c  blade tors ion.  - To improve t h e  p i t c h  horn bending b lade  
feather ing representat-ion a quas i - s ta t ic  blade to rs ion  Z i s t r i bu t ion  is  in t ro-  
duced. Quasi-s ta t ic  to rs ion  is  z o ~ p u t e d  f r o m  t h e  s t r u c t u r a l  s t i f f n e s s ,  

GJsc' a t  each s t a t i o n  and the  torque ?4X at t h e  shear  center .  The torque is 
SC 

s . a e d  frac t h e  t i p  t o  t h e  blade s t a t i o n  i n  question as shown i n  Sect ion L.3.1. 
Tkt i n c r m e n t o f t w i s t  produced at a blaCe s t a t i o n  j can be displayed as: 



rrssurming a first-order lag represents the torsional dynamics. The time con- 
stant rT 

is chosen tc be representative of the blade first torsional made 
frequency. 

'ib obtain this result. the a~ilable computation elements require some 
further operations. First, REXOR I1 conducts blade integrations fran root 
to tip. in BLa axes. lb obtain tip to root values: 

Note the sunmation is conducted from root to the station : in question. 
Thus the j represents a sumation vherzas the i represents a blade station. 



Second, these data a r e  used to f o m  the required torque 6t the shear center .  

% a l l  angles are assumed. The moments etc., act  along t h e  

BLa axes and hence t h e  matrix of lengths etc . , are employed to 

obtain mments a t  t h e  shear center  vhich are then transformed i n t o  shear  
center axes, subscripted SC, p a r a l l e l  tc blade element cerzter-of-gravi ty 
axes, subscripted B E .  

The blade def lec t ions  and s iope i n  BLn a r e  a l s o  needed f o r  the above 
express ions. 

%c 5 :z  1 0 [:S = , + p ? 3 - B L F ]  [ y s c ~ c {  

BLn %LE tiLn BLE 

and 



5.6.6 Quasi-static pitch horn bending. - To facilitate troubleshooting rimer- 
ical instability problems as optional quasi-static pitch horn bending degree 
of freedom is available. The computation elements are the same as developed 
in Section 5.6.k except that the solution does not use ge~eralized masses, is 
therefore an uncoupled mode, and is calculated externally to the -in computa- 
tion flow. The formulation used is : 

The dynamics are assumed represented by a first-order lag with BpH as the 

time constant. The variable 4ms Is used to distinguish this formulation 

from the zsual 6 pHn symbology. 

5.7 Shaft Axes Equations 

5.7.1 Transmission isolation momt. - The sha?t equations couple the spring 
~ z - ~ t e d  transmissip-, svashplate and rotor to the ground side of the mounting 
springs (aselage). The fuselage is the reference coordinate set hencc deriva- 
tives vith respect to the rotor, hub, svashplste and transmission masses 
exist for the shaft axes equatic-.s. 

5.7.2 Partial derivatives. - E;- using rotor pse - >ordinate masses only a 
f e w  opera6:ans are required to assemble the coui . .ass terms using one 
derivative vector, ( a i ~ H / a T ~  1 

cos vS cos 0 sin 1~~ 0 
S 1 [o] 1 [-sin +s co; es cos *s 41 

sin 
1 

This expression is a conpact notation form of the development of section 5.5.3. 
Note that the angle to angle portion of the array is not a f u l l  transformation, 
but rather reflects the relation of a dependent coordinate to an independent 
Euler angle. 



The hub tor i*shplateput ie l  ar /ar,) is developed i n t h e n e x t  section. ( OSP 

5.7.3 prwrslized masses. - The shaft axes matrix elements couple to the 
blade :Am, $pan) E U I ~  swashplate generalized coordinates as w e l l  as to itself. 

Use is made of matrix notation and the rotor pseudo coordinate t o  produce a 
roetpac t notation. 

I 
I 

TABLE 20 - GEEEt4LIZED MUSES 

( 318 ) 

a~ T T 

[ = { } P O R  BJ 
(349) 

T T 

"OH "%P 

[%J = {c} } posJ {z} (350) 

The element masses are defined as: 

Pod -I' ' % In IYY Iz] 
( 351 ) 

p " S d  ( 352) 

A 



5.7.1 Generalized forces, - The shaft axes exercise the transmission mufit 
springs PSI and deunpers [cS1 . Rotor loads, reflected through the hub coordi- 
nates also appear in the sha t generalized forces. 

TABLE 2. - Concluded 1 

rn * 
TABLE 3. - GEKERALIZED FORCES 

4 

MR S 
i 

["TI a 

- 

- 
m 0 mZ -my 

-mz 0 mx 

m  mY -mX 0 

0 4 my Ixx + -I xr -In 
.tr2 + z2) -rsXT 4 z  

mz o -mx -Ixy I = +  -1 y z  ' 

4 Y  m ( l  + z a y z  

4 tax 0 'I* -I Y Z Izz + 

4 Z  -mYZ 2 + m ( S  + Y 
.- 

( 353) 



TABLE 3. - Concluded 
r . 4 

+ 
0 -r 

h 

H - 
of 

SP 
L 

( 354 

5.8 Frincipal Reference Axis Equations 

5.8.1 Nonzero contributions from nost vehicle mass elements. - The principal  
reference axis  equations of motion consider contributions from all  of  the 2hy- 
s i c a l  elenents of  the  rotorcraft .  The elements involved are:  

Main rotor - defined a s  all portions t h a t  can be feathered 

Rotor hub - includes all portions of the  mair, ro tor  assembly tha t  
cmnot be feathered, and is t rea ted  as I r ig id  bcJy 

Swashplate 

Tail  rotor 



a Engine 

The s i x  r i g i d  degrees of freedom: X, Y, 2, 9, 8, 9 are taken with respect t o  
the  stat ionary fuselage axes which are a l so  t h e  principal  axes. The other 
elements considered are then referenced t o  the  -elage axes. The hub is sub- 
jec t  t o  shaf t  bending motions r e l a t ive  t o  the  pr inc ipal  axes. The t a i l  ro tor  
is ins ta l l ed  on t h e  fuselage and ro ta tes  a t  t h e  main ro to r  speed times an 
appropriate gear r a t i  o. Posi t ive rotat ions a re  defined as : 

} same as -in ro to r  
a Swashplate 

a Tai l  ro tor  - Clockwise looking r ight  

Engine - Counterclockwise looking forward 

The e n g i ~ e  is  t r ea ted  a s  a r i g i d  ro ta t ing  body but t h e  t a i l  ro to r  is allowed 
t o  f l a p  ( tee ter ing  hinge, etc.). This flapping is considered secondary snd 
enters  only in to  the  aerodynamic computations. The main ro tor  is  allowed 
feathering, bending and twisting. 

5.8.2 Par t i a l  derivatives. - Elements used the  reference ax i s  masses and 
forces can by i n  la rge  be conveniently re la ted  t o  e i the r  the  fuselage o r  hub 
coordixietes.- Since the  reference s e t  is taken t o  be the  fuselage coordinate 
s e t ,  no p a r t i a l s  a r e  required i n  t h i s  instance. 

Pa r t i a l s  r e l a t ing  hub coordinate motior; t o  reference generalized follow the 
scheme given i n  section 5.5.3. 

where 



The swashplate system is physically connected with the hub structure,-and 
partial derivatives describing its motion are taken through this intermediate, 
hub, coordinate. Ilote due to a parallelogram linkage the swashplate vcelcal 
motion is assumed to be unaffected by tilt angle. 

I 
1 0 0 ,  

I 
0 1 0 t -Zsp 

I 

0 0 1 '  0 0 0 - - - -  
1 ( 357 

I 

5.8.3 Generalized masses. - Use is made of matrix notation and the pseudo 
rotor coordinate to express the reference generalized masses given in Table 4. 

b 

I 'BLE 4. - REFEREnCE AXIS G m L I Z E D  MASSES 

(358) 

is given in Table 1. 

- ( 3 5 9 )  

{"OH [ { a ' o s p ~  [ l{a'oSP}{oH} + - - - - 
Mogp a T H  axs ( 360 ) aT REF a T ~  

.- - 



I TABLE 4. - Continued 

where 



The mass of t he  fuselage is  considered t o  contail, ,he engine and t a i l  r o t o r  
masses, althocgh the  moment of i n e r t i a s  is  t r e a t e d  separately.  

5.8.4 Generalized forces.  - The lcads ~ s s o c i a t e d  with the  s i x  reference axis 
degrees of  freedom a r e  l i s t e d  i r ?  Table 5. The t a i l  r o to r  and engine a r e  
assumed t o  nave s h a f t s  p a r a l l e l  t o  t h e  fuselage axes. The t r ans fe r  of t he  
zer0dynan.i~ loads from t a i l  r o to r  axes with o r ig in  a t  hub center  and p a r a l l e l  
t o  t h e  fus2lage reference axes  i s  shown i n  t he  tab le .  The fuselage aerodynamic 
loads include ta i l  ro to r  and propulsion terms. Further deve1.opmer.t of t h e  
main ro tor  blade component loads is i n  Section 5.6.1 and the  aerodynamics f o r  
all rotc-s  and f i x r e  surfaces i s  l e f t  t o  Section 6. 



