: N78-30465
 .
 EFFECTS OF RANGE BTN SHAPE AND DOPPLER
 FILIER RESPONSE IN A DIGITAL SAR DATA PROCESSOR

CARROLL R. GRIFFIN
APPLIED RESEARCH LABORATORIES
THE UNIVERSITY OF TEXAS AT AUSTIN . IUSTIN, TEXAS 78758

SUMMARY

In calibrating the backscatter coefficient obtained with an imaging synthetic aperture radar (SAR) system to determine absolute values of radar cross-section and reflectiv,ty it is common pi nice tj use a target of known radar cross-section placed within the scene. A corner reflector acts as a point target, but the return from it may not be centered in the resolution cell. It is important, for accurate calibration, to perform straddling corrections based on the range bin and doppler filter response curves.

1.0 THE CALIBRATION PROBLEM

A method commonly used to calibrate the backscatter coefficient in an imaging SAR system is to place a point target of known radar cross-section (RCS), such as a corner reflector, within the imaged area. Without the calibration target, the absolute R.CS or σ° value can only be inferred. Figure 1 is a SAR map made by the FLAMR (Forward Looking Advanced Multimode Radar) System, a digital processor system using binary phase coded pulse compression and a doppler signal processor with 16 pre-summed doppler filters (sixteen point Complex Fourier Transform). This is a map of a vehicle array at the Marine base near Barstow, California. With a suitable calibration target available in the array, crnss-section data on these vehicles may be extracted provided certain corrections are made.

1.1 RESOLUTION CELL STPADDLING

The calibration target, a trihedral corner reflector, may be located within the imaged area, and if its nominal RCS is known as a function of aspect angle, it may be used as a reference, provided it is in the peak response of the range and azimuth filter response, and is not saturating the radar receiver. The corner reflt tor should also be an isolated point target well
above the surrounding clutter level. Figure 2 is of an array of three corner reflectors positioned in an agricultural scene mapped by the FLAMR SAR. The reference corner reflector for σ° and RCS data is the one in the center of the array 45.72 cm (18 in.) on the inside dimension. Figure 3 is the measured response of this target, so that its value may be know, provided its aspect to the racar is known. Frequently, however, the sampling grid of the radar system straddles the point target and it then becomes necessary to correct the observed response in both range and erossrange for such effects. In order to make such a correction, the shape of the range bin and oi the doppler filter response must be known. These points may be sumarized as followsfor the special case of impulse response symmetry, and invariance of the impulse response ir azimuth:

Let $\quad f=$ amplitude response of a resolution cell $=f(r$, a) with r the range dimension, a the azimuth dimension, then

$$
\begin{equation*}
\left|f^{2}\right|=\text { power response }=f\left(a, r_{0}\right) f\left(r, a_{0}\right) \tag{1}
\end{equation*}
$$

and r_{0}, a_{0} is the point of naximum response. For a point target, power received P_{R} is

$$
\begin{equation*}
P_{R}=K \propto f^{2}\left(r_{t}, a_{t}\right) \text {, in which } \tag{2}
\end{equation*}
$$

all the constant radar parameters (including the range, although it may cause a usually negligible error) are lumped into a constant K, and r_{t}, a_{t} define the actual position of the scatterer of cross-section σ in the resolution cell. The value of $f^{2}\left(r_{0}, a_{0}\right)=1$. The straddling corrections in azimuth and range are made to effectively convert the value of $f^{2}\left(r_{t}, a_{t}\right)$ to unity, so that the result is:

$$
\begin{equation*}
\frac{P_{R}}{f^{2}\left(r_{t}, a_{t}\right)}=K \sigma f^{2}\left(r_{0}, a_{0}\right)=K \sigma \tag{3}
\end{equation*}
$$

from which K may be known

$$
\begin{equation*}
K=\frac{p_{R}}{f^{2}\left(r_{t}, a_{t}\right)} \tag{4}
\end{equation*}
$$

assuming σ is known for the reference calibration target (corner reflector).

