NASA CONTRACTOR REPORT

1 i 🕂

NASA CR-150777

ANALYSIS OF WIND BIAS CHANGE WITH RESPECT TO TIME AT CAPE KENNEDY, FLORIDA, AND VANDENBERG AFB, CALIFORNIA

By Stanley I. Adelfang Science Applications, Inc. 2109 W. Clinton Avenue, Suite 800 Huntsville, Alabama 35805

(NASA-CP-150777) ANALYSIS OF FIME EITS	170-3"664
CHANGE WITH RESPECT TO TIME IT OVER REVERTOR.	
FLOFIDA, AND VANDENDENDENG ATE, COLIFORNI;	
(Science Applications, Inc., Furtaville,	Unclas
Ala.) 87 p HC AC5/ME AC1 0871 041 63/47	90264

August 1978

÷

had so the the factor

Prepared for

NASA - George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

È i t T	1 ··· + ··· + ·· +	MON 1	+ 155	100月1	1-3	With Jac.	1 West West	A 36 24	1.30	24 3A 36 36 3
			4			1			S' j	

	ومحمالة فالبلادة ويرامنا والمراجع والرفين والمراجع	TECHNICA	REPORT STAND	ARD TITLE PAGE
1, REPORT NO.	2. GOVERNMENT AC	CESSION NO.	3. RECIPIENT'S CA	TALOG NO.
A TITLE AND SURTITIE	<u></u>	·		
			August 1978	
Analysis of Wind Blas Change	e with Respect to 1	ime at	6. PERFORMING OR	ANIZATION CODE
Cape Kennedy, Florida, and	v andenberg Ar D,	California		
7. AUTHOR(\$) Stanley I. Adelfang			B. PERFORMING URG	NIZATION REPORT
9. PERFORMING ORGANIZATION NAME AN	DADDRESS		IC WORK UNIT NO.	
Science Applications, Inc.			11. CONTRACT OR G	RANT NO.
2109 W. Clinton Avenue, Suit	te 800		NAE8-32226	
Huntsville, Alabama 35805			14. TYPE OF REPOR.	& PERIOD COVERES
2. SPONSORING AGENCY NAME AND ADDR	IESS			
National Aeronautics and Spa	ce Administration		Contracto	r
Washington, D. C. 20546			14. SPONSCRING AG	ENCY CODE
15. SUPPLEMENTARY NOTES				
N N N N N N N N N N		A		
Prepared under the technical	monitorship of the	Atmospheric Scien	nces Division, S	space
Sciencos Laboratory, NASA/	Marshall Space Fli	ight Center		
This report presents	a statistical analys	is of the temporal	variability of w	ind
vectors at 1 km altitude inter	vals from 0 to 27	km altitude after ap	oplying a digital	filter
to the original wind profile d	ata sample.			
•				
		•••••••••		
17 KEY WORDS		18. DISTRIBUTION STAT	TEMENT	
		linologa	ified — Unlimit	ed
		K.L.	K.L.	
		innar 0	· Jungs	n
		Charles A. Lun	dquist	
		Director, Space	Sciences Labor	ratory
19. SECURITY CLASSIE, Inf inte reports	20. SECURITY CLAS	SIF, (of this page)	21. NO. OF PAUES	22. PRICE
		-161 . 1	0.0	Mana
Unclassified	Unclas	B11100	67	I NEIS

MBFC - Form 3292 (May 1969)

17

Part of

1

٦Ľ

For sale by National Technical Information Service, Springheld, Virginia 22101

TABLE OF CONTENTS

iection

N.

.

4

- -

~~

1

Page

树

.

「「「「「「「「「「「」」」」

. مر ۲

. 7

'.+

`¥ ∳

1	INTRODUCTION
11	TECHNICAL BACKGROUND
	A. Introduction
	B. Data
	C. Digital Filter
	D. Definitions
	E. Statistics
111	ANALYSIS
	A. Introduction
	B. Wind Bias Component Change With Respect to Time 8
	C. Joint Distribution of Wind Bias Component Changes With Respect to Time
	D. Modulus of Vector Wind Bias Change With Respect to Time . 25
	E. Conditional Vector Wind Bias Ellipses
١V	CONCLUSIONS
۷	REFERENCES
Appendix	4.

LIST OF ILLUSTRATIONS

Man & Amil and the state of the first the second

a) 12:231

* C MAY

i

(† 2] 3]

> 41 M

1

ţ,

:

U" I MAT MARY

7 *1

Figure		F)age
1	Wind Bias Profile Calculated from a Rawinsonde Profile and an Artificial Profile Composed of Monthly Means for the Period 1956-67 at KSC	•	5
2	Zonal and Meridional Wind Bias Component Autocorrelation During April at 6, 12 and 18 km at Cape Kennedy (1956-70)	•	10
3	Zonal and Meridional Wind Bias Component Autocorrelation During January at 6, 12 and 18 km at Vandenberg AFB (1965-74)	•	11
4	Constants b and c of Equations 18 and 19 for Cape Kennedy During April (1956-70)	•	14
5	Constants b and c of Equations 18 and 19 for . Vandenberg AFB During January (1965-74)	•	15
6	Theoretical (Straight Lines) and Observed (Plotted Points) Cumulative Probability Distribution of Zonal Wind Bias Component Change, Δu , with Respect to Time Increment, τ , During April at 12 km Over Cape Kennedy (1956-70)	•	18
7	Theoretical (Straight Lines) and Observed (Plotted Points) Cumulative Probability Distribution of Meridional Wind Bias Component Change, Δv , with Respect to Time Increment, τ , During April at 12 km Over Cape Kennedy (1956-70)	•	19
8	Theoretical (Straight Lines) and Observed (Plotted Points) Cumulative Probability Distribution of Zonal Wind Bias Component Change, Δu , with Respect to Time Increment, τ , During January at 12 km Over Vandenberg AFB (1965-74)	•	20
9	Theoretical (Straight Lines) and Observed (Plotted Points) Cumulative Probability Distribution of Meridional Wind Bias Component Change, Δv , with Respect to Time Increment, τ , During January at 12 km Over Vandenberg AFB (1965-74)	•	21
10	Observed λ_e as a Function of Theoretical λ_e for a Bivariate Normal Distribution of Wind Bias Component Changes (Δu , Δv) with Respect to Time at 12 km During April (1956-70) at Cape Kennedy	•	23
11	Observed λ_e as a Function of Theoretical λ_e for a Bivariate Normal Distribution of Wind Bias Component Changes (Δu , Δv) with Respect to Time at 12 km During January (1965-74) at Vandenberg AFB	•	24
12	Joint Distribution of 95 Percent Wind Bias Component Changes with Respect to Time at 6, 12 and 18 km During April at Cape Kennedy (1956-70) and January at Vandenberg (1965-74)	•	26
13	April Theoretical Percentiles of Modulus, R, of Vector Wind Bias Change with Respect to Time Interval, τ, at 12 km Over Cape Kennedy (1956-70)	•	28

iv

LIST OF ILLUSTRATIONS (Con.)

The part of the pa

Figure

72 **1**

ľ.

×= '

1

Page

í

١Ì

14	January Theoretical Percentiles of Modulus, R, of Vector Wind Bias Change with Respect to Time Interval, 1, at 12 km Over Vandenberg AFB (1965-74)
15	April Conditional 95 Percent Wind Bias Ellipses at 12 km for Time Increments of 12, 24, 36, 48, 60 and 72 Hours at Cape Kennedy (1956-70)
16	January Conditional 95 Percent Wind Bias Ellipses at 12 km For Time Increments of 12, 24, 36, 48, 60 and 72 Hours at Veodenberg AFB (1965-74)
17	Wind Direction Characteristics of a Vector Probability Ellipse38

LIST OF TABLES

and and with some

1

调壶

2

Ċ,

<u>Table</u>		<u>Page</u>
1	Filter Weights and Effective Response Function of an 11-Point Martin-Graham Low Pass Filter with a Nominal Cutoff Frequency of .04 km ⁻¹ and a Termination Frequency of .20 km ⁻¹	4
2	Constants b and c of Equations 18 and 19 at Altitudes from 5 to 22 km During January at VAFB (1965-74) and During April at Cape Kennedy (1956-70)	- 13
3	Calculated [Eqs. 22 and 23] and Observed $\sigma_{\Delta u}$ and $\sigma_{\Delta v}$ from Wind Bias Profiles During April at Cape Kennedy at 6, 12, and 18 km	16
4	Calculated [Eqs. 22 and 23] and Observed $\sigma_{\Delta u}$ and $\sigma_{\Delta v}$ from Wind Bias Profiles During January at Vandenberg AFB at 6, 12 and 18 km	17
5	Theoretical and Observed Modulus, $R(m/sec)$, of Vector Wind Bias Change with Respect to Time Interval, τ , During April (1956-70) at 12 km Over Cape Kennedy	30
6	Theoretical and Observed Modulus, $R(m/sec)$, of Vector Wind Bias Change with Respect to Time Interval, τ , During January (1965-74) at 12 km Over Vandenberg AFB	31
7	Wind Direction (Degrees) Characteristics of 95 Percent Conditional Vector Wind Bias Ellipses at 12 km Over Cape Kennedy During April for an Elapsed Time, τ , of 12 Hours	36
8	Wind Direction (Degrees) Characteristics of 95 Percent Conditional Vector Wind Bias Ellipses at 12 km Over Vandenberg AFB During January for an Elapsed Time, τ , of 12 Hours	37

vi

South a state of the second

ð

ť2

I. INTRODUCTION

A typical wind model used for ascent vehicle wind biasing consists of the monthly mean wind at each altitude. Such a model does not contain the small scale perturbations normally found in Rawinsonde profiles. The smoothness of the wind profile model is not considered to be a serious deficiency because wind biasing is with respect to the predominant large scale perturbation in the profile. Thus, even if a single Rawinsonde profile obtained a few hours prior to launch is used as the basis for wind biasing, the small scale perturbations in the profile would be removed before implementation. Nevertheless, filtered profiles can still differ greatly from the monthly mean profile; therefore, individual filtered wind profiles that are representative of the wind conditions associated with a particular launch would be the most desirable basis for wind biasing of launch vehicles. The monthly mean wind profile is almost never representative of launch conditions.

The development of a pre-launch wind monitoring scheme to provide data for wind biasing will require knowledge of the change of smoothed wind profiles with "espect to time. This report describes wind bias change with respect to time that has been calculated from the VAFB (1965-74) and KSC (1956-70) twice daily Rawinsonde series. Each profile in the series was filtered before calculation of wind change statistics. The filtering process removed the small scale perturbations. Wind change at KSC and VAFB for unfiltered profiles has been described in previous reports [1,2]. The methodology used in this study is basically the same; wind bias change for time intervals from 0 to 72 hours at altitudes from 5 to 22 km is calculated for selected months. Wind bias change is presented in terms of statistical summaries of wind bias component change and the modulus of vector wind bias change; the parameters of theoretical probability distribution functions representing the wind bias change variables are also presented. The validity of the theoretical distributions is established by comparing them with the observed distributions. These distribution functions can be utilized to obtain statistical predictions of wind change with respect to time.

This report consists of a brief statement of technical background (Section II), an analysis of wind change statistics calculated from filtered data (Section III) and conclusions (Section IV); the calculated statistics of wind bias change with respect to time for selected months 1 km altitude increments from 5 to 22 km to KSC and VAFB are listed in the appendix.

II. TECHNICAL BACKGROUND

A. INTRODUCTION

Ņ

.

1 .5 2,

r.

The large sample of wind profiles obtained at VAFB is suitable for calculation of an equally large sample of wind bias change data. In order to readily abstract information on wind bias change from these data, it is necessary to perform a second series of calculations which provide statistical summaries of wind bias change. The choice of statistical parameters for description of wind bias change is based in part on the need to specify the parameters of theoretical distributions of wind change. These theoretical distribution functions are described in detail by Smith [3]. The basic distribution of the four variables consisting of the zonal and meridional components of the wind bias vector at an initial time and after an elapsed time. Δt , is guadravariate normal. The conditional distribution of the wind bias components at a specified future time, given the wind bias components at an initial time, is bivariate normal. The modulus of the wind bias change vector is Rayleigh and the distribution of either the zonal or meridional wind bias component change is univariate normal. A significant portion of the analytical discussion in Section III of this report is the presentation of observed distributions of wind bias change and comparison with the theoretical distributions of wind bias change variables. Succeeding paragraphs of this section are concerned with a description of the wind bias profile data, the filtering of the data and the definition of statistical parameters of wind bias change used in the various theoretical distribution functions.

B. DATA

The basic winds aloft data are recorded in terms of wind direction, θ and magnitude, W. The wind vector is expressed in the standard meteorological coordinate system in which the direction from which the wind is blowing is measured in degrees clockwise from true north. The zonal component, u, of wind vector is positive for a west (west to east) wind (θ =270⁰) and negative for an east (east to west) wind (θ =90⁰); the meridional component, v, is positive for a south (south to north) wind (θ =180⁰) and negative for a north (north to south) wind (θ =0⁰); u and v are obtained from θ and W according to:

2

$$u = -W \sin \theta$$
, $0 \le \theta \le 360^{\circ}$ (1)

 $\mathbf{v} = -\mathbf{W} \cos \theta, \qquad (2)$

The relation between θ defined above and the angle defined in standard mathematical polar for s:

$$\theta = 270 - \theta_{Math} \tag{3}$$

C. DIGITAL FILTER

r. F.

一人のう 一部の一部の一部の日本

Í

Wind profiles suitable for wind biasing of launch vehicles (defined here as wind bias profiles) are calculated by application of an 11-point symmetrical Martin-Graham digital low-pass filter to Rawinsonde profiles. The filter removes the small scale perturbations in the wind profile without the addition of phase shift to the data. The filter gain and weighting functions are listed in Table 1. The effect of the filter on a particular profile is illustrated in Figure 1. Application of the filter to a wind profile originally containing data at 1 km intervals from 0 to 27 km produces a somewhat abbreviated filtered profile extending from 5 to 22 km. The mathematical background and computer code for calculation of the filter gain and weighting functions are described by Demandel and Krivo (4).

The typically large deviation of individual filtered and unfiltered Rawinsonde profiles from the artificial profile composed of the monthly mean at each altitude is also illustrated in Figure 1.

D. DEFINITIONS

The subscript 0 is used to denote the initial value of a variable, and the subscript 1 denotes the variable after an elapsed time, Δt . Thus:

$$\Delta u = u_1 - u_0$$
(4)
$$\Delta v = u_1 - v_0$$
(5)

Where Δu and Δv are the components of the wind bias change for a specified Δt . The modulus, R, of the wind bias change with respect to time is given by:

$$R = \sqrt{(\Delta u)^2 + (\Delta v)^2}$$
 (6)

Table 1. Filter Weights and Effective Response Function of an 11-Point Martin Graham Low Pass Filter with a Nominal Cutoff Frequency of .04 km⁻¹ and a Termination Frequency of .20 km⁻¹

Č

٦,

. ..

•

٦.

- 1 store and the second of th

÷.

Filter N	leights, h _i	Response Fu	nction, G(f)
		f(km ⁻¹)	G(f)
h	. 22658165	.01	. 996
	2222522	. 02	.985
n+11	.20033538	.03	.966
		. 04	.940
h _{+2 -2}	. 13609867	. 05	.905
· • • • •		.06	.863
h_2 2	.06181594	.07	. 813
+3,-3		. 08	.756
h	.00628003	. 09	.693
+4,-4		. 10	.624
h	.01832084	.15	.251
``+5,-5	101002001	20	- 002
		30	023
			- 023
		.40	023
		. 50	.023
		. 60	023
		.70	. 023
		.80	023

Figure 1. Wind Bias Profile Calculated from a Rawinsonde Profile and an Artificial Profile Composed of Monthly Means for the Period 1956-67 at KSC The statistical means are denoted by an overbar, the standard deviations and the correlation coefficients are denoted by σ_{χ} and R(X, Y), respectively, with X and Y replaced with the notation appropriate to the variable of interest.

i or i mante a ser and and and and a ser a ser a ser a ser a

E. STATISTICS

The wind vector measurements at an initial time and after an elapsed time are treated in this investigation as a sample from a quadravariate normal distribution defined by the fourteen statistics listed below:

MEANS

 $\overline{u}_0, \overline{v}_0, \overline{u}_1, \overline{v}_1$

STANDARD DEVIATIONS

 $\sigma_{u_0}, \sigma_{v_0}, \sigma_{u_1}, \sigma_{v_1}$

CORRELATION COEFFICIENTS

 $R(u_0, v_0), R(u_0, u_1)$ $R(v_0, v_1), R(u_1, v_1)$ $R(u_1, v_0), R(v_1, u_0)$

The fourteen statistics of the quadravariate normal distribution of vector wind difference with respect to time consist of the five bivariate normal statistics of vector wind at an initial time $(\overline{u}_0, \overline{v}_0, \sigma_u, \sigma_v)$ and $R(u_0, v_0)$ and the nine statistics involving component differences which can be calculated from the quadravariate statistics listed above according to the following equations:

$$\frac{\text{MEANS}}{\Delta u = u_1 - u_0} = \overline{u_1} - \overline{u_0}$$
(7)
(8)

 $\overline{\Delta v} = \overline{v_1 - v_0} = \overline{v_1} - \overline{v_0}$

American land and a fight for

ł

STANDARD DEVIATIONS

$$\sigma_{\Delta u} = \sqrt{\sigma_{u_1}^2 + \sigma_{u_0}^2 - 2\sigma_{u_1} \sigma_{u_0}^R (u_1, u_0)}$$
(9)

$$\sigma_{\Delta v} = \sqrt{\sigma_{v_1}^2 + \sigma_{v_0}^2 - 2\sigma_{v_1}^2 \sigma_{v_0}^2 - R(v_1, v_0)}$$
(10)

Where R(x,y) is the correlation coefficient of variables x and y.

CORRELATION COEFFICIENTS

$$R(u_0, \Delta u) = \frac{\sigma_{u_1}}{\sigma_{\Delta u}} \frac{R(u_0, u_1) - \sigma_{u_0}}{\sigma_{\Delta u}}$$
(11)

Where, $\sigma^{}_{\Delta u}$ is obtained from Equation 9

 $R(v_0, \Delta v) = \frac{z_{v_1} R(v_0, v_1) - z_{v_0}}{z_{\Delta v}}$ (12)

Where, $\sigma_{\Delta V}$ is obtained from Equation 10

$$R(\Delta u, v_0) = \frac{\sigma_{u_1} R(v_0, u_1) - \sigma_{u_0} R(u_0, v_0)}{\sigma_{\Delta u}}$$
(13)

$$R(\Delta v, u_0) = \frac{\sigma_{v_1} R(u_0, v_1) - \sigma_{v_0} R(u_0, v_0)}{\sigma_{\Delta v}}$$
(14)

$$R(\Delta u, \Delta v) = \frac{\left[\sigma_{u_{1}} \sigma_{v_{1}} R(u_{1}, v_{1}) - \sigma_{u_{1}} \sigma_{v_{0}} R(u_{1}, v_{0})\right]}{\sigma_{\Delta u} \sigma_{\Delta v}}$$
(15)

III. ANALYSIS

A. INTRODUCTION

States and an

.

