
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19780022904 2020-03-22T03:16:29+00:00Z

September 1, 1978

JPL PUBLICATION 78-53

Standard Practices for the
Implementation of Computer
Software
A. P. Irvine
F_6 or

r

r
t
l

National Aeronautics and
Space Administration	 z.'t _

	

k S 	 ' iO ^;,S^ St1' {^Cttt1't wv

Jet Propulsion Laboratory
Califoi nia Institute of Technology	 9^^	 ^-^\
Pasadena, California 91103

(NASA-CR-157556) STANDAFO FFACTICES FCE TAE	 N78-30W
IMELEMENTATICN CF CCMEDIFF SCF7^AFE (JEt
Propulsion Lab.)	 219 p HC A1C/MF A01

CECI OSF	 Urclas
G3/61 29114

Standard Practices for the
Implementation cif - omputer
Software
A. P. Irvine
Editor

j3

September 1, 1978_ j

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
-Pasadena, California .91103

-13

The research described in this publication was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under NASA Contract No. NAS7-100.

FOREWORD

The 3PL Tracking and Data Acquisition Staff, which designs, 	 #1
implements, and manages the Deep Space Network for NASA's

3	 i

Office of Space Tracking and Data Systems, realized more 	 ± ;'a

than 8 years ago that the tracking stations were beginning to
look more like computer facilities. A major -difficulty in	 .:
reaping the full benefits of computers for providing tracking
services was the inability to make software development an
understood branch of engineering. Under the leadership of
Walter K. Victor, then Deputy Assistant Laboratory Director 	 ti '
for Tracking and Data Acquisition at dPL, formal efforts	 I t
were begun in software methodology research. in addition,
within the Tracking and Data Acquisition Office itself, a

^.	
w

software seminar was started for the management staff.-':
The goal was to educate ourselves so that we could manage
software better as an extension of the engineering manage- 	 =:
ment techniques already being used for hardware. One
result of this long effort is the issuance of the practices	 w
presented here.	 f,

ORIGINAL PAGE IS
OF PooR RITALITy

111

ACKNOWLEDGMENT

This work is a revision of six Standard Practices that
were originally developed by the engineering staff at the Jet
Propulsion Laboratory invol v ed in the implementation of
various computers into th y- Deep Space Network. Writing
and production of the .jriginal six practices was coordinated
by Dan ;-el C. Preska. The review process of those practices
was managed by Edward C. Posner. Mahlon F. Easterling,

then Manager of the Tracking and Data Acquisition Planning
Office at JPL, oversaw the entire process. Technical
docw-iientation support was provided by Richard C. Chand?ee.
Special acknowledgment should be given to K. C. Tausworthe,
P. I. Westi-nureland, and A. F. Ellman for their contributions.

1 `..

_. =t	
^^	 -

ABSTRACT

Standard Practices for the Implementation of Computer
Software provides a standard approach to the development
of computer programs. This approach covers the life
cycle of software development from the Planning and
Requirements phase through the Software Acceptance
Testing phase. All documents necessary to provide the
required visibility into the software life cycle process
are discussed in detail.

^ t-4

OMGTNAL PAGE IS

()j^ P' ' i t" O 1 ALITY

v

--t,.	 '._.

CONTENTS

C1IAPTER 1. GUIDELINES AND POLICIES 1-1

	

I.	 INTRODUCTION . 	 1--1

A. PURPOSE 	 1-1

B. SCOPE		 1-1

C. APPLICABILITY 	 I-2

II. METHODOLOGY AND POLICY 1-3

A. METHODOLOGY FOR IMPLEMENTING

	

SOFTWARE.............................. 	 1-3

1. Principles of Structured Programming. . , , , 1-4

2. Top - Down Construction .	 1 - 8

3. Concurrent Design and Documentation,

	

C oding, and Testing . 	 1--11

B. POLICIES FOR IMPLEMENTING SOFTWARE 1-14

1. Adherence to Software Standard Practices 1-14

2. Adherence to Referenced Practices 	 1-17

3. Use of Standard High-Level, Stable Programming

	

Languages . 	 1--18

4. Top-Down. Concurrent Implementation 1-19

5. Use of Structured Programming Principles. 1-20

	

b.	 Modular Implementation . 	 1-21

7. Implementation Team . 	 1-22

8. Standard Project Milestones	 1-23

9. Project Scheduling	 1-23

10. Project Reviews . 	 1-24

11. Project Documentation . 	 1-25

12. Quality Assurance 	 1-Z5

vii

.^-^ ^,^-,,.ni.......,:--E ,^.,,,T.I ass.. 1 .-.•.,. t _ ,:^E r.^^^^...^i'...: r-^ w,^...^:..,., _. -..^ .^^:W,:..^._. ^ . ^,. _ I^"_ _5 T..,..^..._ ^^ T^ A.^^^_ ^ _."^"^ _, t w ,

^ '?C'7. u.— ̂ I^»^.-•-,»'i^,:,-u:.':4T^^^^.. ,-:LR: .r. ^a<i.^-r-i..^ .: ^s,_ ^^^-,si ^Lw^n.-^,..^/,..^ww,^^om..ns lr :,...--ai:.arcaesxL..0 _..s..^:v-+.+—.vrrx.. .{.^.T-.,^..,.,.-...^..H.ws.̂v.mE.- .o, a..-.,...M....-^.e^^:,-rc^^r^.-.:1

CONTENTS (cont'd)

III. SOF TWARE IMPLEMENTA-TION PROCESS AND
GUIDELINES . 	 1-27

A. IMPLEMENTATION PHASES 1-27

1. Planning and Requirements • • . • . 1-27

2. Design Definition 	 I-32

3. Design and Productions	 1-33

4. Acceptance Testing and Transfer to Operations • • . . • • 1-35

5. Operations and Maintenance. 1-37

B. MILESTONES	 1-38

C. REVIEWS	 1-38

D. DOCUMENTATION	 1-39

1. General Document Information 1-39

2. The Program Library	 • . . • • . 1-40

3. General Documentation Guidelines 	 1-41

E, QUALITY ASSURANCE . 1-42

IV. DSN SOFTWARE IMPLEMENTATION
FUNCTIONAL TASKS 1-43

A. GENERAL 1-43

B. INITIATOR/USER REPRESENTATION 1-43

C. COGNIZANT DEVELOPMENT ENGINEERING
OR PROJECT ENGINEERING	 1-46

D. PROGRAMMING SECRETARIAT 1-47

E. DESIGN	 1-48

F. DESIGN CHECKING	 1-48

G. CODli%IC=, CtiEGKING 1-49

H. CODE AUDITING 1-49

viii

CONTENTS (cont'd)

I,	 TEST DESIGN .	 1-49

J. TEST DESIGN VERIFICATION 1-50

K. TEST CONDUCTING	 1-SO

L. TEST EVALUATION 	 1-51

CHAPTER 2. THE STANDARD PRACTICE FOR THE SOFTWARE
REQUIREMENTS DOCUMENT 2-1

1. INTRODUCTION	 2-1

A. PURPOSE OF THIS STANDARD PRACTICE 2-1

B. SCOPE OF SOFTWARE REQUIREMENTS
DOCUMENTS	 2-3

II. SRD CONTENTS	 . 2-5

A. CONTENT OUTLINE, . 2-5

B. OUTLINE DISCUSSION .. 2-8

1. Introduction	 2-8

2. Management Requirements	 2-8

3. System Requirements . 2--12

4. Program Requirements	 . 2-12

III. SDR PREPARATION, REVIEW, AND APPROVAL 2-16

A. PREPARATION ACTIVITIES 2-16

1. Initiation an,d Requirements Identification. 2-16

2. Arbitration of Conflicting Requirements. 2-17

B. REVIEW AND APPROVAL Z-18

IV. OVERALL SUPPORT AND PREPARATION AIDS	 2-19

A. SUPPORT 2-19

B. PRE PA RA TION A IDS . 2-19

ix

LF

CONTENTS (cont'd)

1. SRD Format Conventions 2-19

2. Content Characteristics 2-Z1

CHAPTER 3. THE STANDARD PRACTICE FOR THE SOFTWARE
DEFINITION DOCUMENT 3-1

1. INTRODUCTION 3-1..........................

A. PURPOSE OF THIS STANDARD PRACTICE 3-1

B. SCOPE OF SOFTWARE DEFINITION DOCUMENTS . . . 3-1

II. SDD CONTENTS	 3-5

A. CONTENT OUTLINE 3-5

B. OUTLINE DISCUSSION	 . 3-7

1. Introduction	 3-7

Z. Management Information 	 • . . • . . • • • . . . • . 3-10

3. System Environment	 • . . • . . • • • . . . • 3--11

4. Program Architecture . • . . • . • . • . • • • • • • • • • • . • • 3-13

5. Coding and Test Design Criteria 	 • • • 3-16

III. SDD PREPARATION, REVIEW, AND APPROVAL 	 • • • 3-20

A. PREPARATION ACTIVITIES • • • • • • 3-20

1. Architectural Design	 • • .	 • • 3-20

2. Program Production Plan	 . • . . • . • • . • • . • • • 3-22

B. REVIEW AND APPROVAL • • 3-24

1. SDD Approval	 3-24

Z. SDD Review	 3--24

IV. PREPARATION AND DOCUMENTATION AIDS 3-27

A. PREPARATION 3-27

1. Functional Analysis	 3-27

x

CONTENTS (cont'd)

2, Preliminary Functional Descriptions	 , 3~28

B. DOCUMENTATION AND GRAPHIC AIDS . , , , , . . , . , 3-29

l, 8IJD Format Conventions	 . , , , . . . , , . . . ,]-SU

2. Information Flow Graphics , , , , . . , , . . . , , , . . 3-31

3. Mode Diagrams	 ,	 , '	 . .	 . , , , . , , ,	 , 3-32

V. IMPLEMENTATION MANAGEMENT AIDS . , . , . . ^ . . 3-34

A. WORK BREAKDOWN, DESCRIPT3ON, AND
BlJI}GEIIN{3		 ,		 ,		 ,	 3-34

}. Work Breakdown Structure Elements 	 , . . , 3-34

2, Detailed Task Descriptions	 , , , . . , . , . . . , 3-35

S. Task Budgeting	 ^ . .	 . , . ,	 '	 .	 .	 ^	 , ,	 '	 3-38

B, STATUS REPORTING BEFORE SDD APPROVAL , , , , 3-40

l. Architectural Z)eaiQo and Build Status	 3-40

3. Software Technical Program Progress Report , 3-40

CBAPIER 4. THE STANDARD PRACTICE FOR THE SOFTWARE
SPECIFICATION I}{JCD88ENZ. . , . . , , 4-1 1 '

l. lNTIlC)l}OCTICN	 ,		 ,	 4-1

A. IzDIlP{JSIC OF THIS GTANZAI{I} PRACTICE . . , , 4-1

B. SCOPE OF SOFTWARE SPECIFICATION
DOCUMENTS , , , . ' , , .	 . , ~ 4-1

II. GSI} CONTENTS	 , , , , , ^ , ^ , ,	 , , . . , . . . , , , . ^ . . . 4-4

A. CONTENT OUTLINE	 , , , , , , , . . , , . . . , , . , 4-4

B. {}DIl,I0E DISCUSSION	 , , . , 4-4

l. Introduction	 .	 .	 ,		 ,	 ,		 ,	 .	 .	 ,	 4-4

2, Standards and Conventions 	,...., 4-6

3, Exzvirom-neot and Interfaces , , 4-6

xi

I	 }. r

CONTENTS (cont'd)

4. Functional Specifications	 . 4-8

5. Program Specifications . 4-9

6. Verification and Test Information 4-11

7. Appendices	 4-11

III. SSD PREPARATION, REVIEW, AND APPRO V AL 4-13

A. PREPARATION GUIDELINES. „ 4--13

1. Top-Down,	 Conf-urrent Generation 4-13

2. Quality Assurance	 4-15

B. REVIEW AND APPROVAL . 4-16

1. High-Level Design Review . 4-16

2. Acceptance Readioess Review 4-17

IV, PREPARATION AIDS	 4-19

A. SSD IDENTIFICATION AND FORMAT 4-19

1. SSD Identification	 4-,19

2. Format	 4-19

B. MODULE FLOWCHARTING AND DOCUMENTING
GUIDELINES.	 4-21

1. Guidelines for Flowcharting 4-21

2. Guidelines for Module Documentation 	 4--27

C. FLOWCHARTING SYMBOLS AND USAGE	 4--29

CHAPTER 5. THE STANDARD PRACTICE FOR THE
SOFTWARE OPERATOR'S MANUAL 5-1`

u^

I.	 INTRODUCTION . 	 5-1

A PURPOSE F THIS STANDARD PRACTICE5-1i , <O O	 I	 N R D PRA I C	

B. SCOPE OF SOFTWARE OPERATOR'S MANUAL 5-1
ti^

xii

j

r

I
a

i

d

i

-S

!-1

_x

d	

{

a
i

CONTENTS (cont'd)

II.	 SOM CONTENTS 5-4

A. CONTENT OUTLINE . 5-4

B. OUTLINE DISCUSSION 5-4

1. Introduction . 	 5-4

2. Operations Environment . 	 5-6

3. Operating Instructions . 	 5-7

4. Sample Operations and Procedures	 5-9

5. Other Information .	 5-9

III. SOM PREPARATION, REVIEW, AND APPROVAL.. .. 5-11

A, PREPARATION GUIDELINES 5-11

1. Top-Down, Concurrent SOM Generation , . r . . . 5-11

2. Quality and Maintainability .	 5-12

B. REVIEW AND APPROVAL . 5-12

1. High-Level Design Review . 	 5-13

2. Acceptance Readiness Review 5-14

IV. PREPARATION AIDS . 5-16

A. SOM FORMATTING CONVENTIONS 5-16

B. GUIDELINES FOR SUPPLEMENTARY USER
INSTRUCTIONS	 	 5-16

1. Description and Background 	 5-16

2. Program Capabilities and Use		 5-17

3. Operations Interface I	 5-17

4. Theory of Operations . 	 5-17

xiii

-N " ;,f;;

CONTENTS (cont'd)

CHAPTER 6. THE STANDARD PRACTICE FOR THE SOFTWARE
TEST AND TRANSFER DOCUMENT , 6-1

I. INTRODUCTION	 4 6-1

A. PURPOSE OF THIS STANDARD PRACTICE 6-1

B. SCOPE OF SOFTWARE TEST AND TRANSFER
DOCUMENTS 6-1

LI. STT CONTENTS	 6-4

A. CONTENT OUTLINE	 6 -4

B. OUTLINE DISCUSSION . 6-6

1. Introduction	 6-6

2. Acceptance Readiness	 6-6

3. Acceptance Basis 6-7

4. Transfer Preparations	 . 6 - 8

5. Appendices	 6-8

Ill. STT PREPARATION, REVIEW, AND APPROVAL 6-10

A. PREPARATION ACTIVITIES 6-10

1. Acceptance 6-10

2. Transfer	 6-12

B. REVIEW AND APPROVAL	 6 -19

1. Acceptance Readiness Review	 6-Z 0

2. Transfer Review	 6-21

IV. REQUIRED DELIVERABLES TO BE TRANSFERRED. . 6-24

r^
4z

y.. y

ABBREVIATIONS 	 7-1

REFERENCES 	 8-1

xiv

CONTENTS (cont'd)

Figures

1-1 Primary Program Structures 	 1-5

1--2 Example of Structured Flowchart 1-7

1-3 Top-Down, Concurrent Construction Process for
Build.	 N	 1--12

1-4 Sequence of Activities in a Typical Software
Implementation Project 	 I-28

1-5 DSN Software Management and Implementation Plan 	 1-29

1-6 Software Implementation Functional Tasks 1-44

1-7 Software Implementation Tasks and
Operational Interactions 	 1-45

2-1 DSN Software Management and Implementation Plan.
(Software Planning and Requirements) 	 2-2

2-2 Typical Outline for a Software Requirements
Document	 2-6

2-3 Typical SRD Review Items and Guidelines	 2-7

2-4 Overall Implementation — Activity Schedule
and Casi Estimate	 2--10

2-5 Software Design Definition Phase — Typical Items of
Activity,	 Information,	 ai41 Cost Estimate. 2-11

3-1 DSN Software Management and implementation Plan
(Software Design Definition) 	 . 3-2

3-2 Typical Outline for a Software Definition Document 3-6

3-3 Example of System-Lc.vel "Siting" Diagram 3-8

3-4 Typical Operational State Diagram	 3-9

3-5 Example of System--Level "Operating" Chart. 3-12

3--6 Sample Flowchart for Level 1 (Overall Program Flow) . . . 3-14

3-7 Striping Conventions for Information, Data, and
Storage Structures	 3-15

xv

CONTENTS (cont'd)

Figures

3-8 Typical DSN Data Flow Diagram 3-•17

3-9 Typical DSN HIPO Diagram	 3--18

3-10 An Illustrated Mode Diagram . 3-33

3--11 Sample Work Breakdown Structure 3-36

3-12 Sample Detailed Task Description Format 3-37

3-13 Sample Task Budgeting Format	 3-39

3-14 Sample Implementation and Build Status
Information Format	 . 3-41

4-1 DSN Software Management and Implementation Plan
(SSD Software Design and Production) 	 4-2

4-2 Typical Outline for a Software Specification Document . . . 4-5

4-3 Sample of Standard Decimal Format 4-20

4-4 Sample of Standard for Placement of In-Text
Figure and Note 4-Z2

4-5 Sample of Initial Page of an Appen , 'ix 4-23

4-6 Sample Flowchart Narrative Page 4-24

4-7 Sample Flowchart Page	 4-25

5-1 DSN Software Management and Jmplementation Plan
(SOM Software Design and Production) 5-2

5-2 Typical Outline for a Software Operator's Manual 5-»5

6-1 DSN Software Management and Implementation Plan
(STT Software Design and Production, Software
Acceptance	 Testing) 6-2

6-2 Typical Outline for a Software Test and
Transfer Document	 . 6-5

6-3 Relationship of Tests, Responsibilities, and
Milestones	 6•-11

6-4 Sample "Page 1" of the Software Transfer Agreement . . . 6-13

xvi

CONTENTS (cont^d)

Figures

	

6 - 5	 Sample "Page Z" of the Software Transfer Agreement . . . 6-14

	

6-6	 Sample "Page 3" of the Software Transfer Agreement ... 6--15

	

6-7	 Sample "Addendum" to the Software
Transfer Agreement .. . 	 6-18

Tables

1--1 Program Build Milestones . 1-15

1-2 Acceptance Test Milestones for DSN
Subsystem Software	 1-16

1-3 DSN Software Implementation Process
Support Responsibilities	 . 1-30

2-1 DSN Software Implementation Process Support
Responsibilities (Planning and Requirements) Z-Z0

4-1 Symbol Usage in Flowcharting 	 4-30

4--2 Basic Flowcbart Symbols • 4-:;3

4-3 Specialized I/O Flowchart Symbols 4 - 36

4-4 Specialized Process Symbols : 4-35

xvii

-A

CHAPTER 1
GUIDELINES AND POLICIES

SECTION I

INTRODUCTION

A. PURPOSE

The purpose of this Standard Practice is to provide a standard approach
for implementing operational computer programs. Specific aims of the
standardized implemeat.:Ltion approach are to:

(1) Produce operational software which is correct, on schedule, and
within cost limitations.

(2) Provide a methodology for software implementation management
comparable to that which exists for hardware implementation.

(3) Assure compatibility with existing and planned capabilities and
equipment.

(4) Satisfy post-delivery needs (ease of operating, maintaining, and
su staining).

(5) Reduce program costs over the life cycle by balancing implementa-
tion and operational costs with needs.

(b) Provide a means for effective communications and efficient coordi-
nation of personnel and disciplines throughout the implementation.

This Standard Practice therefore prescribes an orderly and effective way
of implementing correct and maintainable software.

B. SCOPE

The scope of this Standard Practice extends from program justification

activities through transfer and delivery of the implemented program.

1-1

C. APPLICABILITY

These Standard Practices were originally designed to govern the develo,? -
ment cif software for the Deep Space Network (DSN) of the Jet Propulsion
Laboratory, Consequently, there are occasional references to 'institutions
unique to the DSN. However, the principles described here may be generalized
to apply to the development of all software where there is a desire for reliabil-
ity, maintainability, and usability.

SECTION II

METHODOLOGY AND POTJCY

A. METHODOLOGY FOR IMPLEMENTING SOFTWARE

These software implementation methods and practices are based on the

application, of engineering practices proven to ale effective in the irnplementa--

tioxa of hardware, coupled with the concepts and theorems of structured pro-
gramming and its consequent enabling of top-down construction, which, in
turn, is conducive to documentation of the implementation activities as they
occur.

These methods enable effective team operations for large efforts and
effective application and management of the practices and concepts. The
methods are also complementary and compatible with other methods currently
used (and, for that matter, with new technology under development) for the
more iterative, parallel thought processes involved in arriving at a computer
program definition starting from a problem, performing an analysis, and
evaluating proposed solutions. Moreover, having obtained this program defini-
tion, the techniques described here provide for an efficient, orderly, and com-
plete program construction. Such program construction is characteristically
a linear or serial, process, whereas much of the iterative process ideally
should occur in advance of the actual implementation.

The methodology has the following three basic elements:

(1) Principles of structured programming
(2) Top-down construction
(3) Concurrent design and documentation, coding, and testing

These three elements are more fully detailed in Reference 1.

1-^

1. Principles of Structured Programming

Structured programming is a program organizing and 'implementing
activity that involves the concept of representing the control logic of arbitrary
computer programs with iterations of a limited set of basic prescribed pro-
gram (or flowchart) structures. Application of this concept of iterating and
nesting a small number of standard structures results in a highly organized
and structured representation of the design and code that is relatively easy to
read, implement, test, and understand. Coding of the design by using pre-
scribed code structures is referred to as "structured coding. " Also, struc-
tured codling typically makes use of indentation and line spacing to display the
program floe+ and modularity clearly to persons reading the code, so that the
reader can locate the code corresponding to flowcharts or to other module
descriptions.

A counterpart of structured programming in hardware implementation can
be found in the design of complex control logic circuits. There, it is a wide-
spread standard engineering practice to use only a specified small set of basic
logic operations such as AND, OR, and NOT in the design of any arbitrarily
complex logic functions, so as to provide a structured design that is relatively
easy to understand, implement, and test. This practice is theoretically sound,
and is based on a theorem in Boolean algebra that states that arbitrarily com-
plex logic functions can be expressed in terms of basic AND, OR, and NOT
operations.

Analogously, the Structured Programming Theorem (which applies to any 	 i
so-called "proper program" —any program with only one entry and exit and no
unenterable subprograms) states that any (nonreal-time) program, arbitrarily
large and complex, can be expressed by basic structures that need include only
the operations for performing (1) functional sequencing, (2) conditional branch-
ing, and (3) conditional iteration (looping). The set of primary, prescribed
program structures that satisfies the theorem is presented in References 1 and
2. This prescribed set of structures is shown in Figure 1--1 and consists of: 	 {

(a) FUNCTION structure, consisting of any computational element,
including the possibility of not performing any operation.

1-4

YES

FUNCTION

iTEXIT

DO

'a.

f=

(a) FUNCTION	 (b) BLOCK

FUNCTION

FUNCTION

FUNCTION

(c } I F-THEN -ELSE 	 (d) FOR-NEXT

(e } TEST--DO
	

(f) DO-TEST

Figure 1-1, Primary Program Structures

1-5

4

(b) BLOCK, consisting 'of performing two or more FUNCTIONS in
sequence.

(c) IF-THEN-ELSE structure, consisting of a conditional branch element
(multiple -- more than two - possible alternatives are permitted in a
slightly generalized form of IF-THEN-ELSE; see Reference 1).

(d) FOR-NEXT structure; which provides a conditional loop. It is an
indexed special case of the TEST-DO structure described below.
The FOR part of FOR-NEXT is actually an initialization function 	 } `:
before the TEST-DO; the function of the TEST-DO includes an incre-
ment of the loop index.

(e) TEST--DO structure, which tests for condition, t'her does the
function.

(£) DO-TEST structure, which does the function, then tests for the con-
dition before repeating.

The ease with which the primary structures can be translated into code
depends upon the characteristics of the programming language. To facilitate
this translation, the DSN intends to adopt the language MBASIC* as its stan-
dard for none eal-tune programs. The main advantage, however; is the port-
ability of DSN application programs from one machine to another.

A sample flowchart that demonstrates the use of these structures is pre-
sented in Figure 1-2, where Modules 1, 3, 4, 5, and 7 represent functional
sequencing operations, Module 2 represents a conditional iteration (looping)
operation, and Module 6 represents a conditional branching operation. This
flowchart was taken from the WAD Report Writer Pilot Soft-ware Project,
which employed structured programming and top--down, concurrent principles.
It should be noted that each complete structure shown in Figure. 1-2 has only
one entry and one exit. This characteristic of structured programming allows
the modules to be expanded (or consolidated) to construct flowcharts of any
length or complexity. For example, Modules 2 through 7, when considered
together, represent a function module. The amount of detail provided on any
one chart, therefore, can be chosen by the designer. A striped module

'A trademark of the California Institute of Technology.

1-6

MY:..	
_.	 _	

-

ORIGINAL PAGE IS
OF PUQR UALITY

WADRPT

Chart 1. 5
WADRPT
3of3
5-12-74

n,

y1-.

;.k
Y'

'4	 _

i	 1
REDIMENSION FINISHED ARRAYS TO ZERO.
FOR WADRPT MODULE, DECLARE VARIABLES,
RESERVE MEMORY, ASSIGN INITIAL VALUES
TO VARIABLES; SET ALLRPT = NULL,
ADDRPT = NULL, NRPT = 1

2
LOOP = 0	 ALLRPT = 'Y' OI

ADDRPT = 'NO'
LOOP = LOOP + 1 IOR NRPT = 0

r w.	 i,r,I.A .	 nu •

YES

^NO	
3

JBCNTL

PROMPT INPUT TO DETERMINE WHICH
REPORTS ARE TO BE PRINTED, SET UP
TO PRINT THEM, AND PRINT A
CONFIRMATION

4
PDRPTS

PRINT PROJECT/`)IVISION REPORTS
SPECIFIED

5
DSPRPT

PRINT D-P, D--5, D-O REPORTS SPECIFIED

YE S ALLRPT = 'Y'	 6 NO
OR NRPT 0

^	 7

INPUT 'ADDITIONAL REPORTS
(YES, NO}?'; ADDRPT

Figure 1-2. Example of Structured Flowchart

1-7

(blocks 3, 4, and 5) is used to indicate that further expansion is provided on

separate flowcharts. Limiting the amount of detail on a given flowchart allows

the total process and flow under immediate consideration to be presented and

read literally from top to bottom.

Other items to note in Figure 1-2 are the provision and use of:

(1) Chart Identification - placed i n upper right corner, containing chart
number, module name, paging, and date. This allows easy access
and reference by users and quick and easy updating by page releases.

(2) Approval Block - for Cognizant Development Engineer's control
(or PE).

(3) Program Structure - uses prescribed primary set of program
structures (see Figure 1-1).

(4) Standard Symbols - uses symbols and module numbering system*
as presented in Reference 1 (derived from ANSI and extended for
structured programming).

(5) Update Bars - placed in outside margin for flagging the most recent
changes.

2, Top-Down Construction

The top-down approach involves the concept of stating the total problem in
its operational environment and progressing in a systematic manner to greater
levels of detail to fully understand the problem and to define a solution (a pro-
posed program) based on this understanding. The early stages of this program-
defining process are characterized by iteration and nearly parallel thought
processes, of which most, ideally, should have been completed in advance of
the implementation. Nevertheless, some time must be allowed for this
activity, as estimated by the CDE. The iterations converge on those basic
characteristics from which the program can be defined. An orderly, more
serial process of program production or construction follows and includes:

	

*Each module is numbered uniquely for identification; required explanatory 	 n j

	

narrative is keyed to this number, and supplied with the flowchart. More 	 fr ?-'^
detail on this procedure will be found in Chapter 4.

1-8	 ^'yF

final detail design, translation of this design to code, auditing and testing the

code, and documentation of the design, code, and. test processes. The top-

down procedure for this construction process, as described :later, is referred

to as top-down construction.

Specific procedures for performing the earlier thought processes have not

yet been formalized or prescribed, since development is still underway and

also, ideally, many of the earlier processes should have occurred in advance

of the implementation. It is of interest to note that the top-down approach

applies to the earlier activities, as well as to the construction activities,

although it is not necessarily applied to specific program modules but more to

the related aspects of data, function, and procedure. The data aspect deals

with information and data in the problem and in the program, including input,

intermediate, and output data objects and structures. The function aspect

deals with the transformations acting on the data, i. e. , what is done to trans-

form one data object into another in the passage through the program. The

procedure aspect deals with the logic to select paths through the program., and

the sequence of operations (functions and their component instructions) on these

paths, i. e. , how the program performs its task.

	

Also, it should be noted that while the top-down approach for the highest 	 € '_;

(least detailed) levels of the program leads to a hierarchical tree expansion,

the lower, more detailed levels may lead to very similar or identical module

functions in several independent expansion paths. To avoid unnecessary dupli-

cation of implementation effort, and in the interests of promoting commonality

and economy in subsequent design and maintenance, it is prudent that the pro-

	

gram definition identify and accommodate these situations. These instances 	 '-

can be recognized by forming a candidate high-level definition or structure

	

at least once, although typically, several iterations may be needed depending 	 E.

on size and complexity. Emerging from ongoing development are suggestions

on special tools and aids for handling this commonality aspect.

The top-down approach is also a valuable management tool, in that the

resulting end-to-end overall definition of the proposed program and its compo-

nent parts and structure provides program design guides and data needed for

1-9

estimating the scope of the total job, for determining the nature of the work aid
needed resources, for planning and scheduling the work through the various
phases; and for managing and conducting design reviews.

Top-down construction is especially adaptbd to Structured',Programming
because the Structure Theorem allows the top levels to be constructed first
and then the lower levels to be detailed (unstriped) and constructed in an
orderly and rigorous fashion. Specifically, in terms of detailing and flowchart-
ing in preparation for construction, one starts with a single striped module
(level zero). That module is analyzed and expanded into a flowchart with two
or more modules. The structure of the flowchart must be either a prescribed
structure (e. g. , from Figure I -1) or a permitted combination of prescribed
structures, where any or all of the modules may be , striped. Each striped
module at this point (level l) is expanded into a flowchart in the same way.
The modules which are not striped need not be expanded, and this means that
they can be directly translated into code without further design. T1U.is process
is repeated at the next level and continued until there are no striped modules
which have not been expanded. However, as discussed under Paragraph B,
Item 6. a. 3, several levels may be combined into builds for purposes of con-
current coding and testing, so that the correct amount of complexity is tested,
balanced against the cost of testing.

External interfaces are defined, negotiated, and implemented early, and
then used in the subsequent development, thus minimizing the occurrence of
possible serious program integration problems after the internal development
has been completed. Also, the need for developing program "drivers" is
reduced or eliminated. This progression of the implementation frorn the inter-
faces into the detailed program computations is fundamentallti r sound and is
consistent- with the theory of computable functions, which requires that at any
point of computation all elements needed to compute the next value have
already been computed,

1-10

3. Concurrent Design and Documentation, Coding, and Testing

In terms of coding and testing, any unstriped module can be coded as soon
as the flowchart on which it appears has been completed and signed off. More-
over, the program can be run provided any striped modules are properly
represented by modules of temporary code called dummy stubs (code which
produces data values needed to run the rest of the program). The dummy stubs
are intended to work for one or more special test cases. There is a theorem
in Structured Programming which says that if the part already coded is proven
to be correct, then it will still be correct' after the rest of the program is
coded, and thus need not be checked again. The test cases verify, build by
build, the correctness of the module when imbedded in higher builds of code
by testing every module-connecting path and performing other tests as needed
to uncover, for example, errors in logic, computation, formatting, timing,
recover;, and documentation. Correcting errors as they are introduced mini-
mizes present rework and avoids later serious impacts due to compounding of
errors. It can therefore be expected that the total amount of testing (correct-
ness and acceptance) will be greatly reduced, since, at completion of coding,
there is no need to repeat extensive internal program (correctness) testing.
The program is correct. Needed are only those tests (acceptance) that
demonstrate to the user the program's responsiveness to requirements in its
full operational environment. The modifications to this paragraph needed for
real-time programs are under development.

Figure 1-3 represents the process followed in doing concurrent design
and documentation, coding, and testing from the top down, Note that Figure 1--3
is a process flowchart (sequence of manual activities in the implementation
process), not a computer program flowchart (sequence of machine operations
in the program), but follows the applicable structured , flowcharting conventions.
The figure shows that the module design as documented must be approved
before the module coding and correctness test design are begun, both of which
must, in turn, be completed and checked before the correctness testing is
performed. However, after design approval, the test is designed at the same
time as the coding is being done. Testing and approval of the test and code
audit results formally complete the build at this level.

1-11

it

^i

BUILD N

I !	 DESIGN LOGIC & 	 SCHEDULING
DOCJMENT	 SYMBOLS FOR

BU' _^ N
MILESTONES

CHECK
AND

APPROVE D
-----.----- _..._-VOR D

DESIGN
APPROVED

WRITE CODE	 DESIGN TEST
r	 L — — —	 PROCEDURE

CHECK	
VERI FY

CODE	
TEST

DESIGN	 P

I —	 —_--- 7OR P
I

	

	 PROCEDURE
VERIFIED

I
TEST CODE; AUDIT;

REPORT RESULTS
i	 C

-------- - -------------VORC
CODING

COMPLETED

NO CODE OK ?

T
Y	

CODE TESTING COMPLETED -- QOR TES ,--- - - - --- ------
TESTED

BUILD N + 1

t

Figure 1-3. Top-Down Concurrent Construction Process for Build N

kF:

^^	 YdScicmi

This- process, then, in more detail, is first to design and document the
expansion, making use of information from the previous builds to produce a
description of any resulting unstriped modules adequate for translating directly
into code. It is also required that a description of any resulting new striped
modules be produced that, together with material from higher levels, will be
adequate to subsequently design and test them. In this framework, the design
does not differ from its documentation. The design and documentation must
therefore be adequate to code and design correctness tests at the given level
and to design the next level module, that is, to design (expand) all the striped
modules that appear in a given level. Of equal importance, the design and
documentation must be adequate for maintaining the program after it has been
transferred to operations.

After an independent check and approval of the design, the unstriped
modules are coded and the correctness test is designed, including any neces-
sary test code or dummy stubs. In line with good engineering practice, the
program code is checked and the test design is verified prior to conducting the
actual test runs.

The code is then tested, and the results, including an audit of the code
against the design, are provided to the CDE (or PE) for a decision to either
proceed to the next level of implementation or to cycle back and reconsider the
present level design for required changes and subsequent recoe ng and retest-
ing activities.

Following the satisfactory completion of this testing, the cycle of design
and documentation, code, test design, and'test/audit is repeated for the next
level. Each level is formally completed before formally proceeding to the
next to allow the CDE to effectively manage the overall implementation.
Informal "look-ahead" work on both design and test procedures in lower levels
can proceed, even though-'.the design for build N + 1 is not signed off until the
code on the current build N is satisfactorily tested and audited: however, the
amount of resources to be spent in this way is at the discretion of the CDE.

3^	 er	 T

1-13

Progress within each level of the design can be tracked by the use of

program build milestones, as shown in Figure 1-3 and described and listed in

Table 1-1. At completion of the last build, the program is complete, correct,

and ready for final acceptance testing.

Acceptance test milestones for DSN subsystem software are shown in

Table 1--2. The planning and preparation for acceptance testing is performed

in parallel with.the program implementation, beginning with preparation of

SRD inputs. Software implementation is complete at transfer (milestone X);

the rr:maining milestones pertain, if applicable, to the total subsystem accep-

tance, in which the software is an active part.

B. POLICIES FOR DAPLEMENTING SOFTWARE

This section summarizes the software implementation policies that are

applicable to operational programs. These policies form the baseline criteria

for software implementation practices and result from a combination of

(1) experience, (2) ongoing research efforts, and (3) the continual needs as

stated in Section I.

1. Adherence to Software Standard Practices

Standard Practices governing software implementation and documentation

are to be followed for all computer programs to be transferred to operations.

a. Comments

(1) Programs subject to this policy are those used in the day-to--day

operation of the DSN, including management and administration.

(2) Anticipated exceptions, if any, to the application of the DSN

Software. Standard Practices will be identified during the planning

phase and included in the SRD.

1--14

p.

Table 1-1. Program Build Milestones

Symbol	 Description

D	 Design Approved
The program architectural design definition, presented in the
Software Definition Document is detailed, in terms of control
logic in preparation for coding, and checked independently.
Approval of the logic design authorizes the start of coding and test
designing, which may, however, at the discretion of the CDE,
have started before formal design approval.

P	 Test Procedure Design Verified
The correctness test procedure: and necessary test code for
testing the new build module against the approved design are
designed, assembled, and verified. Test Procedure Design
Verified indicates that the test procedure and associated test code
are complete and available. Test design should formally start at

the same time that module coding starts, that is, after design
appr oval.

C	 Code Completed
The code for the approved design is generated and checked. Code
Completed indicates that the code is complete, has been checked
and is ready for correctness testing. Also, it is available for an
independent audit against the design.

T	 ! Tested
The correctness test is executed. Results are evaluated and pro-
vided, along with code audit results, to the CDE for acceptance,
which permits this cycle, starting with Design Approved, to form-
ally begin at build N + 1 (this does not preclude informal look-
ahead work on design and test procedures). Correctness testing
is conducted only after the code is complete (C) and the test
procedure design is verified (P).

1-15

A7.	 — 	
^s

Table 1-2. Acceptance Test Milestones for DSN Subsystem Software

Symbol Description

V Subsystem First Demonstration Test Completed
The subsystem (hardware and its software) interfaces and opera-
tion may be demonstrated and validated, at the discretion, of the
CDE, with the subsystem in a tracking station (or control center)
environment.	 Limited interface-type data flow tests can then
be supported.

X First--Station Test Accepted; Software Transferred
The subsystem is tested, typically at the Compatibility Test
Area, iPL, Pasadena (CTA 21), for acceptance and transfer to
operations.	 For software for an existing computer, this mile-
stone is the same as V, above.	 The results of the software
acceptance tests and the program documentation are reviewed.
Acceptance of the program., documentation, and test results
signifies the end of the software implementation (project mile-
stone 6, see Section 111). 	 The software products are transferred
from the implementing organization (CDE) to the operations
organization (software COE and the DSN Program Library).

Y Subsystem Implementation Completed
The subsystem hardware and/or software assemblies are
installed, f,;sted, and delivered to the Station Directors by the
subsyste..j. COE. 	 Completion signifies that all subsystem
requirements have been implemented and accepted.

