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CHARACTERISTICS OF CONSTRAINED OPTIMUM TRAJECTORIES WITH SPECIFIED RANGE

* *
Heinz Erzberger and Homer Lee

Ames Research Center, NASA, Moffett Field, Calif. 94035

Abstract
Necessary conditions of optimality are derived for trajectories whose
structure is limited to climb, steady cruise, and descent segments. The
performance function consists of the sum of fuel and time costs, referred to
as direct operating cost (DOC). The state variable is range to go and the

independent variable is energr. In this formulation a cruise segment always

occurs at the optimum cruise energy for sufficiently large range. At short
ranges (500 n. mi. and less) a cruise segment may also occur below the

optimum cruise energy. The existence of such a cruise segment depends
primarily on the fuel flow vs thrust characteristics and on thrust constraints.

I1f thrust is a free control variable along with airspeed, it is shown that

such cruise segments will not generally occur. If thrust is constrained to
some maximum value in climb and to some minimum in descent, such cruise
segments generally will occur. Computer calculations of typical short-range

trajectories obtained about a 1% cost penalty for contraining the thrust.

Index categories: Flight Operations; Guidance and Control; Navigation;
Communication; Traffic Control.

*
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Nomenclature

c; = fyel cost factor, dollars/pound (dollars/kilogram)

c, = time cost factor, dollars/hour

D = drag force

Dv,n 2 = first and second partial derivatives of drag with respect
v

to airspeed

dt = cruise distance
df = desired distance to fly
»d = total climb and descent distances, respectively
up’ dn
E = total aircraft energy in units of altitude
Ec = cruise or maximum energy
Ecopt = optimum cruise energy
Ei’Ef = initial and final energy
é = rate of change of energy
8 = acceleration of gravity
H = Hamiltonian, dollars per unit of energy
h = altitude in feet (meters)
1,1 = componentg of the Hamiltonian
up’ dn
J = value of performance function in dollars or pounds (kilograms)
Kup'xdn = operands under the minimization operator in H
L = lift force
P = integrand of cost function or cost per unit time
SFC = thrust specific fuel consumption per hour
S = nth partial derivatives of S_. with respect to ()
FC(')n FC
T = thrust in pounds (kilograms)
Tup’Tdn = ¢limb and descent thrusts, respectively



opt

time

time at end of climb
time at start of descent
total mission time

true airspeed

cruise speed

= climb and descent airspeeds

wind speed along flight path

wind speeds in climb and descent segments, respectively,
functions of altitude

aircraft weight in pounds (kilograms)

total mission fuel in pounds (kilograms)

fuel flow rate in pounds per hour (kilograms/hour)

distance flown in nautical miles

climb and descent distances, running variables

parameter defining direction of control perturbations
flight-path angle, radians

length of control perturbation

thrust and speed perturbations relative to cruise conditions
cruise cost at cruise energy Ec’ dollars per nautical mile
throttle setting

throttle settings in climb and descent, respectively
costate variable

cruise cost per unit distance

optimum cruise cost over all energies, per unit distance



I. Introduction
RECENT research on aircraft trajectory optimization has focused on the
structure of optimum cruise trajectories. Steady-state cruise is generally
ok optimum for minimum fuel performance (Ref. 1); but the performance
improvement relative to steady state cruise is unknown, because the actual
nonsteady optimum cruise has not been computed. However, if the steady-state
cruise satisfies first-order necessary conditions, Speyer (Ref. 1) shows,
in an example, that the performance improvement of a particular (though
nonoptimum) cyclic cruise is about 0.1%Z. This improvement, if representative
of the optimum cyclic cruise, is not economically significant. Nevertheless,
the determination of the optimum c?clic cruise poses an interesting and
unsolved problem.

Even if economically significant, cyclic cruise could not be used in
airline operation because it is incompatible with existing air traffic
control procedures, disconcerts passengers, and decreases engine life because
of increased cycling. Optimum trajectories, to be compatible with typical
airline practice, should consist of: a climbout, a steady-state cruise, and
a descent. Thus, at least for commercial airline applications, the optimum
trajectory must be selected from a set of trajectories that is limited
a priori to such types.

A formulation of the trajectory optimization problem that constrains
the admissible trajectories to those containing climb, steady cruise, and
descent was given in Refs. 2 and 3. In this formulation, energy height was
used as the independent or timelike variable in climb and descent, thus
forcing energy to change monotonically in these segments. This formulation

of the constrained trajectory optimization problem is also adopted in this



paper. The use of energy eliminates the integration of a separate adjoint
differential equation and aimplifies the calculus of variations problem to
one requiring only pointwise extremization at algebraic functions (Refs. 2
and 3).