The analysis of wind bias profile change with respect to time follows the approach taken in previous studys of vector wind change at KSC and VAFB [1,2]. The vectors under consideration have been modified by the filtering process described in the previous section. Since the component of wind change associated with small scale perturbations in the profile has been removed, the calculated wind change is expected to be smaller for wind bias profiles. The objective of this analysis is the establishment of a theoretical basis for estimation of wind bias change. This is accomplished by comparison of theoretical probability distributions which contain wind bias change sample statistics as parameters (from the appendix of this report), to observed probability distributions of wind bias change. Wind bias change with respect to time is analyzed herein in terms of wind component change, and the modulus of vector wind change.

B. WIND BIAS COMPONENT CHANGE WITH RESPECT TO TIME

The theoretical probability distribution of wind component change with respect to time is univariate normal with zero mean and standard deviation given by Equations 9 and 10; the assumption of zero means of component differences is varified by the sample statistics given in the appendix. The theoretical normal distribution of component differences can be derived by using either the standard deviations of component differences given in the appendix or an estimate which can be obtained from the standard deviation of the components if it is assumed that:

 $\sigma_{u_0} = \sigma_{u_1} = \sigma_{u_1}$ $\sigma_{v_0} = \sigma_{v_1} = \sigma_{v_1}$

Equations 9 and 10 reduce to

$$\sigma_{\Delta u} = \sqrt{2} \quad \sigma_{u} \sqrt{1 - R(u_{1}, u_{0})}$$
 (16)

$$\sigma_{\Delta \mathbf{v}} = \sqrt{2} \quad \sigma_{\mathbf{v}} \quad \sqrt{1 - R(\mathbf{v}_1, \mathbf{v}_0)} \tag{17}$$

The wind component autocorrelation functions, $R(u_1, u_0)$ and $R(v_1, v_0)$ can be represented by a negative exponential function of time increment, τ ; i.e.,

$$R(u_1, u_0) = EXP(-b\tau)$$
 (18)

$$R(v_1, v_0) = EXP(-c\tau)$$
 (19)

where b and c are computed according to

$$b = - \frac{\sum_{i=1}^{\Sigma \tau_{i} \ln R_{i}(u_{1}, u_{0})}{\sum_{i=1}^{\Sigma \tau_{i}^{2}}}$$
(20)

$$c = - \frac{\sum_{i=1}^{T_{i} \ln R_{i}(v_{1}, v_{0})}{\sum_{i=1}^{T_{i} \tau_{i}^{2}}}$$
(21)

Examples of the decay of the autocorrelation function at 6, 12 and 18 km during April at Cape Kennedy and January at VAFB are illustrated in Figures 2 and 3, respectively; the lines in the figure represent the decay rate predicted by Equations 18 and 19.

Substitution of Equations 18 and 19 into 16 and 17, respectively, yields a simple expression for $\sigma_{\Delta u}$ and $\sigma_{\Delta v}$ in terms of σ_{u} and σ_{v} , respectively.

9

$$\sigma_{\Delta u} = \sqrt{2} \qquad \sigma_{u} \sqrt{1 - EXP(-b\tau)}$$
(22)

$$\sigma_{\Delta v} = \sqrt{2} \qquad \sigma_{v} \sqrt{1 - EXP(-c\tau)}$$
(23)

- ----

n

1

* ? ? ?

:

·

ŧ

ί

1

1111 Calmand and

Figure 2. Zonal and Meridional Wind Bias Component Autocorrelation During April at 6, 12, and 18 km at Cape Kennedy (1956-70)

10

]

ORIGINAL PAGE **IS** OF POOR QUALITY

1

2

1

34 7

. if

7

1

Figure 3. Zonal and Meridional Wind Bias Component Autocorrelation During January at 6, 12 and 18 km at Vandenberg AFB (1965-74)

Equations 22 and 23 indicate that $\sigma_{\Delta u}$ and $\sigma_{\Delta v}$ are asymptotic to $\sqrt{2} \sigma_{u}$ and $\sqrt{2} \sigma_{v}$ for large values of τ . Therefore, estimates of the extreme value of $\sigma_{\Delta u}$ and $\sigma_{\Delta v}$ are obtained by setting τ equal to ∞ in equations 22 and 23.

1

No. of Concession, Name

The calculated values of b and c at altitudes from 5 to 22 km over KSC in April and VAFB during January listed in Table 2 are also plotted in Figures 4 and 5. At both locations at altitudes from 5 to 22 km the decay rate of the meridional wind bias component autocorrelation is larger than the decay rate for the zonal component. The variation of the decay rate for the meridional component as a function of altitude differs at the two locations. Maximum decay for the meridional component occurs at 12 - 13 km over VAFB during January; in contrast, at KSC during April, the maximum occurs at the extremes of altitude range (near 5 and 22 km) and is a minimum at 13 km. The decay of zonal component autocorrelation decreases steadily with altitude at VAFB during January. At KSC during April the decay also decreases with altitude but at a very rapid rate and within a restricted altitude range (5 - 15 km); above 15 km the decay increases.

The calculated and observed values of $\sigma_{AU}(\tau)$ and $\sigma_{AV}(\tau)$ at 6, 12, and 18 km during April at KSC and January at VAFB are listed in Tables 3 and 4. The estimated extreme values of σ_{AU} and σ_{AV} . ($\sqrt{2} - \sigma_{U}$ and $\sqrt{2} - \sigma_{V}$, respectively), are listed at the bottom of each column of calculated values. The comparisons in Tables 3 and 4 indicate that σ_{AU} and σ_{AV} can be accurately estimated by application of Equations 22 and 23, respectively. General application of this estimation technique at other locations would require a more adequate knowledge of the form of the autocorrelation function than is presently available.

The theoretical distribution of wind bias component differences has been derived from sample estimates of σ_{AU} and σ_{AV} and λu and λv (given in the appendix) for the intervals of 12, 24, 36 and 48 hours at 12 km during April at KSC and January at VAFB; the theoretical normal distributions are plotted as straight lines in Figures 6 through 9; the plotted symbols represent the observed distributions of Au and Av. It is indicated that the observed distribution of bias component changes is accurately represented

1.

	VAFB (JA	NUARY)	KSC (A	PRIL)
Z (km)	10 ² b (hr ⁻¹)	10^{2} c (hr ⁻¹)	10^{2} b (hr ⁻¹)	$10^2 c (hr^{-1})$
5	1.79	2.72	1.17	2.96
6	1.80	2.83	1.08	2.64
7	1,80	2.99	1.04	2.43
8	1,78	3.16	1.02	2.32
9	1,72	3.33	1.02	2.25
10	1.63	3.49	0.99	2.21
11	1.52	3.64	0.95	2.15
12	1.41	3.74	0.89	2.06
13	1 32	3.77	0.85	1.97
14	1.25	3.87	0.81	1.89
15	1.21	3.42	0.80	1.86
16	1.18	3.04	0.80	1.89
17	1.09	2.57	0.82	1.99
18	0.96	2.11	0.84	2.14
19	0.81	1,75	0.86	2.38
20	0.70	1.50	0.90	2.79
21	0.65	1.37	0.98	3.71
22	0.63	1.34	1.10	3.34

ŗ

SAI 3515

Table 2. Constants b and c of Equations 18 and 19 at Altitudes from 5 to 22 km During January at VAFB (1965-74) and During April at Cape Kennedy (1956-70)

î (

1.1

....**1**

i in had a set

 $10^2 \text{ b } (\text{hv}^{-1})$ $10^2 \text{ c } (\text{hv}^{-1})$

14

i I

1

a man and and a set of the

. 1

ÿ

2

1. N. V.

Figure 5. Constants b and c of Equations 18 and 19 for Vandenberg AFB During January (1965-74)

١

n. 1

and the second

ġ

1

111

		ø۵	U	<i>•</i> م	٧
(KM)	(HOURS)	CALCULATED	OBSERVED	CALCULATED	OBSERVED
18	12 24 36 48 60 72 ∞	3.11 4.29 5.13 5.78 6.32 6.76 10.04	3,17 4,13 5,04 5,70 6,24 6,59	3,20 4,26 4,92 5,38 5,71 5,95	2.60 3.89 4.78 5.33 5.72 5.99
12	12 24 38 48 60 72 ∞	7.00 9.65 11.52 12.97 14.15 15.14	6.23 9.28 11.50 12.94 14.05 14.92	7.89 10.53 12.20 13.36 14.20 14.72	7.28 10.35 12.34 13.44 14.23 14.65
8	12 24 36 48 60 72 ∞	5.12 7.01 8.33 9.34 10.14 10.79 14.68	4.74 7.04 8.53 9.36 10.03 10.54	5.11 6.72 7.69 8.32 8.75 9.06	4,75 6,59 7,83 8,62 8,78 8,82

SAI-3516

Table 3. Calculated [Eqs. 22 and 23] and Observed $\sigma_{\Delta u}$ and $\sigma_{\Delta v}$ from Wind Bias Profiles During April at Cape Kennedy at 6, 12, and 18 km

16

، الحمية المراسي الم

1. .

1.1

		°.N	4	6.9	٧
ALTITUDE (KM)	(HOURS)	CALCULATED	OBSERVED	CALCULATED	OBSERVED
18	12 24	3.20 4.40	2.97 4.08	3 56 4 75	2 86 4 42
	36 48 60	5,24 5,89 6,42	5.03 5.75 6.48	5.49 6.01 6.38	544 607 843
	72 .×	6.85 9.72	7.03	6.65 7.52	6 65
12	12 24 36 48 60 72	9, 16 12, 43 14, 64 16, 27 17, 53 18, 53 23, 19	8.12 12.16 14.66 16.17 17.33 18.61	12.23 15.65 17.49 18.57 19.23 19.63 20.34	9 91 15,04 17 56 18,83 19,16 19,40
6	12 24 36 48 60 72 30	7.62 10.23 11.93 13.14 14.04 14.73 17.28	8.96 10.13 11.89 12.94 13.75 14.62	9.00 11,78 13,41 14,47 15,17 15,65 16,79	8 66 12 22 14.05 14.79 14.97 16.13

*

1

.

SAL 351 *

Table 4. Calculated [Eqs. 22 and 23] and Observed σ_{AU} and σ_{AV} from Wind Bias Profiles During January at Vandenberg AFB at 5, 12 and 18 km

17

1

1.1.

1 . 1

1

¢

j |

A CARLES AND A CARLES A

i

- - -

` ,

 τ^{1}

1

I

I

TALL

L .

١

- T

T

And and and

7

Ξ.:

۱

19

1

ţ

• •

• I 1

. .

۱ د

•

ORIGINAL PAGE IS OF POOR QUALITY ł

1

Ì

'

ų

by the theoretical normal distribution for a large range of probabilities; the deviation of the observed distribution from the theoretical distribution at the extreme probabilities is attributed to the small sample of observations and errors in the Rawinsonde data.

C. JOINT DISTRIBUTION OF WIND BIAS COMPONENT CHANGES WITH RESPECT TO TIME

The joint distribution of zenal and meridional wind bias component change with respect to time (Δu and Δv) can be approximated by a bivariate normal distribution. A useful property of such a distribution is that an ellipse can be calculated which contains the end points of a specified percent of vectors having components Δu and Δv . A detailed description of the derivation of probability ellipses and plotting methodology is given by Smith [3]. The five parameters of the bivariate normal distribution of Δu and Δv , calculated for each monthly reference period at KSC and VAFB at 1 km altitude intervals from 5 to 22 km are listed in the appendix.

The degree of approximation of the bivariate normal distribution to the observed distribution can be evaluated by comparison of the observed percentage of vectors which are contained within the ellipse to that predicted by the ellipse at a specified probability level. For example, for a sample of 1,000 vectors, 950 of the vectors should terminate within the 95 percent (theoretical F = .95) ellipse calculated from the bivariate statistics of the 1,000 vectors; however, a plot of the 1,000 vectors could indicate that only 945 vectors (observed p=.345) terminate within the 95 percent ellipse. For illustration on a linear graph comparison of the theoretical to the observed P is given in terms of the parameter λ_e given by

$$\lambda_{e} = \sqrt{2} \sqrt{-1n (1-P)}$$
 (24)

A comparison of theoretical and observed values of λ_c at 12 km during April at KSC and January at VAFB for time intervals of 12, 24, 36 and 48 hours is illustrated in Figures 10 and 11. Perfect agreement between theoretical and observed λ_e is represented by a line drawn from the origin with a slope, B, equal to 1. The calculated least squares slopes are given in the figure legend. The plots indicate a tendency for the theoretical λ_e to exceed the

Figure 10. Observed λ_{e} as a Function of Theoretical λ_{e} for a Bivariate Normal Distribution of Wind Bias Component Changes (Au, Av) with Respect to Time at 12 km During April (1956-70) at Cape Kennedy

Figure 11. Observed λ_e as a Function of Theoretical λ_e for a Bivariate Normal Distribution of Wind Bias Component Chnages (Δu , Δv) with Respect to Time at 12 km During January (1965-74) at Vandenberg AFB

observed λ_e for large values of λ_e . The interpretation of this result is that for extreme probabilities the theoretical distributions predict fewer wind change vectors terminating outside the ellipse than is observed. These results may have to be taken into consideration if engineering application of theoretical wind change statistics beyond 95 percent level is required.

The 95 percent probability ellipses for the joint distribution of wind bias component changes with respect to time at 6, 12, and 18 km during April at KSC and January at VAFB are illustrated in Figure 12; the relatively large changes with respect to time at 12 km is clearly illustrated at both locations.

D. MODULUS OF VECTOR WIND BIAS CHANGE WITH RESPECT TO TIME

If wind bias change with respect to time has a distribution which is bivariate normal, the modulus R, of the wind bias change vector (defined by Equation 5) has a Rayleigh distribution. Since the Rayleigh distribution cannot be integrated in closed form, numerical integration is required to obtain the cumulative probability distribution. Derivation of the Rayleigh distribution, given the five bivariate normal distribution statistics, requires summation involving products of the modified Bessel function of the first kind. Smith (3) summarizes the basic equations for the Rayleigh distribution derived by Wier (5) and extended by Yadavalli (6) to include the condition for correlated variables. The Rayleigh distribution reduces to the integrable classical form if it is assumed that the components of the vector wind change are independent and that they have zero means and equal standard deviations; the classical Rayleigh probability density function is

$$f(R) = \frac{R}{\sigma^2} EXP (-R^2/2\sigma^2) R = 0$$
 (25)

Integration of Equation 25 from zero to a specified value of R yields the cumulative probability that $R \ge R^*$ where,

Pr {R \leq R*} = 1 -EXP (-R²/2J²) R = 0 (26) where $J = J_{\Delta u} = J_{\Delta v}$

1 (

State of the second second

THE SIX ELLIPSES FOR EACH ALTITUDE AND MONTH ARE FOR THE INCREMENTS AT 12-HOUR INTERVALS FROM 12 TO 72 HOURS; THE AREA OF THE ELLIPSES INCREASES WITH INCREASING TIME INTERVAL.

8A1-3646

Figure 12. Joint Distribution of 95 Percent Wind Bias Component Changes with Respect to Time at 6, 12 and 18 km During April at Cape Kennedy (1956-70) and January at Vandenberg (1965-74)

ORIGINAL PAL

Since the standard deviation of the component difference can be expressed as a function of the standard deviation of the components (Equations 22 and 23) it follows that

$$\Pr \{R \leq R^{\star}\} = 1 - EXP \left[-\frac{R^2}{4\sigma_k^2 \left[1 - EXP \left(-k\tau\right)\right]}\right]$$
(27)

where σ_k and k correspond to either σ_u and b or σ_v and C given in Equations 22 and 23.

An expression for R given a particular probability, Pr $[R \leq R^*]$, is obtained by solution of Equation 27 to obtain

$$R = \sqrt{2} \quad \lambda_e \sigma_k \sqrt{1 - EXP(-k\tau)}$$
(28)

where $\lambda_{\rm p}$ is derived from Equation 24 denoting Pr (R \leq R*) by P

The choice of $\sigma_k = \sigma_v$ and k = c (from Equation 23) at 12 km during April at KSC and January at VAFB yields the most accurate approximation of the cumulative Rayleigh distribution obtained by numerical integration of Equation 28 in Reference 1. Comparisons of the 99, 95, and 50 percentile modulus of the wind change vector with respect to time based on the Rayleigh (Equation 28, Reference 1) and the classical Rayleigh (Equation 27) are illustrated in Figures 13 and 14; the rather good agreement between the distributions for time intervals from 12 to 72 hours is attributable to the accuracy of the simplifying assumptions described above. There is a slight tendency, especially for time intervals ≤ 36 hours for the classical Rayleigh to be larger than the Rayleigh.

The remaining question is: How well do these theoretical distributions compare with observed observations? Comparisons of observed and theoretical values of R for time intervals of 12, 24 36 and 48 hours at 12 km during November, December and January at VAFB are given in Tables 5 and 6; column II of the tables contains R calculated according to the classical Rayleign distribution with σ equal to the monthly value of σ_V at 12 km and k equat to the decay constant, c, in the monthly exponential least squares

·

ţ

1

·...*

_

-

7

1

•

4

<u>•</u>

[

Á

•

ł

•

!

1.1

١

28

I

ž

· · · · · · · · ·

T 🛊

IRS)	12			24			36			48	
-	:	OBSERVED	-	=	OBSERVED	-	=	OBSERVED	-	=	OBSERVED
7.89	9.29	7.01	11.41	12.40	10.08	13.80	14.36	12.68	15.20	16.73	14.21
60.6	10.68	8.11	13.15	11.26	11.80	15.92	16.51	14.60	17.56	18.08	16.52
11.25	13.14	10.34	16.28	17.53	15.71	19.73	20.31	18.86	21.78	22.24	20.85
1214	14.15	11.47	17.59	18.89	17.30	21.33	21.89	20.48	23.67	23.97	22.56
13.00	15.14	12.56	18.86	20.20	18.46	22.88	23.41	22.35	25.31	25.63	24.41
13.22	15.37	12.81	19.15	20.51	18.71	23.25	23.76	22.87	25.73	26.02	24.80
14.63	16.93	15.05	21.21	22.51	21.36	25.77	26.18	26.57	28.65	28.67	28.00
16.78	19.31	17.80	24.39	26.77	25.60	29.68	29.86	31.37	32.93	32.70	33.20
18.74	21.43	21.38	27.26	28.60	30.36	33.24	33.14	36.88	36.93	36.29	39.70
18.96	21.70	21.88	27.63	28.96	30.65	33.70	33.55	37.76	37.46	36.75	40.26
20.51	23.32	25.87	29.85	31.12	34.54	36.46	36.06	41.40	40.57	39.49	48.30
21,06	23.94	26.40	30.73	31.95	37.00	37.53	37.02	42.00	41.77	40.54	51.00
22.73	25.68	27.50	33.15	34.27	42.75	40.54	39.71	48.60	45.16	43.49	59.75
CAL	CULATIO	NS OF R BASE	D ON EQ.	S. 28a AJ	VD 28b OF REF	. 1 AND	NUMERI	CAL INTEGRA	VTION OF	F THE R	AYLIEGH
CALC	CULATIO	NS OF R BASEI	D ON EQ	30 OF T	HIS TEXT AND	ASSUM	ING a = c	u/m 21.92 m/m	- X - C	0206 h	r ⁻¹ AND

· . . 1

1

1

ľ

1.

