General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Contractor Report 144874

F-15 Inlet/Engine Test Techniques and Distortion Methodologies Studies

Volume IX - Stability Audits

C.H. Stevens E.D. Spong M.S. Hammock

McDonnell Douglas Corporation McDonnell Aircraft Company St. Louis, Missouri

Prepared for Dryden Flight Research Center under Contract NAS4-2364

June 1978

FOREWORD

This report was prepared by the McDonnell Aircraft Company (MCAIR), a division of the McDonnell Douglas Corporation, St. Louis, Missouri for the National Aeronautics and Space Administration, Dryden Flight Research Center, Edwards, California. The study was performed under NASA Contract NAS4-2364, "F-15 Inlet/Engine Test Techniques and Distortion Methodolog_es Study." The work was performed from March 1977 through February 1978 with Mr. Jack Nugent (NASA/Dryden) as Program Monitor and Mr. Harvey Neumann (NASA/Lewis) as Technical Monitor. Special acknowledgement is due Mr. T. Putnam (NASA/ Dryden) for his constructive criticisms and suggestions.

The effort at McDonnell Aircraft Company was conducted under the technical leadership of the Engineering Technology Division. In addition to the authors listed on the cover, other MCAIR personnel that made significant contributions to this program were Mr. Edward Smith, Mr. Lee Weltmer and Mr. Mark Sawyer. Special acknowledgement is due Mr. Hershel Sams for his reviews and suggestions.

Significant subcontract support was provided by Mr. Wayne Walter and Mr. Lew Hayward of Pratt & Whitney Aircraft (P&WA), Government Products Division, under the direction of Mr. Frank Thompson.

This report consists of nine volumes. Technical discussions of the program, results and Appendices A and B are presented in Volume I (NASA CR 144866). Appendices C through J are presented in Volume II through IX (NASA CR 144867-144874) which present the distortion analysis plots and the associated statistical functions used for the analyses.

(Ŧ

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
NASA CR-144874		
A, Inde and Sublide F-13 Inter/El	e Study	5. Report Date
DISCOLLION MECHODOLOGIE	socialy	6. Performing Organization Code
Volume IX - Stability A	udits	
7. Author(s)		8. Performing Organization Report No
C. H. Stevens, E. D. Sp	ong, M. S. Hammock	10 Work Unit No
. Performing Organization Name and Ad	dress	514-54-04
McDonnell Aircraft Comp	any	514-54-04
McDonnell Douglas Corpo	ration	11. Contract or Grant No.
St. Louis, Missouri 63	166	NAS4-2364
		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Addres	\$	Contractor Report - Final
National Aeronautics an Washington, DC 20546	d Space Administration	14. Sponsoring Agency Code
5. Supplementary Notes		
Program Monitor: Jac	k Nugent (NASA/Dryden)	
Technical Monitor: Har	vey Neumann (NASA/Lewis)	
6. Abstract		
taken from a subscale inlet levels for a full scale fli contained in the Technical	tudy goal of determining if model can be used to predi ight test vehicle. The resu Discussion, Volume I (NASA	peak distortion data Let peak distortion Lts of this study are CR 144866).
accomplianing the primary s taken from a subscale inlet levels for a full scale fli contained in the Technical	tudy goal of determining if model can be used to predi ght test vehicle. The resu Discussion, Volume I (NASA	peak distortion data tot peak distortion ults of this study are CR 144866).
 accomplishing the primary s taken from a subscale inlet levels for a full scale fli contained in the Technical 17. Key Words (Suggested by Author(s)) 18. Key Words (Suggested by Author(s)) 19. Key Words (Suggested by Author(s)) 19. Key Words (Suggested by Author(s)) 19. Key Words (Suggested by Author(s)) 10. Key Words (Suggested by Author(s)) 10. Key Words (Suggested by Author(s)) 11. Key Words (Suggested by Author(s)) 12. Key Words (Suggested by Author(s)) 13. Key Words (Suggested by Author(s)) 14. Key Words (Suggested by Author(s)) 15. Key Words (Suggested by Author(s)) 15. Key Words (Suggested by Author(s)) 16. Key Words (Suggested by Author(s)) 17. Key Words (Suggested by Author(s)) 18. Key Words (Suggested by Author(s)) 19. Key Words (Suggested by Author(s)) <	tudy goal of determining if model can be used to predi ight test vehicle. The resu Discussion, Volume I (NASA I NASA 18. Distribution Sta Effects Star Category	<pre>tement - Unlimited : 07</pre>
 It is a subscale inlet is taken from a subscale inlet levels for a full scale fli contained in the Technical If Key Words (Suggested by Author(s)) Compatibility Scale inlet/Engine Compatibility Reynolds Number Frequency Content Engine Effects Stability Audit 	tudy goal of determining if model can be used to predi ight test vehicle. The resu Discussion, Volume I (NASA Unclassified Star Category	<pre>tement c peak distortion data ct peak distortion dts of this study are CR 144866). tement - Unlimited : 07</pre>
 accomplishing the primary s taken from a subscale inlet levels for a full scale fli contained in the Technical 17. Key Words (Suggested by Author(s)) Compatibility Scale Inlet/Engine Compatibility Reynolds Number Frequency Content Engine Effects Stability Audit 9. Security Classif (of this report) 	tudy goal of determining if model can be used to predi ight test vehicle. The resu Discussion, Volume I (NASA Iscussion, Volume I (Sauto), Volume I Iscussion, Volume I (Sauto), Volume I Iscussion,	<pre>tement - Unlimited : 07 21. No. of Pages 22. Price</pre>

