NASA Technical Paper 1249

Aerodynamic Characteristics
 at Mach 6 of a Wing-Body Concept for a Hypersonic Research Airplane

James L. Dillon and Jimmy L. Pittman

AUGUST 1978

NASA Technical Paper 1249

Aerodynamic Characteristics at Mach 6 of a Wing-Body Concept for a Hypersonic Research Airplane

James L. Dillon and Jimmy L. Pittman
Langley Research Center
Hampton, Virginia

N/SA

National Aeronautics and Space Administration

Scientilic and Technical Information Office

SUMMARY

An experimental investigation of the static aerodynamic characteristics of a $1 / 30$-scale model of a wing-body concept for a high-speed research airplane was conducted in the Langley 20 -inch Mach 6 tunnel. The investigation consisted of configuration buildup from the basic body by adding a wing, center vertical tail, three-module scramjet, and six-module scramjet engine. The test Mach number was 6 at a Reynolds number, based on model fuselage length, of about 13.7×10^{6}. The test angle-of-attack range was -4° to 20° at constant angles of sideslip of $0^{\circ},-2^{\circ}$, and -4°. The elevons were deflected from 10° to -15° for pitch control. Roll and yaw control were investigated.

With a maximum of -15° of elevon deflection, the basic configuration was trimmable up to an angle of attack of approximately 21° with a trimmed maximum lift-drag ratio $(\mathrm{L} / \mathrm{D})_{\max }$ of 3.1; addition of the scramjet engine reduced the maximum trim angle to 8.5° and the maximum L / D attained to 2.6 . Flaring the rudder or elevons was effective in controlling the longitudinal aerodynamic center. The concept was laterally unstable below an angle of attack of 3° and directionally unstable across the test angle-of-attack range. Roll and yaw control were available through the test angle-of -attack range. The Hypersonic Arbitrary-Body Aerodynamic Computer Program gave good predictions for the longitudinal but not for the lateral-directional aerodynamic characteristics.

INTRODUCTION

The National Aeronautics and Space Administration, The U.S. Air Force, and industry have studied numerous concepts relating to the development of hypersonic flight vehicles such as commercial transports, military vehicles, and airbreathing launch vehicles (e.g., ref. 1). The higher flight speeds will require the development of new systems such as propulsion, structures, airframe cooling, and cryogenic fuel storage. One industry study (ref. 2) concluded that both ground facilities and flight vehicles would be necessary to develop these advanced systems. Past experience with the "X" series of research aircraft (e.g., ref. 3) has shown that the air-launched, rocket-boosted, and glide-descent technique is an effective means of conducting flight research, and a number of studies of research aircraft concepts utilizing this technique have been conducted in recent years (e.g., refs. 4 and 5).

The purpose of the present investigation was to determine experimentally the hypersonic longitudinal, lateral, and directional stability and control characteristics of one
research airplane concept. This particular concept was a wing-body design that could be air launched from a $B-52$, rocket-boosted to about $M=6$ (depending on mission objectives), and glide to an unpowered landing both with and without a scramjet engine attached. The tests include configuration buildup and elevon and rudder deflection. The investigation was conducted at Mach 6 and a Reynolds number of approximately 13.7×10^{6} based on fuselage length. The angle-of-attack range was -4° to 20° at constant angles of sideslip of $0^{\circ},-2^{\circ}$, and -4°. The elevons were deflected symmetrically to establish trim characteristics, asymmetrically for roll control, and split to form wedge elevons for longitudinal aerodynamic center control. The rudder was deflected for yaw control. Selected comparisons are made between data and predictions from the Hypersonic Arbitrary-Body Aerodynamics Computer Program (ref. 6). Most of the basic data and all the visual flow study results are presented in the appendixes. The results from tests at subsonic and transonic speeds on this same model are reported in references 7 and 8, respectively.

SYMBOLS

The longitudinal characteristics are presented about the stability axis, and the lateral-directional characteristics about the body axis (fig. 1). The moment reference point was at the design center-of -gravity location which was 65 percent of the body length longitudinally and on the model reference line vertically (fig. 2). Values are given in SI Units. (Tables present values in both SI Units and U.S. Customary Units.) Measurements and calculations were made in U.S. Customary Units.
$A_{b} \quad$ base area of fuselage, $0.0023 \mathrm{~m}^{2}$
$A_{r} \quad$ reference area, $0.0626 \mathrm{~m}^{2}$
b wing span, 0.244 m
$C_{D} \quad$ drag coefficient, $\frac{D}{q_{\infty} A_{r}}$
$C_{D, 0} \quad$ drag coefficient at zero lift
$\mathrm{C}_{\mathrm{L}} \quad$ lift coefficient, $\frac{\mathrm{L}}{\mathrm{q}_{\infty} \mathrm{A}_{\mathbf{r}}}$
$C_{l} \quad$ rolling-moment coefficient, $\frac{M_{X}}{q_{\infty} A_{r} b}$
$C_{l_{\beta}} \quad$ effective dihedral parameter, $\frac{\Delta C_{l}}{\Delta \beta}$, per degree
$\mathrm{C}_{l_{\delta_{H}}} \quad$ rate of change of C_{l} with differential elevon deflection, per degree, $\left({ }^{C_{\delta_{\delta_{H}}}=20}-{ }^{C_{l_{\delta_{H}}}}{ }^{0}\right) / 20$
${ }^{C_{l_{\delta}}} \quad$ rate of change of C_{l} with rudder deflection, per degree
$C_{m} \quad$ pitching-moment coefficient, $\frac{M_{Y}}{q_{\infty} A_{r} l}$
$\mathrm{C}_{\mathrm{m}, \mathrm{o}} \quad$ pitching-moment coefficient at zero lift
$\frac{\partial C_{m}}{\partial C_{L}} \quad$ static longitudinal stability parameter, based on l
$C_{n} \quad$ yawing-moment coefficient, $\frac{M_{Z}}{q_{\infty} A_{r} b}$

$C_{n^{\delta_{H}}}$
rate of change of C_{n} with differential elevon deflection, per degree, $\left({ }_{\mathrm{n}_{\delta_{\mathrm{H}}}=20}-\mathrm{C}_{\mathrm{n}_{\delta_{\mathrm{H}}}=0}\right) / 20$
$\mathrm{C}_{\mathrm{n}_{\delta}} \quad$ rate of change of C_{n} with rudder deflection, per degree
$C_{Y} \quad$ side-force coefficient, $\frac{F_{Y}}{q_{\infty} A_{r}}$