ж С.

H

1. 2 Parts

,

.

}

A PART OF A PART

- Marine and

1

ł

*

ł

]

.

841-3619 CALCULATIONS OF

Theoretical and Observed Modulus, R(m/sec), of Vector Wind Bias Change with Respect to Time Interval, t, During April (1956-70) at 12 km Over Cape Kennedy Table 5.

3 * *

1-1-1

.1...

ļ

30

ł

1 1 1

.1

1.4
	OBSERVED	19.91	23.55	28.53	30.58	33.08	33.75	37.60	42.40	48.76	50.45	56.58	57.80	60.90	ALIEGH
48	=	21.86	25.14	30.92	33.31	35.63	36.17	39.85	45.45	1 90	51.08	54.89	56.35	60.44	THE RA
	-	20.38	23.49	29.67	31.37	33.64	34.17	37.81	43.44	48.55	49.18	53.14	54.67	58.96	LION OF
	OBSERVED	18.25	21.42	25.93	28.17	30.47	30.92	34.50	41.50	4651	47.30	51.15	52 80	59.90	AL INTEGRAT
36		20 59	23 67	29.12	31.38	33.56	34 67	37.53	42.81	47.51	48 11	51.70	53 68	56.93	NUMERIC
	-	18.73	21.61	26.74	28.90	31.00	31.50	34.87	40.12	44.88	45.50	49.19	50.62	54.65	1 AND 1
	OBSERVED	14.76	17.74	21 838	23.89	26.23	27.00	30.06	35 33	40.17	40.63	44 79	45.80	49.90	D 28b OF REF.
24	=	18.43	21.18	26.06	28.00	30.05	30.48	33.58	38.31	42.51	43.05	46.26	47.49	50.94	28° AN
	-	15 82	18 25	22 60	24 43	26.21	26 63	29 50	33 84	37.58	38 52	4166	42.87	46.30	ON EOS
	OBSERVED	947	11.22	14 35	15.62	16.68	16 95	20 18	24 86	28.10	28.38	32 15	33 40	35 90	S OF R BASED DENSITY FUN
12	=	14 39	16.55	20.36	222	23.46	23.81	26.23	26.62	33 21	33.63	36 14	37 10	39.80	ILATION BILITY
	-	10.52	12 13	17.00	16.20	17 38	17.65	19 64	22.45	25.06	25.42	27 47	26.25	30.49	CALCU
	Pr H < R•	5	3 5	3 %	2	20124	8ED	3.5	3	97502	30110	VELTO	100	\$65	COLUMN I.

'1

ī į

. -.

1

ī, 1

2 2

,

,t

į

. 、

I ļ l

ł

CALCULATIONS OF R BASED ON EQ. 30 OF THIS TEXT AND ASSUMING $a = a_v = 14.38 \text{ m/sec}$, $K = C = .0374 \text{ hr}^{-1}$ and Lu = Lu = 0. COLUMN II:

5AI-3518

Theoretical and Observed Modulus, R(m/sec), of Vector Wind Bias Change with Respect to Time Interval, z, During January (1965-74) at 12 km Over Vandenberg AFB Table 6.

J

3 4 4 4

.

1

31

1

1

___]

•

ì

! 1 fit to the v component autocorrelation function (Equation 23); Column I was obtained by numerical integration of the Rayleigh distribution. It is indicated that the observed cumulative distribution agrees fairly well with the theoretical distribution for probabilities less than .95 to .975. For large probabilities, there is a consistent tendency for the theoretical distribution to underestimate the observed distribution. This tendency is attributable to the small sample of data avilable at the extreme probabilities and errors in the Rawinsonde data.

E. CONDITIONAL VECTOR WIND BIAS ELLIPSES

Prior knowledge that environmental constraints necessary to assure the success of a space vehicle launch will be satisfied implies that there is a capability for prediction of environmental parameters; the prediction can be based on knowledge of conditions prior to launch. With regard to winds aloft, prior conditions are typically based on Rawinsonde or Jimsphere wind profiles. A typical question that could be posed before launch is: Given a measurement of the wind bias vector 12 prior to launch at 12 km, will the wind bias vector at launch time be within 95 percent reference month wind ellipse? A question of this type can be answered if the distribution of vector wind bias components at an initial time, T_{n} , and at a future time, T_1 , can be approximated by a quadravariate normal distribution. Given the components of the bias vector at T_0 , the conditional distribution of the bias vector at T_1 is bivariate normal. Smith [1] describes the derivation of the conditional bivariate normal distribution and documents the computer program used in this investigation for calculation of these distributions. Figures 15 and 16 illustrate the 95 percent conditional bivariate normal distributions at 12 km that have been calculated for time increments of 12, 24, 36, 48, 60 and 72 hours for the month of April at KSC and January at VAFB. Five vectors were selected as given initial conditions for calculations of the conditional ellipses. The components of the vectors are defined below:

- 1. Monthly bias component means
- 2. Maximum zonal wind bias and the corresponding meridional wind bias from the monthly 95 percent vector wind bias ellipse.
- 3. Minimum zonal wind bias and the corresponding meridional wind bias from the monthly 95 percent vector wind bias ellipse.

ST.

Figure 15. April Conditional 95 Percent Wind Bias Ellipses at 12 km for Time Increments of 12, 24, 36, 48, 60 and 72 Hours at Cape Kennedy (1956-70)

ł

1

Figure 16. January Conditional 95 Percent Wind Bias Ellipses at 12 km for Time Increments of 12, 24, 36, 48, 60 and 72 Hours at Vandenberg AFB (1965-74)

٦

1

4

ORIGINAL PAGE IS OF POOR QUALITY 4. Maximum meridional wind bias and the corresponding zonal wind bias from the monthly 95 percent vector wind bias ellipse.

5. Minimum meridional wind bias and the corresponding zonal wind bias from the monthly 95 percent vector wind bias ellipse.

The given vectors are specified in the inset of Figures 15 and 16 (polar form, at 12 km) and in Tables 7 and 8 (component form, at 6, 12, 18 km).

The conditional ellipses illustrated at the center of Figures 15 and 16 show that if the observed wind vector has components equivalent to the monthly mean bias components (condition 1) then 95 percent of the wind vectors after elapsed times as large as 72 hours will fall within the monthly 95 percent ellipse. Therefore, satisfaction of a launch constraint which states that the wind bias vector must be included within the 95 percent monthly ellipse would be assured for periods as long as 72 hours following an observation of a wind vector having components which correspond to the monthly means. The conditional ellipses based on selection of given wind bias vectors that terminate on the monthly 95 percent ellipse (conditions 2 through 5) have a significant proportion of their area lying outside the monthly 95 percent ellipse; as the time increment increases this proportion decreases but remains significant for a time increment as large as 72 hours. This implies that a significant proportion of wind bias vectors will not satisfy a launch constraint based on the 95 percent wind bias ellipse for periods as long as 72 hours (or longer if these calculations are extended) following an observation of a wind bias vector which terminates on the 95 percent ellipse.

The wind direction characteristics of a wind bias ellipse can be described in terms of the angles associated with wind bias vectors constructed between the origin and the center of the ellipse (at the component means) and between the origin and the two tangent positions to the ellipse. The three vectors constructed in this manner and the angles θ_A , θ_B , θ_E and $\Delta \theta$ are illustrated in Figure 17, the range of wind angles, θ_R , is θ_A to θ_B . The angles θ_R , θ_E , $\Delta \theta$ calculated from five 95 percent conditional ellipses for April at KSC and January at VAFB at 6, 12 and 18 km are listed in Tables 7 and 8.

CONDITION (*)	θ	θ	θ _B	$\Delta \theta$	
1	278	248	313	65	
2	268	252	281	39	
3	20	•	•	•	
4	244	225	266	41	
5	323	293	349	56	

1

(*) THE FIVE CONDITIONAL DISTRIBUTIONS ARE BASED ON THE FIVE GIVEN WIND VECTORS LISTED BELOW. CONDITION 1 IS BASED ON MONTHLY MEAN WIND BIAS COMPONENTS FOR THE PERIOD 1956–70; CONDITIONS 2 THRU 5 ARE FROM THE 95 PERCENT VECTOR WIND BIAS ELLIPSE AT 12 KM THAT WAS CALCULATED FROM TWICE DAILY FILTERED RAWINSONDE DATA DURING THE PERIOD 1956–70.

CONDITIONS	······································	M/	SEC
1	u, v	30.44	- 4.35
2	u _{max} , v	68.53	4.46
3	^u min ^{, v}	- 7.65	- 13.16
4	u, v _{max}	41,94	24.83
5	u, v _{nsin}	18.94	- 33.53

• 95 PERCENT CONDITIONAL ELLIPSE COVERS ALL QUADRANTS.

SAI-3527

Table 7. Wind Direction (Degrees) Characteristics of 95 Percent Conditional Vector Wind Bias Ellipses at i2 km Over Cape Kennedy During April for an Elapsed Time, τ, of 12 Hours

THEINAL PAGE IS TO POOR QUALTIY

CONDITION(*)	Ů.	U _A	⁽⁷ B	الا.
1	282	229	343	114
2	266	246	290	44
3	41	•	•	•
4	236	208	272	64
5	336	293	8	75

(*) THE FIVE CONDITIONAL DISTRIBUTIONS ARE BASED ON THE FIVE GIVEN WIND VECTORS LISTED BELOW. CONDITION 1 IS BASED ON MONTHLY MEAN WIND BIAS COMPONENTS FOR THE PERIOD 1965-74; CONDITIONS 2 THRU 5 ARE FROM THE 95 PERCENT VECTOR WIND BIAS ELLIPSES AT 12 KM THAT WERE CALCULATED FROM TWICE DAILY FILTERED RAWINSONDE DATA DURING THE PERIOD 1965 -74.

CONDITION			M/SEC
1	u, v	23.36	- 4.95
2	unax, v	63,50	4.47
3	umin, v	~ 16.78	- 14.37
4	u, v _{max}	34,11	30.25
5	u, ^v min	1261	- 40.15

• 95 PERCENT CONDITIONAL ELLIPSE COVERS ALL QUADRANTS.

1

N. Salar

SAI 3520

Table 8. Wind Direction (Degrees) Characteristics of 95 Percent Conditional Vector Wind Bias Ellipses at 12 km Over Vandenberg AFB During January for an Elapsed Time, 1, of 12 Hours

A ----- A

1

•

ţ

1

A STATE AND A STAT

1

IV. CONCLUSIONS

I WE REAL FOR WEIGHT I STATE STATE

1

;;

ļ

ž

The analysis presented in the preceding section for selected months and altitudes illustrates how various theoretical distribution functions can be used for calculation of wind bias change with respect to time at Cape Kennedy, Florida and Vandenberg AFB, California. The calculations can be made by utilization of the statistics given in the appendix for any reference month at 1 km altitude increments from 0 to 27 km. It also has been shown that the techniques originally used to describe wind change observed in unfiltered Rawinsonde profiles can also be applied with equivalent accuracy to describe wind bias change.

The basic underlying assumption for the calculation of the distributions of wind bias change is that the joint distribution of the four variables represented by the components of the wind bias vector at any initial time and after a specified elapsed time is quadravariate normal. If the wind bias vector is specified at an initial time, then the conditional joint distribution of the wind bias components at a future time is bivariate normal. Since each of the variables of the quadravariate normal distribution is normal and the difference of two normal distributions is normal, it follows that wind bias component change is also normal and the joint distribution of zonal and meridional wind bias change is bivariate normal. The modulus of bivariate normally distributed variables has a Rayleigh distribution. Therefore, the modulus of vector wind bias change with respect to time is Rayleigh.

Sample distributions based on reference month Rawinsonde data obtained during January 1965-74 at Vandenberg AFB and April 1956-70 at Cape Kennedy agree reasonably well with the aforementioned theoretical distributions.

The standard deviation of wind bias component change with respect to time is the only statistic required for determination of the theoretical probability distribution (normal with zero mean) of wind bias component change. It has been shown than over a large range of altitudes that this statistic can be estimated from wind bias component standard deviation and the decay constant of the component theoretical autocorrelation function (Table 1). The assumption of exponential decay of the autocorrelation function is reasonably accurate in most instances to time increments as large as 72 hours at both locations.

The observed modulus of vector wind bias change with respect to time is systemmatically larger than the predicted modulus (Section III.C) for extreme probabilities. This may be attributable to inadequacy of the theory or inaccuracies of the data which affect the observed distribution at the extreme probabilities. If the theoretical distribution at extreme probabilities is to be used in engineering applications, it will be necessary to explain these systemmatic differences.

]

. 3 1 0

ł

• E

. .

.

1. 1. 1.

-

.

y z jej antina gan an

}

V. REFERENCES

- Adelfang, S. I.: Analysis of Vector Wind Change with Respect to Time for Cape Kennedy, Florida. Science Applications, Inc., Report SAI-78-552-HU, prepared for NASA-Marshall Space Flight Center under Contract NAS8-32226, 14 April 1977.
- Adelfang, S. I.: Analysis of Vector Wind Change with Respect to Time for Vandenberg Air Force Base, California. Science Applications, Inc., Report SAI-78-668-HU, prepared for NASA-Marshall Space Flight Center under Contract NAS8-32226, 1 December 1977.
- Smith, O. E.: Vector Wind and Vector Wind Shear Models 0-27 km Altitude for Cape Kennedy, Florida, and Vandenberg AFB, California. NASA TMX-73319, July 1976.
- 4. DeMandel, R. E. and Krivo, S. J.: Selecting Digital Filters for Application to Detailed Wind Profiles. NASA CR-61325.
- 5. Weil, H.: The Distribution of Radial Error. Ann. of Mathematical Statistics, Vol. 25, 1954, pp. 168-170.
- Yadavalli, S. V.: On Applications of Some Results Related to Bivariate Gaussian Density Distribution Functions. Int. J. of Control. 1st Series, Vol. 5, No. 2, 1967, pp. 191-194.

1.1

į

APPENDIX

1 .

R

*

35 F**P**

A. L. L. C. C.

۴,

· · ·

53

Ì

This appendix contains two sets of reference month quadravariate and conditional bivariate normal statistics of variables X, Y, XP and YP, at 1 km intervals from 5 to 22 km. The statistics were calculated from serially complete twice daily wind bias profiles calculated from Rawinsonde profiles obtained during the period 1965-74 at VAFB and 1956-70 at KSC. The notation for the variable given in Section II of this report differs from the notation established for the computer output given herein; the notations are compared in Table A-1.

Computation Set	A		В	
Variable	Text (Sect. II)	Computer Output	Text (Sect. II)	Computer Output
X	^u o	u(at T)	u ₀	u(at T)
Y	۷o	v(at T)	۷ ₀	v(at T)
XP	u1	u(at T+DT)	u ₁ - u ₀ = ∆u	u(at T+DT) -u(at T)
ΥP	v ₁	v(at T+DT)	v ₁ - v ₀ = Δv	v(at T+DT) -v(at T)

TABLE A-1. NO	TATION OF	VARIABLES
---------------	-----------	-----------

Table A-1 shows that the quadravariate statistics of computation set "A" are for wind bias components at an initial time and after a specified time increment; the statistics for set "B" are for wind bias components at an initial time and wind bias component change after a specified time increment. The reference month quadravariate normal statistics at a particular altitude for six time increments (12, 24, 36, 48, 60 and 72 hours) are listed in the lower left of each page of computer listing; the six sets of conditonal bivariate normal statistics corresponding to the six time increments are listed in the lower right. The data were conditioned on monthly means for the entire data sample. The derivation of the conditional bivariate normal statistics for any other given vector involves recalculation of the

conditional means according to equations A-1 and A-2; the standard deviations and correlation coefficients do not have to be recalculated because they are independent of the given wind vector.

「「「「「「「「「」」」

Ì

$$\overline{x}_{c}|xp^{*}=\overline{x} + \frac{[(R(x,xp) - R(x,yp) R(xp,yp)) (xp^{*} - \overline{xp}) (\sigma_{x}/\sigma_{xp})]}{1 - [R(xp,yp)]^{2}}$$
(A-1)

$$\frac{[(R(y,xp) - R(y,yp) R(xp,yp)) (xp^{*} - \overline{xp}) (\sigma_{y}/\sigma_{xp})]}{\frac{y_{c}|yp^{*}=\overline{y}|}{y_{c}} + \frac{(R(y,yp) - R(y,xp) R(xp,yp)) (yp^{*} - \overline{yp}) (\sigma_{y}/\sigma_{yp})!}{1 - (R(xp,yp))^{2}}$$
(A-2)

where, \overline{x}_c and \overline{y}_c are the mean components of the conditional distribution, xp* and yp* are the components of the given vector and $\sigma_x, \sigma_y, \sigma_{xp}$ and σ_{yp} are equivalent to S.D.x, S.D.y, S.D.xp and S.D.yp, respectively given in the computer listings.