•

.

4

9

0

÷

*For sale by the National Technical Information, Springfield, VA 22161

	1	ŧ :	£ 🔍	E 31	f 1	F 1	F				r i	1	1 N	10	f	· ·	5 1		11 1	97 1°	1 1	> • •	e 1. a.e. 1	a 1
	\ 1	1 ÷	ľ	ŧ	1 1	 1						1.5	+ X	1	. 1		ſ [-	and the second second	-			and the second
iii.	the second s	 L	£	1	[1	1 1				a maile and a state		1		www.awaid	NUCCES OF	1000	THE OWNER.		 1.5	a character	ALC: NOT THE OWNER OF	and the second state	States States	- 34 - 77 - 42 B
-		 the second s	the second s	CONTRACTOR AND A REAL PROPERTY OF	1	 State of the second sec	22 Mar. 10 Mar. 100	1 A 1 Y 1 A 1 A 1 A	the second se	and the second		and the second		the second second	And the owner of the local division of the l	a second s	COLUMN TWO IS NOT THE OWNER.	A REAL PROPERTY AND A REAL PROPERTY.	 _					

•

TABLE OF CONTENTS

Section	Page
SUMMARY	1
APPENDIX J - STABILITY AUDITS	3
DATA MATRIX TABLE	5
STABILITY AUDITS	8

D

LIST OF ILLUSTRATIONS

•

1

7

:

- i =

F

Ŧ

1

Ŧ

Figure No.		Page
J-1 thru J-4	Stability Audit Analysis Plots Mach 0.4 α = 16.4 β = -0.8, ρ = 6.9, Δ_3 = 27.6 WAT2 = 104.1% Bypass = 0 I.D. Number = 1	8-11
J-5	Stability Audit Analysis Plots Mach 0.69 α = 11.5	
thru	$\beta = 1.0, \rho = 7.0 \Delta_2 = 26.5 \text{ WAT2} = 104.2\%$	
J-8	Bypass = 0 I.D. Number = 4	12-15
J-9	Stability Audit Analysis Plots Mach 0.92 a = 5.6	
thru	$\beta = 0.6 \rho = 7.0 \Delta_3 = 26.6 \text{ WAT2} = 104.5\%$	
J-12	Bypass = 0 I.D. Number = 16	16-9
J-13	Stability Audit Analysis Plots Mach 1.24 α = 3.0	
thru	$\beta = 0.8$ $\rho = 6.7$ $\Delta_2 = 27.6$ WAT2 = 96.4% Bypass = 0	
J-15	I.D. Number = 35	20-22
J-16	Stability Audit Analysis Plots Mach 2.0 α = 2.5	
thru	$\beta = 0.2$ $\rho = 2.3$ $\Delta_{\rho} = 20.9$ WAT2 = 77.0%	
J-18	Bypass = Auto I.D. Number = 57	23-25

()

SYMBOLS

D

)

)

1

•

+ $\sqrt{}$

F

.

Í

2

	Description	<u>Units</u>
ALPHA	Aircraft angle of attack	degrees
ALT	Altitude	meters (feet)
AVG	Average	
b, B	Radial Distortion Weighting factor	
BYPASS	Inlet bypass area	sq. meters (sq. inches)
Beta	Aircraft angle of sideslip	degrees
CIVV	Compressor Inlet (Fan) Variable Vanes	degrees
Deg	Degree	degree
^{ΔP} t ₂	Fluctuating component of individual probe pressure at the engine face	
(ΔP_{t_2}) rms	Root mean square of fluctuating pressure	kPa (PSIA)
DELTA 3	Inlet third ramp angle relative to the Inlet Reference Line	degrees
^{∆P} ^t 2.5H	Fluctuating component of fan exit total pressure/engine stream	kPa (PSIA)
ΔP 2.5C	Fluctuating component of fan exit total pressure/fan stream	kPa (PSIA)
$\frac{\Delta P}{P}$, D ₂	Spatial Distortion = $[(P_{t_2})_{max} - (P_{t_2})_{min}]/\overline{P}_{t_2} \cdots \cdots \cdots$	
FLT, FLIGHT	Flight test data notation	
FSCP	Full Scale Cold Pipe (without engine) wind tunnel test data notation	
FSE	Full Scale with Engine wind tunnel test data notation	
HZ	Hertz	hertz
I.D., IDENT	Identification	
K _{a2} , KA2	Fan distortion descriptor = K_{θ} + b K_{ra_2}	
K _ə , KTHETA	Circumferential distortion	
Kr _{a2} , KRA2	Radial distortion	

v

SYMBOLS (Continued)