$\mathrm{C}_{\mathrm{Y}_{\beta}}$	side-force parameter, $\frac{\Delta C_{Y}}{\Delta \beta}$, per degree
$\mathrm{C}_{Y_{\delta}}$	rate of change of C_{Y} with differential elevon deflection, per degree, $\left({ }^{\mathrm{C}_{\mathrm{K}_{\mathrm{H}}}=20}{ }^{-\mathrm{C}_{\mathrm{Y}_{\delta_{H}}=0}}\right)^{1}$
$\mathrm{C}_{\mathbf{Y}_{\delta_{V}}}$	rate of change of $\mathrm{C}_{\mathbf{Y}}$ with rudder deflection, per degree
D	drag, $\quad \mathrm{F}_{\mathrm{N}} \sin \alpha+\mathrm{F}_{\mathrm{A}} \cos \alpha$
F_{A}	axial force along X -axis, positive direction, - X
F_{N}	normal force along Z-axis, positive direction, -Z
$\mathrm{F}_{\mathbf{Y}}$	side force along Y-axis, positive direction, +Y
L	lift, $\quad \mathrm{F}_{\mathrm{N}} \cos \alpha-\mathrm{F}_{\mathrm{A}} \sin \alpha$
l	length of model fuselage
L/D	lift-drag ratio
(L/D) max	maximum lift-drag ratio
M	Mach number
$\mathrm{M}_{\mathbf{X}}, \mathrm{M}_{\mathrm{Y}}, \mathrm{M}_{\mathrm{Z}}$	moments about $\mathrm{X}-, \mathrm{Y}-$, and Z -axes, respectively
q_{∞}	free-stream dynamic pressure
$\mathbf{X , Y , Z}$	reference axes, when unsubscripted they are body axes
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	coordinates along $\mathrm{X}-\mathrm{l}$, $\mathrm{Y}-$, and Z -axes, respectively, cm

α	angle of attack, deg
β	angle of sideslip, deg
$\Delta \beta$	$=\left(\beta \neq 0^{\circ}\right)-\left(\beta=0^{\circ}\right)$
${ }^{\delta} \mathrm{e}$	elevon deflection angle, positive when traili
Subscripts:	
\mathbf{S}	stability axis system
t	trim condition, $\mathrm{C}_{\mathrm{m}}=0$
${ }^{\delta} \mathrm{H}$	differentially deflected ailerons for róll con
${ }^{\delta} \mathbf{V}$	deflected rudder for yaw control, positive f
Abbreviatio	ons:
a.c.	aerodynamic center
c.g.	center of gravity, moment reference point
HL	hinge line
L.E.	leading edge
T.E.	trailing edge
Model nomenclature:	
B	body or fuselage
BF	base fairing
$\mathrm{BWV}_{\mathrm{CH}}$	basic configuration

$\mathrm{BWV}_{\mathrm{CH}} \mathrm{E}_{6}$	complete configuration
E_{3}	three-module scramjet engine
E_{6}	six-module scramjet engine
$\mathrm{V}_{\mathrm{CDB}}$	center vertical tail, speed brakes
V_{CH}	center vertical tail, hypersonic (wedge airfoil)
V_{CS}	center vertical tail, subsonic (diamond airfoil)
W	wing

DESIGN CONCEPT CONSIDERATIONS

The overall design rationale for this concept was primarily based on performance, stability, and control requirements at Mach numbers from 6 to 8 and the performance at touchdown speed, with the scramjet engine installed. It has been shown in reference 9 that vehicle performance is sensitive to the scramjet engine longitudinal location and to wing incidence since the airframe-integrated scramjet concept uses the forebody for precompressed air and the aftbody for a half nozzle expansion ramp (ref. 10). A threemodule scramfjet engine package is considered the minimum number of engines to make a meaningful flight experiment whereas a six-module package is representative of the size required to produce positive net thrust at Mach 6. The center vertical tail was designed with a dual hinge line rudder at approximately the two-thirds chord location to allow for a diamond airfoil for subsonic through supersonic speeds, a wedge airfoil for hypersonic speeds, and for speed brake extension. The elevons were envisioned to be split in order to provide flared elevons for longitudinal aerodynamic center control.

The Hypersonic Arbitrary-Body Aerodynamics Computer Program (ref. 6) with simplified geometry input from reference 11 was used for hypersonic aerodynamic predictions during parametric studies to define this concept. Several available options within this program have been exercised to compare with hypersonic aerodynamics data (e.g., refs. 12, 13, and 14). For the research airplane concept analyzed in this paper, the following options were utilized for theoretical predictions: for compression regions, tangent cone on the fuselage and tangent wedge on the wing and vertical tail; for expansion regions, Prandtl-Meyer expansion; and for skin friction, the Spalding-Chi method (with 100 -percent turbulent boundary layer). The numerical model that was used for the aerodynamic predictions is presented in table I.

APPARATUS AND METHODS

Model

A sketch and a photograph of the model with its interchangeable parts are shown in figures 2 and 3 , respectively. The $1 / 30$-scale test model was of modular design to permit buildup of the basic model (fig. 2(a)) from components consisting of body, cropped delta wing, center vertical tail, and scramjet engine. The wing had 2.1° negative incidence and 10° dihedral. The airfoil was a modified circular arc with a leading-edge radius (normal to L.E.) of 0.064 cm followed by a 10° wedge section. The elevons had a constant thickness at the hinge line of 0.814 cm and 7.6° wedge angle and were contoured on top and bottom over approximately the aft one-third to give a trailing-edge thickness of 0.064 cm . Two model scramjet engine packages consisting of three and six clustered modules were also tested. (See figs. 2(b) and 3.) The actual scramjet engine would have three internal fuel struts in each module whereas the model engine packages used in this test simulated the internal geometric contraction by use of one strut. The dual hinge-line rudder variations were simulated with three separate vertical tails (figs. 2(c) and 3). The flared elevons were simulated by deflecting the elevons -5° and attaching 10° wedges on the flat lower surface. The pertinent geometrical characteristics of the model for aerodynamic testing are listed in table II.

Wind Tunnel and Test Conditions

The investigation was conducted in the Langley 20 -inch Mach 6 tunnel. This is a blowdown type wind tunnel which exhausts into the atmosphere or vacuum spheres. The tunnel has a two-dimensional nozzle and a test section 52.1 cm high and 50.8 cm wide. More detailed description of this tunnel can be found in reference 15.

The tests were conducted at Mach 6 and at a nominal stagnation pressure and temperature of $3034 \mathrm{kN} / \mathrm{m}^{2}$ and 500 K , respectively. The corresponding free-stream Reynolds number per meter was 23.5×10^{6}. Aerodynamic force and moment data were obtained over an angle-of-attack range of -4° to 20° and for angles of sideslip of $0^{\circ},-2^{\circ}$, and -4°. Elevon deflections were varied from 10° to -15° and the rudder was deflected 0° and -15.4°.

Data Acquisition and Reduction

Aerodynamic force and moment data were measured with a six-component straingage balance which was housed inside the model fuselage and attached to the tunnel sting support system. The movable sting support system was pneumatically driven through the angle-of -attack range during each run. Angles of sideslip were obtained by rotating the
support system to the desired offset angle prior to an excursion through the angle-ofattack range. The angles of attack and sideslip were set optically by using a prism mounted on the model to reflect a point source of light onto a calibrated chart. The Mach number was obtained with a total-pressure probe which was inserted into the test section upstream of the model at the beginning and end of each run. (Force data were not recorded with the probe in the tunnel.) The Mach number for each test point was then determined by linear interpolation with time.