1.2 STRADDLING CORRECTIONS

The process of modifying P_{R} by the factor $f^{2}\left(r_{t}, a_{t}\right)$ is a two-sten one using the range and azimuth straddling correction curves. Tiese are derived from the response curves of a range bin and doppler filter, which are presented in Figure 4. This particular SAR system had 3 nominal resolutions of 6 meters, 12 and 24 meters (20,40 and 80 feet). The doppler filter shape was constant for the 3 resolutions but the range bin shape was not, as may be observed. Figure 5 indicates how two adjacent range bins overlap and the correction curve which may be derived for straddling corrections.

1.3 THE CORRECTION CURVE

The stradding correction curve is ortained by plotting the difference between the maximum of the response curve and the value at every other point as a function of the difference between one curve and its adjacent neighbor, up to the point of zero difference, both toward, and away from, the radar. Fram this, it is evident that tae maximum correction will be required when the target exhibits equal returns in ad.jacent range bins. This procedure for obtaining the correction curves may be understood by referring to Figure 5. When the filter response is symmetrical, as it is in azimuth, the rrection curve is the same either in the mapping direction or away from it.

2.0 CORRECTION OF OBSERVED DATA

A print-out of the pixel dàa is useful in making the stradding correctiun, on a point target. The ertire map, which in the FLAMR case consisis rf 356 azimuth lines and 384 range bins, need not be printeu. The corner reflector can usually be roughly located using a measurement of a map photograph. Figure 6 illustrates the procedure. The filter magnitude value next largest t.c the maximum is used in azimuth, and in mave, to obtain the difference. 5 . larger range difference is away from the radar, 15 filter magnitude values. Entering the range straddling correction curve "away from the radar" the upper curve of pigure 5, gives a correction in filter magnitude values to be added to the maximum. The filtcr magnitude values can be converted to dz by multiplying by the factor .376 or approximately $3 / 8$.

This is because the recorded filter magnitude logaritrmic data is

$$
\begin{equation*}
M_{R}=16 \log _{2} \sqrt{f_{I}}{ }^{2}+f_{Q}^{2}=16 \log _{2} f \tag{5}
\end{equation*}
$$

'gnorirg computer function algoritrm error. 'The igital filter magnitude ciata are recorded in an 8-bit format with a maximum possible recorded vilue of 197. In decibels the filter magnitude is given by

$$
\begin{gather*}
M_{\partial B}=20 \log _{10} \sqrt{f_{I}^{2}+f_{Q}^{2}}=\left(\frac{20}{16}\right)\left(\log _{10} 2\right) M_{R} \tag{}\\
=.376 M_{R}
\end{gather*}
$$

©. 1 ORTAINING TIIE CALIBRATION FACYOR

The straddling correction curve may be either i" $d B$ or in filter magnitudes. Figure 6 illustrates how the value of K is reached with straddir orec+ions ana corrections for off-bore site aspect of the radar to the corr. r reflector.
2.2 DETERMINING AN AREA FACTCR FOR σ°.

The effective area for the resolution cell is required in calculations of reflectivity for difeorent types of terrain. The usual procedure is to average the values for a representative sample of pivels, apply the calibration factor and then divide by the effective area of a pixel.

$$
\begin{equation*}
\sigma^{\circ}(d B)=\sigma\left(d B m^{2}\right)-10 \text { Log Area }\left(m^{2}\right) \tag{7}
\end{equation*}
$$

The edfective area is the effective range dimension times t"e effective acimuth dimension, found by antegrating the areas under the impulse response curves and dividing by the peak response. Table 1 provides these alues as obtained for the FLAMR System.

TABLE 1
EFFTECTIVE RESOLUTIOM CELL AREA

ORGGNii paje is - POOR QUALITY

RESOLUTIOA	HOMIHAL DIMEASIOMS				BALDHIM HILLS TEST RESULTS			
	AZ (ㅍ)		Area $\left(E^{2}\right)$	$\begin{gathered} \text { Area } \\ \left(\mathrm{dBa}^{2}\right) \end{gathered}$	$\begin{array}{r} A Z \\ (\mathrm{~B} \end{array}$	$\begin{aligned} & \text { ENG } \\ & \text { (I) } \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \left(\mathbf{m}^{2}\right) \end{aligned}$	$\begin{gathered} \text { Area } \\ \left(\mathrm{dB}^{2}\right) \end{gathered}$
LOW	24	24	576	27.6	28.6	18.3	523.4	27.1
MEDIUM	12	12	144	21.6	14.3	9.1	130.1	21.1
HIGH	6	6	36	15.6	7.2	4.6	-3.1	15.2