Description

Units

BKRA2 Radial distortion multiplied by radial distortion weighting factor. KC2 High compressor distortion descriptor. . . . K8 SP Circumferential distortion descriptor used to calculate the high compressor distortion descriptor. kPa M MACH MAX MIN No. Pt2 Individual probe engine face steady state pressure \dots kPa (PSIA) . . . P_{t2} 48 probe averaged engine face steady kPa (PSIA) $\overline{P}_{t_{25H}}$ Average high compressor face steady state pressure kPa (PSIA) Freestream total pressure, kPa (PSIA) Pt_ PT2I Individual probe time variant engine PT2I, PI 48 probe averaged time variant engine Ratio of time variant to steady state PI/PS 48 probe averaged engine face pressure . . . Pressure (Pounds per Square Inch Absolute) PSIA PSIA Dynamic pressure kPa (PSIA) Q, q Re. No. RHO Inlet first ramp angle relative to the Inlet Reference Line degrees Root mean square..... RMS, rms second Second Sec

vi

SYMBOLS (Continued)

Any set

.

Ì

- FI

÷.,

-

Description

Units

1997 - 19

1

٢

S.

Series VII	<pre>1/6th scale inlet wind tunnel test series data notation</pre>
Series VIII	1/6th scale inlet wind tunnel test series data notation
T _{t2}	Engine face total temperature *K
^T c 2511	High compressor inlet (or fan exit) total [•] K temperature
Tu	Turbulence
W2	Engine/Fan airflow
WAT2	Corrected fan airflow = $W2\sqrt{\theta_{t_2}}/\delta_{t_2}$ kg/sec (LB/sec)
WAT2 Design	Design corrected fan airflow
WAT2 Percent	WAT2 divided by WAT2 Design x 100
W25H	High compressor airflow
WAT25H	Correc <u>ted h</u> igh compressor airflow W25H ^{/0} t _{25H} / ³ t _{25H} · · · · · · · · · · · · kg/sec (LB/sec)
WAT25H Design	Design corrected high compressor airflow 24.69 kg/sec (54.44 LB/sec)
WAT25H Percent	WAT25H divided by WAT25H Design x 100
۲.	Aircraft angle of attack degrees
ß	Aircraft angle of sideslip degrees
Δ ₃	Inlet third ramp angle relative to the Inlet Reference Line degrees
⁶ t ₂	Corrected average engine face total pressure $P_{t_2}/101$
⁶ ²⁵ H	Corrected_average engine face total pressure P _{t25H} /101
ρ	Inlet first ramp angle relative to the Inlet Reference Line degrees
σ	Standard deviation of the instantaneous pressure

SYMBOLS (Concluded)

.

Description

Units

- Ê . 🖠

÷Ŕ

1

2

σ (τ) xy	Covariance of pressure data from probes x and y at lag time T	kPa	(PSIA)
σ (τ=0) xy	Covariance of pressure data from probes x and y at lag time $T = 0 \dots \dots \dots \dots$	kPa	(PSIA)
^e t ₂	Corrected average engine face total temperature T _{t2} /288.15		
⁹ t _{25H}	Corrected average high compressor face total temperature $T_{t_{25H}}/288.15$		

SUMMARY

Recent emphasis on increased maneuverability requirements for fighter aircraft has necessitated an extensive engineering development effort be directed towards inlet/engine compatibility. Inlet/engine compatibility must be assessed early in the aircraft development program to allow necessary inlet and engine design modifications to be defined and implemented at minimum cost impact. This early assessment of inlet/engine compatibility is determined by engine stability audits computed using inlet distortion levels from subscale inlet model data and engine sensitivities to inlet distortion. Therefore, the accuracy with which subscale inlet model distortion levels predict flight test vehicle distortion levels is a crucial element in assessing inlet/engine compatibility.

The primary goal of this distortion methodologies study was to determine if time variant distortion data taken from a subscale inlet model can predict peak distortion levels for a full scale flight test vehicle. The data base used to accomplish this goal was collected in separate programs by MCAIR and NASA/Dryden. Subscale and full scale wind tunnel data were collected by MCAIR during the F-15 development program, and flight test data were collected by NASA/Dryden during the NASA F-15 inlet/engine compatibility flight test program. This data base has a Mach number range of 0.4 to 2.5 and an angle of attack range from -10 degrees to +12 degrees.