Straight-line slopes between the data at $\beta=0^{\circ}$ and $\beta=-2^{\circ}$ or -4^{o} were used to obtain the lateral-directional stability parameters. Model base pressure was determined from the average measurements made at three locations with forward-facing pressure tubes during each test (fig. 2(a)), and the axial-force data were adjusted to correspond to a base pressure equal to free-stream static pressure.

Schlieren and oil-flow photographs were also obtained during the test program. The oil-flow study was conducted separately from the force study.

RESULTS AND DISCUSSION

Static Longitudinal Characteristics

Configuration buildup and effect of components. - The longitudinal aerodynamic characteristics for the configuration buildup are presented in figure 4. Addition of the wing to the body stabilized this combination through the test angle-of -attack range. Addition of the wedge tail and either the three- or six-module scramjet engine was a stabilizing influence but each component produced succeedingly lower lift-drag ratios. Note that $\mathrm{C}_{\mathrm{m}, \mathrm{o}}$ for the complete configuration $\left(\mathrm{BWV}_{\mathrm{CH}^{\mathrm{E}}}^{6}\right.$) is about the same as that for the bodywing (BW); that is, the increase in $C_{m, o}$ from addition of the vertical tail is offset by a decrease when the six-module scramjet is installed.

The effect of vertical-tail variations on the basic and complete configurations is presented in figures 5 and 6. Closing the split rudder to form a diamond airfoil vertical tail produced a slight increase in L/D but negligible change in the aerodynamic center. Conversely, flaring the split rudder to form speed brakes was effective in producing an increment in $C_{m, 0}=0.022$ relative to the hyper sonic wedge tail, a slight rearward shift in aerodynamic center, and an increment in $C_{D, 0}=0.006$, the effect on drag decreasing with increasing angle of attack.

Trim characteristics. - The effect of elevon deflection on the longitudinal characteristics of the configurations with and without the six-module scramjet engine is presented in appendix A. These effects were used to determine the trimmed characteristics for the basic and complete configurations which are presented in figures 7 and 8 , respectively.

With a maximum of -15° of elevon deflection, the basic configuration was trimmable up to an angle of attack of about 21° and had a trimmed (L/D) \max of 3.1 ; addition of the scramjet engine reduced the maximum trim angle of attack to 8.5° and the maximum L / D attained was 2.6. The low values of maximum trim angle of attack for the complete configuration resulted from the low positive value of $C_{m, o}$ and low elevon deflection effectiveness. (See appendix A.) However, the trim angle-of-attack range resulting from this investigation is adequate for the low cruise angle of attack envisioned for this airplane (ref. 8). The trimmed static margin for the basic and complete configurations varied from 2 percent to 6 percent of the model fuselage length over the trimmed angle-of-attack range.

Wedge elevons, - The results of the wedge-elevon investigation are presented in figure 9. These deflections result in an untrimmed static margin gain of 1.7 percent and 1.4 percent for the basic and complete configurations, respectively, relative to the zero elevon deflection case. The effectiveness of wedge airfoil surfaces for enhancing directional stability was proven during the $\mathrm{X}-15$ research program (ref. 16). It appears that this same approach may be used to minimize longitudinal aerodynamic center shift and reduce trim losses across the Mach number range but more investigation is needed.

Static Lateral-Directional Characteristics

Configuration buildup.- The static lateral-directional characteristics for the body buildup were evaluated for $\Delta \beta=-2^{\circ}$ and $\Delta \beta=-4^{\circ}$. The characteristics for $\Delta \beta=-2^{\circ}$ are presented in figure 10 and those for $\Delta \beta=-4^{\circ}$ in appendix B. The body alone is unstable both laterally and directionally across the test angle-of-attack range. Addition of the wing produces lateral stability above about 9° but this configuration remains directionally unstable. Addition of the vertical tail and either of the scramjet engine packages was a stabilizing influence but these components provided lateral stability only for $\alpha>3^{\circ}$ and the configurations remain either neutral or unstable directionally across the test angle-of-attack range. Therefore, modifications appear necessary for this concept to be acceptable from a static stability viewpoint at $M=6$.

Roll and yaw control.- The roll control characteristics for the basic and complete configurations are presented in figure 11. These data were obtained by deflecting the left elevon 10° and the right elevon -10°. Roll control is available for both the basic and complete configurations. The yawing moment due to roll control is adverse and increases with increasing angle of attack. Note that the effects of adding the engine are negligible on $\mathrm{C}_{l_{\delta \mathrm{H}}}$ and $\mathrm{C}_{\mathrm{Y}_{\mathrm{H}}}$.

The yaw characteristics for the basic and complete configurations are presented in figure 12. These data were obtained by deflecting the rudder -15.4°. The rolling moment
due to yaw control ${ }^{C} l_{\delta_{V}}$ for both configurations is about equal to the roll control effec-
 increasing α. Rudder effectiveness is available through the test angle-of-attack range but it decreases with increasing angle of attack. Again, addition of the engine had a negligible effect on the yaw control.

Theoretical Comparison

Longitudinal body buildup. - The theoretical predictions from the method of reference 6 for the longitudinal aerodynamic characteristics for the $B, B W$, and $B W V_{C H}$ configurations are compared with the experimental data in figure 13. The predictions are seen to be good but, in general, at the lower angles of attack the lift is underpredicted and drag and pitching moment overpredicted whereas at the higher angles of attack the lift is overpredicted and the drag and pitching moment are underpredicted.

Trim characteristics.- The theoretical trimmed aerodynamic characteristics for the basic configuration are compared with experimental data in figure 14 . These theoretical results were obtained from the predicted aerodynamic characteristics for various elevon deflections as shown in appendix A. The predicted trimmed lift-drag ratio is seen to be higher than the data for $\mathrm{C}_{\mathrm{L}}>0.14$ but $(\mathrm{L} / \mathrm{D})_{\max }$ is almost identical to the data. The trimmed static margin is overpredicted by about 1 percent at the higher C_{L} levels.

Lateral-directional stability.- The theoretical lateral-directional stability parameters are compared with experimental data in figure 15. The predicted lateral stability characteristics for the body alone agree with the data in trend and magnitude whereas the stable region attained by addition of the wing is predicted but the magnitude is incorrect. The $\mathrm{BWV}_{\mathrm{CH}}$ configuration is predicted to be laterally stable across the test angle-ofattack range but the data show it to be unstable for $\alpha<4^{\circ}$. The experimental directional stability level and trend is well predicted for B and BW configurations; however, the overall trend and magnitude are in error when the tail is added to form $\mathrm{BWV}_{\mathrm{CH}}$. In summary, the theory tends to predict the stability parameters rather well for the isolated body but not for combinations of components. These results are probably due to the inability of the theory to accurately predict the pressure distribution or to account for component interference.

