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Heinz Erzberger and Homer Lee

Ames Research Center, NASA, Moffett Field, Calif. 94035

Abstract

Necessary conditions of optimality are derived for trajectories whose

structure is limited to climb, steady cruise, and descent segments. The

performance function consists of the sum of fuel and time costs, referred to

as direct operating cost (DOC). The state variable is range to go and the

independent variable is energ, • . In this formulation a cruise segment always

occurs at the optimum cruise energy for sufficiently large range. At short

ranges (500 n. mi. and less) a cruise segment may also occur below the

optimum cruise energy. The existence of such a cruise segment depends

primarily on the fuel flow vs thrust characteristics and on thrust constraints.

If thrust is a free control variable along with airspeed, it is shown that

such cruise segments will not generally occur. If thrust is constrained to

some maximum value in climb and to some minimum in descent, such cruise

segments generally will occur. Computer calculations of typical short-range

trajectories obtained about a 1% cost penalty for contraining the thrust.

Index categories: Flight Operations; Guidance and Control; Navigation;
Communication; Traffic Control.

Research Scientists.
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Nomenclature

• fuel cost factor, dollars/pound (dollars/kilogram)

time cost factor, dollars/hour

- drag force

- first and second partial derivatives of drag with respect

to airspeed

- cruise distance

- desired distance to fly

total climb and descent distances, respectively

- total aircraft energy in units of altitude

- cruise or maximum energy

- optimum cruise energy

- initial and final energy

- rate of change of energy

- acceleration of gravity

- Hamiltonian, dollars per unit of energy

- altitude in feet (meters)

- components of the Hamiltonian

value of performance function in dollars or pounds (kilograms)

- operands under the minimization operator in H

- lift force

- integrand of cost function or cost per unit time

- thrust specific fuel consumption per hour

nth partial derivatives of SFC with respect to H
- thrust in pounds (kilograms)

climb and descent thrusts, respectively
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t a time

t - time at end of climbC

td - time at start of descent

t - total mission time

V - true airspeed

V 
- cruise speed

V Vdn
- climb and descent airspeeds

up'

V 
- wind speed along flight path

V up ,Vwdn - wind speeds in climb and descent segments, respectively,

functions of altitude

W - aircraft weight in pounds (kilograms)

W 
- total mission fuel in pounds (kilograms)

Wf - fuel flow rate in pounds per hour (kilograms/hour)

x - distance flown in nautical miles

x xdn
up'

= climb and descent distances, running variables

S - parameter defining direction of control perturbations

Y - flight-path angle, radians

AR - length of control perturbation

AT,AV - thrust and speed perturbations relative to cruise conditions

A(E
C

) - cruise cost at cruise energy	 Ec , dollars per nautical mile

n - throttle setting

- throttle settings in climb and descent, respectively
'ru'7tdnP

- costate variable

a - cruise cost per unit distance

A - optimum cruise cost over all energies, per unit distance
opt
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1. Introduction

RECENT research on aircraft trajectory optimization has focused on the

structure of optimum cruise trajectories. Steady-state cruise is generally

not optimum for minimum fuel performance (Ref. 1); but the performance

improvement relative to steady state cruise is unknown, because the actual

nonsteady optimum cruise has not been computed. However, if the steady-state

cruise satisfies first-order necessary conditions, Speyer (Ref. 1) shows,

in an example, that the performance improvement of a particular (though

nonoptimum) cyclic cruise is about 0.1%. This improvement, if representative

of the optimum cyclic cruise, is not economically significant. Nevertheless,

the determination of the optimum cyclic cruise poses an interesting and

unsolved problem.

Even if economically significant, cyclic cruise could not be used in

airline operation because it is incompatible with existing air traffic

control procedures, disconcerts passengers, and decreases engine life because

of increased cycling. Optimum trajectories, to be compatible with typical

airline practice, should consist of: a climbout, a steady-state cruise, and

a descent. Thus, at least for commercial airline applications, the optimum

trajectory must be selected from a set of trajectories that is limited

a rp iori to such types.

A formulation of the trajectory optimization problem that constrains

the admissible trajectories to those containing climb, steady cruise, and

descent was given in Refs. 2 and 3. In this formulation, energy height was

used as the independent or timelike variable in climb and descent, thus

forcing energy to change monotonically in these segments. This formulation

of the constrained trajectory optimization problem is also adopted in this
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paper. The use of energy eliminates the integration of a separate adjoint

differential equation and simplifies the calculus of variations problem to

one requiring only pointwise extremisation at algebraic functions (Refs. 2

and 3).