Z System Performance Test Completed
System-level engine ring tests are conducted by station person-
nel using standard procedures, station-by-station.	 All interfaces
and system requirements are verified. 	 Upon completion, the
station can support project tests and begin specific mission-
dependent test activities.

1-16

=7

b. Examples

(1) A computer program is requested for doing a tradeoff study and
making plots for procuring an item. The program will not be
used after a decision is obtained. Standard Practices may or
may not be used, at the discretion of the implementer.

(2) A general-use computer program is requested for doing monthly
tallies of current costs and dollar obligations. The results will
be used for setting future budgets and commitments. Implemen-
tation will be in accordance with ,Standard Practices, and the
program will be transferred to operations.

2. Adherence to Referenced Practices

Referenced practices, standards, and requirements are considered to be
part of the Standard Practices and are to be followed as an extension of
Paragraph B.

a. Comments

(1) Acceptable methods or techniques already established and avail-
able are referenced rather than repeated or restated.

(2) As new techniques and practices become known and available,
their adoption, if approved, is facilitated by this method.

b. Examples

(1) System Standard Practices apply for software implementation,
and are referenced as needed.

(2) Also, certain appropriate practices and approaches as selected
from key sources are identified and adopted in the Standard
Practices. An example is the adoption of the flowcharting
symbols, terminology, and usage, as prescribed in Reference 1,

d,

1-17

as the standard. These are derived from wide and accepted
usage (References 3 and 4), with extensions and refinements
made to conform to the needs of structured programming and
shown in Section IV of Chapter 3.

3. Use of Standard High-Level, Stable Programming Languages

Cuding of the software design will be performed using standard high-level
languages provided for real--time and nonreal-time programs. The design and
implementation of these languages shall be under change control. Alternates
to the standard languages can be used where justified by a life-cycle cost
analysis, taking into account the initial implementation cost plus the cost of
maintaining and sustaining the program over a 10-ye_ar life (or the known life
span, if different).

a. Comments

(1) A stable, high-level standard language promotes communications
among the various people involved with the software over its
life-cycle and from project to project. This reduces the initial
implementation and continuing maintenance and sustaining costs.
High-quality implementation user documentation of the language
is needed to maximize this benefit from language standardization.

(2) A standard language can provide a degree os isolation from com-
puter and operating system changes and modifications. With
adequate control, the language can buffer the users from the
changes. Only the compiler need be changed; therefore, each
user is not required to compensate for the external changes.
This further reduces sustaining and change engineering costs.

(3) For nonreal-time D.SN computer programs, the MBASIC language
has been designated as the standard language. Use of the MBASIC
languagq results in relatively short programs of simple structure
which are relatively easy to write and understand, and, more
importantly, are independent of machine hardware and operating

k J^I

.:f

i

system. Presently only an MBASIC interpreter exists, so that
for programs which consume a great deal of time in an interpre-
tive version, life-cycle cost criteria may indicate that some
other language be used until the MBASIC com-piles is implemented.

(4) Future revisions to the Standard Practices will incorporate lan-
guage standards for real-time software and data base manipula-
tion.. Presently, the situation for real-time programs, where
operational speed, core utilization, or input/output efficiency are
key parameters, forces the decision to use machine or assembly
language, or a nonstandard medium--level language such as
FORTRAN.

4. Top--]down Concurrent Implementation

Software will be implemented in a top-down manner to allow the design and
documentation as well as coding of the program to progress concurrently with
the generation of correctness test procedures and the correctness testing itself.

a. Comments

(1) A running version of the skeleton program is available early in
the project by the implementation of the external interfaces and
the use of internal dummy stubs.

(2) Also, the necessary program documentation tends to be generated
more as a natural consequence of the process rather than by
treating documentation as an extra required task that interrupts
the implementation process.

b. Example

Suppose that the implementation of a new processing system, consist-
ing of many complex subprograms, is initiated and an individual is
assigned responsibility for one of the subprograms. An early running
version of the subprogram can be made available to determine the
fit into the overall implementation. Any refinements needed can be

1.19

iterated and fed back long before the detailed and relatively
nonchangeable part of the subprogram design is completed. This
is done by providing dummy stubs for the striped modules in the
subprogram and providing the subprogram to the main program,
with the other subprograms being dummy stubs. Also, to maintain
a coordinated effort, the individual subprogram status and any changes
made throughout the system are documented and communicated as
the implementation progresses.

S. Use of Structured Programming Principles

Only prescribed programming structures will be used for flowcharting the
design and translating the design into computer code,

a. Comments

(1) The prescribed structures allow the normal flow to progress
through the program from top to bottom, avoiding the need for the
kind of GOTO statements which cause erratic flow. Also, their
single-point entry and exit characteristic avoids sneak paths
(and their associated surprises) within the design.

(2) An exception to the single-exit characteristic for noi.=ea.l-time
programs is the abnormal termination, of which there are two
types. One type terminates the execution of the program in the
event of a predetermined condition without regard to program
structuring. The other type also terminates execution without
regard to program structuring but returns the operation to a
specified point (or points) earlier in the program. Either type
may be incorporated at any point in a program, if appropriate.
This is treated in more detail in Reference 1.

(3) Structuring of charts allows easy identification and tie-in of
required explanatory narrative and supporting material,

I _?.0

(4) The theory of Structured Programming is not yet completely

developed for real-time programs, 'but it is expected that few if

any exceptions will be necessary. -Subsequent revisions of this

document will incorporate advances in the methodology as devel-

oped and demonstrated through practical experience and research.

b. Example

(1) Figure 1-1 is an illustration of a set of prescribed structures.

(2) Figure 1--2 is an illustration of the use of prescribed structures

in flowcharting.

6. Modular Implementation

By applying Policies 4 and 5, modules will be implemented in hierarchical

siibordinaL q levels of detail. Each module will be limited in length and com-

plexity to a single page-size (8-1/2 x 11-inch) flowchart by using the Striped

Module technique of hierarchical expansion.

a. Comments

(1) This allows a manageable implementation to be planned, along

with the identification and division of work responsibilities and

actual work assignments.

(2) User maintenance is facilitated by easily understood modularized

programs.

(3) It may be that some striped modules, when expanded, require

several more le ,crels to conform to the readability requirement

of fitting on a single page. If the total complexity of the expan-

sion is still low enough to be readily comprehended in one

individual's mind, the CDE may decide to save: resources at low

risk by consolidating these builds for the purpose of design,

code, and correctness test approval (retaining the separate

zingic-page flowcharts). One exception so far identified where

1-21

A

this appears reasonable is where the expansion consists merely
at a long string of sequential functional operations with no looping
or control decisions.

(4) Use of the permitted multiple-decision structure may require an
exception to the 8-1/2 x 11--inch page size, where many branches
are involved. Use of sequentially applied statements with fewer
output branches would hinder understanding in such instances.

(5) Builds can take place concurrently; i. e. , different individuals or
.'	 subteams can construct their own builds and test their part of the

program, supplying stabs for the parts they are not responsible
for implementing. This facilitates division of labor,

7. Implementation Team

For sufficiently large projects, the Cognizant Development Engineer will
establish and direct an implementation team that is supported by the following
main functions:

(a) Programming Secretariat
(b) Quality Assurance
(c) Design, coding, test design, and testing specialties, as needed

r___ -

(1) For a typical software project:

(a) The CDE oversees the implementation process.
(b) The Programming Secretariat function maintains the project's

records and files, and serves as the center of team communi-
cations under the direction of the CDE.

(c) Specialist support is functionally independent and basically per-
forms module--by-module development under the direction of
the C DE.

(2) For small projects (6 person-months or less) these functions, except
for QA, might all be assumed by the CDE.

1_22

S. Standard Project Milestones

Standard project milestones will be used for technical and management

planning and control of the software implementation.

Comments

(1) Established project milestones serve to aid in the overall p.Lanning,

directing, and reporting, of all ongoing work throughout a project.

(2) Internal program build milestones are based on work completion on

a build-by-build basis.

(3) The completion of various builds, as signalled by a build passing the

correctness test and QA requirements for it, properly serves as a

milestone for an optional and perhaps informal design review. The

decision as to which combination of builds on which branches shall

be used for these milestones occurs early in the design definition

phase, and priorities should therefore be specified in the SDD.

(4) Guidelines, and special tools and aids for performing, managing, and

the orderly scheduling of the iterative parallel thought process involved

in early program definition are currently under development.

(5) Anticipated exceptions, if any, to the key activities defined in Para-

graph B of Section. III will be identified during the planning phase and

incorporated into the SRD.

9. Project Scheduling

Schedules for meeting the project milestones will be established and

periodically assessed by the Cognizant Development Engineer and controlled

by the cognizant manager.

r	 __+

(1) Schedules should reflect the requested delivery date, the detailed work

involved, and the resources available based on allocated priorities.

Y

1-23

_ .:. . i....	 is	1:	 L._..	 ...1...: Se.-:-...:.__1.........._l_...,__—.1^.—'_ . 	 _	 . .L......__L .^1_	 '"_

}

(2) Internal scheduling of the Program Build Milestones (Table 1-1)
provides a day-to-day work plan that the CDE can use to assess the
implementation progress. These internal schedules are based on
both completion of builds in the various subprograms, and also on
completion of the various steps required for approval of a given
build, indicated in Figure 1-3.

(3) Scheduling of iterative, parallel thought processes such as problem
analyses and solution evaluations that occur early in, or even prior
to, the implementation are not, at present, formalized: however, a
time estimate should be allocated by the CDE. Ideally, most of the
iterative process should occur in advance of the actual implementation.

Y

^Fc

10. Project Reviews

During the planning phase, dates will be set for all formal design reviews;
the Cognizant Development Engineer will coordinate and conduct the reviews.

Comments

(1) The reviews will be in general accord with the intent of Paragraph C
of Section III. Additional information on review content and conduct
is provided in the Standard Practices covering the particular phase
of implementation. Optional reviews should be conducted at the
completion of key levels in various subprograms as determined by
the CDE, who typically conducts the reviews.

(2) Cognizant management can serve as the CDE alternate for conducting
design reviews.

(3) The formal reviews provide the means for independent outside checks
of the overall implementation process and progress.

(4) If a design review is conducted prior to SRD approval, the person
preparing the SRD, or his management, conducts the review.

(5) All software reviews, including the required formal reviews, should
be low-cost, use existing documentation when available, and be com-
bined with subsystem reviews, when practicable.

1	

}1

f

1--24

11. Project Documentation

Documentation will be compiled concurrently with the implementation
progress and will be available on a continuous basis for use and review.

Comments

(1) Narrative will accompany each chart (program flowchart, data
structure chart, etc.) and will be produced concurrently with the
chart development.

(2) Document content and format, as applicable, will be in accordance
with specific guidelines contained in the appropriate Standard
Practice.

(3) Anticipated exceptions or substitutions to the key documents defined
in Paragraph A of Section III will be identified during the planning
phase and included in the SRD.

(4) During the implementation, the change control process is project--
internal; changes will be controlled by the CDE or the cognizant
manager, prior to SSD approval, but changes require concurrence
of the COE and CSE during the acceptance testing phase.

(5) Following transfer to operations, changes to documents and the pro-
gram will be controlled by the Change Control Board,

12. Quality Assurance

Quality assurance will provide an independent check on software quality.

r.. ,.....,... ,.._4. -

(1) Quality assurance activities are to be an integral part of the
implementation process.

(2) Audits are conducted by independent (not project-controlled)
auditors, whose activities will be directed toward satisfying the
general intent of Paragraph E of Section III.

1-25

(3) Specifically, QA will audit each code module prior to certifying
its status and will certify, prior to program transfer to operations,
the reported code documentation status.

1--26

SECTION III
SOFTWARE IMPLEMENTATION PROCESS AND GUIDELINES

A. IMPLEMENTATION PHASES

The software implementation process extends from an initial program

justification activity through program delivery and involves a chronological
progression of activities which can be grouped or identified as specific phases
of effort. The phases of software implementation involve (1) planning and
specifying requirements, (2) design definition, (3) design and production,
(4) acceptance, and (5) operations and maintenance. A convenient measure
of the project's progress is available by noting the completion of the phases;
therefore major milestones are defined mainly at the end points of the imple-
mentation phases. Figure 1-4 presents an overview of a typical software
implementation sequence, and Figure 1-5 summarizes the DSN software
management and implementation plan, as derived from Figure 1--4. Table 1-3
outlines the support responsibilities involve d throughout the implementation.
These are briefly discussed in the following paragraphs.

1. Planning and Requirements

a. Initiation. Initially, the nature of a given problem, and the need for
and benefits of a possible software solution are determined. For DSN subsys-
tem software, the need is identified by the Subsystem Functional Design Docu-
ment, which assigns the functional requirements on the subsystem to either
hardware or software. The functional requirements and performance param-
eters are listed in the Subsystem Functional Requirements Document.
Further planning and analysis are then accomplished to identify the operational
environment (computer and equipment), overall project schedules, and total
costs; also included are resource commitments and more refined cost esti-
mates for the next phase of activities, accurate to within a ten-percent goal.
This information is conti ined in the Software Requirements Document (see
Chapter 2 for a typical content outline).

1-27

,41P-.	 r

Figure 1-4, Sequence of Activities in a Typical Software Implementation Project

PRWARY RESPONSIBILITY	
INITIATOR *FOR ACTIVITIES CDE (OR PE?	

^,OE

CSE
ACTIVITIES

PLANNING-----------------------------
I

SOFTWARE	 I (MANAGEMENT APPROVAL
REQU I REMENTS DOCUMENT ____________________t TO PREPARE SDD) I

ARCHITECTURAL DESIGN ._______________ ------ I	 ^..^►

SOFTWARE	 I	 (MANAGEMENT APPROVAL	
I

DEFINITION DOCUMENT-- 	 TO IMPLEMENT DESIGN)

DES I GN AND PRODUCTION _______________________________ A 	
I

SOFTWARE OPERATOR'S MANUAL AND 	 I
N SPECIFICATION DOCUMENT-------------------1--- --!---G

II

ACCEPTANCE TESTING ----------	 --------------------^,.^
PREPARE	 TEST j

II
TEST AND TRANSFER DOCUMENT ------------ I ------------------------------ ---	 ------------------	 --------------------A

OPERATIONS	 I I

AND MAINTENANCE -------------------------------- I	 - --	 -	 --	 -	 --------------------

DURATION OF THE	 I I
IMPLEMENTATION PROJECT ---------------------

"
* TYPICALLY, DSN SYSTEMS ENGINEERING

 DESIGN REVIEWS

(DATA SYSTEM S " W); 0R OTHERS
AL MANDATORY

THROUGHOUT DSN A OPTIONAL

>W
I
N

	PHASES-`	 SOFTWARE	 SOFTWARE	 I	 SOFTWARE.	 I	 SOFTWARE	 (POST -DELIVEPY

ITEM	 I	 PLANNINGREQUIREMEN SD	 I	 DEFINITION	 i
	

PRODUCTION	 I	 TESTING
 ACCEPTA

NCE
	

MMISITENANCE D

MAJOR	 1. IDENTIFY	 ' 1. DEFINE	 11. COMPLETE	 I I. DEMONSTRATE	 1. OPERATE PROGRAM
ACTIVITY	 • REQUIREMENTS FOR SAV	 • FUNCTIONS/FLOW	 I	 • EXTERNAL SPEC	 • PROGRAM MEETS SRD	 • PRODUCTION/SUPPORT

SAV FUNCTIONAL.	 • ARCHITECTURAL DESIGN	 a DETAIL DESIGN -DATA	 I	 • PROGRAM AND MANUAL IN 	 •UPDATE AS REQUIRED
TECHNICAL REQUIREMENTS I 	 o SCOPE OF TASKS	 AND PROCEDURES	 OPERATIONS ENVIRONMENT

	

1	 b OVERALL SCHEDULE, COST	 • COST AND SCHEDULE 	 I	 • CODE, TEST DESIGN, TEST I 	 • DELIVERABLES MEET
• RESOURCES FOR NEXT PHASE I	 s	

2• MAINTAIN DOCUMENTED DESIGN
T. SELECT SUPPORT PERSONNEL 	 REVIEWS	 STANDARDS	

. INSERT APPROVED CHANGES

3. REVIEW AND APPROVE
 IDENTIFY COE	 3. REVIEW AND APPROVE	 • OPERATOR '

S MANUAL; SSD j 3. COMPLETE ACCEPTANCE AND	 • MAINTAIN BENCHMARK TESTS

TRANSFER PLANS; STT
1	 2.	 E ACCEPTANCE AND	 I	 TRANSFER

DESIGN	
I	 I TRANSFER

REVIEWS	
REQUIREMENTS	 ARCHITECTURAL	 HIGH-LEVEL	 /f̂ 	 TRANSFER

(A DENOTES	 Q	 Q Q-- Q--Q --- -/.\ ACCEPTANCE READINESS	 AMANDATORYI 	 T
SOFTWARE

SOFTWARE REQUIREMENTS 	 I	 SOFTWARE	 I	 SOFTWARE	
SPECIFICATION	 E

MAJOR	
I DOCUMENT	 11EFINITION	 DOCUMENT

SRD	 DOCUMENT SpD	
OPERATOR'S SOM

	 $5D	 STT
DOCUMENTS	

MANUAL

I	 1	 f

	

I	 I	 ^	 I	 SOFTWARE TEST AND
TRANSFER DOCUMENT

CHANGF
Cola:ail SRD

	

SDD)	 ------.._...:...^

	

som l 	 I	 __...... .._... 	 I	 I	 ^_"^

	

^r 	UNDER

	

I	 I	 ^..__.....-...__. — — — ^	 I	 r-^^ DS N CHANGE
SSD	 — CONTROL BOARD

BY:	 STT I	 I	 }. —	 — .._....•...,..	 _. ^..^	 -.._ ._ — ^.^^^

--COE (OR Pj
_COGNIZANT

MANAGER	 `	 I

f	 HIGH-LEVEL	 I	 5TT APP-D, DELIVERABLES

I SRD	 SDDDESIGN REVIEW	 Sony	 SSD	 TRANSFERED TO
MILESFON:'S	

^._ _...	
^.. ^...__. TAPP'D — — ^ ^AFP'0^— 	 ^ APP^Dv^APP'D — — — W r 6 OPERATIONS — ^

SUPPORTING

	

I	
j-	

^^^I!!!	

MLLL

DSN STANDARDI	
I	

I	 SO

I

j
PRACTICES	 SRDs(PREPARATION 	 SDD
OF...)	 SSD

i	 STT s

	

I	 1	 I

	

^	 I
^	 -FOR DSN SUBSYSTEM SOFTWARE, SUBSYSTEM FUNCTIONAL DESIGN PRECEDES THE SOFTWARE IMPLEMENTATION.

j^

G '^

Figure 1--5. DSN Software Management and Implementation Plan

Table 1-3. DSN Software Implementation Process Support Responsibilities

w0

Implementation Phase'==
Operations &Support Activity Planning & Design Design & Acceptance Test Maintenance

Requirements Definition Production and Transfer

Coordination of Subsystem Cognizant CDE* SSE and COE
Activities Engineer (SSE.) Development CDE*

or Initiator Engineer (CDE)"'

Design N/A CDE CDE N/A Cognizant
Sustaining
Engineer
(CSE)

Acceptance Cognizant COE COE COE COE
Test Input and Operations
Support Engineer (COE)

(if assigned)

Documentation SSE or CDE CDE CDE (fer
of Results Initiator sustaining

changes)

Plan and Conduct SSE or CDE*' CDE* CDE m SSE, if

Review Initiator	 - applicable

Approval Cognizant CM CSE, COE COE, Quality QA/CM
Management (Implementer) Assurance (QA)
(CM) and CM

Milestones Software Software Software Software Test Engineering
Requirements Definition Specification and Transfer Change
Document (SRD) Document (SDD) Document (SSD) Document (STT) e	 Requests

Software (ECRs)
Operator's • Orders Manual (SOM) (ECOs)

'-Or Project Engineer, for large implementations.
,;-For DSN subsystem software, subsystem functional. design precedes the formal software implementation.

b. SRD Review and Approval. The SRD forms the basis for program

,justification; management approval of the SRD authorizes the program Design

Definition Phase to begin. The SRD identifies the overall requirements for the

program (functional, management, and technical, as needed), the overall imple-

mentation schedule, an initial estimate of the resources needed for the entire

implementation, and an accurate (ten-percent goal) estimate of the resources

needed, for the Design Definition Phase only. It denotes detailed requirements

of the program only as necessary to understand the functional requirements of

a program. In cases where substantial additional technical material is needed,

this should be contained in another document or documents to avoid diluting the

primary purpose of the SRD, and should be referenced or appended.

SRD approval signifies authorization to proceed to the next phase and is

based on a review of the planning information. If a formal review is warranted

for probing the reasoning that went into the SRD, it is performed by the design

review process. As such, the review process is one of critiquing the planning

activity. The review is not limited to a document review, and it is not neces-

sarily one of concurrence. Furthermore, these software .design reviews can

be combined with subsystem reviews to conserve resources.

After approval, changes within the original scope of the SRD are under

internal change control and are approved by the CDE. Other changes require

the same signatures as the original. Following transfer to operations, the

SRD is kept on file in the Program Library, but does not survive the project

as a formal document and is not maintained with updates beyond program

transfer.

c. Responsibilities. As shown in Table 1-3, the coordination of all

planning activity, the documentation of results, and the conducting of the-

review leading to SRD approval are the responsibility of the Subsystem Engi-

neer for the applicable subsystem, or the initiator for other software. Accep-

tance test input during the planning is provided by the Cognizant Operations

Engineer, who is assigned by the Operations Organization or the User

Organization.

1-31

Approval of the SRD is made by the initiator's cognizant management and

others involved such as the Funding, Systems Engineering, Implementing, and

Operations organizations. The management approval level required is deter-

mined by the regular procurement management structure based on the estimated

total program cost, but does not go above the Assistant Laboratory Director

level. Prior to approval, cognizant management selects a CDE to assume

responsibility for the subsequent implementation of the program.

2. Design Definition

a. Architectural Design. The requirements contained in the SRD are

translated into a program definition or architectural design which forms the

design base at the highest levels and interfaces of the program. The archi-

tectural design summarizes the complete program, placing emphasis on the

highest levels of the program (e. g. , high-level striped module identification

and connectivity, major program modes, data structures, and information

flow). This identifies and scopes the remaining work and can be used for

refining the program completion cost estimate and schedule (to within ten per-

cent, as a goal), and for work planning and coordination activities. This

architectural design is contained in the Software Definition Document (see
	 I

Chapter 3 for a content outline). Along with this program definition informa-

tion, the SDD includes some generalized and/or high--level module correctness

and product acceptance test design goals.

b. SDD Review and Approval. A review of the proposed architectural

design will be held at the start of the Design and Production phase. The review

provides an overall assessment of the project costs, resources needed,

schedules, functional design, and interfaces. Also reviewed are relevant hard-

ware, corresponding functional requirements, and any other background infor-

mation or other related documents needed for assuring the successful imple-

mentation of the architectural design:. The detailed design and program

production formally begin after SDD :approval. The SDD is not updated, since

its purpose — providing the baseline architectural design — has been achieved.

1-32

The SRD however, is revised and updated to maintain an accurate record
of any changes in requirements that may occur d}iring the implementation phase.
Changes to the SRD require the same approvals as the original document.
Implementation changes that do not affect requirements remain under imple-
mentation project control and require only CDE approval. Upon transfer to
operations, the SDD and the SRD are delivered to, and retained by, the DSN
Program Library. The documents remain "as is" and are not revised to
reflect any future program changes.

C. Responsibilities. The CDE (or PE on large implementations) is
responsible for the coordination of the design definition activities. Respoa -
sibility for the planning and conduct of the SDD design review also lies with the
CDE, although assumable by the cognizant manager of the implementing
organization.

Acceptance test information in the SRD is further detailed by the COI; and
provided to the CDE, who is responsible for the documentation of the program
and test information in the SDD.

The SDD is approved by the implementing organization line management
prior to proceeding to the detailed design and production activities. Other
approvals that may be required for certain projects will be identified in the
SRD.

3. Design and Production

a. Top-Down, Concurrent Implementation. The architectural design as.
presented in the SDD is expanded using the top--down methods and concurrently
coded, tested, documented, and approved in successive stages. Expansions
include both program procedure and specific data representations.

As the program construction progresses, the information from the as-built
configuration is compiled; it comprises the main part of the Software Specifi-
cation Document (see Chapter 4 for a content outline), which is used mainly
for program maintenance after transfer to operations. Operating instructions

1-33

and procedures as verified from the unit correctness testing are compiled to

build the Software Operator's Manual (see Chapter 5 for a content outline).

Planning for the acceptance and transfer to operations of the completed pro-

gram is initiated early in this phase.

b, Design Reviews. Two major desi gn reviews are typically held during

this phase for all but the smallest implementations. A program high-level

design review is held early in the design and production phase to identify

and correct any problems in the technical, resource, or schedule areas.

An Acceptance Readiness Review of the program and its documentation is held

after the program construction is completed. This review provides approval

of the SOM and SSD, concurrence with the preliminary STT, and authorization

to begin formal acceptance testing. Informal status reviews and working

sessions as well as additional formal design reviews may be held throughout

the Design and Production Phase at the discretion of the CDE and prior to the

mandatory Acceptance Readiness Review.

C. SSD and SOM Documents. The SSD contains the complete, as-bunt

detailed design and code listings that describe the program as delivered. The

SSD is approved by the CSE, which authorizes its use in acceptance testing.

Final approval and acceptance of the SSD is obtained during the mandatory

Acceptance Readiness Review. The approved SSD is delivered along with the

program for acceptance testing and transfer to operations. The SSD remains

with the program throughout its operational life, serving as the technical design

shop manual for program maintenance and any subsequent program changes.

Engineering change requests and change orders are written against the SSD,

SOM, and STT, as required. The basic criterion for the SSD is that it be

usable for program maintenance without assistance from the CDE.

The SOM contains the operating instructions necessary for effective pro-

gram use in the operational environment by an operator not necessarily

familiar or associated with the program design or implementation. On large

implementations, the SOM is written in parallel with the program design and

production, and is adequate for executing the present program build. As

program ;dummy} stubs are replaced by active module code, the appropriate

1-34

t
operating information is concurrently incorporated into the SOM. The completed

SOM is approved by the COE and delivered with the computer program for

acceptance testing and transfer to operations.

d, Responsibilities. The overall responsibilities as assigned in the

program definition phase continue, but the specific duties involved var;r in

relation to the specific program. For large °fforts, additional support per-

sonnel may be phased into the work plan to form an implementation team; team

structure and 'interaction must be effective to handle the needed coordination and

communication activity throughout the implementation. Team structuring for

large implementation efforts is discussed in more detail in Reference 1. The

Cognizant-Sustaining Engineer is assigned prior to the Acceptance Readiness

R eview.

4. Acceptance Testing and Transfer to Operations

a. Software Test and Transfer Document (STT). The STT identifies all

necessary acceptance tests and conditions for formal transfer of the software

from implementation to operations. It is prepared in parallel with the program

implementation (see Chapter b for a content outline). Following acceptance

testing, the STT is approved by the COE and cognizant line management and

delivered with the computer program; the acceptance tests serve as benchmark*

tests for program maintenance during the operational life of the program.

b. Acceptance Testing. The program is tested in accordance with the

STT, as concurred with at the Acceptance Readiness Review. The final

acceptance tests are directed mainly toward validating the full-up, end--to-end

throughput characteristics of the program and verifying the program documen-

tation. The program internal structure has already undergone extensive testing

during design and production, and its correctness has been established. Accep-

tance test milestones for software are described in Table 1-2. If the program

or documentation require changes during acceptance testing, the CDE, COE,

= Verification of original capability, as transferred, using the original tests as
the control reference.

1-35

;.,. d

and CSE must mutually agree to the change prior to approval. During testing,
the STT is revised as required to incorporate the as-tested configuration and
conditions.

C. Transfer Review. An optional status review may be held prior to
transfer to operations to ensure that all conditions contained in the Transfer
Agreement have been met. The transfer process is formally completed when
the Transfer Agreement is signed by the CDE, QA, COE, user organization
manager, and cognizant implementation manager; this completes the
implementation.

d. Transfer to Operations. Upon completion of the Transfer Agreement,
the computer prograrn and its documentation are formally transferred to
operations and delivered to the Program Library. In addition, the project
prav-'des all the project notebooks and other informal documentation, including
correctness testing and its results, to tiie COE for use as troubleshooting aids
and for maintenance.

e. Responsibilities. Generally, the responsibilities as assigned in the
design and production phases continue, with emphasis shifting to acceptance
testing and final approval prior to transferring the program to operations.

Acceptance test criteria are coordinated by the program initiator, in
conjunction with the COE. Procedures are then planned by the CDE, in accor-
dance with the test criteria, and the procedures are documented and executed
by the CDE. The CSE will typically be available to assist the CDE. Results
are evaluated by the initiators, users and/or COE, and Quality Assurance and
documented by the CDE.

In addition to supporting the test evaluation, the QA function is responsible
throughout the project for code auditing, just as it is responsible for hardware
inspection in a hardware project. The module-by-module auditing is augmented
at the time of transfer to operations by a final quality certification of the code,
SSD, SOM, and STT.

1-36

__11
3^_

5. Operations and Maintenance

Following transfer of the program, the project team is disbanded. Respon-
sibilities are then shared between the COE and CSE.

The COE is responsible for the initial integration of the program into
operations and the subsequent installation of approved modifications. As such,
the COE provides training and troubleshooting support as needed. Also, the
COE serves as the single point of control to review and recommend changes to
the program, as required. The COE's responsibility also includes efficient
data base utilization and coordination of data base maintenance, when relevant.

The CSE is responsible for providing program sustaining engineering
necessary to maintain the operational integrity and support capability of the
program. When a new capability for an operational program is identified (by
ECR) and approved (by EGO), the CSE assists in the definition, develops a
modification, and supports its installation, if needed.

The software change process after transfer to operations, which also
applies to hardware, is accomplished through the Change Control Board.
Therefore, changes require CCB review and approval before implementation.
Unauthorized changes to transferred software are prohibited. The CSE, in
concert with the COE, implements all authorized ECOs. Changes for cosmetic
or explanatory reasons may possibly be exempted from the change procedures
if no executable elements are involved, but only upon the review and recom-
mendation of the CCB.

For extensive new capabilities, an SRD may be needed, as determined by
the CCB. The SRD is prepared by the requester with support from the COE
and CSE. SRD approval authorizes the development and test of the rnodifica
Lion. Following the design and implementation, a formal transfer of the pro-
gram modification and updated documentation completes the effort.

1-37

I

I	 - .! m+f

B. MILESTONES

are as follows:

[JBased on the activities discussed in Paragraph A of this section, six major
milestones are established which allow the overall software implementation
project to be planned and its in-progress development to be monitored. These
are shown in perspective to the total activity involved in the Management and
Implementation Plan of Figure 1-5. The milestones in order of occurrence

(1) Software Requirements Document Approved

(2) Software Definition Document Approved
47

(3) High-Level Design Review Completed
.4

(4) Software Operator's Manual Approved VJ
(5) Software Specification Document Approved

(6) Soft-ware Test and Transfer Document Approved; Transfer Agreement

Signed; Deli%rerables Transferred to Operations

&7

C. REVIEWS

10Working sessions ci the implementation project team and informal status'.
reviews are, of course, held throughout the software project, as called for by
the CDE or by policies of the implementing organization.

At designated periods throughout the implementation (see Figure 1-5),
formal design reviews are held involving both the project team and others not
directly involved in the detailed day-to-day implementation. Specific details
of these reviews vary, depending on the applicable phase of implementation
covered and on the size of the implementation. These details, along with
suggested guidelines, are presented in some depth in the following Chapters.
Mandatory reviews have been indicated previously in Paragraphs A and B of this
s ection.

Basically, the purpose of each formal review is to assure that the imple-
mentation. to the present point is acceptable in terms of (1) meeting costs and

1-38

schedule, (2) technical requirements, and (3) readiness to proceed to the next
phaso of implementation. The last two phases of implementation are acceptance
testing and post-transfer operations and maintenance.

DependinL; on the results of the review, either approval to proceed is
given or necessary adjustments are identified and corrective actions taken
before proceeding.

D. DOCUMENTATION

Documentation is for communicating Gnd storing information. To be
effective, it must be timely, clear and understandable, applicable (the right
information in enough detail), and reasonable in cost. The documentation
process is highly dependent on the activity involved. For this reason, specific
detail and guidelines for the various software implementation documents are
pres-nted in Chapters 2 through 6; each chapter covers a major implementation
phasa of activity. However, certain general information and guidelines apply
to the total process and are discussed below.

1. General Document Information

Both the SRD and SDD are internal project documents containing information
used throughout the implementation. They should be informal, low-cost working
documents, clear and complete for their purposes. The SRD will normally not
be maintained beyond program delivery and the SDD not beyond its approval.
Program functional and technical detail developed during the implementation
can be retained by subsequent attachment (referenced or appended) to the SSD,
or rewritten into the SSD.

The SSD, SOM, and STT are separate documents delivered along with the
completed program and maintained throughout the operational life of the pro-
gram. These are compiled concurrently with the program and test imple-
mentation, and therefore are timely and closely represent the actual state of
development at any instant. As survivable and useful documents throughout
the program life, some degree of formality is in order, but the prime emphasis

1-39

must be on information content and completeness. The costs of these documents
might typically be comparable and in line with those of their counterpart doc-
uments associated with deliverable hardware, if there is hardware delivered
along with the software.

2. The Program Library

In addition to receiving, storing, and distributing software deliverable
items, the Program Library controls the program numbering system and
assigns identifying numbers to new programs.

Following is a typical number assigned by the Program Library to a
computer program:

DOI-5123-OP--R

The letter prefix (DOI) identifies the program as a DSN program.

The four-digit number is assigned sequentially.

The two-letter suffix denotes the program use; OP for operations program
(used in a tracking station while a spacecraft is visible), SP for support pro-
gram, TP for test program, etc.

The final letter is the program revision letter, which progresses through
the alphabet as the program is revised. A first release has no revision. letter.

The kinds of documents that can be required for a program are:

Functional Requirements Document
Technical Requirements Document
Software Requirements Document
Software Definition Document
Software Specification Document
Software Operator's Manual
Software Test and Transfer Document

Sometimes, where
applicable

Always

1-40

The document number is formed by attaching the document abbreviation
(SRD, SDD, SSD, etc.) ahead of the assigned program number. For example,
a Software Requirements Document would be:

SRD-DOI-5123-OP

An initiator of a program requirement obtains a program number from the
Program Library. The family of documents generated in support of the pro-
gram could be as large or as small as necessary, according to the complexity
of the program.

3. General Documentation Guidelines

The following general guidelines apply:

(a) DSN abbreviations and designators, and flowchart symbols, terminol-
ogy, and usage, adopted from Reference 1, will be used throughout.

(b) Top-down hierarchical flowcharting and module identification (Ref-
erence 1) will be used, along with text and narrative keyed to their
corresponding modules.

(c) All information should generally progress from a top-level under-
standable base through increasing levels of detail in small, under-
standable increments that allow traceability from any level of detail
back to its top-level base point.

(d) The outlines in each chapter guide the preparer through this process.
(e) All pages should be the standard size of 8-1/2 by 11 inches (including

figures, flowcharts, listings, etc.) to facilitate handling and storage
and, more importantly, to limit the complexity of a single page.

(f) Typed manuscripts should be formatted in accordance with their
respective Standard Practices.

(g) The SSD, SOM, and STT should be delivered to the Program Library
in reproducible form (black on white preferred).

^f

1-41

E. QUALITY ASSURANCE

Quality assurance efforts are always prudent in all phases of the software

implementation process. They are intended to help reduce testing and mainte-

nance costs by improving the clarity, accuracy, and consistency of the finished

software product. Independent auditing of the code is therefore required before

a given module can be certified as having met these goals..

The code audit includes an auditing of conformance to Standard Practices,

to design, and to project-unique guidelines and conventions. The code audit may

be performed independently of the module correctness testing; the audit results

should be timely and formally reported to the CDE. An audit prior to correct-

ness testing may be preferred in order to .minimize the possible need for

retesting based on the results of the audit. Classical methods, as well as new

techniques and tools shown to be effective, will be used by QA.

Before completion of the transfer of the software from implementation to

operations, QA shall also certify the status of the SSD (including the code), the
SOM, and the STT.

1-42

SECTION IV
DSN SOFTWARE IMPLEMENTATION FUNCTIONAL TASKS

A. GENERAL

The software implementation process is accomplished through the system-
atic performance of basic functional tasks, in combinations suitable for meeting
the needs of a specific project.

These functions are administered, as appropriate, by the Cognizant
Development Engineering function (see Figure 1-6 and Paragraph C). A Pro--

graraming Secretariat assists the CDE, maintains the project files, docu-
ments, and working papers, and serves as a central source and deposit of
project data. As such, the project communication and task operational inter-
action tend to be to, from, and through the Programming Secretariat (see Fig-
ure 1-7). Direction of the effort is provided by the Initiator/Use: Representa-
tive and the cognizant management through the CDE.

B. INITIATOR/USER REPRESENTATION (Systems Engineering, Cognizant
Operations Engineering, Other)

The Initiator/User Representation function supports the Cognizant Develop-
ment Engineering function by supporting the initiation of a software project,
monitoring the implementation_ and acceptance, and evaluating the deliverable
software items. Specific responsibilities include:

(1) Preparing or supporting the preparation of Software Requirements
Documents and conducting the SRD review.

(Z) Participating in all design reviews.
(3) Coordinating acceptance test and evaluation activities,
(4) Participating in Transfer Agreement activities.

1-43

COGNIZANT
MANAGEMENT

INITIATOR/USER
COGNIZANT DEVELOPMENT

NGINEER1NG/REPRESENTATION H
PROJECT ENGINEERING

PROGRAMMI NG
SECRETARIAT

DESIGN	 CODING; CHECKING
	

TEST DESIGN I I TEST CONDUCT

CHECKING	 AUDITING (BY QA)
	

VERIFICATION	 EVALUATION

Figure 1-6. Software Implementation Functional Tasks

1-44

INITIATOR/USER	
COGNIZANT	 F COGNIZANT

DEVELOPMENT
MANAGEMENTREPRESENTATION ENGINEERINGG

KEY

= PROJECT-WIDE FUNCTION

0	 MODULE -BY-MODULE FUNCTION; MULTIPLE POSITIONS (AS NEEDED) INDICATED

COMPUTER (READ-ONLY) FILE

OR PROJECT ENGINEERING FOR LARGE IMPLEMENTATIONS

Figu-ce 1-7. Software Implementation Tasks and Operationa l Interactions

1-45

C. COGNIZANT DEVELOPMENT ENGINEERING OR PROJECT
ENGINEERING*

Cognizant Development Engineering (which is Project Engineering on very
large implementations) within an implementing organization has the overall
responsibility for the software implementation, reports to the cognizant man-
ager, and is specifically responsible for:

(1) Evaluating Initiator/User input and requests during the program
planning phase.