(128/8) - CAFE KEM HE CORD - 1/56 - 12 GLE - 90.00 IF RF CORU - 1/56 - 12 IF R - 5 - 29 IF R - 5 - 20 IF R - 5 - 29 IF	1151165	3		-		-	~			٠. ۲		ě	
С 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AL STA	R HE	(X,Y) Y Y	.1781 -2.00	5.0. R VD 1V.VD	YP (Y,YP	16.94	6+ 93 •545	6.92 .361	6.46 .238	K. R3 .192	6.R2 .179	
АСТАНОСТ АСТАН	DRAVARIATE NORMAI	5.0. x	10.38	17.36	R REAN	{X, XP) YP	. 8954 - 2. 04	16A9 -2.08	.6590 -2.11	.5869 -2.16	.5226 -2.10		
неви 2004 Неви 20 Неви 20 Неви 20 Неви 20 Неви 20 Неви 20 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.99 10.90 10.90 10.90 10.90 10.00 1	0.19	2 2 X U X I		14.61	ME AN S.U.	жР В	13-92 19-36	13.7% 10.32	13.59 10.2M	13.45 10.22	13.37 19.16	13.33 10.11	

ORIGINAL PAGE 15 OF POOR QUALITY

l

•

1 (-)

			· · · ·							A			•			
			•									•				•
Ļ	, , , ,			Ľ	[Ľ					[[.	1 1	- 1. 	Y
				CHADRAV STAT STAT	401416 45 10% 112358	40 COWNI 1 - CAP	T I ON AL	A [VAR] A] E	NORMAL	51411511CS x = ULAT	0F X, Y,	4 D . 4 D				
				I d J d J d J d J d	H 01 HELUN OD 05 PErc A Angle	044 - 1/5 047 - 1/5	11. 6 - 12/7. .0	-								
	•		•		TUDE (KH)	• • • •	•	•			•	4 4 4	•	•	•	
	•		¥i)o	URAVERIATI	F NORMAL	121112	ICS OF	й х х х х х х х х х			C 0 MD 1 1 10	MAL RIVA	PIAIE NOPI KP AND TI	4AL SIATIS	1105	
		шж 1	2	5 • D • X	ч м м	• •	2 E A X	5 • D Y				6] V F M K	+ 	Z		ĺ
		16.	-	11.47	5 •	66	-2, 55	7.6	1 90	•••		16.11	-2-	35		
	10 T	2 4 4 1 1	s.U. *r	8 (X,XP]	1 1 1 1 1 1	5 + f) + Y P	я (Ү.Ү)	я (17,41)	a (x.4x)	• • • • 4 • • • 7 • • •	N F A N KP	. U . Y.	4 110,10)	2 4 10 X 4 4 D	5.U. YP	• 7
	242	16.71 16.50	11.45 11.45	. 1775 .	- 2 - 39	1.67 7.65 1.65	.1702	• 2029 • 1995	. 2431 . 2539		16.90		•1223 •1875	-2.31	6.79 6.23	١
	0 8 C	10.74 16.77 16.77	11.24	.511 .511	15.5-	· · · · · · · · · · · · · · · · · · ·	.2536	•1785 •1857 •1789	- 1 - 0697		17.19	с <u>к</u> о	2942	-2.27		
	21	10.31	11.18		- 2 • 4		- 2080	.1745	• 6 2 9 0	• 1943 •	12.71	06.0	.2573		1.50	• '}
45	• •	•	•		7UPF 1×11) • • • • •	• • •	•	•	•	•	• • •	•	•	• • •	•	τ ►
			0110	IDPA VAR I A TI	F NORMAL	ISTATIST	ICS OF	X.Y.XP.YP		• • •	C 0 ND 11 10	NAL RIVA	RIAIE NORI RP AND VI	MAL STATIS P	ORI OF SUL	- \ : \
		u M T	7	۲.۲.		~	N V A	5.U Y	<i>z</i>	• • • •		6] Y F N X	4 19	Z	GINA) POOR	\$
		19.	52 .	12.67	22 •	523	-2.15	5 • 0	6	2		19.73	-2.	51	7 PA QU7	
	1 C 1 N	N 4 5 1 N 4 5	5.U. 7P	P (X, XP)	NT AN YP	с. D. ЧР	R (Y,YP)	R (47,4%)	0 XP,Y]		HFAN YP	 	8 (47,4%)	A L A A	GE IS LITY 2 =	γ
*	21	19.61	12.65	. 8466 . 78110	- 7 - 7 9	0 4 6 6 4	1757 1752	.2246 	- 2891 - 2669	. 1050 • • 1204 •	19.91	5.47 7.45	. 1 2 3 4	11.2-	r . 3 . 6 . 75	1
-	, <u>°</u>	17.16	12.57	4044.		0 80 - 0 1 10 1 1 10 1	. 3905	.2156	6912.		20.10		2769		2.4.7	
_	0 C 9 ¢		12.57	.5413 .5413	Cۥ2-	6 5 5 6	.243.	49N2.	• 1 • 1 •	• 516u*-	41.02	n #	.2767	-2.71	8.23 8.33	
	2	19.91	12.34		- 2 • 5 5	7.6	.223	.1972	• 9116	• 6524 •	51.13	* 6 * L [. 2099	- 2 . 75	9.37	!

i

. :

4

) |

Now How Correction - Areal FE TOD OF RECORD - Areal ALTITUTE (HH) - 90.0 RE - 40.0 ALTITUTE (HH) - 90.0 ALTITUTE (HH) - 10.0 ALTITUTE (HH) - 10.0
HEAN 5-00 OF RECORD - ANGLE COPD - ALTIUDE (RHI - 1 ALTIUDE (RHI - 1 CUAURAVARIATE NOGNAL STATTS CUAURAVARIATE NOGNAL STATTS HEAN 5-0 0 0 0 RECORD - A HEAN 5-0 0 0 0 RECORD - 1 HEAN 5-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MON ME AN 5.0. ME AN 5.0. ME AN 5.0. ME AN 5.0. ME AN 5.0. 13.80 . 8072 13.80 . 9016 13.80 . 8112 13.80 . 8112 13.80 . 8112 13.80 . 8112 14.90 . 7772 14.90 . 5111 14.90 . 5111 14.70 . 5111

'' ' '

! .

;

		1 1	1	Å	i.	. .	\$	•		۰ ۰	#	• • • •		<u>.</u> .	۰			ì
)RIGI)F PC	NAL JOR (PAGI QUAL	e e JTN				
		•	1165			5.0.	50° 1	10.79	11.3.	•	1165		-		8 ° °	11.17		
		• • •	514715			4 L 1 L	200	22		• • •	51415					22.4		
		•	F 409MAL	L L L L L L L L L L L L L L L L L L L	- + . 12	144				• • •	44 CHE	4 1415		4				
· · ·	<u>م</u>	• •	1 4 4 6 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	*	• 56	- - -			-	•	1 × 4 0 1 × 1	*	Ę		~ · ·	•••		
	- 	•	L I MOI	13	53	C &	 			•	R JAHO	61	£.	1 4			••••	
·	0f x. 1 • 011	•	r uwD11				79.79	1. 62 29. 10 20. 62	15.44	•	r 940 T 1						11.11	
· •	511C4 11111 1111111111111111111111111111	•	• • •	• • •	• • •	• • • •	* P	 		•	• • •	• • •	• • •	•••• 5	••• 20	•••	••	
	μα μα το 1ο 1ο το α μα μα δι φ ² 3ς 3ο 3α μα	•		2	004	4 	2.5		9.90 (•		z	nue	a .	7 6 N	17	• •	
	14480	•		•	•	р У.°Ч	- 3005 - 2655		.012	•		•	~	6 6	1911	10.1	112	
	480 181 F	•	42.42.7.		11.6	8 177.92	- 28.35	.2712	1555.	•	4, 41, 1,	5.0	11.7	8 35,123	1612.	1999 1999 1999 1999	21.5	
	9441 M	• • •	с ОГ н	N 4 11		3 (d) , ,			2012	• • •	10 S	N 4	•• 55	a - 	~ = ~ ~ ~ ~ ~ ~			
	COMPITI - CAFF - AFPIC - 1/56 - 2/56	• 	TATI'TIC		¢	- d.	1.71		23-1	- 12	31151141		-					
	f рып 17958) 877553) 677555 677555 16		N AL	0 1 7 . 7 1	. 7846	1							r 202 ·	I.				
• • •		1140F				L L L	9 9 1 1	• • •		717UD6	си Э 1 с			Ĭ	• • • •		3 3	
L	0 - 0	ā .	LANNAJ	- 2 - 5 - 8	15.62	1	8008. 8008.		2 41 5	- - - -	1 68 4 8 6 9	5 • 5 •	15.56	ا <u>با</u> ر ا				
		• • •	4 11.3	2	2		15.57 15.51	15. 5 15. 5 15. 5	12.14	• • •	1 00	ž	:	۰۵ ۲۰	15.51			
• •		• • •			24.5	* 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	28 - 27 69 - 19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		• • •		u • 1	- - 	***	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
L_		•				24	21	2 9 1 2 9 1	2	• • •				28	1		1	
1										47								

ARIAIE AND COMPLIIOVAL AIV ARIAIE AND COMPLIIOVAL AIV 100 UI BICOUD - JARI 100 OF BICOUD - 1/56 - 12/79 2 900 OF BICOUD - 1/56 - 12/79 2 900 OF BICOUD - 1/56 - 12/79 1150 - 1150 - 12/79 1150 - 1150 - 12/79 1150 - 1150 - 12/79 11.53 - 11.53 - 12/79 11.53 - 11.50 - 12/79 11.53 - 11.50 - 12/79 11.53 - 11.50 - 12/79 11.50 - 12/90 11.50 - 12/90 11.50 - 12/79 11.50 - 12/79 11.51 - 12 11.51 - 12 11.	CUMDRAVARIATE AND CONDITIONAL MIX STATION LIELEAND CONDITIONAL MIX STATION LIELEAND CONDITIONAL MIX FEETOD OF BECOND - DEFIL REVID OF BECOND - TYSE REVID REVID REVID SLOA REVID SLOA REVID SLOA REVID SLOA	CHAIDE VERTATIE AND CONDITIONAL RIN STATION TECOND - CAF REMENT ROTH OF ACCOD - APEL ROTH OF ACCOD - APEL ROTH OF ACCOD - APEL ROTH OF ACCOD - APEL ROTH OF ACCOD - APEL REPO OF FCONAL STATISTICS OF K. COMMANANTAFE NOONAL STATISTICS OF K. COMMANTAFE NOONAL STATISTICS OF	APIATE MNRMAL STATISTICS OF X. X = U(AT 1) Y = V(AT 1) XP = U(AT 1 + 01) YP = V(AT 1 + 01)		**************************************	•••• •••• ••••	• • • • • • • • • • • • • • • • • • • •	и е и е истан Р.т.Р. (КР.т.) е ур	.3161 .3204 .2691 • 71.15	 .3.469 .1471 .1320 4 31.62 1 .3466 .4843 .1149 4 31.65 1	.2924 .0319 .1054 . 31.66 1		* COWDITIONA	••• •••	• 006 L••01	AN •	3324 . 3324 . 2796 . 27.95	3327 • 51U7 • 7276 • 90.17 • 333 • 2476 • 3745 • 30.51	3202 .1760 .1.23 0 39.39 . 2231 .1147 .1271 0 70.42 11	3162 .9/23 .1159 • 39.45 1
	CUMDERVARIATE AND STATION (12265A) STATION (12265A) HOVIH OF MELCAD PE GTOU OF MELCAD ALTHA BAULE INNI ALTHA BAULE INNI ALTHA BAULE INNI S.D. ALTHA BAULE IN ALTHA BAULE INNI S.D. ALTHA BAULE IN ALT	CUADRAVATIATE AND CONTRAVATIATE AND CONTRAVATIATE AND CONTRAVATIATE AND CONTRAVATIATE CONTRAVATIATE CONTRAVATIATE CONTRAVELE CONTRAVATIATE CONTRAVELY CONTRAVATIATE CONTRAVELY CONTRAVATIATE CONTRAVELY CONTRAVATIATE CONTRAVELY CONTRA	NNEFIOYAL RIV Carf Kemmeuy Argil 1/56 - 12/79 96.0	• •	ISTICS OF K.	ME AN Y	-4. 13	. E (Y,YP) (X	5 .A371 .	1 .29815 .	a .2456 .	• • • •	ISTICS OF R.Y	RE AN V	£1.4-	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	CUADRA STAT STAT STAT STAT STAT STAT STAT ST	CUADRAY STAT STAT STAT STAT STAT STAT STAT ST	ARIATE AND CC 10M 112M5A1 - 11 OF MELCARD - 00 OF RECOVD - 14 ANGLE -	Tubt (H4)	E NORMAL STAT	д А.У.	5614 °	иган 5.0 тр тр			-4.67 11.3		HORMAL STAT	4 A 4 A 4	. 356	ΗΓ ΑΝ 5.0. Υρ ΥΓ				

ŝ

n

		••••			5.D. 19	• • •			•	51165				• • • • • •		12.1
ORIGIN OF POU	AL PAGE 18 DR QUALITY				I.	2 4 5 2 5 1 1		- 3 - 5 2	• • •	11412 14	ŧ	11	2 4 4 4 7 1			
•						. 242.	· 5194 · 5555	•	• • • •	E J A T A 19 40 40 40 40 40 40 40 40 40 40 40 40 40	4 I S		5 () , , ()	11 C X 20		
		* • • • • •			e k	* * * * * * * * * * * * * * * * * * *	· • •	• • •	•	CHAL BIVE	# 12 3 3	22.59	· • • •		2	
					1 4 L L L L L L L L L L L L L L L L L L	26.94 71.19	12.14	• • • •	• • •	1110403			7 6 N 1 1	27.65	· · · · · · · · · · · · · · · · · · ·	
		• • • • • •	•••	•••		. 786 .		• 1506	• •		• • •	•••	• • • • •			
	406 H6 L	• • • •				. 5 7 5 6	11/2 · · · · · · · · · · · · · · · · · · ·	• • • • •	• • • •		2	•	a .	10 K (20 0) 5 K (20 0) 7 R (20) 7 R (20 0) 7 R (7	5 # \$ 5 # # 7 \ 1 7 \ 1	16.1.
		• • • •			• •	2056 -			•	*****	5.5	* *	8 (1 1)	0 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
	1 1 2444 - 1 1 1 1 2446 24 1 1 1 - 1 2 / 77 - 1 2 / 77	• • •				2638. 7017			•	100 OF	***	21.5	8 1 1	6 / i / i		
• •			-		0			~ ~ ~	· · · ·	218125					- 3 . 8 3 3 	
2 2 3	1981416			2		1 -		- }• * •	 1		2	•	-1 + 1 + 1 +	• • • • • • • • •	 F F C C	
ادچه		10 T 6 7 A 4 6 0 4	-		•		. 178 . 178 19 1 .				5.0.	36.6	•			1 ku 1 2 1 4 1 4 1 4 1 4 1 4
, i. 		• • •			3.	11.54			• • •		3 7 7 8	• 5	- 	10 - 10 10 - 10 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ی کی در ان قور حد ان عر عر	. 44. 1. 19. 1. 19. 1. 19.
4 • • • • •		• • •	•		, Y	20.21	20-20 20-40 20-40	• • • • •	•		•	12	2 2 2	11.11		3
`}		•			59	22	x ;]		•				3 !	23	5 4 . 	, 2

-

	• • •	\$1105			5.0.	24-2			5.14	•	51105			5.0. 78	2.39			5	
	• • •	MAL 51ATI	E H	51	8 8 A 11 11	-2.45	51	-2.35	-2-17	•	HAL STATE		5	7 4 H 4 H 8	- 1 - 9				
	• • •	ACH JISB	419	- 2 -	6 11 - 16 1	6150	1291.	1152.		•	IA UNV AX	A 4 3	- 2 - 6	ر ۲۲ . ۲۲ . ۲۲)	0410.		-1974 -2324	. 26.	
4 	• • •	OWAL BIVA	6] V F M 1	17.93	• 4 K • 4 K			5.1.9 4.4	•••	•	044L 8174	8 1 4 1 4 1 9	11.69		9.0* 1.0*	D1 •	9 4 - V	fe.,	
, , , , , , , , , , , , , , , , , , ,	• • •	[[]]			14 14 14	17.19	~~~~			• • •	111000			4 4 1 1 1	11.82	00.21	12.01	su. 21	
	• •) • • ·		• • •	• • • • • • • • • • • •	. 1082.	. 1853	. 1439	•	• • •	•••	• • •	•••	•••	• 2175 • • 22841 •	• 1561 •	•	•	
Ten tut	• • •					1 1		5612.	.2246	• • •			2 4 2	с (¥Р.Ү)	4 2 5 4 T		66. S .	1002.	
ate l devi a	• • •	£ , T , X P , Y P	 	•	(41 · 41) 8	51 8 2 . 2 1 1 1 2	1968	1996. 1985	02 96 •	د • •	4.4 . X P . X	2 · 0 •		8 (3P,YP)	.3731	05 6 8 .			
11744 11744 11 11 11 11 11 11 11 11 11 11 11 11 1	•	10 511	a y	15.5-	a 1 4 7 1 1	1 () 5 4 5 7 1 () 5 4 5 7 1 () 5 4 5 7	•023•	-2936	.122.	• • •	1CS 0F	4	00-2-	а 1 т - т Р - Г	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1204.	.25.76	1 86 .	
		51 I V S		650	. 0. °	8.05 80.4	6.01 10.0	6.0	01.4	· ·	1211515		652	• d • •	* . 7 *			1	
	1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Земасм З;			₽ ↓ ↓ ₹	-2.56 -2.61	-2.67	-2-73	61.5-	1UNE (mm)	F NJEMAL	2	₽.x ₽	841	-2.5	11-2-	- 2 - 15	- 2 • 16	
		IFBAVAP]A	5.0.	5 * - 8	8 (4 ° 7)	8212 °	1513			• • • •	1 8 1 4 4 4 8 0 1 4 1	5 • D • #	1.10	• • •	. 977] . 978.	11-1-		• 5 • 5 e	
	• • •	CUI	2 4 4		5.U. 7P	8.32 9.25	8.23	10.0	20.1	• • •	C UA	8 • n	• 69 •	4 X 0 +	1.52	16.9		6 • 7 <u>•</u>	
	•		•	11	4X 4X	16 .86 14 .69	16.52	16.30	77•• 1	•		í.	11	т т т	11.55	11.24	61 • 1 0 1 1 • C 8	11.02	
	•				34	2.2	5 E	9	2	•				59	12	5	10	2	

-

	ORIGINAL PAGE	• • • • • • • • • • • • • • • • • • • •	RMAL STATISTICS YP	VE N Y	• 53	MEAN S. YP Y	-1.55 2.	-1-52 24-	-1.46 3. -1.46 3.	• • • • • • • • •	RMAL STATISTICS YP		• 26	MEAN SI YP YI	-1.24 1.	-1.20 2.	-1.18 2.
	Con Contairy	- •, • •	ALATE NO	19	7	R (xp,yp)	00 - 1	-0727	1651. 1910 1913	•	RIATE NO	19	7	8 [xr,tr]	•0036 •0212	. 166	.1631 .1631
	4 • •	• • •	ONAL BIVA For	61 V F A X	6.93	л. 0. ХР	2.15			• • •	DNAL BIVA For	61 V E N X	3.10	5.0. xp	08.C		198 197 198 198
[• • • • • • • • • • • • • • • • • • •	• • • •	CONDITI			NEAN XP	1.03	1.12	7.25	•	CONDIT IC			M L AN X P	3.17 3.25	5.28	3.32
	STATISTICS STATISTICS = 0141 T = 0141 T = 0141 T = 0141 T = 0141 T	• •	•••	•••	•••	а К К К К К К К К К К К К К К К К К К К	. 1875.	• 9402*	· 1770 •	•	• • •	• • •	•••	н н н н н н н н н н н н н н н н н н н	• 8402. • 8402.	. 1945 +	. 1677 .
[MORMAL	•		•	•	n (XP,Y)	- 4 502	- 4064 -	. 3 7 9 3	•		<i>z</i>	1 90	n (XP,Y)	. 3274	1514.	- 3545 - 3184 - 3184
	1 VAR LATE	•	X * X * X & X	5 • C	3.1	R (47,4X)	. 3695		.3861 .3861	•	X . Y . XP. YP	5 • T • Y	3.0	9 (47,41)	.3341	1509	.3462
	Т 1 ОМАL – А Е КЕММГ ОЧ 1 – 1 2 / 7С	•	1CS 0F	ME AN Y	-1.58	R (7,78)	.8159		.2267	•	1CS 0F	NE AN Y	-1.26	R 1 ,	.7453	.3750	.1532
	000 00 01 01 01 01 01 01 01 01 01 01 01		51A1151	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	607	5.1). YP	3.7.		3.66	- 20	5141151	~ ~	274	5.P.	101.5	3 ° 96	2.92
	ARIA16 A Ium (1206 H Of REC0 DD Of REC A Maile	1 Une (mm)	T MURMAL	- × -	•	HE AN YP	-1.60	-1.65		100F (%M)	NORMAL		•	ME AN Y P	-1.27 -1.28	-1.30	-1.31
	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DRAVARIATI	5.0. K	04.3	R X , XP]	. 4869		-5906 -5906 -5912		044 VAR I A 11	5.0. X	60°S	д (х,хр)	.9878 .9163	.7335	.5769
		• • •	CUA.	C AN	6	5+13+ RP	5.93		5.76 5.77	•	CUAL	2	L	• 0 • 5	5.05 5.05	00°	
		* * *		Ŧ		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.71	1 0 9 9 9 9		•		Ĭ	۳ ۲	ME AN K P	3.02 2.93	2.86 2.78	2.69 2.69
Ľ		• • •				5 ¥	12	5 2 9	002	•			,	10 I	21	36 8	22

÷.