While the problem formulations here follow that of Refs. 2 and 3, this

paper extends those earlier results and places them on a firm analytical

foundation through the use of the calculus of variations. Also, an evaluation

of the constrained optimum trajectories by airline operators indicated an

interest in the additional constraint of setting the thrust to some maximum

during climb and to idle during descent. An examination of this procedure

raised the following questions. How do the constraints on thrust and, more

generally, the aerodynamic and propulsion characteristics affect the structure

of the trajectories? Under what condition is the constrained thrust procedure

optimum". What performance penalty is incurred by the constraint on thrust?

The investigation of these questions begins in Sections II and III with

the optimal control formulation of this problem and the derivation of the

first order necessary conditions. Sections IV, V, and VI contain the details

of the analysis relating the characteristics of the trajectories and the

optimum controls to the propulsion model. Section VII contains a brief

discussion of computed optimum trajectories for the Boeing 727-200 equipped

with JT8D-7 turbofans.

II. Optimal Control Formulation

As stated in the introduction, we assume at the outset that the optimum

trajectories have the structure shown in Fig. 1. This structure consists of

climb, cruise, and descent segments, with the aircraft energy increasing

monotonically in climb and decreasing monotonically in descent. Neglecting
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flight-path angle dynamics and weight loss due to fuel burn, the point mass

equations of motions for flight in the vertical plane are

(1/g)(dV/dt) - [(T - D)/W] - sin y 	 (1)

dh/dt - V sin y	 (2)

dx/dt - V cos y + V 	 V + V 	 (3)

with the contraint L - W cos y. In airplanes, unlike rockets, the rate of

change of weight loss due to fuel burn introduces negligible dynamic effects

in the trajectory optimization. Nevertheless, the effect of weight loss on

a trajectory is important but can be accounted for without adding another

state v"riable by continuously updating the weight as the trajectory is

generated. If energy is defined as

	

E = h + (1/2g)V 2	(4)

then the familiar relation for the rate of change of energy is obtained by

differentiating Eq. (4) with respect to time and substituting the right-hand

sides of Eqs. (1) and (2) in place of dV/dt and dh/dt, respectively:

i _- dE/dt = [(T - D)V]/W
	

(5)

The cost function to be minimized is chosen as the direct operating;

cost of the mission and consists of the sum of the fuel cost and the time cost:

	

J - c fWf + c t t t	(6)

where c  and c  are the unit cost of fuel and time, respectively. Setting

c t - 0 results in the familiar minimum fuel performance function. In integral

form, the cost function becomes

6
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J = f tf (Wfcf + ct )dt =_ f tf P dt	 (7)
0	 0

It is assumed that the time to fly t  is a free variable, but the

•	 distance to fly is a specified quantity d f . Following the formulation in

Ref. 2, we now write the total mission cost as the sum of the costs for the

three segments of the assumed trajectory, illustrated in Fig. 1.

t

J f c P dt + O
f 
- dup - ddn)A + f 

tf 
P dt	 (8)

climb cost	 cruise cost	 descent cost

where A designates the cost at cruise energy E c . Next, we transform the

integral cost terms in Eq. (8) by changing the independent variable from time

to energy, using the transformation dt - dEA.

E

J	
c 

(PIED • )dE + (d	 d	 -d )A +

fE

c (P/ J i l l . )dE	 (9)E>p	 f	 up	 do	 EEO

Ei	E 

The transformation uses the assumption that the energy changes monotonically

in the climb and descent. This places strict inequality constraints on E,

as shown in Eq. (9). also in Eq. (9), the integration limits have been

reversed in the descent cost term. In this formulation the cost function is

of mixed form, containing two integral cost terms and a terminal cost term

contributed by the cruise segment.

With the change in independent variable from time to energy, the state

equation [Eq. (5)] is eliminated, leaving Eq. (3) as the only state equation.
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Furthermore, we note that the performance function [Eq. (9)] depends on the

distance state x only through the sum of the climb n ,id descent distances

dup + ddn . Therefore, the state equatio n for the distance is rewritten in

terms of this sum:

d(xup + xdn) /dE - (V up + Vwup) / E]E>0 + (Vdn + Vwdn)/IEI] E<0	 (10)

Here, the transformation dt - dE/i was used again. Also, Eq. (10) provides
for independence in the choice of climb and descent speeds Vup and Vdn and

t'n,i wind velocities wu p and Vwdn . Wind velocities in climb and descent

are allowed to be independent of each other; generally, different wind

conditions will prevail in physically different locations of climb and

descent. The wind velocities can also be altitude dependent. The effect of

altitude dependent winds on the optimum trajectories is discussed in Ref. 3.