(2) In some cases, providing assistance to the Initiator in the
preparation of the SRD.

(3) Generating the SDD in response to the SRD.
(4) Overseeing the program implementation process through program

delivery, including design and documentation, coding, testing, conduct 	
i-

of design reviews, and preparation of the SSD, SOM, and STT. 	
E ;4

(5) Leadin g; and coordinating the efforts of the following support functions: 	 i^

(a) Programming Secretariat
(b) Design; design checking
(c) Coding; checking
(d) Test design; test design verification
(e) Test conducting; test evaluation

(h) Negotiating, with the QA Organization for code auditing and other QA
services needed during the program implementation.

(7) Generating an implementation schedule extending from SRD approval
through Transfer Agreement.

(8) Continuously assessing implementation progress, and, as necessary,
arranging for the reallocation of resources to meet schedules and
commitments, with the concurrence of the cognizant manager if a
budgeting change is required.

Typically, there is always -an individual assigned to serve as the CDE; how-
ever, on very large implementations, a Project Engineer is assigned for the
administration and coordination of the effort of many CDEs. The PE T S role
is similar to that of the CDE, except at a higher level.

:;y•.

f=

-: w

1-46

(9) Overseeing the conduct of the acceptance test and Transfer
Agreement.

D. PROGRAMMING SECRETARIAT

The Programming Secretariat supports Cognizant Development Engineering
in a wide range of activities during the software implementation. This support
involves administrative tasks such as filing and distributing design charts,
module and test codes, test results, and change requests. The Programming
Secretariat can also be responsible for certain implementation tasks such as
assignment of program labels and names for each striped module, maintaining
a current list of variables or program glossary, recording progress against
the project schedules, and accumulating the as-built SSD. Because of this
heavy involvement in project communication and data handling, the Programming
Secretariat is a key function during the implementation.

The Programming Secretariat reports to Cognizant Development Engi-
neering and is specifically responsible for:

(1) Accumulating project-internal documents.
(2) Filing code in a prograr_z file, which is read-only for all others.
(3) Filing and distributing test procedures and associated test code.
(4) Accumulating test results and reports and certifying completion of

modules to the project members after approval of the test results.
(5) Maintaining the program variable list or program glossary, which

includes all data structure names and alphanumeric program labels.
(6) Assigning and keeping track of program labels and names in con-

sultation with coders.
(7) Administering the project-internal change control process.
(8) Accumulating and disseminating project status information.
(9) Assembling the SSD package, including design flowcharts and narrative,

code listings, files, and tapes, as modules are comp- .ed.
(10) Performing other duties as assigned by Cognizant Development Engi-

neering according to the policies of the implementing organization.

1-47

E. DESIGN

The Design function supports Cognizant Development Engineering and is
responsible for:

(1) Performing detailed design of modules, and documenting (concurrently)
with flowcharts, detailed supporting narrative, and tables, especially
data structure definitions and resource access relationships.

(2) Supporting the overall program architectural design and providing
inputs to the SDD.

(3) Providing program design status to the Programming Secretariat.
(4) Supporting the Programming Secretariat is assembling the SSD.
(5) Perfoi^mi.ng other duties as assigned.

F. DESIGN CHECKING

The Design Checking function supports Cognizant Development Engineering
and is responsible for:

(1) Providing an independent design check of the flowchart and narrative
for correctness, clarity, adherence to established practices, and for
generally good engineering quality.

(2) Checking that the build N design is adequate for build N coding and
test design, for build N+1 design, and for program maintenance
after transfer to operations.

(3) Providing the status of the design check to the Programming
Secretariat.

(4) Performing other duties as assigned.

1--4$

`i

G, CODING; CHECKING

The Coding; Checking function supports Cognizant Developrr:snt Engineering
and is responsible for:

(1) Generating module code for the build N design,
(2) Providing checked (running) code to the Programming Secretariat

for subsequent correctness testing.
(3) Performing of-her duties as assigned.

H. CODE AUDITING

The Code Auditing by Quality Assurance is responsible for:

(1) Providing an independent audit of the code vs. design (on a module-
by-module basis) for:

(a) True translation of design into code
(b) Adherence of code to established practices

(2) Providing the code audit status to Cognizant Development Engineering
and to the Programming Secretariat.

(3) Providing code and documentation status audits before transfer to
operations is completed.

I. TEST DESIGN

The Test Design function supports Cognizant Development Engineering and
is responsible for:

(1) Generating test plans for concurrent correctness verification of build
N code design against the requirements in the SRD and the architec-
tural design of the SDD; also test plans for verifying the SOM.

(2) Designing dummy stuns and providing the corresponding code to be
inserted to allow the entire program to be run.

:i 3

1-49

(3) Generating test rationale and required test data, test code, test
assembly code, and detailed test procedures.

(4) Continually providing to the Programming Secretariat test design
detail and status.

(5) Consulting with the COE to help prepare user acceptance test plans
for the STT.

(6) Performing other duties as assigned.

J. TEST DESIGN VERIFICATION

The Test Design Verification function supports Co gnizant Development
EM

Engineering and is responsible for:

(1) Providing an independent verification that the test procedures and
test code test all connecting paths and interfaces of the current
build N module.

(2) Confirming that the test can be conducted and will, if successful,
form a convincing test of build N correctness.

(3) Providing the test design status to Cognizant Development Engineering
and to the Programming Secretariat.

(4) Providing testability considerations to the design activity.
(5) Performing other duties as assigned.

K. TEST CONDUCTING

The Test Conducting function supports Cognizant Development Engineering
and is responsible for:

(1) Performing the correctness tests on a build-by-build basis and
gathering all results.

(2) Providing testing detail and all results to the Test Evaluation function.
(3) Providing support to the Design function, as needed, if retesting is

necessary.
(4) Performing other duties as assigned.

1-5a

L. TEST EVALUATION

The Test Evaluation function supports Cognizant Development Engineering

and is responsible for:

(1) Evaluating test results.
(2) Submitting test reports to Cognizant Development Engineering and to

the Programming Secretariat for distribution.
(3) Performing other duties as assigned.

1-51

CHAPTER 2
THE STANDARD PRACTICE FOR

THE SOFTWARE REQUIREMENTS DOCUMENT

SECTION I
INTRODUCTION

A. PURPOSE 07 THIS STANDARD PRACTICE

This Standard Practice provides information and guidelines to assist an
initiator in preparing and identifying the requirements for software and in
obtaining management approval to proceed with the implementation. The Soft-
ware Planning and Requirements Phase and its relationship to the overall
software implementation process are shown in Figure 2-1. As shown in Fig-
ure 2-1, the results of the activity in this initial phase are documented in a
Software Requirements Document. The SRD is reviewed and approved before
proceeding to the next phase, the Software Design Definition, where the pro-
grarn's architectural design (high-level functional, framework) is defined.

The guidelines and practices herein apply to SRDs written for proposed
computer programs and capabilities (new programs or major extensions'
existing programs) which are intended to be transferred to operations.

Computer programs discussed in this book comprise both support (stand-
alone capability for analysis, test, management, administration, and sustaining
activities) and subsystem (on-line operations) software. For support software,
the SRD is typically the top document, which describes and justifies the task to
be undertaken in sufficient detail to justify the effort and to obtain approval for
funds (or person-hours) to continue or complete the design. For subsystem
software, the system and subsystem functional requirements documents and
the subsystem functional design documents are the top documents, with the
latter describing the capabilities to be provided by a combinatioa of hardware,

a .s.

PHASES*]	 SOFUVARE	 EsE 	SOFTWARE	 1	 SOFTWARE
PLANNING AND	 i	 DESIGN	 DESIGN AND

ITEM	
REQUIREMENTS	 I	 DEFINITION	 I	 PRODUCTION

SOFTWARE	 I	 POST-DELIVERY
ACCEPTANCE	 OPERATIONS AND
TESTING	 MAINTENANCE

N
I
N

MAJOR	 11. IDENTIFY	 1. DEFINE	 I. COMPLETE	 i I. DEMONSTRATE	 I I. OPERATE PROGRAM
ACTIV ITV	 • REQUIREMENTS FOR 5/V.]	 s FUNCTIONS/FLOW	 I	 • EXTERNAL SPEC	 • PROGRAM MEETS SRD AND. PRODUCTION % SUPPORT

s S^ FUNCTIONAL	 s ARCHITECTURAL DESIGN	 • DETAIL DESIGN -DATA]	 5DD	 I	 • Ur-D .;TE AS REQUIRED

	

TECHNICAL REQUIREMENTS]	 s SCOPE OF TASKS	 AND -%0CEDURES	 * PROGRAM AND MANUAL IN
• OVERALL SCHEDULE, COST	 • COST AND SCHEDULE	 I	 e CODE, TEST DESIGN, TEST I 	 OPERATIONAL	 [2. MAINTAIN DOCUMENTED DESIGN
• RESOURCES FOR NEXT PHASE 2. SELECT SUPPORT PERSONNEL 	 • REVIEWS	 ENVIRONMENT	 . INSERT APPROVED CHANGES2. SELECT CDE	 3. REVIEW AND APPROVE	 I	 • OPERATOR ' S MANUAL; SSD I	 • DES MEET	 I	 • MAINTAIN BENCHMARK TESTS

1

3. REVIEW. AND APPROVE	 I	 13. INITIATE ACCFPTANCE AND 	 STANDARDS

	

TRANSFER PLANS: STT, PREL] 2. COMPLETE ACCEPTANCE 	 I
SIGN	 I	 AND TRANSFERDESIGN

 NS	 f	
REQUIREMENTS	 ARCHITECTURAL	 HIGH-LEVEL	

/ŝ 	
TRANSFER

I •DENOTES r	 Q	 Q Q-- Q--Q ---/*
T

\AS BUILT
MANDATORY% E	 I	 1T

1	 SOFTWARE

SOFTWARE REQUIREMENTS 	 I	 SOFTWARE	 I	 SOFTWARE	
SPECIFICATION

MAJOR	
I DOCUMENT	

SRD	 DOCUMENT	 T

DEFINITION	 OPERATOR'S
hv4JOR	 I	

SOD	 MANUAL	 SOM	 SSD
DOCUMENTS

	 STT

SOFTWARE TEST AND
I	 I]	 TRANSFER DOCUMENT

CHANGE	 I	 (I]	 I

CONTROL	 `	 I
SRD

	

SOD f	 I ..— — .—	_...... _.. ^	 I

	

SOM	 I	 I	 ^.	 .—.f..-.. 	 UNDER

	

SSD	 I	 — — — — — — — —	 DSN CHANGE
CONTROL BOARD

-CDE (OR PE)I	 I	 I]]
,_„COGNIZANT!	 1

MANAGER	 1

]
I HIGH-LEVEL I	S/W A.CEPTED AND

SRD	 SOD	 DESIGN REVIEW	 SOM	 J{_	 TRANS' ERED TO
MILESTONES I — — — — — — 	 APP'D — — — —APP'D^— ^— — APP'04̂7

 SSD
APP'D	 — — — 5 OPERATIONS, STT APP'D—

SUPPORTING f	
I	

l	
^^^jLLL	 E

DSN STANDARD S	I 	 IE	 SOMS	 I]
PRACTICES	 I	 i

SRDs	 SDDs(PREPARATION
OF...)	 SSD%

I	 I	
ylI

	 1
STT s

* FOR DSN SUBSYSTEM SOFT W ARE, SU3SYSTEM. FUNCTIONAL DESIGN PRECEDES THE SOFTWARE IMPLEMENTATION.

Figure 2-1. DSN Software Management and Implementation Plan (Software Planning and Requirements)

014

czi
c I^

CD

.	 ^'^__^._ I.	 ^^	 ^,
	

I +	 1	 ^..	 ^^.	 ^	 ST-	 V".	 ^	 1.
	

.!	 -.._f	 __lam_ _._[''.^_^^ .,... .ivy. ^,^„w'^_.. S •^s^tx^S. h „r,,:4'0:-.

software, and human functions. The subsystem functional design document is,
therefore, the governing document which describes the software functions to be
provided and thus justifies the effort (see note on Figure Z-1). The SRD is this
case is not the top document, but it does reference and summarize the technical
information from the functional design document while concentrating on other
management information such as cost and schedule.

SRDs prepared in accord with this Standard Practice will provide to man-
agement the kind of information that it needs in both coverage and depth for
making an informed decision to proceed. The following chapters provide guide-
lines and practices for preparing the subsequent documents needed as the
project progresses.

B. SCOPE OF SOFTWARE REQUIREMENTS DOCUMENTS

The SRD provides to management a general understanding of what is
needed, why, when, and how much the effort might cost. The SRD information,
therefore, provides the main program justification upon which the management
approval decision is made. For subsystem software, reference is made to the
functional design document, and management information is added. Specif-
ically, the scope of the SRD information will be to a level of detail to provide
only:

(1) Sufficient functional and technical information and requirements to
identify the program adequately to establish its need, and also to
permit the next activity, the architectural design, to be completed.
If the information is not extensive, it may be written into the SRD;
otherwise it should be provided by reference to other documents.
Where the information is not available in existing documents or
where it is very complex or extensive, it may be appropriate to
prepare (or reference) a separate Functional Requirements Document,
and include it as an appendix to the SRD. The form can be that of the
SRD, expanded to the detail needed; this allows correlation of technical
detail with the controlling high-level requirements.

2-3

(2) An overall implementation schedule (with project need dates).

(3) A total-cost estimate for the complete implementation.

(4) An accurate estimate (10--percent goal) of the resources needed to

complete the next phase of effort - generating the architectural design.

Any two of the first three items above should be firmly specified, while the

remaining item may be bounded, e. g., "... costs shall not exceed... ". This

permits early renegotiation of resources and requirements.

Any applicable project-special guidelines or conventions, not explicitly

prescribed by the Standard Practices, should be identified in the SRD for

review and approval by cognizant management. The management approval

level required for the SRD is the same as that required by normal organiza-

tional procurement policies for procurements in the amount of the estimated

total cost of the program implementation, but does not go above the Assistant

Laboratory Director level.

The SRD is maintained in the implementing organization and serves as a

key working document throughout the implementation. During the implemen-

tation, there may be changes generated that must be reflected back into the

SRD. Minur change. (for correctness) can be effected through a timely, low-

cost internal (Cognizant Development Engineer approval) project change

control process, which operates by memorandum. Major changes are submitted

for initiator/ management approval if they change the scope of what was already

approved. Following the implementation, the SRD is filed in the Program

Library, but it is not formally maintained, that is, it is not updated once the

program is transfe- red to operations.

2 -4

SECTION II

SRD CONTENTS

A. CONTENT OUTLINE

.A. typical SRD content outline is shown in Figure 2-2 along with an identi-
fication of personnel involved in preparing, concurring with, and approving
the SRD. A brief introductory statement of the problem, the proposed program
solution, and the program justification and rationale are presented first, fol-
lowed by requirements and information which can be broadly categorized as
(1) Management, (2) System, and (3) Program Requirements. Supplemental
technical information, if extensive, can be included either in appendices, in
a pre-existing FLuictional Requirements Document, or in other companion
documents that may be generated and referenced.

The outline covers the typical items needed by management to assess the
need and significance of the proposed program. For a given program, the
actual contents may vary and will depend on the complexity of the program and
the program interfaces. Items identified by an asterisk (*) in Figure 2-2 are
considered always necessary, and there could be items in the table of contents
other than those listed.

As a rule of thumb, SRIDs typically might be expected to be about five or
fewer pages for small (not exceeding six person-months) efforts, and seldom
more than 15 or 20 pages for the very largest effort. In all cases, emphasis
should be on brevity and effective exchange of information and not on formality,
since the SRD is an implementation "working" document and does not formally
survive beyond the transfer of the program to operations.

For SRD reviews, refer to Figure 2-3, Typical SRD Review Items and
Guidelines.

2-5

I> I	 I (i	 i.:s	 I(I_I	 4	 I	 i	 E"i	 i i	 I 1"I

,-1. INTRODUCTION
= 1. 1 Problem Statement

1.2 Program Description
-^-I.3 Justification for Program

1.3.1 Rationale and Relation to Other Programs
=2. MANAGEMENT REQUIREMENTS

*2. 1 Standard Practices
Z. Z Special Procedures

`-Z. 3 Implementation Schedule, Resource Estimate, and Plan
*Z.4 Resource Estimate for Architectural Design Phase

*33 SYSTEM REQUIREMENTS
-3.1 Hardware
*3. LA Computer, Peripherals, and Subsystems
3.2 Environmental
3. Z. 1 ' User, Operational, and Support

44. PROGRAM REQUIREMENTS
'14.1 Ove raJl
4-1.1 Structure, External Interfaces, Operating Modes and Options
4, 1. 2 Programming Language Priority
4. 1. 3 Utility (User Forgiving, Recovery, Interactive, etc.]

*4 1 4 Competing Characteristics.
4.2 Processing
4. Z. 1 Inputs/outputs (Conditions)
4. Z. Z Algorithm and Accuracy
4. Z. 3 Flow Interfaces (Special)
4. 2..4 External Data Bases and Files

x''-4.3 Testing
4.3.1 Correctness Testing
4. 3. Z Acceptance Testing

5. APPENDICES
(such as Functional Requirements Document, complex algorithm descrip-
tions, Progress Report articles, manuals, other refe -ences, glossary,
etc.)

*Item. considered always necessary. 	 ORIGINAL PAGE is
OF POOR QUALITY

Figure 2-2, Typical Outline for a Software Requirements Document

V

z-b

61	 (1	 1A	 I	 _ ssY,a.^niw:	 Y	 I't's-X1'.3.: fix} ye;,.ra '?y:'	 .;ice	 *gy'. :-{ r r?.y n:. :-a
ais^.rssre n i..m^isisratisi o^s^

OiilGiiNAL PAGE IS
Item OF POOR QUALITY	 Guidelines

1.	 Breadth of Coverage Requirement. should be general, provide the

essence of the program (the what, why, when, and
cost), and bound the capnbilities without perform-

ing the subsrquent design.

2.	 Depth of Detatt Technical detail needed for credibility and man-

agement understanding and for completing the

architectural design is provided either by refer-

ence or appendix (if so extensive that it breaks flow).

3,	 Festing Overall test criteria for understanding and

bounding the subsequent correctness and accep-

tance test efforts are indicated. 	 In particular,
any special tests or diagncstic programs
required must be completely identified.

4.	 Special Conditions Special practices, conventions, or requested

deviations from the Standard Practices, if

any, as listed in the SRD, must he reconciled
tie Eore proceeding to the next phase.

>.	 Competing Characteristics The reviewers (or review board) should be in

basic agreement (or arrive at such agreement)

with the prioriti-s as assigned to the list of
competing characteristics presented in the SRD.

6.	 Level of Need The program need and justification are reviewed.

The estimated costs are weighed against the level

of capabilities proposed. 	 The level of need that
the available funding will support is reviewed: if

downward adjustments in capability are needed,
the list of item 5 above is used to retain the
highest priority capabilities.

7-	 Schedules Interactions with existing schedules are examined

for assessing demands on available resources.
Also the firmness of the schedules is estimated
based on the availability of firm inputs.	 Contin-
gency plans, if any, are reviewed (or recom-
mended).

g .	 Resources The availability of the requested resources is
weighed against management's willingness to
commit these resources to the effort in this time

frame.

9.	 Approval Approval to proceed is based on the aggregate

results and outcome of the SRD review, taking

into consideration the recommendations of the

reviewers.

Figure 2-3n Typical SRD Review Items and Guidelines

-2-7

ORIGINAL PAGE IS
Item	 OF POOR, QUALITY Guidelines

1, Breadth of Coverage	 Acquirements should be general, provide the
essence of the program (the what, why, when, and
cost), and bound the capabilities without perform-
ing the subsequent design.

Z. Depth of Detail	 Technical detail needed for credibility and man-
agement understanding and for completing the
architectural design is provided either by refer-
ence or appendix (if so extensive that it breaks flow),

3, Testing	 Overall teat criteria for understanding and
bounding the subsequent correctness and accep-
tance test efforts are indicated. In particular,
any special tests or diagnostic programs
required must be completely identified.

9, Special Conditions	 Special practices. conventions. or requested
deviations from the Standard Practices, if
any, as listed in the SRD, must be reconciled
oefore proceeding to the next phase.

5, Competing Characteristics	 The reviewers (or review board) should be in
basic agreement (or arrive at such agreement)
with the priorit y-s as assigned to the list of
competing characteristics presented in the SAD.

6. Level of Need	 The program need and justification are reviewed.
The estimated costs are weighed against the level
of capabilities proposed. The level of need that
the available funding will support is reviewed; if
downward adjustments in capability are needed,
the list of item 5 above is used to retain the
highest priority capabilities.

7. Schedules	 Interactions wtth existing achedules are examined
for assessing demands on available resources.
Also the firmness of the schedules is estimated
based on the availability of firm inputs. Contin-
gency plans, if any, are reviewed (or recom-
mended),

8, Resources	 The availability of the requested resources is
weighed against management's willingness to
commit these resources to the effort in this time
frame,

9. Approval Approval to proceed is based an the aggregate
results and outcome of the 5RD review, taking
into consideration the recommendations of the
reviewers,

Figure 2-3. Typical SRD Review Items' and Guidelines

2--7

B. OUTLINE DISCUSSION

J . .. Introduction

a, Itern 1. 1, Problem Statement. The nature of the problem is described
and ,b.ackeround information needed for management understanding of its
si.gni:ficance and programmatic need. is provided. Also, the environment in
which the problem is embedded is discussed, together with identification of
input sources. Data output needs are identified, along with any peculiar con-
straints or circumstances associated with the problem which may affect
schedule, cost, .staffing, programmatic justification, or anything else which
management may need to know before granting its approval to proceed to the
next phase. For subsystem software, existing functional requirements docu-
ments are referenced.

b. Item 1. 2, . Frog..rarn Description. A functional description of the
needed program capability is presented, including the nature and dominant
characteristics of the problem solution and the type of data to be generated.
The type of program is identified, such as (1) real-time, batch, or permanently
interactive, (2) computational or data manipulation. Also, the general system
environment in which the program is to operate is identified, such as, for
example, whether the program is on a general-purpose machine or on a
dedicated machine.

C. Item 1. 3, Justification for Program. Additional information that
may be needed to support the manaem.ent decision to implement the proposed
program capability is presented to the level of detail judged necessary based
on the projected performance and estimated cost. The information may include
.such items as results of assessments of alternative methods considered,
assessments of the consequences of doing without the proposed program, time
criticality of the program, and relation to other programs.

2. Management Requirements

a. Item 2. 1, Standard Practices. Applicable software implementation
Standard F iaztices are described in Chapter 1 and are also summarized in

2-8

the Management and Implementation Plan, depicted earlier in Figure 2-1 of
this document. Individual efforts may require minor deviations or waivers
from the Standard Practices. These requested modifications, if any, are
identified and presented along with supporting rationale for subsequent manage-
anent review and concurrence (which may or may not be granted).

b. Item Z.2, Special Procedures. Specific software implementations
may require additional project-peculiar guidelines and conventions or certain
special procedures, Any additional guidelines, conventions, and special pro-
cedures are identified and presented along with supporting rationale for manage-
ment review and concurrence (or rejection).

C. Item Z. 3, Implementation Schedule, Resource Estimate, and Plan.
The overall implementation schedule and cost estimates are presented, along
with any assumptions and clarifications that may be needed by management to
gauge their accuracy or limitations. Preparation detail is provided in
Section IV. Figure Z.-4 indicates the kind of information needed for developing,
the overall projected implementation schedule and its corresponding rough cost
estimate. The intent is to sketch out an overall work plan to the completion of
the implementation and to estimate the total cost to within, say, a factor of
two. Any special funding arrangements, limitations, or Budget Change
Requests should be identified. For comparison, budgeted resources can
typically be identified; however, such resources should not be identified for
SRDs included in a procurement package.

Plans for the use of available support facilities, production libraries, and
automatic aids should be included, as well as overall plans to do the work
in-house or to contract it out.

d. Item Z.4, Resource Estimate for Architectural Design Phase. The
near-term implementation schedule and estimate of resources needed for the
next phase, covering the program architectural design, are presented. Fig-
ure 2-5 indicates the kind of information needed for developing the near-term
schedule of activities along with an identification and estimate of the amount
of resources needed to complete the program design definition. The accuracy
goal of this cost estimate is ld percent.

2-9

..! ^,_^^~»^^.._.j^_.^.^ »ry+^^'c^-^• f•^'uy [^_i.—___.,^^ ^^^ . Ni _.-.....^. _._W.^_r^^^ i ^r.....r
^Lay. "^	 ^.y^,:51+„pf^^.rla;.P^,, ,^.

 ^ H

N

O

PRO^erT TIME	 — RESOURCES
LABOR COMPUTER	 SERVICES	 TOTALS

MILESTONES/
PHASE5	 E50URCE5

D
TV HRS

$

OF ACTIVITIES HRS	 S	 s	 s

PLANNING AND REQUIREMENTS.... ____	 ----

• SRD (JUSTIFICATION,._..^^
FUNCTIONAL REQUIREMENTS,
SCHEDULES, COSTS)

•	 DESIGN REVIEW..............................---°----..A

S/W DESIGN DEFINIT1OIIL------------- -------------------•ter•••• ----	 ----	 -------	 -------

• SOD (FUNCTIONAL DEF, ARCHemnm=ffl
DES, TASKS, SCHEDULE, COST)

•	 DESIGN REVIEWA

DESIGN AND PRODUCE .. • ----	 --_	 __	 ---	 -------	 -------
• PROGRAM: DESIGN & DOC

CODE, TEST (SSD)

• S/W CPS MANUAL (SOM)------

• DESIGN REVIEWS°-......

PROGRAM ACCEPTANCE ----	 ----	 ----	 ----	 ----- —	 ------
• STT (ACCEPT &TRANSFER PREPS)	 O

•	 TESTING

• FINAL REVIEW AND TRANSFER_......A
AGREEMENT SIGN-OFF

TOTALS ----	 ----	 ----	 ----	 -------	 -^_-

GRAND TOTAL	 -------

KEY: V PROJECT MILESTONE N (SEE FIGURE 2-1) 	 ® DOCUMENT (COMPLETE)	 A DESIGN REVIEW (REQUIRED)

O DOCUMENT (DRAFT) 	 A DESIGN REVIEW (OPTIONAL)

Figure Z-4, Overall Implementation — Activity Schedule and Cost Estimate

N

r

PROJECT RESOURCES
MILESTONE/ TIME

LABOR COMPUTER 5ERVICES TOTALS:PH:A 5E 5	 RE50URCES SRI) APP-D	 ®SDD APP'D
 ACTIVITIES HR5 S HP q	$ S $

SDD PREPARATION

• MANAGEMENT INFORMATIONS

• SCHEDULES

• COST ESTIMATES

• TEAM SETUP

• PROGRAM ANALYSIS, ___	 ----
DEFINITION, AND STRUCTURE

• INPUT/OUTPUT

• FORMATS

* DATA STRUCTURES

* VARIABLE TABLE

• STORAGE

• PROCESSING

n DESIGN CHARTS

* NARRATIVE

* SUPPORTING ANALYSIS

• TEST DESIGN OUTLINE

• UNIT (CORRECTNESS)

• SYSTEM (ACCEPTANCE

• TRANSFER (PLANS)

DESIGN REVIEW

• PREPARATION AND
PRESENTATION

TOTALS ___	 .---	 -------

GRAND TOTAL	 --- ---

Figure 2-5. Software Design Definition Phase Typical Items of Activity, Information,
and Cost Estimate

3. System Requirements

a. Item 3. 1, Hardware. The computer system (computer hardware and
its operati-ng software) characteristics are identified (by reference, if extensive)
as well as requirements for any special peripheral equipment or demands made
by the program on the computer system (mernory size, storage, speed). Refer-
ence can be made to Automatic Data Processing plans if the computer has not
yet been procured.

The related. DSN subsystems, or any other subsystems, that are being
supported or have cost or schedule influence on the software being implemented
are identified and referenced to coordinate hardware changes and the possible
effects on the software.

b. Item 3. 2, Environmental. Requirements and characteristics of
program-external items, such as special equipment, test programs, or
resources needed for the implementation, test, and operation of the program,
are identified; the CDE can subsequently plan and negotiate for their availability
when needed. These include the availability of capabilities and facilities of the
user, operations and support areas, such as special test equipment and pro-
grams. Also identifier' are any special characteristics of new or existing
programs intended to be inserted into existing assemblages of programs.

4, Program Requirements

a. Item 4. 1, Overall and Competing Characteristics. Information and
requirements that provide to management an overall understanding of the
program and its use are presented. Requirements should be presented (or
referenced) only to a level of detail sufficient to allow the architectural design
to proceed with assurance to management that what it approved is what is done.
Typical coverage might identify:

(I) Structure
(2) functional interfaces

2-12

k

(3) Major operating modes and options
(4) Programming language priority
(5) Utility
(6) Competing characteristics

Items I through 5 are included only if and as ,hey clarify what is needed
and when they help establish the necessity and authority for the program..
Further descriptions and guidelines for preparing these, when needed, can be
found in Section IV.

Item 6, Competing Characteristics, is always included and addresses the
total set of requirements that characterize the specific implementation. The
relative importance of meeting the principal management and teclani,cal require-
ments for the program, as identified throughout the SRD, is essessed. The
principal requirements are then listed in decreasing order of priority, along
with a reference to the SRD paragraph where the requirement is specified.

A sample list of program characteristics and requirements, along with the
paragraph number in which they are specified and discussed in the SRD (see SRD
outline, Figure 2-2), is shown below in decreasing order of priority.

(1) Maximum Program Size (Section 4. 1)
(2) Throughput Time (Section 4, 2)
(3) Ease of Use and Forgiving (Section 4. 1. 3)
(4) Numerical Accuracy (Section 4. 2. 2)
(5) Schedule (Section 2. 2)
(6) Ease of Maintenance (Section 2. 1)
(7) Extensibility (Section 4. 1, 1)
(8) Cost to Develop (Section 2. 2)

In the event of unforeseen problems, delays, or budget cuts, this list will
be referenced in arriving at decisions that will allow resolution of conflicts
while preserving the highest priority requirements. The list can also be used
to negotiate changes to the SRD before approval, if the resources required for

2-13 K,

4.: k:

the original are regarded by management as too large. Changes in scope
caused by invoking the list of competing characteristics must be recycled
through management approval.

b. Item 4. 2, Processing. .Requirements affecting the processing of
inputs to obtain the required outputs can be stated but only to the extent that
realism of resources and schedule can be assessed by management. Typical
coverag.: might identify:

(1) Inputs/outputs
(2) Algorithms and accuracy
(3) Flow interfaces (special)
(4) External data bases and files

These items are included only if and as they clarify what is needed, and
when they help establish the necessity and authority for the program. Further
descriptions and guidelines for preparing these, when needed, can be found in
Section IV.

C. Item 4. 3, Testing. Special requirements are defined that will govern
the test approach and form the basis for assuring the correctness and accept-
ability of the completed program. If no special test requirements are given
here, it is assumed that the appropriate Standard Practice is sufficient and
is referenced; that is, for correctness testing, the SP for the Software Specifi-
cation Document and for acceptance testing, the SP for the Software Test and
Transfer Document.

The Standard Practice for correctness testing addresses top--down module-
by-module logic testing; the testing of every individual module connecting link;
the testing of the ability to correctly handle conditions such as minimum value
inputs, maximum value inputs, and randomized In puts; and whatever else is
necessary to convince one of correctness at a given level of the top-down hier-
archical expansion. Test practice might typically consist of desk and computer

2-14

7- 7777777777.
e,:°?Mir,.:,..'t^^-^c"^^".-,...^.^"::f'^..._-^...,-_.-;7^"^'r`!...:5. 1e^,.<^r.=.._'_:t-1-8.^i. 1_s^^i;-'4Cr^4-.,^:^::.,^ ^'.Cpl.:^....:x^...;J..^?,-^-•.t.., a7^1-^•_.-^1 ._.-._d. ,+:,..,. .n 	 ^.:^.:..-.f__.:i

:ill y	1 I I 1 ".

checking of each module, followed by similar checks of top-down assemblages
(builds) of modules and dummy code for incomplete modules. This test sequence
continues until the program construction is complete (and correct in the narrowe~
software sense) and ready for acceptance testing.

For real-time correctness, the theory and practice for sufficient testing
are still being developed.

The Standard Practice for the acceptance testing of support and subsystem
software applies to the completed total program and pertains to the end--to--end
validation of the program in its operational environment. The user or use-
represen'.ative, typically the software Cognizant Operations Engineer (if assigned
at this point in the process), is involved in the planning of the acceptance tests.
As such, the user and/or COE typically provides any special acceptance test
planning inputs to the SRD preparer. For subsystem software, system testing
is performed by the software COE after the program has successfully com-
pleted subsystem testing.

2-15

SECTION III

SRD PREPARATION, REVIEW, AND APPROVAL,

A. PREPARATION ACTIVITIES

1. Initiation and Requirements Identification

The persons who may initiate an SRD are determined by the management
structures of the organizations involved. Tile initiator formulates (or restates,
in reference to a Subsystem Functional Design Document) a statement of the
problem from which overall costs, schedules, and functional requirements of
the system and program can be identified and readily understood by management,
so that they programmatic r,+ c-d for the implementation can be determined. Tile

SRD content (type of informat. ^.,, and its organization and format) is outlined and
described in Section 11, where they outline guides the initiator directly to the
main items and points of information needed. The initiator is directed to Sec-
tiun IV and Reference 1 for further helpful information un requirement identifi-
cation and docurm^nting tl-.is infoi rnation in the SRD.

Throughout the planning, information gathering, and requirement identifi-
cation process, informal communications involving the initiator, the initiatorls
management, the using organization, the implementing organization, and other
concerned personnel are strongly encouraged, particularly on relatively large

programs. The emphasis of the SRD is not directed so much to the computer
program as such, but more to the plan for produexng it, that is, to the what,
why, when, and how much (or expected resuurce demands and costs), There-
fore, the personnel involved in supporting; the preparation of the SRD can be
rnanagme-.nt oriented: there should typically be no need for there to be software
exprts.

During the planning; and requirements phase, an individual is assigned b^
the implementing, organization to assume thu Cognizant Developr-IlOnt Engineering
duties, which include broad implementation responsibility in both the manag;,
ment and technical sense. For larger efforts, the Cognizant Developnient

- l b

r Ffj

I^

.i

Engineering role can be assumed by a Project Engineer. If assigned early in
the planning phase, the CDE can also assist the initiator in preparing the SRD,
especially for items involving activity breakdown and scheduling. In any event,
Cognizant Development Engineering should concur with the SRD before authori-
zation is granted to proceed to the architectural design.

2. Arbitration of Conflicting Requirements

Because of the many requirements specified in the different areas of the
total project (i. e. , management, system, program, and resource requirements
and limitations), it is almost inevitable that some requirements will be incom-
patible with others to varying degrees. An attempt is therefore made in the
planning phase to assess the principal requirements as to their priority in
relation to the overall program implementation. Results of this requirements
analysis are listed in prioritized order in Section 4. 1.4 (Competing Charac-
teristics) of the SRD.

Resolution of unforeseen problems requiring possibl y future management
negotiation is enhanced by the availability of this prioritized list. Also, the
subsequent architectural design effort can consider these priorities in selecting
a compatible approach for meeting the ordered set of requirements.

The actual resolution of conflicts, if they arise, is made by the CDE and
communicated to the cognizant management; the prioritized competing charac-
teristics table is a heavily weighted factor in the final resolution. It is expected
that the CDE will be able to resolve the majority of conflicts that fall within the
established scope of the original implementation effort. For major '_C;_.flicts
requiring a change in scope modifving the substance or intent of the SRD,
negotiation with the organi zation or function generating the requirements
embodied in the SRD will be necessary. These changes in scope will be cycled
through normal management approval, the same approval chain as for the
original SRD. A new design review may be called for ' More approving the
new or revised SRD.

2-17

tccs.' W Y

B. REVIEW AND APPROVAL

The rain objective of the SRD review is to assure that the management,
system, and program requirements are stated in sufficient detail and coverage
to provide: an understanding of thv implementation schedules, costs, and per-
formance (see: Section I, Paragra,..., B; Scope of SRD).

The review of the SRD can be achieved either by document circulation,
with a request for return of redlined comments, or by a formal SRD review -
at the option of the cognizant management. The formal review could be held
as part of a snore general review of subsystem requirements, and several
related SRDs can be reviewed during, one review. For further information, if
a forn2al review is requested, the prepares may refer to the "Review" informa-
tion of Chapter 3 on conducting the formal review and guidelines for agenda
items and presentation levels of detail. The preparation and distribution of
the SRD and other review materials, regardless of the type of review, is the
responsibility of the initiator. fhe personnel participating in the review should
represent, at a minimum, the initiat ,r, the using organization, the funding
organization (if different from the using), and the impleinen, g organization.
Typical SRD Review items and guidelines are shown in Figx 	 1-3 and can be
used as an aid to assure completeness of detail and coverage .

To summarize, approval is sought for commitment of resources to the
Y proposed general technical scope. Approval signatures are based on the
estimated total program cost as required by the normal organizational procure-
ment policy; however, approval above the ALD level is not required. Approval
by management authorizes the architectural design to begin.

2-18
=1

w.

SECTION IV
OVERALL SUPPORT AND PREPARATION AIDS

A. SUPPORT

Overall identification of the support needed and the responsibilities involved
in the software implementation process are summarized in Table 2-1 and dis-
cussed in Chapter 1. The initiator's main activities of coordination and docu-
mentation are shown for the planning and Requirements .Phase, with prime
support from Cogn.s.zant Operating Engineering on acceptance testing. These
activities lead to review and approval of the proposed plan, contained in the
SRD, by cognizant management. It should be noted that, for subsystem soft-
ware, the results of the prior functional design activity are referenced and form
a starting point for preparing the SRD.

B. PREPARJkTIO1ti AIDS

Aids for formatting the SRD and a brief discussion of the kind and charac-
teristics of information needed for the SRD follow.

1. SRD Format Conventions

The SRD is a project working document which does not formally survive
the implementation, so formality of style and formatting are not emphasized,
but consistency from document to document is encouraged. Therefore, for
convenience and consistency, the preparer is directed to Chapter 4 and is
encouraged to use the same formatting conventions as adopted for the formal,
surviving documents -- i, e. , the Software Specificati -)n Document, Software
Operator's Manual, and Software Test and Transfer Document.