1......

.

• 7

÷_εζ

• •

. T

.....

- Er

- 1 - 1

.

• • • • •	, ~		10.1-			96 -	۰ ، ۹ ۹	•	1211121	7	
• • • • • • • • • • • • • • • • • • •	-1-02	8 (XP,YP)	. 6492	- 174	1221-	. 241 .	.1725	•	ATALE NORM	43A19	
• • • • • • • • • • • • • • • • • • •	• 35	.0. 8 x 0.	2.15	2.60		3.74	3.93	• • • • • •	DNAL PIVA	N N N N N N N N N N N N N N N N N N N	-1.35
• 011 • 011 • 011		Nr AN Yp					.51	' • • •	C 0 NU 1 1		
	•••	а а а а а а а а а а а а а	• 0412.	- 11730 - •	1374 +	. 1278 •	• 4955		• • •	• • •	• • •
	006	# 4 X Y	. 2833	12980		. 2 19.8	5622.	•	, , ,	2	
	5 ° 2	# #XP.4X1	.2599	- 2000	. 7 6 69	.264	.2614	. • , •	X.Y.KP.YP	5 • C	2.2
12 12 12 12 12 12 12 12 12 12 12 12 12 1	-1.12	R 4 . 7 P J	.6653	1942.	5502.		6820*	• • •	1CS OF	4 F F M	
	7572	• 0 • v	2.54	2.53	2.51		2.4.2	- 22	STATIST.	4 . 4 .	8-81
	•	AC AN	-1.03			1.01	-1.02	TUDE TRM	E NORMAL	5	-
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		# {X,XP)	.8795		.7263		90/ 67	E.	UPAVARIA	s.0• x	4.22
	. JA	5.0. XP						•	100	KE AN X	1. 35
• •	1 1 1	8 4 M 4 M 4 M	.30					•		-	1
• •		10	12	2	5 e		2	•			

• •

44.1 1.2.2 1.2.2 1.2.2 1.2.2

-110* -994* -1357 -1357 -1567 -1567

-1.25

. 1774 . 1602 . 1676 . 1272 . 5913

-1080 -1967 -1967 -1918 -1918

.623 .525 .2582 .2582 .2121 .1115

.744 .7145 .7175 .6079 .5121 .5121

252532

)

: ; ;

.

¥

٩

0 S 1 A T] S 1 J C S NOF NAL 6 1 A 1 E

æ

• *

i.

1 2

1.

1.

[

1

-

, , ,

.

× -

Ì .

X. 15

· * · ·

- ----

ł

.

.

· · · · ·

1

1.3

ă.

Ĩ

5141104 117848) - CAPF KLWNEDY

	•	
	,	
•	•	
-	-	
2	=	
Ē	-	
3	>	
ŧ1		

• •		REC.	AL T	AH PHA	ME AN	S . P.	a	ME AN	5.0.	2
••			• # #	DEF.	Ħ	×	4 X ⁹ X 9	•	Þ	
-	. 5 6 - 1	12170	2	0.00	K.II	6 . 40	.1519	-1.50	6 . 34	006
	95	12170	Ð	7.09	12.11	10.76	1951.	-2.0	6.24	101
-	1 - 92.	12170	2	0.04	16.91	11.47	404I.	-7.15	7.67	00+
	. 26 - 1	62721	•	90.0	19.73	12.67	.2273	-2.75	61.6	606
*	1 - 95.	32720	•	90.9	22.11	13.42	***~	-3.22	9.70	006
	56 - 1	01121	10	0.04	25.83	15.10	. 2652	-3.71	10.44	600
	. 26 - 1	02/20	11	0.0.	92.45	15.62	9+621	-1.12	11.47	600
•	- 95	12/70	12	90.0	37.44	15.56	D<611 .	-4.35	11.02	500
	. 56 - 1	61121	13	9.0.0	30.97	14 . 77	.3193	-4.33	11. • 6	004
•	- 95.	12170	1+	0.04	29.75	13.39	. 3355	10.4-	17.40	100
-	1 9.5	0121	15	1.06	26.75	1.58	. 34 90	- 3. 52	A.07	100
•	95.	01/21	16	90.06	22.30	9.76	. 35 # 3	-3.07	7.45	006
	95	12/70	11	0.04	11.03	2++E	35.76	-2.51	16.3	909
+	95.	12/70	61	9.96	11.67	7.10	. 36 5 2	u	4.75	006
•	. 56 - 1	12/70	19	0.04	6.93	6.50	.3677	05 · 1 -	3.74	904
•	- 95.	01/21	20	0.04	1.10	5.3	. 32 74	-1.26	1.1	909
•	. 56 - 1	12170	21	9.7.0	• 36	•••	21520	-1.n2	2.25	10+
•	- 26 - 1	01121	22	0.0*	-1.35	4.72	.1946		2.29	900

ORIGINAL PAGE 18 OF POOR QUALITY

3. . . .

** "

1

i

l

\$

, .·

5,0

• ۰ 1

١

4

	t. PAGE IS	•	1103			•••	 	9.49	6. 5	•	57165				7.90	20.1	6.78	0/ · 9	•
OF POOL	QUALITY	•	1 512 1	_		2 L L 2 L L 2 L	5.21	1.64		•	AL STATE	-	~		6.93	1 - 5 1 - 6 9		-1.16	
		•		1 5 1 VE 4	-2.3		. 2081	.1460	.1265	•	41 445 41 840% 31714	4 13 15	-2.1	8 (#2,42)	.2329	- 2193 - 1982		.1633	. D
		•	KAL BIVA	x #3419	14.81		11.01	10.34	•••	• • •	ALA JANO	#] ^ []	19.73		12.21	11.80	11.23	10.99	
		•	tow91110			8 4 8 8 4 8 8 4 8	10.18	9.31 8.70	2.9	•	[T] OND]			8 2 8 H 6	11.52	11.15	10.01	9.53	9.1E
[[51415511C5 614171 641711 641711 641111 641111 641111 641111 641111 641111 641111 6411111 6411111 6411111 6411111 6411111 64111111 64111111 64111111 64111111 641111111 641111111 641111111 641111111 641111111 641111111 6411111111 641111111111	•	• •	• • • •	•••	. (X'41)	- 1980 -	- 2349 -	2200 -	•	•••	• • • ·		•••••••••••••••••••••••••••••••••••••••				- 2124	- 2062 -
		• • •		-	6		.1431	.0023	1586	•		•		8 (1, 1)	. 1461	.0656	- 0716	1667	2049
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	• • •	41.41.1.1		7.47	(41,41)	.1767 . 2416	. 3051	. 3197	•	47°41°1°	• • • •	8.51	(41,42)	1204	. 2540	.3029	.3367	. 3471
	1500AL N E KENNEDY 11 6 - 12/70 -0	• • •	les ef	ne an T	-2.35	(4 Y P)	3382	3655	6309	•	1103 01	16 A R V	-2.75	(41.1)	1711 -		5552	6233	6 3 1 6
		N 0 1 1	\$14131	2	:		5.20	5.5		•••	51 A 7 1 5 1	5	23	•••	. 74	2.96	9.45	10.48	10.41
l	11416 AMA 34 (12868) 35 86(088) 36 86(088) 346(6		JARAOM			#4] 1	20. -		9 F 0 F	(WX) 360	14404		22.				~1		
					11.17	(41,1)	2286			91113		s.e.	12.67				4101	4562	
		• • •	1440		5	 	5.20	7.64	10.16 10.93 11.53	•	· · · ·	2 2 3				5.76 A.37	10.05	12.17	
		•		Ē		45 JE 11 P	- 10		9 1 1	•	•	£	•	46 A 4			9 5	- 74	# 0 0 0
		•				51	12	**	;;;	•	•				n 2	25	:2	.	20

1 •

3

1

¥ 4:

\$, 2 1 . 5.b. 9.60 8.61 7.75 7.55 • CONDITIONAL"BIVARIATE NOAMAL STATISTICS"" For XP AND YP • CONDITIONAL BIVARIATE NORMAL STATISTICS • المحمد ť 2.5 1.08 1.20 1.20 1.20 4.56 HEAN * -3:22 61VEN Y 61VER -3.71 FOR KP AND YP • * A (47,47) -2756 -2710 -27567 -2557 -2167 -2167 -2469 -2297 -2097 -1908 2551 (47.4X) . •
•
•
•
•
•
• 61VEN Å GIVEN 22.77 25783 X, Y, XP, YP 22 × 12.65 14.09 13.69 13.36 13.06 5.0. 14.55 5 5 5 8. ж - U(AT - V(AT ţ 12.46 NE AN XP N A N A A N A A N • 12.92 13.68 13.23 12.59 11.92 - U(AT 7 • 01) - V(AT 1 • 01) ۲ 14.18 ; • • • • 5 * U(AT 1) • × V(AT T) STATISTICS ų. (X°41) -.1675 -.1872 -.1872 -.1893 -.1893 (XP.X) -.1532 -.1316 æ E ** * 000 006 Z R (xp,v) .1071 .0336 -.0586 -.1390 -.1951 -.2383 -00011 -00111 -0797 -1580 -1580 -2222 -2222 CONDITIONAL PIVARIATE NONMAL (Y. 4X) æ ٠ 02-6 5.0. ;,-10.84 X.Y.XP.Y QUADRAVARIATE NOAMAL STATISTICS OF "Z,T, XP, YP .1807 .2514 .5293 .3287 .3494 (XP, YP) .2545 .3012 .3343 .3606 .3777 (47.4X) .1921 æ æ •
•
•
• - CAPE KENNEDT - APA1L - 1/56 - 12/70 - 90.0 ÷ ; 5 -.5444 -.5921 -.6160 -.6286 (47 , 7) -.3265 -.3313 (4, 1) ME AN Y -3.22 MEAN -----STATISTICS 8 • 8 • • ŧ 2 ï 6.46 8.95 10.57 11.57 11.76 11.95 7.14 9.91 11.67 12.55 13.10 5.0. • ••• 1 STATION (12868) -MOMIN OF RECORD -PERICO OF RECORD -ALPMA ANG'E (x.x) .2444 (1,1) .2652 AND æ æ • • • • • • • GUABRAVANJATE NORMAL ALTITUDE (KM) ALTITUDE (KM) N A N A A A MEAN --05 QUADRAVARIA1E * 13.92 - . 5316 - . 4029 - . 4926 - . 4925 15-00 ••• (4X . X) --2313 5. D. (AX.X) -.2280 æ • 9.64 11.72 13.09 14.08 6.30 9.11 11.01 12.26 13.17 13.17 6.65 <u>.</u> 22.77 NE AK X NE AN X 25.83 • 'Y' NE JE K P 07--- . 62 - . 82 - . 94 -.13 • • ~~~~~ 56 2) ۰. ۱ ٠.

r

s

*

•. 1

+

à

.

1.200

· [

ŧ

Ð,

1.2 87 ġ -15 24 1 r. ÷

-1

۰۰۰ : Ì

-1,74

•

٠,

S .

-24 *****,•

1994 - 19

-CAR |

î, F

••

1

ł

ORIGINAL	PAGE IS	•	14115710			2	22	12		•	1115110			*	49 19 19	,	0 0 2 7 2
of poor c	UALITY	•	F L S	X U	62	19 19 14	4 0			•	MAL SI	¥.	01	U P L			
-		• • •	T AND AND A	× 19		n (47,42)	. 3621	3599	.3389	• • •	IN THE NOR	19	- 3	, 4 P) 8 A P)	. 3816 . 1001 -		.3807
	• XP. 78 U(A1 1) V(A1 1)	• • •	101 101	6] V F A	26.76	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11.39	10.63	10.01	• • •	IVIO JANO	6 J VEN K	22.30	 	0 - 5 6 2 4 5	02.0	9.00
	01 01 01 01 01 01 01	•	[[]			2 L X 2 L X 2 L X	13.62	12.85	11.11	•	[]]			2 4 4 7 7 7 7	11.31	10.78	10.55
	SIATISTICS X = U(AT Y = U(AT H = U(AT YP = U(AT YP = U(AT YP = U(AT T	• • •	• • •	• • •	•••	н н н н н н н н н	1182 -	- 1746 -		• • •	• • •	• • •	•••	· · · · · · · · · · · · · · · · · · ·	- 1384 -	- 1822	1706 -
• •	NORMAL	• • •			7 90	# (x, y)	0583	0931	2278	•		2	2 60	# (x, 4)	.1131	2620	1129 1766
•	91 × A 81 A 16 0	•	4 . 4 . H . H	• • • • •	8.9		. 1918 . 7852	. 3489	.3960	•	4. 4 x . X . X	2 • 2 • 2	1.1	я (17,41)	.1332	. 3067	.3537
-	1110001 PE KENNED 11 21 56 - 12/70 0.0	•	11CS 01	# # # # #	-3.62	# [4, 1]	2429	4786	- 5840	•	1165 01	NE AN	-3.07	R (4,,)	2414		- 5443 - 5768
-			L STATIS		3490	 	09 · 4 29 · 4	-	64°01		L STAT15		5583	• • • •	3.79		8.10 8.75
-	/ATEATE /10M (128 /10 0F TEC 100 0F TEC 10 0F TEC		E NORAL	J	•	16 A K		2		1709E (KM)	E NORMAI	3	•	***	07	\$2°-	29
-		AL7	DRAVAR I A	ч ч	11.68	я (х.тр)	2070	- 3725	1805 -	• • •		s. e.	9.96		2200		4265
		•	3	IE AN	1.76		6.36 6.36		10.06	•	13.	IE AN X		• • • * *	5.67		1.17 8.57
-		•		E	42	AE AN KP	20	49		• • •		E	22	2 L 4 4 4 5	- 19		\$.
		• •				- K 6 I	12		• <u>0</u> ~	•				- E 4 1	21	; ?	8 D 9

ıl T

СПО С С С С С С С С С С С С С С С С С С

, L

A set the first of the set of the

A MALANT MARINE

Γ	:						5.50	80.5	2.81	-					2.78	29.5	2.36	2.21
RIGINAL PA F{POOR QU	AGE IS Ality				28			50				. 2	26	2 G 4 J 2 2 3 4 J 2 3 4 J 2 3 4 J 2 3 4 J 2 3 4 J 2 3 4 J 2 3 4 J 2 3 4 J 2 3 5 4 J 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80	- 01	82	27
[.	:		ANJATE NO			н (кр. үр.)	407.	2697 2697	0/97	•	PJATE NGR	A 19		, 47 . 48)	1572.	.3954		. 4 3 6 3
	r. xP. YP Utat 1) Vtat 1)	4	DNAL PLVI	51 401 1 401 1 401		5.0. 42		2.5 2.5		•	DNAL BIVA	61VEN 5	3.10	8.8 	04.4	4.67	4.55	4.35
ł		•	11 C GNO J			N 4 N N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	3.64	3.33	2.98	•	COND 7 73		·	31 4 2 X 4 X 4	1 - 68	1.65	1.44	
[5141151155 7 4 151157 7 4 454 79 4 454 79 4 454	•	• • •		••••	н н н н н н н н н н	1352 -	- 1509 - - 1558 -	- 1614 -	•	• • •		•••	а а а а а а а а а а а а а а а а а а а	. 1560	1341 -	1578 -	- 1466 -
	RORMAL	• •	_	•	ē	4 × 4 × 3	.1790	.1353 .0505 .0043	0467	•		*	06	(1, 1) (1, 1)	.1375	.1445	.0494	0234
	8 Y AR I AT E	•	X. T. XP. X	• • •	3.7	8 (%7,78)	.0104	.1030 .1647 .1724	. 2053	•	42 • 42 • X • X	 	3.01	(47,42)	.0136	. 180.	.1344 .1271	. 1625
	1710MAL PE KEMMED P1L 56 - 12/7 0.0	• • •	11CS OF	ME AN Y	-1.58		3006		6529	•	1CS OF	NE AN	-1.26	, YP)	- 3581	7 8 9 5 · ·	6051 66 0 1	6724
		• • • •	STATIS		607	 	3.27	2 2 2 3 3 3 3 3	4.76	02 - 1	STATIST	2	74	8. D.	2.15	1	3.32 3.84	10.5
	ARJATE A 10% (1286 M 07 RE(0 09 07 RE(A ANGLE	146 (KM)	E NORMAL	5	ř.	86 A K 4 P	20°-		01	UDE (KN)	NORFAL	# * × ·	- 32	8 8 8 8 8 8 8 8	10	1 0.1	05	05
l T	0 (ALTA ALTA	I DEAVAR [AT		6.00	. R (4,4Р)			4910	4 1 1 7 7 7 7	BRAVAR JA FE		6 0 .2	а (4,19)	2596			- 45221
T		•	7 	46 A N	•••		2.86 3.57			• • •	¥ NO	E AN	.10	••*	2.48	10 - F		80.4
ſ		• • •		-	•	7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		35:		• • •		8	•	2 4 4 4 4 2	80 · -	~	2	4]
]		• •					~	8 G ;	•	•					12 25	56 4 8	; ;;	21

.