I 
- 

TABLE 5. - REFERENCE AXIS  GENFRALIZED FORCES 1 



1 '  TABLE 5. - Continued I 
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TABLE 5. - Concluded - 

r 

T 

- -  { [ s o ]  

C 

The angular velocities and accelerations associated vith the engine and tail 
rotor require special consideration. Here the terms consist of a reference 
motion plus the turning due to the geared mnin rotor rate. 

Using the rate and acceleration Euler transforms for zero hiler angles 
(section L.4.3): {I TR-REF =um+Gml  



TR-REP REF 

and 

[:I = [;} - %G 

J rnG-REF REF 

[ }  = [ }  - G~~ 1 #R r~ } 
i- ERGREF REF GR QREp 

5.9 Swashplate Equations 

5.9.1 Partial derivatives. - The suashplate p a r t i a l  derivatives are readi ly  
obtained from Section 4.3.51- Using matrix notation 

o o o i  

0 0 0 

0 0 1 I. ' 

- 1 
I 

El t I 
1 

- -- -- 
cos 0 0 SP 

0 1 

sin +ISp 0 

Since the  swashplate axis  i s  direc t ly  referenced t o  t h e  principal  {hub) set, 
the above derivatives are complete. The lack of t rans la t ion  t o  angular de- 
r ivat ives  is  explained by the  parallelogram linkages used with swashplates 
t o  i s o l a t e  t h e  eollectfve and cyclic inputs. The t e r n  l e f t  out of t h e  
matrix indicate t h a t  t h e  swashplate does not have a yaw degree of freedom. 

The reader should be aware t h a t  the  angular notation 4, 8, and Y have two 
meanings, depending on whether they a re  i n  the  numerator o r  the denominator 
of the  par t ia l .  The numerator is  t h e  displacenent of the  m a s s  element with 



respect t o  t h e  hub axis, vhereas t h e  denaminator is the degree of freedm 
incremental variable. 

Swashplate motions pick up l a rge  i n e r t i a  loads from t h e  rotcr due to blade 
feathering. Partials re la t ing  feathering to  svashplate notions are 
assembled by first re la t ing  the  feathering motion i n  the  ro ta t ing  system 
with feathering i n  the  stat ionary system: 

From Section 1.5.8, equations r e l a t ing  swashplate motions t o  the  stat ionary 
feather angles give 

and 



where 

Also 

me LT*pHJ 
matrix does not follow t h e  conventional N e r  angle  rio+&tion 

s ince  a des i r e  ex is ted  t o  def ine  ePH a s  t h e  angle t h e  p i t c h  horn to  

p i t ch  l i n k  attachment point  leads  t h e  blade. The o v e r a l l  der iva t ives  can 
be put together as: 

These partials are t h e  elements of t he  12: - Ivector .  

5.9.2 Generalized masses. - Table 6 presents  t h e  generalized masses which 
couple t h e  swashplate motions with one and another and with thz  blade fuselage 
degrees of freedom. The t a b l e  uses sununations of  the blade t h a t  a i c  described 
i n  d e t a i l  i n  Section 5.6.1. 



- -- 2 

TABLE 6 .  - SWASHPLATE GWERALIZED MASSES 

l b  T 
*ph 

I%--] = kl 1% [-=I n ( 381 ) 

n=l 

5 rn T 

[%.I = 1 [kBLl 151 121 
!l=l 

(382) 

5.9.3 Generalized forces .  - The generalized forces are: (assuming a constant 
speed drive) 

Mote p, q terms are the same for R and NR systems. 



The aromtnts used i n  these  formulas are developed below. 

The feathcrinff -t, k, is  taken t o  be caposed of blade and f r i c t i o n  

loads. 

The d e t a i l i n g  o f  , fea ther ing  moments due to blade loads,  is  accom- 

pl ished i n  Section 5.6.4. The f r i c t i o n  load, 
%Fl Fh* 

follows t h e  -?unc- 

t i o n  shown i n  Figure 30. By reducing qPhSBI[ t o  near zero, s t i c t i o n  

is obtained. O t h e m s e ,  i f  Y is l a rge ,  t he  r a t i o  '%n ,BK 
Fn, BK ,fi ,BK 

determines t h e  amount of  viscous f r i c t i o n .  

The remaining port ions of  t he  generalized force a r e  t he  po ten t i a l  energy 
and d i s s ipa t ion  funct icns.  F i r s t  consider t h e  angular po ten t i a l  energy 
terms which model t h e  s w a s h ~ l a t e  tilt spring r a t e .  This spr ing r a t e  has 
a center  dead-band, an operat ing range spring r a t e ,  and a high spring r a t e  
to simulate a t r a v e l  l i m i t  stop. 

Consider t he  normal operating range spring rate f i r s t .  The swashplate 

spr ings a r e  defined i n  cont ro l  axes (Figure 31) as K and K (can 
$SP OSP 

be unequal i n  s i z e ) .  To f ind  the  e l a s t i c  spr ing loads ,  t he  swashplate 
ao t io3s  a r e  first found i n  cont ro l  axes as: 



Figure 30. - Swashplate friction. 

Figure 31. - Control axis. 



+sp 
cos rc s i n g  +SP 

l e s J c  = [-sin% cOs*c I LsJ 
The gcaretric interpretation of $c is shown i n  Figure 3. 

Taking the  swashplate deflections i n  the  control axes, subtracting control 

inputs (C and BC, and using the  inverse transform, the svashplate spring 

terms i n  svashplate axes becane: 

where the  subscript (lj is used t o  distinguish these values (used i n  sub- 
sequent logic calculations) fm the f i na l  expressions developed below. 

Substituting for  the svashplate motions i n  terms of the  swashplate axes 
and reeuranging: 

where 



2 
K#Sp cOs )lC + KgSP sin tl, c I - 

( K4sP 
KeSp) sin*. ~ o s d , ~  

C 

[%PI.[- - - - - (392)  

) sinye cosy 2 2 
KesP = I sin % + Kesp 

cos d, 
C - - I  

Note: [,,I is a symmetric matrix of constants. 

The center dead band is modeled by the following logic. 

otherwise 

otherwise 

64Sp and fieSp are input constants giving swashplate angular freeplay. 

Swashplate stops are also allowed with spring rate KS ,SP. A load 



is  added t o  

t o  account for  a l i m i t  t r a v e l  stop. The l i ~ i t  def lec t ion  f o r  t he  
svashplate is 

where 6s ,SP is  t h e  c i r c u l a r  s top  swashplate def lec t ion  l i m i t .  

The angular damping term i s  analogous t o  t he  spring load:  

where [cSp] has t h e  same formulation a s  
[ % P I  

Control f r i c t i o n  is  t rea ted  a s  having ro t a t ing  and nonrotating components. 
The r s t a t i n g  component has already been discussed a s  p a r t  o f  the  feathering 
moment. The nonrotating component i s  appl ied t o  t h e  swashplate. I t  has 

the  fcrmulation shown i n  Figure 31 with a change i n  l a b e l s  such t h a t  $Fn 

i s  e i t h e r  iSP or  iSP* and MFRhl i s  e i t h e r  o r  

The ve r t i ca l  po ten t i a l  energy term i s  described a s :  



Otherwise 

FC 
is n constant t o  center  t h e  gyro springs. 

The spring r a t e  is  taker. t o  be out  t o  def lec t ion  Z1 and K 
SP 2zs~ 

beyond. 

A simple coupling from the  ro t a ry  dampers gives t h e  v e r t i c a l  d i s s ipa t ion  
function. 

where RZ4,  RZe a r e  c o ~ p l i n g  r a t i o s .  Note t h e  e f f e c t  of v e r t i c a l  

motion on t h e  swashplate tilt loads through t h e  ?otary dampers is  assumed 
zero. 

To co r re l a t e  with f l i g h t  t e s t  records and/or t o  force  the  swashplate 
v e r t i c a l  response to cross  t he  spring r a t e  changeover a force  o f f s e t  con- 
s t an t  i s  used. Introducing t h i s  constant  i n to  the  swashplate v e r t i c a l  
degree of  freedom equation l i n e ,  causes t he  var iab les ,  pr imari ly  t h e  
swashplate v e r t i c a l  motion, to  s h i f t  and rebalance t h e  equation. 

5.9.li Control inputs.  - The swashplate input i s  cont ro l led  by t h e  pilot1.. 
cyclic s t i ck .  The input torques a r e :  

The inputs  a r e  aligned with the  control  ax is  (Figure 31). 