CONCLUSIONS

An investigation has been conducted to determine the hypersonic aerodynamic characteristics of a wing-body concept for a hypersonic research airplane. The investigation
was conducted at a Mach number of 6 and at a Reynolds number per meter of 23.5×10^{6}. An analysis of the data leads to the following conclusions:

1. With a maximum elevon deflection of -15°, the basic configuration was trimmable to an angle of attack of 21° and had a trimmed maximum lift-drag ratio ($\left.\mathrm{L} / \mathrm{D}\right)_{\max }$ of 3.1 ; addition of a six-module scramjet reduced the maximum trimmed angle of attack to 8.5° and the $(\mathrm{L} / \mathrm{D})_{\max }$ attained was 2.6.
2. Flaring the split rudder to form speed brakes improved longitudinal stability.
3. Wedge èlevons were effective in shifting the aerodynamic center rearward by 1.7 percent and 1.4 percent of fuselage length for the basic and complete configurations, respectively.
4. This concept was unstable laterally for an angle of attack less than 3^{O} and either neutral or unstable directionally across the test angle-of -attack range.
5. Roll and yaw control were available through the test angle-of-attack range. Yaw due to roll control became sizable at the higher angles of attack whereas the roll due to yaw control was equal to roll control effectiveness at low angles of attack.
6. The Hypersonic Arbitrary-Body Aerodynamics Computer Program gave reasonable predictions of longitudinal aerodynamic characteristics; however, lateral-directional stability parameters were not well predicted except for the isolated body.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
May 16, 1978

APPENDIX A

EFFECT OF ELEVON DEFLECTION

The effects of elevon deflection on the longitudinal characteristics of the basic and complete configurations are presented in figures 16 and 17, respectively. Theoretical predictions from the methods of references 6 and 11 compared with experimental data for the basic configuration are shown in figure 18. These data and predictions were used to determine the trimmed longitudinal characteristics for this concept with and without the scramjet engine installed. Note that the effect of negative elevon deflection is small and that the complete configuration has a very small positive $C_{m, 0}$.

The theory is noted to underpredict the lift at the lower angles of attack and overpredict lift at the higher angles of attack. The $C_{D, o}$ predictions are good in general but $C_{m, o}$ is overpredicted as is the effect of elevon deflection on the pitching moment $\partial C_{m} / \partial \delta_{e}$. The predicted level of ($\left.\mathrm{L} / \mathrm{D}\right)_{\max }$ is good but the angle of attack at which it occurs does not correspond to the data. Likewise, the static margin at trim is predicted very well but the angle of attack for $C_{m, o}$ is not.

APPENDIX B

LATERAL-DIRECTIONAL STABILITY DERIVATIVES

The static lateral-directional stability characteristics for body buildup evaluated at $\Delta \beta=-4^{0}$ is presented in figure 19. These data were compared with those for $\Delta \beta=-2^{\circ} \quad$ (fig. 10) and are seen to be almost identical. Therefore, the basic lateraldirectional characteristics are assumed to be linear over the range $-4^{0} ₹ \beta \bar{\beta} 4^{0}$ for the test angle-of -attack range. Those stability characteristics for $\Delta \beta=-2^{\circ}$ are shown in the text of this paper since they are considered to be more accurate than results obtained at $\Delta \beta=-4^{\circ}$ because of less balance interactions.

APPENDIX C

VISUAL FLOW PHOTOGRAPHS

Visual observations that were recorded as a part of this test program are included for quantitative assessment of this design concept.

A schlieren photograph of the model at an angle of attack of 20° is shown in figure 20. Shocks from the nose, canopy, wing, and tail are readily identified as is the expansion region aft of the canopy. The complexity of the flow in the vicinity of the engine is also demonstrated by the multitude of interacting shocks.

Oil-flow patterns at various model attitudes are presented in figure 21. The model is shown at zero sideslip angle and angles of attack of $0^{\circ}, 4^{\circ}$, and 8° in figure 21(a). Observations in the top view (A, D, and H) are the forward movement of the shear line on the wings with increasing angle of attack, apparent separation in front of the canopy windscreen, and disturbances from the canopy itself which form counterrotating vortices along the top of the fuselage. Views B, E, and J again show disturbances from the cockpit and the upward flow along the fuselage with separation and reattachment lines for the vortex. Note also the distinct shear line on the engine sidewall at $\alpha=0^{\circ}$ and 4° (B and E) which disappears at $\alpha=8^{\mathrm{O}} \quad(\mathrm{J})$; this suggests inlet spillage which is influenced by angle of attack. The bottom views (C, F, G, and H) also show interesting flow patterns: inward flow on the wing at $\alpha=0^{\circ}$ (leeside flow for this attitude) which straightens as angle of attack is increased; little shear flow behind the engine at $\alpha=0^{0}$ but stronger shear with increasing α (this could be associated with the shear line noted on the engine sidewall); no disturbance on the wing due to the engine installation (F and G); and cross flow on the forebody with separation or low shear areas which decrease with increasing α. The flow patterns on the undersurface of the forebody forward of the break in the projected body sweep angle are similar to those found in reference 17 during heat-transfer tests on a hypersonic research airplane concept. The tests in reference 17 were conducted at $\alpha=4^{0}$ and showed a separation region aft of the nose and a "cold streak" on the fuselage center line which persisted to the engine inlet location. The "cold streak" was assumed to result from a thickened boundary layer and inward cross flow. The model in reference 17 had a constant projected fuselage sweep angle from the nose to the engine inlet whereas the model in this test had a "break' approximately 60 percent of the distance from the nose to the engine inlet; therefore, the flow on the model in this test appears to be straighter well forward of the inlet station, possibly because of pressure relief at the fuselage break.

Since this airplane is envisioned to fly a research cruise segment at $\alpha=4^{\circ}$, oilflow patterns were also recorded at $\alpha=4^{0}$ and $\beta=-4^{\circ}$ (fig. 21(b)). The strong

APPENDIX C

disturbances are again noted around the cockpit as well as separation and reattachment lines from vortices on top of the fuselage aft of the cockpit. The reattachment lines are shifted expectedly to the leeward side of the fuselage and appear to be much stronger on the leeward side than on the windward wide of the vertical tail (views A, G, and H). This flow pattern may help explain the directional instability noted from the force data analysis. The disturbance on the engine sidewall is again noted (views C and G) for this model attitude. The flow direction in yaw on the lower forebody is nearly identical to the vehicle yaw angle (view E) and may become a major design consideration in integrating fixed geometry scramjets which utilize sidewall internal compression such as the Langley concept employed in these tests. The degree of sidewise flow angularity which can be tolerated at the inlet of this concept has not been resolved.