Necessary conditions for the minimization of Eq. (9), subject to the

state equation [Eq. (10)] are obtained by ar 9lication of optimum control

theory. (See, e.g., Ref. 4, page 71.) Then, the following relations are

obtained for the Hamiltonian and costate equations, respectively:

	

PP	 VuP 
+ Vwup	 V

dn + Vwdn
H = min	 ^.	 + {	 + 4	 +	 (11)

V ,V	 I(E >	 `^ii	 E]'	 lil'up do	 EO	 j'^ O 	 EO	 i O

rup'¶dn

WdE - - [ DH/3(x up + xdn)] - 0	 (12)

The right-hand side of the Hamiltonian equation is minimized with

respect to two pairs of control variables, one pair applicable to climb

(V upand 7r upthe other pair to descent (Vdn and ndn). Since each term under
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the minimization operator in Sq. (11) contains only one of the two pairs of

control variables, the minimization simplifies into tv independent

minimizations, one involving climb controls, the other, descent controls.

Also, since the right-hand side of the costate equation (Eq. (12)j is zero,

'	 * is constant.

III. Transversality Conditions

The transversality conditions are additional, necessary conditions that

depend on the end point contraints of state variables (Ref. 4). The basic

constraint in this problem is the range of the trajectory d f . However,

df is a parameter in the transformed cost function, Eq. (9), and not a state

variable. The final value of the state variable d up + ddn is, in this

formulation, subject only to the inequality constraint dup + ddn S df . This

constraint is, of course, necessary for a physically meaningful result.

This inequality constraint can be handled by solving two optimization

problems, one completely free (d up + ddn < d f ), the other constrained	 I

(d up + ddn - d f) and then choosing the trajectory with the lowest cost.

Physically, the comparison is between a trajectory with a cruise segment,

and one without a cruise segment. Considering first the free terminal state

case du P + ddn < d f , we obtain the following relation for the final value

of the costate 0:

*(Ec) - DO f - dup - ddn)A]l[3(dup + ddn)] - -A	 (13)

This is the transversality condition for the free final state problem with

terminal cost (Ref. 4). It shows that the constant costate value is the

negative of the cruise cost.
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Next, consider the case of no cruise segment. Then, the middle term of

Eq. (9) drops out and the performance function contains only the integral covet

terms. This is the case of the specified final state d  = d up + ddn = the

corresponding traneversality condition yields *(E c) i *f . In practice it is

not necessary to compute the constrained terminal state trajectory if a valid

free terminal state trajectory exists, since the addition of a terminal con-

strain can only increase the cost of the trajectory. Therefore, this case is

not considered further in this paper.

In both cases the choice of costate determines a particular range. Since

the functional relationship between these variables cannot be determined in

closed form it is necessary to iterate on the costate value in order to achieve

a specified range df.

The last necessary condition applicable to this formulation is obtained by

making use of the fact that the final value of the timelike independent variable

E is free. Its final value is the upper limit of integration E  in Eq. (9).

Application of results in Ref. 4 provides the following condition:

H + (13(d
f
 - dup - ddn)a(E)l/3E)

) E-E - 0
	 (14)

r

which, when evaluated and simplified, becomes

[H + [dc(da/dE)I)E-E R 0

	
(15)

c

where do is the cruise distance.

Condition (15) has the following physical interpretation. The value of

the Hamiltonian H evaluated at cruise energy E  is [after substituting

Fq. (13) into Eq. (11)] the minimum increment in climb plus descent cost

relative to cruise cost to make a unit increment in cruise energy. The

product dc (d a /dE) E-E
 is the minimum increment in cruise coat for a unit
c

change in cruise energy. Condition (15) requires the optimum trajectory to
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be such that the sum of these two increments be zero for a given cruise

distance do and cruise energy Ec.

IV. Dependence of Optimum Trajectories on Range

Equation (7.5), together with kn. ,wledge of the salient characteristics

of the cruise cost A and the Hsmil.tonian H, can be used to determine the

structural dependence of the optimum trajectories on range.

Cruise cost at a cruise energy E  and cruise speed V  is computed

from the relation

	

a(Ec ,Vc ) _ [P(T, Ec ,Vc )J1(Vc + Vw	=)	 constraints: 
IT	

WD)
	

(16)

.,here the denominator is the ground speed in the flight-path direction.

Examination of the term containing A in the relation for the performance

function (9) shows that the value for A should be as small as possible at

each cruise energy in order to minimize the total cost J. Therefore, t'Aie

cruise speed dependence of a is eliminated by minimizing the right side

of Eq. (16) with respect to V 

A(Ec )	 min P(T,Ec•Vc)/(Vc + Vw)	 (17)
V
c

In this paper, d and V  are always assumed to be the optimum cruise

cost and cruise speed, respectively, at a particular cruise energy Ec.

