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MEASUREMENTS OF MIXED-MODE CRACK SURFACE 
DISPLACEMENTS AND COMPARISON WITH THEORY 

1. INTRODUCTION



The general problem of mixed mode crack extension has received



relatively little attention until quite recently. The main effort of in­


vestigators to date has been toward development of a criterion of fracture
 


for combined modes I and II. It has been proposed that this criterion is



a functional relationship between mode I and mode II stress intensity fac­


tors which can be equated to the strain energy release rate or strain



energy density at fracture. Practical application of such a criterion is



limited, however, by a lack of knowledge of these properties for specific



materials, geometries, and loadings. Thus, mixed mode fracture mechanics



has reached the level at which classical fracture mechanics was fifteen



years ago--the level at which it is imperative that an effective method



be developed for determination of the properties required for implementation



of the fracture criterion. Efforts have been made to employ photoelasticity



to this end, but this method suffers serious limitations, particularly in



the vicinity of the crack tips.



In this report two techniques, one theoretical and the other experimen­


tal, are used to determine crack surface displacements under mixed-mode



conditions. Crack surface displacements have been proven to be quite



useful in mode I fracture analysis in that they are directly related to



strain energy release rate and stress intensity factor. It is felt that
 


similar relationships can be developed for the mixed-mode case.



In Section 2, a boundary-integral method is developed for application



to two-dimensional fracture mechanics problems. This technique is applied



-- " 



to the mixed-mode problem in Section 3. In Section 4, a laser interferometry



technique, for measurement of crack surface displacements under mixed-mode



conditions, is presented. The experimental measurements are reported



in Section 5. Finally, in Section 6, the results of the two approaches



are compared and discussed.
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2. THEORETICAL APPROACH



In this section, an indirect boundary-integral equation method



is presented. The basic equations of this method are first formulated



and it is then shown how they can be tailored for application to



problems of fracture mechanics.



2.1 An Indirect Boundary-Integral Method



Consider the plane linear elasticity problem shown in Figure 2.1



where t is a specified traction at a point on boundary portion Bt



and u is a specified displacement at a point on boundary portion B .
u 

The region bounded by contour B =B t + Bu is'denoted by R. It has



been shown in Reference (1) that this problem can be solved by embedding



R in an infinite plane of the same material as R, see Figure 2.2,



and applying an appropriate layer of body force, p*, along B.



This layer of body force is chosen such that the solution in R



satisfies the boundary conditions of the problem of Figure 2.1 as B



is approached from-the inside. Note that the stress and displacement



components at a point Z in R can be written as



a ij(Z) B ij;q(Z,Zo)p*q (Zo )ds(Z ) 
(2.1)



ui (Z) = I. (ZZ )p* (Z )ds(Z )1 B i;q o q 0 o



where Z is a point on B and s is a coordinate measured along B.



The influence functions Hij;q(ZZ ) and Ii;j (Z,Z ) are the ij-th stress component 

and the i-th di3placement component, respectively, at Z in an 


infinite plane caused by a unit load in the q-th direction applied 


at Z0 .' Since this solution must satisfy the appropriate boundary 
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Figure 2.1. Boundary-Value Problem Involving Simply-Connected Region.
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Figure 2.2. 	 Simply-Connected Region Embedded in Infinite Plane and


Subjected to Layer of Body Force.



-5­

x 



conditions as Z approaches a point ZI on B from the inside,



then p* must be chosen such that
 


1 p* (Z) + § H.. (Z.,Z)p* (Z )nJZ )ds(-Z) = -ti(Z) 
2 i .tj;q - -0 q- o j 0% 3
 

Z on Bt (2.2) 


Bi;q(Zl,Zo)P*q(Zo)ds(Z) = ui(Z ) 

ZI on B



where the integral in the first equation is to be interpreted in the



sense of the Cauchy principal-value.



The solution to a particular problem can be obtained by discretizing 

the boundary and the boundary-values and converting Eqs. (2.1) and (2.2) 

to linear algebraic equations. Consider, for example, the traction 

boundary-value problem, i.e., B Bt , in which the right-hand side 

of the first of Eqs. (2.2), i.e., t(ZI), is known. Suppose that B 

is divided into N intervals of length ASk2 k = 1,...,N, and



let the traction of Figure 2.1 and the body force layer of Figure



2.2 be integrated over interval ASk, denoting the resultants as



Pik = ASti d s  P*ik Sp*ids (2.3) 

Ak Ak 

where i = x,y; k = 1,...,N. If these resultant forces are then located 

at the centerpoint of interval ASk, the boundary-integral equations 

are converted to 

N 
ip* (Z) + ZH.. (Z ,Z)p* (Z )n (Zl)AS P (Zk-i ij;q lo qk a j 12 z5Z 1) (2.4) 

k54Y 
i=x,y;j=x,y;Y=l,...,N



where Z is the centerpoint of the A-th boundary subdivision and
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is the centerpoint of the k-th boundary subdivision. Once
Z0 


this 2N X 2N system of equations is solved for P*ik' icx,y, k=l,



S.. ,N, the stress and displacement components at any field point



Z in R can be found by simple summation:



N 
*i (Z) = E H. (Z,Z )P* k(Z) (2.5)

k=l ij;q o qo



N 
= EIi. (ZZ )P* k(Zo)

ui(Z) ki iq a q



The influence functions in Eqs. (2.4) and (2.5) can be written in 

terms of the complex potential functions, cp and *, associated with 

an infinite plane subjected to a point load P*k(Z) = P*xk (Z0 ) + 

iP*yk(Zo) applied at a point Zo, see Reference (2): 

Hxx;q(Z,Z )P*qk(Z ) = Re[2p'(Z,Z ) - Zcp"(Zz ) - 4'(ZZo) ] 

Hyy;q(Z,Z )P*qk(Zo) = R[2cp'(Z,Z ) + ZW"(Z,Zo) + ib'(Z,Z )] 

(2.6)

Hxy;q(ZZo)P*qk(Zo) = Hyx;q(ZZo)P*qk (Z) 

= Im[Zcp"(Z,Z ) + '(Z,Zo)]



I (Zz )P* (Z ) = -- P[C(zz ) - Zc'(Z,Zo) - ¢(Z,Zo) ]a~ qk a 211 a0



Iy;q(ZZo)P* (Z ) = -Im[rfcp(Z,Zo) - Zc'(Z,Zo) - 4(Z,Zo)
Yq 0 qko0 2.p 0 

where 

I +--plane stress



=y 3 ­
4v 
 plane strain



and 11,v are the shear modulus and Poisson's ratio respectively. The



complex potential functions in Eqs. (2.6) can be expressed as
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v(Zzo) = CP o )0 (Zzo) + CP*(Z,Z
 (2.7) 

(ZZo) = 0°(Z0,Zo) + t*(z,z0)


where VP*(Z,Zo) = **(Z,Zo) = 0 and 
0 0o



= ) =Zk(zo)(Z' 2r +i) An(ZZ) (2.8) 

0 P* P*k(Zo0)
0 = *k(Zo) + k)n(ZZz 
(Z'Zo) = 2r(a+l) 2(a+l) Z-Z 

Note again that, in the context of the boundary-value problem of in­


terest, Z is to be interpreted as the centerpoint of the k-th
0



boundary subdivision.



Results obtained by this method have been shown to be quite good



everywhere in R except in a region close to B, i.e., close to the



discretization. This is usually not a severe limitation but it would



be a major shortcoming if one wanted to examine the solution in the



vicinity of a hole, as in the problem of Figure 2.3. Note that one



could treat the problem of Figure 2.3 in the manner described above



by simply considering the integrals to be taken over boundary B + C.