While the problem formulations here follow that of Refs. 2 and 3, this
paper extends those earlier results and places them on a firm analytical
foundation through the use of the calculus of variations. Also, an evaluation
of the constrained optimum trajectories by airline operators indicated an
interest in the additional constraint of setting the thrust to some maximum
during climb and to idle during descent. An examination of this procedure
raised the following questions. How do the constraints on thrust and, more
generally, the aerodynamic and propulsion characteristics affect the structure
of the trajectories? Under what condition is the constrained thrust procedure
optimum? What performance penalty is incurred by the constraint on thrust?

The investigation of these questions begins in Sections II and 1II with
the optimal control formulation of this problem and the derivation of the
first order necessary conditions., Sections IV, V, and VI contain the details
of the analysis relating the characteristics of the trajectories and the
optimum controls to the propulsion model. Section VII contains a brief
discussion of computed optimum trajectories for the Boeing 727-200 equipped

with JT8D-7 turbofans.

11. Optimal Control Formulation

As stated in the introduction, we assume at the outset that the optimum
trajectories have the structure shown in Fig. 1. This structure consists of
climb, cruise, and descent segments, with the aircraft energy increasing

monotonically in climb and decreasing monotonically in descent. Neglecting

Ty 111117 .1



flight-path angle dynamics and weight loss due to fuel burn, the point mass

equations of motions for flight in the vertical plane are

(1/g)(dv/dt) = [(T - D)/W] - sin v (1)

dh/dt = V gin vy (2)
dx/dt = V cos v + Vw -~V + Vw (3)

with the contraint L = W cos y. In airplanes, unlike rockets, the rate of
change of weight loss due to fuel burn introduces negligible dynamic effects
in the trajectory optimization. Nevertheless, the effect of weight loss on
a trajectory is important but can be accounted for without adding another
state v:riable by continuously updating the weight as the trajectory is

generated. If energy is defined as
2
E=h+ (1/2g)V (4)

then the familiar relation for the rate of change of energy is obtained by
differentiating Eq. (4) with respect to time and substituting the right-hand

sides of Eqs. (1) and (2) in place of dV/dt and dh/dt, respectively:

E = dE/dt = [(T - D)VI/W (5)

The cost function to be minimized is chosen as the direct operating

cost of the mission and consists of the sum of the fuel cost and the time cost: $

J = cfwf + cttt (6)

where Ce and <, are the unit cost of fuel and time, respectively. Setting

c, = 0 results in the familiar minimum fuel performance function. In integral

form, the cost function becomes




€ t,
J -jo. (wfczf + ct)dt :f P dt (7
0

It is assumed that the time to fly t_ 1is a free variable, but the

f

distance to fly is a specified quantity d Following the formulation in

fl
Ref. 2, we now write the total mission cost as the sum of the costs for the

three segments of the assumed trajectory, illustrated in Fig. 1.

[ t
f
J f Pdt + (dg-d = du0 +f P dt (8)
0 ] , td
climb cost cruise cost descent cost

where A designates the cost at cruise energy Ec. Next, we transform the
integral cost terms in Eq. (8) by changing the independent variable from time

to energy, using the transformation dt = dE/E.

E E
c . c .
J = ] (P/E]g, )E + (4 = d = d ) +/ (P/|E| 15 o)dE ()]

Ey E

The transformation uses the assumption that the energy changes monotonically
in the c¢limb and descent. This places strict inequality constraints on é.
as shown in Eq. (9). Also in Eq. (9), the integration limits have been
reversed in the descent cost term. In this formulation the cost function is
of mixed form, containing two integral cost terms and a terminal cost term
contributed by the cruise segment.

With the change in independent variable from time to energy, the state

equation [Eq. (5)] is eliminated, leaving Eq. (3) as the only state equation.