Note t h e  equivalence of forms i n  terms of angular commands 'C, e,:, or  

longi tudinal  s t i c k  ( a f t )  X, and l a t e r a l  s t i c k  ( r i g h t )  YC. 
CI 



The cont ro ls  a r e  frequently l inked t o  t he  swashplate through a ~ t u a t o r s  which, 
a s  a f i r s t -order  approximation, can be simulated by a f i r s t -order  lag .  See 
Section 7.2. 

5.10 Engine Equations 

5.10.1 Rotor azimuth and ro t a t ion  r a t e .  - The program allows a va r i a t ion  of 
ro tor  speed in  maneuvers due t o  var ia t ions  i n  t he  torque required by t h e  
various r o t o r s  and i n  t he  torque supplied by the  engine. The dynamic system 
r o t a t e s  as a r i g i d ,  geared uni t .  That is, t h e  s h a f t s  a r e  not allowed e l a s t i c  
windup. The main ro to r  speed, IJ* and hence the  engine speed, i s  references t o  

the  fuselage, and not t o  i n e r t i a l  space. The displacement q R  is the  azimuth 
of t h e  number one blade. 

5.10.2 Engine model. - Figure 32 i l l u s t r a t e s  the  engine model used i n  the 
program. The f igure  a l so  p lo t s  t y p i c a l  engine torque cha rac t e r i s t i c s .  The 
model represents  t h e  f i rs t -order  lag power response c h a r a c t e r i s t i c s  of  the 
f r e e  turb ine  powerplants commonly used i n  ro to rc ra f t  appl icat ions.  

Being a per turbat ion model, t he  engine is referenced t o  i ts  t r i m  pos i t ion .  
The change i n  engine torque i n  a maneuver is  

where 0 5 % 5 M X A  . The zero l i m i t  occurs i f  the overrunning 
ENG ENG,iMAX 

clu tch  disconnects t h e  engine i n  t h e  t r a n s i t i o n  t o  autorotat ion.  The maximum 
value corresponds t o  the  engine shaf t  torque l i m i t .  

The gas generator,  speed, 4 GEN, i s  a degree of freedom. It i s  considered 

a secondary degree of freedom i n  t h a t  t h e  coupling through t h e  generalized 
masses with the  primary degrees of freedom can b e  neglected. An equation f o r  
t he  generation speed can be supplied from i t s  torque cha rac t e r i s t i c s :  



Figure 32. - Engine model and torque-speed characteristics. 



The terms on the  l e f t  represent  acce lera t ion  i n e r t i a  torque and steady- 
s t a t e  torque. On t h e  r i g h t ,  t h e  fue l  cont rc l  causes torque t o  be added i f  

t h e  engine speed drops below t h e  t r im value. The ;mG term e x i s t s  s ince  

the  cont ro l  is modcled with simple lag .  Restating t>is equation, using 
ro to r  speed and a generator t i m e  constant,  gives:  

vhere eCEN - -- is the  order  of a second. L ~ E 3  

'GEN 

The engine droop cka rac t e r i s t i c  can be used t o  s i z e  t he  engine constants .  .. .- 
With eGEN = $ I ~  = 0 .  subs t i t u t ing  t h e  eenerator  equation L. .  . -:le englne 

equation and rearrangirig. 

Only A incremental changes a r e  of i n t e r e s t .  The brzcket subscripted R 
indicates  t h e  torque is deternined a t  t h e  ro to r  speed aad includes the  
engine gear r a t i o .  The term on the  r i g h t  is the  s t a t i c  droc7p l i n e  shown 
iri  fiwre 32. =is plo t  a l s o  p e m e t r i c a l l y  i n t e r p r e t s  t he  p a r t i a l  
der iva t ives  cn the  l e f t .  

The geuerator speed JtGEN is not given a reference. Its value is  zero 

when t r i m  is completed. 

5.10.3 P a r t i a l  der ivat ives .  - Shaft ro t a t ion  not only icvolves k. iade root  
ro ta t ion  $ but a l s o  feathering notions. The feathering p a r t i a l  is  

R ' 
obtained by d i f f e r en t i a t i ng  the  feather  angle eqcation i n  Section 11 -5 .2  : 



A rct of partials are defined to relate the various rotating ccmoncnts to  
ttt =tor shaft and to the reference set. 



5.1O.b Generaiized masses. - The engine degree of f r t e d ~ m  couples with  
every other  degree of freedo=. Equations for the engine generalized r a s s e s  
a r e  given i n  Table 7. Matrix notat ion is again used f o r  compactness. Sote  
t h e  trar.sn;ission is modeled as a nor. r o t a t i n g  mass, and themfore  dces not 
appear i n  these  masses. The engine ae- of f'reedom contains  not only 
r igiO body motion of t5e r o t c r  blades,  but  a l s o  blade feathering.  2.e 
fea ther ing  contr ibut ion is a minor contr ibutor  f o r  some of t h e  mass matrices 
and has been neglected. 
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5.10.5 Generalized forces. - Only one generalized force is needed. 

The main rotor contribution ( iner t ia l  and aerodynamic loads) i s  niven i n  
Section 5.6.4. The t a i l  rotor aercdynadcs are described i n  Secticn 6.5. 



6.1 Introduction 

Other than gravity, the  external loadings acting on the REXOR I1 equations of  
notion can be traced to a e r o 4 y d c  sources. The following subsections trace 
the source, nature and use of these aero4ymmic loads. 

6.1.1 Aerodynamic forces producing surfaces considered- - The aerodyaaraic 
loads c o n s i d e d  i n  REXOR I1 are divided in to  the categories of (1)  associated 
v i t h  the main rotor, o r  (2) tbt rest of the rotorcraft  (nonrotating surfaces 
a d  tail  rotor) .  In  vfcv of the s ta ted objectives of RMOR 11, the program 
developnrnt cslphasis is on the  main rotor vhich is considered i n  Sectioz 6.2. 

The nonrotating components consist of the fuselage, wing, ver t i ca l  tail, lover 
borimntal  tail, upper horizontal. tail, tail rotor, auxiliary thrusters, mov- 
able surfaces on the vings and empennage, aad dive brakes. We effects  froan 
the main m t o r  and wing arc addressed i n  Section 6.3. The nonmtating load 
elements are lnostly 3eveloped and assesableti i n  Section 6.4. The t a i l  rotor 
equations, i n  integrated font, are developed i n  Section 6.5, and the auxiliary 
thrustor formulation is i n  S c t i o a  6.6. 

6.1.2 Use of forces generated. - As mentioned, the aerodynamic loads are i n  
essence the external forcing furctions of the equations of motion. Ceherally 
the developed loads are i n  the  axis  of the apparerrt air velociej  of the loaded 
element. Thus transibwatioas are required t o  put the loads into the refer- 
ence axes of the equation of motion considered. 

6.2 k i n  F- tor  

2 Overview. - To generate a main rotor mdel wfth sufficient  de t a i l  t o  
&I d y d c  investigations, a hasornbly good auality aerodynamics presenta- 
t ion i s  required. To t h i s  end a table lookup of blade section properties, 
m u l t i h c t i o n  inflow model, quasi-steady aerodynamics, and dynamic stall arc 
used i n  REXOR 11. 

6.2.1.1 Blade flow field. - A s  developed i n  the following subsections, the 
instantaneous blade a i r f lov is  the i ne r t i a l  velocity of the blade element. 
This velocity includes the motion of t h e  principal reference s e t  and the 
motion of tht blade e lemnt  w i t h  respect to the principal reference se t .  The 
calculation asslares the  airmass i s  a t  rest, vhich is  reasonable for dynamics 
investigations. 

6.2.1.2 Air pressure and angle of attack. - The dynamic pressure used for  
these calculations i s  based on sea level  standard density. The loads are 
ratioed to the actual air density. 



The angle of a t tack  is the sum of g e o e t r i c  p i tch  wglt and the instantaneous 
air velocity. The rate of angle o f  a t tack  is also calculated and used for 
t h e  t rans ient  blade aem loads, Sections 6.2.3.3 and 6.2.3.4. 

6.2.1.3 Forces and m n t s  produced. - The steady blade loads are produced 
fma t h e  air velocity caaponcnts of  Section 6.2.3.1 and t h e  coeff ic ient  qata 
(CL, Cp, $I) of Section 6.2.1. The t r a n s i e t t  l i f t  and moment e f fec t s  are 

develop& i n  Sections 6.2.3.3 (quasi-steady ae rodymdcs  1 and 6.2.3.4 (dy~tuaic 
stall 1. 

6.2.2 Concept o f  ro to r  inflow umdel. - The main ro to r  inflow model used ir,  
REXOR I1 is  based on  the air f lov  incident  upon the  rotor disc  plus the  a i r  
velocity imparted due to momeaturn eurhsnge due to  integrated blade span load- 
ing, l h i s  is  to be contrasted with a formulation which tracks the  ro to r  
blade positions aud the attendant t r a i l i n g  vor t ic ies .  