However, solutions in the vicinity of the hole boundary, C, would



be adversely affected by the subsequent discretization. A procedure



will now be presented which remedies this situation.



2.2 The B.I.E. Method Applied to Fracture Mechanics



The technique developed here is also presented in Reference (3).



Suppose that one knows the complex potential functions, cp and



¢, for an infinite plane containing the hole of contour C and



subjected to the load P*k(Z0) applied at Z , see Figure 2.4(a).



Then it is clear that the problem of Figure 2.3 can be solved by



embedding the region of Figure 2.3 in the region of Figure 2.4(a) with
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Figure 2.3. 	 Boundary-Value Problem Involving Region Weakened
 

by Hole.
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Figure 2.4. 	 Fundamental Solution Containing Hole, Expressed as Superposition of Two


Problems.





contour B properly oriented relative to the hole. Then the



solution to the problem of Figure 2.3 is contained in Eqs. (2.4)­


(2.8) where c*,,* are no longer zero but are the complex potential



functions associated with th6 problem of Figure 2.4 (c), i.e., an



infinite plane containing the hole of contour C, subjected to trac­


tion along C which is equal in magnitude and opposite in direction



to the traction generated along an imagined contour C in the pro­


blem of Figure 2.4 (b). Thus when the solutions to the problems of



Figures 2.4 (b) and 2.4 (c) are superposed, the resulting solution



to the problem of Figure 2.4 (a), i.e., traction-free hole, is



obtained. It can be readily shown that the boundary condition on



contour C in the problem of Figure 2.4 (c) is given by:



w*(T,Z ) + rcp*'(T,Z ) + *(T,Z ) [p(T,Zo0) + TCP (T,Zo) + * (T.0A 

(2.9)

where Z = T is a point on C.



In the presentation which follows, a specific contour C will



be considered, namely a sharp crack.



Consider now the problem of Figure 2.5, i.e., a plane, finite,



linear elastic region, containing a sharp crack of length 2a, and



subjected to a specified traction distribution on B. It is clear



from the foregoing discussion that the solution to this problem can



be obtained provided one can find the functions cp* and ** associated



with the problem of Figure 2.4 (c)where the contour C is that of a



sharp crack and the condition along C is given by Eq. (2.9). This



problem can be solved in the following manner.



Note that the function which maps the infinite domain outside



of C onto the unit disc is



-ii­




S z °



Figure 2.5. 	 Boundary-Value Problem Involving Region Weakened by


a Sharp Crack.
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z = = T()( 1 +C) (2.10)+a 

where the disc is defined in the C -plane. 

Then ', 

*(z) = P*[w(c)] = cp* (C) (2.11) 

t*(z) = l*[w(C)] = 41* (C) 

and the condition on y, the perimeter of the unit disc, follows



from Eq. (2.9):



= + -p,*(a)%1 *(a) + *i*(a) F(0 ) (2.12) 

=
where a is a point on y, and where 

F(a) = -[cp 1i(o) + 1(a) --- (o) + a7)1 (2.13) 

is known.



It can be easily shown that the solution to this problem is 

*) 1 F() (- _1 d) (2.14) 

2rri y a-C 2ri -C (2.14)T yw 

2*i y -C- i qW(a) a-C 

It is first necessary to calculate the following integrals



I~ ~ YWjj li (a) dIITi aC-C

12 w (2.15)d w* '0 ) 

Since cPI*" is analytic inside y and c " is analytic outside y



one can write



2Skaka'



= I ky I-t 2 Zk- d 
--C
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k+l 

12 = i+a 2 k=l (2.16)
a-CY 

-where the crack length, 2a, has been set equal to 4 for simplicity.



Clearly Eqs. (2.16) reduce to



Ii=0


0 
 

(2.17) 
12= (2).( 

=- C C-CZ () 

Substitution of Eqs. (2.17) into Eqs. (2.14) leads to 


CP1*(C) 1 y L 


(2.18)



Wi§Yo 2ni y oa) d3- + LILtTr- C 

Transforming Eqs. (2.8) to the C-plane and inserting the transformed 

functions into Eq. (2.13) yields 

Pk*(Zo) [ a2-Za+ a2 -Za+1J 

F(a) 2(+) a nn-


L a 
 (2.19) 

P(Z a -_Za+l
o2-Zo +)
+ 2rT(o+1) 

Inserting Eq. (2.19) into Eqs. (2.18):



y1i*(C(C ) = Pk*(Zo)z(a+i) PY a (c,-0)4TT (a-r) (a - ro) 4


aPk*(Zo) (o-t i ) (a-t )


-4n7(ci+1)§yn a(a-C)


Pk*(Zo) (-r)(-r o )

+ 4i-(+l) (,t)(-t ) ) 
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Pk*(Zo) (a-t ) (a-t o


4i2i )a+1)y (a-ri)(a-ro)(O_ dC



(2.20)


Pk*(Zo) (-t(-t o
)
 

+ 4--t(,+l) n (a-_) 

aPk*k (Z) Y" (a-ri) ( -ro + 1o oC ) I" C 
4Tryi(a+1) I-(a 

where ri, ro are the roots of



C2 _ Z0 C + 1 = 0 

inside and outside of the unit disc respectively and ti, t0 are 

the roots of 

00C + 1 =0



inside and outside of the unit disc respectively. Thus



roi ( 
1 

2 	 (2.21)
2



and t 2 
 (2.22)



0,3.2 

Evaluating the integrals of Eqs. (2.20) leads to 

Pk*(zo) r:- c, t -ClcI*(C ) - 2 	 n ­ n

o 
 

o


2 

P 	 k*(Z) [C-Zc+l + (ti2_-z0 t+l) - -I 

k o 0 + i 013 

=¢2(y+l) L C2-z0C+l r(r0-r.(+-l) 

t r+(r-(i) -rJ 

+ C +_1 ­
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Pk*(Zo) [ to- r0­
+ (2 i---- An t - yn r 

+2(a-l) L t0r 0 (2.23) 
0 0
2Z{ -z )(2C 2 z tiZot 

0-0 0 o +'11I 
+ i_- (F C-15-Y2 -( o.ti ) (C-tl) i 

provided that C tti if = ti, i.e. Z = Z , one obtains 

pk*(Zo) r -t. t -ti 
l*t i) 2(+) -), n o no

=T2r(a+1) L r 0t 

+P2rT(Zl)
 (ti to)7Pk*(Z) E t i2-2tit +z t -1 z t -1 

1 0(2.24) 

pk*(Zo) ti2-iti+l r 2- r+


* 1 *(ti) 2r (a+) LtiZ-Zoti+1 + rro-r i ) (ti-r) 

t.iij (rtr ) 
 iI0



t-t r-t. 

* en n--- -An 0-1+ 
2TT (a+l) L r 

2 2 

ti(ti2+1) 2(t -Zo t +1) 

+ 1-ti2 (ti-t )3 J 

Since cp* and yI* are now known, qc*and ** are also known 

via Eqs. (2.11) and the Boundary-Integral procedure outlined earlier 

can be applied. 
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3. THEORETICAL RESULTS'



The Boundary-Integral method developed in Section 2 is now



applied to example problems involving mixed-mode loading conditions.



The results will be compared to some experimental results in Section 6.



3.1 Definition of Example Problems



Consider the problem of Figure 3.1, i.e. a rectangular region,



containing a centrally-located sharp crack of half-length a = 6.40 mm



and subjected to uniaxial tension of 1 MPa. Plane stress is assumed



= =
and v .33, E 70 X 103 MlPa. The following 36 cases are treated: 

W = 7.62 cm, 4.37 cm, 3.05 cm, 2.34 cm, 1.90 cm, 1.60 cm; and e = 00, 

15, 30, 450 ,600, 750. For all cases, the displacements in the 

x and y directions of the 6 field points shown in Figure 3.2, are 

computed. The results are presented in Tables 3.1 - 3.6 where all 

displacements are given in microns. 

For implementation of Eqs. (2.4) and (2.5), the boundary has



been divided into N = 60-divisions, 10 divisions on each of the



=
loaded sides of length ASe W/10 and 20 divisions on each of the
 


unloaded sides of length AS = 3W/20. The solution of Eqs. (2.4)



was obtained by Gaussian elimination (Crout algorithm) with equilibra­


tion and partial pivoting. Since a crack of half-length a = 2 was



assumed in Section 2, the problem was first scaled accordingly and



the solutions were subsequently scaled back.
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Figure 3.1. Geometry of Example Problems
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3. 

40 

56 
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.001mm 

.001 mm 
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Figure 3.2. Location of Field Points. 
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3.2 Results



TABLE 3.1



Displacement (microns) for W - 7.62 cm



Field 1 2 3 4 5 6

Point



e Ux uy ux uy U flyy I u n y ux x uy 7-y 

0 .000 .186 .000 -.186 -.035 .155 -.035 -.155 -.064 .040 -.064 -.040



150 .046 .174 -.046 -.174 .011 .169 -.071 -.119 -.027 .082 -.080 .009



300 .080 .140 -.080 -.140 .057 .159 -.085 -.072 .021 .105 -.072 .052



450 .093 .093 -.093 
-.093 .089 .127 -.075 -.026 .067 .103 -.041 .079



600 .080 .047 -.080 -.047 .100 .081 -.043 .007 .098 .078 .004 .081



750 .047 .012 -.047 -.012 
 .086 .033 .003 .018 .107 .034 .052 .058



TABLE 3.2



Displacement (microns) for W = 4.37 cm



Pint 1 
 2 3
 4
Point 5 6


9 U t i U U U U U U U ux y x 1 x x ¥ x y xx y



00 .000 .193 .000 -.193 -.037 .160 -.037 -.160 -.066 .041 -.066 -.041 

15 .046 .180 -.046 -.180 .010 .1761-072 -.123 -.029 .085 -.083 .01C



300 .081 .146 
-.081 -.146 .056 .166 -.087 -.075 .020 .109 -.076 .056



450 .094 .098 -.094 -.098 .090 .134 -.078 -.026 .067 .109 -.046 .084



600 .083 .049 -.083 -.049 .101 .086 -.046 .008 .099 .083 .000 .086



750 .048 .013 -.048 -.013 .087 .036 .001 .019 .108 .037 .050 .0
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__ 

Field
Fil 

Point 


0 

00 	
 

° 
 15 


300 


450 


600 


750 


Field 

Point 

6 
6 


00 


° 
 15 


300 


450 


600 


750 


TABLE 3.3



Displacement (microns) for W = 3.05 cm



1 2 3 4 5 


u n u u U U U UK 


.000 .204 .000 -.204 -.039 .170 -.039 -.170 -.071 


.046 .192 -.046 -.192 .008 .187 -.075 -.131 -.032 


.082 .156 -.082 -.156 .055 .178 -.091 -.079 .017 


.097 .106 -.097 -.106 .090 .144 -.083 -.028 .066 


.086 .054 -.086 -.054 .103 .094 -.050 .010 .101 


.050 .014 -.050 -.014 .089 .039 -.001 .021 .110 


TABLE 3.4



Displacement (microns) for W = 2.34 cm



1 2 3 4 5 


U I U U U U U U U U ux x u x uy ux y x 


.000 .223 .000 -.223 -.043 .186 -.043 -.186 -.077 


.047 .210 -.047 -.210 .005 .204 -.079 -.144 -.038 


.083 .172 -.083 -.172 .053 .195 -.096 -.087 .014 


.100 .117 -.100 -.117 .091 .159 -.089 -.030 .065 


.090 .060 -.090 -.060 .105 .104 -.056 .011 .102 


.053 .015 -.053 -.015 .091 .044 -.004 .024 .112 
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6



U u U 


.044 -.071 -.044



.090 -.089 .011



.117 -.083 .061



.118 -.053 .092



.091 -.005 .094



.042 .047 .066



6 


U U U 
y x y 


.048 -.077 -.048 


.100 -.097 .014



.130 -.093 .070



.131 -.063 .103



.101 -.013 .104



.048 .044 .072





TABLE 3.5



Displacement (microns) for W 1.90 cm



Field 
 1 
 2 3 4 5 
 6 

Point 	 I ­

o U U U U U U U U U U U Ue ux y Ix y x x x y x y 

00 .000 .253 .000 -.253 -.047 .212 -.047 -.212 -.087 .055 -.087 -.055 


150 .047 .238 -.047 -.238 .000 .233 -.085 -.164 -.045 .118 -.112 .020



300 .084 .195 -.084 -.195 .050 .219 -.102 -.100 .009 .148 -.107 .082



450 .103 .134 -.103 -.134 .090 .178 -.096 -.034 .063 .148 -.076 .118



600 .094 .068 -.094 -.068 .107 .117 -.062 .013 .103 .114 -.022 .117



750 .056 .017 -.056 -.017 .093 .050 -.008 .027 .114 .055 .039 .079



TABLE 3.6



Displacement (microns) for W = 1.60 cm



Field 	 2 
 3 4 5 6


Point


0 u u u u u x u 1u u u u...... u u v 

00 	 .000 .300 .000 -.300 -.051 .254 -.051 -.254 -.096 .067 -.096 -.067



° 
 15 .050 .287 -.050 -.287 -.003 .291 -.097 -.192 -.047 .172 -.145 .048



300 .084 .231 -.084 -.231 .045 .255 -.110 -.123 .001 .177 -.128 .099



450 .106 .156 -.106 -.156 .089 .203 -.104 -.041 .061 .169 -.093 .137



600 .098 .079 -.098 -.079 .109 .132 -.069 .014 .103 .128 -.033 .131



750 .059 .020 -.059 -.020 .096 .057 -.012 .031 .116 .062 .035 .086
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4. EXPERIMENTAL TECHNIQUES



This section describes the application of a novel displacement



measuring technique - the interferometric displacement gage (IDG) - to the



measurement of biaxial displacements across slots subjected to mixed-mode



loading. The basics of the IDG are first presented followed by a descrip­


tion of a fringe-counting instrument that was developed for these measure­


ments. The material properties and geometries of the specimens are then



given. Experimental results from the more than 200 tests are presented in



tabular and graphical form in the next section.



4.1 The Interferometric Displacement Gage (IDG)



The principles of the IDG have been described in detail in Reference



(1); only a basic review of the technique is given here. Extension of the



uniaxial IDG to biaxial displacement measurement poses special problems



that are also discussed.



4.1.1 Basics of the IDG



Shallow reflective indentations are pressed into the polished surface



of the specimen on either side of a crack or slot as shown in Figure 4.1.



When coherent light impinges upon the indentations, it is diffracted back



at an angle (o ) with respect to the incident beam shown schematically



in Figure 4.1. Since the indentations are placed close together, the



respective diffracted beams overlap, resulting in interference fringe



patterns on either side of the incident laser beam.



In observing the fringe pattern from a fixed position at the angle



ao fringe movement occurs as the distance (d) between the indentations



changes. Application of a tensile load, causing the distance between the



indentations to increase, results in positive fringe motion towards the
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UPPER FRINGE 
PATTERN 

INDENTAT IONS', / 

ao 

LOWER FRINGE 
PATTERN 

Figure 4.1 schematic of the IDG. 



incident beam. Conversely, the removal of the tensile load results in



negative fringe motion away from the incident beam.



The relationship between the indentation spacing and the fringe order
 


shown schematically in Figure 4.1 is (1):
 


d since = HlQ (4.1) 

Here m is the fringe order, d the spacing between indentations,



X the wave length of the incident beam, and a the angle between the



incident and reflected beams, thus defining the zeroth fringe order.



The relationship between the change in indentation spacing (6d) and



the change in fringe order at the fixed observation point (6m) is given by



6d sm X (4.2)

sin ae 

0



It is this relation that serves as the basis of the IDG.



Fringe motion can be caused by rigid body motion as well as relative



displacement. When the specimen moves parallel to its surface and along a



line between the indentations (i.e., vertically in Figure 4.1), one fringe



pattern moves toward the incident beam, and one moves away. Therefore,



averaging the fringe motions eliminates the rigid body motion, and one
 


should calculate the displacement from:



d mI + 8m2X 
= a 2 (4.3)



0



This component of rigid-body motion is present in every ordinary system



for loading specimens, so that it is very important that it be averaged



out. Other rigid-body motions (e.g., one perpendicular to the specimen



surface) are not averaged out and can lead to errors. In a carefully
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aligned testing machine these components of rigid-body motion can be made



small, eliminating the need for corrections.



Using typical values of X 0.6328 microns (He-Ne laser-) and



a6 =_42°,othe calibration constant X/sinc is 0.95 microns. In other
 

0 O 

words, when one complete fringe shift has been observed, the corresponding



displacement is about one micron. An electro-optical recording system



that simply counts the fringes of one pattern as they pass will have a



resolution of one micron. A recording system that counts both patterns



and increments the output voltage whenever either pattern moves one



fringe will have a resolution of one-half micron.



The "gage" consists of the two reflecting indentations. These are



applied with a Vicker's hardness tester which, with its diamond indenter,



permits the accurate location and application of high quality pyramidal



indentations. These indentations are typically 25 microns long on each



side and can be placed as close as 25 microns to the edge of a crack.



Details of the application of indentations to the biaxial specimens are



given in sections 4.3.3 and 4.3.4.



4.1.2 The IDG for Biaxial Displacement Measurements



The IDG can be readily adapted to biaxial measurement, but it is not



simply a matter of adding a third indentation to form a second gage. It



is useful to examine the fringe patterns generated by various configura­


tions of indentations.



Figure 4.2 is a photomicrograph of a pair of indentations and its



corresponding fringe pattern. The orientation of the indentations is the



same as in Figure 4.1; the fringe pattern shown is the lower one. There



are four fringe patterns generated, one from each parallel side of the



indentations. The fringes of each pattern are parallel to the ones shown
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Figure 4.2 	 Phatomicrograph of a set of two indentations and


a resulting fringe pattern. The indentations


are 25 microns an a side and 300 microns apart.


The fringe pattern was photographed 60 cm. from
 

the specimen.
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in the figure. The indentations are 25 microns square and 300 microns



apart. The triangular shape of the overall pattern results from diffrac­


tion from a triangular side of the pyramidal indentation. It is obvious



from looking at the fringe pattern that a photodetector with a long,



narrow slit aperture will give a better signal-to-noise ratio than one



with a circular aperture. The photodetectors used have an optical system



equivalent to a long, thin aperture.



Indentations located at 45 degree angles and the resulting pattern



are shown in Figure 4.3. Since the sides of the indentations are parallel



but displaced, the fringe pattern is skewed. The angle of skewness is



related to the angle between the indentations in a fairly complicated



way (2). It turns out that when the indentations are located at large



angles, the skewness of the fringes is relatively insensitive to the



indentation angle; measurement of the fringe pattern skewness is not a



good way to measure displacement. However, it would be possible to locate



four photodetectors with small apertures at the four fringe patterns and



simply count the fringes as they pass - ignoring the small change in



skewness. This is impractical to do for these biaxial specimens with a



low intensity laser because:



a) the slots in the specimens are roughly 400 microns wide, so the



indentations in Figure 4.3 are not far enough apart,



b) putting the indentations further apart reduces the fringe spacing,



c) the aperture of the photodetector then has to be smaller,



requiring a more expensive sensor.



This problem could be alleviated with a more powerful laser. There are



limits to the indentation spacing because the fringes eventually become so



small that they are on the order of the "speckles" in the diffracted



pattern.
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Figure 4.3 Photomicrograph of two indentations at a 450


angle and a fringe pattern. Magnification same



as Figure 4.2.
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A direct approach to biaxial measurement is shown in Figure 4.4. The



fringe pattern is "checkered" because of the overlap of two uniaxial fringe



patterns. However, one can use a narrow-slitted aperture to still get a



good signal-to-noise ratio. This is the configuration used for these



measurements.



The indentation configuration of Figure 4.4 is fine for biaxial



strains, but not biaxial displacements across a slot. It is therefore



necessary to attach small tabs to the specimen in an arrangement schemati­


cally illustrated in Figure 4.5. Details of how this is done are given in



Section 4.3.4; it required considerable technique development.
 


4.2 Displacement Measuring Instrument



An electro-optical instrument was developed to count the fringe



motion from two patterns and produce a voltage output proportional to



displacement. The simple analog counting device and the specifications of



the instrument are presented in this section.



4.2.1 Photodetectors and Mounting Stage



The photodetectors are Type 2N5777 phototransistors. Although their 

aperture is only - 200 microns in diameter, when placed approximately 40 cm 

from a set of indentations 400 microns apart that are illuminated with a 

5 milliwatt laser, the output voltage changes by approximately 0.1 volt as 

the fringe pattern moves. To increase this signal change as well as to 

generate the equivalent of a slit aperture, a cylindrical lens is placed



in front of the phototransistor. Figure 4.6 is a schematic of the optical



arrangement. The cylindrical lens is oriented with its axis perpendicular



to the fringes; this causes the fringes to be compressed along their



length, but their spacing remains unchanged at the detector. The detector
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Figure 4.4 	 Photomicrograph of three indentations and a


fringe pattern. Magnification same as Figure 4.2.



t 
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Figure 4.5 	 Schematic of tab arrangement for biaxial


displacement measurement.
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Figure 4.6 	 Schematic of the optical arrangement in front


of the phototransistor.



-



thus receives a brighter fringe pattern with a resulting higher signal-to­


noise ratio, and it "sees" a slit at the cylindrical lens. The focal



length of the lens is 44 mm. The detector is not placed at the focal



point because the pattern would then be a series of small dots and align­


ment would be more critical. Instead, the detector is positioned at



approximately 37 mm from the lens so that the fringes are roughly 2 mm



wide at the detector. An interference filter is inserted behind the lens



to reduce background light. A photograph of the photodetector assembly is



in Figure 4.7.



This arrangement using phototransistors is the final version of the
 


system. An earlier version used type UDT-600 photodiode-amplifiers



manufactured by United Detector Technology, Inc., Santa Monica, CA. The



earlier version was chosen because of previous experience with it at MSU



and was used for most of the tests. The photodiode has an aperture of



1 mum which was then covered with a slit-aperture 0.1 mm wide. The opera­


tion of the two photodetector systems is basically the same; however, the



phototransistor one is considerably cheaper and requires a simpler power



supply (+15 volts versus + 15 volts for the diode). 

Four photodetectors are required for biaxial displacement measurement



and they must each be capable of easy positioning relative to the fringe



patterns. The four detectors are mounted on microscope translation stages



which are attached to a four-armed frame. The frame can rotate about the



axis of the incident laser beam to permit displacement measurements at



various angles. The frame is typically located 30 cm from the specimen.



A photograph of the mounting stage is in Figure 4.8; the entire assembly



is pictured in front of an Instron testing machine in Figure 4.9.
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Figure 4.7 Photograph of the photodetector assembly.
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Figure 4.8 The mounting stage for the four photodetectors.
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Figure 4.9 The biaxial displacement measuring instrument


in position in front of the testing machine.
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4.2.2 Fringe Counting Circuit



A block diagram of the circuit is given in Figure 4.10. The output



from the phototransistor goes through a low-pass filter (10 hz) to a low­


gain amplifier with variable gain (O.lX-lOOX) and zero positioning. These



adjustments are necessary because the fringe patterns vary in intensity



for different pairs of indentations. This variation is not extreme, but



the voltage that is presented to the "one-shot" must be within certain



limits. A voltage output proportional to the pattern intensity is pro­


vided so that the gain and offset can be adjusted while monitoring with an



external voltmeter. The intensity voltage goes to a limiting diode which



prohibits the voltage behind it from exceeding 5 volts. This limited



voltage then triggers a one-shot monostable multivibrator that outputs a



pulse every time the incoming voltage is increasing and exceeds a certain



level (- 1 volt). In other words, one pulse is generated every time a



fringe passes the phototransistor. This pulse is fed into a summing 

circuit which increments once for each pulse received. The "summer" 

counts pulses from both channels and thus effects the averaging of the 

fringe motions. The output from the summer goes to an LED display which



gives the fringe count in digital form and to a digital-to-analog con­


verter which gives an output voltage proportional to displacement. This



voltage is of course incremental, so a typical load-displacement curve



looks like Figure 4.11. Each voltage increment parallel to the displace­


ment axis corresponds to a displacement of



I X 
2 sina 

0 

because of the averaging. It is very easy to pre-or post-calibrate the



displacement scale.
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Figure 4.10 Block diagram of the fringe counting circuit.





a- Figure 4.11 A typical load-displacement curve. 
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A detailed circuit diagram of the complete biaxial counter is pre­


sented in Figures 4.12 and 4.13. Photographs of the front and back and



the circuit board of the counter are in Figures 4.14 and 4.15. The loca­


tion of the electronic components is shown in Figure 4.16.



4.2.3 Operating Procedures



The following procedures should be used in setting up the fringe



counter for measurements:



1. 	 Align the incident laser beam. The laser beam is narrow (- I mm 

diameter) with a bell-shaped intensity distribution. It must be 

aligned so that the indentations are illuminated at the beginning 

of loading and throughout the experiment. The fringe counter can



tolerate some variation in intensity, but not extreme changes.



If a lot of rigid-body motion occurs during the experiment, a



cylindrical lens can be used to spread the laser beam in 	 the 

direction of motion (3). The specimen reflects a portion of the



incident beam which can be observed on the laser head and used as



a guide in adjusting the laser position to insure perpendicu­


larity of the incident beam.



2. Align the photodetectors. They must be positioned so that the



fringe pattern falls on the cylindrical lens. Typically the



total fringe pattern is about the size of the lens. The detec­


tors must then be oriented angularly so that the pattern falls on



the 	 phototransistor. A sliding cover on the photodetector case



and a white background around the transistor make this task



easier. If necessary, the phototransistor can be moved along the



optical axis in the case to adjust the size of the fringes at the



transistor. The final arrangement should be a row of fringes



approximately 2.5 mm high centered about the phototransistor.
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Figure 4.12 Circuit diagram of the biaxial fringe counter -

Part 1. 
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Figure 4.14 Front and back of the biaxial fringe counter.
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Figure 4.15 Interior of the biaxial fringe counter.
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Figure 4.16 Diagram of the location of the components in


the biaxial fringe counter.





3. 	 Adjust the photodetector signal levels. Since a limiter is



placed before the "one-shot," the gain after the phototransistor



can be left high in most cases. The DC level of the photo­


detector signal does vary among fringe patterns and must usually



be readjusted for each setup. Use an oscilloscope or voltmeter



to monitor the analog voltage of each detector as fringes move



and adjust the offset so that the voltage swings between 0 and



+5 volts. If the intensity of a fringe pattern is considerably



different from the previous setup, the monitored output may show



no change as the fringes move; this simply means that the offset



needs a large change. Fringes can be moved past the photode­


tector by moving the photodetector with the translation stage.



If the experiment is elastic and quasi-static, the loads can be



cycled to make the fringes move. This is an optimal arrange­


ment because one can check that the indentations do not move out



of 	 the laser beam.



4.3 	 Specimens 

4.3.1 Material Properties 

The 	 specimen material was Type 2219 aluminum 1/8 	 inch (3.2 mm) thick 

furnished by NASA-Lewis. The specimens were oriented so that the rolling



direction was parallel to the loading direction. The stress-strain curve



from an ASTM specimen with the same orientation is shown in Figure 4.17.



This curve was obtained using an Instron test machine and foil gages on



the specimen. Another specimen was instrumented with foil gages in the



longitudinal and transverse directions to obtain Poisson's Ratio. 
 From



these data, the elastic properties are determined to be:



Elastic Modulus 
 = 
70 + 1 x 103 MPa



Poisson's Ratio = 0.33 + 0.01
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Figure 4.17 Stress-strain of Type 2219 aluminum. 
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4.3.2 Specimen Geometry



A schematic of the specimen is given in Figure 4.18. 
 A slot nominally



12.5 mm long was electromachined in the sheet specimens. Six specimens 

were tested; each had the slot oriented at a different angle to the load



direction. The thickness of the slot was measured at five positions along



the slot - at the ends (XI and X5 ), the middle (X3 )and the quarter-points



(X2 and X4) as indicated in Figure 4.18. 
 The data on the slot geometry



are given in Table 4.1



TABLE 4.1



Slot Angle Slot Thickness - Microns 2a - mm



X1 
 x2 x3 x4 x5



00 314 314 
 309 364 389 12.750


° 
 15 291 306 
 284 294 292 12.806


° 
 30 284 282 
 276 313 289 12.798 

450 285 286 291 292 290 12.793 


600 276 282 
 272 290 275 12.815 
750 231 242 228 247 240 12.742 


4.3.3 Indentation Application



The indentations were applied with a Vicker's hardness tester using



the 100 p weight. 
With this instrument, one can locate the indentations


within + 2 microns if care is taken. The specimen was first sanded with 

320, 400, and 600 grit metallurgical paper and then polished with 1 micron 

and finally 0.3 micron alumina paste following standard metallurgical pro­


cedures. A photomicrograph of a set of indentations is in Figure 4.19a;



it also shows the relative smoothness of the slot.
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Figure 4.18 Schematic of the specimens. 
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Figure 4.19 The slot and indentations for a specimen that 
has been polished (a) and one that has been 
sanded (b). 
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It was learned during the course of the work that it was unnecessary



that the specimen surface be exceptionally smooth. If one stops the



surface preparation after the 600 grit sanding, acceptable indentations



can be applied. The trick is to align the final sanding scratches so



that they are not perpendicular to the line between indentations. The



laser beam reflects perpendicular to the scratches and if this reflection



is oriented so that it does not interfere with the fringe patterns, then



high-quality fringes can be obtained. Figure 4.19b shows a set of inden­


tations in a sanded specimen. These give results just as good as the 

smoother specimen, but with less preparation time. 

4.3.4 Biaxial Indentation Application



The indentations for uniaxial displacements (i.e., perpendicular to



the slot) were applied directly to the specimen. As discussed in



Section 4.1.2, tabs must be applied for biaxial measurements.



The tabs were cut from a Pt-Rh alloy sheet 0.010 inch (250 microns)



thick with a wire saw. This material was used simply because it was 

available from previous work; aluminum would have been fine. The wire saw 

had a blade 350 microns in diameter and cutting was done with an alumina 

and oil paste. Better cuts can be made with a wire spark cutting 

apparatus, but it is very slow.
 

The nominal size of the tabs was to be 0.010 inch (250 microns) by



0.030 inch (750 microns) for the tab crossing the slot and 0.010 inch



(250 microns) square for the other two tabs (see Figure 4.5). Variations



in the cuts made with the wire saw caused some of the tabs to be slightly
 


larger than this. A photograph of a set of tabs with indentations is in
 


Figure 4.20. The procedure for applying tabs is:
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I. Polish tab material.



2. Cut tabs to size and clean in acetone.



3. Mask off the area for one tab with cellophane tape. The area



under the free end of the long tab crossing the slot must be



coated with Teflon spray to prevent sticking of the tab.



4. Apply one tab at a time, using Eastman 910 cement and procedures



similar to those for applying foil gages, i.e., hold the tab with



cellophane tape.



5. Apply indentations.



Applying a set of tabs is a delicate operation. But, if a tab is in the



wrong location or becomes scratched in handling, it can be chipped off and



another one applied. The main difficulty experienced was failure to get



enough catalyst on the specimen to form a good bond with the contact



cement.



The tabs as applied in most cases lasted for all the experiments in



spite of the handling associated with testing and machining of the speci­


mens. In conclusion, the use of tabs for biaxial measurements is a 

feasible experimental procedure.



4.3.5 Indentation Location 

The location of the indentations on each specimen are given in Table



4.2.



-54­




5. EXPERhIENTAL RESULTS



The experimental results are presented in the form of slopes of the



measured displacement-stress curves for the various positions, widths, and



angles.



5.1 Test Procedure



The specimens were loaded in an Instron test machine whose load cell



was calibrated for each set of experiments. A very slight preload was



applied to remove slack in the linkages. Figure 4.9 shows the testing



machine with a specimen in place. The normal procedure was to cycle the



specimen between the maximum and minimum loads several times while



adjusting the incident laser beam and adjusting the offset of the photo­


detectors. This adjusting operation took most of the time required for a



given displacement-stress curve; the plot was obtained directly on an X-Y



plotter.



All data were recorded for increasing loads only. This was justified



because the maximum load was well below that required for yielding the



specimens at the slot tips. Also, repeated loading plots for a set of



indentations proved to be identical.



5.2 Typical Plots



A typical plot of a displacement versus load result is shown in



Figure 5.1 (this is a copy of the X-Y plot - not redrawn). A straight



line was drawn through the stepped curve and the slope of the line com­


puted. Figure 5.1 is for the displacement at the center of the crack and



shows a reasonably large total displacement of approximately 7 microns.



As one moves toward the end of the slot, the displacement is less, of



course; a typical plot is shown in Figure 5.2. This was taken under the
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Figure 5.1 Displacement versus load at the center of the


150 specimen with a/b = 0.291.





00I 

2.35 kN 

Figure 5.2 	 Displacement versus load at one end of the slot


of the 150 specimen with a/b = 0.291.





same conditions as Figure 5.1, except the displacement was measured at an



end location.



When the slot angle is larger, e.g., 600 or 750, the displacement at



the ends of the slot become very small. They can become so small that the



fringe due to displacement is smaller than that due to rigid-body motion,
 


and one of the fringe patterns will move in a negative direction. The



instrument cannot account for this; it would produce erroneous results.



It becomes necessary to plot the fringe intensity as a function of applied



load and manually convert this to a displacement plot. Figure 5.3 is a
 


plot of intensities for an end location on the 600 specimen. It doesn't



have the cosine-squared shape of the intensity variation because of the



limiter in the circuit. The upper fringe moved in a negative direction;
 


this was determined by simply watching the fringe motion on the diode



face. The locations of the maxima and minima were plotted and the dis­


placement curve drawn as the average of these - see Figure 5.4.



5.3 Relative Uncertainties of Slopes



The uncertainty in a given slope measurement arises from the measure­


ment technique that produces the displacement load plot and from the



determination of the slope of that'plot.



The relative uncertainty of the load measurement was estimated to be



1 percent; this arises mostly from the calibration procedure. The rela­


tive uncertainty of the displacement measurement is also predominantly



influenced by the calibration. The calibration factor X/sin a was



determined for each measurement; of course a is the only quantity that



need be measured. Since the photodetector is approximately 40 cm from the
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-- - -__ .--_ _. 

LI 
I



,~~­- - -------- ----- - -..... tJ 

.A 
 
kN i 

F 5.4 .sn v 

"- I..'... ­

* 1! 1.1 
r-I ­F iu e . Figure 5 et.3 l a l t o rgss 
. a a f o h
 

-, I M 



indentations, it is easy to measure a so that a relative uncertainty of 

less than I percent for sin a is attained. 

If the displacement measurement had a finer resolution, it would be



easier to draw a straight line through the plot. The human element enters



into where the straight line should be drawn. However, by actually
 


drawing various straight lines (exercising normal care) and comparing the



computed slopes, it was determined that the relative uncertainty of the



slope calculation was also I percent.



It is then estimated that the relative uncertainty of a slope



measurement is 3 percent.



Computation of slopes from plots showing less total displacement,



e.g., Figures 5.2 and 5.3, are naturally less precise owing to the greater



variability in drawing the straight line. It is estimated that the rela­


tive uncertainty of these slope measurements is 5 percent.



The instrument was developed for biaxial displacement measurements.



A typical plot of the displacements perpendicular to and transverse to the



crack is shown in Figure 5.5. It was recorded from the 450 slot specimen.



In running the tests it was just as convenient to record the two displace­


ments separately, because it was hard to align the incident laser beam so



that it covered all three indentations equally throughout the loading. If



the laser beam was positioned primarily on two indentations, then those



fringes were emphasized, i.e., the fringe patterns were "checkered," but



looked more like the continuous fringe pattern from only two indentations.



5.4 Data for Horizontal Slot



The measured slopes for the horizontal slots for various widths of



the specimen are plotted in Figure 5.6. Measurements were made on both
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Figure 5.5 Biaxial displacement for the 450 specimen with a/b = 0.417. 
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center of the 00 specimen.



-64­




sides of the specimen. Also plotted in Figure 5.6 are the predicted crack



displacements from the formula



j 4a [-0.071 - 0.535(a/b) + 0.169(a/b)2 + 0.20(a/b)3 
Cr E 

- 1.071(b/a) .n (I - a/b)] 

2 4
 from Reference 4, p. . . The thinner lines in the figure are deviations



of plus or minus 3 percent from the theoretical curve. All of the
 


measured values with the exception of the second set and one value from



the third set fall within these boundaries.



Figure 5.6 is interpreted as evidence that the testing technique is



valid and that the estimates of the relative uncertainty are nearly correct.



The rest of the data was taken in the same fashion and is presumably just



as accurate.



The displacements at the ends of the slots of the 00 specimen can be



predicted from the KI value for the appropriate a/b. In Figure 5.7,



the theoretical value of slope is shown as computed from an expression for



K (Reference 4, p. 2.2, last formula) and the relation between displace­


ment, 1%, and distance and angle from crack tip. Surprisingly good



correlation is obtained - considering the fact that the slot is so wide



relative to the distance of the indentations from the tip; the theory is



for a thin slit. This indicates that this displacement measuring



technique can be used to estimate the KI value associated with fairly



thick slots.



5.5 Displacement Data



The total matrix of displacement measurements is presented in Tables



5.1 - 5.6. It is given in the form of displacement/stress in units of



-
microns/Megapascal x 10 . Any missing data points were usually the
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Figure 5.7 	 Slopes of the displacement-load plots at the
 

ends of the 00 specimen.
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TABLE 5.1 


-
Displacement/Stress (p/MPa x 10 ) for 7.62 cm Width 


Slot Angle LE LQ 

0 1.64 3.07 

15 1.31 3.07 

30 - 2.44 

45 0.97 1.60 

60 0.31 0.63 

75 0.09 0.19 

Cent 


3.68 Theory 

3.58 Front 

3.68 Back 

- Trans 


3.53 Front 

3.34 Back 

- Trans 


- Front 

2.54 Back 

1.60 Trans 


1.91 Front 

1.84 Back 

1.60 Trans 


- Front 


1.16 Back 

0.99 Trans 


0.22 Front 

- Back 


0.53 Trans 


RQ RE 

3.00 1.62 

2.93 1.45 

2.49 0.99 

1.60 0.82 

0.65 0.24 

0.22 0.05 
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TABLE 5.2



" 
 Displacement/Stress (p/NPa x 10 ) for 4.37 cm Width



Slot Angle LE LQ Cent RQ RE



3.81 Theory


0 2.11 3.52 4.06 Front 3.45 1.83



4.04 Back 
- Trans 

15 1.75 3.38 3.80 Front 3.22 1.68


3.73 Back


0.15 Trans



300 1.48 2.69 - Front 2.72 1.48 

2.95 Back


1.65 Trans



450 0.92 1.78 2.19 Front 1.86 0.97



2.11 Back


1.82 Trans



600 0.33 0.90 - Front 0.97 0.35 
1.05 Back


1.28 Trans



750 0.13 0.24 0.26 Front 0.22 0.09



0.22 Back


0.46 Trans
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TABLE 5.3



Displacement/Stress (pINPa x 10"I) for 3.05 cm width



Slot Angle LE LQ Cent RQ RE



0 	 4.06 Theory


0 2.07 3.79 4.19 Front 3.69 1.86



4.30 Back


- Trans



150 1.66 3.11 4.16 Front 3.40 1.59


3.72 	 Back


- Trans



300 1.34 2.63 - Front 2.69 1.28



2.86 Back


1.58 Trans



450 1.12 1.71 2.21 Front 1.91 0.90



2.17 Back



2.08 Trans



600 0.34 0.85 - Front 0.89 0.44 
1.12 Back



1.52 Trans



750 0.10 0.193 0.23 Front 0.23 0.09



0.22 Back


0.46 Trans
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TABLE 5.4



-
Displacement/Stress (p/MPa x 10 ) for 2.34 cm Width



S,lot Angle LE LQ Cent RQ RE



4.48 Theory


do 2.06 3.81 4.39 Front 3.84 1.96



4.45 Back


- Trans



150 1.91 3.55 4.27 Front 3.67 1.96 
4.14 Back


0.041 Trans



300 1.40 2.93 - Front 2.96 1.45


3.36 Back


1.45 Trans



450 0.91 1.97 2.36 Front 1.96 1.30



2.46 Back


1.98 Trans



600 0.41 1.06 - Front 1.01 0.46


1.16 Back


1.56 Trans



750 0.16 0.25 0.23 Front 0.22 0.10



0.30 Back


0.50 Trans
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TABLE 5.5



Displacement/Stress (p/MPa x 10" ) for 1.90 cm Width
 


Slot Angle LE LQ Cent RQ RE



Theory
0 25.13 
 
0 2.42 4.54 5.16 Front 4.50 2.28



5.12 Back


- Trans



15 2.15 4.22 4.92 Front 4.24 2.17


4.75 Back


- Trans



30 1.76 3.35 - Front 3.41 1.73


3.78 Back


1.42 Trans



45 0.92 2.09 2.51 Front 2.19 0.95


2.54 Back


1.95 Trans



60 0.46 1.02- - Front 1.30 0.46


1.44 Back


1.62 Trans



750 0.11 0.34 0.34 Front 0.28 0.12



0.34 Back



0.54 Trans
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TABLE 5-6 -"



-
Displacement/Stress (p/MPa x 10 ) for 1.60 cm Width



Slot Angle LE LQ Cent RQ RE 

0 
0 3.63 5.57 

6.32 Theory 
6.30 Front 
6.15 Back 
- Trans 

5.34 3.61 

15 2.81 5.57 6.36 Front 
6.03 Back 
- Trans 

5.22 3.06 

30 2.08 4.34 - Front 
4.99 Back 
1.68 Trans 

4.28 1.90 

45 1.21 2.59 3.26 Front 
3.47 Back 
2.19 Trans 

2.90 1.21 

60 0.97 1.19 - Front 
1.63 Back 
1.98 Trans 

1.12 1.16 

750 - 0.39 - Front 0.42 -

0.33 Back 

0.96 Trans 
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result of displacements too small to measure. In a few cases the indenta­


tions or tabs were damaged in handling.



Figures 5.8 - 5.10 illustrate the crack shapes for different slot



angles and various crack-length/specimen-width ratios. As expected, the



crack opens more per unit stress for the narrower specimens and changes



shape somewhat as the width changes. The crack slope (as measured by



displacement perpendicular to it) remains symmetrical for the various



angles and widths. This does not mean that the deformed slot is symme­


trical about its axis; if the transverse displacements were measured at



each point along the slot, the exact shape would be found.



Figure 5.11 shows the transverse displacements at different angles



for representative length/width ratios. One would expect the transverse



displacement versus angle plot to have a maximum because the transverse



displacement must be zero at 00 and 900. The experimental results indi­


cate that the maximum is in the neighborhood of 450.
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Figure 5.8 Slopes of the displacement-load plots for 


various angles and a/b = 0.167. 
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Figure 5.9 slopes of the displacement-load plots for 
various angles and a/b = 0.543. 
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Figure 5.10 Slopes of the displacement-load plots for 
various angles and a/b = 0.792. 
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6. RESULTS AND DISCUSSION



In this section, the crack surface displacements, determined



by the BoundarydIntegraT Equation method (BIE) and by the Inter­


ferometric Displacement Gage technique (IDG), are compared and



discussed.



6.1. Comparison of Results



The results obtained via the BIE method (Tables 3.1-3.6) and via



the IDG tedhnique (Tables 5.1-5.6) are again presented in Tables 6.1-6.6



for the purpose of comparison. These results are for crack opening
 


displacements (in microns) at the center-point, quarter-point and end­


point and for relative transverse displacement at the center-point. A



uniaxial load of I MPa is assumed.



Note that the BIE results in Tables 6.1-6.6 are given in terms



of the results in Tables 3.1-3.6 by



8center 
 (u) I - (uy)
2



6trans. (ux)I 2(Ux)2



6quart.= (U) - (u y 4



6end (uy)5 (uUy)6



The IDG results in Tables 6.1-6.6 are simply the average of the



appropriate values in Tables 5.1-5.6.
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TABLE 6.1



Comparison for W = 7.62 cm.



(Displacements in microns)



Loct. Center Transverse Quarter End



e BIE IDG BIE IDG BIE IDG BIE IDG



00 .371 .363 .000 - .309 .304 .080 .163 

150 .347 .344 .092 - .288 .300 .073 .138 

300 .280 .254 .160 .160 .231 .247 .052 .099



45 .187 .188 .185 .160 .153 .160 .024 .090



600 .093 .116 .161 .099 .074 .064 -.003 .028



750 .024 .022 .093 .053 .016 .021 -.023 .007 

TABLE 6.2



Comparison for W =4.37 cm.


(Displacements in microns)



Loct. Center Transverse Quarter End



e BIE IDG BIE IDG BIE IDG BIB IDG



00 .386 .405 .000 - .320 .349 .083 .197 

15° .360 .377 .092 .015 .299 .330 .075 .172


300 .292 .295 .162 .165 .241 .271 .054 .148



450 .196 .215 .189 .182 .160 .182 .025 .095 

600 .098 .105 .165 .128 .077 .094 -.003 .034



750 .025 .024 .096 .046 .017 .023 -.023 .011 
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TABLE 6.3



Comparison for -W= 3.05 cm. 
(Displacements in microns) 

Loct. Center Transverse Quarter End



G BIE IDG BIE IDG DIE IDG BIE IDG 

0° .409 .425 .000 - .339 .374 .087 .197



150 .383 .394 .093 - .318 .326 .079 .163 

300 .312 .286 .164 .158 .257 .266 .056 .131 

450 .212 .219 .194 .208 .172 .181 .026 .101



600 .107 .112 .171 .152 .084 .087 -.003 .039



750 .028 .023 .100 .046 .018 .021 .023 .010



TABLE 6.4



Comparison for W = 2.34 cm.


(Displacements in microns)



Loct. Center Transverse Quarter End



e BIE IDG BIE IDG BIE IDG BIE IDG 

0 .446 .442 .000 - .371 .383 .095 .201 

150 .419 .421 .093 .004 .347 .361 .085 .194



300 .343 .336 .167 .145 .282 .295 .060 .143



450 .235 .241 .200 .198 .189 .197 .027 .111



600 .119 .116 .179 .156 .092 .104 -.003 .044



750 .031 .027 .106 .050 .020 .024 -.024 .013
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TABLE 6.5



Comparison For W = 1.90 cm.


(Displacements in microns)



Loot. Center Transverse Quarter End



0 BIE IDG BIE IDG BIE IDG BIE IDG 

00 .505 .514 .000 - .424 .452 .109 .235



150 .477 .484 .093 - .397 .423 .098 .216



30 .391 .378 .169 .142 .319 .338 .066 .175



450 .267 .253 .206 .195 .213 .214 .029 .094



600 .137 .144 .188 .162 .104 .116 -.003 '.046



750 .035 .034 .112 .054 .023 .031 -.024 .012



TABLE 6.6



Comparison for W = 1.60 cm.


(Displacements in microns)



Loct. Center Transverse Quarter End



e BIE IDG BIE IDG BIE IDG BIE IDG 

0° .600 .623 .000 - .509 .546 .135 .362 

150 .574 .620 .099 - .483 .540 .123 .294 

30 .462 .499 .169 .168 .378 .431 .078 .199



450 .311 .337 .212 .219 .245 .275 .032 .121



600 .159 .163 .197 .198 .118 .116 -.003 .107



750 .040 .033 .118 .096 .026 .041 -.024 ­
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The percentage differences are compiled in Tables 6.7-6.9 for



the opening displacement and relative transverse displacement at



the centerpoint and for the opening displacement at-the-quartet­


poifit. The BIE solution is used as the basis for this comparison,



i.e.:



61 - 6BIEx10
G



% difference 100
-x 
 6BIE



TABLE 6.7



Percentage Difference: Crack Opening
 

Displacement at Center-point



7.62 4.37 3.05 2.34 1.90 1.60



00 - 2.16 4.92 3'91 - .90 1.78 3.83 

150 - .86 4.72 2.87 - 1.67 1.47 8.01 

30 - 9.29 1.03 - 8.33 - 2.04 - 3.32 8.01 

577 
 

450 .53 9.69 3.30 2.55 - 5.24 8.36



600 24.73 7.14 4.67 - 2.52 5.11 2.52 

75 - 8.33 - 4.00 -17.86 -12.90 - 2.86 -17.50 
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TABLE 6.8



Percentage Difference: Relative Transverse


Displacement at Center-point



7.62 4.37 3.05 2.34 1.90 1.60
0.6


°



0 
 

15 - -83.70 - -95.70 - ­

30 .00 1.85 - 3.66 -13.17 -15.98 - .59 

450 -13.51 - 3.70 7.22 - 1.00 - 5.34 3.30 

600 -38.51 -22.42 -11.11 -12.85 -13.83 .51



750 -43.01 -52.08 -54.00 -52.83 -51.79 -18.64



TABLE 6.9



Percentage Difference: Crack Opening


Displacement at Quarter-point.



w 7.62 4.37 3.05 2.34 1.90 1.60



00 - 1.62 9.06 10.32 3.23 6.60 7.27



150 4.17 10.37 2.52 4.03 6.55 11.80



30 6.93 12.45 3.50 4.61 5.96 14.02


0 

45 4.58 13.75 5.23 4.23 .47 12.24



600 -13.51 22.08 3.57 13.04 11.54 - 1.69 

750 31.25 35.29 16.67 20.00 34.78 57.69 
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6.2 Discussion



The agreement between the theoretical results and the experimental results



is, in general, excellent for all- cases except at the endpoints. For example,



the exact theoretical solution from reference 7 for the widest 00 specimen is



0.368 i/MPa; the BIE computes 0.371, and the IDG measures 0.363. Clearly both



the BIE program and the IDG techniques are accurate.



The fact that the two techniques don't agree for displacements near the



crack tip is understandable. The BIE computations are for a sharp crack;



whereas the IDG measurements were made on a finite slot. Note that the IDG



values are larger. This difference is not noticeable for displacements at



positions removed from the tip. Furthermore, the measured displacements at the



tips are very small and thus subject to a larger experimental error. The



computation of the relative displacement as illustrated in Figures 5.3 and 5.4



is not as accurate as it is for larger displacements.
 


Transverse displacements also agree very well except for the 150 case. In



that case, the experimental values were so small as to make them suspect. This



agreement shows that the elaborate technique of gluing tabs across the slot



doesn't distort the measurements.



The BIE results are tainted for the cases e = 600 and 8 = 750 because of



the negative crack opening displacements at the endpoints. This indicates that



the sharp crack surfaces cross each other - a physical impossibility. By



allowing this to happen, the displacements at other positions are adversely



affected. It appears that for angles less than 600 this crack surface overlap



doesn't occur in the BIE computations.



The relative displacements for 750 cracks show a larger percent difference



between the BIE and the IDG. These measured displacements were very small and



therefore subject to uncertainties as mentioned above.
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The results of this extensive research program show that the theoretical



and experimental techniques (both of which were developed in the course of the
 


work) are valid for computing crack surface displacements. The choice of



method for future problems will depend on how easily the geometry and applied



loads can be modeled. Where external loads can be accurately predicted, the



BIE method is more appropriate. For more complicated situations the IDG is an



accurate, easy-to-use experimental technique.
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