						• •	1	• • • • •	•	*) 				1
: ; ; ;	11CS		:	•••	2.32	2-22 2-03	1.83	•	165				2.05		• •	
•	146 STATIS	8	~	2 4 4 2 4 2 4	27°		44	• • •	AL STATIST	2		2 4 M 2 4 M 2 4 M	***- ***-	333	; .	
	81476 HORF XP 4X0 YF	4 6146	-1.0	, 47)	- 2862	. 3269	. 3395	•	NIATE NORM KP AND YP	4 61ve	# D • •		6712. 7702.	.2357 12250 12250	2622.	
	GWAL" BIVA For	61VEN K	•3•	 	· · · · ·		3.89	•	DHAL BIVA	2 C C C C C C C C C C C C C C C C C C C	-1 . 35	с. 	80.4	2.43 2.43 2.43	5.5	•
	CON6111		•	2 4 1	. 52.		B C	•	1119N03		•	NE AN Ne an	02	22.	-	
	• • •	• • •	• • •	•••	0239	0834	. 1221	•	• • •	• • •	• • •	****	0204 0307	0352 0519 0717	•	Ĭ
		2	004		- K020-	× × × × × × × × × × × × × × × × × × ×	.0146	•		2	006	· · · ·	0513	0762 0518 0856		
			2.55		2670.	82601	.1385	•	47.9K.7.		2.28	; ; ; ;	.0975	.1080	.1621	
11044L #1	1CS 01 K	8 U U U	-1.02) (4, ,) (4, ,)	4128	- 6207	6987	•	CS 0F K	2 4 4 4 4 4 4	• •	n (7, 7P) (1	4384 4926	6172 6409 7219	7285	
	51A11571		172	8. P.	2.08 80.5	•••• ••••	3.42 3.44		11211215		8	9 • 9 • 4 •	1.98	2.75	82·6	
1111112 101112 10112801 10112801 10112801 10111280000000000	NORMAL	-5	£.	N 4 1 E 1 E	10	20	- 00		NORMAL	# • * *	. 16	1 T T T	01	820	• • •	
0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	JAVAR]ATE	• • x v	•••	а (4,12)	2537		6952	· · · · ·	RAVANIATE		4.22		2523 3167			
•	6 1 9	r an	.36		2.19		4.50	•	1470			 	2.11	5.70		
•		Ē	-	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	90 · -		•~ •	•		Ē	÷	AE AR HP	*0 * -		R	
•				::	12		; ?	•					12		2	

		• • •	\$11C\$			S.0.	6.97		10.14	• • •	\$1105			S . [] .	1.93	C 1 • 1 1	11.25	
DRIGINAL OF POOR C	PAGE IS NALIT-	•	MAL STATU	2	. 4	nt an V P	-3.67			•	HAL STATI	2	16	HE AN 4 P	- 3 - 95 - 1 - 99	80.1	- 3 - 96	50°5-
		•	AIAIE NOR RP AND Y	A [9	-2-	4 1 4 7 1	2021	5061.	1 4 4 1	•	141 NO9	A I ビ	- 3 -	8 X • Y •	2245	11.2.	16121	10c2.
-	4 7 4	•	PHAL FIVAL	61 V F N X	1u. 74	0 A X	80 C 41 C 41 C		10.75 10.75	•	NAL BIVA	6 I VE N 2	17.45		5°°3	10.1	11.19	11.77
-	× 50	• • •	C 0MD 1 1 10			N F AN Y P	10.67	10.62	11.01	•	C 0 40 11 10			NT AN KP	****	17.71	54°21	**.~!
-		•	• • •	• • • ·	• • •	• • • •	• 5160.	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	•	• • •	• • •	• • •	• • • • • • • • • • • • • • • •	. 115) •	• 2u()u •	• 520u*-	• 6450.
-	808 19 19 19 19 19 19 19 19 19 19 19 19 19	•		8	. 620	- - - - - - - - - - - - - - - - - - -			. 3 796 . 3 796 . 2 807	•		2	1 620	8 7 . 7 .	* 376 * * 775 *		• • / 4 H • 4 28 6	
-	1 A A A 1 A 1 E	•	X , Y , XP, YP	S + 12 -	10.6'	8 4 4 4 1	-2564		66 6 C .	• • •	4.Y.XP.YP	- 0 - S - A	11.6	8 (47,41)	2646 2445	. 25.35	.2663	•760•
	11044 8 10186 86 10287 8 10287 8 10287 8 1028 8 1008 8 10008 1008 8 1008 8 10008 8 10008 8 10008 8 10008 8 10008 10008 8	• • •	LCS OF	NC AN Y	- 5.63	R 14.71	1002.	9218.	1991.	•	1C5 OF	ME AN Y	00.{-	8 1 Y - Y P D	1111.		.2785.	. 971.
_	HT COMDI - 1 - 41 - 1 - 41 41 41 41 41 41 41 41 41 41 	ه ی ا ا	5 1 A 1 I S 1	•	6 3 A	44. 2	17.56			د ع • •	5 T A T [5 T	- 	178	7 • 0 • YF	11.75	11.72	13 - 54 13 - 53	11.62
-	AFTAFE A Lum 1932] 1 nf HEC ⁰ 10 of PEC ¹ 1 angle	TUTF 4KM1	NORMAL	- 1	ř. •	HF AN AP	- 3.59		- 5. 37 - 5. 27	1UNE (FM)	NDRM AI		•	MC AN VV	3 . · · · ·		- 5•63 - 5•5-	- {• \$ -
	0 LATRA 4 5 LAT 10 LT 11 C 1 L 11 L 1 L 11 L	111 111 111	UPAVAR JAT(s.n. *	59°u1			5915	. 352 3	111 JA • • • •	JI N I BAVAQ	5.0. X	12.24	8 (x.x.)	. 8 35 5 . 6 8 8 5		. 3571	• 2674
-		• • •	0110	K AK	2.	5.D. X	19.54	10.36	10.34	•	0 AA	3 4 4		.0.2	12.17			11.9.
- - -		•		£	01	2 L X 3 X	5 2° 1		69°u1	•		I	12	74 J 1 1	12.45		13.07	12.41
		• • •				5 q	2		4 5 2 2 9 9 2	•				10	21	្ទៃ	19 G	21

•

Sec. Sec.

	•	MORMAL STATISTICS In tP	GIVEN Y	4.20	NEAN S.D.	10-A 52-N- L		19 -1.78 12.51	26 -4.26 12.51 19 -4.23 12.61		• • • • • • • • • • • • • • • • • • • •	NORMAL STAFISTICS ID YP	GIVEN Y	- 4 - 55	HEAN S.D.	19-9- H	18 -9.64 12.65 16 -8.61 11.55	12 -0.63 13.74	11 -4.62 13.6(-4.59 11.75	
6.	• • • •	NAL BIVARIATE FOR XP AN	G L V C W X	¥ F • F 5	5.0. R XP 1XP, YP	7.49 .246	10.35 .233	12.35 .228	12.83 .222 13.25 .238		• • • •	MAL RIVARIATE For XP An	N A I S	14 .96	5.9. 8 XP 1X9.YP	4.38 .255		13.65 .235	14.17 .275 14.64 .278	
of X. Y. [] [] [] 0[] [] 0]	•	CO 40 I I 10			r f a Kp	14.01	14.75				• • •	C 0 M0 I I 10			N FAN XP	16.89	16.87 14.87	16.87	16.93	
51811571C5 21811571C5 718115715 21811571 21811571 21811571 21811571 21811571 21811571 21811571 21811571 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157155 2181157 210		•••	* * * *	50 20	• • • • • • • • • • • • • • • • • • • •	.1372 •	• • • • • • • • • • • • • • • • • • • •		- r072 -		• • • • •	• • •	2	50 50	• • • • • • • • • • • • • • • • • • •	• [28] •	+ 125C *	• 11315 •	• • • • • • • • • • • • • • • • • • •	
NOR MAL	•		•	10 61	R (XP.V)	.3138	2285-	1652	- 2842 -		•		-	23 61	4 4 4	.2932	101-1	6267	. 2467	
3 LVT & VA1 8	•	X , Y , X4, YI	- ×		4 4 X P J	.2740	- 1592 +	.2633	.2650		• • •	X , Y , XP , YI	- S - Y	•••	8 (XP • YP)	.2711	• 26 Ué	9256	.2596	
11 IOWAL NDENDERG NUARY 65 - 11/7	•	11CS 0F	HE AN Y	02-4-	R 17, 753	.7160		.1569	.1696		•	t1cs of	HE AN Y	-4.55	я 17,7РЪ	.1083	.4337	1691.	1526	
NN CONT 14) - VA 17) - VA 17) - VA 17) - VA 17) - VA 17) - VA	* * * *	L STATIS	а Т. Т.	2468	5.P. YP	12.01	12.94	12.61	12.82		• • • • •	L STATIS	а (т , т	285.2	5.A.	14.15	14.03 14		11.95	
VARIATE 11 UN 1932 111 OF REC 100 05 REC 114 ANGLE	141 JUNI	TE NORMAI	5	•	AF AN Y P	-4.13		- 3.96	- 3.87 - 1.79		11UDE 14M	TC NORMAI	Ē	•	ME AW YP			62.4	-4.21	
- 0000 518 708 764 764	1 1 4 4 4 1 4 4 4 4	AURAVARIA	* C* \$	13.77	8 1 X + X P]	.9330	- 1549	. 1208	. 3490			AGRAVARI A	5.0. X	15.26	R 1 X , XP)	.9314	- 6 4 4 5	230	. 3540	
	•	no	46 A W	86 • I	5.0. XP	13.65		12.39	13.45		•	NO	FE AN X	b. 96	.0.s	15.14	15.60		86.41	
ł	•		-	2	FE AR KP	19.91	- 15.10 -	15.13	15.01		• • •		-	1	N N N N N N N N N N N N N N N N N N N	17.05	17.24	17.24	17.13	
	•				2 ž	12	2	\$;	60	!	۶ • •				5 #	12	2	0 C 7 Z	5	2

; •]

مسترسم معرفة ألالتي المالية الم

64

<

]

fe .

•

a meneral a contra sur semi

•

' •

.

ł

÷

ł

.

Ì

RIGINAL F POOR	, PAGE IS QUALITY	• • • • • • •	S1411511CS			ИЕ АН 5.0. ТР ТР				-1.93 11.55	• • • •	S1471511CS			ME AN 5.U.	-5.15 10.61			
		• • • •	RIDUE NOPHAL FP AND YP	A N 3A15	£8 * # -		- 2549	- 24 7 2		. 2323	• • • • • • • • • •	NATE ST	4 E M 4	-5.11	8 X 6 4 7 9	. 2452	******	- 2240	
	6 	• • •	OMAL PIVA Fra	51 V F N K	tu • ut	 	9.00 12.15	15.47	15.22	15.75	• • •	DNAL 92VA For	6 I 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21°10	. C. Y	2.16	17.58 18.17	H	14.75
	• • • • • • •	• • •	1110-03			***	20.91	56.61	0.61	1 0	• • •	COMDITI			R G X K D	21.63	20.05	20.96	10.10
		• • •	•••	• • •	••••	• • • · · · · · · · · · · · · · · · · ·	. 1546	• 5912 •		• 1415•	• • •	• • •	•••	•••	* • • • G L L L L L L L	• • • • • • • • •	• [[04].		• • • • • • • • • • • • • • • • • • • •
	- 1 m ± 0 ±	•		*		6 6 1	• 2417 -	-2108	.2447	• 2 285	• • •			17 62	8 7 7 7 7	.2497	- 2197	1 201 .	116-
	P 1 4 4 8 1 4 1 E	•	X . Y . XP . YP	3 · 5	15.0	0 (XP,YP)	1992. 1992.		.2515	• 2 • 10	•	4.4.X.X	2 • C	15 - 1	8 119.47)	. 2569	24 13 2 130	.2432	2447
	111044L 1 10106185 40.4PT 55 - 11/7 3.0	•	11CS OF	11 J H	• * • •	9 (4 . 7)	.7129		.1369	1211,	•	1165 05	H ¥	-5.11	R 14.7P1	.1248	.4336		-1729
	1080 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	••	1511415		1.41	• 4 4 0 • 5	1 - 17 Z	14-96	54.91 14.82	10.01	<u> </u>	51 AT 151	a .	693	• 0 • v	12	15.27	02-11	15-22
	261210 2 108 19321 90 05 860 00 05 860 1 88566	1Urt (***)	E MORMAL	Ξ		AN An	- 4 - 82				1 UDE (××)	F NORMAL	2		da Ny ju	- 5 ، 1، 5	(17) • . •	2 · · 2 · · 7 · · 7	
•	0 1 4 7 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		0PA VAP 1 4	s.n. x	16.48	а 1 X , X Р)	135 M.	.512	. 3665	0062"		1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. e. s	12.11	8 (X, XP)		. 6621	1	. 3660
	• • • • •	604	7 7 1	. 58	. 0. 19	16.39 14.27	16.19	16.27	16 - 29	• • •	-	8 V H	- 18	5.U. YP	17.15	17.6	16.91	11.17	
		•		E	11	MC AH M P	19.16	19.36		19.16	• • •		r	12	8 4 8 8 4 8 8 8 8	21.14	21.23	21.40	21.33
		•			·	5	12	3	• 5	22	•				59	12	*	s, #	5

、 、 、

۲.

۴

*.***

.

)

-

, /

÷

X X	• CONDITIONAL BIVARIATE NORMAL STATISTIC • CONDITIONAL BIVARIATE NORMAL STATISTIC	M • • 6IVEN CIVEN	62U • 22.62 -5.13	Y) (YP,X) • YP XP (XP,YP) VP		062 10310 V 22.00 12.01 12.01 12.10 12.00 10.02	791/U54 0 22.48 14.97 .2245 -5.20 14 11 - Comm - 22.52 15.54 .2116 -5.20 14	64 ±0250 + 25.59 14.21 ±2101 -5+18 14			• COMDIFIONAL BIVARIATE WORMAL STATISTIC • COMDIFIONAL BIVARIATE WORMAL STATISTIC	L CIVER	620 • 23.36 -4.95 •) R + MEAN S.D. R MEAN 1 V (VP,X) + XP XP XP XP YP	10-4-5133 7-48 -2701 -4-97	761 .1104 + 23.26 11.78 .2391 -4.90 12	795 "r4P5 + 23.21 13.76 .2385 -9.99 1.	737 4727 4728 4738 14401 14401 4729 4729 4729 4731 4731 4731 4731 4731 4731 4731 4731	
•	X . Y . X P. Y P	s - D -	15.25	R (XP,YP) (XP,	.25.37 .21	12. 06.2.	91 42 .	·I· 6622·	9 1	•	X • Y • XP • YP	5 · D · Y	14.34	R (XP, TP) (XP,	.2.595 .2	.2537 .21	.2469 .1	• 2545 • 1 7	
u ARY 5 - 31/7 .0	1CS OF	HE AN	-5.13	R 1 Y Y P J	.7426		5141.	.0855		•	1CS 0F	HE AN	-4.95	R (.7420	4516	112.	-1366	
RD - JAM 0RD - 2/6 - 90 - 11 - 11	STATIST	~ ~ ~	, 0 4 9	4 D +	15.20	15.17	15.10	12.04		N • • •	51AT 157		677	• 0 • 5 • 4 ¥	14.34	14.33	14.32	14.17	
05 850 90 05 850 90 05 850 90 05 850 90 5 8 9 9	NORMAL		Ň.	MF AN YP	-5.09	-5-0				1UDF 1KH1	NORMAL	- X - X		MF AN Y P	-4.92	19.8-	-4.83	- H - 7 -	
TC T	DRAVARIATE	Sefter X	17.21	1 4X • X 1	. 96n5	. 569 3 . 565 1	1114.	.3309	•	AL 751	DRAVARIA16	s.n. x	16.46	R (X * X)	.1776	.7228	.5962	. 50A .	
•	001		62	×.0.	17.16	17.07	10.11	11.11	1	•	QUAL	2 4	.36	5.0. XP	16.35	16.27	16.22	16.21	10.01
•	1	Ĩ	22.	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22.66	22.89 22.89	22-94	22.79	:	•		E T	23.	2 4 2 X X 4 X X 4 X	23.39	21.54	23.61	23.67	10.62
•	ï			. 21	12	5 2		25		* * *				6 ¥	12	: 7	36		5

Ķ

•

• • • •

. ,

1

> > .

!
. 	• • •	ISTICS			5 - 0 - 7 P	0.10	11.42	12.73	12.75		• • •	131105			5.0. 7 P	(11.0	90.11 70.11
RIGINAL PAGE IS	• • •	HAL STATI	L N	5.4	ME AN Y P		-0.61				• • •	MAL STATI	Z E	11	1 A A 4 D	<u></u>			20
[•	RIATE NOG	A 19	• • •	8 [Xr, YP]	.2136	.2416	2368	5462.		•	REALE NOD- XP AND YI	419	•	(44°13)	.2093 2861		.250	.2453
	• • •	DWAL BIVA	61 VFR X	11.12	5.D. KP	6.15	0. A2	12.44			• • • •	DNAL BIVA	612F8 K	21.70	 	18 18 16 19 17 10		10. JG	11.99 11.99
9 4 4 • • • • • • • • • • • • • • • • •	• • •	COMPTIN			H L A N Y P	23.04	72.97 22.92	16.52	22.99		• • •	C 0 ND 11 10			17 17 17	21.55		•S• L	71.55 21.60
	• • • •	• • •	• • •	•••	н н н н н н н н н н н н н н н н н н н	. 2352 .	- 1576 +	* · · · · · · · · · · · · · · · · · · ·	• 64501		• • • •	• • •	• • •	• • •	• • • • « • • •	- 7541	. 1191		. 1167 .
	• • •		2	6 6 20	P [¥f, ¥]	.2576	. 2711 . 1985	.179			• • •		2	1 620	а (т. 9 т.)	1062.		1 3 6 1	.2765
	•	X , Y , XP, YP	5 • D	12 - 9	# ***	. 2761	.2721	. 27 UZ	.2669		* * *	X,Y,XP,YP	5 • D	11 - 3	4 147,481	. 3912	- 7950	. 2986	.2938
	• • •	ICS JF	NE AN Y	65.4-	R (Y , Y P)	.7805	.2556	-1352			* * * *	1CS OF	N 7 4	-4.13	а (4 , Y)	1101.			.0366. .0326
	· · · ·	STATIST	а • •	824	5.0. YP	12.96	12.95	12.91	12.62	:	• • •	STATEST	•	150		11.23	11.23	11.26	11.10
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10F5 EEH) • • • • •	C NORMAL			15 AK 7 P					(W XI 33A1	• • •	- NORMAL		*	45 75				- 5.92
0 5 1 8 5 1 8 7 6 8 7 6 8 7 6 8 7 6 8 7 6 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	9	084 V 49] A 1	s.0. *	10.90	4 (X,X)	.191.	. 7 4 9 8	.5363	.3717	AL TL	£ • •	DRA VAR I A TI	5.D.	12.99	а 4 с х , х ;	- 9035 	21222	.5612	. 170
	• • •	410	8	- 11	5.0. XP	14.65	14.75	1.73			• • • •	CUA!	8	. 10	5.0.	12.94	10 - 0 1	12.94	12.95 12.95
	•		ĩ	23	ж Р К Р	23-10	23.19	23.37	23.32		•		ĩ	21.		21.74	10-10	21.99	22.72
	• •				54	12	2 2		2		• • •				10	21	i s	()	25 25

ale a contra

d A

1

L

1.

