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ABSTRACT

This report describes the design, construction, and testing of a
laser scanning system that was delivered to Marshall Space Flight Center.
The scanner is designed to deliver a scanned beam over a 2.54 cm by 2.54 cm
or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution
and rate comparable to that of standard television, an acousto-optic
deflector is used for one axis of the scan, and a light deflecting
galvanometer is used for deflection along the other axis. The aeousto-
optic deflector has the capability of random access scan controlled by
a digital computer.
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I. INTRODUCTION

For experiments involving the processing of data stored as a two-

dimensional scene, optical techniques are frequently convenient. The use

of holographic techniques applied to nonlinear media has greatly expanded

the po--ential for three dimensional high capacity optically based mass

memories. The development of optical integrated circuits and miniature

lasers and modulators has brought optical systems much closer to the

realities of day-to-day existence.

Most laser systems used in the analysis of data or in the imple-

mentation of logical operations require some type of scanning system.

In addition, many commercial systems, such as television displays, employ

laser scanning systems [1-31.

Georgia Tech previously developed a laser scanning system useful

in optical processing systems [4,51. That scanner had two principal

features:

1. The scanned beam was random access addressable,

and was perpendicular to the image page.

2. The intensity of the scanned beam was controllable,

such that constant light intensity could be main-

tained after passage through the image plane.

`	 Because the above described scanner was optimized for optical pro-

cessing applications, which require a non-focussed beam of high coherence,

It employed a pair of light deflecting galvanometers coupled by a relay

1
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mirror. The galvanometers were placed at the focus of a large diameter

parabolic mirror. This system is described in Chapter IV of this report.

The scanning system developed under this contract was designed to

provide a scanned focussed beam over a 2.54 cm by 2.54 cm format, o- over

a 5.08 cm by 5.08 cm format, with a resolution and rate comparable to

that of standard television. As with most scanning systems, there is a

trade-off between scanning rate and system resolution, within any given

economic constraint. The result of this trade-off, as described in

Chapter III of this report, is that a resolution equal to that of standard

television was achieved, with a slightly lower scan rate than that of

standard television. However, a higher scan rate can be achieved by re-

ducing the scanned format. This type of scanner could be potentially

useful as a flying spot scanner for video display of transparencies.



II. OPTICAL SYSTEM DESIGN

A. overall Apvroach

A schematic diagram of the optical scanning system is shown in

Figure 1. The laser output is controlled in irradiance by a Pockel's

effect modulator. After the modulator, the beam passes through beam

forming optics that tailor the shape of the beam for acceptance by the

acousto-optic modulator, which provides one dimension of the scan.

The other dimension of the scan is provided by a large light deflecting

galvanometer. The resultant scanning beam is focussed by a lens onto

the scan plane.

B. Laser Selection

Because of the increased sensitivity of film, nonlinear crystals

and other recording media to light in the blue and green portion of the

spectrum compared to that for light in the red portion of the spectrum,

an argon laser is chosen as the design standard. The argon laser is the

only commercially available laser capable of high power (greater than one

watt), continuous-wave output in the blue or green region of the spectrum.

In particular, our system is optimized for operation at 514.5 nm, one of

the stronger output lines of the argon laser.

G.	 Light Deflection System

1.	 Introduction

The choice of light deflection systems for the laser scanner

is principall y influenced by the design goal of achieving; a scan rate and

resolution comparable to that of standard television. The scan old a

t
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standard television operates at a ratb of 525 lines per frame, with 30

frames per second, for 1.58x 10^ lines per second, which corresponds to

a writing time of one line of 6.35x 1075
 sec ands. The requited respon"

time of the deflector is determined by this scan time of approximately

60 microseconds. The required detector bandwidth then is approximately

the inverse of this, or 16 kilohertz. Standard television has approxi-

mately 600 resolvable spots.

