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TECIINICAL MEMORANDUM 78185

SIZING TUBE-FINSPACERADIATORS

INTRODUCTION

The Miator area required to reject a given amount of enork_' can be

calculated by direct application of the Stofan-Doltzmann radiation law:

Q= o(AFT 4 . (1)

Even though this law is mathematically simple, its application to radiation sizinK

can become complex. To avoid complexity, equation (1) is sometimes applied

by aHosslng the effective temperature, Teff. of the radiator."

Q
A= ec..._- . (2)_,o_

The effective temperature of the radiator is assessed on the basis of experiem.e

and empirit.ul data. This apl)roarh is normally applied as a result of quick

needs by projc_.t l)oremnnel. Ilowever, this apl)r{mrh does have a 'qmilt-in"

caTNtclty to pr{_lu(.e largo err{)rs. This results from the fo, rth Ix_'er relation-

ship. A small ertx)r in the effective tei,perature is multiplied several times

in the resulting area.

The sensitivity of this error enn be determined qualitatively from the

previously mentioned Stefln-Boltzmann relationship. The ¢.mnge in the rcqulrod

area with an accompanying uhange in temperature is

dA -.. 4_._. {IT (;_)

U_.LJ_J_j :J_l ] -i_J
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Normalizing these results by substituting equation (1),

(4)

Recopizlng that dA/A is the percent change in area that results from a percent

elmaile in temperature, dT/T. A unit percent increase in temperature will

result in a four unit decrease of the required ares. An over estimate of the

effective temperature by 4 percent will undersize the required area by 16 per-

cent. This is a significant error, even to be tolerated in preliminary design.

However, it should be noted that the percent change in temperature is based

upon thermodynamic temperature. Also, equation (4) is a mathemaUcally exact

relationship where the difference between two temperatures approach zero. In

practice, where finite differences are encountered, the actual multiplication

error Is greater than four. Consider the example where the actual effective

temperature Is 53.2"F (513.2"R), see Appendix A, and an assumed effective

temperature of 68. 5*F { (40 ÷ 97)/2J, 528.5"R. This is a percent temperature

error of 2. 98 percem:

5zs; 5 - 513. 2 = 2.987o
513.2

The percent error in area is

A° =\Te/ - _.51:I. 2/
- 1 =: 12.21%

J
i

!

d

where A is, _ area resulting from To, end A is the area resulting from. T @

o e e

One of the purposes herein Is to present a technique for *'sizing'* radiators

which can be defended with riRorous ongineerinK analysis. The techniques are

presented in detail, Includln_ a computer program to _tccompllsh the basic sizing

task which is t.ompatib]c with a phase A/B study effort.



I
SIZING VERSUSDESIGN

Radiator sizing fan be characterized by fin efficiency (discussed in .ext

Iection). Radiator design is t,haracterizcd by the configuration to achieve a

desired fin efficiency. The procedure is to, first, size the radiator based upo.

• deIired fin efficiency; second, this fin efficiency is guaranteed by the con-

figuration from which weight can be calculated. If this weight is unacceptable,

then a tradeoff has to be made between size and weight (or the thermal load _.a_

be rodueed).

The important fact to recognize is that a J'elationshlp does exist between

radiator area and weight, depending upon the fin effi(.iency ( Fig. 1). The

relative scale has been selet.ted bet_ee, one and two since analytical procedvres

show approximately a 2 to I inverse relationship between area and weight. For

example, if it was desirable to reduce the area of a tapered tube-fin configura-

tion by 100 percent, then the weight must increase by 100 percent. The extra

weight is manifested in the extra fin mass required to achieve a greater fin

efficiency.

tM
E

TAPERED

TUIE-FIN

RECTANGULAR

TUBE-FIN 75% _ _f <90_

TWO-SURFACE

TUI_-FIN

RECTANGULAR DUCT

,..:._.a

m ,i i i | i 1

RE IJITIVI WIIOIIT

I"i_,_,re I. liadiator _,(mfi-_tration and weight/area behavior.
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The design spectrum represented in Figure I is bounded by two config-

urations. The heaviest is a rectangular duct, having (by definition)a fin

efficiency of 100 percent. However, this rectangular duct will have a relatively

small area for a given heat load.

The other end of the spectrum is a tapered tube-fin. It has been deter-

mined by rigorous analysis that this configuration has the optimum area to

weight ratio. Neither of these two configurations, as depicted, is a practical

consideration; the first is too massive and the second is structurally weak.