Basically, these documents are "block-formatted" and "sectionalized, "
where each section is identified by consecutive arabic n1imbers, The pages,
figures, and page-size tables are numbered consecutively within each section
(e. g., 1-1, I-2, . .. 1-n; 2-1, 2-2, . .. 2-n; etc.). Small tables can be inserted

2-19

N
N
0

Table 2-1. DSN Soft ,,-are Implementation Process Support Responsibilities (Planning and Rcgidrements,

Implementation Phases'-*
rsupport Activity Cperations &

Planning & Design Design & Acceptance Test Maintenance
Requirements Definition Production and Transfer I	 {

Coordination of Subsystem Cognizant CDE>' SSE and COE
Activities Engineer (SSE) Development CDE=:=

or In i tiator Engineer (CDE)"'`

Design N/A CDE CDE N/A Cognizant
Sustaining
Engineer
(CSE)

Acceptance Cogrizant COE COE COE COE
Test Input and Operations
Support Engineer (COE)

(if assigned)
Documentation SSE or CDE CDE CDE "" C:SE (for
of Results Init ator sustaining

changes)

Plan and Conduct SSE or CDE=:: CDE-- SSE, if
Review Initiator I applicable

Appro^al Cognizant CM CM Quality QA/CM
Managernent Assurance (QA)
(CM) and CM

Milestones Software Software Software Software Test Engineering;
Requirements Definition Specification and Transfer Change
Document (SRD) Document (SDD) Document (SSD) Document (STT) *	 Requests

Software (ECRs)
Operator's *	 CrdersManual (SOM) (ECO.9)

Or Project Engineer, for lar ,, c implementations.
--For subsystem software, subsystem functional design precedes the formal software implementation.

'I

{awl,

within the running text and are not necessarily numbered. However, if other

parts of the report refer to the table, the table should be numbered and placed

at the top or bottom of its page.

Subsections use decimal identification. Appendices are identified alpha-

numerically, need no blank or separate introdu;:tory page, and formatting

within the appendices can vary to allow ease of incorporating existing material

without rn cd:.iic ati on.

For further format detail and specific information on typewriter tab settings,

line spacing, capitalization, underlining, etc. , the preparer (and typist) is

referred to Chapter 4.

Graphic aids for producing special figures, such as HiPO (Hierarchy plus

Input -- Process -- Output) charts, information flow diagrams, etc. , along

with other conventions, are presented in Chapter 3; these can be used in the

SRD. Procedural flowcharts (sequential control logic) are typically not included

in SRDs; however, if appropriate for inclusion, see Reference 4, which also

presents the adopted standard symbols and usage.

2. Content Characteristics

The SRD must justi{y the need for the proposed program (for DSN sub-

system software, reference is made to the Subsystem Functional Design Doc-

ument). The following comments are included to aid in preps- ing the kind of

information required to establish this need. These comments parallel the SRD

presentation and fall into the broad categories of (1) Management, (2) System,

and (3) Program.

a. Management. Chapter 1 presents overall guidelines and practices to

apply to software implementation projects. The SRD provides additional infor-

mation applicable to the specific proposed software on the management struc-

ture under which the project is to be carried out, on the identification of the

organizations involved in the implementation, on the particular support needed,

2-21

..... 7-7	 —	 ..

and on the organization to which the program will be transferred. With.this
underlying background information, management :can. then evaluate the signif -
icance and implications of the proposed overall a .nd near-term (archit-ectural
design) activity levels, schedules, and cost estimates.

1) Overall Implementation Schedule and Total Cost Estimate. Know- .
ing the need date or desired delivery date and using informer {ion from Para-
graphs B2 and B3 of this section concerning the relative complexity and sophis-
tication of the software effort and the characteristics of the associated system
and hardware, an initial overall schedule of activities can be generated. The
overall schedule will be used primarily to bound the time span of proposed
activities. Possible conflicts between the projected activities and other ongoing
work can be assessed and priority assignments can be made, if needed. The
initial schedule is not intended to be a day-to-day work schedule; however, it
does form a baseline, which is refined in the next phase based on more detailed
inputs. The overall schedule addresses the major activities performed in the
various phases of the implementation in meeting the project milestones. Since
the results of the major activities are documented and reviewed before moving
on to the next phase, an estimate of the activity involved in terms of the docu-
ment and the review can be made for each phase, and associated costs for each
can he estimated. Figure 2-4 displays this concept and is included for visual
illustration of these points. The purpose of Figure 2-4 is not to show how to
perform the activity analysis or cost estimation, but only to indicate what is
needed. For presenting this information in the SRD, a typewritten tabular
form is adequate; there is no need for preprinted forms in the SRD itself. It
should be noted in Figure 2-4 that the cost for the planning phase will closely
reflect the actuals for the preparation of the SRD. Further, the estimate for
the design definition (architectural design) is „lade as discussed below; and it
can be used in compiling the total cost estimate. This is a near-term estimate,
and an accuracy to within 10 percent is expected for architectural design. The
remaining two phases (Design/ Production and Program Acceptance) will prob-
ably be the items with the highest degree of uncertainty, because they are
further into the future and involve complex activities whose costs are some-
times difficult to estimate. Further details as to what is needed in these
phases are presented in subsequent chapters.

2-2Z

Z) . Architectural Design-Activity and Cost Estimate. The major
area.s.of activity following.SRD approval (Milestone 1) through.SDD approval
(Milestone, 2) axe .identified and estimated in terms of personnel levels and
dollars;. A::ctiv1ties in olve-problem and solution analyses, program high-level
definition, 'and th.e review as discussed in Chapter 3. Figure 2-5 illustrates
typical.type_s of information. that are.characteristic of the design definition
phase. Estimates of the type and degree of skills involved, along with estimates
of the s.mount or- level of support needed in each, allow a composite estimate of
costs to be: made for the design. definition phase. The accuracy goal of this
composite estimate is 10 percent. This activity plan and cost estimate provide
a means of.measuring overall performance and progress through the design
definition phase, allow the early identification of any major unexpected prob-
lems, and permit corrective action to be applied in time to avoid major
impacts..

b. System. System information provided should tell management which
computer .system and equipment is, or may be, involved, whether any new
capabilities are required which could involve new automatic data processing
equipment procurements, and any other special demands placed on the computer
system that might affect costs and schedules or involve long lead time procure-
ments, In addition, associated subsystem hardware should be identified to
assure that compatibility can be retained throughout the implementation in the
event of changes to the subsystem hardware characteristics or configuration.
Also, special environmental requirements must be identified, if imposed by the
user, operations, or support areas.

c. Program. Program information and requirements provided are
functional in character and provide to management an understanding of the sig-
nificance and complexity of the proposed program. Emphasis is placed on
factors which tend to drive costs up if they are not identified and frozen early;
factors involving special complexity, state of the art, or requiring "break-
throughs" that tend to jeopardize schedules and place stringent demands on
specific (and possibly scarce or unavailable) personnel; and factors that govern
and bound the testing activities needed for program acceptance and delivery.
Emphasis at this stage is typically not placed on highly detailed items unless

2 -23

win

they would have a major influence on resources, schediAe, or programmatic
requirements (i. e. , specific input and output formats, details on program
external and internal data structures, computer internal operations, etc.),
since these normally would not be relevant to management approval.

For certain implementations, further identification of program require-
ments may be needed, other than as outlined in Section II of this chapter.
Additional guidelines are provided below for the SRD items, 4. 1 (Overall
Requirements) and 4.2 (Processing Requirements) of Figure 2-2, covering:

(1) Structure
(2) Functional interfaces
(3) Major operating modes and options
(4) Programming language priority
(5) Utility
(6) Inputs/outputs
(7) Algorithms and accuracy
(8) Flow interfaces
(9) External data bases and files

1) Structure. Introductory information contained in Paragraph 1. 2
of Figure 2-2, Program Description, can be expanded to brief!; identify the
program functional requirements and overall features and options. If appro-
priate, program modes and external controls, as well as data flow, can be
described functionally. Functional block diagrams (not control logic flowcharts
but key logic identification) may be included but are not mandatory.

2) Functional Interfaces. This information can identify and clarify,
but only functionally, the program inputs and outputs, treating the program as
a whole as a "black box" entity. Detailed formats and data structures are not
necessarily known or specified at this time. The general data content, sources,
availability, storage medium, and perhaps other characteristics for the
receipt of inputs and the distribution of outputs may be identified. External
interfaces with other programs and all non-prograrn sources can be identified
and summarily described.

2-24

3) Major Operating Modes and Options. Further detail on program

major operating modes, options, and conditions of Paragraph 1. 2 of Figure 2-2

can be given, along with associated requirements, so that user organization

inputs concerning operation of the program can be factored into the program

implementation approval decision early in the cycle.

4) Programming Language Priority. The computer language can be

specified, if relevant to approval. Requirements for computer languages other

than the standard language(s) (when existing) will be accompanied by a brief

explanation of the rationale and reasons behind the decision. If the machine on

which the program is to be run has not been chosen, open options should be

stated.

5) Utility. Additional user-oriented requirements can be provided

to assure ease of use of the program in its operational environment. Specified

requirements might relate to items such as (a) recovery from operator input

errors, (b) operator prompting, (c) ease of program modification and extension,

(d) ease of accommodating data base changes, (e) format flexibility and

selection.

6) Inputs/Outputs. General requirements for initialization, checking,

and preprocessing of inputs can be stated. Also identified might b p require-

ments for general or specific prompting messages and other certain major

output capabilities such as printed forms (tables, plots), files (public,

restricted), storage and save capabilities (punched cards, magnetic tape,

paper tape); and ease of accommodating flexible inputs.

7) Algorithms and Accuracy. Special existing capabilities, algo-

ithms, or transformations that are assailable to meet specific requirements

can be identified for possible use in the subsequent design definition.

Required accuracy and precision of critical inputs and outputs can be

specified for governing the subsequent design definition process and for form-

ing a basis for the subsequene testing activities.

2--25

!..d 5

„: V

4	 '

8) Flow Interfaces. Special internal requirements, if any, can be
identified, such as program-peculiar sequencing, timing requirements, internal
checks, module stand--alone operational capability or transferability to other
implementations, and provision for future added capability planned but not
presently being implemented. This allows the difficulty of the implementation
to be assessed by management, and permits common elements in several
ongoing implementations to be identified for further cost reduction.

9; External Data Bases and Files. Requirements can be specified
that affect the basic program design and which concern such general items as
external data/file availability, accessibility, changeability, multi-user update
capability, periodic maintainability, and controllability. Detailed data struc-
tures and file format definitions are not normally addressed at this stage,
since they would not typically have a major impact on schedule, resources, or
programmatic requirements.

C	 C	 C_:. f ':	 is	 ti	 t	 i.	 1	 t	 --^ l :c^l__S

CHAPTER 3
THE STANDARD PRACTICE FOR

THE SOFTWARE DEFINITION DOCUMENT

SECTION I
INTRODUCTION

A. PURPOSE OF THIS STANDARD PRACTICE

The Design, Definition Phase and its relationship to the overall software
implementation process are shown in Figure 3-1. As shown in the figure, the
results of the activity in this phase are documented in a Software Definition
Document. These guidelines and practices apply to SDDs written for computer
programs to be transferred to operations. Such programs are authorized to
proceed to the architectural design because the SRD was approved. The SDDs
prepared in accordance with this Standard Practice are to provide management
wit: the technical and resource information that it needs in both coverage and
depth for making the decision whether to proceed as proposed. This information
must allow management to assess;

(1) The C DE 1 s interpretation of the job required by the SRD.
(2) The architectural design overview.
(3) The work breakdown, schedules, staffing, and costs.
(4) The implementing management's monitor plan.

S. SCOPE OF SOFTWARE' DEFINITION DOCUMENTS

The SDD contains the implementer t s preliminary design and management
proposal in response to the requirements presented in the SRD. Therefore, the
scope of the SDD information can include:

3-1

PHASES *^

ITEM

SOFTWARE
PLANNING AND	 J
REQUIREMENTS	

f

SOFTWARE	 1
DESIGN
DEFINITION

SOFTWARE	 I
DESIGN AND	 4
PRODUCTION

SOFTWARE	 1
ACCEPTANCE
TESTING

POST—DELIVERY
OPERATIONS AND
MAINTENANCE

MAJOR 1.	 IDENTIFY	 1,
!!

DEFINE	 I	 I, COMPLETE	 ` 1. DEMONSTRATE	 1. OPERATE PROGRAM
ACTIVITY • REQUIREMENTS FOR SW • FUNCTIONS/FLOW	 J • EXTERNAL SPEC • PROGRAM MEETS SRD AND • PRODUCTION/SUPPORT

' • SW FUNCTIONAL / • ARCHITECTURAL DESIGN • DETAIL DESIGN - DATA	 f SDD	 f a UPDATE AS REQUIRED
TECHNICAL REQUIREMENTS • SCOPE OF TASKS

f
AND PROCEDURES • PROGRAM AND MANUAL IN

• OVERALL SCHEDULE, COST • COST AND SCHEDULE • CODE, TEST DESIGN, TEST OPERATIONAL	 (2. MAINTAIN DOCUMENTED DESIGN
• RESOURCES FOR NEXT -RASE 1 2. SELECT SUPPORT PERSONNEL • REVIEWS ENVIRONMENT

f 2. SELECT CDE	 3. REVIEW AND APPROVE • OPERATOR 'S MANUAL; SSD
•

DEL	 S MEET	 f
• INSERT APPROVED CHANGES

MAINTAIN BENCHMARK TESTS•
3. REVIEW AND APPROVE	 f 2. INITIATE A CCEPTANCE AND

STANDARDSSTAND

I TRANSFER PLANS; STT, PREL 	 j 2. COMPLETE ACCEPTANCE	 f

DESIGN
REVIEWS

I
REQUIREMENTS	 ARCHITECTURAL HIGH-LEVEL

AND TRANSFER
TRANSFER

(°DENOTES s^ _ Ls __^ _. __ACCEPTANCE READINESS	 Q
MANDATORY)

SOFTWARE

SOFTWARE REQUIREMENTSf SOFTWARE	 1 SOFTWARE	
SPECIFICATION
DDOCUMENT

I

MAJOR
DOCUMENTS	 I

DOCUMENT
SRD

f

DEFINITION
DOCUMENT	 SDD

OPERATOR'S
MANUAL	 F SOM	 SSD

[[

5T7

k
SOFTWARE TEST AND

f I f TRANSFER DOCUMENT

CHANGE f

CONTROL
SRD	 I

I f ..._ - - .- - .,._, _...4 fSDD - ^

N SOMI f ^-"-"' ^ "' -"	 ((^^
UNDER
DSN CHANGESSD 1

	
I	 ^. — "`-	 '°-'— `-"' 	 ^..g^^ CONTROL. BOARD

BY:	 STT
--CDE (OR PE)l 	

f	
f

—COGNiZANTi	 I
MANAGER	 (

r

HIGH—LEVEL	 I	 SW ACCEPTED AND
SRD	 SDD	 DESIGN REVIEW	 SOM	 SSD	 TRANSFERED TO

MILESTONES	 I APP'D	 APP'D _T_ 	 APP'D	 APP'D	 b OPERATIONS, STT APP'D

SUPPORTING	 C	 i
05N STANDARDf 	

1	

SOMS	 f
PRACTICES	 1
(PREPARATION	 SRD,	 SDD s
OF...}	 SSDs

STT s

I	 I	 I	 (^

*FOR DSN SUBSYSTEM SOFTWARE, SUBSYSTEM FUNCTIONAL DESIGN PRECEDES THE SOFTWARE IMPLEMENTATION.

Figure 3»1. DSN Software Management and Implementation Plan. (Software Design. Definition)

^J	
t

s—

}

	
-'•{	 g _ s	 t	 l	 is	 Y-	 k	 '. rof'	 la? f	 a	

I	 ti	 r_	 1	 { t z	 x	 33

(1) A definition of functional, technical, and verification information,
including:

(a) The preliminary design of the total program, which may include
(but is not constrained to) state diagrams, data structures, exter-
nal data flow, and key algorithms to the extent necessary to
demonstrate an understanding of the overall job and its complexity
and for assessing whether the proposed solution is a good one (i. e, ,
practicable and responsive to the requirements).

(b) An overview of the program architecture, including a procedural
design down to the level needed for task definition and sizing;
90 percent accuracy in module count can be expected, but not a
detailed correctness assessment at this point. The architectural
design is done only to the extent necessary to size the job.

(c) Program performance criteria and quality criteria for acceptance,
such as core size, speed, accuracy, and timing.

(2) A high--level Work Breakdown Structure that can include a module
breakdown but emphasizes tasks rather than modules (along with the
planned personnel/team level of support (not names)). The task
descriptions that support the WBS should be available to verify their
existence, but these are typically not inch .ed in the SDD.

(3) A schedule of all remaining activities, along with a proposed status
reporting plan.

(4) A refined cost-to-completion estimate, accurate to within 10 percent,
that is based on a module tree and Work Breakdown Structure derived
from the preliminary design.

The SDD is reviewed and approved as discussed in Section III, Paragraph B,
Review and Approval. After approval, the SDD is kept on file by the Program--
min.g Secretariat for information purposes and is not formally maintained or
updated as a surviving document. However, the WBS and the schedules are
maintained throughout the implementation. The SDD may contain much infor-
rnation that can be redlined or upgraded for subsequent inclusion in the Software

3»3

I	 IM

Specification Document when and as the formal design is implemented top--down
with a detailed correctness assessment. This redlining process allows reten-
tion of vital SDD information, reduces the cost of preparing the SDD, and avoids
duplication of effort.

c : 3

3-4

SECTION IT
SDD CONTENTS

A. CONTENT OUTLINE

A typical SDD content outline is shown in Figure 3--2, along with an identifi-
cation of persom.el functions involved in preparing and approving the SDD. An
introductory description of the proposed program and its overall architecture
is presented based on the requirements identified in the SRD. This is followed
by more detailed information which describes and defines the (1) Management
of the lmp l_ementation, (2) System Environment, (3) Program Architecture, and
(4) Coding and Test Design Criteria.

The outline covers the major items needed by management and other review-
ers to assess the overall problem definition and credibility of the cost and sched-
ule estimates extending through transfer to operations. For a given program,
the actual contents will depend on the complexity of the program and the program
interfaces. However, items starred (*) in Figure 3--2 are considered always
necessary. Conversely, there could well be items in the table of contents other
than those listed. The Software Requirements Document is used as a gm-ae to
determine exactly what items of an optional nature should appear in the SDD.
The SRD might also provide some specific guidelines as to the level of detail,
or even a maximum page count, that would be reasonable for the following SDD
to be responsive, yet not overresponsive. In all cases, emphasis should be
placed on brevity and effective exchange of information and not on formality.
This is especially true because the SDD does not formally survive after
approval and is retained by the Programming Secretariat for information
purposes only.

3-5

INTRODUCTION

	

*J. 1	 Purpose and Scope

	

1.2	 General Program Description

	

*1. 3	 Architecture Overview
MANAGEMENT INFORMATION

	

*2. 1	 Project Schedules and Reporting Plan

	

Q. 2	 Work Breakdown Structure

	

Z. 3	 Personnel /Team Level of Support

	

X2.4	 Cost-to -Completion Estimate

	

Z. 5	 Competing Characteristics and Problem Areas

	

*2. 6	 Design Reviews
SYSTEM ENVIRONMENT

	

3.1	 Computer, Peripheral Equipment, and Subsystems

	

*3. 2	 Program Operation in System

	

3. 3	 Software Interfaces and Services
PROGRAM ARCHITECTURE

	

-4. 1	 Preliminary Functional Analysis

	

*4. 2	 Data Characteristics

	

*4. 3	 Preliminary Program Structure and Definition
CODING AND TEST DESIGN CRITERIA

	

*5. 1	 Coding Criteria and Constraints

	

*5. 2	 Correctness Testing Criteria

	

*5. 3	 Acceptance Testing Criteria
APPENDIXES
(Glossary, Reference, Technical
Information, etc.)

*1.

G.

*3.

M4.

*5.

6.

Prepared by: CDE
(Helpers)

Approved by: Implementation
O rgani nation Line
Management and
others (Note)

Note: Implementer concurs with
costs, schedules, and ex-
penditure of resources,
before proceeding to next
phase. Others (DSN Pro-
gram Office SE for DSN
Subsystem software) con-
cur during the architec-
tural design review.

*Item considered always necessary.

--.^. _A ^ L _ 3 L ^ I 	 '
a	 F-

Figure 3-2. Typical Outline for a Software Definition Document

3-6

B. OUTLINE DISCUSSION

1. Introduction

a. Item 1. 1, Purpose and Scope. The purpose of the SDD is to provide a
proposal that is responsive to the requirements and problem statement announced
in the approved SRD, and that provides credible evidence of a 10 percent accuracy
in resource estimation. Its scope should be detailed enough to provide an under-
standing of the complexity of the proposed design, to provide confidence that the
costs and schedules are credible, and to assess the staff planning and availability
to complete the total job.

This section should introduce and orient the reader to the overall proposal
and its highlights by providing brief statements about each maim, part of the SDD.

b. Item 1. 2, General Program Description. The description contained in
the SRD (Section 1.2 of the SRD) is referenced and expanded in functional and
operational definition based on the information from the architectural design
activities. A system-level "siting" diagram (Figure 3-3) can be included which
locates the total program in the system. This type of diagram readily displays
interactions with the user, the operating system, required peripherals, and
other software. An operational state diagram (Figure 3--4) can be included to
display the general overall operational capability and states available.

Referring to these diagrams, brief statements about the program's major
fui cti.ons, flow of information, and overall operation are provided to cover the
overall program characteristics for preparing the reader for the later, more
detailed sections of the SDD. Reference to these later sections can be made at
this point.

C. Item 1. 3, Architecture Overview. In conjunction with the system-
level "siting" diagram, a high-level module count provides an overview of the
proposed program. The description and documentation of the architectural
design, as discussed i-n Sections III and IV, should be adequate to show that the
SRD requirements are being met. These should be availe.ble for inspection.

3-7

7777777777777 7^ 7,_7_'_

SITING DIAGRAM 0
MBASIC

1 OF 1
APRIL 15, 1976

(MDDX) EXTENSION

TO FULL MBASIC
USER LANGUAGE

COMPUTER ENVIRONMENTAL
^ _ (— —

OPERATING INTERFACE MBASIC

SYSTEM ROUTINES FUNDAMENTAL
HSP (OS) (MDD) PROCESSOR

(MID)

MBASIC BATCH

_ — _ — — _ — PROCESSOR
TAPE (MD DB) (MI B)

FILE

(CAN BE HAND-DRAWN FOR SDD; CAN BE HAND-PRINTED IF CLEAR AND LEGIBLE)

Figure 3-3. Example of System-Level "Siting" Diagram

3-8

.i'..	 - 7. 	.

3-9

f 	 -~R- {I

Y	

1^7

.	 .:1

{.: ii IGINA.IL PAGE IS
OF POOR QUALI'IT

STATE DIAG RAM a
OPERATIONAL STATES	 CMF

I OF I
—,r riinrn r irk7r,

(ACCOMPANYING NARRATIVE KEYED TO THE NUMBERED TRANSITIONS DEFINES
EVENTS, CONDITIONS, AND ACTIONS WHICH CAUSE CHANGES IN TIME PROGRAM
OPERATIONAL STATE)

Figure 3-4. Typical. Operational. State Diagram

.,

--x

Program details are discussed later (in Item 4, Program Architecture) but key
characteristics of the program architecture and high-level module tree are
identified here.

2. Management Information

a. Item 2. 1, Project Schedules and Reporting Plan. Project schedules
are set up and defined as discussed in Section III. They should be responsive
and compatible with the need dates of the SRD and detailed enough to allow
meaningful reporting. If the need dates are not being met, they are addressed
in the architectural design review for possible renegotiation. The reporting
plan for monitoring the schedules should provide satisfactory progress status
monitors for the follow-on activities involved in the detailed design and program
production.

b. Item 2. 2, Work Breakdown Structure. Based on the architectural
design and a high-level module tree, a preliminary high-level Work Breakdown
Structure of tasks is defined for the entire implementation, including any special
supporting software to be produced and the writing of the operator's manual.
The defined tasks should be small enough to facilitate supervision and to allow
review of progress relative to plans. The sample format contained in Section V
(see Figure 3-11) is suitable for SDD presentation (backed by the Task Descrip-
tion sheets (see Figure 3-12), which are not necessarily presented in the SDD).

C. Item 2. 3, Personnel/Team Level of Support. Based on the above 	 g="
schedules and tasks identified through program completion, arrangements for
needed support personnel are completed, and the planned work phasing and
corresponding implementing tearn structure are included in the SDD (without
specifying names). A format for budgeting project time and resources, which 	 w.

results in an indication of levels of support needed to meet the established
schedules, is presented in Section V (see Figure 3-13).	 ?-

d. Item 2. 4, Cost-to-Completion Estimate. The cost-to-completion
estimate is presented, based on the architectural design and on the preliminary
work breakdown and schedules, and has a goal of accuracy to within 10 percent.

3-10

•^ n.;-^~:.-.r.. 1..?'^-d--^
^

'{{ .^:^.
y

.
.

^^^{ ;,.
^

^
^	

^ ,;i
{

,.....r..,,_	 r-^.^
1

^„^^ ,,, z ',rr+	 ^
t

.v.,.^_.,,^;;^_ 	 .^ -^...../.}^^:w ^...,..,...r^s^'^r., ^ ^^-^i /yam	
^	

..'-.r-.

and also for the total implementation are updated for use in the SDD.

e. Item Z. 5, Competing Characteristics and Problem Areas. As a result
of the architectural design activity, any concern for meeting the competing
characteristics identified in the SRD is discussed. Any requirements not being
met must be identified, along with recommendations for their resolution. Any
new competing characteristics or complexity which may affect the implementa-
tion costs and/or schedules should also be identified. Also, ways of coping with
this complexity should be discussed.

f. Item 2. 6, Design Reviews. Required design reviews are identified in
Chapter 1. Calendar dates for these reviews and any additional required or
expected reviews are scheduled and included in the SDD. SDD review and
approval are discussed in Section Ill. Criteria for the software architectural
design review are also provided in Section III.

3. System Environment

a. Item 3. 1, Computer, Peripheral Equipment, and Subsystems. The
SRD descriptions serve as a basis for adding new information available from
the architectural design activities. Hardware interfaces, if known or if needing
subsequent design, are identified for the computer and peripherals as well as
for any associated subsystems. The high-level system diagram discussed in
Item 1. 3 (Figure 3-3) can be used to illustrate the system environment. Data
storage characteristics are defined based on the SRD requirements, and, if
known, actual hardware units can be identifi ed early (e. g. , for disk, drum,
mag tape, etc.) to establish external interfacing equipment. Deviations from
DSN standard peripherals, interfaces, etc. , should be identified and justified,
perhaps by ref - r-nce.

b. Item 3. 2, Program Operation in System. The overall operating aspects
and general description of the program can be understood and displayed conve-
niently with a system-level "Operating" chart. This shows the total program as
a "striped" module (Figure 3-5) embedded in its operating system environment.

3-11

^ _-_._^,TE' 	 ^^. "^^ 3 •^.*,.+f-'..y,^,^ w. ^.".^.'Ra - ^4xN^+i^ 	 ^^^-"^:.^,.; ^_.wr^,,,,,.^_^ "';"^-X..... 	 ,^	 ...,^	 _	 ^.m.^Y ^ -,	 . 7_._	 ^t	 1.E.w ...^	 ..,-'.^... _ ,,	 .. ,^.",..^r...^..... i ... -.^ _.t ... ,	 ...t

J..

WRSIA

o1cRkY1 aW

CHART 0
WADTOTRPT

IOF1
Lpik on sysreM	 APRIL 6, 1974
EAIM MBASId	

G5!`-s

EtirER PRDQtAM
` WAbTbTRPP' 1Nr0
THE WOR9.9PACE

Rf--EN	 ^F^tor»
AZNoRm)qi.;.

TtR UMAT1ON)

Yf'S GcwMule
	 we

a

114inATE

E1tFcuT M

Valf^D'P"'^T-RP^

INPt1T COMMOL CABs
FROM MIASMA 16VA9

C09FIRM Cq,9N^ 7^iRLS

ANp PKWY RL^'1°i6^4F'S

01UG1NAL PAGE IS
OF POOR QUALITY

1r.KPT• MMS1C.

L04 OFF ZYSTEA4

ENA iwl^saa
AcTiviry

(CAN BE HAND-PRAWN FOR SDD; CAN BE HAND-KINTED
IF CLEAR AND LEGIBLE)

Figure 3-5. Example of System-Level "Operatiirzg" Chart

3-1Z

u	 .r
..

R4 ,;

i

i

The main operating characteristics can thereby be identified and defined in
sufficient detail to understand the nominal system operations and, when appro-
priate, the nonstandard configuration operations. Any cost or schedule con-
ceras can be identified.

c. Item 3. 3, Software Interfaces and Services. The software external
interfaces are identified and defined. The SDD should indicate the degree to
which these interfaces are constraints or can be design prerogatives. Common
services (utility routines, library functions) and common program functions
known from the architectural analysis but yet to be implemented are identified
and defined in high-level detail:. "Common" in this context refers to functions
and services used by many programs, and does not refer to subroutines occur-
ring within a single program. This section also identifies and defines any
special software needed for program implementation support, since these
costs must be included in the SDD estimates.

4. Program Architecture

a. Item 4. 1, Preliminary Functional Analysis. The analysis and design
process is briefly described in Sections III and IV to provide background on this
activity. For purposes of the SDD, the thrust of this activity centers on
generating a preliminary functional analysis and program architecture that, by
inspection, is responsive to (will or will not satisfy) the SRD requirements so
as to present a credible estimate of implementation costs and schedules. The
results of this, activity are described in the SDD, where they form a preliminary
set of definitions and descriptions that can be assessed relative to the SRD
requirements. Modification of the SRD requirements, by renegotiation, may be
necessary.. S.ecti.on,IV provides helpful information for effective presentation of
results. Various diagrams and charts are described as well as "Striping Con-
ventions, " illustrated in Figure 3-6 and described in Figure 3-7, which are to
be used for presenting hierarchical nested levels of detail.

b. Item 4:2,.. Data Characteristics. External data characteristics such
as source, availability, accuracy, medium, amount or flowrate, destination,
etc., are identified and defined for cost estimation and for scheduling the later

3..13

	

WArarRPr	 CHART 1
WADTOTRPT

IOFI

	

PkEPROC	 MAY 6, 1974

jK pu " VsER C.oDws, 	 rd ^^
EacFi Aer Amb roKm q r
Vs_-0g DRrA1 P'R+q/T-
summARy REPagrs

WRD7 aT

CO.-IPGM VsER 707iVS (BY
0RE;Nu12Rr70,v, A1r4RL
Y,54A, AVb Afm ryq,=)
RAID /^YIfIT ^-rRFiA/A ^Tfla^

T'RO m p7*tk(% MER E'
FOl4. oP'E^EAybk '7 t;

,nNovC ORAND rorAaS

4
y1c_	

TeflALs a en	 d

^"	 ?	 fo

WADitpr	 ur MFSSA&E

PflAfr REV" s 4.5	 dF Nor o7t

PRemproo AjpdT-

^Fbr* p

srop

(CAN BE HAND-DRAWN FOR SDD; CAN BE HAND-PRINTED IF
CLEAR AND LEGIBLE)

Figure 3-6. Sample Flowchart for Level 1 (Overall Program Flow)

3-14

STRUCTURE TYPE EXPANDED ELSEWARE
IN THIS DOCUMENT DOCUMENTED ELSEWH RE

(.AND REFERENCED

IN CORE

NAME

NAME

ONLINE STORAGE

NAME

NAME

DOCUMENT

NAME

NAME

MAGNETIC TAPE

NAME

NA1v1E

ARBITRARY MEDIUM

NAME

E

NAME

(SYMBOLS WITHOUT STRIPING CONVENTIONS ARE NOT EXPANDED
ELSEWHERE, EXCEPT IN CODE)

Figure 3-7. Striping Conventions for Information, Data, and Storage Structures

3-15

1

y :.ten

i

detailed design of data items, input and output formats, and interfaces.
Emphasis is on the architectural characteristics of the data and flow interfaces,
especially as seen by Operations, and not on coding details. Detail provided
should allow the end user t4 assess the user interactions and concerns on input
and output formats, etc. Figures 3-8 and 3-9 show a typical data flowchart
and a data flow diagram that can be used for presenting this kind of information
in the SDD.

C. .Item 4.3, -Preliminary Program Structure and Definition. An overview
of processing and data structuring is presented to define the main processing
algorithms, together with the upper-level procedural designs in the program
hierarchy. This part of the SDD is a summary of the complete program design
as determined by the architectural design study. The projected figures for
number of flowcharts (or equivalent program design mediums), pages of narra-
tive, lines of code, core (or other) storage occupancy, and all other deliverables
should be presented. This architecture forms the basis for the resource esti-
mation and scheduling of the later detailed design and for identifying needed
status monitors during that later design phase.

5. Coding and Test Design Criteria

a. Item 5. 1, Codling Criteria and Constraints. Criteria for coding during
the detailed design phase are presented. This section should present criteria
or guidelines for aggregating modules into builds as the design units are being
completed, module by module. Also, if several coders are being used, this
section should identify the criteria by which the modules coded by each are
merged together into a "master copy" for code audit and configuration manage-
ment purposes. Coding constraints such as programming language, standards
for submodule linkage, etc. , should be identified if pertinent or if they affect
the architecture or costs and are visible at this high level of program description.

b. Item 5.2, Correctness Testing Criteria. Criteria for verifying the
correctness during the program construction process are presented. This
section should also present criteria or guidelines for aggregating modules into
builds for correctness test purposes. For example, one criterion could be that

t

3-1.6

0.0.

CiCF
A4o,l ! roA

DA rA

FLOW DIAGRAM 0

CMF
2 OF i

DECEMBER 5, 1975
I,W!D

L_LL	 L I ^ _J L!'..L

ORIGINAL PAGE IS
OF POOR QUALITY

DAM SvrrEM:

3

OAK
k^tR^G

Dli^rR

Gc^
^1a^1,roR

C o nrrR r 4

MARK l k

)A'rh ,SYsremr

+6

RLcea4(

1REozGUr1gq

CM ^R o6c@M	 Airs	
^M

PRIORrrY	
PRac,caen

An cui ry	 `r•RA v f,N 1 r
0&D6+2/NCB	 1 QuEu6	 PRO GwtriNC,

	

i3	 1Z1 1IO

	

?aor^ egns	 I^ft WExy	
CM

CMF	
F

P^. ^ZA M
DATA ORXIVr	 5T4CK	

Rsce wF

	

.	 Preoc^=r,cvfj

Comm Bvrgp,

covrrur

it - 1 I

^^++

	 9

I.p MM ^u FF£Q

nrry r)

 V 8
CIF"T$A

A	 Com +w

(ACCOMPANYING NAKKAIIVL PKUVIDLS DLTAIL ON THE TYPE OF DATA FLOWING AND THE
I NTERACTIONS AMONG PROCESSES. CAN BE HAND-DRAWN FOR SD D; CAN BE
HAND--PRINTED IF CLEAR AND LEGIBLE. NARRATIVE IS KEYED TO THE NUMBERS)

Figure 3«8. Typical DSN Data Flow Diagram

3-17

MNPKII-77 DSS TELEMUW SUMS STEM

PIONEER 9 SUPPORT SOFTWARE
IMPUTS	 PROCESS	 OUTPISTS

(WHEN USED, NARRATIVE FOR THESE DIAGRAMS IS REQUIRED; DATA RATES AND
ACCURACIES ARE PROVIDED FOR FLOW)

Figure 3-9. Typical DSN HIPO Diagram

ORIGINAL PAGE IS
GE Pooh QUALITY

3-1.8

the builds should be as large as possible consistent with the test designer being

able to design a correctness test for the build without automatic aids. More

specific criteria which depend on program architecture could also be presented

if they will influence design or test costs. The requirements and characteristics

of any special software needed for correctness testing and criteria or guidelines

for its use should be included also.

C. Item 5. 2. 1, Verification Testing. On Large system programs, criteria

for pre-acceptance verification testing are also needed to establish and validate

acceptance test plans and procedures since they can have a significant effect on

the final testing costs and schedules.

d. Item 5. 3, Acceptance Testing Criteria. Criteria for acceptance of the

completed program are presented for estimating the costs and scheduling of

acceptance activities. Also, criteria for verifying the acceptance test proce-

dures (such as normal operations, error seeding, calibration, etc.) are pre-

sented. These criteria form the basis of the acceptance plan to be developed

later and presented in the Software Test and Transfer Document. Basically, the

acceptance centers about an end-to--e-id demonstration of the program's capa-

bilities to meet the subsystem and system requirements identified in the SRD.

This includes an expansion of the program performance requirements, identi-

fied in the SRD, into an ordered set of performance criteria for assessment and

acceptance. Also, criteria for assessing the program's responsiveness to user

inputs in the operating system environment and responsiveness to the needs of

operating personnel and end ,users of the program output should be established.

3-19

^^^ .".	 ^ ♦ 	 -.	 -	 cam.__.	 .^ ..rr.^Y. vu.., au.A_uv^^ ^.cra^. ^..^n..	 ..._..^aa	 ^. _^......	 _	
-

SECTION III

SDD PREPARATION, REVIEW, AND APPROVAL

A. PREPARATION ACTIVITIES

The CDE, as assigned by the implementing organization, prepares the SSD

in response to the approved SRD. Management approval to continue the software

effort (proceed to the detailed design and production) is then based on a review

of the cost and schedule information contained in the SDD. The SDD content

(type of information and its organization and format) is outlined and described in

Sectionll, where the outline guides the preparer to the specific items and points

of :.nformation upon which the management approval decision is based. Further

helpful information for preparing the SDD is summarized below and covers the

activities involved in preparing the architectural design and the program pro-

duction plan. Section IV provides additional aids for preparing and documenting

SDDs. References l and 5 provide additional detailed information that can be

helpful in making resource estimates on the basic design process involved in the

resolution of the requirements (the problem) into an implemented solution.