REFERENCES

1. Hearth, Donald P.; and Preyss, Albert E.: Hypersonic Technology - Approach to an Expanded Program. Astronaut. \& Aeronaut., vol. 14, no. 12, Dec. 1976, pp. 20-37.
2. Hypersonic Research Facilities Study. Volume IV, Part 1, Phase III Final Studies Flight Research Facilities. NASA CR-114327, 1970.
3. Eppley, C. V.: The Rocket Research Aircraft Program 1946-1962. FTC-TDR-63-3, U.S. Air Force, Feb. 1963.
4. Penland, Jim A.; Fournier, Roger H.; and Marcum, Don C., Jr.: Aerodynamic Characteristics of a Hypersonic Research Airplane Concept Having a 70° Swept DoubleDelta Wing at Mach Numbers From 1.50 to 2.86. NASA TN D-8065, 1975.
5. Kirkham, F. S.; Jackson, L. Robert; and Weidner, John P.: Study of a High-Speed Research Airplane. J. Aircr., vol. 12, no. 11, Nov. 1975, pp. 857-863.
6. Gentry, Arvel E.; and Smyth, Douglas N.: Hypersonic Arbitrary-Body Aerodynamic Computer Program (Mark III Version). Vol. II - Program Formulation and Listings. Rep. DAC 61552, Vol. II (Air Force Contract Nos. F33615 67 C 1008 and F33615 67 C 1602), McDonnell Douglas Corp., Apr. 1968. (Available from DDC as AD 851 812.)
7. Dillon, James L.; and Creel, Theodore R., Jr.: Aerodynamic Characteristics at Mach Number 0.2 of a Wing-Body Concept for a Hypersonic Research Airplane. NASA TP-1189, 1978.
8. Dillon, James L.; and Pittman, Jimmy L.: Aerodynamic Characteristics at Mach Numbers From 0.33 to 1.20 of a Wing-Body Design Concept for a Hypersonic Research Airplane. NASA TP-1044, 1977.
9. Weidner, J. P.; Small, W. J.; and Penland, J. A.: Scramjet Integration on Hypersonic Research Airplane Concepts. J. Aircr., vol. 14, no. 5, May 1977, pp. 460-466.
10. Henry, John R.; and Anderson, Griffin Y.: Design Considerations for the AirframeIntegrated Scramjet. NASA TM X-2895, 1973.
11. Stack, Sharon H.; Edwards, Clyde L. W.; and Small, William J.: GEMPAK: An Arbitrary Aircraft Geometry Generator. NASA TP-1022, 1977.
12. Ellison, James C.: Investigation of the Aerodynamic Characteristics of a Hypersonic Transport Model at Mach Numbers to 6. NASA TN D-6191, 1971.
13. Goldberg, Theodore J.; Hefner, Jerry N.; and Stone, David R.: Hypersonic Aerodynamic Characteristics of Two Delta-Wing X-15 Airplane Configurations. NASA TN D-5498, 1969.
14. Clark, Louis E.; and Richie, Christine B.: Aerodynamic Characteristics at Mach 6 of a Hypersonic Research Airplane Concept Having a 70° Swept Delta Wing. NASA TM X-3475, 1977.
15. Keyes, J. Wayne: Force Testing Manual for the Langley 20 -Inch Mach 6 Tunnel. NASA TM-74026, 1977.
16. McLellan, Charles H.: A Method for Increasing the Effectiveness of Stabilizing ${ }^{\circ}$ Surfaces at High Supersonic Mach Numbers. NACA RM L54F21, 1954.
17. Lawing, Pierce L.; and Hunt, James L.: Aerodynamic Heat Transfer to a Hypersonic Research Aircraft Model (X-24C) at Mach 6. J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1018-1020.
(a) Fuselage coordinates

$\mathrm{x} / 2$	y		z	
	cm	in.	cm	in.
0	0.000	0.000	-0.737	-0.290
0.002	0.000	0.000	-0.576	-0.227
	. 049	. 019	-. 583	-. 230
	. 094	. 037	-. 606	-. 238
	. 130	. 051	-. 641	-. 252
	. 153	. 060	-. 685	-. 270
	. 161	. 063	-. 734	-. 289
	. 153	. 060	-. 781	-. 307
	. 128	. 050	-. 820	-. 323
	. 091	. 036	-. 849	-. 334
	. 047	. 018	-. 866	-. 341
	. 000	. 000	-. 872	-. 343
0.045	0.000	0.000	-0.077	-0.030
	. 175	. 069	-. 111	-. 044
	. 326	. 128	-. 205	-. 081
	.439	. 173	-. 343	-. 135
	508	. 200	-. 507	-. 200
	. 531	. 209	-. 684	-. 269
	. 529	. 208	-. 869	-. 342 .
	. 464	. 183	-1.043	-. 411
	. 344	. 135	-1.185	-. 466
	. 183	. 072	-1.277	-. 503
	. 001	. 000	-1.309	-. 516
0.132	0.000	0.000	0.930	0.366
	. 425	. 167	. 840	. 331
	. 787	. 310	. 598	. 236
	1.059	. 417	. 258	. 102
	1.236	. 487	-. 141	-. 055
	1.319	. 519	-. 569	-. 224
	1.319	. 519	-. 611	-. 240
	1.327	. 522	-. 951	-. 374
	1.284	. 506	-1.289	-. 507
	1.178	. 464	-1.612	-. 635
	. 983	. 387	-1.889	-. 744
	. 675	266	-2.019	-. 795
	. 000	. 000	-2.019	-. 795

x / l	y			z	
	cm	in.	cm	in.	
	0.000	0.000	1.508	0.594	
	.527	.208	1.413	.556	
	.991	.390	1.145	.451	
	1.351	.532	.747	.294	
	1.586	.624	.265	.104	
	1.687	.664	-.262	-.103	
	1.713	.674	-.262	. .103	
	1.765	.695	-1.227	-.483	
	1.691	.666	-1.479	-.582	
	1.598	.629	-1.725	-.679	
	1.482	.584	-1.960	-.772	
	1.332	.525	-2.176	-.857	
	1.113	.438	-2.310	-.909	
	.000	.000	-2.310	-.909	
0.212	0.000	0.000	2.460	0.969	
	.022	.009	2.454	.966	
	.040	.016	2.440	.960	
	.067	.026	2.403	.946	
	.077	.030	2.383	.938	
	.587	.231	1.594	.628	
	.999	.393	1.376	.542	
	1.355	.533	1.074	.423	
	1.634	.643	.700	.276	
	1.823	.718	.273	.108	
	1.908	.751	-.185	-.073	
	1.949	.767	-.185	-.073	
	2.032	.800	-1.486	-.585	
	1.965	.774	-1.723	-.678	
	1.874	.738	-1.951	-.768	
	1.754	.691	-2.166	-.853	
	1.596	.628	-2.353	-.926	
	1.376	.542	-2.453	-.966	
	.000	.000	-2.453	-.966	