Except in high wind shear, the cruise cost as a function of cruise energy

exhibits the roughly p arabolic shape shown in Fig. 2. For subsonic transport

aircraft, the minimum of the cruise cost with respect to energy occurs close

to the maximum energy boundary. This characteristic of the cruise cost

prevails for essentially all values of the performance function parameters
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c  and e t . The quantities defiaing the optima erutee conditions are E
Copt

and A opt . In Eq. (15), the derivative of the cruise cost function multiplies

the cruise distance. kept miler extreme wind shear conditions, the derive-

tfve is atonic and crosses the zero axis at 
Ec - Eco t'P

By distributing the minimization operator in Eq. (11) and substituting	 -

Eq. (13) in Eq. (11) 0 H can be decomposed into climb and descent components

as follows:

H[E,A(Ec)] - Iup + Idn	 (18)

where

	

I - min	
up	

wup 	 I - min	
do	 wdn	 (19)

	

up 
pup	 E]E>0	 do vdn

	

rup	
71
dn

In the preceding section, the Hamiltonian, evaluated at E = E c , was

interpreted as the cost penalty to achieve a unit increase in cruise energy.

Extensive numerical studies of Eq. (18) for several comprehensive models of

subsonic turbofan aircraft show H[Ec ,A(Ec )] >_ 0, for E  < Ecopt' Moreover,

the minimum cost penalty for increasing energy I up is always positive and

that for decreasing energy Idn is negative; but the sum has never been

found negative for models of currently used turbofans. While these character-

istics have been established for several aircraft models, they are not

intended to imply a generalization to all aircraft, since no physical laws

prevent H from being negative.

Consider first the case where WE 
c 

A(E c )  > 0. Then, Eq. (15) can be

solved for the cruise distance d
c

12



do -g( X ( E)1(dajd8)g^$ 	(20)
C

EP

Since dX/dE < 0, but approaches zero as E
C 

approaches Ecopt , the

cruise distance must increase without limit as E
C 

approaches E^opt . Our

numerical studies have shown that the value of H tends to decrease as E
C

increases, but not enough to change this trend. Figure 3 shows the resulting

family of trajectories, assuming H > 0 for all values of E c . In this case,

interestingly, nonzero cruise segments occur at short ranges and at energies

below the optimum cruise energy Ecopt . Optimum cruise is approached

asymptotically at long range.

Consider next the case where H(Ec ,X(Ec}] 0. Then do = 0, i.e.,

no r• rise segment is present for dX/dE < 0. However, Eq. (15) shows that

d
c 

-an be nonzero if dX/dE < 0. This implies that for H - 0, cruise flight

is optimum only at the optimum cruise energy 
Ecopt. 

Figure 4 shows the

family of trajectories for this case.

It is conceivable that both cases appear in the same problem, although

this has not occurred in the examples we have studied.

V. Thrust Optimization for Minimum Fuel Trajectories

Evaluation of the Hamiltonian equation would be simplified if one of

the two pairs of control variables, airspeed or thrust, could somehow be

eliminated a priori from the minimization. Since the pair of throttle

settings, n up and ndn , is thought to be hear its limit, we shall look for

+

	

	 conditions where extreme settings of the throttle are optimum. The remainder

of the paper examines only the minimum fuel case c f a 1 and c t i 0, with

winds set to zero in order to simplify the derivation. However, the results

can be extended tt3 .lie more general cost function.
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for 14O fuel par#ntmsa, the two tee in tha	 ltoni	 q. (19)

Iup 	 I" u	 Ido 
_ min Kdn	 (2la)

Vup'Vup	 dn'Vdn

where

	

'Wf*	 \(j

	

A	 A T	 -^^

	

f	 _
pup -	 - I)lV 9	 ' gdn - T A vdnjW	 ( 21b)

IT(wu )'D	 TO )`g_p

An accurate model for thrust and fuel flow generally includes the

functional dependencies} T(r,V}h) and 0f (w,V,h) in addition, these functions

Est be corrected for nonstandard tooporatures and bleed losses.

In previous work can aircraft trajectory optitsiaation (Ref. 5), a

simpler model for fuel flow and thrust was used

Wf = TSFC (V,h)	 '	 T Min (V,h) :5 5 T max (V,h)

	
(22)

The critical assumption in Eq. (22) is independence of the specific fuel

consumption 5FC from thrust. The virtue of this model lies in the insight

it yields into the minimum fuel problem. If Eq. (22) is substituted into

Eqs. (21b), one obtains

SyCW Tu - ()LjSFC)V

Ku ^ Y	 ^ T - D 
i3E

p	 up	 up
T >D
up .