Several types of scanning mechanisms can be considered for design

of the scanner: (1) galvanometer (electromechanical) deflectors, (2)

acoustooptic deflectors, and (3) electrooptic deflectors. For each type

of deflector there are trade-offs with regard to resolution, access time,

and cost. Among the three types, galvanometer deflectors offer high

resolution and relatively slow access time for moderate cost, while

electrooptic deflectors offer fast access time, but exhibit relatively

poor resolution and are relatively expensive. Acoustooptic deflectors

are an intermediate choice with regard to all three qualities at present.

In general, galvanometer-based deflection systems are preferable because

of ease of alignment, lack of beam distortion, and cost [6].

2.	 Acoustooptic Deflector

Since the performance of our system is based largely on

that of the acoustooptic deflector, we review here some of the principal

mechanisms underlying the operation of such a deflector. When a sound

gave moves through a medium, a density variation and a corresponding

variation in the index of refraction is produced [ 7]. This varying index

of refraction acts as a series of "moving mirrors" inside the material.

The moving mirrors are separated by a distance equal to the wavelength of

5
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the sound in the medium. The plane of each mirror is perpendicular to

the direction of the sound gave. For efficient diffraction of tight from

the moving mirrors to occur, two conditions must be met: (1) reflected

light from any given portion of a mirror must add in phase with light re-

flected from a different portion of the mirror, and (2) reflections from

two different mirrors (acoustic wave fronts) must add in phase. The

first condition implies that the angle of incidence of the optical wave

relative to the acoustic phase fronts must equal the angle of reflection.

The second condition requires that the Bragg condition must be satisfied:

2X gsinO _ X/n ,	 (1)

where 1 B is the wavelength of the sound within the medium, t is the angle

of incidence within the crystal of the light beam with respect to the

acoustic wavefronts, and \In is the free space wavelength of the light;

the erystal has refractive index n. The geometry is shown in Figure 2.

The Bragg condition for light diffraction may he viewed as the

annihilation of one photon representing the incident light wave and one

photon representing the acoustic wave and the simultaneous creation of a

new photon representing the diffracted waive. This is shown in figure 3,

where Kit ►; s , aad K  represent the wave vectors of the incident light

wave, the sound wave, and the diffracted light wave, respectively. Since

WD = ") i + ^a z W  and r.D "' K i - k, we therefore: have that

K	 2K sint',	 or
s

(2)

t%
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FIGURE 2. GEOMETRY OF BRAGG SCATTERING BY ACOUSTIC WAVEFRONTS,
SPACED A DISTANCE Xs APART.



FIGURE 3. PHOTON PICTURE FOR BRAGG SCATTERING. THE INCIDENT LIGHT
(NAVE IS REPRESENTED BY THE DIFFRACTED WAVE BY hd AND
THE ACOUSTIC WAVE BY ks



(3)

the Bragg condition stated earlier.

From the foregoing discussion, we see that for a given wavelength

of light and frequency of the sound wave, there is a unique angle of in-

cidence and diffraction. To achieve light deflection over an angular

range, we select a sound frequency that corresponds to a deflection angle

in the middle of the angular spread desired, and then adjust the incoming

light beam to the corresponding angle of incidence. By then varying the

sound frequency, a range of deflected angles is achieved. The change in

the angle of diffract-on is related to the change in frequency of the

sound wave by (7

XAv
AB ' nv
	

(4)

a

The number of resolvable spats N is equal to the ratio of AO, the

maximum deflection angle, to the full angle of the beam divergence, pd,

The beam divergence 0d is approximately \jnD, where P is the beam diameter.

so we have

Avnn
AO 

N s	 nv^^
-	A vs (=--) ,	 (5)

d	 $	 s

or

N - Avsi .	 (b)
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diameter of the optical beam. This time-bandwidth product is a frequent

specification of an acousto-optic deflector and gives a specification

that is independent of the criterion used for a resolvable spot.