The primary objectives accomplished in meeting the overall program goal were to determine the effects on peak distortion of: (1) Reynolds Number/ scale, (2) engine presence and (3) frequency content. In addition, the capability of the P&WA stability audit system to predict engine stalls was evaluated, and the capability of Melick's procedure, Reference (1), to predict peak time variant distortion levels was evaluated. Using the Pratt and Whitney Aircraft distortion descriptor, $K_{\rm A2}$, the data indicate the following significant results for the F-15/F100 inlef/engine propulsion system.

 (\mathbf{I})

- o Peak time variant distortion from subscale inlet model wind tunnel tests are representative of full scale flight test distortion.
- o The time variant pressure data of this study are random stationary data, thereby allowing valid statistical analyses to be conducted.
- The effect of the engine presence on total pressure recovery, peak time variant distortion and turbulence level is small but favorable.
- The Reynolds number/scale evaluation indicates a general trend of increasing total pressure recovery, decreasing peak time variant fan distortion and decreasing turbulence with increasing Reynolds number/ scale.
- o The frequency content evaluation indicates that peak time variant fan distortion and turbulence increase with increasing filter cutoff frequency for all of the data evaluated in this study.
- The capability of the Pratt & Whitney Aircraft stability audit system to predict engine stalls has been verified for both stall and nonstall flight test conditions.

Jand Land Jand - Janda - Janda

 Predictions of peak distortion values using Melick's procedure are accurate to 11.3 percent average error for fourteen data points having nominal turbulence levels and are accurate to 20 percent average error (the maximum error approaches 40 percent) for eight data points having high turbulence levels.

ł

- 1997年1月1日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の

a na mainte na salaran na sana ana a

2

1. .

I

ORIGINAL PAGE IS OF POOR QUALITY APPENDIX J

STABILITY AUDITS

Presented herein are the remaining five flight points on which stability audits were conducted. As in the technical discussion section of Volume I, a set of figures is presented for each flight test condition audited. Instrumentation data traces, peak distortion selection procedures, fan inlet parterns audited and the stability audits are shown in Figures J-1 through J-18. The stability audit for each flight test condition is discussed below.

Stability Audit (Mach = 0.4, Altitude = 7,050m, WAT2 = 104.1%, I.D. = 1)

A fan induced stall during steady state augmentor operation with the third ramp actuator fully extended is illustrated in Figure J-1. An audit of the peak distortion just prior to stall from Figure J-2 indicates a negative 3.9 percent fan stall margin with a positive 16.4 percent HPC stall margin remaining as shown in Figure J-4. For this flight condition, the fan inlet pattern was not available for the peak distortion level for which a stability audit was conducted. Therefore, a representative pattern, which occurred slightly earlier in time (\approx 23 milliseconds) and had an equivalent distortion level was used and is shown in Figure J-3.

stalility Audit (Mach = 0.70, Altitude = 16,440m, WAT2 = 104.2%, I.D. = 4)

An augmentor blowout during steady state augmentor operation followed by augmentor reignition, which resulted in a fan induced stall with the third ramp actuator extended, is illustrated in Figure J-5. An audit of the peak distortion prior to surge, Figure J-6, indicates stable fan operation after the blowout but prior to augmentation reignition. Upon reignition a negative 26.5 percent fan stall margin and 12.3 percent positive HPC stall margin was determined as shown in Figure J-8. The augmentor blowout and reignition effects on the fan operating point were determined from fan discharge high response pressure traces.

Stability Audit (Mach = 0.92, Altitude = 16,390m, WAT2 = 104.5%, I.D. = 16)

An augmentor blowout followed immediately by an augmentor reignition induced fan stall is illustrated in Figure J-9. Prior to these anomalies, the engine was in steady state augmentor operation with the third ramp actuator extended. The peak distortion just prior to stall, Figure J-10, was audited and the results are shown in Figure J-12. The fan audit indicates stable operation until augmentor reignition occurs which resulted in a negative 18 percent fan stall margin. The corresponding HPC audit indicates a positive 12.5 percent stall margin remaining.

Stability Audit (Mach = ...2, Altitude = 16,210m, WAT2 = 96.4%, I.D. = 35)

Traces of high response pressures and third ramp actuator position were not available for this event. However, a stall did occur during this event as confirmed by digital data. Audit results are shown in Figure J-15 and indicate a negative 9.2 percent fan stall margin and a positive 10.7 percent HPC stall margin remaining. These results concur with those at the same Mach Number but at Lower altitude (I.D. Number = 34) where the fan and HPC

3

stall margin remaining were both more positive (-3.1 percent and +16.2 percent respectively) due to lower Reynolds Number effect. Based on these comparisons, it is concluded during this event.

Stability Audit (Mach = 2.0, Altitude = 19,030m, WAT2 = 77.0%, I.D. = 57)

This stability audit was for non-stall engine operation at supersonic conditions with steady state augmentor operation and the inlet third ramp scheduled automatically. High response presture and inlet third ramp actuator position traces were similar to those for Data Point 44 and have not been included. The peak distortion level of Figure J-16 was audited and the results are shown in Figure J-18. The audits indicated a positive 15.4 percent fan stall margin remaining and a positive 15.7 percent HPC stall margin remaining.

		_						_			
DATA POINT I.D. NO.	MODEL Scale	Mo	a (DEG)	β (DEG)	ρ (DEG)	∆3 (DEG)	BYPASS"	% WAT2	RE NO. x 10 ⁻⁶	ANALYSIS TIME (SEC)	PART-POINT **
1	FLT	0.4	16.4	-0.3	6.9	27.6	C	104.1	1.44	0.6	422-4
2	FLT	0.59	13.9	0.9	7.0	26.5	C	102	2.04	0.6	417-5
3		0.52	10.0	0.7		27.6		107.1	1.33	0.6	417-4
4		0.69	11.5	1.0		28.5		104.2	0.84	0.6	417-2
5	1/6th	0.60	-10.0	10.0	-3.0	10.6	C	97.2	0.43	0.144	164-1
6	1/6th	0.60	-10.0	10.0	-3.0	10.5	C	90.2	0.43	0.144	164-3
7	FLT	0.69	-8.4	10.6	0.6	10.5	C	101.2	1.40	0.88	421-10
8	1/Sth	0.60	4.0	0	7.0	10.6	C	78.6	0.43	0.181	112-7
9	1/6ch	0.60	4.0	0	7.0	10.6	C	108.6	0.43	0.181	112-5
10	FSE	0.60	4.0	0	5.2	10.0	C	97.7	3.41	1.110	116-2
11	(11	0.67	4.3	0.7	6.9	11.1	C	94.4	3.58	0.72	424-2
12		0.69	3.4	0.7	6.9	11.1		74.1	3 68	0.76	425-6
13		0.59	4.6	1.2	7.0	11.1		107.9	1.74	0.62	412-2
14	1	0.60	4.6	0.6	6.9	11.0		76.2	1.66	1.11	424-11
15	FLT	0.85	8.8	-0.5	7.0	27.6	C	104.2	2.21	0.60	417-3
16	FLT	0.92	5.6	0.6	7.0	28.6	C	104.5	1.04	0.60	417-1
17	1/6th	0.90	-10.0	10.0	-3.0	10.5	C	70.2	0.34	0.113	157-7
18	1/6th	0.90	-10.0	10.0	-3.0	10.6	C	106.3	0.34	0.113	157-5
19	FLT	0.94	-8.9	10.2	1.0	10.5	C	107.1	1.6	0.69	421-14
20	FSE	0.90	-4.0	0	-1.0	8.2	C	97.8	3.64	1.990	102-2
21	FLT	0.90	-2.8	-0.2	-1.2	8.7	C	97.5	3.25	1.23	424-10
22	FLT	0.93	-3.3	0	-1.2	8.6	C	104.8	1.17	1.99	425-3
23	1/8th	0.90	4.0	0	7.0	10.6	C	76.8	0.34	0.369	67- 9
24	1/6th	0.90	4.0	0	7.0	10.6	C	104.3	0.34	0.369	67-7
25	FSE	0.90	4.0	0	7.3	10.4	C	97.7	3.62	2.260	126-2
26	FLT	0.92	4.6	0.7	6.0	11.0	C	96.2	3.47	0.89	420-9
27		0.91	5.2	0.5	6.9	11.1		99.1	3.28	1.18	422-2
28		0.92	4.2	0.1	7.0	11.0		76.1	2.47	1.34	421-5
29		0.90	4.1	0.5	6.9	11.1		98.6	2.43	1.46	424- 9
30		0.90	5.1	0.1	7.0	11.0		105.7	2.42	0.69	421-4
31		0.90	3.5	0.2	7.0	11.0		77.5	1.78	2.26	421-6
32		0.90	5.2	-0.1	7.0	11.0		100.1	1.79	0.70	421.7
33		0.94	4.3	0.2	7.0	111.1	1	105.8	1.89	1.06	421-8