3.0 OBTAINING THE RANGE AND AZIMUTH FILTER RESPORSE

The system was measured using a large ($30,000 \mathrm{~m}^{2}$) corner reflector situated an a hill (Baidrin Hills) about 10 kiloweters from the Los fageles

International Airport with a clear radar line-of-sight. Figure 7 is a view of the test bed aircraft on the ramp at its operating basc. The system is put under manual control and with the corner reflector return positioned in the zero doppler (d.c.) filter, the range is incremented by .75 meters by changing the start range window. The start range is moved through at least three range bins, and the data recorded from d.c. filter. of course, system power is monitored and various system parameters are recorded for any configuration variables, such as number of pulses per array, pulse compression length, code and sequence. The data obtained may then be plotted as a function of range and several of the curves averaced to obtain the average response of the system in range for the different bandwidths (resolutions) available. The doppler filter shape may be measured in much the same way, by adjusting the frequency synthesizer in approximately $1 / 10$ filter width increments over a range of from at least the center of filter fc-4 to the center of fc + 4. The digital doppler filter is well behaved, and for FLAMR is characterized by the expression

V-1-5

$$
f(x)=\frac{\sin \left(\frac{\pi x}{12}\right)}{\left(\frac{\pi x}{12}\right)}\left[\frac{1+.06\left(\frac{x}{12}\right)^{2}}{1-\left(\frac{x}{12}\right)^{2}}\right]
$$

which my be squared and the area obtained in watt-seconds by integrating under the curve using the method of residues. The curves for range response may be integrated using Simpson's Rule or some other procedure.

4.0 TYPICAL RESULTS

Withoui going into detail, some typical results are provided in Figure 8, for the reflectivity of varicus types of scene content from Figure 1. These values were obtained by use of the calibration factor obtained using the corner reflector data of Figure 3. Aspect angle data were obtained from the aircraft data tapes (altitude), from the radar map (azimuth lines vs. road directions), and ground truth information regarding the orientation of the reflector.

5.0 REFFEREMCES

1. Griffin, C. R., Amendment to ARL: UT Technical Report TR-76-8 "Radar Reflectivity Study", APL-ITM-77-1, 6 January 1976
2. Rasco, W. A., and Griffin, C. R., Radar Reflectivity Study, ARL-TR-76-8, Air Force Avionics Laboratory, March 1976

Figure 1. FLaMt May of Barstow Vehicle Artay

Figure 2. FLAMR Doppler Beam Sharpened Map, San Joaquin Valley Rural Scene

EIGHTEEN IMCH TRIMEDRAL CORMER REFLECTOR

Figure 3. Measured RCS of a 45.72 cm Trinedral Corner Reflector

FLAMR IMPULEE RESPONEE

Figure 4. Range Bin and Doppler Filter Response Curves for FLAMR

STRADPLIMG CDRRECTIDNS FDR RANGE amd azimuth filter shapes

ORIGINAL PAGE is
 OE POOR QUALITY

Figure 5. Adjacent filter overlap and Derived Stradding Correction Curves

Data in Kegion of
$4 \quad 2 \div 9$
$128 \quad 163 \quad 149$

4 Azimuth

$$
\begin{aligned}
& \text { Original Value } 163 \\
& \text { Azimuth Straddling Correction } 001 \\
& \text { Range Straddling Correction } \frac{012}{176} \\
& \sigma \mathrm{CR}=27.4 \mathrm{~dB} \\
& \mathrm{~A} / \mathrm{E} 1 \text { correcticn }=\frac{-2.1 \mathrm{~dB}}{} \\
& \sigma \mathrm{CR}=25.3 \mathrm{~dB} \\
& \mathrm{~K}=(.376)(176)-25.3=40.7 \mathrm{~dB}
\end{aligned}
$$

Figure 6. Establishing the value of K using straddling and Aspect Angle Corrections.

Figure 7. FLaMR System Test Bed, Ramp Ground Testing. Los Angeles International Airport

Figure 8. Typical Reflectivity Values