Furthermore, we note that the performance function [Eq. (9)] depends on the
distance state x only through the sum of the climb and descent distances
dup + ddn' Therefore, the state equatioa for the distance is rewritten in
terms of this sum:

d(xup + xdn)/dE = (Vup + Vv )/E} V (10)

g0 ¥ Vean)/ 1El go

Here, the transformation dt = dE/E was used again. Also, Eq. (10) provides
for independence in the choice of climb and descent speeds Vup and Vdn and
th> wind velocities kup and den. Wind velocities in climb and descent
are allowed to be independent of each other; generally, different wind
cenditions will prevail in physically different locations of climb and
descent. The wind velocities can also be altitude dependent. The effect of
altitude dependent winds on the optimum trajectories is discussed in Ref. 3.
Necessary conditions for the minimization of Eq. (9), subject to the
state equation [Fq. (10)] are obtained by application of optimum control

theory. (See, e.g.,'Ref. 4, page 71.) Then, the following relations are

obtained for the Hamiltonian and costate equations, respectively:

P P \') + VvV Vdn'ﬁv d
H = min (.) + (_) +yfe_wp , dn__vdn (11)
Vap'Van | M50 €1/ ;<0 Elt.o &l 50
1vup’ﬂdn
dy/dE = -[BHIB(xup + xdn)] = Q (12)

The right-hand side of the Hamiltonian equation is minimized with

respect to two pairs of control variables, one pair applicable to climb

(V and 7 ) the other pair to descent (V, and n, ). Since each term under
up up dn dn



the minimization operator in Eq. (11) contains only one of the two pairs of
control variables, the minimization simplifies into two independent
minimizations, one involving climb controls, the other, descent controla.
Also, since the right-hand side of the costate equation [Eq. (12)] is zero,

¢ 1s constant.

III. Transversality Conditions
The transversality conditions are additional, necessary conditions that
depend on the end point contraiunts of state variables (Ref. 4). The basic

constraint in this problem is the range of the trajectory d However,

£
df is a parameter in the transformed cost function, Eq. (9), and not a state

variable. The final value of the state variable dup +d is, in this

dn

formulation, subject only to the inequality constraint dup + ddn < df. This

constraint is, of course, necessary for a physically meaningful result.
This inequality constraint can be handled by solving two optimization

problems, one completely free (dup +d, < df), the other constrained

dn
(dup + ddn = df) and then choosing the trajectory with the lowest cost.
Physically, the comparison is between a trajectory with a cruise segment,
and one without a cruise segment. Considering first the free terminal state

case dup +d n < df, we obtain the following relation for the final value

d

of the costate {:

WED = [0 = d - dg IN/[2E + dy )] = =) (13)

This is the transversality condition for the free final state problem with
terminal cost (Ref. 4), It shows that the constant costate value is the

negative of the cruise cost,



Next, consider the case of no cruise segment. Then, the middle term of
Eq. (9) drops out and the performance function contains only the integral cozt
terms. This is the case of the specified final state df = dup + ddn; the
corresponding transversality condition yields w(nc) = ¢f- In practice it is
not necessary to compute the constrained terminal state trajectory if a valid
free terminal state trajectory exists, since the addition of a terminal con-
strafnt can only increase the cost of the trajectory. Therefore, this case is
not considered further in this paper.

In both cases the choice of costate determines a particular range. Since
the functional relationship between these variables cannot be determined in
closed form it is necessary to iterate on the costate value in order to achieve
a specified range df.

The last necessary condition applicable to this formulation is obtained by
making use of the fact that the final value of the timelike independent variable
E 1is free. 1Its final value is the upper limit of integration Ec in Eq. (9).
Application of results in Ref. 4 provides the following condition:

(u + ([0(dg = d = dgINBI/E)) o =0 (14)

which, when evaluated and simplified, becomes

B+ 1d @\/dD gy = 0 (15)

wvhere dc is the cruise distance.

Condition (15) has the following physical interpretation. The value of
the Hamiltonian H evaluated at cruise energy Ec is [after substituting
Eq. (13) into Eq. (11)] the minimum increment in climb plus descent cost
relative to cruise cost to make a unit increment in cruise energy. The
product dc(dA/dE)E_E is the minimum increment in cruise coat for a unit
change in crufse ener:y. Condition (15) rejuires the optimum trajectory to

10



be such that the sum of these two increments be zero for a given cruise

distance dc and cruise energy Ec.

IV. Dependence of Optimum Trajectories on Range
Equation (15), together with knuwledge of the salient characteristics
of the cruise cost A and the Familtonian H, can be used to determine the
structural dependence of the optimum trajectories on range.
Cruise cost at a cruise energy Ec and cruise speed Vc is computed

from the relation

(16)

A(EC.VC) = lP(T,EC.Vc)]/(Vc + Vw) ; constraints: (T = D}

L=W

there the denominator is the ground speed in the flight-path directicn.
Examination of the term containing A in the relation for the performance
functicn (9) shows that the value for A should be as small as possible at
each cruise energy in order to minimize the total cost J. Therefore, the
cruise speed dependence of ) 1is eliminated by minimizing the right side
of Eq. (16) with respect to VC

x(sc) = min P(T.Ec,vc)/(vC + vw) a17)

v
c

In this paper, A and Vc are always assumed to be the optimum cruise
cost and cruise speed, respectively, at a particular cruise energy Ec'