•

*C = Closed

a all the

٩

٢

**For flight test, these data are flight-run numbers

TABLE J-1 DATA MATRIX

ORIGINAL PAGE IS OF POOR QUALITY

5

GP78-0323-6

DATA POINT I.D. NO.	MODEL SCALE	Mo	α (DEG)	β (DEG)	ρ (DEG)	Δ3 (DEG)	BYPASS*	% WAT2	RE NO. x 10 ⁻⁶	ANALYSIS TIME (SEC)	PART-POINT **
34	FLT	1.21	1.5	0	6.0	27.6	C	98.3	2.97	0.60	423-4
35	FLT	1.24	3.0	0.8	6.7	27.6	C	96.4	1.52	0.60	423-3
36	1/6th	1.2	10.0	0	7.0	10.6	C	76.6	0.45	0.198	131-7
37	1/6th	1.2	10.0	0	7.0	10.6	C	107.9	0.45	0.198	131-5
38	FLT	1.18	7.7	0.3	7.0	11.0	C	74.0	3.22	1.21	424-12
39		1.2	7.4	-0.1	7.1	11.1		94.4	3.35	1.19	424-13
40		1.17	10.6	0.0	7.0	11.0		103.4	1.40	0.60	421-17
41	FLT	1.54	1.5	0	-1.4	27.0	Auto	95.4	2.17	0.60	424-6
42	1/6th	1.6	-4.0	0	-2.0	13.5	C	87.3	0.21	0.106	206-9
43	1/6th	1.6	-4.0	0	-2.0	13.5	C	96.9	0.21	0.106	206-5
44	FLT	1.57	-3.6	0.7	-2.3	13.7	C	89.3	1.46	0.65	414-2
45	1/6th	1.8	-2.0	0	-3.0	17.4	C	80.5	0.22	0.210	15-9
46	1/6th	1.8	-2.0	0	-3.0	17.4	<u>C</u>	91.0	0.22	0.201	15-5
47	FLT	1.75	2.6	0.4	-2.2	16.7	C	80.7	1.41	1.23	415-1
48	FSCP	1.8	-2.0	0	-3.0	18.7	C	75.1	1.45	0.680	353-15
49			-2.0		-3.0			82.2	1.45	0.680	353-5
50			-2.0		-3.0			85.4	1.44	0.680	353-12
51	FSE	1.8	-2.0	0	-2.9	18.6	C	80.6	1.46	0.680	523-2
52	FSE	1.8	-2.0	0	-2.9	18.6	C	79.8	1.46	0.680	525-4
53	FLT	1.81	-2.3	0.2	-2.9	18.2	C	78.9	1.53	0.680	416-1
54	FSCP	1.8	4.0	0	2.5	18.7	C	79.9	1.45	2.800	355-8
55	FSE	1.8	4.0	0	2.5	18.7	C	80.8	1.46	2.800	528-2
56	FSE	1.8	4.0	0	2.5	18.7	C	79.7	1.46	2.800	529-4
57	FLT	2.0	2.5	0.2	2.3	20.9	Auto	77.0	1.72	2.800	425-2

*C = Closed **For flight test, these data are flight-run numbers

TABLE J-1 (Continued) DATA MATRIX

QP78-0323-9

ORIGINAL PAGE IS OF POOR QUALITY

DATA POINT I.D. NO.	MODEL Scale	Me	a (DEG)	β (DEG)	ρ (DEG)	∆3 (DEG)	BYPASS*	% WAT2	RE NO. x 10 ⁻⁶	ANALYSIS TIME (SEC)	PART-POINT **
58	1/6th	2.2	-20	0	-4.0	22.5	C	68.6	0.22	0.100	250-7
59	FSCP	2.2	-2.0	0	-4.0	22.5	C	69.2	1.48	0.600	411-6
60 61	1/6th 1/6th	2.2 2.2	-2.0 -2.0	0	-4.0 -4.0	25.0 25.0	0	65.0 52.9	0.22 0.22	0.100	249-5 249-9
62 63	FSCP FSCP	2.2 2.2	-2.0 -2.0	0	-4.0 -4.0	25.0 25.0	0	61.7 62.3	1.48 1.48	0.600	385-5 385-2
64 65	FSE FSE	2.2 2.2	-2.0 -2.0	0	-4.0 -4.0	24.8 24.8	P P	60.2 60.5	1.27 1.27	0.600 0.600	542-2 543-4
66 67	1/6th 1/6th	2.2 2.2	0	0	-2.0 -2.0	22.5 22.5	C C	69.3 75.4	0.22 0.22	0.106	1 84-7 184-5
68 69	FSCP FSCP	2.2 2.2	0	0	-2.0 -2.0	22.5 22.5	C C	7 3.6 68.3	1.47 1.47	0.650 0.650	413-9 413-12
70	FLT	22	0.1	0.2	-2.2	22.9	C	73.0	2.34	0.650	425-1
71	FSCP	2.2	4.0	0	0.0	25.0	0	60.7	1.48	0.600	382-3
72 73	FSE FSE	2.2 2.2	4.0 4.0	0	1.0 1.0	25.0 25.0	0	59.2 58.2	1.28 1.27	0.600 0.600	545-2 546-4
74 75	1/6th 1/6th	2.2 2.2	12.0 12.0	0	6.0 6.0	25.0 25.0	0	47.3 65.0	0.22 0.22	0.100 0.100	252-9 252-5
76	FSCP	2.2	12.0	0	6.8	25.0	0	60.8	1.48	9.600	384-2
77 78	FSE F S E	2.2 2.2	11.0 11.0	0	6.8 6.8	24.8 24.8	O P	59.0 59.8	1.28 1.27	0.690 0.600	548-3 549-8
79 80	1/6th 1/6th	2.5 2.5	0 0	0	-4.0 -4.0	26.0 26.0	0	63.1 68.2	0.21 0.21	0.100 0.100	227-7 227-5
81 82	FSCP FSCP	2.5 2.5	0 0	0	-4.0 -4.0	26.0 26.0	0	62.8 68.9	1.28 1.28	0.600 0.600	465-8 485-5