1. Architectural Design

Based on the top-level requirements identified in the SRD (what is needed,

why, when, and estimated cost), the problem is defined in terms of major

characteristics and functions of a proposed solution (computer program). This

effort, therefore, is directed toward defining the problem and determining what

the program should do functionally, that is, as expressed in terms of program

functions and high-level program control and information flow. The problem

definition must be detailed enough to evaluate the environmental constraints of

the SRD (for cost and schedule implications) relative to the problem's needs,

i. e. , adequacy of core storage, ability to meet time constraints, and ability to

perform all major functions. Major functions are identified only to understand

what must be done, and they may be connected by information flow paths or

control, but they are not yet designed -- that is, they are not detailed to the level

3-20

that they could be implemented. Emphasis is on providing credible costs and

schedules by achieving a high level of understanding of the problem at hand and

the proposed architectural or skeletal solution, and not, at this point, on a

detailed design solution or a detailed correctness assessment and certainly not

yet on coding considerations. Forming the architectural solution involves

inforinal but hierarchical thought processes and expansions among the problem,

prospective solutions, and related tradeoffs. The hierarchical expansions con-

verge toward choices of the program high-level definition and then toward the

architectural design itself.

The results of the above functional analysis form the basis upon which

following work is cost estimated, scheduled, and may be expected to conform.

Modular functional units, corresponding to the main functions, are defined,

together with their connections which control the flaw of data from the input

(external) interfaces through the functions to the output (external) interfaces.

High-level program testing criteria and test goals (for correctness and accep-

tance) for meeting the SRD requirements are defined. The next -lower -],--vel

functions are then defined and the cycle repeats. The combined functional

program framework, high-level test criteria, and hierarchic expansions are

referred to as the architectural design. Modular units are used to identify and

size the task, not to produce an inirnediately codable design for which correct-

ness can be assessed. This indicates that hand-drawn control and data flow-

charts (or equivalent) with little or no corresponding narrative, data structure

tables, etc:. , are a proper medium for the architectural design. Full details on

program logic, procedures, sequences, and detailed data structure and charac-

teristics are typically not addressed unless required to size the program and

work tasks within 10-percent accuracy. The architectural design, therefore,

facilitates the understanding of exactly what is involved, and provides the arch.--

tecture upon which the remaining program final design and construction can be

based. No coding is performed during the architectural design to assess

detailed Correctness of the program. The architectural design encompasses

the follow--on SSD activities that begin after SDD approval, that is, top--down

program implementation anal construction using concurrent design and docu-

mentation, coding, and testing. The architectural design can perhaps be

updated and redlined to produce the input for the final finished graphics of the

3-21

1

S	 1	 ' 7	 !	 r E	 •1	 -^--1	 :1i'	 -	 -..S .4	 ^.^ 1]	 ::^. 17 ..^+^......5..^.. 	 ^v-	 i l 4 i	 •'	 '.{.

SSD. Since the major modules or main groups of modules are typically
identified by the completion of the architectural design, an estimate of the work
involved can be projected for each based on their relative complexity. Because
each flowchart is on one 8-1/2 x 11-in. (?..2 x 28-cm) page, this estimate should

not be especially difficult to make.

2. Program Production Plan

Based on the program, and test design definitions resulting from the archi-

tectural design activities, the remaining tasks can be identified and outlined for

purposes of scheduling, determining personnel/team support levels, and esti-

mating the cost-to-completion.

a. Remaining Tasks. The work remaining encompasses the broad activi-

ties of program construction through completion, including the as-built Software

Specification. Document; preparation of the Software Operator's Manual; program

acceptance, including the Software Test and Transfer Document; and providing

support for all required design reviews (high-level, acceptance readiness, and

transfer) and other optional reviews, as determined by cognizant management.

Following SDD approval, program construction comprises the tasks of top-

down formal expansion: design and documentation, coding, testing, and test

verification.

Preparation of the operator's manual for the program occurs concurrently

with the other program construction and acceptance activities. A preliminary

operator's manual, that is sufficient to operate the initial builds of the program,

is produced after SDD approval.

Program acceptance activities parallel the program implementation and

include detailed acceptance test planning, acceptance test procedures generation,

demonstration of adequacy of acceptance test plans and procedures, and specifi-

cation of detailed test data and required test results for acceptance.

Design reviews and required support are discussed. in Paragraph B of this
section.

b. Scheduling. The remaining tasks, as outlined above, must be allocated
sufficient time (including nonproductive queuing delays, iterations, etc.) and
coordinated with the milestones and project need dates as presented in the SRD.
Schedules for the major milestones and the near-term work are produced by
phasing the work breakdown tasks for top--down development of activities. The

`	 emphasis is on accomplishing two items:

(1) Refining the overall schedule to completion, based on the
preliminary detail that is available from the architectural
design and work breakdown activity.

(2) Detailed scheduling of the completion of an initial portion of
material identified by the WBS which is to begin the construc-
tion phase. After the SDD is approved, the CDE develops and
maintains detailed later work breakdown structures and sched-
ules, concurrently with the program construction.

C. Personae]./Teain Support Level. Using the information available that
outlines and identifies the remaining tasks and the constraining schedules
within which they must be completed, the CDE and cognizant management can
make personnel/team assignments to match the expertise available to that
needed for the tasks and to meet the work loads created by the schedules.

Chapter l provides information on the overall support responsibilities
throughout the implementation as well as a brief discussion of the separate

_ -	 function:, that comprise the software implementation team and the team's
operational interactions in performing the software implementation tasks.

d. Cost-to-Completion. The planned schedules for completing the
remaining tasks with staffing by personnel matched to the tasks in both number

.i

.,SJ and expertise. results in a personnel loading and phasing profile. This profile,
along with estimates of supplemental resources such as computer time and

3-23

7' 77_ -
^.^.^..:.1 v_,..x^........ .. - .. , 	 _...	 ^.......	 _ , . ^_...d._...,.-....,._..^	 , a.-,..tee ^-...".a _._....^. s.	 s_ _- .^

support services, can be used to estimate the cost to complete the 	 .`
implementation. Uncertainties should be identified for determining possible
variations and confidence of the estimates. An accuracy to within 10 percent 	 J

is the goal.	 11

B, REVIEW AND APPROV! L

I. SDD Approval

Approval of the SDD signifies concurrence with its cost estimates and
schedules and concurrence with the expenditure of resources to continue the
implementation. The SDD is first approved by the implementing organization's
line management prior to proceeding to the next phase of activities; this begins
the approval process that includes a design review. Implementation activity
continues on through this approval period which typically may span a week or
two and normally never more than one month.

SDD approval by the implementing organization is always required; other
approvals or any special guidelines or procedures for proceeding should be
identified in Section 2.2 (Special Procedures) of the SRD and appropriately
addressed in the SDD design review.

2. SDD Review

The main objective of the SDD review (also called the architectural
design review) is to assure that the overall management, subsystem, and
program definitions are stated in sufficient detail and coverage to provide
credible evidence of a 10 percent accuracy in resource estimates, including
the definition and refinement of the implementation schedules, costs, and
performance. (See Section I, Paragraph B, Scope of Software Definition
Documents.)

Emphasis is placed on having low-cost reviews. Use of existing project
information is encouraged whenever possible, as opposed to producing formal

3-24

^^ ^'ar'^'	 , rr^„	 ^"""fi=..f	 ^.n.^:^ĵ ^	 f.',^^ Y-,^.-.:;̂ ,:• 	 ^--	 ^y k_-i^ 1^
^' ^ ^' ^IJ^t^O ^?

	 r -`_^^	
^....M^^ ^` .9^ Y s....' W ^ .r	

^ii

"Review Presentation" materials, which-tend to be high-cost, low-use items.
'4'	 Whenever practical, software reviews should be combined with system, sub-

system, or hardware reviews. Also, several software reviews can be scheduled
into onf. review. These review practices tend to consolidate and conserve
resources. The concurrent documentation approach of the DSN software meth-
adology makes this relatively ea.s y,

The CDE. (or the CDE.' s management) sets the time and place. of the review
and issues the review meeting notices and review material (at least one week
prior to the review). The review of the SDD can be held as part of a more gen-
eral review of: subsystem requirements.

The CDE (or the CDE's management) conducts the review. The personnel
participating in the review should represent, at a minimum, the initiator, the
using organization, the funding (if different from the using) organization., and
the implementing organization. The CDE (or the CDE's management) appoints
the board.

a. Agenda. The CDE also prepares the review agenda, which typically
includes :

{1)	 A brief summary of the SRD requirements to 'understand the
problem, being addressed.

(2)	 A brief description of the program functions and architectural k,
characteristics."

(3)	 Identification of program functions as related to SRDt
requirements. ;:	 =

- (4)	 Schedules versus need dates.
f	 ^ (5)	 Costs versus budget. h"

(6).	 Identification of concerns. 	 For example, any inability to y	 7.,,.",,
meet requirements and/or competing characteristics, the ;^	 A

- unavailability of needed resources, unrealistic schedules,
inadequate funding for projected costs, etc. , should be made

k:
visible at this time.

_	
3-25

U.	 Criteria:	 The 10116w ing criteria for the software architectural designI

r. e7i iEm can.be used as aids for assuring completeness of detail and coverage,

Does the program architecture satisfactorily address all SRD

requiremeni - ? Is requirement modification by renegotiation

needed?

(2) is the architectural design. detailed enough to identif y major tasks,

including the n um'ber of modules involved and a detailed work

breakdown for each task?

(3) : Is" thearchitectural description and documentation adequate

e	 p ction?and available for ins e

(4) Have satisfactory progress status monitors during the final

detailed design phase been provided as part of the architectural

task?

(5) Did the architectural design activity necessitate backup coding?

If so, was the minimum level exceeded?

(6) Is the architectural design and documentation adequate for the

later detailed design and implementation?

(7) Is the work breakdown sufficiently detailed to verify cost anal

schedule estimates within the goal of -+101o?

(8) Does the work breakdown structure (and schedule) have tasks

which are small enough to facilitate supervision and review by

management to determine progress relative to plan?

(9) Have the implementation testing criteria, plans, and procedures

Keen adequately defined as part of the architectural task and

included in the SDD?

(10) Does the architectural definition of the program provide sufficient

information for the end user to assess the appropriateness of

user interactions and input-output formats?

(11) How close was the SRD cost estimate and schedule for the

architectural phase to -the actual architecture cost and schedule?

Similarly, how close Was the initial SRD estimate of the cost and

schedule of the final design and construction, to the refined

estimation in the SDD?

^ _10

3 -Z6

Ti r 1'

1 Functional AhalysIs

The SDD analysis and definition activities provide the basis and justifi-
cation for the resource estimates and involve problem definition and program
structuring. which generally are based on:

(1) Dividing an inclusive but relatively nondetailed description of the
problem into a: manageably small number of pieces with relatively
simple and well-defined interfaces.

(2) Expanding the degree of detail of description of each piece by repeating
the division step described above until each piece or subpiece of
the original is described in the level of detail desired.

.(3): Displaying. the pieces of this step-by-step (stepwise) expansion of
detail to provide a complete and functional description of the problem.

Specific procedures for performing these thought processes have not
yet been formalized. However, the top-down approach should be applied
to these activities, not only for defining specific modules but also for
defining, concurrently, the related aspects of data, function, and procedure.
The data aspect deals with the information and data in the problem and in the
program, including input, intermediate, and output data in the problem
structures as seen by the world external to the program. The function aspect
deals with the processes or transformations acting on the data, that is, what
is done to transform one data object. into another in the passage through the
program. The procedure aspect deals with the control logic to select paths
through the program, and the sequence of operations (functions and their
component instructions) on these paths, that is, how the program performs
its task.

3-27

The top"down approach leads to a hierarchical, tree- structured expansion
of program detail:. At lower, more detailed levels, however, several expan-
sion paths may lead to very similar or identical functional elements. To avoid
unnecessary duplication of implementation effort, and in the interests of pro-
moting commonality and economy in subsequent design and maintenance, it is
prudent that the program definition encourage, identify, and accommodate such
common software. : ' These instances are recognized by forming a candidate
high:-level definition, and proceeding through the. architectural design. Some
iteration will usually be necessary to maximize this commonality in the archi-
tectural design. For major implementations involving multiple SRDs and
SDDs, this iteration typically takes place outside any one implementation team.

Z. -preliminary Functional Descriptions

Functional descriptions and displays of the results of the above functional
analysis are produced that are generally adequate, even in preliminary form,
for understanding and assessing the complexity of the problem and the pro-
posed architectural solution for estimating the costs and schedules. Following
SDD approval, these descriptions can be expanded and updated concurrently
with the program construction to form the as-built program specifications and
may be included in the SSD.

As an overview, the program's location or site within the system can be
effectively displayed using a system-level "siting" diagram as shown in
Figure 3-^3. The data and function_ aspects described above can readily be
displayed and described.

Operational state diagrams can also be useful in displaying and describing
the results of the functional analysis activity. These are simple "bubble"
charts indicating various essential states or operating modes (to be discussed
below) that are required in any acceptable proposed program. Figure 3-4
presents a typical operational state diagram using computer-based graphics.
Hand drawings are acceptabi r.n an SDD. Descriptive narrative keyed to the
numbered paths, emphasizes operator actions and other program input needed
to effect a change in state (to move from one bubble to another).

3-28

E'

	

	 Still addressing the operational aspects, a top-level "operating" chart
can be used to -display the total program as a single striped module imbedded
in its operating system environment, as shown in the hand-drawn sample of
Figure 3-5 (taken from a pilot project — Work Authorization Document Report
Writer Program) This locates the program in an operating perspective to the
system 	 provides a good beginning point for the top-down definition and
description of the program on a modular basis.

Major program modules can then be identified and defined by providing
detail from the functional analysis to expand the top-level charts. These form
the highest levels of the program architecture, which the remaining archi-
tectural design expands. (See Figure 3-6 for a sample expansion.) The
expansion of functional, data, and procedure aspects of the design proceed
concurrently as discussed in detail in Reference 1. It is noted that these
expanded designs are prepared in rough-and-ready hand-drawn working sheets
that are readable by others to provide a basis for sizing the total join, for
determining schedules and needed resources, and for estimating the remaining
costs. Detailed design refinements and correctness assurance are addressed
later, and final graphics are provided for the SSD.

The above system-level "siting" diagrams, operational state diagrams,
and architectural design flowcharts aid in the communication and preliminary
description of the ongoing, evolving design.

B. DOCUMENTATION AND GRAPHIC AIDS

Good, readable documentation consisting of both narrative and graphics is
essential for a high level of communication and interaction among involved
personnel (e. g. , initiators, implernenters, users, reviewers). The docu-
mentation, consisting of words, symbols, diagrams, and charts, must be
clear, unambiguous, and timely — yet cost effective. Documentation is written
only once, but read many times; therefore, emphasis is to be placed on
readability.

3-29

Formatting of the overall SDD is discussed below to aid in the documentation
preparation. This is followed by a brief discussion of techniques :.nd formats
that can be applied to supporting elements of the SDD such as tables and
figures.

Standardized flowcharting symbols and terminology have been adopted
from Reference 1. These are applied as relevant for the more informal hand-
drawn architecture flowcharts which may appear in the SDD.

1. SDD Format Conventions

The SDD is a nonsurviving informal information document that provides
credible evidence of a 10-percent accuracy in resource estimation, so
emphasis is placed on its information content rather than on its formality of
style and formatting. However, consistency from document to document aids
readability. Therefore, the CDE is directed to Chapter 4 and is encouraged
to use the same formatting conventions as adopted for the surviving formal
documents, i. e., the SSD, SOM, and STT.

Basically, these documents are "block-formatted" and "sectionalized, "
where each section is identified by consecutive arabic numbers. To facilitate
change releases, the pages, figures, and page-size tables should be numbered
consecutively within each section (e. g., 1-1, 1-2, . . . 1-n; 2-1, 2-2, . , ,
2-n; etc.). If existing automatic equipment is not programmed for this pag-
ination scheme, any other scheme that allows easy change updating is accept-
able for SDDs. Small tables can be inserted within the running text and are
not necessarily numbered. However, if other parts of the report refer to it,
a table should be numbered and placed at the top or bottom of its page.

Subsections use decimal identification. Appendices are typically identified
alphanumerically and need no blank or separate introductory page. Formatting
within the appendices can vary to allo4v ease of incorporating existing material
without modification.

3-30

-
^.,...,^

For further format detail and specific information on typewriter tab settings,
line spacing, capitalization, and underlining, the preparer (and typist) is
referred to Chapter 4.

2. Information Flow Graphics (from Reference 1)

a. Symbol Striping Conventions. Information and data flow graphics
utilizing charts and diagrams can be useful in identifying the source of required
input, the required routing through processes, and the destination of required
output. For example, inputs may emanate from existing data rase files, or
from information to be supplied by a group of users or operators. Outputs may
be destined to files, or perhaps, to users by mail. Conventions which standard-
ize the horizontal and vertical striping of th diagram symbols to indicate that
additional definitions are detailed elsewhere are shown in Figure 3-7.

b. Sample of a Typical Data Flowchart. Figure 3-8 presents a typical
application of information flow graphics to diagram the data flow through a DSN
subsystem software program. When used, an accompanying narrative would
explain the routing and rationale.

C. HIPO Diagrams (see Reference 6). Hierarchy Plus Input-Process-
Output (HIPO) diagrams are a specific form of the general information flow
diagram applied to data flow and functions or processes of a system. Each
diagram contains three major sections:

(1) Input —the data items used by the processing steps and connected
to them by arrows.

(2) Process — a series of numbered descriptions of a given function.
These are connected by arro%t s to the input needed to perform the
function and the output created by the function.

(3) Output —the data items created or modified by the processing
steps and connected to them by arrows.

An initial overview high-level diagram might provide a general description
of main functions, along with major input and output data items. However,

3-31

tl
	

y,

processing detail may typically be better described in hierarchical,
architectural, procedurally-oriented diagrams, so HIPO may not be as useful in
those lower levels, and typically only one or two HIPO charts might appear in
most SDDs. Figure 3-9 is a useful HIPO-style diagram that gives the data
flaw overview in an SDD. Again, this may be hand-drawn in the SDD.

Structured programming facilitates information flow diagrams because the
functions can be considered as single' entities. The functions are designed in
"segments" or "blocks, " each with a single control entry and single control
exit. These segments can then be detailed functionally using HIPO--type dia-
grams for each. The Standard Practice limits individual information and con-
trol flowcharts and any other diagrammatic documentation for software to one
page-length. This limits the level of detail that can (and should) be presented
in an SDD, since only a few of these diagrams would typically appear in an
SDD. Each form of diagrammatic documentation should be included in the SDD
when it best expresses the architectural overview of the program. As other
team members are added to construct modules after SDD approval, all dia-
grams which aid their work in various paths of the detailed design hierarchy
would then, of course, be used and included in the SSD as it is built up.

3. Mode Diagrams

A mode is defined (Reference 1) as a way of operating a program to per-
form a certain subset of the processing requirements that normally are asso-
ciated together in the program function. Program operating modes can be
displayed = n diagrams showing the inputs, processing, and outputs (similar to
the HIPO display of functional flow), where the processing is selected to be
only a partial set of the full capabilities of the program. Figure 3--10 presents
an illustrated general' mode diagram at a level of detail suitable for inclusion
in an SDD,

Further discussion concerning mode diagrams and associated decision
table construction and use can be found in Reference 1. This material may be
very relevant in preparing SDDs for some types of programs.

3-.3Z

ORIGINAL PAGE IS
OF POOR QUALITY

INPUT DATA SET NAME

Inputs, data bases, media,
,files, etc.

Program Mode
Mode number

date
page of

Striped if
detailed
further at
next level.

In7
othe^rwi

pr

they	
Ll

.Program
ode
nterfacin
Data

Program Mode

Processing functions Requirement
Reference

1.	 function I SRD s.n
2.	 function 2 XYZ	 p.q	 .

n.	 function n

OUTPUT DATA SET NAME

Outputs, data bases, media,
files, etc.

Subsystem
Interface
Data

Subsystem
Interface

Figure 3.-10, An Mustrated Mode Diagram

3-33

^	

aJ^

SECTION V
IMPLEMENTATION MANAGEMENT AIDS

Several aids are identified for use in managing software implemep..tations,
along with brief comments on their application. The aids include work break-
down, task description, task budgeting, and project statics reporting techniques.
These aids come into use mainly after SDD approval, and the SDD must contain
not only the architecture of the program but also the management plan that
allows for their use in the follow-on design, implementation, and status
monitoring.

A. WORK BREAKDOWN, DESCRIPTION, AND BUDGETING

Based on the defined program architecture and module tree; a Work Break-
down Structure is generated, which defines work packages k' elements) on a
family tree basis. These are finite, in fact short, manageable tasks with quan-
tifiable inputs, outputs, schedules and assigned responsibilities. The WBS tree
is further supported by Detailed Task Descriptions, which succinctly describe
the work to be accomplished, identify ti , e responsible task leader, specify
inputs required by date, and schedule r -tnuts. This information is then avail-
able for project budgeting of time and resources down to the individual task
level. A first--cut WBS would typically be prepared to aid in production of the
cost and schedule estimate of the SDD. This rough cut typically need not be
part of the SDD, however.

1. Work Breakdovin Structure Elements

The CDE uses the WBS to arrange work into finite, manageable tasks
which are components or elements of higher-level tasks or projects. For
generating the WBS, the CDE uses the following criteria as a guide:

(a) Each subtask should be significant in terms of level of effort and tinge
required to be accomplished, but not so long as to deprive management
of visibility.

3-34

(b) It should have a clearly defined start and finish, with a finite end
product (software routine, document, demonstration, etc.).

(c) Duration of all subtasks should be approximately the same order
of magnitude.

(d) Each task should be characterized in terms of work elements,
resources, and schedule.

(e) Each software task should be relatable (either in interface terms
or interchangeability) to other tasks at the same level, and be
explained relative to the module tree produced in the architectural
design.

An example of a partial WBS is shown in Figure 3-11 for the DSS Telemetry
Subsystem Software, used to produce the program after SDD approval.

2. Detailed Task Descriptions

Each major task . identified in the WBS can be described in more detail.
During the SDD phase, the detail should be sufficient to estimate cost and
schedule within 10 percent. A detailed task description should be filled out for
each task requiring the duration cited in item (c) of the above listing. Having
the architectural detail (probably flowcharts) facilitates the sizing of tasks
related to detailed module design. The sample format shown in Figure 3-12
facilitates the recording of this detail, which would include the following
during the SSD phase:

(a) Date —the date on which the description form is completed.
(b) Rev. —the revision number of the task description, starting with

0 for the initial issue and progressing sequentially.
(c) WBS Task Title — using the top level WBS as a reference, include

second level expansion, and narrative title.
(d) Module Tree Reference -- refer to module tree for tasks involving

module implementation.

3»35

Software

Detailed Task Description

	

Date	 Rev

WBS/Task Title

Task ,Mgr
	

Duration	 /	 to	 /

ITask Description:

ITask Schedule:

Task DudLet:

I
Task Scope:	 Corte	 Flowcharts	 Text

I Inputs Required:

I Opt_ tputs:

I
Task Interfaces •

Figure 3-11. Sample Work Breakdown Structure

3-36	 j;'

ORIGINAL PAGE IS
OF POOR QUALITY

I.	 DTM Software
1.1	 DTM Software Management

	

1.1.1	 DTM Software Cognizant Manager

	

1.1.2	 DTM Software CAE
1.2	 DTM Software Planning and Requirements

	

1.2.1	 DTM SRD

	

1.2.2	 DTM Software Requirements Design Review
1.3	 DTM Software Design Definition

	

1.3.1	 DTM SDD

	

1.3.2	 DTM Software Design Definition Review
1.4	 DTM Software Design and Production
1.4.1	 DTM SSD

	

1.4.2	 DTl4 SOM

	

1.4.3	 DTM Software Detailed Design Reviews

	

1.4.4	 DTM Software Modules Design and Production
1.4.4.1	 TLMOS (Telemetry Operating System)
1.4.4.2	 SYMEQU (DTM Soft-;are System Equates)
1.4.4.3	 USEMAC (DTM Users Macros)
1.4.4.4	 TYMCOM (Telemetry Common Data Structure)
1.4.4.5	 INT (Telemetry Initialization Task)
1.4.4.6	 FTS (FTS Interface Task)
1.4.4.7	 SSR (Star Switch Router Task)
1.4.4.8	 MIO (Message Input/Output Task)
1.4.4.9	 NOC (Network Operations Center Input Task)
1.4.4.10	 PCT (Program Control Task)
1.4.4.11	 SSA (SSA Control Task)
1.4.4.12	 SDT (Sequential Decode Task)
1.4.4.13	 SBD (Software Block Decode)
1.4.4.14	 MCD (Maximum-Likelihood Convolutional Decoder)
1.4.4.15	 BDA (Block Decoder Assembly)
1.4.4.16	 DSD (Dual Sequential Decoder)
1.4.4.17	 F69 (Pioneer 6-9 Formatter)
1.4.4.18	 FIO (Pioneer 10/11 Formatter)
1.4.4.19	 FIS (Helios Formatter)
1.4.4.20	 FVK (Viking Formatter)
1.4.4.21	 FMF (MJS Formatter)
1.4.4.22	 FPV (Pioneer Venus Formatter)
1.4.4.23	 HSD (High Speed Data Output Task)
1.4.4.24	 WBD (Wideband Data Output Task)
1.4.4.25	 HSD (High Density Recorder Output Task)
1.4.4.26	 DIS (Digital Instrumentation Subsystem)
1.4.4.27	 HRP (High Rate Playback)
1.4.4.28	 SDP (Sequential Decode Playback)

1.5	 DTM Software Test and Transfer
1.5.1	 ATP (DTM Software Acceptance Test Procedures)
1.5.2	 AT (DTM Software Acceptance Test)
1.5.3	 STT (DTM Software Test and Transfer)

(THIS BREAKDOWN IDENTIFIES TASKS IN A HIERARCHIC STRUCTURING OF DETAIL.
THE "STUBS" OF THE STRUCTURE ARE DETAILED AS IN FIGURE 3--12.

Figure 3-12. Sample Detailed Task Description Format

3-37

T7
	 f,

(e) Task Manager', -- name (or initials) of the individual responsible

for task accomplishment (the CD.E. ;or assistants)..

(f) Duration — from date task is planned to begin to date task is planned

to be completed.

(g) Task Description —brief narrative description of task elements;

what the task is intended to accomplish, and what this task is part of.

(h) Task Schedule -- simplified bar chart indicating start, finish, and

appropriate milestones for task elements (once schedule has been

derived).

(i) Task Budget — time-phased manpower, by skills categories necessary

to accomplish task. This should include supervision, design., coding,

testing, documentation, and any required supporting services (e. g.,

typing, Programming Secretariat, QA represeutati.on, etc.)

(j) Task Scope — estimate of the number of pages of flowcharts, the

number of lines of code, and pages of narrative text. Should be

correlated to Task Schedule.

(k) Inputs Required -- documentation, other task outputs, hardware, or

other resources which are necessary for accomplishment of this

task, including required dates if known.

(1) Outputs — interim and final outputs of tasks, such as design docu-

mentation, tests accomplished, reports, supporting documentation,

program listings, etc. Also output dz.tes for each, after schedule

has been derived.

(m) Task Interfaces -- identify directly interfacing tasks, common

software candidates, interchangeable modules, or anything that

will help characterize relationship of this task to other tasks.

3. Task Budgeting

The WBS and Detailed Task Descriptions can be used by the CDE to plan

and budget time and resources during the architectural design and again later

as necessary. A sample technique for Task Budgeting is presented in

Figure 3--13.

*Since this breakdown is not part of the SSD but is for Project use only, it is
reasonable to mention names here.

3.38

_ _I one.,.

DS S TELEMETRY SUS59S7LM
S0FTWAR

DEVELOPMENT
AKQ

M^,Ni^ ^WEDL3LE

w9S TA5K 1)h ft) G 1^7r
SAN F'E$ I MAR A'P14 'MAY 30V TLI AtM.

M ACA GC-PnE10T

^..	 C-064JI-ZA MT MAPJA6&0- 6 d 6 G 6

' i• Z 	 cb^ 12, 15 a 6 b 6 6,
s

. d 62D 	 kOMPLETF a)
' E . Z	 PC-5ZGA) ^EVT@ W

4

3	 D^STrr^	 [7t~^il^}iTI'b^

_^. I 	 5TJ^1 1 ^ $ ^
. ^,	 pES ^^ ^ v^trw nA

+ 4 !^``
15E !ri 4- s

4-.3	 ;)EST Iru	 r?C-vrEwS - - - - - - - -
i

MODULE	 PQoUUC7r-TC,)0 -

- or 	 TLrA 0-5

U5Em A r-

^^vl^: INw+n13[IC3 UCINUM NIAN--PAQNJMi) OF N-FORT

Figure 3»13. Sample Task Budgeting Format

3-39

This format or equivalent can also be used to record actual resource
expenditures for implementing change requests (during implementation) or
ECOs (after transfer to Operations) to be subsequently appended or attached to
the SDD, to maintain a current cost and design history of the program..

B. STATUS REPORTING BEFORE SDD APPROVAL

1. Architectural Design and Build Status

Figure 3-14 represents a format and method that can be used for recording
and reporting progress of the overall architectural design. The Programming
Secretariat records status information that is extracted from records and
project-approved items that are received for filing. No additional effort is
made by the ODE. Module numbers and titles are preliminary, as detail added
later may affect these; however, some traceability from the architecture to the
detailed design will be a natural result of module names, functionally chosen.

When using this method, blank areas clearly indicate potential trouble
areas. Once identified, these can be appropriately addressed. Information
recorded along each horizontal line gives a clear indication of the progress in
the specific module.

The utility of Figure 3-14 can be extended by having two lines for each
module entry. One line would provide the a priori or predicted scheduling
information (from the CDE) and the second line would provide actual perfor-
mance (recorded by the Programming Secretariat).

Z. Software Technical Program Progress Report

A narrative report submitted on, say, a monthly basis can be used to keep
management and the Project Office abreast of the implementation. Since this
type of report would typically be used only during the SSD phase, details as to
content and format are included in Chapter 4 and are not duplicated here.

3-40

W RW PRnJFCT ARCHITFCTIIRAL nFSTGN ANn IMPLr-mFNTATInN

CHART	 NAM F	 ni AGRAM	 NARRATIVE nF';T(-,NFr) CnnFn 	 T PRnC FDIIRr- TFSTFn

I	 WAFIT(ITRO T	 5/h/74

. 1.1	 PRFPRnC	 5/7/74

1.1.9	 TALLY	 4/10/74

T.I.In	 .;nRTn;P	 4/10/74

1.1.10.4	 F-nRMSTR

1.2	 WAnTnT	 93/72/74

1.7.7	 GnKPOT	 4/IR/74

.1.2.7.4	 P Pq 5

1.2.9	 Slims	 9/24173

1.2. 10	 CHKSLIM	 9/17/73

1.2.11l.4/7 GTORNT

1.9	 wAnrtPT	 5/12/74

1.5.3	 lRrNTL	 2/14/74

MIJERY	 9/24173

1.5.4	 PnRPTS	 2114/74

1.-5.4.4	 01 VS1 I M	 9/24/71

1.5.4o6	 PRJSIIM	 9/24/73

1.9.9	 n5PRD T	 2/14174

RPTPRT	 14/74/73

1.9.9.5.13	 TYPRPT 9/24/73

Figure 3-14. Sample Implementation and Build Status Information Format

3-41

CHAPTER 4
THE STANDARD PRACTICE FOR

THE SOFTWARE SPECIFICATION DOCUMENT

SECTION I
INTRODUCTION

A. PURPOSE OF THIS STANDARD PRACTICE

The relationship of the Software Design and Production Phase to the
overall software implementation process is shown in Figure 4-1. As shown in
the figure, the SSD is initiated at the start of the Design and Production Phase
and is completed and approved prior to or during the Acceptance Readiness
Review.

The approved SSD is used throughout the Software Acceptance Testing
Phase, where changes are under internal project control. Changes are autho-
rized by the CDE after mutual agreement with the COE that a change is
required. Following transfer to operations, changes are implemented only
by approved Engineering Change Ordexs, with possible exceptions for cosmetic
or explanatory changes as recommended by the COE or as directed by the
Change Control Board.

B. SCOPE OF SOFTWARE SPECIFICATION DOCUMENTS

The SSD contains the program descriptive and as-built design informatic-n
needed to maintain the program throughout its operational life. To accomplish
this, the scope of coverage of the SSD includes:

(1) A completE! set of design information, including the design approach,
fznctional specifications, program as built specifications, and
criteria used for correctness assessment.

(2) Sufficient supporting information for program maintenance, such as
program listings, detailed sample formats, memory maps when
appropriate, etc.

4-1

ar

PHASES •I	 SOFTWARE	 SOFTWARE	 I	 SOFTWARE	 I	 SOFTWARE	 I	 POST-DFLIVERY
PLANNING AND	 I	 DESIGN	 DESIGN AND	 ACCEPTANCE	 I	 OPERATIONS AND

ITEM	
REQUIREMENTS	 I	 DEFINITION	 I	 PRODUCTION	 f	 - - TESTING	 I	 MAINTENANCE

t
N

MAJOR	 I I.	 IDENTIFY	 I.	 DEFINE f 1.	 COMPLETE	 1 1.	 DEMONSTRATE: 	 E I. OPERATE PROGRAM
ACTIVITY	 ! • REQUIREMENTS FOR S/P!	 I	 n FUNCTIONS/FLOW I	 • EXTERNAL SPEC	 • PROGRAM MEETS SRD• PRODUCTION /SUPPORT

n S/W FUNCTIONAL ^	 ► ARCHITECTURAL DESIGN	 I	 • DETAIL DESIGN -DATA	 I	 • PROGRAM AND MANUAL IN I 	 • UPDATE A$ REQUIRED
TECHNICAL REQUIREMENTS I	 • SCOPE OF TASKS	 II	 AND PROCEDURES	 OPERATIONS ENVIRONMENT

• OVERALL SCHEDULE, COST	 • COST AND SCHEDULE	 E	 • CODE, TEST DESIGN, TEST 	 G DELIVERABLES MEET	 2.	 MAIPITAIN DOCUMENTED DESIGN
• RESOURCES FOR NEXT PHASE 12. SELECT SUPPORT PERSONNEL t 	 • REVIEWS	 STANDARDS

12. SELECT CDE; IDENTIFY COE 	 3, REVIEW AND APP=JVE 	 I	 • OPERATOR ' S MANUAL; SSD 12. SELECT CSE 	 [e INSERT APPROVED CHANGES

3, REVIEW AND APPROVE 2. [NIT FATE ACCEPTANCE AND	 3. COMPLETE ACCEPTANCE' - 	 r	 • MAINTAIN BENCHMAR,; TESTS

1 I	 TRANSFER PLANS; STT, PREL 	 I	 AND TRANSFER	 I
DESIGN
REVIEWS	 I

REQUIREMENTS	 ARCHITECTURAL HIGH-LEVEL	 TRANSFER

AENOTES
Q

•	 •	 • ACCEPTANCE READINESS
Q Q r

Q- Q -"-^

	

Q
M
ANDATORYI	

I

SOFTWARE

I SOFTWARE REQUIREMENTS	 I	 SOFTWARE I	 SOFTWARE	 DOCUME
TT ON	 f

MAJOR	 I

DOCUMENTS	 I

DOCUMENT
SRp	 DOCUMENT Spp	 OPERATOR' S

MANUAL SOM	 SSD	 STT

1 I 1	 I 	 TEST AND
EDOCUMENT

Imi
TRANSFER

CHANGE	 I
d -F	 I I

CONTROL
SRI)	 I ^^^ --

SDDE--- - -I	 E---

SOM` y,^

I^

1	 ^_ — _ — .^...	 ^^
UNDER

(L
^	 F ^^^^— DON CHANGE

SSD r._.......--...-....--• --... — CONTROL BOARD
tt

BY:	 SIFT -
--CDE FOR PE)l H

CD_COGNIZANTI
MANAGER I r

f
MILESTONES

SRD
^JAPP'pr	 — — — — — .

	

— — A ^APP'p
:F'JIFv:	 I	 STTAPP'D. DELIVERABLES

SDD	 DE^" '	 SOM	 AIL, SSD	 TRANSFERED TO
 APP^D^/S7APP'-	 OPERATIONS, STTAPP lD_!^ _	 ^ — — — —	 ——	

^ ^^	 CCC

SUPPORTING	 I
I

I	 _ _

SD

M

hDSN STANDARD I
PRACTICES

I

SAID, 	 SDDl
I

(PREPARATION

OF,,,)	

I SSD]

STT %

FOP)5N SUBSYSTEM SOFTWARE, SUBSYSTEM FUNCTIONAL DESIGN PRECEDES THE SOFTWARE IMPLEMENTATION_

Figure 4-1• DSN Software Management ind Implemcntation Plata (SSD Software Design and Production)

1

f	 ^. fL	 I_

(3) A complete set of flowcharts (or equivalent), with explanatorti, narra-
tive provided on a module-by-module basis.

(4) The above items documented in a survivable, maintainable form,
since they will be used throughout the operational life of the program.
The level of detail and degree of format formality will be specified
in the program Software Requirements Document. Standard classes
of detail and format are defined in Reference 1.

4-3

'T_^il"` J T`^

SECTION IT

SSD CONTENTS

A. CONTENT OUTLINE

A typical SSD content outline is shown in Figure 4-2, along with an identi-
fication of personnel responsible for preparing, concurring in, and approving
the SSD. Introductory information, which includes the program description, is
followed by program conventions and standards, environment and interfaces,
functional specifications, program specifications, and verification and test
information. Detailed supporting materials for program maintenance are
appended, such as sample input and output formats, memory maps, tables,
fi gures, and program listings.

The outline lists the major information items needed for specifying the
as-built program and for maintenance. For a given program, the actual con-
tencs may vary and will depend on the complexity of the program and its inter-
faces. However, the items in Figure 4-2 are considered to be basic and, in
most cases, always necessary. There may be items in the table of contents
other than those listed. The SRD may, for example, identify required additions
or exceptions. The information contained in the SSD should be sufficient to
allow the CSE to maintain the program in its operations environment.

For review information and criteria, refer to Section III, Paragraph B,
Review and Approval.

B. OUTLINE DISCUSSION

1.	 ircroduction

a. Item 1. 1, Purpose and Scope of SSD. The purpose of the SSD is
stated, along with the scope of coverage and a brief summery of major sections
of the document.