K	
FC	

Td	 (A/SF )V

do	 vdn	 - - Tdn D I

Tdn<D
(23)
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For any fixed values of Vup or Vdn , the operand functions for the

minimization KUP and Kda are hyperbolas with poles at T - D. The

numerator zero must be to the'left of the pole on the thrust axis for energies

less than cruise energy. Figure 5 is a typical plot of these functions.

_	 Clearly, maximum thrust minimizes Kup and idle thrust minimizes Kdn for

any E < Kc , proving that the limiting values of thrust are optimum for this

propulsion model throughout the climb and descent trajectories. This result

also implies that the departure from the extreme thrust values found for the

more general propulsion model is directly attributable to the nonlinear

dependence of fuel flow on thrust. Conversely, the need for throttle setting

optimization can be determined a riori from the fuel flow vs thrust

dependence for a particular engine. Such data are found in the engine

manufacturer's performance handbook.

VI. Evaluation of Hamiltonian at Cruise

We have seen in a preceding section that the value of the Hamiltonian

computed at cruise energy E  determines the structure of the trajectories

near cruise. Here we shall relate the existence of cruise below 
Ecopt 

to

specific engine and aerodynamic model parameters. This is done by substi-

tuting truncated Taylor series expansions of fuel flow and drag as functions

of airspeed and thrust into the expression for the Hamiltonian. The location

of the minimum with respect to the controls as well as the value of H can

then be determined as functions of the Taylor series coefficients at E - E .
c

How should one pick the point in the control space about which to make

the expansion? Computational experience in Refs. 2 and 3 has shown that

the minimum is in the neighborhood of the optimum cruise speed and throttle

setting, corresponding to the given cruise energy. This suggests that the

cruise controls should be picked for the expansion point.
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The fuel flow and drag functions expanded to second order about the

case controls T - Tc , V - V  are:

W  - 
Tc8FC + (Tc 

S FC T + S ) AT + TcSrCV eV + (1/2) 2SpC T + TcSFC 
2 

AT2

T

+ (1/2)(Tc9PC
TV + 

8 F 
V)
	

V2
V 6T + {1J2)TcSFC AV 

+ higher-order terser	 (24)

D - D(Vc , Ec) + v AV + (1/2)D 2 AV  + higher-order terms	 (25)
v

The subscripts to SFC and D designate the partial derivatives with respect

to the subscripted variable. Note that the expansion allows for a general

fuel flow model in which specific fuel consumption can be thrust dependent.

Before substituting Eqs. (24) and (25) into the expression for H, we

observe that H is singular at cruise with T - T  and V - V c , because

both numerator and denominator are identically zero at that point. Figure 6

plots the loci of the numerator and denominator zeros of K up and Kdn in

the control space at E - Ec . It is proved in the appendix that the locus

of numerator zeros is tangent to the locus of denominator zeros at the

optimum cruise controls. For E 4 E  the two loci have no points in common.

The two loci can be tangent but cannot cross, since otherwise controls

would exist that would make the Hamiltonian infinitely negative, a result

ruled out as physically meaningless.

Upon substituting Eqs. (24) and (25) into Eqs. (21) using the tangency

condition (A4) derived in the appendix, the following expressions for Kup

and Kdn at cruise energy are obtained;
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(TiesnT 	( ,)VSFC^#
 + C)^T = 	+ T

 c 
5 FCT v)

(1/2)(2s F + TcSFCAT2 + TeSFC + S	 AV AT
T2	 TV v

(1j2)TcSFC AV 
V2

IAT - v AV - (1/2)D 2 AV2^
v

(26)

1	 .

Terms above second order have been neglected since we are investigating a small

neighborhood of the cruise point. Expression (26) represents Kup if the quan-

tity under the absolute value sign is positive and Kdn if it is negative.

Since the cruise point at AT - 0 and AV - 0 gives the undefined value of

0/0 for Eq. (26), it is necessary to evaluate the limit as AT and AV approach

zero. If the limit exists it must be independent of the direction from which the

cruise point is approached. to compute the limit and investigate the neighbor-

hood of the cruise point, a polar coordinate system centered at the cruise point

is used to define control perturbations. Let AR and 8 define control

perturbations AT and AV as follows:

AT - (Dv + $)AV	 (27)

AV - AR/ A + (8 + Dv ) 2	,	 AT - AR(8 + Dv)/ 1 + (8 + D v ) 2 	 (28)

The parameter 8 defines a direction relative to the reference direction of the

line AT - D AV. The reference direction 8 - 0 is excluded from the control
v

space since it is along the direction of the locus of T - D at the cruise point.