Except ir high wind shear, the cruise cost as a function of cruise energy
exhibits the roughly , arabolic shape shown in Fig. 2. For subsonic transport
aircraft, the minimum of the cruise cost with respect to energy occurs close
to the maximum energy boundary. This characteristic of the cruise cost

prevails for essentially all velues of the performance function parameters

11




e and .. The quantities defiring the optimum eruise conditions are Eéap:

and Aept' In BEq. (15), the derivative of the cruise ecost function multipliea

the cruise distance. Except under extreme wind shear conditions, the deriva-
tive is wmonotonic and crosses the zero axis at Ec - Ecopt’
By distributing the minimizaiion operator in Eq. (11) and substituting

Eq. (13) in Eq. (11), H can be decomposed into climb and descent components

as follows:
n{E,A(sc)l - Iup + Idn (18)
where
P-AV _ +V_ ) P-Xi(V, +V )
I = min up wup , I, =min _ dn wdn (19)
Wy £ da |E|]:
up E>0 dn E<0
" kil
up dn

In the preceding section, the Hamiltonian, evaluated at E = Ec, was
interpreted as the cost penalty to achieve a unit increase in crvise energy.
Extensive numerical studies of Eq. (18) for several comprehensive models of

subsonic turbofan aircraft show H[EC,A(EC)] 2 0, for Ec <E Moreover,

copt”
the minimum cost penalty for increasing energy Iup is always positive and

that for decreasing energy I is negative; but the sum has never been

dn
found negative for models of currently used turbofans. While these character-
istics have been established for several aircraft models, they are not
intended to imply a generalization to all aircraft, since no physical laws
prevent H from being negative.

Consider first the case where H[EC,A(EC) > 0. Then, Eq. (15) can be

solved for the cruise distance dc

12



d, = -H(E_,M(E )/ (dA/dE)E_Ec (20)

Since d)/dE < 0, but approaches zero as Ec approaches Ecopt' the

cruise distance must increase without limit as Ec approaches E Our

copt’
numerical studies have shown that the value of H tends to decrease as Ec

increases, but not enough to change this trend. Figure 3 ahows the resulting
family of trajectories, assuming H > 0 for all values of Ec' In this case,

interestingly, nonzero cruise segments occur at short ranges and at energies

" below the optimum cruise energy E

copt” Optimum cruise is approached

asymptotically at long range.

Consider next the case where H[EC,A(EC)} = (. Then dc =0, {.e.,
no ¢. se segment is present for d)/dE < 0. However, Eq. (15) shows that
dc «an be nonzero if dA/dE < 0. This implies that for H = 0, cruise flight
is optimum only at the optimum cruise energy Ecopt' Figure 4 shows the
family of trajectories for this case.

It is conceivable that both cases appear in the same problem, although

this has not occurred in the examples we have studied.

V. Thrust Optimization for Minimum Fuel Trajectories
Evaluation of the Hamiltonian equation would be simplified if one of
the twe pairs of control variables, airspeed or thrust, could somehow be
eliminated a priori from the minimization. Since the pair of throttle

settings, nup and is thought to be near its limit, we shall look for

dn’
conditions where extreme settings of the throttle are optimum. The remainder
of the paper examines only the minimum fuel case Ce ™ 1 and c, = 0, with

winds set to zero in order to simplify the derivation. However, the results

can be extended to the more general cost function.

13



For minimum fuel performance, the two terms in the Hamiltoni.:s Eq. (19)

I = min K v L. = min K, (21a)

where

up (21b)

An accurate medel for thrust and fuel flow generally includes the
functional dependencies, T(r,V,h) and ﬁf(W.V.h), In addition, these functions
wust be corrected for nonstandard temperatures and bleed losses.

In previous work op ailrcraft trajectory optimization (Ref. 5), a

simpler model for fuel flow and thrust was used

We = TSFC(V.h) H Tmin(v’h) <STs Tmax(v'h) (22)

The critical assumption in Eq. (22) is independence of the specific fuel

consumption § from thrust. The virtue of this model lies in the insight

FC
it yields into the minimum fuel problem. If Eq. (22) is substituted into

Eqs. (21b), one obtains

- -
- (1
¢ . src“ T“p ( /SPE)YW, .
up vup '1'up -D i
- JT >D
up
- (A
. sFCw 77 ( /s )v
dn Vd“ - Di
L 4T, <D
" dn