4-4

1.	 INTRODUCTIONTION
1.1 Purpose and Scope of SSD
1.2 General Program Description
1.3 Applicable Documents

Z. STANDARDS AND CONVENTIONS
3. ENVIR! '•^:,IENT AND INTERFACES

3.1 ardware Configuration and Interfaces
3.2 Software Environment and Interfaces

4. FUNCTIONAL SPECIFICATIONS
4,1 Functional Overview
4,2 Software Configuration and Modes of Operation
4. 3 Detailed Functional Specifications
4.4 Data Base Specifications

5. PROGRAM SPECIFICATIONS
5.1 Design Philosophy, Rationale, Approach, and Organization
5,2 Main Program Detailed Design
5. 3 Subroutine Detailed Designs
5.4 External Subroutine Interfaces
5. 5 Data Structure Definitions
5.6 Resource Allocation and Access

6. VERIFICATION AND TEST INFO^MATION 	
ORIGN L

PAGE IS
6.1 Correctness Test Criteria	 QUALITY

6.2 Summary Correctness
Test Results

7.	 APPENDIXES
7. 1 Glossary
7, 2 Formats

7.3 Memory Maps
7.4 Decision Log
7. 5 Other Tables and Figures
7.6 Source Code Listings

CSE (if different
from CDE)

Approval indicates readi-
ness for use in accep-
tance testing.

Figure 4-2, Typical Outline for a Software Specification Document

4-5

b. Item 1. 2, General Program Description. A general description of
the program is provided, including its purpose, the nature of the problem, the
type of data generated, processed, or transmitted, and the type of program,
such as real-time, interactive or batch, computational or data manipulation,
developmental or operational, etc. For perspective, the overall system,
applicable subsystem, and environment (hardware and software) in which the
program operates is identified. A data flow block diagram with narrative may
be useful here. Also, the general system/ subsystem/program operating mode
can be identified (e. g. , "int e r-rupt -driven, real--time, dedicated Operations
with 16 K-words core and 5m-byte disk"). Main system and program con-
straints imposed by requirements which influenced the design, such as core
size, timing constraints, etc. , should be identified.

C. Item 1. 3, Applicable Documents. All documents required to maintain
the program are listed along with the location of the document and/or how it is
obtained. Other appropriate reference documents may also be listed.

2. Standards and Conventions

Standards and conventions used in the SSD and in programming are pro-
vided. The source, any exceptions, and any project-unique standards that
apply are identified. If these are contained in standards documents, this
information may be referenced; standards identified in the SRD may be extracted
and inserted in the SSD. The categories of standards can include:

(a) Policy, practices, procedures
(b) Coding, including programming language, argument-passing, etc.
(c) Documentation conventions, nomenclature
(d) Correctness testing
(e) QA

3. Environment and Interfaces

This section provides a description of the system in which the program
operates and is an expansion of Section 1. 2. If information pertinent to this

4-6

section is contained in another document (e. g. , the SDD), the pertinent material

may be extracted and inserted or appended.

a. Item 3. 1, Hardware Configuration and Interfaces. A description of

the pertinent aspects of the hardware configuration in which the program oper-

ates is provided, including functional diagrams. All subsystem hardware, such

as computers, standard peripherals, and specially designed interface equip-

ment, should be identified and functionally described. All subsystem-unique,

nonstandard, or specialized input/output devices are identified, as well as the

pertinent functional characteristics of these devices, such as (1) control param-

eters, (2) response parameters, (3) interrupt generators, (4) interrupt pri-

ority, (5) timing parameters, etc. Special characteristics of the devices can

be identified, such as (1) use of non-ASCII codes, (2) line rates, (3) half duplex

or full duplex, (4) automatic control codes or other control characters. If
detailed descriptions of the hardware are needed, reference should be made to

the appropriate hardware documentation.

b. Item 3. 2, Software Environment and Interfaces. The o perating system

is described in terms of the facilities provided and any constraints which it may

have imposed on the program design. Key elements considered to be part of

the system software are identified. Program interaction with the operating

system and how it utilizes the operating system facilities in meeting the pro-

gram interfaces and interfaces with other programs are described or refer-

enced. All programs which provide essential data to, or receive essential

data from the program are identified, including any special data transfer char-

acteristics or special software that may be involved. Constraints such as

buffering, queueing, timing, or protocol requirements which are imposed by

these interfaces are stated; the parameters for data messages and the char-

acteristics of data control parameters associated with the data are defined.

Typical data parameters which may be defined are (1) input and output formats,

(2) syntax, (3) message lengths and frequency, (4) device assignment, (5) spe-
cial considerations such as on - line vs. off - line printing/display, (6) data units,
and (7) data ranges.

4-7

t 	 ^	 i	 1	 - 1	 I	 1 i	
^^	 i	 h	 .r

4. Functional Specifications

This section specifies the functional characteristics of the software.

Functional specifications which have been appropriately described in another

document (e. g., the SDD) may be incorporated or referenced if under Engi-

neering Change Control. The content of the Functional Specifications Section

need not be restricted to the major topics outlined below. Additional para-

graphs should be included if required to adequately state a subsystem's func-

tional specifications. This section may become lengthy, particularly with

respect to paragraph 4. 3, which requires the program functional behavior to

be specified in detail. If lengthy, the section may be published as a separate

volume of the SSD.

a. Item 4. 1, Functional Overview. A discussion of the overall functional

behavior of the program, the principal modes of operation, the different soft-

ware configurations (if any), and the major data flows are described. The

intent is to prepare the reader for the detailed functional specifications to

follow.

b. Item 4. 2, Software Configuration and Modes of Operation. For each

hardware configuration described in Paragraph 3. 1, the various program

operating modes (where the processing is selected to be only a certain partial	
tiry

set of the full capabilities of the configuration) are identified. If the modes

have functional submodes, these should be described hierarchically; that is,

by expanding the detail of key parts of the main mode. The modes and sub-

modes are named and numbered to allow convenient reference to them as may

be needed throughout the SSD. The events, conditions, and computations which?

control transitions between modes are described. State diagrams (see Section

IV of Chapter 3) and decision tables (described in Reference 1) can be used to

illustrate and express mode-transition logic and to identify major functions

within modes.

C. Item 4. 3, Detailed Functional Specifications. The as-built program

functional behavior is specified using hierarchically refined input. processing,

and output specifications beginning with the broad program end-to-end func-
	 72j

tional characteristics and proceeding to functional details. Inputs, processing

4-S

functions, and outputs can br- illustrated using one-page data flow diagrams and
standard documentation techniques. (Refer to Section IV of Chapter 3,) Spec-
ifications should cross-reference requirements identified in appropriate
requirements documents.

d. Item 4. 4, Data Base Specifications. Overall characteristics of the
data base, data files, and external data structures are specified, with emphasis
on program-unique access and utilization factors. Reference to applicable data
base documents is preferred for data base specifications and detail, including
descriptions of structure, how the data base or files are created and maintained,
or specifications of privacy, security, validation, and control parameters.

5. Program Specifications

A description and specification of the as-]guilt program design is presented
to provide information needed for program maintenance. The philosophy,
rationale, and design approach provide the basis for understanding the program
organization. Program procedural detail is then provided by specifying the
design in a top-down hierarchical manner.

a. Item 5. 1, Design Philosophy, Rationale, Approach, and Organization.

A brief description of the design philosophy, discipline, and approach taken in
the program implementation is presented, along with the rationale. The gen-
eral order of priorities adopted for completing the design is described only
if important to the maintenance of the program. Key factors which had major
influence on the design are listed, such as (1) program size and execution speed
constraints, (2) vulnerability to operator error, (3) vulnerability to system
errors, etc. This can be accompanied by a processing overview in terms of
the major algorithms and data structures. A description of the relationships
between functional specifications and individual program components is pre-
sented. Data flow between the program processing modules may be described
to illustrate how the program architecture accommodates functional require-
ments. Finally, the resulting program organization can be illustrated by a
tier chart or summary table of hierarchic modules.

4-9

'yl^T I .h" G	 y,`	 _lam `^,'

A deta

s prov

r chic

flowc
sign el

b. Item 5. 2, Main Program Detail Design. 	 iled algorithmic
description of the top-level main program design i 	 ided, including a con-
troI flowchart (Chart 1), or equivalent. The hiera 	 detailed design of the
main program is presented in nestings of one-pag e 	harts (or equivalent)
accompanied by narrative keyed to the separate de 	 ements.

A detai
rovide
is deta
ne-pag

eparat

d
C. Item 5. 3, Subroutine Detailed Designs. 	 led algorithmic descrip-

tion of the top-level design of each subroutine is p 	 , including a control
flowchart (Chart Si), or equivalent. The hierarch	 iled design of each
subroutine procedure is presented in nestings of o	 e flowcharts (or equiv-
alent), with accompanying narrative keyed to the s	 e design elements.

A de

dule or
de

ne, (2}
(4) con

cal equ
) input
vel con

detailed

d. Item 5. 4, External Subroutine Interfaces,	 scription of the inter-
faces and characteristics of each external (Xi) mo 	 subroutine called
by the program is provided or referenced. The d 	 ion typically can
include (1) the purpose and function of the subrouti 	 the calling sequence,
(3) all external programs and subroutines called, 	 mon data areas,
(5) operating system interface data, (6) mathemati 	 ations, if appropriate,
(7) execution speed and core usage, if relevant, (8	 /output, (9) restric-
tions on use, and (la) error messages. A high-le	 trol flowchart (Chart
Xi), or equivalent, may also be appropriate, but 	 internal information
is typically only referenced.

ernal
cation

e prog

s. Re
/ outpu

s, etc.

ality to
of the s

e. Item 5. 5, Data Structure Definitions. Int	 data structures are
described, including usage, formats, memory allo 	 s, links, etc. Data
structures may be identified with those parts of th 	 ram (levels of access)
Which operate on them.

f. Item 5. 6, Resource Allocation and Acces	 source allocations
made by the program are described, such as input 	 t devices, internal
core storage management, memory maps, buffer 	 In addition to the	 y'-
services provided by the resources, their availab'	 the program com-
ponents is described, as well as the management	 e resources by the
program.

4-la

6. Verification and Test Information

This section presents the test guidelines that were followed during the

production testing of the as-built design.

a. Item 6. 1, Correctness Test Criteria. The criteria used to assess

program correctness are described. Typically included are criteria for the

paths exercised, the required interfaces and stubs and their characteristics,

the data ranges used, the errors or overloads appl*Led, any special test code

used, such as path monitors or trace printers, and whether test code will be

removed or retained in the delivered program module. Criteria for test data

selection and for determining the validity of observed program responses may

be included. Existing test procedures used for this correctness testing may be

referenced.

b. Item 6. 2, Summary Correctness Test Results. Summaries of the

results of the correctness testing are presented to aid in correctness testing

during program maintenance.

7. Appendices

a. Item 7. 1, Glossary. Abbreviations, mnemonics, acronyms, and

other uniquely used terms contained in the SSD are listed alphanumerically,

along with their definitions or explanation of their use.

b. Item 7. 2, Formats. Graphic layouts or actual samples of program

formats are appended, including formats for inputs, outputs, data structures,

files, syntax rules, error messages, etc.

C. Item 7. 3, Memory Maps. Graphic descriptive layouts that show core

and disk storage allocation (i. e. , memory maps) are appended as applicable.

Also, descriptive information can be provided for program dynamic realloca-

tion, overlays, swapping, etc.

4-11

1	 ti?

d.. Item 7. 4, Decision Log. All major design decisions which may affect

later maintenance activities are listed and described.

e. Item. 7. 5, Other Tables and Figures. Other data of value for program

maintenance can be appended, such as Data Structure Definition Tables and

Resource Access Requirements Tables for presenting the data and resource

specifications, respectively (as described in Reference 1).

f. Item 7. 6, Source Code Listings. Unaltered copies of the computer

program listings are appended to provide ready access to the as-built source

code in support of Section 5 of the SSD. The listings should contain appro-

priate identification and should be suitable for use by Quality Assurance when

auditing the design vs code. If lengthy, this appendix may be a separate

volume of the SSD.

4.12

..^..^t^^.r....`.i^^^~"`^..,'^+rv^-^r^ce"=-+.i, 	w-'.^ :vc..^='^ .^-,^......'l^zS^,=-`-`°--^1="Y^ °	 ^w.. ^1 ,....::o .,.^.-,:^^.•^	 ^i-r,.. [^P-1 d^tx1^^^.-...i ^^ - J^. 	 1	 _„[

`i

	
l	 It	 1	 t	 _

SECTION III.
SSD PREPARATION, REVIEW, AND APPROVAL

A. PREPARATION GUIDELINES

1. Top-Down, Concurrent Generation

Detailed program implementation is governed by the requirements stated
in the SRD and based on the program architectural design presented in the SDD.
Standards and conventions identified in the SRD establish quality and workman-
ship guidelines for the project. The prelirrinary functional analysis presented
in the SDD is expanded in compliance with these standards and conventions to
form the functional and procedural specifications for the program. The pro-
gram is them implemented in steps and concurrently verified against the specifi-
cations and requirements.

The SSD contains the organized collection of key implementation notes and
records, produced concurrently with the above activities. Timely and useful
working documentation therefore is made available for project-wide use during
the implementation as well as throughout the operational life of the program.
When practical, the working documentation should be written in the format and
to the level of detail suitable for inc orpoT ation in the SSD, thus minimizing
documentation costs.

'=.

	

	 a. Standards and Conventions. The standards and conventions used
during the implementation are provided for later maintenance activities.
"Standards" is defined as criteria for measuring the quality of products and
processes on a broad basis (i. e. , industry-wide, company-wide, organization-
wide). Example: This Standard Practice. "Conventions" is defined as criteria
governing products and activities of hierarchically smaller units (projects,
systems, etc.) more oriemed to specific production tasks, and they specify
local policies for implementing the broad-based standards. Common to both,
however, is the property that through their application, a consistent

4-13

and acceptable end item will be produced. When. standards and conventions
a.re. 'doc'Umehte'd' elsewhere, they are referenced in the SSD, as applicable,
When applicable standards . and conventions are not documented elsewhere,
they are defined in the SSD as needed for maintenance.

b. Functional Specifications. The functional descriptions from the archi-
tectural design are refined during program design. The preliminary functional
description and graphics contained in the SDD may be used as a starting point.
Employing top-down design methods, the external details are typically defined
first, followed by specification of the program input, processing, and output
characteristics, with progressing levels of detail as the design proceeds.
Hierarchy plus Input-Process-Output diagrams with accompanying narrative,
as discussed in Chapter 3, can be used as a documentation tool.

C. Program Specifications (Charts and Narrative). The program algo-
rithmic design is presented in the SSD by the use of flowcharts or an equivalent
format that allows explanatory narrative to be keyed to the separate design
elements. Guidelines for flowcharting and preparing accompanying flowchart
narrative are provided in Section IV of this document. If a different but equiv-
alent format is used, then the applicable set of conventions or guidelines used
must be included or referenced in the SSD. When a different format is to be
used, the format will normally be identified in the SRD. The basic require-
ment is that the documentation must be sufficient for coding and for compre-
hensive use by the CSE.

d. Correctness Tests. The following guidelines can be used to achieve
a high degree of confidence in the correctness of a build aggregated for testing:

(1) Test the module or group of modules in a build under test using
the previously written and tested part of the program, incorpo-
rating stubs of dumm y code for incomplete submodules. Path
monitors can be included to trace the flow.

(2) Traverse each flowline at least once.

4-14

(3) Run, the program, with stubs, using variations and modifications
to the input to cover typical and alternative cases and perhaps
some random ones.

(4) Judge for correctness froze path monitoring information.
(5) Work from the Software Operator's Manual being developed

concurrently.

Actual test records are typically annotated with handwritten notes and kept with
other project notes until transfer. This provides diagnostic and status informa-
tion throughout the implementation while not requiring extensive correctness
test descriptions or reports.

2. Quality As sur anc n

Independent code auditing as an ongoing process throughout the implementa-
tion is recognized as essential for assuring that acceptable software products
are submitted for timely transfer and delivery to operations. Therefore,
module-by-module or build-by-build 'inspections are performed throughout the
implementation, followed by a final audit and certification of the deliverables
prior to transfer to operations.

The CDE provides Quality Assurance with all information needed, such as
application standards, conventions, documentation, and listings that are pro-
duced concurrently with the implementation. QA then compares the source
code with flowcharts, narrative descriptions, standards, and conventions in
order to uncover discrepancies between the different software design descrip-
tions. The auditing process is generally performed as follows: First prelim-
inary audits or inspections are performed by QA on a module -by -mod«le or
build basis, immediately as code and documentation become available. Prior
to transfer, QA performs a final audit of the SSD and other software deliver-
ables as requested, to certify overall conformance with the applicable standards
or to identify problems of nonconformity. A QA signature is required on the
Software Transfer Agreement (see Figure 6-7 of Chapter 6); therefore, early
detection of problems by QA and timely correction by the CDE are necessary
to avoid delivery delays and/or critical rework.

4-15
^'I s .r.ilY,^a is i^^?i
op 1-1 0OR QUALITY

IQ

C^

B. REVIEW AND APPROVAL

The SSD outline is submitted, along with other program and test items, for

management review and concurrence at the program High-Level Design Review

held early in the software design and production phase. At the end of the pro-

duction phase, the completed SSD is approved by the GSE and then submitted for

general review at the Acceptance Readiness Review, The following paragraphs

describe typical SSD-related subjects covered during these reviews.

1. High-Level Design Review

a. Agenda. SSD-related items for the High-Level Design Review typically

include:

(1) Any carry-over items from the Architectural Design Review

affecting program design and construction.

(2) SSD Content Outline (draft).

(3) Present SSD production plans and coding status (if different from

the published, approved plans, work breakdown structure, and

schedules contained in the SDD).

(4) Identification of any real or anticipated differences between the

implemented capability and the SRD requirements, with specific

reference to the list of Competing Characteristics contained in

the SRD.

(5) Other pertinent SSD items, problems, and concerns.

b. Evaluation Criteria. The following criteria can be used during the

High-Level Design Review as aids for assessing the SSD production progress,

the completeness of the proposed SSD, and the soundness of the production

plan. There should be evidence that:

(1) The completed high-level design provides sufficient information

to assess its correctness and to continue the design and con-

struction of lower-level modules.

4-16

47- t_ 1 - [-^'^7
L^_17 - L	 L

(2) The SSE, COE, QA Representative, and others have sufficient
visibility ancl access to in-progress implementation inforrila.tion.
and c onc ,.irrent documentation to effectively participate in their
inspection, audit, and use as the program evolves,

(3) The near-term schedules and executable builds, identified for
correctness testing, reflect present progress and experience.

(4) The QA plan accommodates code audits on a module-by-module
basis.

(5) The module code reflects the exact design as presented on the
approved module flowchart (or equivalent).

(6) The flowchart (or equivalent) and narrative are adequate for the
later sustaining activity.

(7) Standards and conventions are being adhered to.

C. Concurrence. Concurrence to proceed with the implementation of the
program and production of the deliverable documentation is based on the evalua-
tion of the program status and implementation plan made at the High-Level
Design Review. In soiree cases, the concurrence may be "conditional," depend-
ing upon the solution to significant problems.

Z. Acceptance Readiness Review

a. Agenda. SSD-related items for the Acceptance Readiness Review
typically include:

(1) Any carryover items concerning the code and SSD from the High-
Level Design Review.

(2) Implementation status and deficiencies affecting program con-
struction and documentation.

(3) Deficiency workarounds and completion dates.
(4) QA inspection status.
(5) Code and SSD capabilities and concerns related to support of

acceptance testing.
(6) Other pertinent concerns.

4-17

^___I__ .[- -- .1-1^L

b. Acceptance Criteria. The following SSD-related criteria can be used
as aicis in determining readiness for acceptance testing. There should be
evidence that:

(1) The SSD is sufficiently complete to allow effective authorized pro-
gram modifications during acceptance testing op,,rati.ons,

(2) The SSD will adequately support the program in its operational
environment.

(3) The SSD can support acceptance testing (with authorized work-
arounds, patches, etc).

(4) The SSD has been reviewed and approved by the GSE,

C. Approval. The SSD is approved prior to the Acceptance Readiness
Review by the GSE. Other approvals that may be required (line manal.;ements,
etc.) are specified in the SRD. Approval indicates that the SSD can support
acceptance testing.

4-18

F	
,,:	 I..	 t ...,_LL•^,,.I'._"'' 	 :,f•^~..i	 it

SECTION IV
PREPARATION AIDS

A. SSD IDENTIFICATION AND FORMAT

1. SSD Identification

The SSD is given a document identification number by prefixing "SSD" to
the program number assigned by the Program Libary. The document number
appears at the top center of each page of the document.

Z. Format

The SSD is block-formatted and sectionalized, with each section identified
by consecutive arabic numerals. The . pages, figures, and page-size tables are
numbered consecutively and prefixed by the section number within each section.
Small tables may be inserted within the running text and are not necessarily
numbered. However, if other parts of the SSD refer to the table, the table
should be numbered and placed at the top or bottom of the page. Paragraphs
are numbered within sections using decimalized numbers. Appendices are
identified alphabetically. Formatting within the appendixes can vary to allow
existing material to be incorporated without modification. Appendices do not
require an introductory separator page.

A. Decimal Format as shown in Figure 4-3 can serve as a guideline for
formatting the SSD. The following exceptions are noted,

{a) Illustrations or figures are included in the running text or on the
immediate next page to their first reference.

(b) An appendix should begin on its first page (i. e. , an introductory
separator page is not needed).

(c) Flowcharts (or their equivalent) and accompanying narrative
should conform to the example formats contained in this appendix.

4-19

821-9

The GCF high-speed data system shall be used for JPL/DSCC
communications. High-speed data transmissions shall normally be limited
to exception reporting. All communications shall be at scheduled time
periods of not greater than 1-hour duration, at least on a weekly basis.

2.2	 PERFORMANCE PARAMETERS AND DESIGN CONSTRAINTS

Implementation of the CCA Asaemblies shall meet the perfor-
mance requirements and design constraints specified below:

(1) Data base organization shall minimize redundancy
of data and eliminate duplication or data records
(file integration).

(2) Data base organization shall allow efficient data
access by the use of the MHASIC user programming
language.

(3) Data base structure shall allow efficient data record
access from more than one type of storage medium
(e.g., disk or magnetic tape storage).

(N)	 Data base file content shall support, as a minimum,
the following managerial activities:

(a) Life cycle studies of DSN Systems (e.g_ DSN
Tracking System).

(b) DSN systems configuration control to a
subassembly/replaceable-module level.

(c) DSN schedule analysis and review.

(d) DSH budget data analysis and review.

(e) DSN documentation status reviews.

(f) Local DSCC/JAL record keeping and analysis.

(g) Quality assurance record keeping and analysis.

(h) Facilities record keeping and analysis.

(i) Logistics record keeping and analysis.

(J)	 Mission-readiness analysis.

(5)	 Data entry device locations shall be convenient to
the normal working stations of users supplying trans-
action data (local data entry).

2-2

Figure 4-3. Sample of Standard Decimal Format

:=ii v Ei i PAGE IS
OF POOR OUALITY

4-20

=If'; k'. _':., PAGE IS

OP Pi'_! ti: QUALI7

Figures 4-3 through 4-5 are examples of typical page formatting. Figure

4-6 is an example of narrative that accompanies a flowchart (or equivalent).

A suitable SSD flowchart using standard symbols with unique symbol identifica-

tion is illustrated in Figure 4-7.

B. MODULE FLOWCHARTING AND DOCUMENTING GUIDELINES

1. Guidelines for Flowcharting

Flowchart material included in the SSD should conform to the following:

(a) The use of flowchart symbols is limited to those illustrated in Para-

graph C of this section. The symbols are based on ANSI Standard

X3. 5 but have been expanded where necessary to conform to the needs

of structured programming. Also included are conventions for extra-

normal terminations and real-time interrupt configurations. No other

configurations should be used.

(b) Symbols should not be varied in proportion. Symbol text should be

brief but exact; narrative material accompanying each flowchart

should be used to extend, explain, and expand upon the symbol function.

(c) Identification, information should be placed in the upper right corner of

each flowchart. The following configuration is suggested:

Chart Number	 (decimal number)

Module Name

Date	 (date prepared)

Page	 of	 (identifies the number of narrative

and flowchart pages for the above

module)

(d) A control block should be included on each flowchart. The configura-

tion below is suggested:

— TAt. In LhaLa date

Design, r

Che. ker

Pro)	 Engr

^ ,c,

4-21

'A: '9 	 f

921-9

Figure 1.1. Data Acquisition Functional Operation
of Configuration Control and Audit
Assembly (Continuation 1)

Information transfers between CCA Assemblies are accomplished by uti-
lizing the GCF High-Speed Data Subsystem and are effected at scheduled
time periods on a noninterference basis with normal HSD traffic during
DSH tracking opeiations.

NOTE

information received by a CCA Assembly via the
USD communications link consists of exception
reports 	 exceptions to Deep Space Sta-
tion (DSS) 61 planned configuration for Viking
support), selected contents of a data base, at,
file/file record updates to designated data
base files.

All HSD block transfers are error-checked (including a
black outage check) by the receiving CCA Assembly, and retransmission
is requested for any data blacks found to be missing, out of sequencc,
or in error. The data base information content of the error-free HSD
blacks is extracted, identified, and then stared according to data
type (exceptions, updates, requested contents) for later inclusion
Into the data base.

Data base information acquired from local sources consists
of transaction inputs from local CCA users. Transactions conform to
an established format, determined by the identification (ID) of the
file and/or user ID. As an example, a stockroom clerk has issued a
number of units of expendable stock and desires to record his transac-
tion for data base entry. The stockroom clerk activates a CCA Assembly
data terminal and types in a standard message that identifies the user,
the dstst base file (logistics). and the operating made (transaction
entry). The appropriate software module then interacts with the 5tock-

1.-3

Figure 4-4. Sample of Standard for Placement of In-Text Figure and Note 	 +^

4-2Z

ORIGINAL PAGE IS
or J_'00R

Nye TUAL Illy

821-4

APPENDIX A

PROGRAM BUILD AND ACCEPTANCE TEST SCHEDULING
FOR DSN SUBSYSTEM SOFTWARE

Program build and acceptance test milestones for VSN sub-
ny ,j'rm noel ware are given in -able A-1; software deveiopment guidelines
.vmi prartices are described in Reference A-1; and a sample of a iemon-
alratlon program size and development-time listing is given in rable
A-2. Progress within each level of the design can be tracked by the
use of the program build milestones. At the completion of the last
build, the program is complete, correct, and ready for final acceptance
testing. The planning and preparation for acceptance testing is per-
formed in parallel with the program Implementation. Software implemen-
tation is complete at transfer; the remaining milestones pertain, if
applicable, to the total subsystem acceptance, of which the software
Is an active part.

Table A- I . Program Build and Acceptance Test Milestones
for USN Subsystem Software

Symbol	 Name	 Description

D	 Design Approved	 The program architectural design defi-
nition presented in the Software Defi-
nition Document (SDD) Is detailed in
terms of control logic in preparation
for coding and is checked ird° pendent-
ly. Approval of the logic design
authorizes the start of coding and
test designing, which may, however,
at the discretion of the CDE, have
started before formal design approval.

P	 Test Procedure	 The correctness test procedure and
Design Verified	 necessary test code for testing the

now build module against the approved
design are designed, assembled, and
verified. Test Procedure Design
Verified indicates that the test
procedure and associated teat code
are complete and available. Test
design should formally start at the
same time that module coding starts
(that is, after design approval).

A-1

Figure 4-5. Sample of Initial Page of an Appendix

4-23

1

rW^

1

ti5ik-J)oI-5466-51'	 Chart 4.4.1
FIND:;t1

151717)
pang 1 of

5. }(4.4.1) FI1IM, Procedure

On entry, an input line han been received into an input buffer via
KmSOIy (1114). The Li- e PoinTeR, I.\PTR, is positioned so as to extract the
first Character of the line.

This procedure discards leading blanks, if any, and looks for an `IBASIC
statement number. if a statement number Is present, the digits are con-
verted to an integer and placed in the Value variable V; the Class variable
C is set to 11 to indicate that Elie first symbol on the line I 	 in integer.
If a statement number is not present, C is set to 0, indicati,	 :he input
line does not have a statement number; V retains its entry value. See
Table 7.2.2.5 for further symbol class and value definitions.

On eht, C and V contain cite symbol Class and Value values above, the
Current Cliallacter variable, CCHR, holds the character which stopped the
number scan, and [tiPTR points to the next input character to be fetched. A
value of V-999,999 indicates the statement number is too large.

.i/VI7	 CET the first character from the current input line (see EMSGIS1Ct4)
Into CCHR.

CATegorLze CCHR. If blank, scan to and fetch the first non-blank.
)Set Character Class, CC, and Character Value, CV, as specified in
'fable 7.2.2,5. CC will bs 2 if CCHR is a digit, and CV will contain
its integer value.

.3-.4	 If the first non-blank character on a line is not a digit, set C to
record that no statement number is present, and exit.

.3-.5	 If the first non-blank character is a digit, set C to record that
a statement number is present. Initialize V to the first statement-
number digit as an integer, and set the loop structure flag Fi^D §L-Itch,
F\DSW, so as to iterate, bringing in digits.

.b-.14	 Bring in remaining digits and convert then into V as follows. After
GETting each character-

.7-.9	 If the character is blank, set F\'DSW to terminate the start, as the
statement number has now been extracted, and exit.

.101P4	 Otherwise, CATegorize the character seen, as in step 2 above.

.11-.12	 If not a digit, teminate the iteration, and exit.

.13IE143 If CCHR is a digit, ACCLNulace its value into V. Set F%DSW = 1 to
terminate the iteration if V exceeds 999,999.

.14	 Iretation continues until all digits have been processed or until
overflow was detected.

-59

Figure 4-6, Salrlple Flowchart Narrative Page

4-Z4

^ .

)y

° M .

2 ^ ^ ^ n 	 ^ ^

227 :

co

| \)

-,

d\
^ ƒ

^')

^

R7
C

q
^

A

^
Ul

^
(
m
A
,
w

@

§
m
^
M
^
m

^
@
e

%
@
K
CD

:3^^
6\^^

(e) A flowchart (Figure 4-7) should not exceed one 8-1/2" x 11 1 ' page

except in unusual circumstances, e. g. , when a single decision results
in multiple branches that will not fit on one page, and when the symbol-
striping convention only adds to confusion.

(f) Each chart is given a decimalized number that identifies its location
in the design hierarchy. All symbols on the chart are numbered con-
secutively. A possible exception is the numbering of collecting nodes.
The numbering system recommended is the "preorder traverse" (top
to bottom while observing left to right order; see Reference 1). The
symbol number is placed at the upper right of the symbol.

{g) Flowchart symbols that fall into the following two categories should
always be cross-referenced. The cross-reference identifier should
be located at the upper left of the symbol.

(1) Subroutines: A striped box representing a subroutine code seg-
ment which is given an alphanumeric level-1 identifier.

(2) Majox program segments: A striped box representing a major
code segment which is given a level-1 integer program identifier.

(h) When alpha characters are used in a subroutine chart identifier, the
submodule symbols of that chart are numbered by concatenating the
subroutine chart and symbol numbers. (Example: A striped symbol
given the number 5 on the level-1 flowchart, CAT/P4, would be P4. 5.)

(i) In striped modules, the mnemonic label is placed above the stripe with
the functional- description below.

(j) Unstriped process symbols should contain precise, functionally
unambiguous, and explicit specifications for coding as space permits.
Decision symbols are never striped.

(1c) For -decision symbols, branching to the left should always denote true
and to -the right fals e.

(1) Decision collecting ,nodes should be placed directly under the vertex
of the decision symbol.

(m) Only one arrowhead is used per flowline, at termjaation.

4-26

2. Guidelines for Module Documentation

In the guidelines which follow, the term "-nodule" refers to tl. ,a flowchart
(or equivalent) and its accompanying narrative. The flowchart narrative should
only extend, explain, and expand upon the flowcharted algorithm. In general,
documentation of each module should be sufficient to assess the correctness of
the module without referring to deeper levels of the design hierarchy
(see Figures 4--6 and 4-7).

(a) Identify each module page with the chart number, module name, date,
and page number.

(b) Prior to the description of the algorithm of the current module, state
all assumptions on inputs, common data, etc. , used by this -nodule.
Describe the module function and all outputs, actions, and constraints.

(c) Number and key the narrative continuity to the flowchart as shown in
Figure 4--7. Subroutines or major subprograms invoked may be dis-
tinguished, if desired, by attaching their cross-referencing level-1
chart niirnbers to the step number, as . n/Sm.

(d) The narrative need not include a description of every numbered symbol
on the chart, so long as the overall narrative is comprehensive.
Descriptions of symbol groupings or combinations of numbered steps
can be used when more meaningful.

(e) Do not include irrelevant or extraneous information. Be brief; don't
repeat information that exists on the flowchart. When required, use
references rather than repeating information appearing in parent
modules or in auxiliary tables. Functional detail given in a parent
module may be repeated when needed to

(1) Identify which subfunctions belong to which symbols on the current
flowchart, or

(2) Detail a given function into subftuxctions, or
(3) Clarify the current execution state (for example, by giving an

explanation of the meaning of a certain condition which has caused
entry to the current module, etc.).

4-27

c;

(f) Include statements which provide rationale, ass:alnptions, or other
clarifying explanations of the algorithm as needed to lend meaning and
readability to the text. Describing the intended significance of an
action (e. g. , setting or testing a flag) can save a reader much time
in understanding what that algorithm is supposed to do. It is important
to provide information for every loop, stating what assumptions are
valid during each iteration (i. e. , the loop invariant assertion).

(g) Specify control logic for a given module flowchart and narrative, so
that module control can be assessed for correctness with no aid other
than references to preceding levels of the design.

(1) All decisions are to be explicit and determinable within each
individual module; there should be no need to refer to deeper
levels of design or code.

(2) Unstriped symbols must have explicit values, conditions, and
reasons stated for all control flag settings.

(3) For striped symbols which alter one or more control flags for
the current module or a parent module, state the explicit values,
conditions, and reasons for all control flags altered.

(h) Document the functional characteristics of a module (flowchart and 	 e' r
narrative combined) to that point which permits an audit of the
algorithm of the current module against its stated function and an
assessment of functional correctness. Specifically,

(1) Unstriped symbols are to be described explicitly enough to permit
coding without functional ambiguity and without reference to
deeper levels of design or previously completed code,

(2) Interfaces of external subprograms that are not part of the current
design (vertically striped symbols) are to be described explicitly,
in sufficient detail that any subprogram satisfying the stated
interface characteristics will operate correctly in the current
design. References to documents that provide additional informa-
tion may be included, but explicit interface characteristics must
always be described in the SSD.

4--28

(3) Striped symbols of the current module which receive control flags

from the current and/or parent modules must have accompanying

narrative explaining all conditions, values, and actions for each

setting of the flags.

(4) Functional descriptions of striped symbols may be quite broad,

but must be complete, and tell what functions that submodule

performs. No function may appear in a submodule breakdown

at level n+l that is not a component function of that module as

described at level n.

(5) Module functions should be described using assertions defining

the computer state upon entry, the specific action that takes

place, and the relevant state of the computer upon exit. The

computer state is defined as the condition of all computer

resources accessible and pertinent to the program (memory,

files, interrupt, I/O channels, etc.).

C. FLOWCHARTING SYMBOLS AND USAGE (from Reference 1)

Flowchart symbols represent the functions of an information processing

system. These functions are input/output, processing, flow path and direc-

tion, and annotation. A basic symbol is established for each function and can

always be used to represent that function. Specialized symbols are established

for use in place of .^ basic symbol to give additional information.

The symbols tabulated and described below are derived from Reference 4,

"American National Standard Flowchart S ymbols and Their Usage in Information

Processing, " ANSI X3.5-1970. In some cases, the ANSI symbols and usage

have been modified to accommodate the needs of structured programming.

These flowchart symbols are presented in the following four tables.

Table	 Name

4-1	 Symbol Usage in Flowcharting

4-2	 Basic Flowchart Symbols

4-3	 Specialized 1/0 Flowchart Symbols

4-4	 Specialized Process Symbols

-,-;3

4--29

t

j

ORiGWAL PAGE IS
OF POOR QUALITY

-'able 4-1. Symbol Usage in Flowcharting (sheet 1)

Illustration U sage

Symbol Shape.	 The shapes of the symbols should
conform closely enough to those shown in Tables
4-2, 4-3, and 4-4 to preserve, the identifiable
characteristics of the symbol. 	 The curvature of
the lines and the angles formed by the lines may
vary slightly from those shown in this standard,
so long; as the symbol is easily recognized.

Symbol Size.	 Flowchart symbols are distinguished
on the basis of shape, proportion, and size in

_ relation to other symbols.	 Proportion of a given
symbol is defined by the rectangle in which that

legh!
symbol can be inscribed.	 Dimension and relative-
size of the rectangles are given with each symbol
by a pair of numbers (width: height).

The size of each symbol may vary, but the dimen-
sional ratio of each symbol shall be maintained.

Symbol Orientation.	 The orientation of each syrn-
bol on a flowchart should be the same as shown in
the tables of this section.	 Flo g=:line symbols
(either control, information, or data flow) may oe
dra-wri left-to-right, top-to-bottom, 	 right-to-left,
or bottom-to-top.	 The principal flo%% of control
is top-to-bottom.	 The principal flot.%- of informa-
tion or data should be depicted as left-to-right.
Avoid diagonal flo g;• lines except in special circum-
stance s.

Flov,, chart Text.	 Descriptive information %within
each symbol shall be presented so as to be read-
able from left-to-right, top-to-bottom, re gard-
less of the direction of flow outside the box.

Symbol Identification.	 The identifying number n
assigned to a symbol on the current flowchart
shall be placed above and to the right of its verti-
cal bisecl!.r.	 This number concatenated with the
chart identifier	 c

'
forms the unique symbol

Dewey-decimal identifier, c.n .	 If the symbol is
° striped and if there is no explicit symbol cross-

reference, then the number c.n becomes the
(implicit) cross-referencing chart number at the
next hierarchic level.

4-34

Y, ,• r

¢-s ^.' ^' 	 ^'	 r	 w, f	 ^	 a ^_ '	 N

I{tj
	

-

It
}	

IfL	
I`

{N, `r

_
'i'*`' }	 ran-.

M \.

ORIGINAL PAGE IS r^^z

OF POOR QUALM

Table 4-1. Symbol Usage in Flowcharting (sheet 2)

Illustration Usage

Lmbol Cross-Reference.	 The identifying chart
number or other cross-referencing element
shall be placed above the symbol and to the left
of its vertical bisector..	 When such notation

x appears, it takes precedence over the symbol
f identifier as the cross-referencing scheme,

Symbol Striping.	 Ahorizontal line is drawn within,
completely across, and near the top of the symbol,
and a reference to the detailed representation is
placed between that line and the top of the symbol.
The terminal symbol shall be used as the first and
last symbols of the detailed representation. 	 The
first terminal symbol contains the name reference
which also appears in the striped symbol.

" r The location of the detailed representation chart
is placed above and to the left (x) of the vertical
bisector of the striped symbol if thc, same striped
symbol appears more than once in the set of flow-
charts.	 Otherwise, the detailed representation
chart number is formed by prefixing the chart
number containing the striped symbol to the sym-

o" ch°,}e " bol number on that chart,	 c.n

In either case, the chart number is placed above
and to the left of the vertical bisector of the entry
terminal symbol.

Connector Identification.	 A common identifier,
such as an alphabetic character, number, or
mnemonic label (A) is placed within the connector
as shown.	 Additional cross-referencing for off-
page connectors shall be the page number, p ,

--►^ placed above and to the left of the vertical bisector
of the symbol.

°

(D- NOTE:	 The use of such connectors to off-page
continuations is discouraged except for
decision structures with too many
branches to fit on one page,

4-31

e^

Table 4-1. Symbol Usage in Flowcharting (sheet 3)

Illustration Usage

Multiple Control Flow Branches. 	 Multiple
branches from a symbol are restricted to the
decision symbol.	 The text within the symbol

two cri if

shall state the Explicit predicate or event
which causes the branch.

For each conditioned branch, each exiting flowline
is to be labeled by text which identifies the predi-
cate outcome.	 Normally, true exits to the left,
false to the right in binary decisions, multiple
branches exit in case-order from the left (if there

-am ore ihan P. . _,ins is an explicit case order).

Event--actuated branches need only annotate exit-
ing flowlines when there are multiple events de-
picted by a single decision symbol,

4--32

.r

011ICPTAL PAGE IS
OF POOR QUALITY

Table 4-2. Basic Flowchart Symbols (sheet 1)

Symbol and Dimensions Meaning(Width: Height)

Input:/Output Symbol.	 Represents an 1/0 function
or medium, such as making available information
for processing (input), or recording processed
information (output).

1:2/3

Process Symbol. 	 Represents any kind of process-
ing; for example, the process of executing a de-
fined operation or group of operations resulting
in a change in value, form, or location of infor-

1 : 2 /3 mation.

Decision Symbol.	 Represents a specific decision
or switch operation that determines which of a

<>
number of alternate paths is to be followed. 	 This
symbol may not be striped.

1.2/3

Comment, Annotation. 	 Used to enclose descrip-
tive comments or explanatory notes as clarifica-
tion.The broken line is connected to any symbol
where the annotation is meaningful.

1:2/3

Sequence, Control Flow. 	 Program sequence is
indicated by single-line arrows connecting sym-
bols.	 Arrowheads are necessary to show direc-
tion.	 Use only one arrowhead per flowline, at its
end.

lnfor .iation, Data Flow. 	 Flow of information or
data is indicated by double-line arrows connecting
symbols.	 Arrowheads are necessary to show
direction.	 Tails are optional, but recommended.

4-33
	 Nil

n

Table 4-2. Basic Flowchart Symbols (sheet 2)

Symbol and Dimension Meaning(Width: Height)

Loop Collecting Node.	 The small open circle
O represents the iteration point in a looping opera-

1:1

tion.

Decision Collecting Node.	 The small asterisked
® circle repreF-vnts the merging of alternative flow

1:1

paths in a program.

Begin Concurrent Mode, or For1c.	 Represents the
beginning of two or more concurrent (parallel or
interleaved) processes,

End Concurrent Mode, or Join. 	 Marks the end of
1 two or more concurrent (parallel or interleaved)

processes.

Terminal Symbol.	 Represents the entry or exit
point of a flowchart,

1:3/8

Interrupt Symbol,	 Represents the enabling (or
arming) of an interrupt which may initiate a con-
current (preemptive interleaved) process.	 The
process re-executes each time the event occurs
until both processes reach their join.	 The event

1:3/8 identifier (name) is placed in the terminal symbol.

4-34

ISPACE
OIL POM? QUALITY

Table 4-2. Basic Flowchart Symbols (sheet 3)

Symbol and Dimensions Meaning
(Width: Height)

Communication Link. 	 Represents a function in
which information is transmitted by a telecom-
munication link.	 Arrowheads are necessary to
show direction.	 Tails are optional, but recom-
mended.

Connectors.	 Out-connectors and in-connectors
for control and data flow.	 A set of two such con-
nectors represents a continued flow direction
when the flow is broken by any limitation of the
flowchart.	 The use of such connectors to off-
page continuations is discouraged except for
multiple decision structures with too many
branches to fit on one page.

Crossing of Flow Paths.	 Flowlines may cross;
this means they have no logical interrelation.
Crossing of flowlines is discouraged except
when absolutely necessary.

,,y^.

4-35

_T' I

Table 4-3. Spe6zlized 1/0 Flowchart Symbols (sheet l)

Symbol. and Dimensions Meaning(Width: Height)

Punched Card.	 Represents an ?/O operation in
which the medium is punched cards.

I:I/2

Deck or File of Cards.

5/4:2/3

On-Line _Storage. 	 Represents an 1/0 function
utilizing any type of on-line storage, such as
magnetic tape, drum, or disk.

1:2/3

Magnetic Tame.	 Represents an I/O function in

I:I

which the medium is magnetic tape.

Punched Tape.	 Represents an 1/0 function in
which the medium is paper tape.

1:1/2

Magnetic Drum. Represents an T/O function in
which the medium is a magnetic drum.

5/4:2/3

4-3b

i

ORIGINAL PAGE IS
OF POOR QUALITY

Table 4-3. Specialized 1/0 Flowchart Symbols (sheet 2)

Symbol and Dimensions Meaning(Width: Height)

Magnetic Disk.	 Represents an 1/0 function in
which the medium is a magnetic disk.

2/3:5/4

Gore.	 Represents an 1/0 function in which the
medium is core storage.

Document.	 Represents an 1/0 function in which
the medium is a document.	 It is used often to
denote output of hard--copy material on either
line printers or typewriter terminals.

1-2/3

Manual Input,	 Represents an input function in
which information is entered manually duringF-1 processing, such as by on-line keyboards,
switches, or pushbuttons.

1:1/2

Display.	 Represents an 1/0 function in which the
information is displayed for human use at the time
of processing by means of online indicators, video
devices, console printer, plotters, etc.

1:2/3

Off-Line Storages	 Represents the function of stor-
ing information off-line, regardless of the medium
on which the information is recorded.

1:

4.-37

0

Table 4-4. Specialized Process Symbols (sheet 1)

Symbol and Dimensions Meaning(Width: Height)

Striped Module.	 Represents a named module
(subprogram or subroutine) which has a more
detailed representation elsewhere in the same set
of flowcharts. 	 Similar horizontal striping con-

1:2/3 ventions apply to other symbols as well, when
they are detailed in this way.

External Module.	 Represents a named module
(subroutine) or logical unit which is not detailed
in this same set of flowcharts.	 Similar vertical
striping conventions apply to other symbols as

1:2/3 well, when they are detailed elsewhere.

Preparation_.	 Represents the preparation of a0 medium for processing, such as obtaining core
storage, declaring data structures, or initializing
variables.

1:2/3

Indexed Looping	 Represents loop initialization,
predicate testing, and update functions.	 Testing

-E always folloyvs every initialization and update.

1.4/9

Non-normal Exit.	 Represents the exit from a
process due to abnormal or paranormal events.

1:4/10

Manual Operation 	 Represents any off-li-.e pro-
cess geared to the speed of the human being with-
out using mechanical aid.

1:2/3

_Auxiliary Operation.	 Represents an off-line oper-
ation on equipment not under direct control of the
central processor.

1:1

4-38

CHAPTER 5

THE STANDARD PRACTICE FOR
THE SOFTWARE OPERATOR = S MANUAL

SECTION I

INTRODUCTION

A. PURPOSE OF THIS STANDARD PRACTICE

The Software Design and Production :Phase and its relationship to the

overall software implementation process are shown in Figure 5-1. As shown

in the figure, the Software Operator's Manual is formally initiated at the

High-Level Design Review and is completed and approved prior to the Accep-

tance Readiness Review,

The SOM is used throughout the Software Acceptance Testing phase, where

changes are under internal project control and authorized jointly by the CDE

and COE, Following transfer to operations, changes are implemented only by

approved Engineering Change Orders (EGO), with possible exceptions for

cosmetic or explanatory changes as recommended by the COE or as directed

by the DSN Change Control Board.

B. SCOPE OF SOFTWARE OPERATORS MANUAL

The SOM contains the information and instructions needed to execute the

program by an otherwise experienced operator without recourse to the imple-

menter for assistance. When required for specific programs, the SOM also

contains user information for program applications. The scope of coverage of

the SOM includes

(1) A complete set of operating instructions, procedures, and input

directives to execute the program in its operational environment to

obtain its full output capabi.lityr.

(2) When required, user instructions to fully utilize and understand the

program operation for broad application of its output.

5-1

	

PHASES-]	 SOFTWARE	 1	 SOFTWARE

	

i	
PLANNING AND	 DESIGN	 DESIGN AND

IifM	 !	 REQUIREMENT5	 i	 DEFINITION	 (PRODUCTION

SOFTWARE	 I	 POST-DELIVERY
ACCEPTANCE	 OPERATIONS AND
TESTING	 _	 MAINTENANCE

to

N

MAJOR	 ` I.	 IDkNTIFY	 r. I.	 DEFINE	 1.	 COMPLETE	 I.	 DEMONSTRATE	 1 1,	 OPERATE PROGRAM
ACTIVITY	 I + REOUIREMENTS FOR S/W 	 I • FUNCTIONS/FLOW	 • EXTERNAL SPEC	 • PROGRAM MEETS SRO	 I n PRODUCTION/SUPPORT

I • S/w FUNCTIONAL i • ARCHITECTURAL DESIGN	 n DETAIL DESIGN -DATA	 • PROGRAM AND MANUAL IN I 	 e UPDATE AS REQUIRED
1

I

TECHNICAL REQUIREMENTS
• OVERALL SCHEDULE, CO57

• SCOPE OF De SKS	 !!	 AND PROCEDURES	 OPERATIONS ENVIRONMENT
• COST AND SCHEDULE 	 t	 • CODE, TEST DESIGN, TEST I	 u DELIVERABLES MEET	 1 2.	 MAINTAIN DOCUMENTED DESIGN

• RESOURCES FOR NEXT PHASE 1 2.
2. SELECT CD; COE	 3.

SELECT SUPPORT PERSONNEL	 • REVIEWS	 STANDARDS	 • INSERT APPROVED CHANGESREVIEW AND APPROVE	 I	 • OPERATOR 'S MANUAL; SSD 1
3.3. REVIEW ANEDIAPPROVE 12. INITIATE ACCEPTANCE AND	 COMPL TEE ACCEPTANCE AND	 • MAINTAIN BENCHMARK TESTS

TRANSFER1	 TRANSFER PLANS; STT PREL 	 1
DESIGN	 II
REVIEWSCI	 1
[•DENOTES

REQUIREMENTS	 ARCHITECTURAL	 HIGH-LEVEL	 TRANSFER

•	 • -	 •	 ACCEPTANCE READINESS
Q	 Q	

Q___Q
rrr J^

MANDATORY)	
I

SOFTWARE

SOFTWARE REQUIREMENTS SOr -WARE	 SOFTWARE •	 SPECIFICATION

I	 DOCUMENT

MAJOR	 ,

DOCUMENTS	 I

DOCUMENT
SRD

DEFINITION
SDD	 SOM	 SSD	 STTDOCUMENT	 MANN L

MANUAL

SOFTWARE TEST AND
TRANSFER DOCUMENT

O	 I ICHANGE
CONTROL SRD ti--

T

SDDO — ._..._. _. — — — —4

UNDER

SSE)	 I ^/	 I ^' _ '^" ^ """' '"."' "" f
	 T

DSN CHANGE
CON ROL OARD

BY:	 STT	 I
r̂--ŷ

rb^--t	
Ir 	i I.•... _ — _.. — — .r	 «.» ...,.._....._	 .^ — _'ham'

--CDE (OR Pf) I +n
I_COGNIZANT] H L^ i

MANAGER F1i

I

MILESTONES 1

HIGH-LEVEL	 STT APP 'D; DELIVERABLES
SRD	 SDD	 DESIGNREVIEW	 SOM	 SSE,	 TRANSFERED TO
APP'D	 APP'D	 2	 3	 APPP 'D	 4	 5	 APP'D	 d OPERATIONS

SUPPORTING	 I I E
DSN STANDARD SOMs
PRACTICES I I-Ds

I

SODS	 1(PREPARATION
.

I
OF,,,)	 i I SSDs	 I

STT

*FOR DSN SUBSYSTEM SOFTWARE, SUBSYSTEM FUNCTIONAL DESIGN PRECEDES THE SOFTWARE IMPLEMENTATION.

Figure 5'-1. DSN Software Management and Implementation Plan (SOM Software Design and Production)

-	 cr	 ...Y,r.	 .^	 -	 .,•r:	 :{,	 ^^	 ^	 ^x<.	 ,rsl''k	 rd R;	 rr	 ,r'	 ^^..	 .?^'	 .s .r._	 .^.;::C	 ...i.:	 •.;t^

x.	 -- ^	 :'i 'I '•	 F.'	 'rl	 ^:°t:	 t	 ^t'	 '-`F^^^	 i	 k.....	 a. .	 ..v.v3,.rA Y3^_"^.?'•-.tii
3̂3 ^!^	 -	 _	 ..t ^s.i ^yJ^_ _ ..^_..i... ^, :.. t,.. :'^ -v JI 1.7. .v-t- .. .: ..t_ ^{r.a ..: :^]	 ._ -'i	 ___-_^J 11.	 _	 _„fi S^ _._^. ^	 -...•E l'i . _K..	 1^..,^ R. v,.s. .,1 .v...	 ..^. vs.

(3) Operating examples and operations information in living appendices
to allow easy updating, as required f om implementing approved
Engineering Change Orders,

(4) Self-teaching techniques for ease of use and training, such as use of
sample runs, self-explanatory error inessages and diagnostics,
narratives, etc.

(5) The above items, documented in a survivable, maintainable form,
since they ultimately become the most used and most valuable in
terms of program utility throughout the operational life of the program.
The level of detail and degree of format formality will be specified
in the program Software Requirements Document. Standard classes
of detail and categories r.)f format medium are defined in Reference 1.

5-3

mow.

SECTION II

SOM CONTENTS

A. CONTENT OUTLINE

A typical SOM content outline is shown in Figure 5-2, along with an identi-

fication of personnel responsible for preparing, concurring in, and approving

the SOM. Introductory information is followed by environmental considerations

and constraints, detailed operating instructions, and key sample runs. Other

helpful information or user instructions, as identified in the SRD, are also

included. Detailed supporting materials for program operations and use are

provided as appendices.

The outline lists the minimum content for program operations. For a

given program, the actual contents may vary and will depend on the complexity

of the program operations and interfaces. However, the sections and para-

graphs listed in Figure 5-2 are considered to be basic and, in almost all cases,

necessary. The software requirements document is used for establishing

exceptions or additions to the SOM content. At a minimum, the information

contained in the SOM should be sufficient to allow an experienced operator to

execute the program in its operational environment.

For review information and criteria, refer to Section. III, Paragraph B,

Review and Approval.

B. OUTLINE DISCUSSION

1. Introduction

a. Item, 1. 1, Purpose and Scope of SOM. The purpose of the SOM is

stated, along with the scope of coverage and a brief summary of the document.

Information in the SOM is presented for ease of use by operations personnel.

f

5-4

h`.

1.	 INTRODUCTION

1.1 Purpose and Scope of SOM

1.2 Overview of Program Operation

1.3 Applicable Documents

2.	 OPERATIONS ENVIRONMENT

2.1 Hardware Configuration

2.2 Software Configuration

2, 3 Operating Constraints

3.	 OPERATING INSTRUCTIONS

^. 1 Setup and Initialization

3. Z Control Instructions and Sequences

3.2. 1 Starting Run

3. 2. 2 Mode Control and Selection

3. Z. 3 Normal Termination

3. Z. 4 Aborting and Recovering Run

3.3 Emergency or Precautionary Procedures

4.	 SAMPLE OPERATIONS AND PROCEDURES

5.

6.

	4.1	 Baseline Sample Runs

(selected input, instruc-

tion set, and results)

	

4.2	 Sample Variations (Brief

case narratives with all

detail appended)

OTHER (User Information, Helpful

Observations, and Other SRD-

Specified Items)

APPENDIXES

Concurred and
Approved by: COE (and SE

fo r DSN
Subsystem
Software)

Note: Approval indicates readi-
ness for use in acceptance
testing.

	

6. 1	 Operator Inputs, Error Message, and Diagnostic Tables (if

required)

	6.2	 Other Tables and Figures

	

6.3	 Detailed Operating Examples (supports item i. 2 above)

Figure 5-2. Typical Outline for a Software Operator's Manual

5-5

5-6

^	 f	 .-6 'tL{ S/iX F^S^ ^k 4 '^*S' ^(wa.M-^	 'rir^ T

Therefore, it is appropriate to identify the operations organization, or possibly

even define the operator background or experience that was assumed for prepa-

ration of the SOM.

b. Item 1. 2, Overview of Program Operation. Overall program operating

characteristics are briefly described for operator orientation to detailed mate-

rial covered in the SOM. Key operator actions and responses can be identified,

where appropriate. Typical applications are described in general terms, with

emphasis on any special operational features or characteristics. Inputs and

outputs for the major operating modes can be identified. The use of a top--level.

"Operating" chart (Chart 0) and the use of "Operational State" diagrams can

facilitate descriptions. These charts and diagrams are described in

Reference 1.

C. Item 1. 3, Applicable Documents. All documents required to operate

the program are listed, along with the location of the document and/or how it

is obtained. Other appropriate reference documents may also be listed.

^l

2. Operations Environment
	

1 .

t^

This section of the SOM provides system information that is oriented 	 `, F '_^
toward the operating characteristics and special features involved and also 	 =
identifies any operating constraints imposed on the program by its operational 	 , T
environment.

I

a. Item 2. 1, Hardware Configuration. The system in which the program
will be installed is identified. Required peri pheral equipment that is accessible
to the operator is identified in terms of quantity, arrangement, unusual fea-
tures, and special conditions. If applicable, variations in hardware configura-
tions for different program operational modes are described. Special char 	

Y

acteristics of devices used for storage, input, output, transmission,
reproduction, etc., should be included as appropriate, as well as any special
checkout or calibration procedures.

4

i_

1	 I f

^i

i
.: s.

.., I'...	 µ«I.•-.T`^i^ wn-- i -...^ +t^c.	 -.. ^ r-^-1 - ^	 "'.^. A	 - .	 ^-."ri	 - ..	 4	 `T	 4.NF ^	 ^,,^^

b. Item 2. 2, Software Configuration. The general description of the

overall program operation contained in Section 1. 2 of the SOM is expanded to

provide operating detail on interfacing programs, routines, libraries, and any

special supporting software needed to operate the program. Also, any operator

interactions with special data base software or data management and informa-

tion systems software are described. Detail might include, for each, such

items as the identification of the storage medium, access protocol, the listing

of external files, registers, or buffers, or any other software operating detail

and/or constraints for interfacing with peripheral equipment such a ; disks,

drums, magnetic tapes, consoles, etc.

C. Item 2. 3, Operating Constraints. All operating constraints placed on

the equipment, software design, and operational environment are identified.

Any precautionary measures for operating the program are emphasized. Pre-

cautionary measures or fail-safe features of the equipment or software design

are identified for operator awareness, such as the use of default options (to

avoid operator type-ins for standard operations), the effect of illegal inputs,

the extent of diagnostics, etc.

3. Operating Instructions

Complete instructions are provided to set up and operate the program

effectively and to handle any emergency conditions that may arise during the

program operation. Emergency procedures are noted throughout, as appro-

priate. Also, important error diagnostics are discussed as they arise through-

out these operating sequences. If required, a composite list of all operator

inputs, error messages, and diagnostics, with an explanation of each item, are

appended.

a. Item 3. 1, Setup and Initialization.. The program setup, loading, and

initialization procedures are described. The operations environment informa-

tion contained in Section 2 may be referenced as appropriate. If different sys-

tenn, equipment, or program configurations are needed for different types of

5-7

0

i a

Jl,	 V^^ ^,, Y^'L11 	 _	 .	 ^.	 [+ 1. 1 A ._..^.-.....-_^... 	^....-..... 	 1....... _..1.^,._.L ._ J.l.._..	 -,_,.	 •r-^-.^..__... -.^,....,-L.__ ^ ;^

runs (such as pre-run checkout or calibration runs), then setup and initialization
information for each is provided. Critical error messages and operator
responses for setting up and initializing the program are provided,

b. Item 3. 2, Control Instructions and Sequences. Control instructions
and input directives are identified as to function, format, and operational char-
acteristics. Sufficient detail is provided to enable computer operating per-
sonael, and possibly others, to make effective use of the program, including
run start, run control, and termination of operations.

1) Run Start. All information needed by an operator for starting a
run is provided in step-by-step detail. Reference to Section 3. 1 of the SOM
can be made. Typical information that an operator needs for starting a run
include s

(a) The run identification and all required inputs.
(b) The starting sequence performed by the operator.
(c) Appropriate operator responses to error diagnostics

during; : tart-up.
(d) Helpful operating characteristics, such as the estimated

run time, any expected processing; delays, e±c.
(e) Cperator start-up precautionary or emergency procedures.

2) Run Control. Run control during processing is defined. 4v hen
applicable, control options are identified, along; with their purpose and opera-
tional sequence needed for their exeCUtion. Selection criteria and detailed
operating instructions required for each option or modr are provided. Decision

ibles, as described in Reference 1, may be used to present this detail.
Appropriate operator responses to error diagnostics during the runs are
desc ribs d.

3) Norjr:al Termination. Detailed operator information is provided
for normal termination of a run and inciudcs returning the program and all
files referenced, updated, or created to a secure state. Also, system sign-off
and cquipment shutdown procedures arcs described.

5-8

0

tILL

4) Premature Termination, Restart, Recovery. Procedures,
sequences, or individual commands for terminating a run prematurely at
selected operating points that provide restarting capability are identified; the
corresponding restart sequence is described in step-by-step detail. Also,
recovery procedures are described for aborted runs due to operator errors,
bad data, etc.

c, Item 3. 3, Emergency or Precautionary Procedures. This paragraph
contains a complete listing of all emergency or precautionary procedures,
with detailed information on when and how to involve them. This listing serves
as a readily accessible single source of all emergency procedures applicable
to operating the program.

4. Sample Operations and Procedures

a. Item 4. 1, BasA I ine Sample Runs. For each type of run or operational
mode, a sample run is provided that consists of a selected set of input, a
step-by-step sequence of operating instructions, and a ti._m,-11e of the output.
The intent is to provide sufficient information to allow a new (or occasional)
operator to become familiar with operating the program by performing or view-
ing practice runs.

b. Item. 4. 2, Sample Variations. Variations to the baseline sample runs
of Paragraph 4. 1 can be described to convey special features or unusual capa-
bilities of the software. Also, any required modification or new operating
characteristics that might arise later due to ECOs can then be included here.
Information should be brief and in narrative form, with all supporting detail
appended and referenced,

5. Other Information

The Software R-•quirements Document may require additional operator or
user information to be provided in the SOM. For example, information for
the broad use and understanding of the program and the application of its output

5-9

a

.r
i^

I - .- . 'J

may be required, along with SOM operator information on the effective execution
of the program. This other information, as identified in the SRD, is provided
in this paragraph; see Chapter 4 for guidelines an preparation of user-oriented
information. Any other operating information that can be helpful to the pro-
grarn operator or user in executing or utilizing the program is provided here.

V

5-10

=Z

Y11	 :I
l 4

SECTION III

SOM PREPARATION, REVIEW, AND APPROVAL

A. PREPARATION GUIDELINES

1. Top--Down, Concurrent SOM Generation

The CDE prepares the SOM in parallel and concurrently with the program

construction and correctness test activities. Emphasis is placed on delivering

complete and effective information for executing the program through all its

options and capabilities. Generally, as the program construction proceeds in

a top--down manner, operational information in greater and greater detail is

added. Therefore, the SOM is prepared by the CDE as a natural consequence

of this information becoming available (without requiring a significant "added

on" documentation effort), The SOM information should be adequate for running

the current program build and also for inspections, reviews, and audits.

Evolving program operating information is discussed below.

a. Environment. Effective program operation, whether during imple-

mentation or operations activities, depends heavily on adequate identification

and description of the environment in which the program is embedded. Empha •-

sis in the SOM is placed on the post-transfer operations environment. Any

temporary or permanent operating, constraints or limitations that the SOM must

Gccommodate are identified as they become known, and they are later verified

<-iuring acceptance testing,

b. Operator Inputs, Error Messages, and Diagnostics. Operator inputs,

error messages, and diagnostic information are collected and verified as the

 program implementation progresses on a build-by-build basis.

c. Program Constraints and Limitations. This information is similarly

collected, explained, and made available across the project throughout the

' implementation. Theoperating constraints that apply to the final prog ram are

-t

:'	 5 - I 1

.42 •..-

consolidated in Section Z (Operations Environment) of the SOM, but they should

also appear throughout the SOM, as appropriate, in the form of notes, precau-

tions, or emergency procedures.

d. Sample Operations. As maj ;: ,,r builds or capabilities are completed,

sample runs can be generated. Selected samples are included in Section 4

(Sample Operations and Procedures) of the SOM to provide for familiarization

and training in program operation.

e. User Information. Where user instructions are needed for a user to

fully and effectively utilize the program, these user instructions are to be

provided in Section 5 of the SOM (see Section IV, Paragraph B).

Z. Quality and Maintainability

As major builds are implemented top-down, complete and detailed oper-

ating instructions are prepared and provided for build-by-build correctness

testing. Thus test execution provides a verification of the operating instruc-

tions, as well as the build performance. The effects of any identified defi-

ciencies or workarounds (temporary or permanent) are noted and, if feasible,

corrected as soon as they become known.

B. REVIEW AND APPROVAL

The outlined SOM is reviewed, along with other program and test items,

for management concurrence at the program Higlr-Level Design Review held

early in the software design and production phase. At the end of the production

phase, the completed SOM is approved by the COE and then submitted for

general review at the Acceptance Readiness Review. The following paragraphs

describe typical SOM-related subjects covered during these reviews.

}

f

t

U L_.

1. High-Level Design Review

a. Agenda. SOM-related items for the High-Level Design Review

typically include

(1) Any carry-over items from the Architectural Design Review

affecting program operability.

(2) SOM Content Outline (draft).

(3) Present SOM production plans (if different from the published,

approved plans, work breakdown structure, and schedules

contained in the SDD).

(4) Identification of differences between the "implementation" and

"post-transfer operational" environments and interfaces that

the SOM generation and verification process must accommodate.

(5) Other pertinent SOM items, problems, and concerns.

b. Evaluation Criteria. The following criteria can be used during the

High-Level Design Review to assess the adequacy of the proposed SOM and

the soundness of its production .,Ian. There should be evidence that

(1) The SSE, COE, QA Representative, and others have sufficient

visibility into the SOM development.

(2) Near-term schedules for the production of the SOM reflect

present progress and experience.

(3) The SOM plan incorperates the SOM-related requiremetJs

contained in the SRD, if any.

(4) The standard DSN documentation preparation and formatting

conventions are being used as described in Chapter 4.

c. Concurrence. Concurrence to proceed with the implementation of

the program and production of the deliverable documentation is based on the

evaluation of the program status and implementation plan made at the High-

Level Design Review. In some cases, the concurrence may be "conditional,

depending upon the solution to significant problems.

a^:

5-13

1	 V	 L-	 `^

2. Acceptance Readiness Review

a, Agenda. SOM-related items for the Acceptance Readiness Review

typically include

(1) Any carry-over items concerning the SOM from the High-Level

Design Review.

(2) SOM status and present deficiencies affecting program

operations.

(3) SOM deficiency workarounds and completion dates.

(4) Anticipated SOM-related limitations of a permanent nature.

(5) SOM QA inspection status, if applicable.

(6) Other pertinent concerns.

b. Acceptance Criteria. The following SOM-related criteria can be used

as aids in determining readiness for acceptance testing. There should be

evidence that

(1) The SOM is complete with a full set of instructions, directives,

and procedures, along with needed operating information.

(2) Using only the SOM, an operator can execute the program in

its operational environment; operator workarounds, as needed,

appear to be adequate.

(3) All nons elf -explanatory diagnostics and error messages are

explained adequately in the SOM.

(4) All known constraints and limitations are covered in the SOM.

(5) All emergency conditions and procedures are adequately noted,

flagged, or otherwise emphasized.

(6) The SOM is self-teaching and easy to use.

(7) The SOM can be acceptance tested, as the program itself is

undergoing acceptance testing.

(8) The SOM has been reviewed and concurred with by the COE

(and SE for DSN Subsystem Software).

5-14

±Gv;
t

^), 	 . 	 ^	 _ 	 >	 \	 z.w >:.	
^ / 	

/ «.,	 < .. > a :2 ^: \^ x /: r\\: ; ^ :^ $z^ > ,e» «^s,.v ..:. . z.ee w«. 	 >	 33.	 ..	 ., .. r-
9.^\.	 –	 ^ ^ `~~ ~ ^~^ ^ a —. 	 ^^•m^ _ ..m y/^ ^:^°a3^2^ ^ ?\ \,

C. A2proval. The SOM is approved prior to the Acceptance Readiness

Review by the CO £ (and also by the SE for DSN Subsystem Software); other

required approvals (/=e managements, etc.)are specified inthe SRD, as

required. Approval indicates tha the SOM can support acceptance testing.

Requested changes resulting from acceptance testing activities require the

Concurrence of both the C o£ and C O3 (and 3£ for DSN Subsystem Software).

^

^

^

:
A

^ }
^ }

^ !

5-I5

=5 J'̂

- ^ \
^

^ Gy

^ q

^ j \^ 2 &
2 2 ^^ g

< w:^K

/\§^\

Lti

SECTION IV
PREPARATION AIDS

A. SOM FORMATTING CONVENTIONS

The CDE is directed to Chapter 4 for detailed information on formatting
conventions to be used for SOMs (as adopted for the other surviving DSN docu-
ments —the SS_] and STT). The SOM is given an identification number by
prefixing "SOM" to the program number that was assigned by the DSN Program
Library.

B. GUIDELINES FOR SUPPLEMENTARY USER INSTRUCTIONS

User instructions are needed in addition to operational instructions when-
ever the user of a program is not the operator of the program, and perhaps at
other times as well. The user generates or prepares data (or causes them to
be generated or prepared), submits them (or has them submitted.) for opera-
tions (either conversationally or in batch), and uses the output (if any) for an
intended task, including the task of gaining insight into a problem. In cases
where a user causes a data base to be updated, that output may not be imme-
diate, or may not even be the result of operating the same program. Typical
items needed in these instances are summarized below. Further detail on
user instructions and information is presented in Reference 1.

I. Description and Background

This section describes the program usage, perhaps where it fits into a
software system, what major functions are performed, how much runs cost
(dollars or execution time), major limitations, and other items of a background
nature.

ti
r

v,

5-lb

Z. Program Capabilities and Use

This possibly lengthy section describes how to prepare data or instructions
to "operations" in order to apply the program to problems which the program
can handle, or to achieve a desired output. This includes such information as

(a) Acceptable input data units.
(b) Features of the program, processing available, output data generated.
(c) Modf ; of operation.
(d) Interpretation of results.
(e) Typical application guidelines.
(f) Restrictions or limitations on applications.
(g) How to diagnose errors in runs.

3. Operations Interface

This section describes the user-operations protocols necessary to submit
input, run the program, and receive the output. Included are such things as

(a) Initial protocols (account codeE, passwords, file assignments, etc.).
(b) Control data and selection of oa:tlons.
(c) Source data creation/ input /formatting/upda.te.
(d) Output handling (e. g., routing).
(e) Error handling.
(f) Interrupt/ recovery.
(g) Turn-around time.
(h) Interactive vs batch protocols.

r. Theory of Operations

This section, when needed, would include not the theory of the software
itself but rather the theory behind the model or "black box" specification that
the software implements. This would be the case, for example, for programs: .
implementing a management science model. However, if the method of solution
is necessary o understand the numerical accura cy, then this should be included. `Y	 Y,

5--17r

' ^

CHAPTER 6
THE STANDARD PRACTICE FOR

THE SOFTWARE TEST AND TRANSFER DOCUMENT

SECTION I
INTRODUCTION

A. PURPOSE OF THIS STANDARD PRACTICE

The Software Acceptance Testing Phase and its relationship to the overall
software implementation process are shown in Figure 6- 1. As shown in the
figure, the acceptance testing and transfer activities are initiated after the
Software Definition Document is approved and continue in parallel with the pro-
gram construction activities. Program as-built and operating information is
documented concurrently with the program construction itself in the Software
Specification Document and in the Software Operator's Manual. STT documenta-
tion of the program acceptance, transfer, and as-tested information is addressed
further in this chapter.

B. SCOPE OF SOFTWARE TEST AND TRANSFER DOCUMENTS

Acceptance test planning and proposed tests are documented in a prelim-
inary STT and reviewed at the Acceptance Readiness Review prior to the start
of formal acceptance testing. Throughout acceptance testing, the STT is
updated with actual test conditions and test results. Following acceptance
teGt'ing, the STT, reflecting the as--tested program and containing key accep-
tance test information, is approved.

An agreement on the acceptability and conditions of all software deliver-
ables is then documented in a Software Transfer Agreement. Upon approval
of the Transfer Agreemeat; the software products are transferred from
implementation status to operational status; the responsibility for and custody
of the software transfers from the Implementing Organization to the Operations
Organization, with changes implemented only by approved Engineering Change
Orders. The implementation project is then complete.

6-1

PHASES * f

ITEM

SOFTWARE	 SOFTWARE	 I	 SOFTWARE	 SOFTWARE	 POST-DELIVERY
PLANNING
REQUIREMENTS	 I	 DEFINITION	 DION	 I	 PRO UCTION	 TESTING

 ACCEPTANCE
	(

MAINTENANCE

MAJOR	 !. IDENTIFY	 I.	 DEFINE	 f I.	 COMPLETE	 E I.	 DEMONSTRATE	 '	 1.	 OPERATE PROGRA11
ACTIVITY n REQUIREMENTS FOR SW	 s FUNCTIONS/FLOW	 1	 • EXTERNAL SPEC	 • PROGRAM MEETS $RD	 JJ	 • PRODUCTION/SUPPORT

! s SW FUNCTIONAL / 	 n ARCHITECTURAL DESIGN	 s DETAIL DESIGN -DATA	 ,	 e PROGRAM AND MANUAL IN I	 s UPDATE AS REQUIRED
I
I

TECHNICAL REQUIREMENTS I	 e SCOPE OF TASKS	 AND PROCEDURES	 OPERATIONS ENVIRONMENT
a OVERALL SCHEDULE, COST	 • COST AND SCHEDULE	 • CODE, TEST DESIGN, TEST	 • DELIVERABLES MEET 	 f 2.	 MAINTAIN DOCUMENTED DESIGN

1
f 2.

s RESOURCES FOR NEXT PHASE	 2. SELECT SUPPORT PERSONNEL	 • REVIEWS	 STANDARDS
SELECT CDE; IDENTIFY COE 3. REVIEW AND APPROVE	 • OPERATOR'S MANUAL; SSE) 12, SELECT CSE 	 I	 • INSERT APPROVED CHANGES

3. REVIEW AND APPROVE	 2. INITIATE ACCEPTANCE AND	 3. COMPLETE ACCEPTANCE AND	 • MAINTAIN BENCHMARK TESTS1

I	 I	 TRANSFER PLANS; STT, PREL	 I	
TRANSFER	 f

DESIGN
REVIEWS	 I
(• DENOTES

REQUIREMENTS	 ARCHITECTURAL 	 HIGH–LEVEL	 TRANSFER
w	 • – --	 •^

Q	
Q _..Q __ _ _^ ACCEPTANCE READINESS

MANDATORY)
f

I
SOFTWARE

SOFTWARE REQUIREMENTS	 f	 SOFTWARE	 f	 SOFTWARE	
SPECIFICATION
DOCUMENT

MAJOR	 !
DOCUMENTS

DOCUMENT	 DEFINITION	 *
S

SRD	 DOCUMENT	 SpD	
MANUAL

	
SOM I SSD	 STT

J

IANDSOFTWARE TEST
TRANSFER DOCUMENT

^II
CHANGE

I	 {{
F	 !	 1

CONTROL	 I
SRD [

I
I	 +

SOD J .— — — _._. — — — — I	 j
ON

SOM I IUNDER
N

5SO
r	 i	 DSN CHANGE

^^ — ^^^ —' —"	 —	 -^""1t• CONTROL BOARD

B Y:	 STT	 ' .v	 _.	 e `.._ _ ...,.,. _ _ —

--CDE (OR PE) l I
_COGNIZANT

MANAGER

'

MILE57ONES

HIGH–LEVEL	 ITT A PP'Q; DELIVERABLE$
SRD	 SDD	 DESIGN REVIEW	 SOM	 SSD	 TRANSFERED TO

-APP'D	 APP' p C^	 APP'D	 6	 OPERATIONS^APP'D
 —

	 T —	 — ` —	 — — —

SUPPORTING I	 E 	 I	 I
DSN STANDARD I	 SOMS

PRACTICES	
I

SRDs	 SOD s
(P C, PARATION
OF --- SSD s

STTs

^ I I
.c•.

!	 S	 J

* FOR D5N SUBSYSTEM SOFTWARE, SUBSYSTEM FUNCTIONAL DESIGN PRECEDES THE SOFTWARE IMPLEMENTATION.

Figure 6-I„	 DSN Software Management and Implementation Plan (STT Software Design and Production,
Software Acceptance Testing)

i

The preliminary STT typically contains the following information for
concurrence, before acceptance testing begins:

(1) Implementation and exception status at the time of the Acceptance
Readiness Review.

(Z) Quality Assurance "as--built" Inspection Report.
(3) Acceptance Test Criteria and Test Plans.
(4) Transfer preparations and plans.
(5) Proposed acceptance test procedures, input data, and predicted

results (appended).
(b) Provision for retaining actual test results after acceptance testing

(appended).

The final, approved STT typically contains, for reference throughout the
life of the computer program, the above six items, updated from the prelim-
inary STT to reflect the actual acceptance testing, especially:

(1) Acceptance test procedures and data (appended).
	 ^ I

(Z) Summaries of acceptance test results and anomalies (appended).
(3) Provision for maintaining an Engineering Change File after transfer

(appended).

b-3

r

.;9

.4:

H

fib

J.. _.
Y

SECTION II
STT CONTENTS

A. CONTENT OUTLINE

A typical STT content outline is shown in Figure 6-2, along with an identi-
fication of personnel responsible for preparing, concurring with, and approving
the STT. Introductory information on the STT and program testing is followed
by key implementation and acceptance information. Then, since transfer prep-
arations begin before acceptance: testing starts, possibly deficient transfer-
deliverables and other key items that might be at issue drring the transfer
process are identified, Appended to the preliminary STT are the proposed
acceptance test procedures, input data, and predicted test results. The
information is revised and test results from the acceptance tests are appended
to preserve the key as-tested information and results.