Practical radiators are somewhere between these two extremes, with fin

efficlencles between 75 and 90 percent. Generally speaking, from the tapered

tube-fin configuration, this repreqents a 50 percent increase In weight with a

12 percent decrease in area [ 1]. Thus, sizing a radiator not only depends upon

the heat load, but also upon the ai_'owable weight whiL.h results from design

considerations. This report _s primarily concerned with sizing rather than

design. Design usually occurs in phase C or D, in a primarily design effort,

and sufficient data exist to select practical fin efficiencLes. This allows the

sizing process to proceed in support of programmatic decision. Thus, there

are no long delays in specific radiator sizing and weight assessments.

FIN EFFICIENCIES AND FIN EFFECTIVENESS

A tube-fin configuration is practical because of strength and rdjection

capability, as previously nlcntioned. As a result, fin performance is important.

At least two criteria exist in the literature for assessing fin lmrformance: fin

efficiency and fin effectiveness. Fin efficicntT is defined as the ratio of the

actual heat rejected to what would be rejet.tcd if the entire surface was at the

root fin temperature, T R. The environn_ental effects are accounted for by the

sink temperature, TS:

_f = eo.I..rl 4 - Ts41A F

(5)

| • _ A _ JL.-_L.._...,.,_ -.-----J •



Fin effective_e._s, _, is defined as the ratio of the actual heat rejected to what

would be rejected if the entire surface was at the root fin temperature. _nviron-

mental factors are accounted for by the net heat flux absorbed by the surface

from the envlronment:

_ Q

_} = _'crTR4A F " (6)

Thus, the relationship between tile two efficiencies is [ 11

i

11f

tl

(7)

The characteristic behavior of these efficiencies is usually character-

ized by a fin profile number which results from rigid fin analysis, The profile

numbers are a dimensionless set of t.haracteristics which are indicative of

geometry, material, and local thermal t.onditions, The characteristics of fin

efficiency are illustrated in Figure 2. Normally, practical radiators have pro-

file numbers less than 1.0. Thus, fin efficiency is always greater than 60

percent° Typical characteristic values of radiator configurations previously

discussed are illustrated in Figure 2.

It is imix_rtant to ret.ognize that the fin efficient'y, as defined0 is for a

single root-fin tenq_eratl, re. In an a_.Wal radiator, the root fin temperature

decreases in thedire(.tion of flo_.. As illustrated in Fi_._re 2, the local value

of efficiency is loxvcst at the inlet _.onditions and increase in the direction of the

outlet. Thus, fin efhcie_cv _,annot he applied direr'fly but must b_ integrated

over the radiator ar_. _tlrprisingly, a thermal m(xtel en_ploying fin efficiency

is not readily availaLle.

The procochlre revies'ed herein utilizes fin effectiveness as defined in

Reference 2. The rationale for selecting this method is its ready applicabil-

ity to the prelin_inai-v design function. Assunq_tions are en_pioyed _hich simplify

the problem for easy equation solvin_ (-onl|RItur [e{.hniqut_s, Vit'w fa{.tors and
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Rsd-K' s are inputs which i.sn be evaluated by other programs such as IJDliARP.

If accuracy is riot extremely i,,portalnt, view I'a(.tors and Had-K _s can be

evaluated by c.lmrts in ¢_)mbination with exporien(.e.

i ,

I
f

The basis for the method eiz-,ployed is the equivalent width relatlonahlp,

employed by Mat.key [21 between a re<.tangular duct and a tube-fin (_nfiguratlon.

The procedure is to calculate the required area of a rectangular duct for a l_Iven

heat rejec-tion load. This area is then modified by the equivalent length rela-

tionship to establish the area re(Ftired for the equivalent tube fin configuration.

To demonstrate this te_.hnique. _.onsider the re¢.ta,l_lar duct In Fll.,ure :I with

roje(.tion area All D. The equivalent tube-fin <.onfi;._ration has an area ATF

proporti,,nal to ( I.d _- 21.,). The r,,lationshil i between these two areas for the

same heat z'eje,'tion t sl)ability is

ATF 2(1. d+21. n)

^rr) 2Le ' Is)

i

II ' Jl
RECTANGULAR DUCT

TUI_ FIN

I"il_ul'v I. k:(lui_illl, ul I'¢'_'t;llll_ul;Ir (lu('l f,:t" tulx,-fin.

_'I__,--! _-1 l I I !_ : l : i_ _ i I ! I : ! I i I l
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I' ere Le is the equivalent rectangular duct width as defined by Mackey 121 :

L°= Ld+ QAB8 Fr " (9) .