-57 59 -

PIVARIATE MORPAL STATISTICS OF X. Y. XP. YP X = UIAT 19 YP = XPAT 19 YP = VIAT 1 + UT1 YP = VIAT 1 + UT1	· · · · · · · · · · · · · · · · · · ·		9.57 620 • 10.43 -3.69	R R R H O NEAN S.O. R NEAN (XP, VP) (XP,VP) (YP,VP) YP	• 3310 • 2793 • 19.30 • 2011 • 2021 • 1.66 • • • • • • • • • • • • • • • • • • •	• 3280 • 2897 • 2969 • 19-29 • 12-29 • 2599 - 3-10		Care - CETA - LLAN - LLAN - 2011 - 2122 - 2125 - 1		X,Y,XP,YP COMDITIONAL ALVARIATE NORMAL STATISTI	• • 5.0. » • 61464 51464 • • • 51464 • • *	7.94 62U • 15.54 -1.33	R C R O MFAN S.D. R HEAN (xP,YP) (xP,X) • YP XP (XC,YP) YP			
IN 1 1 0 MAL TANNE MBERG JAWUARY 1/65 - 31/1 90-0			- 3.69	2 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1062.	1 .1124	• • • • • •	• • • •	ISTICS OF	ME AN Y	-3.33	8 8 7 8 7 8	.8259		
LATF AND CCM M 193219) - U M 163219) - U M 105 RECOPD - L Dy RECOPD - 2 Angle	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		• 3342	MF AN S.D.	-3-10 3-56	-3.70 7.55 -3.70 9.56	-3.62 9.54 -3.52 9.50		DE (KM) - 1 • • • • • •	ITAT S JAMACH	R (7,7)	. 161 3	нган 5.0. Үр үр	-3,34 7.94		-3.23 7.90 -3.21 7.90 -3.15 7.88
01174747 511101 5141101 910114 9100 41744			00.11	# (X, XP)	. 9054	7852	5758	• 3928		ADRAVARIATE	5.0. x	12.0	8 1 A 1 XP J	. 9.02 5	5812	• 5836 • 4970 • 4133
· } , !	• •	AN T		0.8	14.95	- 10.91	10.89	10.92	•	n o 1	7 X 2 4	• 5	5+0. * 7	9.17	91.0	0 · · · · · · · · · · · · · · · · · · ·
ł	• • •	-	13	2 4 X 4 X 4	10.48	19.63	19.69 19.73	19.72	•	:	•	9	HE AH KT	16.59	16.73	16.78 16.82 16.82
	•	,	•	5 1	12	.	, ,	21	• •' •				51	21	15	8 D N 8 Q M

.

the second of the product product of the second of the

€.

RIGINA	PAGE 18	• • •	STATISTICS			AN S.D	104 5.40 104 5.40	12	• 15 • 16 • • •	. 16 6. 1	• • •	5111511CS			2 × 0	.96 2.7	.07 3.9 		. E 2 . 9	5
)F. POOK	QUALAN N	• • •	10 4 M L S	91VEN T	- 3. 09	1 × ×	~- ~-				• • •	HOPHAL S	4 19	-2.94	¥ ·	п -2.	د <u>د</u>	 	•	- 2-
	•	•	VARIFIE Ne ak so	N N	31	R 1 x P , Y P	.169	.237	.271	* • č ·	• • •	VAPIAIE Or XP Am	2	17	4 1 X D 1 X D	••1•	202.		1 42 .	. 28.
		•	IONAL AI	919 X	13.	ч. Х.Р.	1.3C	5	6.1.0 6.1.0	1.05	• • •	TOWAL RI	×19		• 6 ×	2 . R 4	3 4 - 7 - 7	20. v	5.5.9	5n.A
-	,	• • •	110403			HFAN XP	13.32	2.61	13.24	13.25	• • •	110400			NF AN YP	10.12	10.04	-0.01	• O• U I	10.05
-		• • • •	• • •	• • •	20	н н н ц х , г х ,	- 1112 -	- 1034 	.1618 •	• 1519 •	•	• • •	• • •	•••	• • • • •	.3250 •	• 6192•	• • • • • • • • • • • • • • • • • • • •	. 1847 .	• 111.
	NORFAL	•		•		9 (XP.Y)	9414. 9414.	3634		. 3/197	•		-	6	F [Y, 4X]	1610.	[]]		. 3160	. 3434
	9 1 4 4 4 1 4 1 E	• • •	4.4.4.X	\$.0 *	9 9	8 (4 4 - 4 4)	. 38.39	91 81	.3799	. 3766	•	¥ , Y , KP, YP	0 · S	5.3	8 177,771	003	1994	- 3462	. 37.53	. 39.06
-	1110046 10608666 101447 55 - 11/7 1+1	• • •	11CS OF	ME A N Y	- 3.09	е (т,тр)	6065.		-1995.	.1640	• • •	11CS OF	8 4 3 A A	-2.96	д (ү,үр)	.8556	•559•	21151 -	.2695	e112.
_	M) COM5 M) - CM7 M) - L4 M 090 - 2/0	<u>-</u>	STAT 151		•	5.D.	f.51 2 2 2		6 • • • •	•	E • • •	5 TAT 3 1	 _ >	506	۹۲ ۲۰۵۰	r.:3	5.34		24-5	12.2
	RIATE A UN 19321 0 of reco 0 of reco 0 of reco		JANROM	×	•	NF AN Y P	- 3.09	6() • 5 -		-2.95	UNE (KM)	NOGMAL	×.	•	re an Y P	-2-96	10.6-	- 2 - 45		-2.46
· 	0UA1944 5157 9077 96870 96870	1111 V	URAVARIA I	s.0. x	16.7	я (Х, 1 ^р)	5 20 6 .	.7010	8415.	• • 36.5		()RAVAR [A FF	s.D.	6.87	н 1 х , х Р I	. 7065	. 8235	.7331	.5581	.4316
 		•	6U0	N N L	37	S.D. XP	1.19	7.80	10°1	7.82	•	NUQ .	*	. 17	.0.2 78	6.97	6.88	9.90	6.97	6.95
I 		•		Ī	5 1 1	ME AN X F	11.42		13.62	13.64	•		Ĭ	10.	11 P.K. X.P	10.22	10.29	17.54 17.54		10.43
Ĺ		•				5 B	2:	(#)	ා ය මේ මේ	12	•				101	12	.	3.	;5	21

2

1

ľ

1

)

		•							: :					
•	•	•	AL TIT	UDE (KN)	•••	• • •	•	• • •	•	• • • •	• • •	• • •	•	•
	1	3	IDPA VARI ATF	NDRMAL	STATIST!	1CS 0F	X.Y.XP.YP		•	• C040111	DNAL PIVA	RIATE NOR	MAL STATI: P	51105
	T	E AN	5•D• X	2 A A A A A A A A A A A A A A A A A A A	:	ME AW Y	3+0			• • •	6 [4 F K	× 19	2	
	•		6.37 		15	-2.91		1 62	0	• • •	7.15	-3.	16	
	ME AN X P	- 0 × 0	н 1 х + хр э	NE AN Y P	5.D. YP	R 1 Y - Y P B	я 4 х р , ч р ј	с т, е т,		R da Bar Bar	5.D. XP	8 1 x P • Y F J	NC AN VP	5.0 7 P
	7.20	6.39	.9123	-2.91	5 -	.9627	. 4 003	1244.	0451	1.10	7.60	.1187		2.18
	7.31			-2.91		.5503	. 3940	. 1225	- 2385	20-1	90.4	2016	+6-2-	55.5
	7.35	6.47	- 6 9 4 S	- 2.88 - 2.86		4217, 4217,	. 39.39	1137 1775	. 2219		4°24	.2174	-2.96	
		15.4	• 5 • 5 5	-2.84		-2767		3477	596(•	10.1	2 M 2 M 4 M 1 M	4675.	-2-97	0
•	•		AL 137.	UDE (KM) • • • • •	- 20	•	•	· •	•	•	• • •	• • •	•	•
		no ,	IDRAVAR I ATE	NORMAL	STAFIST	1CS 0F	X . Y . XP. YP			CONDITI:	DMAL BIVA For	RIPTE NOP	MAL STATL!	1105
	t	K AN	5.0. X	А. А.	2	ME AN Y	S • U •	*			2 3 X 3 3 X 9	A [5] A	2	
	•	Ŧ	6.30	- 374	-	-2.92		1 62	3			- 2 -	9 2	
	N C X	5.U. XP	я (х,хр)	NF AN YP	5.0. YP	R {Y,YP}	8 4 X P , Y P)	R (Y . Y)	2 C X 4 A X	MTAN KP	. U. S Xr	8 [xr,vr]	ME AN Y P	5.0. 27
~		6 . 35	.9187	16.5-	3.83	.9623	.3797	061 4.	. 5:22		7.84	.0770	-2.93	
.	9 • 6 1 ·	6.38	• 9 5 9 9 	-2.92	3.82	1242	. 5762	8524°	. 7760		3.20		-2-93	~ ~
.e.			.7270		 		.3711		. 7269	,	. 32	.2001		
	. 72	6.47	.6510	-2.87	3.63	1594.	.3706	. 3 . 5 2	1.14.		4.78	1342.	-2-96	3.39
	8 - 7 G	6.50	.5885	- 7 . MA	1.8.1	1760	- 17 CM	T T T T	. 1054		5 ° U O	-2437	10-2-	1.51

ł

1 1

. L

. 1 1

•--

2 NOFNAL 5 A A A A A

1

- VANTENUERO STATTON 1932141

K = U(A) Y = V(A)

NOW T H	FCR.	01	RE C.	AL T MM.	al pha Deg.	ML AN X	5 . P. K	R (x, x)	HE AN	5.D. Y	z
•	2165		1/74	ŝ	0.04	10.74	17.65	:26.78	-3:63	19.64	620
-	2745	1	1/74	•	0.04	12.45	17.22	8-12.	-3.90	11.97	620
-	2/65	-	1/74	~	0.04	14.88	13.77	.2468	-1.20	13.10	629
-	2165	-	1/74	Ð	0.04	16. • 6	15.26	.285.2	-4.55	19.23	620
-	2145	-	1/1	ð	0.05	19.56	16.48	.2741	-4 - 38	15.08	623
-	2765	a 1	1/74	21	0.04	21.18	17.21	.2673	-5.11	15.47	620
••••	-2/65	-		11	90.04	23.52	17:21		-5.13	15.25	620
-	2165	-	1/74	() 	0.09	23.36	16.9U	. 26 7 7	-4.95	14.76	620
-	2745	-	1/14	15	0.04	27.07	02.41	.2824	87 . A -	12.99	620
-	2165	-		1	0.0*	21.70	12.99	. 3061	-1.13	11.31	62N
-	2165		1/74	15	90.0	19.45	11.40	. 33*2	- 3 • 69	9.57	629
-	2765	-	1/74	16	90 0	16.54	12.4	. 7613	-3.13	1.94	620
	- 2/45		- +2/1	11	0.04	13:37	16.7	6 h 85 7	•2° ise	f.51	620
-	2165	-	1/74	18	0.09	10.17	£.87	.3995	-2.96	5.32	629
-	2765	-	1/74	19	0.04	7.15	6.37	. 3985	-2.91	17.8	620
-	2/65	=	1/74	2.3	0.09	84.4	6.30	.37AL	- 2 • 42	3.91	627
-	2145	-	1/74	12.	9.0.0	2:29	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	825°.	-2.92	3.48	620
-1	2165	-	1/74	22	90-0	-62	7.12	.3523	-2.91	3 . 36	620
	;						•	•			

- **1**

-

72

-

1

ł

Ĭ

ORIGINAL OF POOR	PAGE IN	•	ATISTICS			2 C C C C C C C C C C C C C C C C C C C	90.0			•	AFISTICS			0*5 4A	0 1 0 0		
		•	AL ST	z		ME AI Y P	~ ~			•	AL ST	Z	7	HE AL	P) 4 4 6	1	
		•	RIATE NOPH XP AND VP	6146	-].6	8 [Xr, YP]	- 2695 - 2815	-2859	***	• • •	RIATE NOPH XP AND VP	4 9 1 1 0 4	- 3 - 9	R txr,tp)	11 8 2 . 	2141.	0015. 0425. 3.75
	XF, YF (AT T) (AT T)	•	NAL FLVA	6 I VE N X	1L-74	5.0. XP				• • •	NAL RIVA FOR	r 19 19	12.85	5.D. KP	11.5.		
•	OF K. 4.	•	CONUTITO			MF AN Y P	6.75 4.1.2	5.87	5.12	•	COND1110			MF AN KP	50. F	9'J• 2	0.0 0.0 0.0
	TATISTICS ====================================	•	• • •	• • •	•••	• • (A. 4)	2349 -	2241		•	• • •	• • •	• • •	R 47.x)		· 21 • 2	2356 * 2219 * - 1031 *
	V X F X F Te Hac B C B	•		2	620	8 (xp.4)	.1130	0120		•		2	7 620	0 {xP,Y}	.0761	1 1 2 1	900
L.	I VAG LATE	•	X . Y . XP. YP	8. D *	19.6	4 . 47) A	• 2 272 • 74 84	1939	1 260	•	X.Y.XP.YP	0 * S	11.0	5 1 x 6 , Y 1		- 2 349 - 2 349	. 2491 . 1591 . 159
	110MAL 7 111MBERG 111ARY 55 - 11/74	•	1CS 0F	2 4 4 1 1	-3.43	R (4 , y)	36 27		6512	•	11cs of	ne an Y		R 1 4 , Y P J	315r	1676.1	
	ND CONU	· •	1217212		638	5 •D • 7 P	7.5J 10.76		11.52	÷ ب ا ا	STATIS	а 1 с т т	962	• U• S	25° 4	14 • 5 5	
	ARIATE P Iom 19721 M Of Reco DD Of Rec A Angle	1 UDE (KH)	E NORMAL	5	~	NE AN		5		100E (K.M)	F MORMAL	ì	2.	NE AN Ne an	5	-11-	1
	6UADMAV 51A1 9047 9124 9124 9124	9 9 9 9 11 Je	08 A Y A & [A]	5.0. M	10.65	R (1 . X P)	3922	-5131			DRAVARIAI	5.D. X	12.22	R (X , X ^r)	31126		5579 5852
		•	WDO	 	• 1 •	5.0. 8 8		10.33	11.95	•	9UA	E AN K	. 85	5.0. XP	6.96	2 7 • 7 2 2 7 • 8 2	12-94
		•	•	E	1	8 4 3 4 7 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4			92	•		£	12	N 6 N N 6 N N 6 N	4 L 4	• 1 4	-1-
		•				- e - e	1		5 9 9 1 9	• • •	2			- 0 T 1 M	1	. .	# € (

River -

11-11 14.68 2.0 . . • 51A11511CS STATISTICS NE AN YP HE AN Y P • ٠ * * * BIVARIATE NOGNAL NORMAL 61 VE N Y -4.20 ٠ GEVEN T -1.55 41 ONT 4A UNE • • -2724 -2724 -2724 -2724 -3213 I XP. YPI 1 XP , YP 1 • FOR XP AI C. ¥ * ٠ * * * * * * * * * * * ٠ f on 61 V T N A GIVFN K 34.35 16. ... ٠ Y, XP, YP 12.20 11.74 11.33 11.05 == 13-54 13.60 12.99 5.7. 7 7 . . . 24.45 ٠ ULAT VLAT ٠ CONDITIONAL COND] 1 IONAL ٠ ٠ . . ** • • HLAN 55 Å× • 5 • • 2 -STALLSTICS K = U(AT T Y = U(AT T KP = U(AT T YP = V(AT T - 2521 12.975 -.7496 1 -.1849 --2307 * œ 620 620 8 2 -..515 NORMAL IXP.YI IY. 4XI .6107 -.0283 ۹, ¢۲ 5.0. ٠ 5.0. * * * * * **11.1**0 11.23 X.Y. XP.YP AY, W, Y, X • • • **BIVAR LATE** .2734 -2477 -2477 -1992 -1992 (XP , YP) 1 KP , YP 1 8 8 • JANUARY 2/65 - 11/70 96:41 • ٠ -.6513 -.6595 -.6645 - VANDENBERG -- 5985 ٠ 5 147,73 6 14.401 -.6151 HEAN MEAN CONVITIONAL -1.70 -4.55 • • • • ٠ × 8 S7A71511CS ٠ STAT ISTICS ٠ ٠ 9.74 16.56 16.71 16.97 11-94 15-76 17-27 18 - 19 18 - 55 18 - 55 15.74 ٠ 1 . . G & . SIATION (93214) Nomth of Rflord Flaidd of Afcord Alpma Amglf • • 5 (*,*) 47.25 .7668 .2852 CNA ٠ 8 * * * * * * ٠ ALTITUDE IKNI NORMAL. NOGMAL (H H) NE AN V P HF AN -----• •16 -5 OUADRAYARIA16 AL TI TUDE • **31A1AAAAALAF QUADRAVARIATE** 1X,XP3 (X . X) --5527 --5795 --6110 11.21 ×.0-6144.-15.26 -.3u23 -.5112 -.335 -.4382 • • • . 8 ٠ ٠ • ٠ 7.02 5.0. X 7.0. 12.76 19.99 16.20 17.19 17.20 • 4.95 ۲ ME AN M 11.10 ME AN N ٠ 16.76 ٠ 52225 H L L HFAN ÷. •2• -2225252 284452 51 21 • 7 4 1 1] T

.