The outline covers the major items needed by management and other
reviewers to assess the readiness for acceptance testing and maintenance after
transfer. For a given program, the actual conteats may vary and will depend
on the coanplexity of the program interfaces. However, items starred (°) in
Figure 6-2 are considered always necessary. Conversely, there could well 	 i

be items in the table of contents other than those listed. The SRD can be used
for identifying exactly what items of an optional nature should appear in the
STT. At a minimurn, the information and procedures contained in the STT
should be sufficient for verifying the quality, accuracy, and completeness of
the software de'iverables in aneeting the SRD requirements.

For Review information and criteria, refer to Section III, Paragraph B,
Review and Approval.

6-4

-, i ;; V ' AL PAGE IS

,A, ' PJ0R QUALITY

*J.	 INTRODUCTION

wl. 1	 Purpose and Scope of the STT
*1.2	 Program Acceptance Overview
x= 1.2. 1	 Functions, Interfaces, Environment

1.3	 Reference Material

*2.	 ACCEPTANCE READINESS

.<2. 1	 Implementation Status and Exception Identification
*2. 2	 QA Inspection Status
^"Z.2. 1	 Module-by-Module Code Audit

*3.	 ACCEPTANCE BASIS

*3. 1	 Acceptance Test.Objectives, Philosophy, and Approach
x.-3.2	 Acceptance Test Criteria
"3. 3	 Acceptance Pest Plan

*4. TRANSFER PREPARATIONS

14. 1	 Deliverable Items
4.2	 Transfer Status Projections

*Item considered always necessary.

SIGNATURES
Prepared by: CDE

(Helpers)
Concurred by: COE, Cognizant

Line Management,
and SE, for DSN
Sub sy stem
Software (Note)

Approved by: (See, Concurred
by)

Note: Concurrence at the Accep-
tance Readiness Review
(for Test Readiness) and
final approval after accep-
tance testing /evaluation.
Transfer Agreement there
approved by cognizant
management.

`5.
	 APPENDIXES

5. 1	 Acceptance Test
Procedures, Data, and
Sample Results

*5. 2 Test Result Summaries
and Anomaly Summary
Sheets

5. 3	 Change Engineering File
(ECOs After Transfer)

Figure 6-2. Typical Outline for a Software Test and Transfer Document

t	 -	 -
,t

6-5

B. OUTLINE DISCUSSION

1. Introduction

a. Item 1. 1, Purpose and Scope of the STT. The purpose of the STT is

:.tated, along with the scope of coverage and a brief summary of the document.

b. Item 1. 2, Program Acceptance Overview. An, overview of the pro-

gram and its acceptable operation are briefly described in terms of major

program functions, operational interfaces, and its acceptance testing and

operations environments. The functions to be tested are correlated with the

requirements in the SRD. Differences between the test and operations inter-

faces and environments that could affect program operation or assessment of

its acceptability are described. Acceptability of documentation is also

addressed.

C. Item 1.3, Reference Material. Reference material consists of a list

of any documentation that is not included as part of the STT or as an appendix,

but that is needed to support the acceptance testing and transfer activities.

All referenced documents must be readily available.

2. Acceptance Readiness

a. Item 2. 1, Implementation Status and Exception Identification. The

implementation status (i.e. , the completeness of the program and its sup-

porting Software Specification Document and Software Operator's Manual, and
	

ZZ

the status of acceptance test preparations) is provided. The implementation

status information is used in the Acceptance Readiness Review to help assess

readiness for proceeding to the formal acceptance testing and transfer

activities.

b. Item 2. 2, QA Inspection Status. A surnmary of the results of the

ongoing rnodule-by-module code audits and reaudits conducted by QA through-

out the program construction is presented. Deficient or marginal items (both

b-b

_3ri .77	 1Y	 .f	 y	 Ma.ut

G

;Y

code and documentation) present at the time of the Acceptance Readiness Review
are identified. Following acceptance testing, a QA Certification is performed
and reported in the Software Transfer Agreement.

3, Acceptance Basis

a. Item 3. 1, Acceptance Test Objectives, Philosophy, and Approach.

The basic acceptance test objectives which form the basis for the detailed
acceptance test procedures are stated. Additional discussion of test philosophy
and rationale, as needed, is also included, The overall test approach, including
a summary of acceptance test: methods and modus operandi are presented (such
as the use of special equipment or test software. Any further helpful guidelines,
suggestions, background information, special items- of emphasis, or overriding
considerations of the specific implementation that facilitate the acceptance and
transfer activities should also be presented,

b. Item 3. Z, Acceptance Test Crite ria, Acceptance test criteria are
generated by the initiator, with inputs from the Cognizant Operations Engineer
and Cognizant Development Engineer, following SRD Approval. Criteria
typically cover items of limits, tolerances, go/no--go, fail-safe, fail-soft,
calibrations, standards, etc. They are derived by adding detail to or "expand-
ing" the SRD acceptance requirements. The purpose here is to identify and
list (or reference, if extensive) the governing criteria for acceptance, and to
update them, if needed, from information gained throughout the prog.ram
detailed design and construction activities. If the criteria are included by
reference, a high-level summary of the underlying principles is provided for
reader orientation to the detailed testing and basis of acceptance.

co Item. 3, 3, Acceptance Test Plan. The plan provides a general descrip-
tion of the types of tests needed, their priorities, and test support needed,
taking into account the actual status of the implemented program, its docu-
mentation, and the availability of needed acceptance test equipment, facilities,
and other resources. The test plan is presented in outline, but enough detail

6-7

...	 "	
..	 fi.

is included to show the planned means for accomplishing the testing and to
provide specific guidelines for development of comprehensive tests and detailed
test procedures.

4. Transfer Preparations

a. Item 4. 1, Deliverable Items. The Software Transfer Agreement form,
as discussed in Paragraph A. Z. b, of Section III, contains an inventory list of
deliverable items considered always necessary for transfer; it also has pro-
-visions for other items. For particular software implementations, there may
be additional items, unique to a specific implementation, that must be addressed.
Also, a specific software project may have justification for waiving a particular
deliverable that is listed as a necessary item on the Transfer Agreement form.
Therefore, this section allows any such project-unique items (typically identi-
fied in the SRD) to be explained and reviewed before acceptance testing begins.

For the typical case, where all items of the Transfer Agreement apply and
there are no additional items needed, a statement to this effect is appropriate
here. This provides the acceptance-readiness reviewers with assurance that
the necessary look-ahead activity, oriented towards transfer, has been
accomplished.

b. Item 4. 2, Transfer Status Projections. 	 This paragraph lists and
describes any anticipated deficiencies or exceptions that are likely to exist
after completion of acceptance testing. These are also indicated on the draft
Transfer Agreement, which is reviewed at the Acceptance Readiness Review.
The intent here is to identify and initiate action to avoid or minimize these
instances (or their impact) by the time of transfer.

5. Appendices

a. Item 5. 1, Acceptance Test Procedures, Data, and Sample Results.
The parpose of this Appendix is to preserve the acceptance test procedures,
input dkta, and sample (observed) results upon which program acceptance was
based. These procedures and data should provide a comprehensive test and

6-8 8

demonstration of the program capabilities. The intent is to facilitate
reverification, as may be needed due to future program maintenance, modifi-
cation, or updating.

l) Acceptance Test Procedures. These should define the software
and system configuration and the resources required. Test inputs and sources
are identified, and the step-by-step sequence of actions is prescribed that leads
to specified results, which are described along with criteria that can be used
for their assessment_ An overall test for adequacy of the acceptance test pro,
cedures is that an individual, not knowledgeable of the specific implementation,
could, by using only the procedures, set up and run the tests. If the tests are
extensive, the test docuunents and results may be referenced and only sum-
marily described in the appended material of the STT.

2) .Data. An identification and detailed description of program input
data, their sources, and ley characteristics, such as the data accuracy, range,
validity, flowrate, randomness, etc. , are provided. A subset of input data may
also be provided directly for certain tests.

3) Sample Results. A description of selected observed results, or a
sample set of outputs for a given set of inputs, should be provided. The com-
bined information in this Appendix on acceptance test procedures, input data,
and sample results should provide the capability needed for future bench-
marking; that is, for reveri£ication of original capability, as transferred, using
original key tests as the control reference.

b Item. 5 2, Test Result Summaries and .Anomaly Summary Sheets.
After acceptance testing, summaries of all test results are appended. Differ-
ences between expected and actual results are reconciled, and anomalies are
identified and documented. Also, any procedure modifications or additional
tests that were incorporated are included in this Appendix.

c. Item 5.3, Change Engineering File. This Appendix provides a r-vxLning
log of ECO information, as approved modifications are implemented after
transfer,

6-9

l;-
p

A. PREPARATION ACTIVITIES

The activities and documentation involved in the ^Lcceptance process and the
transfer process are discussed below. Software implementation functions,
including those involved in acceptance and transfer; are identified and described
in Section IV of Chapter 1, along with specific responsibilities of each func-
tional task, the functional team structure and organization, and the functional
operational interactions. For DSN Subsystem Software, the DSN functional
working relations relative to acceptance test and transfer activities ware inves-
tigated, and results (responsibility matrix) are shown. in Figure 6-3. Additional
background material on acceptance and transfer of software productsAs pre-
sented in Reference 1.

I. Acceptance

a. General. Basic to the guidelines discussed in Chapter I is the accep-
tance activity, which leads to the transfer of the software from implementation
to operational status. Acceptance information and test procedures are reviewed
prior to acceptance testing and preserved following acceptance through the use
of the STT.

b. Documentation. Using; the STT content guideline. S of Section 11, pro-
gram acceptance test planning and transfer information is documented in a
preliminary version of the STT. After STT concurrence at the Acceptance
Readines's Review, = the acceptance test procedures govern the actual acceptance
testing. Modifications, as may be needed, are under internal project control
and at this point are authorised jointly by the CDE and COE. Concurrent with
the acceptance testing and data evaluation activities, the STT is updated to
reflect the as-tested program and, when completed, is submitted for approval
by the line management of the L plexnei ti.ng and operations organizations.

6-lo

7 -7777777

r

'.T

1	 ..

GY'tr^-^^;0.mp.u:^.^w-+ass ^nur^w-Ja^-E+^+i+k	
'^':.,an,.^+.., .rwh ran

NEW CAPABILITY TESTING MISSION PREPARATIONTESTING
(MULTIMISSION TESTS) SINGLE MISSION TESTS)

-.'	 TESf . .-P FIRST MODEL.
DEMONSTRATION ,

FIRST STATION,
SUBSYSTEM

UNIT BY UNIT SUB3Y3TFMpN -SETT.-
NETWORK. -
SYSTEM -

-.
MISSION--`- OpERATIQNAt

-
PERFORMANCE: CONFIGLIRATION

-:,FUNCTION - OR[HWASSY ' ' -: ACCEPTANCE -
ACCEPTANCE TEST ACCEPTANCE -	 PERFORMANCE CONFIGURATION VERIFICATION DEMONSTRATION VERIFICATION

'SW MODULES) .,.TEST 01WONLY) TEST TEST TEST 3YSTEJ.Y LEVEE)(TEST TEST TEST

430 SUBSYSTEM 43DSUBSYS3EM
. COORDINATING	 - 430. SUBSYSTEr.S ENGINEER	 - 430 SUBSYSTEM ENGINEER 430 SYSTEM 430 05" IAANAGER -	 -	 -

AUTISORITY,. -^	 ENGINEER . ' 33 PROJECT	 ^ ENGINEER
33 PROJECT ENGINEER. FOR PROJECT % 421 NOPE -

	 -
ENGINEER •.• 	 - ENGINEER:••

- - 422 SUBSYSTEM COE

TESTREOUIREMENTS/
ACCEUANCECRITERIA

430 SUBSYSTEM
`^ ENGINEERS -

 430SUBSYSTEFh
ENGINEERS SUBSYSTEM COE -

474 SYSTEM ENGINEERS
430 DSN MANAGER.-
FOR PROJECT %

A21 NOPE 42E NOpE 42[NOPE

. - - 421 SW COE ..

. -	 - 422 5UBSYS7EM COE

TEST PROCE, DUKE 33 CDE - 33 COL 33 CDE 421 SCOE 421 NOPE 421 NOPE 421 NOPE--	 - 421'NOPE

. 421.50! COE - ..

-	 - 422 SUBSYSTEM COE

TEST CONDUCT 33 CDE 33 CDE 33 CDE - 421: SCOE 421 NOPE 421 NOPE	 - 421 NOPE 421 NOPE.

421 SW COE. -

-	 - - - 422 SUBSYSTEM COE .

- TEST REPORT	 - -	 33 CDE 33 CDE: M CDE 421 SCOE 421 NODE 421 NODE 421 NOPE 421 NOPE

- 421 SYf COE

430 SUBSYSTEM.. 430 SYSTEM 421 NETWORK

PERFORIMNCE EVALUATION - ENGINEERS

ENGINEERS

S UBSYSTEMA422	 COE STATION DIRECTOR
ENGINEERS, AND
421 NETWORK FOR PROJECT %GTR

421 SUPERVISOR OCT
OPERATIONS
MANAGER, AND, MANAGER

 OPERATIONS

OPERATIONS43 0 SSE	 - 430 DSN MANAGER
- 421 SW COE MANAGER FOR PROJECT X X.	 -

422 S/S COE FACILITIES
-AGREEMENT ON
PROCEEDING TO AGREEMENT ON

PROCEEDING - TO
33 CDETRANSFER TO

TRANSFER TO	
421STATION

PLACED UNDER
CONFIGURATION TECHNICAL FACILITY NOPE TRANSFERJAp CONFIGURATIONSUBSEQUENT EVENT FAST STATION

NETWORK FACILITY OPERATIONS Sw
DIREC70 ' FOR.CONTROL PERFOJt7.gANCE PROFICIE N CY CONFIGURATIONS

FREEZE. 3/SON+SETT
- INSTALLATION (422) SUBSYSTEM COE T4ANSFER tO APPROPRIATE MISSIONS DEMONSTRATION DEMONSTRATION TO OCT, MO$ TESTS

ACC. TEST STATION ANDRETURNMTO -
- DIRECTOR' OPERATIONAL STATUS

-
SUBSYSIEM/ASSEMBLY FIRST UNIT

SUBSYSTEM ,--.^ DSN OPERATIONAL READINESS
1EMONSTRA71ON COMPLETE

IMPLEMENTATION
-

MISSION CONFIGURATION COMPLETE

L

- . MILESTONE: NAME SW ASSY DN 33 CDE TO 421 SW COE TRANSFER COMPLETE
NETWORK SYSTEM PERFORMANCE TEST COMPLETE

- SUBSY5TWOM ASSY UJV 33 CDE TO 422 SUBSYSTEM COE TRANSFER SYSTEM TRANSFER, 430 BE TO 421 $COE

y0
T`•^1

rJ

1-W LJ

(D

LEGEND

TEST RESPONSIBILITY FOR HARDWARE

TEST RESPONSIBILITY FC.R SOFTWARE

TEST RESPONSIBILITY INDEPENDENT
OF HARDWARE VERSUS SOFTWARE

• OR -;CF AND/OR NCS EQUIVALENT
MAJOR STATION UPGRADE

SSE SUBSYSTEM ENGINEER
CM COGNIZANT DEVELOPMENT ENGINEER
COE COGNIZANT OPERATIONS ENGINEER

SCOE SYSTEM COGNIZANT OPERATIONS ENGINEER

NOPE NETWORK OPERATIONS PROJECT ENGINEER

OCT OPERATIONS CONTROL TEAM
MO$ MISSION OPERATIONS SYSTEM

33, 430, 422, ETC. - DIVISION OR SECTION/ORGANIZAIION NO.

APPROVED.	 L7 Ka,-+d1rr t^
L.Vl. RANDOLPH '^
DSN IMPLEMENTATION
MANAGER

QX! '2!7. a --
R.K. MALLIS
DSN OPERA710NS MANAGER

,-, ,	 _.....Zf
N.A. REN2ET71E—
DSN SYSTEMS ENGINEERING
MANAGER

Fig-.re :6-3. Relationship of Tests, Responsibilities, and Milestones

-	 '? +	 r	 r	 sr	 y	 '1' ^	 w	 t o	 4	 tJ	 r	 SF	 ^	 _

^^.	 4 .f1,^2^,	 ', 1.	 tit	 _	 1	 b c .q.-	 ^` ^r.	 F..	 N	 T .bF,	 _I	
1.-.o- f	 ^	

t	
^..	 i .f^	 i'.

IN

I.

The STT is updated and maintained throughout the useful life of the program,
and formality of formatting is prescribed to aid readability and change engi-
neering. The CDE is directed to Chapter 4 for detailed 'information on for-
matting conventions to be used for STTs (as adopted for the other maintained
software documents — the SSD and SOM). The STT is given an identification
number by prefixing "STT" to the program number that was assigned by the
Program Library. Following transfer, changes to the STT are implemented
only by approved Engineering Change Orders.

2, Transfer

a. General. Following acceptance testing, an agreement is reached

between the involved parties to transfer the-responsibility for the software

products from the implementation organization to the operations organization.

The agreement explicitly identifies the software products and declares their

state of completeness in meeting the requirements of the SRD and the extent of

their compliance to quality standards; deficiencies, if any, are identified and

^tdispositioned. Upon approval of the Soware Transfer Agreement by cognizant

management, the software is transferred to operations, delivered to the Pro-

gram Library, and placed under Change Control.

b. Documentation. The agreement and conditions for transfer are docu-

mented using a Software Transfer Agreement. A sample of this three-page

form is, shown in Figures 6 -4, 6-5, and 6-6. Also, an addendum form, as
discussed later, is used to document requested changes to an existing Software
Transfer Agreement. Preparation of the forms and their approval are .dis-
cussed below. Usirng.the document numbering system, the Transfer Agreement
is given an identification number by prefixing "TA"^'to its program number
(assigned by the Program Library). After approval, the Software Transfer
Agreement is delivered to the Program Library, along withAhe other
deliverable items.

6-1.2

ORIGINAL PAGE IS
OF POOR QUALITY

SOFTWARE TRANSFER AGREEMENT TA_	 ,Page laf__-

FOR	 AS OF

-	 -	 Co iputer program IV 	 Daft im•(oled

USE DESTINATION{	 SYSTEM FOR USE

(IF ggplicable)	 (ffapplicable)

The eagnlxent tasted hafaw, ate satisfied that this software (eanputer program and i ts supporting documenlation)

is complete, subject tothemeptions idanfifldd, and agree to transfer responsibility for this soflware from Implementalion to the Cognisant

Operations ocganitation; Changes to the software crier transfer are under DSN Engineering Change Control.

CDE for the SoFiware
	 Date	 -

	
FOR LIBRARY USE	 l

r.

DSN CIA Section. 	 Date — --

SuSsysfem Erglrseer	 Rote

Date received

Storage Iccalion I.D

Date ofaddendun

We concur with the ohave agreement, thereby apprcving the Tronsfet;

CAE 5eelionhlonager	 Date

COE&re fcpManag er '	 _.	 ^ ^ 	 Daft..

DSkIiapvetnentationManager 	 Date	 -

f4tulan .SupFort ' OprraiToas (or'Usar 4120riiiotioo) - Manogei Data

.. -	 giber--„°- Dafe .

-	 -	 JPL 2743-1 I If75

Fgua`e. 6-4, SaanpTe "Page I I ' of the SOftware Transfer Agreement

6-13 -

0

Y

I—^

SOFTWARE TRANSFER AGRE EM ENT TA-	 ,Page2of

F b R	 AS OF

Item 1. The software meek Ike requirements, criteria, and eondiAcris specified in;

I Y seD-

o) Fvnettanof aquimmenss of FR r3-

Is Other {refer to Documentation fisted on Page 3 of rh$ Soh-ore Transfer Agreement)

2) 57T-

a] Acceptance test procedvte of ATP-

EXCEPTIONS:

t.`

++,	 -	 Item 2: The detWera6fr software items are,ready4or transfer to operations and delivery to the DSN P-ogrom Library.

NOTE: Rcfcr to Deliverable Item Inventory Liss, Page 3 at this Software Transfer Agreement.

EXCEPTIONS:

I7EM 3. All satsware program elements have been audited by JPL Quality Assurance (QA). A QA Carsifica:ion (Cert. ^)

-	 -	 -	 ingluding Ike, ccstifieatfon date, has been issued and filed with related Inspection Reports foe all open at closed QA discrepancies.

EXCEPTIONS OR COMMENTS':

JPL 2743-2 HAS

`	 Figure 6-5.: Sample "Page 2 Ft of the Software Transfer Agreement

r	
6..14

3

s.

^^*5

ORIGINAL PAGE IS
ar, POOR QUALM

S
O

FTWARE TRANSFER AGREEMENT TA-	
IPoge3of

C	

_

1 O R	 AS OF

DELIVERABLE ITEM INVENTORY LIST

(ttllem Considered Always Necessary)

DELIVERABLE ITEMS
	

IDENTIFICATION No.	 RELEASE DATE

Ccmputer Code

* Source Progrer

• Eaecutoble (Object)

Other

Planning 6 Requirements Documentalion

* SRD
	

SRD-

FRD
	

FRD-

TRD
	

TRD-

Other

Architectural Design Doeumentolion

* SOD
	

SDD-

Other

Design d Production Documcntation

* 550
	

SSD-

a SOM
	

SOM-

Other

Acceptance Docsenentotien

• STT
	

STT-

ATP
	

ATP-

ATR
	

ATR-

Other

COMMENTS:

JPL 2743-3 11176

N

Figure 6-6. Sample "Page 3" of the Software Transfer Agreement

6-15

77_,.	 L

1) Software Transfer Agreement. The Software Transfer Agreement

form is filled in by thn CDE as information becomes available from the imple-

mentation activities. The three pages of the form contain the approval signa-

tures, the software completeness and quality items, and the Deliverable Item

Inventory List.

a) Approval Signatures (Page 1). After information is complete

and all involved individuals and organizations agree as to the software accept-

ability and its readiness for operational use, the Software Transfer Agreement

is signed by the designated personnel, in the spaces provided on Page l of the

form (see Figur°P 6-4), to indicate their approval. Approval places the software

under change control and transfers responsibility for the delivered software

products from the implementing to the operations organization.

All computer software transferred to operations, including the Software

Transfer Agreement itself, is placed in the Program Library. In general,

the Transfer Agreement is approved concurrently with delivery to the Program

Library. Computer software is subsequently reproduced and distributed by the

Program Library, as appropriate. It is intended that a Software Transfer

Agreement be approved before the software is required or committed to the use

and support of operations.

b) Software Completeness and Quality Items (Page 2). The

spaces provided on Page 2 of the form (see Figure 6-5) are filled in to indicate

the software's compliance with the SRD requirements and its STT acceptance

test procedure, its completeness and readiness for delivery, and the identifi-

cation of its QA certification report.

If any deliverable item is deficient, the deficiency is described under the

"Exceptions" heading, along with the date that the deficiency will be corrected.

If several deficiencies exist, they can be briefly identified and numbered on the

form and then described in more detail, using additional blank pages that can be

attached after Page 3 of the form.

y ^<Y

6-16

T

^L	
-^.,,"`.«....'wwr..._,`43.k._''_. Jr	

y ,, -.	 -

	

Y 1	
;e:.

fl : V

The implementer is responsible for completion of all exceptions noted on 	 ^^i`

	

$	 k:;	 Gthe approved Transfer Agreement, including the rescheduling, if needed, of
due dates prior to expiration of those presently accepted and scheduled. It	 J{

should be noted that if an exception is not corrected on or before the due date.
^ry

11

the Software Transfer .agreement becomes subject to review and cancellation
by the Change Control Board. Use of the Addendum, as discussed 'below,
facilitates the changing of the due date, if needed. To be effective, it must be
initiated prior to the present due date, 	 i

If it is agreed by all concerned that an identified discrepancy need not be
corrected, this should be noted, along with the description of the discrepancy.
No further action by the implementer is required in these instances.

c) Deliverable Item Inventory List (Page 3). Provision for
legging the release dates of individual deliverable items is provided on Page 3
(see Figure 6-6). This supplies supporting information for completing Page 2
of the Software Transfer Agreement. The inventory list includes space for
additional or other (such as project-peculiar or special) deliverable items,
above those normally required for transfer. Items that do not apply should be 	 s
so noted. Section IV provides summary information on the deliverables con-
sidered to be always necessary- for transfer and delivery to operations,

Z) Addendum, Figure 6-7 presents a sample Addendum that is used
by the implementer to request a modification to an existing Software Transfer
Agreement. Modifications are typically needed either

(a) To indicate completion of an exception or exceptions described
on the approved Software Transfer Agreement, or

(b) To extend the due date for completion of an exception or
exceptions from the current due date scheduled on the
approved Software Transfer Agreement or subsequent
Addenda.

6-17

t	 L*	 a

ADDENDUM TO THE

SOFTWARE TRANSFER AGREEMENT
	 TA-	 , Pope I of 1

AS OF

PURPOSE

Thlt Addendum racordt on agreed modification to the above Tranrfet Agrem ent.

MODIFICATION

Origlnolt

Change!

JU5TIFICAVON

ORIUNTAi, PAGE IS
OF POOR QUALITY

Agreed;

CDE far the Software 	 Data	 eSE ((Of t±SN hubryrtem Sw)	 Data

DSN OA Section	 Date	 Y	 COE far the Saflw c	 Data

The Following rignatvfes are required only to extend an EXCEPRON doe date,

COE Sao lion Manager 	 rInto	 COE 5eetion Monger 	 Dole

DSN Imptementotion Manager 	 _- -_ - ^	 w `Vato	 Minim support Vtgratianr (Mum, 	 ValeOrgonliatim) Manager

JFE 2744	 11;76

Figure 6 - 7.	 Sample "Addendum" to the Software Transfer Agreement

6.18

n•

'N

Implementer responsibility terminates upon completion of all exceptions
and approval of the corresponding Addenda. The approved Addenda are fur-
nished to the Program Library, where they are attached to the Software Trans-
fer Agreement. This provides a current record of the transferred software
with respect to the exceptions, noted at the time of transfer.

All modifications to the transferred software (excluding the exceptions dis-
cussed above) are made only by approved Engineering Change Orders; typically
Addenda sheets are sufficient to update the Software Transfer Agreement to
reflect the current status of the transferred software. In some instances, the
Operations organization may instead request a new Transfer Agreement. Also,
for certain major extensions* to existing programs, a new SRD may be required.

The following apply for preparing the Addendum for approval:

(a) The software identification should be the same as recorded
on the original Software Transfer Agreement.

(b) The modification is summarized in terms of the original
conditions and the needed changes.

(c) If applicable, the old and new exception due dates are
listed.

(d) A brief justification for the modification is provided.
(e) Designated signatories indicate their agreement.

B. REVIEW AND APPROVAL

The STT is reviewed in preliminary form in the Acceptance Readiness
Review after program construction is complete and then in final form after
acceptance testing is complete. An optional Transfer Review may be held to
facilitate the review of the final software deliverables. The reviews are
briefly discussed below.	 .

=BAs determined by the Change Control Board, but typically major extensions
require at least one person-year of effort.

6-19

1. Acceptance readiness .Review

The Acceptance Readiness Review is held after the program detailed design
and construction activities have been completed. The purpose is to assess both
the status of, the prograrn and its as--built specification (SSD) and operator's
manual (SOM) and the status of the acceptance test preparations, plans, and
procedures to determine if meaningful, effective acceptance testing can begin.

The CDE has overall responsibility for this review. This includes setting
the time, place, and agenda and also issuance of review meeting notices and
material in advance, and minutes of the review after the meeting. The CDE
(or the CDE's management) conducts the review. The Acceptance Readiness
Review board participants shoulu represent, at a minimum, the initiator, the
operations organization, the user organization (if different from operations),
the funding organization (or representative of the program office), the imple-
menting organization, and QA.

Chapters 4 and 5 provide further detail on the program specification and
operator's manual items; program acceptance and transfer review items are
presented below.

a. Agenda. Software Test and Transfer Document and transfer-related
items for the Acceptance Readiness Review typically include:

(1) Any carry-over acceptance planning items from the High-Level
Design Review.

(2) Implementation status and deficiencies.
(3) Deficiency workarounds and completion dates.
(4) QA inspection status.
(5) Acceptance Test criteria and plans.
(6) Proposed detailed test procedures, data, and predicted test

results (appended to the preliminary STT).
(7) Draft Transfer Agreement.
(S) Other pertinent items.

6-2a

b. Criteria, The following STT and transfer-related criteria can be

used as aids in determining the readiness to begin acceptance testing:

(1) Are all relevant items for starting the formal acceptance testing

available at the Acceptance Readiness Review (including the

completed program, its SOM, the SSD as-built program spec-

ifications, and the preliminary STT)? If not, do workaround

plans and scheduled completion dates reduce program acceptance

and transfer risks to acceptable levels?

(2) Are the test criteria for acceptance complete, responsive to the

SRD requirements, and adequately documented?

(3) Are the proposed test procedures responsive to the test

criteria and test plans?

(4) Does the draft Transfer Agreement indicate any anticipated

exceptions or deficient items to be present after acceptance

testing is completed?

C. Approval, Authorization to proceed to acceptance testing is indicated

at the Acceptance Readiness Review by cognizant line management approval of

the SOM and SSD, and concurrence with the preliminary STT.

Z. Transfer Review

The Transfer Review is optional and is held after program acceptance

testing has been completed and the final STT has been approved by cognizant

line management. The request for a Transfer Review is typically made prior

to or during the Acceptance Readiness Review. The main purposes of the

Transfer Review, when held, are to assess the quality, completeness, and

operational readiness of the program and its as-built, as-tested documentation,

and to approve the Software Transfer Agreement.

The requester (or COE) has overall responsibility for the Transfer Review.

This includes setting the time, place, and agenda, and also issuance of review

meeting notices and material in advance, and minutes of the review after the

M

6-Z1

meeting. The Transfer Review Board participants will typically be the same

persons (or their representatives) that participated in the Acceptance Readiness

Review.

a. . Agenda. The Transfer Review agenda items typically include

(1) Any updated or carryover items from the Acceptance

Readiness Review.

(2) Summary of program and documentation changes that

resulted from the acceptance testing activities.

(3) Approved SSD and SOM, reflecting all changes.

(4) Approved STT, including

(a) Acceptance Test Procedures (updated)

(b) Summary of Acceptance Test results

(c) Anomaly Summary Sheets

(5) Completed Software Transfer Agreement (ready for approval

signatures), including all exceptions and their scheduled

completion dates.

(6) Other pertinent items,

b. Transfer Criteria. The following criteria can be used as aids in

determining the readiness for transfer to operations:

(1) Have all Acceptance Readiness Review concerns been adequately

resolved and included in the final acceptance activities?

(2) Have the acceptance t sts been run per the procedures docu-	 -"r:
merited in the STT ? If not, are the deviations documented

' .	
and acceptable on an individual basis (such as variations in

test conditions, configurations, etc.)?	 ^'F

(3) Have all test results been analyzed, documented, and compared

to specified results?

(4) Has the STT been updated (to reflect as-tested information)"

and approved?

6-22

(5)	 Have required modifications, during acceptance, to the program,
the SSD, and the SOM been documented for traceability and for
concurrence by the COE?

(6)	 Has QA certified the SSD, and when required, the SOM and
STT, indicating that the as-built, as-tested software meets
DSN standards of quality?

5

ti ! :	 (7)	 Is the Software Transfer Agreement complete and ready for
approval signatures?	 Are all deficiencies described, along
with their scheduled completion dates?

_ (8)	 Are all items to be transferred to operations available for

.r	 delivery to the Program Library?

C.	 Approval.	 The Software Transfer Agreeme-.t is approved by the
designated cognizant personnel and their management (approval level not
required above that of Division Manager). 	 Approval of the Software Transfer
Agreement signifies that the software deliverables are operational and are
available for delivery to the Program Library.

This completes the implementation project.

6-Z3

^,

1	 =	 11	 L^= ' 1 gym;: ^^^

-a

SECTION IV	
3

REQUIRED DELIVERABLES. TO BE TRANSFERRED

A transfer (to Operations) Design. Review may be held at completion of the
acceptance testing to ensure that all requirements or the implctmentation project 	 F

have been. met. A list of criteria that can be used for this review is presented
in Section III, Paragraph B. 2, Transfer Review.

A Software Transfer Agreement, initiated by the CDE; is approved by
the CDE, QA, Subsystem Engineer, COE, and both the cognizant implementing
and operations management (not above the level of Division Manager). The
deliverable items described below repre.sent the items considered always
necessary to be transferred to operations and delivered to. the Program
Library. Special requests for any additions, substitutions, or deletions--to
this set should be included in the SRD, for approval.

•T(1)	 Software Requirements Document; prepared according to the Standard
- Practices and approved by cognizant management, not above ALD

level.
=.<(2)	 Software Definition Document; prepared according to the Standard

Practices and approved by cognizant line management.
(3)	 Software Specification Document; prepared according to the Standard

Practices and approved by cognizant line management. 	 The con
currence signatures of the CSE and COE assure the usability of the

-`h SSD for change and support engineering, without recourse to the CDE
or to the Implementation Organization. 	 Correctness test design and
results are a part of the SSD, as well as program flowcharts (or
equivalent), narrative, and source code listings.

'=Archived for Reference Information

6-24

r-.	

(a) The design as documented in the relevant portions of the SSD
agrees with the implemented source code and to code listings in
the SSD,

(b) The design in the SSD uses only approved structures, and
conforms to other workmanship standards such as page size,
indenting of code, etc. , and conforms to any project-unique
standards identified in the SRD (and SSD).

(c) THE design description of striped modules in the SSD is adequate
for hierarchic expansion and correctness assessment.

(7) Code; includes machine-compatible source and object code that has
been QA certified.

6-Z5

1
A
'i

r
ABBREVIATIONS

ALD Assistant. Laboratory Director

x̀ ANSI American National Standards Institute

,.^ ASCII American Standard Code for Information Interchange

ATP Acceptance' Test Procedure

ti ATR Acceptance Test Report

CGB Change Control Board (DSN)

CDE Cognizant Development Engineer

CHKSUM Submod-Lae of SUMS

CM Cognizant Management

CMF Communications Monitor & Formatter Assembly

COE Cognizant Operations Engineer

-" COMPUT Submodttie of WADTOT

CSE Cognizant Sustaining Engineer

CTA 2l Compatibility Test Area, JPL, Pasadena, California

Zw
DIVSUaM Submodttle of PDRPTS

DMC DSS Monitor & Control Subsystem

DSN Deep Space Network

DSPRPT Submodule of WADRPT

DSS Deep Space Station,

DST Data System Terminal Assembly

DTM DSS Telemetry Subsystem

EGO Engineering Change Order

ECR Engineering Change Request

7--1

4	

Q

'x t y

s
s

-	 TpOIL.—T R SuB	 du1- of SORTDSP.

D. 	;: =	 Fuizct^ 6ia 3 `Reginr:e^n wits.. D ocuxr^ent

F`T^ Freque'ricy	 Tuning Subsystem

GCF Ground Gomznunications Fa:czlxy

G1.1.5 GCF High^Speed Data Subsystem'..

GTPR. T Submodule of. CHKSUK

HIPO Heirarchy Plus Input-Process--Output

HS.P High-speed, printer s

1/0 Input :output 	-..
_

a

313CNT`L Sub-module of WADRPT

JP.L Jet Propulsion Laboratory

A3

KB Keyboaid

MDA Metric Data Assembly

MDD Envirorinzental "Machine-Dependent Design" interface routines

MDDB MDD batch processor routines

MD^DX. MDD extension (to fall.MBA51C language) r.:

M.DS MARK III DS13 Data Subsystems Implementation Project

MIB MBASIC I IM-&C HINE -Independent batch processors'

MID MBASIC "Machine-Independent Design" fundamental processor

MTDB MID extension (to full :MBASIC language)

NOCC Network Operations Control Centex e
•^4

D I

F

ODR Original Data Record q^ }

OS Operating. system

7-2

Q

auf i-_	 t '	 -^^

gyp . ie

' Lkf ,G. ^'	 Y	 N'^
„	

+f Jr. ?+""i`'.q r^
.".('ee^ .. ,	 rl	

K
^	 ' .#^	 ^f l ^r:"`T n r^ ^r	 «AS ,?r,	 i;te

::: DR TS Submodule of-.W.ADRPT.:...

PE' .Project Exigeex- .

P:POS'` Sub'module ,of :COMPUT

PREPROC Preprocessor Module for WADTOTRPT

QA Quality assurance .

QUERY Subinodul.e of JBCNTL

-RPTPRT Submodule of DSPRPT

S.DD; Software Definition Document

SE Sys t.em, Engineer

S.OM Software Op e.rato ' i s Manual

SORTDSP Submadule of PR:EPROC

SRI) Software Requirements Document

SSA Symbol Synchronizer Assembly

SSD Software Specification Document

SSE Subsystem Er_gi.neer

STT Software Test and Transfer Document

SUMS	 Submodule of WA.DTOT

SW :	 Software

SYMEQU	 System Equates Module

TA	 Software Transfer Agreement

TIDD	 Technical Information and Documentation Division (JPL)

TLMOS	 Telemetry Operating System Module

TODR	 Temporary Original Data Records

7-3

TRD Technical Requirements Document

TYPRPT Suhrnodule of RPTPRT

USE MAC: User Macros Module

WAD Work Authorization Document

WADRPT Report Generator Module for WADTOTRPT

WADTOT Processor Module for WADTOTRPT

WADTOTRPT WAD Report Writer Program

WBS Work Breakdown Structure

7-4

a

REFERENCES

i o Tausworthe, R. C. , Standardized Development of Computer Software,

Prentice-Hail, Englewood, New Jersey, 1977.

2. MBA`.'IC Manual, Volumes I and II, Jet Propulsion Laboratory, Pasadena,

California, August 1975 (JPL internal document).

3. American National Standard Vocabulary for Information Processing,

ANSI X3. 12, American National. Standards Institute, New York., 1970.

4. American National Standard Flowchart Symbols and Their Usage in

Information Processing, ANSI X3. 5, American National Standards Institute,

New York, 1970.

5. Aaron, J. D. , "Estimating Resources for Large Systems, " in Software

Engineering Techniques, NATO Science Committee, Rome, Italy, 1969.

b. HIPO — A Design Aid and Documentation Technique, International Business

Machines Manual GC20--1551-1, IBM Technical Document Center, White

Plains, New York, May 1975.

8-1	 NASA—OL—Caml.. L.A., CaN