I - 2_r(Tw 4

Mackey notes that the greatest value of F is 1.07 which is for'the optimum area
t r •

to weight configuration. The smallest value is 1.00. Mackey provides a chart

for F as a function of profile number. Thus. if the equivalent area of a rec-
_L r

tangulsr duct is known, then the adjustment can be made to find the area of a

tube-fin configuration. Before the assessment is made. an evaluation of the j

configuration and environmental conditions must be made.

This procedure is considered to be valid for rectangular and tapered fins.

If s more complex configuration Is involved, the procedure is still valid; how-

ever. within the computer program, provisions are made to account for the

temperature gradient between the heat transfer fluid and the radiating surface.

The computer program for sizing purposes given in Appendix A calculates

the area required by a rectangular duct. It is then necessary to manipulate this

value by the equivalent length concept to establish the required area for a tube-

fin configuration. Combining c_iuations (8) and (9) with QABS equal to zero:

L
n

1+2----
I.
d

ATF = ARD I l'_d)I + 2fl F r

(1o)

A typical fin effectiveness for lo_' tcvnperature radqators is 70 percent.

the ratioof 1. /!. d will be approximately 2. If. F is 1.04.n " V

Usually

ATF _"ARDI I. 2,_51 . (tl)

8
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Thus, the manipulation required Is very simple to •rrlve at the desired tube-

fin configuration.

SPECIAL RADIATOR RELATIONSHIPS

There is a special case of radiator design of particular Interest that

• rises when the absorbed flux can be assum0d to be zero. Under t_ls asmlmp--

tlon the radiator eomtlon simplifies, and several expL-e•simul result which can

serve as a Ruide in developing a philosophy for particular rmli•tor problems.

The first of those is the relationship between heat rejection srea and

thermal load:

r_ ..L1
IT _ - T 3 /

AI_j = 3u_

The rejection area is that of a ret.t,mgular duet. The equivalent length modifica-

tion can be al_lled if • tube-fin confll,,uratlon is desired. The importance of

equation (12) is the sensitivity of the radiator inlet and exit temperetures. It

il not apparent, but for a glvon inlet teml_crature, the required rejection area

decreases as the exlt temperature Ira.teases. lloweverD as the exit temperature

increases, the r_luircd flow rate throuKh the system also Increases. These

facts •re illustrated in Figure 4. The ordinate s¢,ale has been normalized.

Mass flow rate is normallzL_l to t:l 687 Ib/hr which occurs st an exit

temperature of 80"F. Area Is normalized to 5:17 ft I (f_ = 0. 70) which occurs

• t 0"F exit temperature. These data were at, really obtained from the computer

program of Appendix A. The effo_.ts of the heat transfer film coefflclGmt. •s •

result of flow rate, Is •(,counted. floweret, this Is sn Insensitive conllderstlon

for Reynolds numbers above .I00. The radiator area Is sized by the radiator

thermal resistance. In praL,tlcal appll_.atlon,% the pump size or pump power may

not be allowable. Within an allowable mass flow range, however, there is some

flexibility In rodu(.Inl,, radiator area.

9
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Figure 4. Influence of exit radiator temperature on area

and flow rate for a tube-fin configuration.

The effect!re temperature of the I'adlator is of Interest to the Gmgtnzer

even though it has little practical value. The'effective temperature is defined

by equation (2). The primary purpose for presenting a rigorous expression

for this temperature is to demonstrate, to sonle level, how errors can occur

by assessing it by e_perlence or averal_e values:

/ :i{.Tin "- Tel "

Toil.= # r i" i"l

IT-"_'- T"_IL _ inj

(13)
0

The effective tempcr_tlire as computed by tho radiator program is presented in

Figure 5.

10
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TIM = 117°F
THERMAL LOAD 1SkW

0 m 6O 711 100

RADIATOR EXIT TEMPERATURE (°F)

Figure 5. Sensitivity of effective temperature to exit

temperature and absorbed flux.

Equation (13) is specially for zero absorbed flux. However, Figure 5

ham additional data to Illustrate how view factor and absorber flux can affect the

effective temperature. To Illustrate hlrther the sensitivity of effective tem-

perature, the dashed line is for an absorbed flux of 30 Btu/fl s, but the view

factor ha0 been decreased to 0. 70. On the basis of these values, much wisdom

and knowledge wo_dd be required to pr(q)crly assou the effective radiator tem-

perature. Note for high QABS and a view factor of 0. 70, the effective tempera-

ture can be outside the temperature range of the Inlet and outlet temperature.

1!
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Tlhls fact can completely discourage the use of applying effective temperature

bind on the average of inlet sad exit te,nperatureL The effect of view factor

and absorbed flux upon the required araa to reject 15 kW is illustrated In

Figure 6. There Is an av.gra_ztion effect of absorbed flux for vilw factors less

titan one. However. area is much more sensitive to view factor.