(23)
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For any fixed values of vup or vdn‘ the operand functions for the
minimization K“P and Kdn are hyperbolas with poles at T = D, The
numerator zero must be to the left of the pole on the thrust axis for energies
less than cruise energy. Figure 5 is a typical plot of these functions.
Clearly, maximum thrust minimizes Kup and idle thrust minimizes Kdn for
any E < Ec. proving that the limiting valuea of thrust are optimum for this
propulsion model throughout the climb and descent trajectories. This result
also implies that the departure from the extreme thrust values found for the
more general propulsion model is directly attributable to the nonlinear
dependence of fuel flow on thrust. Conversely, the need for throttle setting
optimi:aticn’can be determined a priori from the fuel flow vs thrust

dependence for a particular engine. Such data are found in the engine

panufacturer's performance handbook.

VI. Evaluation of Hamiltonian at Cruise

We have seen in a preceding section that the value of the Hamiltonian
computed at cruise energy Ec determines the structure of the trajectories
near cruise. Here we shall relate the existence of cruise below Ecopt to
specific engine and aerodynamic model parameters. This is done by substi-
tuting truncated Taylor series expansions of fuel flow and drag as functions
of airspeed and thrust into the expression for the Hamiltonian., The location
of the minimum with respect to the controls as well as the value of H can
then be determined as functions of the Taylor series coefficients at E = EC.

How should one pick the point in the control space about which to make
the expansion? Computational experience in Refs. 2 and 3 has shown that
the minimum is in the neighborhood of the optimum cruise speed and throttle

setting, corresponding to the given cruise energy. This suggests that the

cruise controls should be picked for the expansion point.
15



The fuel flow and drag functions expanded to second order about the

crulse controls T = Te’ V= Vc are:

. 7 2
We = T Spo + (‘rcsm + sm)A‘r + 'rcsmv AV + (1/2) 285 + T Spe AT
T T T2
2
+ (1!2)(%csrc + SFC )AV AT + (IIZ)TCSFC AV
vV v vz
+ higher-order terms (24)
D= D(VC,EC) + Dv AV + (1/2)D 2 AV2 + higher-order terms (25)

v

The subscripts to s?c and D designate the partial derivatives with respect

to the subscripted variable. Note that the expansion allows for a general
fuel flow model in which specific fuel consumption can be thrust dependent.
Before substituting Eqs. (24) and (25) into the expression for H, we
observe that H is singular at cruise with T = Tc and V = Vc, because
both numerator and denominator are identically zero at that point. Figure
plots the loci of the numerator and denominator zeros of Kup and Kdn in

the control space at E = EC. 1t is proved in the appendix that the locus

of numerator zeros is tangent to the locus of denominator zeros at the

optimum cruise controls. For E < Ec the two loci have no points in common,

The two loci can be tangent but cannot cross, since otherwise controls
would exist that would make the Hamiltonian infinitely negative, a result
ruled out as physically meaningless.

Upon substituting Eqs. (24) and (25) into Eqs. (21) using the tangency
condition (A4) derived in the appendix, the following expressions for Ku

p

and Kdn at cruise energy are obtained:

16



, (TCSFCT + S?C)AT - (Bvsm + TcsFC Bv)

T

: 2

v /2)f2s.. +Ts.. lar®+frs.. +s_. Javar

re, * TR , Sre, * Brey
K e /DTS, avd
up ¢ FC
of e =i - i 3 —= (26)
Kdn (v, + V) laT - o, av - /2)D , AV°|

v

Terms above second order have been neglected since we are investigating a small
neighborhood of the cruise point. Expression (26) represents Kup if the quan-
tity under the absolute value sign is positive and Kdn if it is negative.

Since the cruise point at AT =0 and AV = 0 gives the undefined value of
0/0 for Eq. (26), it is necessary to evaluate the limit as AT and AV approach
zero. If the limit exists it must be independent of the direction from which the
cruise point is approached. To compute the limit and investigate the neighbor-
hood of the cruise point, a polar coordinate system centered at the cruise point
is used to define control perturbations., Let AR and B8 define control
perturbations AT and AV as follows:

AT = (Dv + B)AV 27)

AV = AR/Y1 + (B + Dv)2 , AT = AR(B + nv)//1 + (B + l)v)2 (28)

The parameter B defines a direction relative to the reference direction of the
line AT = Dv AV, The reference direction B = 0 1is excluded from the control

space since it is along the direction of the locus of T = D at the cruise point.