Usually for a light deflection system, we are interested not only

in the angle of the reflected light, but in the amount of reflected

light. From a consideration of anlinear coupled wave equations describing

the interaction of light and sound in the medium, it can be shown that the

ratio of diffracted irradiance to incident irradiance is

ldiff=sin 2 xt
'	 T

Iin	
-X	

acoustic	
{7)

where 
Iacoust.'.c 

is the intensity of the acoustic wave, t is the interac-

tion length, and M is a diffraction figure of merit. M it given by

62
M =np 	(8)

pva

where n is the refractive index, vs the velocity of sound, p the mass

density of the material, and p is the photoelastic constant. The value

of M of tellerium dioxide (TeO,), the material used in our deflector,

relative to that of water is five.

Two principal sources of error in acoustooptic deflectors are (1)

misadjustment of the Bragg angle, and (2) the deflector alignment is not

correct over the entire angular range because of the varying; frequencies

that must be used. The first source of error is generally not significant.

For exannple, a Bragg angle error on the order of 12'. produces only

10



approximately a M reduction in intensity of the diffracted beam [B). An

interesting aspect of the second source of error is that a Riven percen-

tage deviation in frequency above the center frequency causes a larger

roll-off in intensity of the diffracted beam than does the same percentage

deviation in frequency below the center frequency. The deflector can be

made to exhibit equal intensity roll-off in bath directions by align-

ing the beaus at the Bragg angle at a frequency slightly higher than the

center frequency.

3.	 Description and Specification of Acousto-Optic Beam Deflector

The specifications used in the purchase of the acousto-optic

•	 beam deflector are shorn in Figure 4. The system can be operated in four

distinct modes: manual, external input, sweep, and digital. The manual

mode is operated by a ten turn potentiometer mounted on the driver. This

potentiometer can vary the output frequency of the driver by approximately

±250 KHz. The manual mode of operation yields a stationary deflected beam

whose position can be varied by turning the potentiometer. The external

input is operated by applying a voltage between zero and -8 volts, which

in turn varies the RF output frequency. By applying a ramp or sawtooth

external input from a function generator, scanning can be achieved. In

the sweep mode, the driver automatically scans through a frequency range

with the application of an external trigger pulse. The range of the

frequency scan is determined by two potentiometers loc=ated on the front

panel of the driver.

The digital mode requires a 12 bit digital input, with the first

bit the most significant bit and the twelfth bit the least significant

bit. A digital input of all zeroes corresponds to a driver output

11



SPXCIFICATia

I f^ for

Aperture

Laser input

Time-bandwidth product

Deflection efficiency

6 - ACOUSTIC BIB# DEFLECTOR

50 mm maximum

514.5 nm, less than 1 watt

Greater than 750

Greater than 30%; less than 3 db variation
over full swing of deflected beaus

Driver

Positioning modes	 Manual - from panel front

Analog - 0 to 5 volt full swing input.
Deflection angle must be linear
with input voltage; the maximum
deviation from a linear voltage-
angle relationship must be less
than . 025% of the full angular
swing.

Digital input - 9 bit TTL parallel
addressing for 512 uniformly
separated angular positions.
(Less than 1 spot to spot
center spacing variation.)

Clock input - for stair step scan.

Maximum input power	 120 vac, 15 amps, 1^

Mechanical

Deflector and driver must be separate
units. Driver must be rack mountable.
Deflector must have provisions (tapped
holes) for mounting.

FIGURE 4. SPECIFICATIONS FOR ACOUSTO-OPTIC BEAM DEFLECTOR.

12



frequency of 62.72 MHz while an input of all ones corresponds to a driver

output frequency of 131.16 Ms. The entire digital input-output table is

included in Chapter III, System Evaluation.

The detailed operating manuals that accompany the acousto-optic

deflector and driver are included under separate cover 19,10).

4.	 Galvanometer Deflector

In order to achieve a scan rate comparable to standard

television, the horizontal deflector must be able to scan at a rate such

that 30 frames per second are displayed. One of the fastest and cheapest

electromechanical systems is that of a light deflecting galvanometer.