*O = Open, C = Closed, P = Partial

**For flight test, these data are flight-run numbers

TABLE J-1 (Concluded) DATA MATRIX

ORIGINAL PAGE IS OF POOR QUALITY

FAN STALL

والارتقام ويتشكر والأرام

TIME HISTORIES OF HIGH RESPONSE PRESSURE PROBE DATA

												1				
	21.30	(3.09)	7111	174.				114		4-+ +-+	+++		+++	++++	+++	+++
12.5C		0	-	La materia					-	-		the second				
kPa		the second	111	I T								TIL	TIT			
(DELA)									attinge Breat			and and and				
(FOIM) -	35.58	(-5.16)	111	1-1-11			Helline and	- Malalan				調理的問題的	en la cinte	des la faller		
	52.12	(7.56)		10000	GEORE		A CHILDREN TO		TENTE	TTTT		TTTT		13513		
AD								fina della d								
12.5H		and the second	-11-1-1			247)					_					
kPa		0						-								
(PSIA)			111									*		+++-		
Starting of the start	52.12	(-7.56)	111		+++++	++++	tttt	+1:11	1111	tili		1:td:		1.1.1.1		
	20.89	(3.03)	- 1	111	i i i		TICI	CITT		ELET	TIT	TIT	TELC	11011	1.17	
AP.						1						+++				
12		C. State	. 41	. 1 10.44		and the						-		day the		
kPa		0	-					TTIN .					-		TRIP	I. I.
(PSIA)			111	111							=====					
	20.89	(-3.03)	1-1-1-1	tit				ttt		++++	***	ttt	tit	<u>+:+</u> :		
	20 34	(11 55)														
RAMP	23.34	(11.55)							. 1	11.1.1		1.6.1.			. L.I	
CTUATOR				PTE		Pres -			1+1			100 10				-+- 1
POSITION	13.03	(5.13)			1 1 1				1-1-1			4-1-3				+++
cm			. 14			and the		+++0	1	4-1-4	-+	1.1.1.	e total	+++	111	1 14
(IN)																

FIGURE J-1 STABILITY AUDIT ANALYSIS PLOTS Mach 0.4 α = 16.4 β = --0.8 ρ = 6.9 Δ_3 = 27.6 WAT2 = 104.1 Bypass = 0 I.D. Number = 1

8

D

)

SELECTION OF PEAK FAN DISTORTION VALVE

ORIGINAL PAGE IS OF POOR QUALITY TOTAL PRESSURE CONTOUR AT PEAK FAN DISTORTION

語の言語

FIGURE J-3 STABILITY AUDIT ANALYSIS PLOTS Mach 0.4 α = 16.4 β = --0.8 ρ = 6.9 Δ_3 = 27.6 WAT2 = 104.1 Bypass = 0 I.D. Number = 1

△ 3 = 27.6 WAT2 = 104.1 Bypass = 0 I.D. Number = 1

Surge Pressure Ratio

Legend

- A Highest available
- A to 8 Reynolds no. loss B to C - Engine to engine variation
- C to D Distortion loss

Operating Pressure Ratio 1 - Installed match point

- 2 Distortion rematch
- 3 Augmentor anomaly

ORIGINAL FAGE IS OF POOR QUALITY

TIME HISTORIES OF HIGH RESPONSE PRESSURE PROBE DATA

FIGURE J-5 STABILITY AUDIT ANALYSIS PLOTS Mach 0.61 $\alpha = 11.5 \beta = 1.0 \rho = 7.0$ $\Delta_3 = 26.5$ WAT2 = 104.2 Bypass = 0 I.D. Number = 4

12

SELECTION OF PEAK FAN DISTORTION VALUE

13

ļ

ORIGINAL PAGE IS OF POOR QUALITY

TOTAL PRESSURE CONTOUR AT PEAK FAN DISTORTION

FIGURE J-7 STABILITY AUDIT ANALYSIS PLOTS Mach 0.61 $\alpha = 11.5$ $\beta = 1.0$ $\rho = 7.0$ $\Delta_3 = 26.5$ WAT2 = 104.2 Bypass = 0 I.D. Number = 4