TABLE I. - Continued
(a) Continued

$\mathrm{x} / 2$	y		z	
	cm	in.	cm	in.
0.254	0.000	0.000	3.110	1.224
	. 130	. 051	3.098	1.220
	. 254	. 100	3.059	1.204
	. 368	. 145	2.996	1.180
	. 470	. 185	2.914	1.147
	. 555	. 218	2.815	1.108
	1.225	. 482	1.822	. 717
	1.547	. 609	1.495	. 589
	1.817	. 716	1.124	. 443
	2.030	. 799	. 718	. 283
	2.177	. 857	. 283	. 111
	2.250	. 886	-. 170	-. 067
	2.280	. 897	-. 170	-. 067
	2.407	. 948	-1.769	-. 696
	2.351	. 926	-1.993	-. 785
	2.262	. 890	-2.205	-. 868
	2.135	. 840	-2.398	-. 944
	1.962	. 773	-2.551	-1.004
	1.744	. 686	-2.618	-1.031
	. 000	. 000	-2.618	-1.031
0.297	0.000	0.000	3.275	1.289
	. 344	. 136	3.190	1.256
	. 662	. 261	3.031	1.193
	. 953	. 375	2.828	1.114
	1.221	. 481	2.594	1.021
	1.464	. 576	2.335	. 919
	1.718	. 676	1.881	. 740
	1.978	. 779	1.497	. 589
	2.203	. 867	1.092	. 430
	2.388	. 940	. 668	. 263
	2.525	. 994	. 226	. 089
	2.601	1.024	-. 231	-. 091
	2.790	1.099	-1.981	-. 780
	2.749	1.082	-2.204	-. 868
	2.661	1.047	-2.413	-. 950
	2.524	. 994	-2.594	-1.021
	2.340	. 921	-2.725	-1.073
	2.120	. 835	-2.775	-1.093
	. 000	. 000	-2.775	-1.093

x / l	y		z	
	cm	in.	cm	in.
0.408	0.000	0.000	3.377	1.330
	. 560	. 220	3.306	1.301
	1.090	. 429	3.111	1.225
	1.574	. 620	2.820	1.110
	2.004	. 789	2.454	. 966
	2.373	. 934	2.026	. 798
	3.382	1.332	. 702	. 276
	3.502	1.379	. 465	. 183
	3.578	1.408	. 211	. 083
	3.628	1.428	-. 050	-. 020
	3.658	1.440	-. 314	-. 124
	3.672	1.446	-. 579	-. 228
	3.780	1.488	-2.430	-. 957
	3.756	1.479	-2.654	-1.045
	3.667	1.444	-2.860	-1.126
	3.520	1.386	-3.030	-1.193
	3.326	1.310	-3.143	-1.237
	3.105	1.223	-3.183	-1.253
	. 000	. 000	-3.183	-1.253
0.531	0.000	0.000	3.138	1.235
	. 674	. 265	3.082	1.213
	1.330	. 523	2.914	1.147
	1.946	. 766	2.636	1.038
	2.499	. 984	2.247	. 885
	2.962	1.166	1.754	. 691
	4.169	1.641	. 201	. 079
	4.292	1.690	-. 038	-. 015
	4.392	1.729	-. 288	-. 113
	4.466	1.758	-. 546	-. 215
	4.508	1.775	-. 812	-. 320
	4.514	1.777	-1.081	-. 426
	4.692	1.847	-2.928	-1.153
	4.630	1.823	-3.146	-1.238
	4.514	1.777	-3.340	-1.315
	4.350	1.713	-3.496	-1.376
	4.148	1.633	-3.598	-1.417
	3.925	1.545	-3.634	-1.431
	. 000	. 000	-3.634	-1.431

TABLE I. - Continued
(a) Concluded

x/l	y		2	
	cm	in.	cm	in.
0.561	0.000	0.000	3.079	1.212
	. 672	. 264	3.023	1.190
	1.324	. 521	2.853	1.123
	1.936	. 762	2.572	1.013
	2.485	. 978	2.181	. 859
	2.944	1.159	1.688	. 665
	4.201	1.654	. 079	. 031
	4.333	1.706	-. 158	-. 062
	4.447	1.751	-. 403	-. 159
	4.540	1.788	-. 657	-. 259
	4.606	1.813	-. 920	-. 362
	4.625	1.821	-1.189	-. 468
	4.802	1.891	-3.049	-1.201
	4.746	1.869	-3.265	-1.285
	4.634	1.824	-3.456	-1.361
	4.473	1.761	-3.610	-1.421
	4.275	1.683	-3.709	-1.460
	4.055	1.597	-3.744	-1.474
	. 000	. 000	-3.744	-1.474
0.751	0.000	0.000	2.710	1.067
	. 656	. 258	2.649	1.043
	1.290	. 508	2.468	. 972
	1.879	. 740	2.171	. 855
	2.400	. 945	1.767	. 696
	2.832	1.115	1.269	. 500
	4.389	1.728	-. 696	-. 274
	4.398	1.731	-. 738	-. 291
	4.408	1.735	-. 781	-. 307
	4.418	1.739	-. 823	-. 324
	4.430	1.744	-. 865	-. 341
	4.716	1.857	-. 869	-. 342
	4.899	1.929	-3.819	-1.503
	4.878	1.920	-4.010	-1.579
	4.794	1.887	-4.184	-1.647
	4.659	1.834	-4.323	-1.702
	4.488	1.767	-4.411	-1.737
	4.297	1.692	-4.441	-1.749
	. 000	. 000	-4.441	-1.749

x / l	y		z	
	cm	in.	cm	in.
0.830	0.000	0.000	2.844	1.120
	. 681	. 268	2.730	1.075
	1.310	. 516	2.442	. 961
	1.872	. 737	2.038	. 802
	2.365	. 931	1.551	. 611
	2.785	1.096	1.001	. 394
	4.117	1.621	-. 675	-. 266
	4.656	1.833	-. 675	-. 266
	4.903	1.930	-4.138	-1.629
	4.889	1.925	-4.313	-1.698
	4.825	1.899	-4.475	-1.762
	4.713	1.855	-4.610	-1.815
	4.563	1.796	-4.700	-1.850
	4.391	1.729	-4.731	-1.863
	. 000	. 000	-4.731	-1.863
0.870	0.000	0.000	2.912	1.146
	. 700	. 276	2.776	1:093
	1.333	. 525	2.445	. 963
	1.887	. 743	1.993	. 785
	2.363	. 930	1.459	. 575
	2.761	1.087	. 865	. 341
	3.839	1.512	-. 671	-. 264
	4.574	1.801	-. 671	-. 264
	4.905	1.931	-3.585	-1.411
	4.897	1.928	-3.719	-1.464
	4.848	1.909	-3.844	-1.514
	4.761	1.875	-3.947	-1.554
	4.646	1.829	-4.016	-1.581
	4.513	1.777	-4.039	-1.590
	. 000	. 000	-4.039	-1.590
1.000	0.000	0.000	3.133	1.233
	. 744	. 293	2.821	1.111
	1.432	. 564	2.400	. 945
	2.033	. 801	1.864	. 734
	2.491	. 981	1.201	. 473
	2.684	1.057	. 423	. 167
	2.684	1.057	-. 923	-. 363
	4.911	1.933	-. 923	-. 363
	4.911	1.933	-1.761	-. 693
	. 000	. 000	-1.761	-. 693