The galvanometer acts as a driven angular oscillator with a driving term

proportional to the current. The result for a critically damped galvano-

meter is that, within the range of application, a deflection angle pro-

portional to current is obtained. To obtain a full scan in 1/30 (.03)

of a second, the galvanometer must be able to swing twice its full de-

flection angle in 1/30 second. The galvanometer chosen for our system

is the General Scanning Model 320 p0, which is capable of a 20 0 mechanical

rotation, peak-to-peak. This model has a resonant frequency of 165 Ht,

and can be driven sinusoidally at up to 85X of	 its frequency, or 140 Az,

which corresponds to a period of .007 seconds, well within the .03 second

scan requirement (11-13].

D.	 Modulator

In order to achieve a beam pattern that has intensity variation, a

modulator must be employed. In order to be able to write 500 resolvable

spots in each dimension at standard television rates, the modulator must

be able to respond to a signal whose period is equal to the active write

13
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time of standard television divided by 250 (500 resolvable spots corres-

ponds to 250 full cycles), or T - 56 x 14 6sec/250 - 2.24 x 10-7 sec. This

corresponds to a bandwidth requirement of 4.46 MHz. The only modulator

available for use in our system is the Coherent Associates Model 3003

Modulation System, which has a bandwidth of 3 MHz, and therefore provides

the limiting factor in our system (14].

E. Scanner Controller

The driver for the acoustooptic beam deflector may be controlled

by a microcomputer system. The KIM-1 microcomputer system, from MOS

Technology, Inc. is included with the laser scanner.

F. Focussing System Alignment

In order to fill the aperture of the acousto-optic beam deflector,

the laser beam is expanded and collimated by a pair of lenses whose focal

lengths are in the ratio 230mmm . The light deflecting galvanometer is

placed almost as close as possible to the output aperture of the acousto-

optic beam deflector. This eliminates the need for any relaying optics,

and the resultant beam behaves as if it were a collimated beam emanating

from a single two-axis deflector. A focussed raster scan is obtained by

placing a lens at the output of the deflector pair. The format size d is

related to the full angle beam divergence 6 as shown in Figure 5, by

d = 2f tan 6/2 ,	 (9)

•	 which for small angles reduces to

d - fe .	 (10)

For a square scan format, each deflector should swing through the same

angle, and a cylindrically symmetric lens can be used.

14
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d12

FIGURE 5. FORMATION OF THE FOCUSSED SCAN BY A LENS. THE DEFLECTOR
ANGLE HAS A FULL ANGLE OF DEFLECTION OF 0 AND FORMS A
PATTERN OF SIDE d IN LENGTH.
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111. SYSTEM EVALUATION

The system was aligned as discussed in Chapter lli, Section S,

and a lens was employed to obtain a focussed format. A picture of the

experimental arrangement is shown in Figure b.

The focussing len •. had a feral length of 500 mm and each deflector

operated through a Full angular swing of approximately .tlb radians,

From Equation 10, the resultant format size is approximately d- ,06(500)

30 mm

The system was operated in the manual, sweep, and external input

des of operation. Square raster patterns were obtained in both the

sweep and external input modest of operation. The pattern obtained in the

sweep mode when the galvanometer operated at a rate of,24 tit and the

acoustut—optic beam deflector at a rate of 11.4; KHr is shoum in Figure

In the sweep modo. the acousto-optic beam clef lv% for seemed to exhibit

nortlinearittes around 14' kilt. In the external input made, however, a

:square raster pattern of approximately oven irradiance was obtained using

a ramp function of fryqurucy I5,775 KHr. approximately the rate o

standard television. In the external :input mode, the upper frequency

limit of operation before "otilinearities in the pattern appeared was

about lb KHr. Detailed data sheets trom the mantifacturer are showtt on

the neNt four pages.