¥1			1 200		 	1.0		aika	1 - T		1	7 4	25 - 36	10 200	14 4 <u>2</u>		a anta di	10. A	-	·	121	Lange 1	
		1997 N. 1999						123		100						14.5	1.2.4			N			1157
Ť		199 -1 99-19	L. Andrews	1 - C 1			(1	- 194.0	. B . Sta	s Hand State								X. 41		-		
÷.	a in the second s						. I			1					<u> </u>		Contraction of the						césse -

Surge Pressure Ratio

1

- A Highest available
- A to B Reynold's no. loss
- B to C Engine to engine variation
- C to D Distortion loss

Legend

Operating Pressure Ratio 1 - Installed match point

- 2 Distortion rematch
- 3 Rematch due to augmentor blowout 4 - Rematch due to augmentor reignition

FAN AND COMPRESSOR MAPS FOR THE STABILITY AUDITS

ORIGINAL PAGE IS OF POOR QUALITY

TIME HISTORIES OF HIGH RESPONSE PRESSURE PROBE DATA

FIGURE J-9 STABILITY AUDIT ANALYSIS PLOTS Mach 0.92 $\alpha = 5.6$ $\beta = 0.6$ $\rho = 7.0$ $\Delta_3 = 26.6$ WAT2 = 104.5 Bypass = 0 1.D. Number = 16

16

=

SELECTION OF PEAK FAN DISTORTION VALUE

TOTAL PRESSURE CONTOUR AT PEAK FAN DISTORTION

FIGURE J-11 STABILITY AUDIT ANALYSIS PLOTS Mach 0.92 $\alpha = 5.6$ $\beta = 0.6$ $\rho = 7.0$ $\Delta_3 = 26.6$ WAT2 = 104.5 Bypass = 0 I.D. Number = 16

- A Highest available
 - A to B Reynold's no. loss
 - B to C Engine to engine variation
 - C to D Distortion loss

Legend

•

- **Operating Pressure Ratio**
 - 1 Installed match point
 - 2 Distortion rematch
 - 3 Rematch due to augmentor blowout
 - 4 Rematch due to augmentor reignition

· .

FAN AND COMPRESSOR MAPS FOR THE STABILITY AUDITS

FIGURE J-12 STABILITY AUDIT ANALYSIS PLOTS Mach 0.92 $\alpha = 5.6$ $\beta = 0.6$ $\rho = 7.0$ $\Delta_3 = 26.6$ WAT2 = 104.5 Bypass = 0 I.D. Number = 16 ;

SELECTION OF PEAK FAN DISTORTION VALVE

•

1

20

•

ORIGINAL PAGE IS OF POOR QUALITY

TOTAL PRESSURE CONTOUR AT PEAK FAN DISTORTION

FIGURE J-14 STABILITY AUDIT ANALYSIS PLOTS Mach 1.24 α = 3.0 β = 0 ρ = 6.7 Δ_3 = 27.6 WAT2 = 96.4% Bypass = 0 1.D. Number = 35

]

ł

Legend

Surge Pressure Ratio

 (\mathbf{P})

5 8<u>8</u>

- A Highest available
- A to B Reynold's no. loss
- B to C Engine to engine variation
- C to D Distortion loss

Operating Pressure Ratio

- 1 Installed match point
- 2 Distortion rematch
- 3 Augmentor anomaly

FAN AND COMPRESSOR MAPS FOR THE STABILITY AUDITS

STABILITY AUDIT ANALYSIS PLOTSMach 1.24 α = 3.0 β = 0 ρ = 6.7 Δ_3 = 27.6WAT2 = 96.4%Bypass = 0I.D. Number = 35

11

SELECTION OF PEAK FAN DISTORTION VALVE

9

6 6

.

ORIGINAL PAGE IS OF POOR QUALITY

TOTAL PRESSURE CONTOUR AT PEAK FAN DISTORTION

= 8.9%

GP78-0455-34

FIGURE J-17 STABILITY AUDIT ANALYSIS PLOTS Mach 2.0 α = 2.5 β = 0.2 ρ = 2.3 Δ_3 = 20.9 WAT2 = 77.0 Bypass = Auto I.D. Number = 57

24

Legend

Surge Pressure Ratio

- A Highest available
- A to B Reynold's no. loss1
- B to C Engine to engine variation
- C to D Distortion loss

Operating Pressure Ratio

- 1 Installed match point
- 2 Distortion rematch
- 3 Augmentor anomaly

FAN AND COMPRESSOR MAPS FOR THE STABILITY AUDITS

CORPORED IN

alitication of the state of the