17




After substituting Eqs. (28) into Bq. (26) and taking the limit of the

‘gesulting expressions as AR + 0, one obtains for any B ¢ 0

- (H/vc)(ch +TSpc) » K - (-wvc)(sm + TS ) (29

“P}lm: T "“]uan T
The limit is thus well defined, since it is independent of the approach
direction in each region. However, it remains to be shown that the limit
value is in fact the minimum of Eq. (26) with respect to the perturbation
controls. This question is investigated for two cases, one where SFC is

independent, and the other where it is dependent on thrust.

Case (A): Independent of Thrust

Src
Along the direction defined by AV = 0, i.e., along the thrust direction,
Eq. (23) can be used directly to determine the dependence of the functions
on T and T under the minimization operator. Since at V =1V ,
up dn c
D(VC.EC) =T, = (A.SFC)VC, Eq. (23) reduces to

Kup = ("’/"c)src o Ky ® ('ch)sxrc (30)

showing that at the cruise speed Vc these functions are independent of
thrust. This result is not restricted to small perturbations relative to

the cruise thrust. Along other directions, the truncated Taylor series form
[Eq. (26)]) must be used. After setting to zero all thrust dependent
derivatives and substituting Eqs. (28) into Eq. (26), the following expression

is obtained:

18




11 +(2smv(|sl +D) + TS, Z)AR
Kup WS ‘ 2{B|SEC f; + (B + Dv)é B
or = : " ’
X V_+ &) D, &V

dn ] - ———
2|8| /14 (B + nv)!

(31)

wvhere the positive sign applies ;o Kup and the negative sign to gdn'
The characteristics of these functions depend on the drag and specific fuel
consumption derivatives. The drag derivatives Dv and D g are both
positive, since the aircraft will certainly operate on th: "front" side of
the thrust-required curve. The dependence of SFC on speed for a typical,
currently inservice turbofan engine at cruise energies exhibits a slight
upward curvature above Mach 0.4, as shown in Fig. 7, implying that both
SFCV and Schz are positive in the range of interest between Mach 0.4
and 0.9. The slight curvature of SFC indicates that a quadratic function
can accurately model the Mach number dependence of SFC in the Mach range of
interest and not just in a small neighborhood of the expansion point. Also,
at typical cruise conditions one finds that sz > (2SFCVDV + TCSFCvz).
Therefora, for any B8, the denominator of Eq. (31) goes to zero before the
numerator does as AR is increased from an initial value of zero. Moreover,
the slope of the operand function with respect to AR increases as 8
approaches zero., The effect of AV can be neglected, since Vc >> AV,

These observations lead to the conclusion that the functions in Eq. (31)
slope upward in all directions as AR increases, except in the direction
parallel to the thrust axis, along which the slope is level. Figure 8 shows

a family of plots of the operand functions as B varies over its range. The

limiting values of these functions at the cruise point (iw/Vc)SFC are

19



therefore also the global minimums, and the value of the Hamiltonian, which
“4s the sum of the two components, is zero. At the cruise energy, furthermore,
the optimum climb and descent speeds are equal to the optimum cruise speed.
The optimum climb and descent thrusts at that point are arbitrary since the
Hamiltonian is independent of them.

By applying these results to Eq. (20), it now follows that the structure
of the optimum trajectories near cruise is given by the family of trajectories
in Fig. (4). 8Specifically, no cruise segment occurs except at optimum cruise
energy Bcapt'

By combining results from this and the preceding section, the important
result follows that, for the assumed engine model, the optimum trajectories,

the corresponding optimum controls, and the performance are not affected

by constraining the thrust to extreme values in the climb and descent segments.

Case (B): SFC Thrust Dependent

A complete investigation of the neighborhood of the cruise point analogous
to Case (a) requires estimates of the various thrust dependent derivatives in
Eq. (26). However, understanding of this case can be obtained by examining

the functions in Eq. (26) only along the thrust direction, i.e.,, for AV = 0,

Under that assumption, Eq. (26) simplifies to the following expression:

K
up

Kor = (WS, /V )£l + (TcchT/sFC) + ([AT]/ZSFC) :zsFCT + T Spc

dn T

(32)
2

where the plus sign and AT > 0 are chosen for Kup and the negative sign

and AT < 0 for Kdn'
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This simplified approach focuses attention on the derivatives SFC and

T
SPC 9° which are crucial for this case. The characteristics of these
T

derivatives can be deduced from plots of §S_ vs thrust, in Fig. 9. These

FC
plots, and those in Fig. 7, were derived from the operating instructions
manual of a typical inservice turbofan (Ref. 6). Obviously, the assumption
of a thrust-independent SPC is groasly violated for this engine, since at
low thrust values the SFC curves approach infinity; that is, they become
undefined. However, at typical climb or cruise thrusts, corresponding to

the upper half of the thrust range, the variation in § is only about 5X.