1 t%
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IV. A COMM LIGHT SCANNER FOR OPTICAL PROCESSING
OF LARGE FORMAT TRANSPARENCIES

A coherent light scanner for optical processing of large format

transparencies Was developed under a previous NASA contract With the

Georgia Institute of Technology, Contract No. NAS8-28591, but Was

officially reported in the literature [5] during the contracting period

that is the subject of this report. Since some of the considerations

discussed there have bearing on the general topic of laser scanner

•	 development, Reference [5] is duplicated herin.
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A COHERENT LIGHT SCANNER FOR OPTICAL
PROCESSING OF LARGE FORMAT TRANSPARENCIES

by

W. R. Callen and J. E. Weaver
School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia

and

R. G. Shackelford and J. R. Walsh
Engineering Experiment Station
Georgia Institute of Technology

Atlanta, Georgia

Introduction

Optical techniques are desirable for experiments involving the processing of large amounts of data
stored as a two dimensional scene. Processing by computer usually requires digitizing an image and
performing a two-dimensional Fourier transform numerically, which may be both costly and time -consum-
ing. A schematic diagram of a standard optical processing system used for pattern recognition is
shown in Figure 1. 1 The image to be processed is placed in the image plane of the processor and is
illuminated by a coherent beam of light, as from a laser. The image can be in the form of film or
can be produced by an image forming light modulator controlled by computer . 2 , 3 The spatial Fourier
transform of the imput image appears in the focal plane of the first transform lens .4

If no additional elements are incorporated in the optical processor, the inverted image appears in
the back focal plane of the second transform lens. By placing a matched filter of a second image in
the transform plane, the spatial correlation of the two images appears in the output plane. The
matched filter, which is a holographic record of the Fourier transform of the second image, can be
produced by either optical --- computer methods. The degree of correlation of the transform of the
input image with that of the matched filter in the transform plane is indicated by the light irradiance
distribution in the output plan. if the input image is not centered on the optical axis, the correl-
ation plane irradiance distribution shifts by a distance proportional to the misregistration distance.

Illumination of the input image can be accomplished by two principal approaches:

1. illumination of the entire transparency, or

2. illumination of an area smaller than the transparency format, and then scanning
over the entire format, repeating the optical data processing operation at each
location.

The first approach--illumination of the entire transparency--necessitates the use of large aperture
collimating optics and a powerful laser. The position of objects in the input plane is determined by
a detector array or correlation plane scanner. Although the second approach requires a parallel
scanning beam, it does not require the use of large aperture optics or a powerful laser. By collecting
the light over a region of the correlation plane, the position of the portion of the image that
correlates with the matched filter can be determined from the position of the scanning beam at the time
that a relative maximum is detected in the correlation plane. Thus, correlation plane scanning may be
eliminated.

A conceptual design of a traffic pattern analyzer using optical correlation is illustrated in
Figure 2. Although this system is not meant to describe an actual on-line traffic analyzer, it
exhibits features common to many correlator -based systems. The film transport contains the serial
photographs to be processed. The marginal information associated with the aerial photographs--

C.
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altitude, time, and possibly position and azimuth--can be stored as a data block that is automatically
read at the film transport and entered into the computer. The computer positions the film for a de-
sired frame and controls the laser scanner to examine a prescribed path, e.g.. a highway. The
holographic filter is the matched filter against which the aerial photographs is searched for the
presence or absence of a vehicle or other object of interest.

The television display of the film being processed is strictly for operator convenience. At any
single laser scanner position, the correlation plane may be scanned to examine the intensity contours
of spots in the correlation plane for further identification.

Ideally, the operator of such a system would be able to instruct the processor to count the number
of vehicles travelling in a certain direction in a given area at a specific time. Individual positions
of distinct vehicles could be recorded. By examining the change in position of a number of vehicles
on two consecutive frames taken a few seconds apart, an estimate of traffic flow could be determined.
Such a system would allow traffic engineers to recover and process vast amounts of traffic data in a
short time.

Many approaches have been employed to develop laser scanners for such diverse applications as
writing television images, recording images on film, and storing data in optical memories. Most of
these scanners are optimized by reducing the area of the beam and by increasing the bandwidth of the
positioning mechanism. Unlike the types of scanners mentioned above, accurate random access positioning
and beam parallelism are necessarily emphasized for a scanner to be used in an optical data processing
application. Although the choice of deflectors for a system application may not be simple, galvanometer
type deflectors offer higher resolution and beam quality, with a corresponding sacrifice in access time,
compared to electro-optic and acousto-optic deflectors. Rotating polygonal mirror systems are useful
for many video rate scanning operations, but are not random access by nature and, in general, are
significantly more expensive. The laser scanner discussed below has the following novel features:

1. the scanning beam is random access addressable and is perpendicular to the input
image plane, and

2. the irradiance of the scanned beam is controlled such that a constant average
irradiance is maintained after passage through the image plane.

Optical System

A schematic diagram of the laser scanner is shown in Figure 3. The laser output irradiance is
controlled by a Pockel's cell modulator. The beam passes through a spatial filter, is expanded and
recollimated, and then is reduced to the desired diameter by an adjustable aperture assembly. The
laser beam is then focussed onto a light deflection system that acts as a flat mirror with two angular
degrees of freedom. The deflected and diverging beam is collimated by an off axis paraboloidal section.
The collimated beam is then directed parallel to the optical axis by the paraboloidal section.

To deflect the beam effectively in two angular degrees of freedom, two flat mirrors mounted on the
rotating shafts of moving iron galvanometers and a spherical relay mirror are used. The beam from the
laser is focussed to a spot on the axis of rotation of the horizontal deflecting galvanomcter mirror.
The diverging beam is collected by a spherical mirror, positioned such that the center of curvature is
slightly to one side of the focussed spot. The light reflected by the spherical mirror then images
the focussed spot at an equal distance on the opposite side of the center of curvature, with unity
magnification. By placing the axis of the second moving iron galvanometer mirror at this point, two
dimensional deflection from a point is obtained. By employing controllable galvanometer deflections,
random access to any position in the scanned format is possible.

Optical Design

To analyze the design of the scanner, we consider the collimated parallel scanning beam that passes
through the transparency and works backward toward the laser. To avoid occultation of the scanned
format by the deflector mirrors, an off-axis parabolic section is used. Our system is designed for
scanning over a 10.0 cm by 10.0 cm format. As shown in Figure 4, half of a parabolic mirror of 33.0 cm
diameter is quite adequate. A focal length of 115 cm was chosen because of the significant increase
of cost for lower f-number. Interferograms of both sections after cutting indicated a deviation of
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Is" than x/10 over the scanned portion of the mirror.

The required format dissension of 10.0 cm and the parabola focal length of 115 cm require that the
deflectors scan through a half-angle of approximately two and one-half degrees, which is compatible
with standard deflectors. (A maximum half-angle scan of throe degrees requires a minim focal length
of the parabola of % cm.)

U the previoue discussion of the overall system, we indicated that the two axis deflection is
obtained by closely positioning two orthogonal galvanometers on opposite sides of the center of
curvature of a relay spheroidal mirror. The circular deflector mirrors can be positioned with a
mialsoms center-to--cm for separation of 0 sm. The f-number of the spherical relay mirror must be low
enough to accomodate the deflection angle of the galvanometers, and the focal length must be long
compared to the separation between galvanometers. A focal length of 30.5 cm results in the two focus-
sed spats being 3.3 milltradians off axis, which produces negligible aberrations. A half angle scan
of three degrees requires that the f-number be less than (k min 3'), or approximately F/5. An F/4
spheroid was fabricated from a standard 76 mm 0 inch) diameter optical blank. A slower mirror
could have been used, but an F/8 mirror was chosen to eliminate possible problems with edge effects
due to mounting and surface finish. The central 60 mm of this mirror is spherical in shape within
a tolerance of x/5.