Ibt incident a i r  flow is  the  i n e r t i a l  veloci ty of the ro to r  coordinates, and 
is d i rec t ly  available fruu the  preceding mechanical development. However a 
number of assunptions need t c  be stat& and u t i l i zed  to a r r ive  8% t he  induced 
veloci ty coslponent o f  the inflow mdel .  

6.2.2.1 Induced veloci ty assunptions. - 
1. Only the v e r t i c a l  downuash and Its var ia t ions  racially and azimuth- 

ally over the ro tor  disk are considered. Induced swirl and lateral 
downash ~vwponents are rreglected . 

2. Dovnrash e f f e c t s  due to unsteady aerodynamics are mt t rea ted  here 
as an overa l l  e f fec t ,  but as a blade segment condition i n  Sec- 
t i o n  6.2.3.3. 

3. Rotor-induced flow dis t r ibut ion  i n  hover and forward f l i g h t  is pat- 
terned after Reference 6. This reference assumes a uniform loading 
i n  hover. Figure 33, from Reference 7, shows t h i s  d is t r ibut ion  
compared v ia  typical  loading and a tr iangular  loading model. Fig- 
ure 34 from Reference 6 shows the  theore t ica l  induced veloci ty dis- 
t r ibut ion  i n  forward f l i g h t  as a oonseqwnce o f  a uniform hover 
d is t r ibut ion .  This data i s  f i t t e d  to slopes o r  a longitudinal skew 
as a function of speed i n  REXOR 11. Lateral d i s t r ibu t ion  remains 
uniform if, accord with Reference 8, which correc ts  the  l a t e r a l  d is -  
t r ibut ion  work of Reference 6. 

4. A variat ion In  lateral and longitudinal induced velocity is included 
to account for  roll and pi tch  aerodynamic sha f t  moments. 

5 .  Lift ing line theory correction i s  accounted for  by an ef fec t ive  
rotor radius, BR. 
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Figure 33. - Blade loading distributions in hover. 
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Figure 34. - Induced velocity distribution as a function 
of wake angle ( forward f l ight  ) . 



6. Root cut  out e f fec t s  are ignored. 

7. Transient e f fec t s  are simulated by a s ingle  time lag. 

6.2.2.2 Steady state values. - The s t a r t ing  point fo r  determining the  down- 
wash is momentun theory a s  applied to  an elementary dA: 

The th rus t  increment is dT, dm/0t is  the  flou af air through the  ro tor  
disk v i t h  resul tant  veloci ty Vim, p i s  the  a5r densi ty and hi t he  Cobn- 
wash velocity. The veloci t ies  are taken i n  hub coordinates and no e f f o r t  
is made t o  account fo r  ro to r  tilt. 

The th rus t  expression above is  used t o  define the  following induced 
velocity components. 

Average component, vi 

Longitudinal variat ion with pitching aerodynamic 
m w n t  qiMR 

Lateral  variat ion with r o l l  aerodynamic moment, piMR 

The downwash velocity becomes 

wi = wm + r qm cos +R+ r piMR s i n  )R ( 423 

The coeff ic ients  can be evaluated by equating the  th rus t  and moment values 
fo r  the  main ro to r  equations t o  the  in tegra ls  of t h e  momentum expressions 
a t  hand. F i r s t  consider the  th rus t  expression. The evaluating task  can 
be reduced by employing some boundary conditions. For ro tor  th rus t  only 
(no moment ) , qim and piF = 0. A convenient expression f o r  the  elemen- 
t a r y  area, dA, is shown n Figure 35. While r ad ia l  a n u l i i  would serve 
fo r  thrus t  integrat ion,  the  form selected is par t icular ly  su i ted  fo r  the  
moment expressions. 



Figure 35. - Incremental area for shaft moment integration. 



For t h e  average ro tor  t h r u s t ,  

A furLher assumption is required t o  solve the  square root  of t h i s  expression 
and t h e  coro l la ry  momentum equations. 

For farward f l i g h t  

L 

wi << V i M R = \ I n -  + Y-' + (v.. - w iMR ) = (constant) 

Campleting the  integrat ion gives 

Next consider t h e  case of no r o l l i n g  monent ; i.e., only t h r u s t  and pitching 
moment. Figure 35 is  used with the incremental s t r i p  considered t o  be r ight -  
left  or iented so t h a t  all equal values of qiMR are in tegra ted  at once. 

Then, 



Likewise for roll ing moment, and using fore-aft increment strips gives 

Note the subscript A on F 6enotes the aerodynamic 

component only of main rotor loads i n  hub axos. 

The foregoing expressions are now developed for hovering and low-speed flig,it. 
In t h i s  condition, 

I n t e g a t  ing gives 

and 



T!I~ consequence of cycl ic ,  first-hamtonic dovnvssh was explored in  
Reference 9. Their conclusion, uhieh parallels bckhecdas  experience, is  
tha t  the  phase and l~agnitude of t h e  f l a p  response of a hingeless t l a d e  t o  
cyclic  feathering is markedly affected by cyclic  dovnvash. The shaft momcats 
variat ion v i th  feathering angle and the  phase angle between f l a p  and feather- 
ing are both reduced with cyclic  downwash, the  e f fec t  being grea ter  i n  hover 
than in  forvard f l ight .  

A physical interpretat ion can k rat ionalized f o r  t h e  formula above, at least 
i n  hover, i n  +-hat the  aerodynamic thrust and rsoment produces a flow of linear 
and angular m~eutum. w i n e  the  flow as a continuous s t a = k  of disks fiaving 

2 w s  per unit thickness pa(BR) sad dimetral i n e r t i a  per un i t  thickness 

P(=(BR)'/L). 2 W ~ ,  2 pM and 2 me t h e  f m l ,  f u  dounstream posi- 

t ion, values of induced veloci t ies  obtain by these  d isks  oriencleci v i t h  the  
I4 

flow. The terns ou(BFt!%. an.. OU(BR; I 4  V. are the  mass flow per un i t  the,  
1 1 

and the moment of flow per uni t  t i m e  through t h e  actuator  disk, 
which times 2v 

iWR' 
2pim o r  2qM is the  gain of manentun. 

For programing plrposes, an empirical blend of the  forvard f l i g h t  and hover- 
ing sets of expressions i s  used. The l imit ing cases of the  empirical set give 
the derived cases. The expressions used are: 

6.2.2.3 Variations i n  forvard f l igh t  and i x s  grounc ef fec ts .  - The previous 
develcpment can be asseabled and canbined vith l inearized forward f i i ght  dis- 
t r ibu t  ion and ground ef fcc t  factors.  



The ground effec t  factor ,  fm, sad the  1oagitudina.l l i n s a r  gradient fac tor ,  

Ki14R* 
accounts for forvard flight. 

Note t h i s  formula is  i n  ro ta t ing  coordinates, and that t h e  forward f l i g h t  dis- 
t r ibut ion actually is applied along the  l i n e  of the  apparent airflow, ~ l ~ .  In  

doing t h i s  t h e  d is t r ibut ion is valid f o r  forvard f l i g h t ,  sid'evard f l i g h t  and 
s ides l ip  conditions. The angle JIM is 

as shon! i n  Figure 45. 

The aerodynamic moment factors,  qim and pm, remain attached t o  the hub 
axis. 

The downvash fac tor  Km. as explained in  assmption 3, is given as a function 

of the  vake angle defined a s  

vhich is zero i n  hover and rear 90 degrees i n  high-speed f l igh t .  The function 
can be constrained by a number of factors. I n  hover, the  value is  zero. A 
W e g r e e  value of about 1.6 can be read fran Figure 34. Also from t h i s  f ig-  
ure a set of linearized dis t r ibut ions  is read, and plotted as Figure 36. 

The ground e f fec t  factor, 

is taken from Reference 10, where h = -(2oHIE i s  fran Section 4.5.1. 

6.2.2. 4 Downwash transients .  - Downwash t rans ients  ex i s t  due t o  an apparent 
mass associated with the  induced flow f ie ld .  Work by Peters, et a l .  derive 



Figure 36. - Typical shape of longitudinal factor curve. 



+,be expressions f o r  co l l ec t ive  and cyclic damwash including unsteady 
components. A @ of t h i s  work is Reference 11. 

Converting t h e  referenced work t o  dircnsional  form gives equations c a ~ p s r a h l e  
t o  (834, 435, 436). 

These d i f f e r e n t i a l  equations are solved f o r  w ~ ,  Pm and qm usi rg  numeri- 
c a l  (Euler) integration. 

6.2.2.5 I t e ra t ion  of &owwash solution. - As is the  case with any rotary-ving 
loading calculation, there is an interplay between t h e  downwash variance from 
calculat ing the  loading and a variance i n  tbe  l&ing f r ~ m  reccnputing t h e  
davmash. A common pract ice is t o  solve an i t e r a t i v e  loop t o  sat:sfy both 
equations ( i  .e., l i f t  and manentum) . In R W O R  I1 the  i t e r a t i ~ n  does not take  
place independently, but proceeds stepwise with the  r o t o r  azimuthal advance. 
With the  normal, rapid convergence of the  i t e ra t ion  the  sol..tion w i l l  essen- 
t i a l l y  be canplete with the  s t ep  advance. However, la rge  s t ep  s i zes  w i l l  
incur an additional downwash t i m e  lag. 

6.2.3 Blade element veloci ty comwnents. - In the  following subsections the  
blade aerodynamic loading is  categorized and developed along tvo l i nes .  They 
are : 



6.2.3.1 ~aurets aPd r e d u t i o n  iror blade motion. - The steady aerodynsmics 
u e  bsscd on tb air velocities while the quasi-steady aerodynamics (from 
f lut ter  theory) and dynamic stall depend on .ccelmtions.  

The eir velocity is the blade mechanicel velocities vi th a canponent 
dut to dovamsh. In a similar auurtr, tht air accelmt ion is taken t o  be 
t k  mechanical b h i e  accelerrtioas minus tbt downvash accelerations. The 
doRlmrash f o d t i o l l  as developed in Section 6.2.2 allows for lags, and it is 
these lags tht result in davn#sb acceleration tams .  

6.2.3.2 Steady aerodylwics. - The u r  velocities reletive t o  s blade section 
u e  desired for an uis syskr  vith origin a t  thc quarter chord t o  match the 
a i r fo i l  table deta. Rm Section 4.5.5, thc ~cchanical  blade velocities rel- 
ative to the free s t r m  or earth axes are available as {Ls iBLE* L~I- 
The desired relative air velocities at the quarter cbord (or blade BTA refer- 
urn axis) are. 

Where Lhe second vector on the right is the dounwash velocity developed i n  
Section 6.2.2, and the third tnrnsfers the velocity from the Bm reference 
point a t  the blede center of gravity back to the quarter chord. The distance 
Ym is positive v i t h  the center of gravity &ead of the quarter chord. For 

zotational convenience, 



The angle of attack is  defined as 

Airflow aspects of quasi-steady aerodynamic formulation are developed a t  t h i s  
point for convenience. The quasi-steady aerodynamic contribution is conceived 
as composed of circulatory and noncirculatory caaponcnts. The circulatory 
cmponents are  taken t o  be equivalent t o  finding the  aerodynamic force, and 
laaent c ~ f i i c i ~ t s  are based on an angle of at tack a t  the  three-quarter 
chord: 

A s  such, the  effect  of angular ra tes  is included in deriving the steady aero- 
dynanic coefficients. Tbe fornulation above does not attempt t o  account for  
local  dovnvash rotation or  curvature and its chordvise variation. The net 
result is tha t  aerodynamic coefficients determined i n  Section 6.2.4 are can- 
puted with a314 c. 

A number of wan t i t i e s  used in  the dyntmic stall camputations.Scction6.2.3.4, 
arr also available from the previous mechanical development. They are a l so  
defined here for  convenience. F i r s t ,  the angle of s idesl ip  appears only i n  
the dynsmic stall formulation. For t h i s  purpose it is defined a s  

Also, dynamic stall is based on the t h e  derivative of the angle of at teck a t  
the three-qtlarter chord : 

C 
u 6 + u.. ir, 

+ - [4-2 - 
u + u $ 

c c  " 11 



The inclusion of t k  gravity tern pZafes these acceleratioas i n  a tru2 iner- 
t i a l  axis system, not earth inertial axes, as appropriate for aerodqnamic 
calculations. See Section 5.5.1. Gravity does cause buoyancy forces, but 
tbcse can be *red. The turning acceleration ccmponents are also subtracted 

1 to produce linear accelerations which correctly rodel the blade elanent inci- 
dent airflow. Tht gravity vector can be obtained f ~ l l n  hub values as: 



Ey dif ferent ia t ing  the d o ~ ~ ~ s h  veloci t ies ,  t h e  downwash accelerat ion is 
obtained : 

6.2.3.3 m i - s t e a d y  aerodynamics. - Quasi-steady semdyamics  is  amounted 
f o r  i n  REXOR I1 by incormrating the  terms fram the  two-dimension& f l u t t e r  
tbeory of Theodorser? (reference 12). In the  M C R  I1 analysis, Theodorsen's 
l i f t  deficiency function ~ ( k )  is taken as unity. This neans t h a t  the f l u t t e r  
theory presently incorporated neglects  shed W e  ef fec t s ,  o r  i n  physical t e rns  
does not account f o r  the phase change between blade element l i f t  (o r  pitching 
maaent) and angle of at tack,  due t o  shed vor t i c i ty ,  o r  the  assmpt ion cf 
quasi-steady aerodynamics is expressed by C(k) = 1. 

Refe r rhg  to  a c l a s s i c  text  on ae roe las t i c i ty  by Bisplinghoff, Ashley, and 
Hoffhan (Reference 13), the  expressions fo r  l i f t  and pitching ntcnent are 
given as: 

and 



In RQ[OR 11, the  blade .crodJrurics md quuri-st- aemdpadcs are 
referenced to the local section quarter-chord properties. This is done 
because the maJority of available a i r f o i l  data uses t h i s  reference. Hote 
that the f'inal a e r o d m d c  loads are translated to the local  BLE uis  (c.g. 
location) fo r  use in  the equatiaos of rrctiai. 

Reviewing the above expressiars, and referencing the  rotation point to  t h e  
quarter cbord gives a = -112. If ve take ~ ( k )  es unity, replace 2 r for cir- 
culatory lift by b y d ~ ~ l d a ) .  a d  substi tute c12 lor the semichord b, these 
cqtt.tioas kcarc 

Hote that  the ent i re  last turn in the maaent equation vanishes with a = -1/2. 
Referriag to the  lift expression, noncirculatory aerodynamic l i f t  is accounted 
for ia  11 by the f i r s t  t e r m  i n  which 6 + U h  are combined in to  i n  

blade e l ~ e n t  coordinates. 'he second term results ikaP table lookup where 

i n  which tbe angle of attack is previously coaiputed from 

The a within t h e  brackets is identified as 8 ,  the actual physical angle of the 
blade with respect t o  the freestream direction. The a on the l e f t  hand is 
that  due t o  the air velocit ies which include the plunging velocity 6 and ro- 
tation component c/2a. Herce p = a and p - " BLE BLE 

The to t a l  aerodynamic pitching moment i s  the sum of the quasi-steady loads 
computed above and tha table lookup blade section properties (Section 6.2.4). 



6.2.3.4 Dynamic stall. - Dynamic stall is included i n  RMOR I1 based upon 
the Boeine-Vertol formulation set fo r th  i n  References 14, 15, and 16. It is 
similar t o  the treatment of dynamic stall i n  the  Bell C-81 program. A cam- 
parison of RMOR X I  v i t h  the  C-81 program is given i n  Appendix IV, pages 393- 
104, of Reference 3. Dynamic stall is speci f ica l ly  addressed with respect t o .  
the two programs beginning on page 395 of tha t  report. A signif icant  p o i n t  
of difference between t h e  treatment of dynamic stall i n  the  two programs is 
t h a t  C-81. puts a 20-percent l i m i t  on the  angle-of-attack overshoot i n  obtain- 
ing the  dynamic maximum l i f t  coefficient ,  whereas REXOR 11 has no l i m i t .  The 
correctness of the  treatment of dynamic stall i n  e i the r  program is d i f f i c u l t  
t o  assess since the concensus of researchers i n  t h i s  area i s  tha t  current 
methods a re  empirical at bes t ,  and much research still remains t o  be done i n  
this area. 

Reference 14 notes tha t ,  "The trends show tha t  canpress ib i l i ty  e f fec t s  reduce 
dynamic-stall delay, and at about M = 0.6 no dynamic-stall delay i s  evident ." 
For t h i s  reason an upper Mach number l i m i t  of 0.6 was implemented i n  the  dy- 
namic stall calculations f o r  REXOR 11. The test data obtained by b e i n g  
Vertol and given i n  the  references c i t ed  w a s  fo r  t h e  Mach number range 0.2 t o  
0.6. A3 implemented in RMOR I1 i f  M < 0.25, the  value M = 0.25 is used i n  
the an@-lbitic expression for  developing the  stall hysteresis  loop. 

Reference 15 Gotes tha t  it w a s  found tha t ,  " a i r f o i l s  used currently by t h e  
helicopter industriy ha2 s t s l l i n g  daninated by leading edge stall. For t h i s  
type of s t a l l i n g  process, the dynamic C extension was p r o p r t i c z z l  fo the  L 
t h e  r a t e  of change of the angle of attack." 