TABLE I. - Continued
(b) Wing coordinates

Chord	Upper surface						Lower surface					
	x		y		z		\mathbf{x}		y		z	
	cm	in.										
1	32.453	12.777	4.782	1.883	-3.024	-1.191	32.453	12.777	4.782	1.883	-3.024	-1.191
	32.489	12.791	4.780	1.882	-2.988	-1.176	32.442	12.772	4.772	1.879	-3.061	-1.205
	32.573	12.824	4.783	1.883	-2.959	-1.165	32.502	12.796	4.771	1.878	-3.082	-1.214
	33.375	13.140	4.780	1.882	-2.782	-1.095	33.338	13.125	4.804	1.891	-3.040	-1.197
	38.492	15.154	4.731	1.862	-1.807	-. 712	38.359	15.102	4.807	1.892	-2.788	-1.097
	43.541	17.142	4.730	1.862	-1.154	-. 454	43.389	17.082	4.817	1.896	-2.533	-. 997
	48.428	19.066	4.668	1.838	-. 829	-. 326	48.357	19.038	4.772	1.879	-2.291	-. 902
	53.393	21.021	4.693	1.848	-. 803	-. 316	53.403	21.025	4.801	1.890	-2.033	-. 800
	58.385	22.986	4.909	1.933	-1.063	-. 418	58.421	23.000	4.801	1.890	-1.780	-. 701
	60.660	23.882	4.909	1.933	-1.272	-. 501	60.680	23.890	4.801	1.890	-1.667	-. 656
	62.936	24.778	4.909	1.933	-1.481	-. 583	62.939	24.779	4.801	1.890	-1.553	-. 612
	62.938	24.779	4.909	1.933	-1.507	-. 593	62.939	24.779	4.801	1.890	-1.527	-. 601
2	41.609	16.382	8.535	3.360	-1.901	-0.749	41.609	16.382	8.535	3.360	-1.901	-0.749
	41.634	16.391	8.529	3.358	-1.867	-. 735	41.637	16.393	8.541	3.363	-1.934	-. 761
	41.703	16.418	8.525	3.356	-1.840	-. 724	41.708	16.421	8.545	3.364	-1.953.	-. 769
	42.453	16.714	8.500	3.347	-1.662	-. 654	42.466	16.719	8.546	3.365	-1.921	-. 756
	45.613	17.958	8.413	3.312	-1.009	-. 397	45.651	17.973	8.546	3.365	-1.761	-. 693
	48.782	19.206	8.361	3.292	-. 553	-. 218	48.835	19.226	8.546	3.365	-1.601	-. 630
	51.962	20.458	8.346	3.286	-. 306	-. 121	52.019	20.480	8.546	3.365	-1.441	-. 567
	55.153	21.714	8.367	3.294	-. 270	-. 106	55.203	21.734	8.546	3.865	-1.281	-. 504
	58.354	22.974	8.426	3.317	-. 443	-. 175	58.388	22.987	8.546	3.365	-1.121	-. 441
	60.629	23.870	8.482	3.339	-. 643	-. 253	60.647	23.877	8.546	3.365	-1.007	-. 397
	62.904	24.765	8.537	3.361	-. 842	-. 331	62.906	24.766	8.546	3.365	-. 894	-. 352
	62.906	24.766	8.541	3.363	-. 868	-. 342	62.906	24.766	8.541	3.363	-. 868	-. 342
3	50.478	19.873	12.170	4.791	-0.814	-0.320	50.478	19.873	12.170	4.791	-0.814	-0.320
	50.502	19.883	12.164	4.789	-. 779	-. 307	50.506	19.884	12.176	4.794	-. 846	-. 333
	50.571	19.910	12.160	4.788	-. 752	-. 296	50.577	19.912	12.180	4.795	-. 866	-. 341
	51.322	20.206	12.137	4.778	-. 583	-. 229	51.335	20.211	12.181	4.796	-. 833	-. 328
	52.714	20.754	12.094	4.761	-. 268	-. 106	52.739	20.763	12.181	4.796	-. 763	-. 300
	54.107	21.302	12.055	4.746	. 023	. 009	54.143	21.316	12.181	4.796	-. 692	-. 273
	55.506	21.853	12.036	4.739	. 201	. 079	55.547	21.869	12.181	4.796	-. 622	-. 245
	56.911	22.406	12.038	4.739	. 259	. 102	56.951	22.422	12.181	4.796	-. 551	-. 217
	58.322	22.961	12.062	4.749	. 197	. 077	58.356	22.975	12.181	4.796	-. 481	-. 189
	60.597	23.857	12.117	4.770	-. 002	-. 001	60.615	23.864	12.181	4.796	-. 367	-. 145
	62.871	24.753	12.172	4.792	-. 202	-. 079	62.874	24.754	12.181	4.796	-. 254	-. 100
	62.873	24.753	12.177	4.794	-. 228	-. 090	62.873	24.753	12.177	4.794	-. 228	-. 090

(c) Vertical tail coordinates

Chord	x		y		z	
	cm	in.	cm	in.	cm	in.
1	48.357	19.038	0.000	0.000	2.840	1.118
	48.357	19.038	. 023	. 009	2.836	1.117
	48.366	19.042	. 043	. 017	2.833	1.115
	48.382	19.048	. 057	. 022	2.831	1.115
	48.403	19.056	. 063	. 025	2.831	1.115
	50.857	20.023	. 307	. 121	2.854	1.124
	53.320	20.992	. 552	. 217	2.874	1.131
	55.751	21.949	. 796	. 313	2.873	1.131
	57.721	22.725	1.016	. 400	2.679	1.055
	57.722	22.725	. 000	. 000	2.679	1.055
2	48.735	19.187	0.000	0.000	3.157	1.243
	48.739	19.189	. 023	. 009	3.157	1.243
	48.752	19.194	. 043	. 017	3.157	1.243
	48.770	19.201	. 057	. 022	3.157	1.243
	48.792	19.210	. 063	. 025	3.157	1.243
	51.309	20.200	. 316	. 125	3.157	1.243
	53.826	21.191	. 570	. 224	3.157	1.243
	56.342	22.182	. 823	. 324	3.157	1.243
	58.859	23.173	1.076	. 424	3.157	1.243
	58.860	23.173	. 000	. 000	3.157	1.243
3	50.133	19.737	0.000	0.000	4.330	1.705
	50.137	19.739	. 023	. 009	4.330	1.705
	50.149	19.744	. 043	. 017	4.330	1.705
	50.167	19.751	. 057	. 022	4.330	1.705
	50.190	19.760	. 063	. 025	4.330	1.705
	53.054	20.888	. 353	. 139	4.330	1.705
	55.919	22.015	. 644	. 253	4.330	1.705
	58.784	23.143	. 934	. 368	4.330	1.705
	61.648	24.271	1.224	. 482	4.330	1.705
	61.649	24.271	. 000	. 000	4.330	1.705

Chord	x		y		z	
	cm	in.	cm	in.	cm	in.
4	54.126	21.309	0.000	0.000	7.681	3.024
	54.130	21.311	.023	.009	7.681	3.024
	54.142	21.316	.043	.017	7.681	3.024
	54.161	21.323	.057	.022	7.681	3.024
	54.183	21.332	.063	.025	7.681	3.024
	56.313	22.170	.275	.108	7.681	3.024
	58.443	23.009	.487	.192	7.681	3.024
	60.573	23.848	.700	.275	7.681	3.024
	62.703	24.686	.912	.359	7.681	3.024
	62.704	24.686	.000	.000	7.681	3.024
5	58.119	22.881	0.000	0.000	11.031	4.343
	58.123	22.883	.023	.009	11.031	4.343
	58.135	22.888	.043	.017	11.031	4.343
	58.154	22.895	.057	.022	11.031	4.343
	58.176	22.904	.063	.025	11.031	4.343
	59.572	23.453	.197	.078	11.031	4.343
	60.967	24.003	.331	.130	11.031	4.343
	62.362	24.552	.465	.183	11.031	4.343
	63.757	25.101	.599	.236	11.031	4.343
	63.758	25.101	.000	.000	11.031	4.343