17



After substituting Eqs. (28) into Eq. (26) and taking the limit of the

resulting expressions as QE 0. one obtains for any 8 0 0

EupIlimit - 
(W/VC)(SFC 

+ TcSFCT}	
Edn1limit 

(-W/Vc)(SFC + TcSFCT) (29)

The limit is thus well defined, since it is independent of the approach

direction in each region. Howevet, it remains to be shown that the limit

value is in fact the minimum of Eq. (26) with respect to the perturbation

controls. This question is investigated for two cases, one where S FC is

independent, and the other where it is dependent on thrust.

Case (A): S  Independent of Thrust

Along the direction defined by AV - 0, i.e., along the thrust direction,

Eq. (23) can be used directly to determine the dependence of the functions

on Tup and Tdn under the minimization operator. Since at V - Vc,

D(Vc ,Ec ) - Tc a (A.SFC)Vc) Eq. (23) reduces to

Kup - (
w/vc)SFC	 Kdn - (-w/VC)SFC
	 (30)

showing that at the cruise speed V  these functions are independent of

thrust. This result is not restricted to small perturbations relative to

the cruise thrust. Along other directions, the truncated Taylor series form

[Eq. (26)] must be used. After setting to zero all thrust dependent

derivatives and substituting Eqs. (28) into Eq. (26), the following expression

is obtained;

18
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.

i1 +(29F ( 1 01 + Dv) + TcSF 2%A R

	

Cy

up	 21015 
FC 

A + (g + D )

	

or	
(Vc + AV)	 D 2 AVK

	

do	 1	 v

2101 A + (8 + Dv)2

where the positive sign applies to Kup and the negative sign to Kdn•

The characteristics of these functions depend on the drag and specific fuel

consumption derivatives. The drag derivatives D v and D 2 are both
v

positive, since the aircraft will certainly operate on the "front" side of

the thrust-required curve. The dependence of SFC 
on speed for a typical,

currently inservice turbofan engine at cruise energies exhibits a slight

upward curvature above Mach 0.4, as shown in Fig. 7, implying that both

SF	and SF0	 are positive in the range of interest between Mach 0.4
^v	 y2

and 0.9. The slight curvature of 
SFC 

indicates that a quadratic function

can accurately model the Mach number dependence of SFC 
in the Mach range of

interest and not ,just in a small neighborhood of the expansion point. Also,

at typical cruise conditions one finds that D 2 > (2S PCDv + TcSFG ).
v	 V	 y2

Therefore, for any 0, the denominator of Eq. (31) goes to zero before the

numerator does as AR is increased from an initial value of zero. Moreover,

the slope of the operand function with respect to AR increases as 8

approaches zero. The effect of AV can be neglected, since V  >> AV.

These observations lead to the conclusion that the functions in Eq. (31)

slope upward in all directions as AR increases, except in the direction

parallel to the thrust axis, along which the slope is level. Figure 8 shows

a family of plots of the operand functions as A varies over its range. The

limiting values of these functions at the cruise point (tW/V c)SF0 are

..

(31)
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therefor* also the global minimums, and the value of the Hamiltonian, which

s the sum of the two components, is zero. At the cruise energy, furthermore,

the optimum climb and deacent,speeds are equal to the optimum cruise speed.

The optimum climb and descent thrusts at that point are arbitrary since the

Hamiltonian is independent of them.

By applying these results to Eq. (20), it now follows that the structure

of the optimum trajectories near cruise is given by the family of trajectories

in Fig. (4). Specifically, no cruise segment occurs except at optimum cruise

energy Ecopt•

By combining results from this and the preceding section, the important

result follows that, for the assumed engine model, the optimum trajectories,

the corresponding optimum controls, and the performance are not affected

by constraining the thrust to extreme values in the climb and descent segments.

Case (B): SFC Thrust Dependent

A complete investigation of the neighborhood of the cruise point analogous

to Case (a) requires estimates of the various thrust dependent derivatives in

Eq. (26). However, understanding of this case can be obtained by examining

the functions in Eq. (26) only along the thrust direction, i.e., for AV - 0.

Under that assumption, Eq. (26) simplifies to the following expression:

K
up
or	 - (WS /V ) ±1 + (T S	 /S ) + ( IATI /2S )(SF+ T S	 (32)
K FC c	 c FCT FC	 FG	 CT	 c PC 

2)]do	 T

where the plus sign and AT > 0 are chosen for Kup and the negative sign

and AT < 0 for Kdn•
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This simplified approach focuses attention on the derivatives SFC
T 

and

SFC 
2 , which are crucial for this case. The characteristics of these

fi

derivatives can be deduced from plots of S  vs thrust, in Fig. 9. These

plats, and those in Fig. T, were derived from the operating instructions

manual of a typical inservice turbofan (Ref. 6). Obviously, the assumption

of a thrust-independent SFC is grossly violated for this engine, since at

low thrust values the SFC curves approach infinity; that is, they become

undefined. However, at typical climb or cruise thrusts, corresponding to

the upper half of the thrust range, the variation in S FC is only about 5%.