In tha t  reference, so a s  t o  use s t a t i c  a i r f o i l  data a s  much a s  possible, 
s t a t i c  stall and dynamic stall a r e  empirically related by developing a refer -  
ence angle of at tack given by 

a REF = a  - (ydH sign(&)) 

i n  which, 

0.601 
Y = log, 7 

and is physically re la ted  t o  dynamic s t a l l  delay. a i s  identif ied as  a 
and 314c 



As noted i n  Reference 16 i n  regard t o  dynamic s ta l l . .  ." as a blade element 
reaches and exceeds t h e  s t a t i c  angle of at tack,  stall does not occur as long 
as a suff ic ient ,  pos i t ive  time r a t e  of churgc of t h e  a i r f o i l  angle of a t tack,  
6 ,  is present." The experimentally derived equa%ion for dynamic stall delay 
is given i n  the  reference as 

dynamic s t d l  delay = y 6 

the  blade element reduced frequency. 

Referring t o  the gamma expression, w e  note tha t  Y + 0 as M + 0.601, which is 
t h e  upper limit f o r  Mach number values for dynamic stall calculations. Also, 
note tha t  Y + 1  as M + 0.2211, which is approximated by the  value of M = 0.25, 
t h e  lower l imi t  i n  REXOR I1 fo r  dynamic stall simulation. 

Tbe t e r n a m  given above is  a l so  ca l led  the  dynamic ~ l e  of a t tack (Refer- 

ence 15) and given by the notation a DL3 

6.2.3.4.1 L i f t  accounting for  dynamic stall. - Using the  reference or dy- 
namic angle of a t tack canputed fran a REF * the REXOR I1 program implements t h e  

"Fast Aerodynamic Table", Section 6.2.4, subroutine and determines the l i f t  
coefficient ,  CL, corresponding t o  aREp and the freestream Mach number fo r  t h e  

specified blade elanent and blade azimuth position. Also computed a t  t h e  
given Mach number a r e  the  C fo r  zero angle of a t tack and t h e  CL fo r  a small L 
increment Aa with respect t o  zero. Yawed or  r ad ia l  flow is accounted f o r  by 
computing the  yaw angle of the flow given by: 

where U and UC represent blade spanwise and chordwise cornponenus of flow 
S 

respectively . 



The slope of  t he  l i f t  curve is then found fraan: 

c,(a,, M) - cL(O,M) 

DY N a REF cos A 

It can be argued from physical reasonings t h a t  t h e  dynamic l i f t - cu rve  s lope  
cannot exceed t h e  s t a t i c  l ife-curve slope. As a check, REXOR I1 a l s o  
ca lcu la tes  : 

Only i n  t h e  event (aCL/aa)DyN is g rea t e r  than  (acL/aa) is t h e  i a t t e r  v d u e  
0 ,M 

used t o  ca l cu la t e  CL. atherwise C is calculated by L 

The a b i l i t y  of t h i s  approximation t o  descr ibe mathematically t he  l i f t  hyete- 
resis character ized by dynamic stall is  shown i n  Figure 37, which compares 
ana ly t i ca l  r e s u l t s  with experimental two-dimensional a i r f o i l  data.  ( ~ r o m  
Reference 16. ) 

The component of t h e  lift force  per u n i t  span ac t ing  normal t o  the  blade 
chord a x i s  and including dynamic stall e f f e c t s  i s  then ca lcu la ted  from 

The t o t a i  normal force i s  determined by adding t o  t h i s  term the  drag compo- 
Z nent, CD c P V  / 2  s i n a ,  and t h e  unsteady aerodynamic terms discussed i n  t he  

previous sect ion.  To accourit f o r  dynm.ic s t a l l  e f f e c t s  on drag, two- 
dimensional drag coef f ic ien t  data  a r e  used, but as determined a t a  REFS a . 
This i s  cons is ten t  with Reference 15. 
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Figure 37. - Dynamic s ta l l - l i f t  coefficient vs 
angle-of-attack hysteresis loop. 



The camponent of t h e  lie force per un i t  span p a r a l l e l  t o  the  blade chord a x i s  
is found correspondingly from: 

CL C PV 
2 

AFC = 
2 

s i n  a 

The t o t a l  chordvise force is then obtained by sirding the  corresponding drag 
coefficient  term multiplied by cos a . 
6.2.3.4.2 Pitching mament accountina fo r  dynamic stall. - For determining 
pitching moments due t o  dynamic stall (see  Referer ce 131, the reference o r  
dynamic ~ n g l e  of a t tack  given by r must be modified. I n  REXOR 11, t h i s  is  REF 
accomplished by multiplying the  second term by en empirical constant, K. 
Hence, 

a t  = a 1  = a - K  s ign(a j )  
REF DYH 

K i s  selected based upon the dynamic s t a l l  charac ter is t ics  of the a i r f o i l .  
In  general it has been found f o r  convmtional ro tur  blade a i r f o i l s  t h a t  K 
should be selected so tha t  

a t  = a  + ~ a  
REF REF 

where Aa i s  of the  order of 2.5 degress. With a i m  calculated frdn the above 

equation, the  moment coefficient  is determined from tab les  such t h a t ,  

= C ( a t  M) 'M M REF' 

A comparison of t e s t  and theore t ica l  dynamic C from Reference 15 i s  shown in  
Figure 3d. M 

The t o t a l  pitching moment act ing per a n i t  span on a blade element i s  then 
given by : 

2 quas4 - steady 
~ ( i )  - cM c2% - F~ ~,,( i)  . + [ aero 1 

terns  J 



ANGLE OF ATTACK 

r"igure 38. - Dynamic stall - scment coefficient vs 
angloof-attack hysteresis loop. 



where S ~ ( X )  represents the distance fm the a e m d p a d c  center t o  tbe blade 

e l a s t i c  axis,  and the q~iasi-steady remdyaamic terns 8re included as described 
in  ~ c c t i o n  6.2.3.3. 

6.2. b Coefficient table lookup - ovemiev. - In  cataloging blade sectioa 
aerodynmnic data, CI. CD and s, there are tuo procedures available. 

Curve f i t  +.kt aerodynamic data to the specific a i r f o i l  geometry being 
investigated fo r  the  range of Nach number and angle of at tack t o  be 
consibered. 

Tabulate the  data as a function of performance and geolnttric param- 
eters, and interpolate t o  the exact c a d i t i o n s  a t  band. 

REXOR 11 uses the second procedure. Thc data consists of CL, CD andCMtables. 

Each table is tabulated as a function of angle of at tack snd Mach nmber. The 
table forast  is organized identically to  t he  C-8 i  program. Thus C-81 
a i r f o i l  decks may be directly used in REXOR 11. 

A table  set of XACA 0012 section characterist ics is included as part of 
REXOR 11. ltro external tables may be used; the first of vhich overrides the 
resident 0012 data. Changeover of external tables occurs a t  a preselected 
blade radial station. 

6.2.h.l Inputs and outputs. - Zhch table  (CL, CD, t&) has a separate angle 

of at tack entry and a -n Mach cntry. The separate entr ies  a re  used fo r  
dynamic stall calculatioas. The outputs i n  addition t o  CL, C and CM are the  D 
ten, angle-of-attack CL and CL vs angle of attack slope. 

6.2.5 Blade element and rotor aercdynamic loads summy. - 'he  required 
loads for use i n  the equations of motion are  i n  BLn axis. Devel9pnent t o  
t h i s  fonn fran BLE axis  about t h i s  quarter chord point is covered in  Sec- 
t ion 5.6.4. The BLE axis form is: 



6 .3  Interference Terms 

6.3.1 Nature o f  t h e  Phenaenon. - In the process of p r o d u c i r ~  l i f t ,  t h e  var- 
ious parts o f  the  rotorcraft  impart a net momentdm change t o  t h e  air mass 
opposite t o  t h e  direct ion o f  the  force  produced. This  induced air v e l o c i t y  
from the  nomentun change impinges upon other elements o f  t h e  rotorcraf t  chang- 
ing t h e i r  aerodynamic behavior. 



The sources of in te res t  are the main rotor  snd ving (or l i f t i n g  body ckarac- 
t e r i s t i c s  of the  fuseiage). Thc surfaces being affected a r e  the wing plus 
ftzselage and the empennage. The impinging velocity is expressed i n  ZF 
(-elage ve r t i ca l )  axis as  a percentwe of the  source flov r i ~ d  a function 
o i  the 'tee (vigle of t h i s  flov. 

A seeand interference velocity scurce is t o  consider the  circulation par t  
cf the Theodorsen h c t i c n .  Rere t h e  wing o r  ving equivalent of  the  f.~se- 
1- is produciw lirt a t  the  quarter-chord paint acccri5ing t o  the air 
velacity at the  3/bchord location. Accordingly, t h e  vertica: cmponent 
cf air velocity at  t he  vine i n c h d e s  a comment.  