,--ii ill___,,, i.i.j

/TO_"'' J I

ml- .o.Y'_ !

--- o lo m ' m
JmSORKOFLUX(styx.. 2,

_tTi

Fl_,n,re 6. Scnsltlvitv of radiator srcm to view

fa(.tor and absorl_:d flux.

Sometimes. it is necessary to know the temperature distribution along

the direction of flow of the radiator. The development of such s relationship

Is given in Appendix 13. The results are

L
.mere.

1,
o

T 1

, (14)

• i

o

i
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which gives the temperature, T, which occurs at position L feet from the

radiator inlet. This normalized form is appropriate since it allows a con-

vonient plot as shown in Figure 7. The temperature distribution is almost

linear.

LOAD - lS kW

HEAT ABSORBED - 0
VIEW FACTOR - 1.0

Fi_mrc 7.

PERCENT OF RADIATOR LENGTH, L/L o

Radiator tcmpcratut'c distribution in direction of flow.

I_
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APPENDIX A

RADIATOR SIZING PROGRAM

This computer program Is an equation solving procedure for one of two

equations. The first is statement 49. which applies whenever the absorbed flux

emmet be assumed zero, The second is statement 60. which applies when the

absorbed flux Is zero, Both equations are reported in Reference 2,

Statements 3 through 27 determine the mass flow rate and resulting flow
characteristics.

The classical relationship between friction factor and Reynolds number

is well known as the Moody diagram. It can readily be found In reference books

on fluid flow. For laminar flow the llagan-]_oiseuille equation is transformed

into the more manageable form shown on line 12 whereas those values needed

in the transition and turbulent regions (RE • 2100) require an iteratlve process.

This is readily apparent from the Colebrook equation:

_I = -0. 86 In _-

For a first approximation the right hand term containing the friction factor is

ignored and the resulting friction factor is used for the next approximation.

From this point a convergent routinc is cniployed. These are illustrated In the

program in lines 14 through 20. The pipe diameter is an input value and the

roughness height is built into the prc._ram. Reynolds number is calculated in

the classical manner from input values. The Darcy-Weisbach equation is used

to find the pressure difference which is used in the power equation.

The following are definitions of tho input statement 2:

TFI -- Fluid Inlet Tempcraturc, *F

TF2 -- Fluid Exit Temperature. "F

TW1 -- Wall Temperature at Inlet0 "F

TW2 -- Wall Temperature at Exit. "F

15
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Q

CP

RHO

XMU

XK

X

E

LD

VF

CA

C

-- Thermal Load. Btu/sec

-- Heat Capacity of Fluid. Btu/Ib-'F

-- Mass Density of Fluid, Ibm/ft 3

-- Viscosity of Fluid, lbm/ft-hr

-- Conductivity of Fluid. Btu/hr-ft-'F

-- Fluid Thickness (Duct Thickness), in.

-- Surface Emissivity

-- Radiator Length Perpendicular to Flow, ft

-- View Factor

-- Absorbed Flux. Btu/hr-ft_-'F

-- Case Identification Number

The wall temperatures. TWI and TW2. are evaluated on the basis of

previous data or other calculations. The program computes the radiator length,

XW, statement 53 based on area.

Basically. the program equations account for the temperature gradient

in the direction of flow. The rectangular duct necessitates a zero gradient

perpendicular to the flow direction. Statement 41 calculates the fin effectiveness

based on a tube-fin configuration based on minima area to weight ratio. In com-

puUng the equivalent area for a tube-fin configuration, the fin effectiveness

used should be no less than this optimum value.
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APPENDIX B

RADIATORTEMPERATUREDI STRIBUTION

In a differential radiator length, dL. the radiator temperature will change

dT in accordance with the following energy balance:

CcT4 - %]L d dL ffi -_Cp dT . (B-l)

This equation is presented in Reference 2 by Mackey. In this form it assumes

the fluid temperature is the same as the radiator wall temperature. If the

environmel _1 factor, C , can be assumed zero, the equation can be readily
E

integrated:

1

L = 3LdC ( Ti n
(e-2)

in this form, at a point on the radiator having temperature, T, the radiator

length must be L.

Equation (B-2) can be combined with equation (12) to yield

3
-1

._L= 3

Lo
C oJ,

(B-?,)

In this form, L/L is the decimal value of the total length, L .
O O

t,_mperature. T, corresponds to the decimal length, L/L .
0

The radiator

21
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