FC
Fuel flow is also plotted in Fig. 9. The dashed line through the origin

gives the best constant § approximation to the fuel flow function.

FC
Comparison indicates an excellent match at high thrust, but an error of as
much as 1200 1b/hr (550 kg/hr) at low thrust. For some applications the
assumption of a constant SFc could be adequate if fuel flow errors at very
low or idle thrust settings can be tolerated.

For the upper two thirds of the thrust range, quadratic functions provide
good fits to the SFC curves, Therefore, one can use the second-order
Taylor series expansion at the cruise point to estimate SFC for fairly
large deviations of thrust from cruise thrust.

The thrust in climb or cruise is typically larger than the thrust at

. 8
which SFC is a minimum in Fig. 9. Both SFCT and FCT2 will, therefore,

be greater than zero and so will the coefficient of AT in Eq. (32). It
follows that the slope of Eq. (32) as a function of At is greater than zero
for Kup and less than zero for Kdn' In other words, along the thrust

direction these functions have a strong minimum at the cruise point, whereas

in Case (a) they were level along this direction. Along other directionms,
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the investjgation of Case (A) has shown a positive slope. Thus, if thrust
is an unconstrained control variable along with airspeed, so that the cruise
point lies in the interior of the control region, then the optimum climb and
descent thrusts and airspeeds will converge toward the optimum cruise thurst
and airspeed as the climb and descent energies approach the cruise energy.
It should be noted that his holds for all cruise energies, including those
less than the optimum cruise energy, Ecopt' Since the Hamiltonian is again
gero at the cruise energy, it follows that the structure of the optimum
trajectories as a function of range is identical to that of Case (A) and is
illustrated by Fig. 4. Computer calculations for this case in Ref. 2, using
a similar engine model, showed that the thrust is either maximum or idle
for about three-fourths of the energy range between initial and cruise
energies and then departs from the extremum values so as to converge smoothly
to the value at cruise as cruilse energy is approached.

Consider now the case where thrust is constrained to some maximum in
climb and is idle in descent. In that case, the minimum at the crulse point
is not accessidble since it does not lie iIn the region of permissible controls.

Also, unlike Case (A), the thrust dependence of Kup and K in Eq. (23)

dn
does not disappear along the thrust direction at V = Vc. Therefore, it is
unlikely that at the minimum the sum of the two terms will be zero. The
Hamilternian 1s, in fact, greater than zero at any cruise energy. In order

to show this, note in Fig. 9 that as thrust decreases, SFC increases without

bound. It follows that Idn will be less negative than it would be if SFC
were thrust independent and therefore will be insufficient to cancel Iup at
cruise energy, resulting in a positive value for the Hamiltonian. This was

shown earlier to give rise to nonzero cruise segments below the optimum
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cruise energy. Thus, the structure of the optimum trajectories for the

constrained thrust case is given by the family of trajectories in Fig. 3.

Vi1, Some Numerical Results

Calculations of various types of optimum trajectories (minimum fuel and
cost) have been carried out for the Boeing 727-200 and the McDonnell Douglas
DC-10 aircraft using a digital computer implementation of the algotiihm
described in this paper. The models used in this program contain detailed
propulsion and aerodynamic data, including thrust dependent specific fuel
consumption and separate idle thrust and fuel flow models. The program also
compensates for weight loss due to fuel burn as well as allowing the user to
choose between the constrained and unconstrained thrust cases. The program
is designed to augment or be a substitute for the computerized flight
planning systems now used by airlines. A complete discussion of the results
obtained in these calculations is beyond the scope of this paper. As an
example of the results, Table 1 gives summary data for two minimum fuel and
two minimum DOC trajectories for the 727-200.

For the case of minimum fuel performance, the difference in fuel
consumption between the constrained and free thrust optimum trajectories 1is
63 1b (29 kg), or about 1%. For the case of minimum DOC performance, the
difference is $0.03/n. mi., or again about 1X. In both cases the differences
have been found consistently, though dependent on range and aircraft weight.
These differences, while not large, are about at the threshold (1% level)
where they are considered significant in airline operating economics

For both performance functions, the optimum cruise distances for the
constrained thrust cases are a small percentage (11 and 18%) of the total

range. These results indicate that, for this engine, the specific fuel

23



consumption dependence on thrust does not have a strong influence on the
trajectories. The DOC penalty of flying minimum fuel trajectories is seen
to be l4¢/n. mi., or 6%, wvhile the fuel penalty for flying minimum DOC
trajectories is about 300 1b (136 kg), or 7%. Each airline must evaluate
the significance of the fuel and DOC differences between the trajectories
in light of ite schedules and route structures.