!?ere t h e  wing quarter chord is asswed t o  lie on the YV ax5s. -is con- 
portent is also effect ive a t  the horizontal tail v ia  t h e  viq tc ??.crizc\?ltal 
ta2l dovnwas'r. factor. 

6.3.2 Rotor to ving/fuselage. - The davnwash functisn (percentage of source 
flow) used in RgXOR I1 is a lookup table of downwash factor ,  F( x ) ~ - ~ ,  and 
idealized main rotor  vake angle x MR 
where, 

r"fie table  data is l inear ly  interpolated t o  the required hake angle value. 

The fuselage reference downwash velocity a t  the ving (or equivalent) then is  

and tak ing  time derivatives, 



The t o t a l  air velocity t o  the  ving/Puselage is 

and the angle of a t tack  is 

The total veloci ty i n  the  ftselage XZ plane is used i n  the mpennage 
computations: 

6.3 .3  Rotor t o  horizontal tail. - A dowuash fac tor  F ( X ) ~  - between the  

eain ro tor  and horizontal tail  is cormputed in t h e  same manner a s  F(X)ICR - 
from t h e  nain ro to r  wake a g l e  Xm. 'This data i n  conjunction with t h e  uinp; 

t o  bor i zon td  tai l  downwash fac tor  is used t o  compute incremental a i r  veloci- 
ties a t  the  horizontal tail. 

Evaluating the main rotor  increnent, 

A increment fo r  an upper horizontal t a i i  is likewise generated: 

6.3.4 b t a  sources. - The t heore t i ca l  downwash fac tor  ranges from 0 a t  X = 0 
and 180 degrees t o  2 a t  X = 90 i n  the  fu l ly  contracted ro tor  vake. Several 
sources of measured data are available t o  construct a d is t r ibut ion  for a given 
configuration. Reference 12 gives isolated ro tor  data fo r  field distances and 



valse angle r-es suitable for F ( x ) ~ - ~  .nd F ( x ) ~ - ~ .  ~eferrnee 16 g i m  a 

gocd data set for typical ving l o c r t i ~ .  

6-3.5 m e g e  velocity -rents. - RWOI( IX rodelo the en~prruge a s s o b l y  
as either part of the f'uselage-ving eerodpdc table (tail an) or  as a sep- 
arate set of a e m ~ m m i c  losds ( t a i l  0-1. ~n either case a set of perturb- 
t ion velocit ies is used. 

The wing to borixontal tail domuash factor appears expl ic i t ly  as a quasi- 
unsteady aemdpmmic t en .  An airflow time delay - the  wing t o  horizontal 
tail is cauputed as 

Using the  dcnmvash factor a€;aa the ver t ical  airflow cclDponent at the 
horizontal ta i l  is 

In  a l i ke  manner the delay in  sidewash gives r i s e  t o  the term &VT/vXZ ip by?./)@ 

on the  ver t ical  tail. 

The vert ical  incremental horizontal tail velocity is then: 

The terms rEL and r intrcduce equivalent velocit ies due t o  elevator and HT 
horizontal t a i l  incidence deflectfons respectively. 

Similarly for t h e  upper horizontal t a i l :  



Assembling the vertical tail lateral il3cremenlxl =locity: 

Uhere 1 is used to introduce an equivalent velocity due to rudder deflection, W D  

A horizontal and vertical tail longitudinal total velocities are shuply 
developed a wake deficiency factor 

Then the totdl vertical velocity at the horizontal tail is: 

u = q  -w P ( X ) ~ - ~ - ~ ~ E ~ + A W ~  H P F i m  

and 

The induced flow field angles E m  and E are a function of wing angle of m 
attack, flay? Eeflection and wing incidence change. 

a~ a% 
E C E O  +-sins +- a% +- 
''I' HT a J w )aFL 'PI, aiw hi,  

c HTU = E 
+- a E ~  sin a +- aE HTU a €  HTU 

0 
+- 6 :  

H!lu a a  
w 6~ ai, L w  



!The total lateral velocity at the  vertical tail is 

VVT = . v - 9 QVT + *vVT F 

Uhere am is a sidewash coefficient trca the fbselage. 

In t h i s  section the  aerodynamic cmtributicms fram the  Puselage, w i n g  aad ers- 
pennage are developed. These components are edG4 together with the  t a i l  
rotor loeds, Section 6.5, and auxi!.iary thrusters, Section 6.6. A transfor- 
eration t o  fuselage axes is made Smn vind axes. 

The fuselage, wing and empennage duta is canposed of SZATIC, D E R N ,  ar.d COA- 
TROL elemeats. The Si.TIC hts are the steady state load components as vould 
be lceasured i n  a wind tunnel. These data may be tail on or off. The D W N  
data give additional loads due t o  velocity cmponent variations from trim f o r  
tail on STATIC data a s  ve l l  a s  steady off s e t s  (unequal ving twist, etc  . ) . 
Tail  off DERIV loads use f u l l  t a i i  velocity canponents rather than variations 
t o  generate the empennage forces aad maments. 

The COMTROL loads account fo r  f lap,  dive brake, wing incidence, aileron de- 
f lection inputs via  the control system. The rudder, upper and lover horizon- 
tal t a i l  incidence, lover horizontal tail e le-ator  inputs affect  the empennage 
a i r  velocity components, and are developed in  Section 6.3.5. 

6.4.1 Xcnrotatin& ai=h.ame sirloads. - The required loads are cmpsted i n  
REXOR 11 as the sum of steady-state forces and wrments plus loads arisiw from 
s tab i l i ty  derivative type terms a d  control surface inputs. The steady-state 
data are formed in  terms of overall CL, CD, and % for  the f i te lage,  wing, and 

empennage assembly. 



'=he s t a t i c  body loads are: 

The ving ares,  and chord, CTaKG, are actual  o r  the  equivalent of the  
l i f t i n g  ternately, they nay be the  reference length and area 
~ s e d  f o r  the asai lable wind turdel  data. Cgi, C L ~  and (&I are l inea r ly  in- 
terpolated fmn i n p t  Cata tables of C Ct4, versus a x l z  of at tack,  a . 
The data are interpolated on a 

L' 'D' f r o m  Section 6.3.2. The loads developx 
are i n  wind axis. 

The s t a b i l i t y  2erivative lcad contributions are computed a s  a 6 by 7 de- 
r iva t ive  matrix postmultiplied by a veloci ty component vector. For t a i l  
on fuselage aerodynamic data : 



The components of  the  [Frnl] matrix are discussed in  Volune 111. Two hori- 
zontal t a i l s  and one ver t i ca l - 'ke  assmed.  The \ipper tail  is considered optional.  
Tie macrlx a l s o  provides for asymmetric e f f e c t s  of wing incidence d i f f e r e n t i e l ,  
for linear and qcsdratic s i d e s l i p  variations and for wing roll darcping. 

For t a i l o f f  data the veloci5y Yector is replaced by 



These terms also produce forces and momcats i n  wind axes. 

REXOR I1 includes the effects of flaps, ailerons and dive brake? la the non- 
rotating aerodynamic loads. The flap deflection6 are modeled aa i inear  s t c  
b i l i t y  derivatives of CL, CD and CM. The aileron load is the variation of 

aileron matent volume (roll ing -nt cotfficient t b s  wing area times ving 
span) with aileron deflection. The input is for  one aileron. Dive brakes are 
represented as a variation of drag area vi th  brake extension. The brake panels 
are assumed t o  be on the fuselage vertical  axis and a distance - hDB belov the 
fustlsgc reference. 

The desired loads are: 

The s t a t i c  and derivative terms are added t o  form the to t a l  body loads and 
transformrd into fuselage axes. 
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and 

The air velocities wklm, V V , are defined in Section 6.5.2. 
5 ' *WING 

6.4.2 Component additional airloads. - A total array, (QLOADS 1, of non main 
rotor air loads is computed in fuselage axes. 



The f i r s t  component is described above. The t a i l  i o t o r  load vector auxi l ia ry  
thrus tor  load vector a re  developed i n  the  following secticns. 

6.5 Ta i l  Rotor 

A number of d i f ferent  l eve l s  of aerodynamic presentation accuracy and axis  of 
representation may be used f o r  ta i l  ro tor  computations. In l i n e  v i t h  the  s t a t ed  
objectives of REXOR 11, a l i n e a r  aerodynamic approach AS used. A shaft  axis  
reference is used f o r  the  analysis ,  In t h i s  system, the  air velocitjj  quant i t ies  
invol-fed a r e  easy t o  visual ize.  Also, the  flapping ar9 feathering motions a r e  
t h e  t rue ,  measureable quanti t ies .  

6.5.1 Formulations. - F i r s t ,  consider the  airflow quant i t ies  avai lable i n  
fuselage axis ,  Figure 39. Note the  ta i l  ro to r  axes alignment w i t h  respect 
t o  the  fuselage axis  system. Formulating the  components v i t h  respect t o  the  
fuselage axes gives: 

where 

The v e r t i c a l  component is approximated by t h e  horizontal t a i l  value. Terms 
subscripted w r e fe r  t o  veloci ty,  w, and s ides l ip  angle, 6,  a t  the  wing. The 
flow e f fec t s  induced by t h e  wing-fuselage bombination a re  described by the  
wake veloci ty deficiency fac t  o r  71 the  s ide  wash angle, T~,, and i t s  v u i a -  
t ion  with angle of s idesl ip.  

TR' 

The velocity vector is  then rotated through the  t a i l  ro to r  shaf t  l a t e r a l  tilt, 



C~nstruct ing  the blade element tangential (iJT) and perpendicular (up) components, 
as shcvn i n  Figure 40 gives :  

UT = (r o:= + l+ s i n  +m 

Up = - vm - vim - r i  - u , 6 c o s  v, 

-=, 

v is the tail rotor induced velocity iTt 

and 

Expressing the blade elclacnt angle of attack as a small aagle of 
approxiarstion , 

9 = eTE - A1 cos $I - B s i n e T R  
TR 1 ( 519 

couplirc: is  used t o  dnimize  tail rotor flapping. Defining + d 

i n  reathering for p o s i t i v e  fLapplAng g i v e s  % 

The tail rotor analys i s  ass-mes no tcning. 

3.e blaCe flappkg, 6, is then 

$ =  - a, cos  *TR - b. s i n  qTp 
2 3  i-;IF! A ,  



Figure 39. - Overall tail  rotor geometry. 

Figure $0. - T a i l  rotor blade element detai l .  



The tail ro to r  expressions of i n t e r e s t  are t h e  prime forces added t o  t h e  
f'uselage system. First looking at the tail rotor thrust. For a blpdc ele- 
ment we have 

where a is the lift curve slope, b is the nuaber of  ta i l  r o t o r  blades, and 
c is t h e  blade chord (assrewd constant). 

Iritecpiting fo r  t h e  e n t i r e  rotor ,  

where B Is t he  f i n i t e  a i r f o i l  l i f t  fac tor  expressed as a so-called t i p  
loss factor.  

noting only even f\mctions contribute t o  the integrand. 

kte the th rus t  is  independent of the longitudinal flapping, but is a func- 
t ion  of lateral cycl ic  shown as lateral flapping times delta 3. 

Thc required lateral flapping sngle is obtained by equating the l a t e r a l  
flapping wrnent equal t o  zero. 



gives 

To obtain the longitudinal flapping angle, the 1oagitudina.I rotor lsolnent is 
Zorlned and s e t  equal t o  zero. 

gives 

In  forn3dating the tail rotor drive torque, the blade prcfile drag is ex- 
pressed as 

- 
b-here C is tk average l i f t  coef f ic ient .  Reviewing the tkrus t  equation L v i t h  a constant {average) l ift coefficient gives  



The drive torqae is expressed 8s the reacticn t o  turning the tail rotor 
shaft. The pius sign is associated with a clcclorise sense of rotation 
uhtn facing a Ice-band munteO tail rator. 

(continued on next page) 



Ttn marairring load tern in h. ilsing the sane formulation rethodology, 

1 C) - -  p a  b c o xL [ s i n $  s i n g  + s i n 6  c o s e )  
2 L 

Making small angle approxinstions, 



1 1  ---.(k+ 2= 2 .),[j'( I - %  s. s i n *  dr 

0 0 

+ 6( 2 a( 0 U p p  + Up 1 s i n  ) 

+ bl s i n  * core  ) d r  d *  1 )  I 

Tbr induced velocity is calcclated frola sheplified momentum balance. 

&rmdly, the  thrust ,  flapping, and induced velocity equations arc solved as 
an i t e ra t ive  set. In REXOR 11, these equations are solved for  every pass 
(azimuth s tep)  of the  main rotor,  and the t a i l  rotor s e t  convergence is assumed 
a priori .  

Note tha t  the  pitch-flap coupling does not appear i n  the  expressions developed. 
This is due t o  the equivalence of flapping and feathering, coupled v i t h  the 
absence of l s t e i a l  flapping. 



6.5.2 Airloads - control se t t icqs .  - The force and moment tenas are assanbled 
fo r  use i n  the overell fbselage loads, Section 6. h The p i l o t  c m t r o i  is t h e  
rudder pedals BTR. 

STR is  a fac tor  t o  account f o r  i n  blockage on the  tail ro tor  thrust .  The 

equations for  XTR, TTR and % are based on po, the sea leve l  density. The 

sign of Cm allovs for a tail ro ta t ing  i n  a negative direct ion;  i.e., upper top 

moving forward. 

6.6 Auxiliary Thrustors 

REXOR I1 models t h e  compound helicopter configuration by the  inclusion of an 
auxil iary source of forward thrus t .  A perturbation bypass jet math model is 
used. It is  assumed t h a t  all  the thrus t  un i t s  are at the  same set t ing.  Further- 
more the  dynamics of the  engine ro ta t ing  mass are  ignored. 



6.6.1 J'ormYlations d airlosdg. - Based m a perturbation dt l  the thrust 
for 3 1  units inst8Lled is:  

vhav \ is the Z'reeetream y.Ch number and 6 represeati the total e!Ui= P 
c r m t r d ~  psramcter. 

The w i n e s  are located at height h arrd distance L aft of the aselage axes. 
P P 

A thrust m e  go i s  also assumed. The engine contributions to the he luge  

aerodyaaPic l a d a r e  then: 

cos e, .o FI = kineo 1 o cos eo 

sbeOl 
0 1 ~  FI (543) 

F 



REXOR I1 models vehicles ranging f r a n  pure helicopters t o  winged helicopters 
t o  compound helicopters with conventional airplane control surfaces. The 
control system is modeled as a set of p i lo t  controls (st ick,  rudder pedals, 
collective, etc. ) vhich are coupled t o  *he helicopter and airplane aerodynamic 
surfaces through a set of overall  linhage factors (gains). These gains are 
slaved t o  a master control (phasing uni t )  vhich can be varied from the ex- 
trcws of pure helicopter t o  pwe airplane type of caatrols. 

7.2 Pilot  Controls 

To simpl.if'y the  operation of REXOR I1 the  control inputs a r e  mostly expressed 
as a percent of Pull scale (maximum input ) . The p i lo t  inputs are : 

Iangitudinal s t ick 

IC,P 
Lateral s t i ck  

% r Rudder pedals 
c ,P 

% 6 Propulsion set t ing 
P sP 

e ~ , ~  Collective blade angle 

@R,P 
Rotor speed set t ing 

Dive brake extension angle 

Flap extension angle 

I 6iY,p 
Coanaand wing incidence change 

I 6im.p Commend horizontal t a i l  incidence change. 

Pilot  controls are  combined with t r i m  (TI, i n i t i a l  condition (IC), rigging 
offset  (subscript 0)  , end s t ab i l i t y  augmentation inputs (SAS). These com- 
bined inputs then operate the  rotor and fixed aerodynamic surfaces. Scaling 
factors (K) convert the  percentage inputs in to  angular and l inear deflections. 

X', = '5rm Gc(%xc,T + %X 
c ,P (545) 



The f a c t o r s  G 
c * G ~ ~ *  'AIL* 'TR* G~~~ 

a r e  t h e  s l aved  ga ins  c o n t r o l l e d  by t h e  

phasing u n i t .  

Tbe quantities Xf  Y '  are processed through a f i r s t  order lag and rate 
c ' C 

l imiting prior t o  being applied u swashphte input CO.MD~S, XC ant. YE. 



( 560 1 

The f ixed aerodynamic surface notions are shown i n  Figure 41. The pi lot  

inputs  a r e  depicted i n  Figure 42. 

7.3 Stabi l i ty  Auegnentation Systems 

=OR I1 incorporates s t ab i l i t y  augmentation'inputs t o  the  l a t e r a l  and loagi- 
t ~ d i ~ d  cyclic inputs, elevator, aileron, t a i l  rotor collective,and rudder. 
These SAS inputs are  all derived from Fuselage axis angular r a t e  information. 
Signal processing consists of a low frequency washout and l imiter applied t o  
all throughput. A f i r s t  order lag is also used on some signals. 

The SAS coefficients are also computed on the basis of percentage of fu l l  
scale deflection of the p i lo t  control they are connected to. The same seal- 
ing conversiofi factors as used for the  p i lo t  inputs a re  app l i ed to  the SAS 
outputs. 

The s ix  SAS channels are  shovn below, Figures 43 through 48. 



Figure b1. - F L . : ; ~  aerodynamic surfaces. 
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