The galvanometer light deflectors are mounted in a fixture that allows fine orthogonal positioning.
A single thin lens of focal length 110 cm to used to focus the beam on the first galvanometer mirror
axis. Proceeding the thin lens is a spatial filter and collimator assembly using standard commercial
optics mounted in a modified holder for long-term positioning stability. Any one of a series of
circular apertures 1.2 me to 10 mm in diameter mounted on interchangeable metal slides can be placed
Immediately behind the collimating lens to vary the beam diameter. The be y diameter must be greater
than the largest dimension of the object being searched for in the image plant. Figure 5 illustrates
hot this would be determined for an aerial photograph of an automobile. From the figure,

Beam diameter .	
focal-length

object size x aircraft height 	 (1)

As an example, an object diameter of 10.7 meters (35 feet) photographed by an aircraft at a height
of 610 meters (2000 foot) using a .305 m (12 inch) focal length lens requires a been diameter of
approximately 5.6 mm.

Between the laser and spatial filter is an on-off shutter and Pockel's effect modulator to control
the beam irradiance. A feedback system has been designed to maintain constant average irradiance in
the beam after passage through the film transparency. This feedback system can correct for local
variations in the average film optical density. The laser used in the system is an argon ion laser
capable of T6'hO0 output of approximately 800 mW at 516.5 nv or 300 mW at 488.0 nm.

System Per formance

The response time of the scanner is essentially determined by the response of the galvanometer
driven mirrors, as they art much slower than any other compontnt. To measure the response time, a
step voltage is applied to the galvanometer. The galvanometer contains a position detector circuit
that delivers a current in direct proportion to the mirror deflection. By displaying the response
to a square wave and the square wave itself on a storage oscilloscope, the response time of the
galvanometer is estimated to be approximately two milliseconds.

A more significant test of the scanner's performance is that of beam parallelism and spot size
variation during the scanning process. By directly measuring the Fourier transform as the beam scans,
the effect of both factors can be observed. The test procedure is shown in Figure 6. The scanning
beam was focussed to a spot by a F/3.5, 45 cm focal length Cooke triplet. The spot was imaged by a
microscope on a ground glass camera back. The spot, when examined with the beam stationary, was an
Airy disc pattern. With the beam scanning at a horizontal rate of 700 Hz and a vertical rate of
25 No. no motion of the transform was detected visually. Several one second time exposure photographs
were taken, as shown in Figure 7, corresponding to an enlargement of 63.5 diameters. From the photo
and from visual inspection % we estimate that the shift in the pattern is lose than 1/10 of the radius
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of the first dark ring. For the 2.7 mm aperture, the radius of the first dark ring is 6.0 sm, which
results In a shift of

AX < .1 x 6`0 = < 1Qµ	 (2)'
63.5

A positional shift in the transform corresponds to an angular deviation of the scanner of

d9 • Ax < 10-58 
	 (3)

45.7 x 10_2m 

or

A9 <2 x 10 5 radians.	 (4)

A photograph of the scanner in operation is shown in Figure 8.

Conclusion .

The successful operation of a laser scanner that is constructed from readily available components
of modest cost indicates further progress in the development of hybrid optical-digital processing
schemes. The scanner has been demonstrated to exhibit the degree of spatial invariance necessary for
certain optical processing applications. Data in the form of large format transparencies can be
processed without the expense, space, maintenance, and precautions attendant to the operation of a
high power laser with large aperture collimating optics. The scanned format and scanning beam

• diameter may be increased by simple design modifications. By employing acousto-optic deflectors
with different relay optics, higher scan rates can be achieved, at the sacrifice of resolution.
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Fig. 4. For-mat projection on surface of
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Fig. 8. Laser scanner during operational test.

A single horizontal line is being traced by the

scanner on the aerial photograph (lower right

hand corner).	 I
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