The fuel cost and time cost factors used in these calculations are
estimates obtained from a United States airline in mid-1977. These factors
vary with time and between airlines.

A comparison can also be made between the performance of optimum and
currently used procedures. Such a comparison for a model of the DC~10
flying a 220 n. mi. range yielded a 7% fuel savings for the minimum fuel

trajectories (Ref. 7).

VIII. CONCLUSIONS

The approach to trajectory optimization presented here has led to a
rather detailed understanding of the characteristics of the optimum
trajectories. The approach also lends itself to a numerically stable computer
implementation that can be incorporated in an airline flight planning svstem
or, ideally, in an onboard performance management system. Furthermore,
trajectories generated by this method can serve as beuchmarks for evaluating
other (suboptimum) algorithms. This possibility is especially intriguing at
this time in view of the strong current effort in industry to develop the
so-called On Board COptimum Performance Computers.

Two pairs of opposing assumptions, constrained vs free thrust and
dependence vs independence of specific fuel consumption on thrust, played

pivotal roles in determining the characteristics of the optimum trajectories.
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1f the assumption of specific fuel consumption independent of thrust is
justified, constrained thrust trajectories are identicual to free thrust
trajectories in structure and.performance for the minimum fuel case.

However, when the realistic dependence of specific fuel consumption on thrust
is taken into account, there will be a difference in both performance and
structure between constrained and free thrust cases. Th: actual numerical
differences in performance depend on the propulsion and aervdynamic models

as well as other factors and must be determined by computer calculations.

Appendix
It 18 to be proved that the loci of ﬁf -=AW=0 and T~-D =0 are
tangent at the cruise point, assuming that the cruise point at T = Tc,
Vs Yc is a minimum of the cruise cost ﬁf/V along the locus T - D = 0.
This is equivalent to proving that the cruise point lies on both loci and
that the slopes of tihe loci are identical at that point.

That the cruise point satisfies W, - AV=0 follows from the sequence

f
of relations below:

. e W
(w-w)] =yl - -V - - l=V (A-2A)=0
f T=T_ v T=T, ¢ v TeT, ¢

V=V V=v V=V
c c c

To prove that the slopes are identical, compute the gradient of ﬁf - AV

. : _ Togc i T
V@, - V) = T - Sec, © V- + ) LTSFCT + ch] (A1)
TsT T=T
[ c
=y VeV
[ C
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The, perpendicular unit vectors i and 3 point in the speed and thrust

directions, respectively. Now write 2 as a function of the perturbation

AV:

A= {(rc + nv AV)ch(rc +D, av,vc + AV)}/(Vc + AV) (A2)

Since, by assumption, A has a minimum at V = Vc, set the derivative of 2

with respect to AV equal to zero. This yields the following relation:
A= Dvch + Tc(?FCTDv + SFCV) = TcSFC/vc (A3)
Next, compute the gradient of (T - D)(V/W) at the cruise point

(T - D) (v/wjHc = (V_/Wi(-D) + 3] (a4)

V=V
c
The slope of (Al) relative to the 1 direction is given by
Slope = ('rcsFCT + sv;)/{%cchv - (Tcspclvc{] (A5)

After substituting Eq. (A3) in place of TcSFC/v~ in Eq. (AS), the slope

simplifies to -1/Dv, which is identical to the slope of Eq. (A4).
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Table 1 Optimum trajectories for 200 n. mi. range,

Boeing 727-200, JTBD-7 engines

1965 United States standard atmosphere

Initial weight: 136,000 1b (61,750 kg), initial and final altitudes:

initial and final airspeeds:

sea level each,

210 knots each.

Cruise or
maximum Cruise
Cost altitude  distance Fuel Time poc?
function Thrust coastraint (ft) (n. mi.) [1b (kg)] (min:$) ($/a. mi.)
Hinigpum Climb power in 29,500 34 4570 (2072) 37:11 2.54
fuel ascent, idle in
descent
No constraints except 31,300 0 4507 (2044) 36:40 2.51
operating limits
Minimum Climb power in 30,400 22 4909 (2226) 30:01 2.40
DOCa ascent, idle in
descent
No constraints except 30,500 0 4812 (2183) 29:47 2.37

operating limits

W

2Based on e = $0.056/1b of fuel and c, = $410/hr.
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