Wing:
Area (includes fuselage intercept), m^{2} (in ${ }^{2}$) $0.060 \quad(92.63)$
Area, exposed, m^{2} (in2) $0.030 \quad(47.00)$
Area, wetted, $\mathrm{m}^{2}\left(\mathrm{in}^{2}\right)$ 0.064 (98.98)
Span, m (in.) 0.244 (9.62)
Aspect ratio 0.999
Root chord (at fuselage center line), m (in.) 0.371 (14.59)
Tip chord, m (in.) 0.119 (4.7)
Taper ratio 0.322
Mean aerodynamic chord (includes fuselage intercept), m (in.) 0.294 (11.57)
Sweepback angles:
Leading edge, deg 67.5
25-percent chord line, deg 61.1
Trailing edge, deg 0
Dihedral angle, deg 10
Incidence angle, deg -2.1
Airfoil thickness ratio:
Exposed root 0.051
Tip 0.078
Leading-edge radius (normal to leading edge), cm (in.) $0.064,(0.025)$
Trailing-edge thickness, cm (in.) 0.064 (0.025)
Elevons:
Tip chord, percent wing tip 36.6
Span, percent total span 59.8
Area, both, m^{2} (in ${ }^{2}$) 0.0064 (9.89)
Vertical tail:
Area, exposed, m ${ }^{2}$ (in2) 0.007 (10.93)
Span, exposed, m (in.) 0.077 (3.06)
Aspect ratio of exposed area 0.857
Root chord at fuselage surface line, m (in.) 0.101 (3.99)
Tip chord, m (in.) 0.057 (2.256)
Taper ratio 0.565
Mean aerodynamic chord of exposed area, m (in.) 0.097 (3.804)
Sweepback angles:
Leading edge, deg 49.9
Trailing edge, deg 18.5
Hinge line location, percent chord 68.7
A rudder $/$ A $_{\text {total }}$ 0.295
Leading-edge radius, cm (in.) 0.064 (0.025)
Fuselage:
Length, m (in.) 0.584 (23.0)
Nose radius, cm (in.) 0.159 (0.063)
Maximum height, m (in.) $0.076 \quad(2.98)$
Maximum width, m (in.) 0.097 (3.83)
Fineness ratio of equivalent round body 6.86
Planform area, $\mathrm{m}^{2}\left(\mathrm{in}^{2}\right)$ $0.042 \quad(65.12)$
Wetted area:
Without components or base, $\mathrm{m}^{2}\left(\mathrm{in}^{2}\right)$ 0.122 (188.6)
With wing on, $\mathrm{m}^{2}\left(\mathrm{in}^{2}\right)$ 0.116 (179.4)
$A_{b}, \mathrm{~m}^{2}\left(\mathrm{in}^{2}\right)$ 0.0023 (3.54)
Complete model:
Planform area, m^{2} (in2) 0.072 (112.12)
Aspect ratio of planform 0.825

Figure 2. - Model general dimensions. All dimensions have been normalized by body length ($l=58.4 \mathrm{~cm}$).

Figure 2. - Continued.

Figure 2.- Concluded.

L-76-6977.2
(Note that all components
Figure 3.- Photograph of model with various parts.
were not used in this test.)

Figure 4. - Effect of body buildup on untrimmed longitudinal aerodynamic characteristics.

Figure 4. - Concluded.

Figure 5.- Effect of vertical-tail variations on longitudinal aerodynamic characteristics of basic configuration ($\mathrm{BWV}_{\mathrm{CH}}$).

Figure 5.- Concluded.

Figure 6. - Effect of speed brakes on longitudinal aerodynamic characteristics of complete configuration ($\mathrm{BWV}_{\mathrm{CH}^{\mathrm{E}}}{ }_{6}$).

Figure 6. - Concluded.

Figure 7.- Trimmed longitudinal aerodynamic characteristics of basic configuration $\left(\mathrm{BWV}_{\mathrm{CH}}\right)$.

Figure 8. - Trimmed longitudinal aerodynamic characteristics of complete configuration ($\mathrm{BWV}_{\mathrm{CH}^{-}} \mathrm{E}_{6}$).

Figure 9.- Effect of wedge elevons on longitudinal aerodynamic characteristics of $\mathrm{BWV}_{\mathrm{CH}}$ and $\mathrm{BWV}_{\mathrm{CH}^{\mathrm{E}}}{ }_{6}$ configurations.

Figure 9. - Concluded.

Figure 10.- Effect of body buildup on static lateral-directional stability characteristics. $\Delta \beta=-2^{\circ}$.

Figure 11. - Roll control characteristics for basic ($\mathrm{BWV}_{\mathrm{CH}}$) and complete ($\mathrm{BWV}_{\mathrm{CH}} \mathrm{E}_{6}$) configurations.

Figure 12.- Yaw control characteristics for basic ($B W V_{C H}$) and complete ($\mathrm{BWV}_{\mathrm{CH}} \mathrm{E}_{6}$) configurations.

Figure 13. - Comparison of experiment with theory for body buildup.

Figure 13.- Concluded.

Figure 14. - Comparison of experimental and theoretical trimmed longitudinal aerodynamic characteristics of $\mathrm{BWV}_{\mathrm{CH}}$ configuration.

Figure 15. - Comparison of experiment with theory for effect of body buildup on static lateral-directional stability characteristics. $\Delta \beta=-2^{\circ}$.

Figure 16. - Effect of elevon deflection on longitudinal aerodynamic characteristics of $\mathrm{BWV}_{\mathrm{CH}}$ configuration.

Figure 16.- Concluded.

Figure 17. - Effect of elevon deflection on longitudinal aerodynamic characteristics of $\mathrm{BWV}_{\mathrm{CH}^{2}} \mathrm{E}_{6}$ configuration.

Figure 17. - Concluded.

Figure 18. - Comparison of experiment with theory for effects of elevon deflection on $\mathrm{BWV}_{\mathrm{CH}}$ configuration.

Figure 18.- Continued.

Figure 18. - Concluded.

Figure 19.- Effect of body buildup on static lateral-directional stability characteristics. $\Delta \beta=-4^{0}$.

Figure 20.- Schlieren photograph of model. $\alpha=20^{\circ}$.

L-77-8694

L-77-8695
(b) $\alpha=4^{0} ; \quad \beta=-4^{0}$.
Figure 21.- Concluded.

[^0]National Aeronautics and
THIRD-CLASS BULK RATE
Space Administration
Washington, D.C.
20546
Official Business
Penalty for Private Use, $\$ 300$

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