Fuel flow is also plotted in Fig. 9. The dashed line through the origin

gives the best constant SFC approximation to the fuel flow function.

Comparison indicates an excellent match at high thrust, but an error of as

much as 1200 lb/hr (550 kg/hr) at low thrust. For some applications the

assumption of a constant SFC could be adequate if fuel flow errors at very

low or idle thrust settings can be tolerated.

For the upper two thirds of the thrust range, quadratic functions provide

good fits to the S FC curves. Therefore, one can use the second-order

Taylor series expansion at the cruise point to estimate S FC for fairly

large deviations of thrust from cruise thrust.

The thrust in climb or cruise is typically larger than the thrust at

which SFC is a minimum in Fig. 9. Both SFC
T 

and SFC 
T2 

will, therefore,

be greater than zero and so will the coefficient of AT in Eq. (32). It

follows that the slope of Eq. (32) as a function of At is greater than zero

for Ku 
F 

and less than zero for Kdn . In other words, along the thrust

direction these functions have a strong minimum at the cruise point, whereas

in Case (a) they were level along this direction. Along other directions,

21
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the investigation of Case (A) has shown a positive slope. Thus, if thrust

is an unconstrained control variable along with airspeed, so that the cruise

point lies in the interior of the control region, then the optimum climb and

descent thrusts and airspeeds will converge toward the optimum cruise thuust

and airspeed as the climb and descent energies approach the cruise energy.

It should be noted that his holds for all cruise energies, including those

lees than the optimum cruise energy, Rcopt , Since the Hamiltonian is again

zero at the cruise energy, it follows that the structure of the optimum

trajectories as a function of range is identical to that of Case (A) and is

Illustrated by Fig. 4. Computer calculations for this case in Ref. 2, using

a similar engine model, showed that the thrust is either maximum or idle

for about three-fourths of the energy range between initial and cruise

energies and then departs from the extremum values so as to converge smoothly

to the value at cruise as cruise energy is approached.

Consider now the case where thrust is constrained to some maximum in

climb and is idle in descent. In that case, the minimum at the cruise point

is not accessible since it does not lie in the region of permissible controls.

Also, unlike Case (A), the thrust dependence of K up and Kdn in Eq. (23)

does not disappear along the thrust direction at V - V c . Therefore, it is

unlikely that at the minimum the sum of the two terms will be zero. The

Hamiltonian is, in fact, greater than zero at any cruise energy. In order

to show this, note in Fig. 9 that as thrust decreases, S FC increases without

bound. It follows that Idn will be less negative than it would be if SFC

were thrust independent and therefore will be insufficient to cancel Iup at

cruise energy, resulting in a positive value for the Hamiltonian. This was

shown earlier to give rise to nonzero cruise segments below the optimum
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cruise energy. Thus, the structure of the optimums trajectories for the

constrained thrust case is given by the family of trajectories in Fig. 3.

V11. Some Numerical Results

Calculations of various types of optimum trajectories (minimum fuel and

cost) have been carried out for the Boeing 727-200 and the McDonnell Douglas

DC-10 aircraft using a digital computer implementation of the algorithm

described in this paper. The models used in this program contain detailed

propulsion and aerodynamic data, including thrust dependent specific fuel

consumption and separate idle thrust and fuel flow models. The program also

compensates for weight loss due to fuel burn as well as allowing the user to

choose between the constrained and unconstrained thrust cases. The program

is designed to augment or be a substitute for the computerized flight

planning systems now used by airlines. A complete discussion of the results

obtained in these calculations is beyond the scope of this paper. As an

example of the results, Table 1 gives summary data for two minimum fuel and

two minimum DOC trajectories for the 727-200.

For the case of minimum fuel performance, the difference in fuel

consumption between the constrained and free thrust optimum trajectories is

63 lb (29 kg), or about 1%. For the case of minimum DOC performance, the

difference is $0.03/n. mi., or again about 1%. In both cases the differences

have been found consistently, though dependent on range and aircraft weight.

These differences, while not large, are about at the threshold (1X level)

where they are considered significant in airline operating economics

For both performance functions, the optimum cruise distances for the

constrained thrust cases are a small percentage (11 and 18%) of the total

range. These results indicate that, for this engine, the specific fuel
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consumption dependence on thrust does not have a strong influence on the

trajectories. The MC penalty of flying minimum fuel trajectories is seen

to be 14tjn. mi., or 6%, while the fuel penalty for flying minimum UOC

trajectories is about 300 lb (136 kg), or 7%. Each airline must evaluate

the significance of the fuel and DOC differences between the trajectories

in light of ite schedules and route structures.

The fuel cost and time cost factors used in these calculations are

estimates obtained from a United States airline in mid-1477. These factors

vary with time and between airlines.

A comparison can also be made between the performance of optimum and

currently used procedures. Such a comparison for a model of the AC-10

flying a 220 n. mi. range yielded a 7% fuel savings for the minimum fuel

trajectories (Ref. 7).

VIII. CONCLUSIONS

The approach to trajectory optimization presented here has led to a

rather detailed understanding of the characteristics of the optimum

trajectories. The approach also lends itself to a numerically stable computer

implementation that can be incorporated in an airline flight planning system

or, ideally, in an onboard performance management system. Furthermore,

trajectories generated by this method can serve as benchmarks for evaluating

other (suboptimum) algorithms. This possibility is especially intriguing at

this time in view of the strong current effort in industry to develop the

so-called On Board Optimum Performance Computers.

Two pairs of opposing assumptions, constrained vs free thrust and

dependence va independence of specific fuei consumption on thrust, played

pivotal roles in determining the characteristics of the optimum trajectories.

.

. €
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If the assumption of specific fuel consumption independent of thrust is

justified, constrained thrust trajectories are identical to free thrust

trajectories in structure and-performance for the minimum fuel case.

However, when the realistic dependence of specific fuel consumption on thrust

is taken into account, there will be a difference in both performance and

structure between constrained and free thrust cases. The aztual numerical

differences in performance depend on the propulsion and acrudynamic models

as well as other factors and must be determined by computer calculations.

Appendix

It is to be proved that the loci of W  - AV - 0 and T - D 0 are

tangent at the cruise point, assuming that the cruise point at T = TC,

V - V
C
 is a minimum of the cruise cost W f/V along the locus T - D - 0.

This is equivalent to proving that the cruise point lies on both loci and

that the slopes of the loci are identical at that point.

That the cruise point satisfies W  - AV - 0 follows from the sequence

of relations below:

{Wf
 - aV)]	 = V V - a	 = Vc

11 V-V-

	 = Vc ( a - A ) 0

T-T	 T=T	 T-T
c	 c	 c

v-V	 V-v 
c	 c	 c

To prove that the slopes are identical, compute the gradient of W  - aV

9 {W
f
 - AV) - i - S	 - T 

V 
0	 + j 1 TS gC	+ SFOT	 (Al)

FC V
	 L	 T

	
]T=TT T 

	

C	 e

	

V-V	 V-v

	

C	 c
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Tom__ perpicur unit vectors i	 point in the speed a thrust

directions, respectively. Now write A as a function of the perturbation

AV

_ [(Tc + v AV)sFC(Tc + Dv AV,V
c
 + AV)ll(Vc + AV)	 (A2)

Since, by assumption, A has a minimum at V . V c , set the derivative of A

with respect to eV equal to zero. This yields the following relation:

X _ DvSFC + Tc(SFCT v + SFCV) = TcSFC/Vc

Neat, compute the gradient of (T - D) (V/W) at the cruise point

V(T - D)(V/W T 
= (Vc

IW)[i(-DV) + 3l
c

V=v
c

The slope of (Al) relative to the i direction is given by

Slope = ^TcSFC + S ^,^}I T̂c SFC
V
 - (TcSFC/Vc)

T 

After substituting Eq. (A3) in place of T cSFC/V in Eq. (A5), the slope

simplifies to -I/D
v
, which is identical to the slope of Eq. (A4).



Table 1 Optimum trajectories for 200 n. mi. range,

Boeing 727.1200, JT8D-7 engines

1%5 gaited States standard atmosphere

Initial weight: 136,000 lb (61,750 kg), initial and final altitudes: sea level each,

initial and final airspeeds: 210 knots each.

Cruise or

maximum	 Cruise

Coat	 altitude	 distance	 Fuel	 Time	 Dwa

function Thrust constraint	 (ft)	 (n. mi.)	 (lb (kg))	 (min:$)	 ($/n. mi.)

Min	 Climb power in	 29,500	 34	 4570 (2072)	 37:11	 2.54

fuel	 ascent, idle in

descent

No constraints except	 31,300	 0	 4507 (2044)	 36:40	 2.51

operating limits

Minimum	 Climb power in	 30,400	 22	 4909 (2226)	 30:01	 2.40

DOCa	ascent, idle in

descent

No constraints except	 30,500	 0	 4812 (2183)	 29:47	 2.37

operating limits

aBased on c f = $0.056/lb of fuel and c t $410/hr.
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