.1

1

. 1

1

]

5

Ż

ſ

14 8 F

1 N. 4

÷

1

Ľ

	• • •	srics			. 0 . . 7	13.86	11.78		• •	\$11CS			5.U.	14.31	11.51	11.57	11.3.
INAL PAGE IS POOR QUAL THE	•	IL STATE	-	_	NE AN YP	15.			•	IL STATI	-	_	NE AN VP	***	5		-1.00
	•	IATE NORM	4 4 4	10.4-	8 191,47)	.2737	-2614	1215	•	TATE NORM	4 61 ve1	-5.1	4 4 4 4 7	1992.	1550	- 2647	
• • • • • • • • • • • • • • • • • • •	• • •	ONAL EIVAA For	G I VEN K	9 j • 6 (15.68		13.41	• • •	OWAL PLVAR	9 I V C N M	51°.0	5.0. KP	16.47	14.91	14.10 14.10	54.92
ог ст ст ст ст ст ст	• • •	CONULTI			MCAN KP	19-68			• • •	CONUT I			NF AN KP	11.59	11.52	11.35	
57471571C5 2 = U(A) 4 = U(A) 2 = U(A) 2 = U(A) 2 = U(A)	• •	•••	• • •	•••	* • • • •	- 1614			• • •	• • •	• • •	•••	• • • • • • • • • • • • • • • • • • •	•	• • • • • • •	7259 -	• • • • • • • • • • • • • • • • • • • •
NO 844 AL	• • •			04 PC	4 4 4 4 4	0173			• • •	•	2	17 6.7	, (Y, 4)	8210		1,766	
3141944	• • •	4 . Y . XP . YF	J • 5	15.5	. dy . dy .	- 7 666		.2059	• • •	4 . Y . XP . X		15.4	4 X J X J X J	.2510	*~12*		- 1 u(2
15 TIMMAL 1 Mnrumfrag Muary 11/74 65 - 11/74	•	11CS OF	NE AN	•••	R 14 - YP)	384			•	11CS 0F	NE P X	11	R [Y , Y P]	- 1757	6154	65 73 65 41	- 6 4 6 6
0200 11 11 11 11 11 11 11 11 11 11 11 11 1	· • •	L STATIS		7424	с. С. С.	11.02		59.61 59.61	<u> </u>	L STAT15	а ж • • ×	2693	• • • •		16.1	26 • 39	20.02
	1006 14N	E MORMA	~	•	***	-67	:::		100E . KH	E NOPHA	-	•	45 45	97 . 2	2	22. 27.	
00 408 47 5 1 4 7 5 1 4 7 6 8 7 6 8 7 6 8	9411 9411	1044 VAR [A 1	s.0. 1	16.44	4 × × ×	2961			ALTI	IGRAVAT LAT	s.0.	17.21	я (х , х Р)	7846		5336 5536	
	• • •	100	E AN Y	. 68			16.02	19.45	• • •	770	ic an X	63	с. ж	9.56	16.43	17.91	25.15
	• • •		•	11	MEAN		05.	12.	•		•	21	AE AN KP		- 29	200	5 C y • 4
	•				1 N 0 I	21	. 2	13 N	•				101	2	95	.	2

4,*

COMMITTOWAL RIVARIATE MORMAL STU - VANNEWERG - JANUARY - JANUAR	ALTITUDE ALTITUDE ALTITUDE STATICH ATTICH ATTICH PERIOU OF ATTICH PERIOU OF ATCORD PERIOU OF ATCORD ALTITUDE ATTICH ATCORD ALTITUDE ATTICH ATCORD ALTITUDE ATCORD ATCORD ALTITUDE ATCORD ATCORD ALTITUDE ATTICH ATCORD ALTITUDE ATCORD ATCORD ALTITUDE ATCORD	QUADRA S14 S14
--	--	--

		AMMAL STATISTICS OF V R COMBITIO V V R VIAT VIAT 011 R VIAT VIAT VIAT R VIAT VIAT VIAT R VIAT VIAT VIAT N VIAT VIAT VIAT N VIAT VIAT VIAT N VIAT VIAT VIAT VIAG VIAT VIAT VIAT VIAT VIAT VIAT VIAT VIAT VIAT VIAT VIAT <tr< th=""><th>Mamal Statistics of x, x, x, x, x, x x x Utatistics utatistics utatistics utatistics utatistics utatistics utatistics ut</th></tr<>	Mamal Statistics of x, x, x, x, x, x x x Utatistics utatistics utatistics utatistics utatistics utatistics utatistics ut
	PIUMAIAIT Mnumal STAILAI PIUMAIAIT Mnumal STAILAI R R R R R R R R R R R R R R R R R R R R	RILMANIAT STATISTICS OT X. Y. R VIATITIC VIATITIC V VIATITIC VIATITIC VIATITIC VIATITIC <	RIVAJJJIT MOMMAL SIBITCICS OF R. V. V. <td< td=""></td<>
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B A A A A B A A A A B A A A A B A A A A B A A B A B A A B A B B A B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B <t< td=""><td>A lair mainer statist A lair mainer statist A lair mainer statist A lair hair statist A l</td><td>Alliff Alliff Statistics C V. HP.VP Statistics C C V. HP.VP C C C</td><td>A. JANT STATICTICS OF A. Y. K. VIAT A. Y. K. VIAT Y TOTAL STATICTICS OF A. Y. K. VIAT Y TOTAL TOTAL TOTAL TOTAL Y TOTAL TOTAL TOTAL TOTAL <!--</td--></td></t<>	A lair mainer statist A lair mainer statist A lair mainer statist A lair hair statist A l	Alliff Alliff Statistics C V. HP.VP Statistics C C V. HP.VP C C C	A. JANT STATICTICS OF A. Y. K. VIAT A. Y. K. VIAT Y TOTAL STATICTICS OF A. Y. K. VIAT Y TOTAL TOTAL TOTAL TOTAL Y TOTAL TOTAL TOTAL TOTAL </td
			<pre>Simif () () () () () () () () () (</pre>

ł

1

1.1

1

٨

		IC 2.0.	-j.69 9.57 67U •	R R Q Q R Q R Q R Q R Q R Q R Q R Q R Q	3192 .212900870916 0 10.02 		 		 CS OF X,Y,X7,Y9		-3,73 7,94 62U •	AR • (X°GA? (A°GA) (GA°AA) (GA°A) Nyjn • k b b g g g g g g g g g g g g g g g g g	2955 .1950 .42971128 • 8.95			
ССПОНТАТО (1912)) - ИМО 517100 05 FECORD - JANUA FERIOD UT RECORD - JANUA ALTHOD UT RECORD - 2/65 ALTHUDE (ММ) - 15 ALTHUDE (ММ) - 15	QUADRAVARIATE NORMAL STATISTIC	5.D. R. R. R. R. Y.	1.71 . 5342	0. 8 M(AN 5.0. P (X.XP) YP T	12 2295 11 - 25295	18337601 9.44 . 24815501 11.39 .		41 11 UD (KM) - 16	QUADRAVARIATE NOPMAL STATISTI	5.C. 2. 2. (7.7)	9.21 .36 3	0. 8 KEAN 5.0. P (X,XC) YP YP		34324411 7.55	3+	

,

۱

•

a constantes

	- ORIGINAT	PAGE IN	•			、	- 0 0 0	6.20	11.5	00.5	•	cs			5.U.	5 - 79		
	OF POOR	QUALITY	•	STATISTI			PE AN Y P	1.50			• • • •	STATISTI			N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 9 - 4.0	2	
		•	•	A TE NORMAL P AGD YP	A F F	-3.09	д Г. ЧР]		· • 5 • • • • • • • • • • • • • • • • •		• • •	P AND YP	4 N 3 A 1 9	-2.96	R . TP)	14 2 US		
UNINSWATANE AND CONTILE -L NAMATAE NOME STATATE UNINSWATANE AND CONTILE -L NAMATAE NOME STATATE VILUAR ANGE - 225.	• '	XF, YP (A1 15 (A1 15	•	NAL PIVARI For 2	GÎVÊN K	13.37	5+0+ KP 1A	7 . 58 7 . 58 7 . 50		6.59	•	AL PIVAR	GJYCN X	10.17	5+D- XP {XI	6.54 6.54	5.31 6.23	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CUMMENTATINE AND CONTILL -L RIMMENT NORMAL STATISTICS CUMMENTATINE AND CONTILL -L RIMMENT NORMAL STATISTICS STATION FILLON STATION FILL STATION FILL <td>د ۲۰۰۰ ۱</td> <td>20 20 10 10 10 10</td> <td>•</td> <td>CONDT 110</td> <td></td> <td></td> <td>8 2 8 8 2 8 8 4 8</td> <td>7.67</td> <td>1.31</td> <td>7.23</td> <td>•</td> <td>C0401110</td> <td></td> <td></td> <td>7 L L 7 L L 1 L</td> <td>6.2 6.19</td> <td>5.91 5.79</td> <td>5.13</td>	د ۲۰۰۰ ۱	20 20 10 10 10 10	•	CONDT 110			8 2 8 8 2 8 8 4 8	7.67	1.31	7.23	•	C0401110			7 L L 7 L L 1 L	6.2 6.19	5.91 5.79	5.13
Milling (Milling (Mill		574755755 2 1 1647 4 1 1647 4 1 1647 4 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • •	• • •	•••	•••	• • • •	- 1300 +	- 1657 +		•	• • •	• • •	•••	• • • • • • •	1374 2	:718 • 1778 •	1744
UNADRAVARIATE AND CONDITIO - C NUMBERIO UNADRAVARIATE AND CONDITIO - C NUMBERIO UNADRAVARIATE AND CONDITIO - C NUMBERIO UNADRAVARIATE NORME U	Ĺ	NOR AL	• • •	•		1 621	R. 11	.0652	- 1286	r567 07W3	• • •		2	2 520	9 (XP,Y)	. U930 . 6547	2007	- ,1223
Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции (111) Полиции Полиции Полиции Полиции		ni var jate 'e	• • •	X , Y , XP , YI	2. C	9	4 7P , 4P	.1717	.2362	.2 196 .2 17U	•	K . Y . XP . YP	5 • 0 Y	5 . 3	р (тр, тр)	•1512 •2168	.2120	- 71 A9 - 7 152
OUADRAVARIATE AND CONTRAVARIATE AND CONTRAVELY MEAN S.D. ALLITUDE (MM) - MEAN S.D. P.C. S.D. P.C. P.C. S.D. P.C. P.C. P.C. P.C. P.C. P.C. <td></td> <td>1116 - L Impenbrhg Imuary 165 - 11/1</td> <td>•</td> <td>11CS 0F</td> <td>A E A A</td> <td>6 . • <u>.</u> -</td> <td>R Y , Y)</td> <td> 24 18 84 45</td> <td></td> <td>1099</td> <td>•</td> <td>71CS OF</td> <td>ME A V 4</td> <td>-2.96</td> <td>R {Y , YP}</td> <td>2657 4116</td> <td>554 5540</td> <td>6767</td>		1116 - L Impenbrhg Imuary 165 - 11/1	•	11CS 0F	A E A A	6 . • <u>.</u> -	R Y , Y)	24 18 84 45		1099	•	71CS OF	ME A V 4	-2.96	R {Y , YP}	2657 4116	554 5540	6767
CUADRAVARIATE CUADRAVARIATE NEAN STATTON F NEAN STATTON F NEAN S.D. NEAN				L STATIS		3849	с• с • с	5.67 5.82	5	8 • • 5 8 • • • •		L STATIS	н	3995	S • D • 4 P	2014 808 108 108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4) A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ица ица ица ица ица ица ица ица	•	14481416 11100 193; 1110 05 85 1100 05 85 1100 05 85	11UDL (RF	TE NORMA	-	•	NE AN Ve	50.1	03		1700E (MM	TE NORMA	2	•	HE AN 15	51	F 2 3 4 1	.1.
		004741 511 710 710 710	ALI ALI	Iauravar Ia	\$.0. *	78 ° ,	а (41.1)	2267 31°U			ALT ALT	agravap la	s.0. A	6.97	8 (X,X)	2430		3 4 7 7 4 1 3 4 7 7 4 1 3 8 7 7 4 1
			•	0	ME AN K	3.37	2.0. 2.0	3 • • 5 2 • 85	5	2 	•	0	ME AN K	1.17	5.0. *P	2 · 4 7	5.15	6 • • • • 7 • • •
			•			-	1 1 1 1	5 -12	1 .		• • •		~	-	2 • 4 ¥	.12	L	- 25

2

いいとん

, **1**

101

. . .

F 4. Y. XP. YP	- 	011 - UIAT TA	513 - 4187 TB	
A STATISTICS O			* * **** * **	
10 P - 40				
P] VAR JATE	3 - -			
CONCITIONAL		- JANGAT	- ا رد، ا	:
UND SEREAFERUURN		FOMIN OF RECORD FEDIOU OF FECOPO	alora ascir	

• 8

and the second se

2 2 1

.....

i

AT PORT A CONTRACT OF AN AN A REAL

i. ₹

٠

Į

.

`,

1

			20]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	184054	121112	1CS 0C	4 * 4 × 4 × 4		•••	1110405	DAL PLAD	A DWY AX I	AL STATIS	1165
.		•	1 1 1	• 0 • ¥	8 - N	ĩ	5 9 JK	4 • •	•			5 7 Y E X X	54140		
		• •	7.15	15.3	. 391	5	1e.5-	•	•	0		61.1	N -	=	
1È	01	# # 3 # # 3 #	به ۳۳ ۳۳	2 [4,5]	4 4 4 4 4 2 4	• • • •	6 1 4 7 1		5 1 x D . 1 1		# Q 	• • • • • • •	0 1 4 5 1	2 6. 	.0.2
1	:	•	•		Ļ		. 36.4	1 1 2 1 2		1001		4.21	41 C 8.	460	(()
		e		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, - ,				64.92			5.10	7 9 3		• 0.2
2	,	~ 1 •						2023		- 1572		5.23	57	37	3.84
	1	[2.	5.02	3135		. 7 .	57 9.	141.		1447	• . 37	11 11 11 11 11 11 11 11 11 11 11 11 11	5 . 7	52	3.70
	7	.23	5.55	£ #2 #	•5.7		5764	1472.	215		42° 4	5.75	. 4573	56	5.43
· 1	2	46.	6 • 17	心 」 ま 昇 * !	£ 9 •	1) 1- 1-		5 J L 2 *		* * * * *		A • 6 •	. 155	. • • •	16.5
8(• •	• • •	• • •	ALTI ALTI 	(# #) * 0 0	ر. ، ۹ ،	• • •	• • •	•	•	• • •	• • •	• • •	•	•
)			<i>че</i>	316146440381	18= a'sk	5184353	105 OF	X . Y , ZD , 7 P			1110405	IATA TURG	12 UNV 48 1	441 514719	1105
1		-	2 4 1 1 1	5 • 5 • H	0	2	***	0.\$	•			1 3 1 5		Ŧ	
		-	23	6.30	. 37:	~*	.	£•5	•	3				~	
, ·	03	# Q 4 N 8	. N	(47 . M) 0	35 à 4 42	• • • • •	9	1 JA - 41 1 0	8 4 2 4 2 4		# 6 u # 1	 	1 d 2 ' J 7 1		• • • •
			2.25			T 1 -			1.1.41		1.5.1	6.12		54	1.45
1		• • •			• r • •									65	1.5.
	,				۲ ,			.111				ee . 5	1214.		3.54
	4. 7	12.	12.*	3-15	r. 7 .	1.5.2		12+1-	e: 2" .	. 50+1	•		• 5 2 • •	• • • •	3.29
)	, 	* 2 *			ب م	4.1.7		01.2.	el (10.2	f	1624.	-1.15	
	12	.23	5.41		•	* *	I H L S • • •	. 1 7 1 3				1. • • • •		F	

, i , i ----1 1 1111 1 1 1 المحالية المعارين أستنبه فهبوان

ŗ ۰.

,

•

where is

.

í

									•	÷						
DRIGINAL PAGE IS DF POOR QUALITY	•	\$110\$.J.2	3.35 3.23	1001 100 100 100 100		• • •	\$116\$			- a - 5 - 4 - 5	99 154 mil - 1 - 1 - 1 - 1 - 1 - 1	2.5	
	•	ITAL STATE	8	2	1 E A 1				• • •	MAL 51ATI	2	10	2 4 4 1 1	× . - × . -	~ # • ¶ • • ₩ • ¶ •	· * 50
	• • •	IA UMY AX	4 E S	- 2 -	2 1 7 7 7 7 1	1472. 8282. 8281	5265		• • •	A CHE AF	410	- 2 -	к хг. тг. 1	1532 .	. 2 4 2 .	
K0, T0 111111111111111111111111111111111111	•	AL PLVA	61 4F W X	2.29	2 • 3 2 • 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		•	•	NAL FIVA For	6 J VEN 2		• E & • K •	14 (1) (5 6 6 8 4	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	:
ог ж. т. - П1 ж. т. - U1 - U	• • •	r anut 110			87 A X 4 A X				• • • •	COND1110			2 i. k 1. k 1.	1 3 24 11 • •		
	• • •	• • •	• • •	•••	• • • • •	• 1910			• • •	• • •	• • •	•••	• • • • •		• • • • • • • • • • • • • • • • • • •	
N N N N N N N N N N N N N N N N N N N	•		2	а 621	8 [y,4]	. 1/906 . UA43		A B £ D • -	• • •			5 52	р 11г.т1	- C = J	111 · ·	
1 4 8 1 4 F	• • •	4 . Y . KP . Y P	s.0	* * 11	4 X L 1	- C 4 15	.2716	• 2 • 5 •	•	4 . Y . YP . YP	0 * 0 * \$	3.3	6 { yP , Y!)			5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
TTCNAL R (1000586 (1)2078 (1)2078 (1)718	• • • •	ITCS OF	2 4 4 4 1	-2 • 9 2	а 1 а т т т т	25 76	- * * 7 * * • * * * * * • * 5 * * 5	5635	•	11CS OF	***	10.1.	5 	2 - 3 e		5 4 6 5 4 6 5 4 6 6 7 6 6 7 6 6 7 6 7 7 6 7 7 6 7 7 7 8
10 10 10 10 10 10 10 10 10 10	- • • •	5147151	-	5 %	* 4 4 • • • •	1.35 2.49	(V M N C M N M D -	€ • •	^.+ . + . +	51-415	-	5 2 3			- 7 - - 6. D	на у -1 Хара Н Ф. Ф. Ф. К. р. К.
	ч • • • •	IVHOUN	 		4 4 M		្រឹង	53.	UDE 1 # M)	18##0W	-		MF A12 Yf			5 37
0 U A () H A V A 5 T A T 7 4 C W T H 7 C W T H 7 C W A	• • • • •	UPAVAPIATF	5.6. #	12.2	8 13,471	17 7 222*	- , 7759 - , 3742 - , 3742		ALTIT + + + + +	1121°24A80	s.t.	1.12	C	1 1 1 1 1 1 1 1	1 2 6 4 7 5 7 7 7 7 7	()) (
	• • •	4 D D	:	52	5.0. 7 P	2.5	* * J	16.5	• • •	4 N D	2 4	4.2	, , , , , , , , , , , , , , , , , , , ,	2 • • 5 5 • • •	• 39 (• •• • • • •	· · · ·
	•		u. N T	~ ~	2 4 11 11 1	* * *	•13 •22 •25	• 32	•		1		2 41. CL 12: 41. 2		14.	67 9 40 14 66 20 14 1 1
	•				1 D	12	မ်းရား၊ က ခ မာ	12	•				16	21	1 w 1	n

THE REAL PROPERTY OF

and the

۰.

: