
NASA Technical Paper 1282

An Alternating Direction Implicit
Method for the ^Control Data
STAR-100 Vector Computer

Jules J. Lambiotte, Jr.

SEPTEMBER 1978

NASA

https://ntrs.nasa.gov/search.jsp?R=19780023893 2020-03-22T03:25:47+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42872869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA Technical Paper 1282

An Alternating Direction Implicit
Method for the Control Data
STAR-100 Vector Computer

Jules J. Lambiotte, Jr.
Langley Research Center
Hampton, Virginia

NASA
National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1978

SUMMARY

Two difficulties affecting the implementation of the alternating direction
implicit (ADI) method on the Control Data STAR-TOO computer are discussed. The
first is that much of the computation is in the solution of tridiagonal systems
of equations, and investigations have shown that parallel or vector tridiagonal
solvers are not particularly efficient on the STAR computer until the size of
the system is quite large. Second, since the direction of implicitness alter-
nates at each half step in the algorithm, considerable data rearrangement is
required to efficiently use a vector algorithm in both directions.

Two parallel algorithms are described which solve M independent sys-
tems of tridiagonal equations. Each algorithm solves the M systems more effi-
ciently than a parallel solver used M times on one system. The two algorithms
are compared by using STAR-TOO timing. It is then shown that the storage require-
ments for the two algorithms are such that they can be used together in an ADI
implementation which has no requirement for data rearrangement. An average vec-
tor length is derived for the ADI method which shows that in some instances the
method may be very efficient for the STAR-TOO computer.

Several other algorithms which result in the need to solve many systems
of tridiagonal equations are discussed.

INTRODUCTION

The alternating direction implicit (ADI) method for solving elliptic
partial differential equations has proved to be a very effective method for a
restricted class of problems. It is also widely used in solving parabolic par-
tial differential equations because it has excellent stability characteristics.
Part of the popularity of this method is due to the fact that the main computa-
tional work per iteration involves the repeated solution of sets of tridiagonal
equations. Whereas this latter characteristic has been one of its strengths on
the conventional serial computer, studies have indicated that this may be a
weakness on a vector computer. (See ref. T.) Another difficulty arises if
there is a requirement that vector elements be stored in contiguous locations,
as on the Control Data STAR-TOO computer. There, an algorithm deemed efficient
for solving the tridiagonal systems of equations in one direction cannot be
used when the direction of implicitness is alternated unless considerable data
movement is performed. This movement, corresponding to the transpose of the
matrix of grid values, represents an overhead to the algorithm which can be
quite costly.

Two approaches to solving the tridiagonal sets of equations are presented.
The first is the vectorization of an approach suggested for the ILLIAC IV in
reference 2 where each parallel processor is used simultaneously to solve one
of the tridiagonal systems. This is referred to as (SS) for simultaneous solu-

tion. The second method is motivated from the study of the odd-even reduction
parallel algorithm in reference 1 which showed that for a large single system,
this parallel approach was considerably better on the STAR-TOO vector computer
than the other methods considered. This report shows that M independent sys-
tems of tridiagonal equations, each of size N, can be linked together to be
solved as one system of size MN with few additional computations required.
In addition, it is proved that a system artificially coupled in this manner can
be solved by the odd-even algorithm in Iog2 N steps instead of the expected
Iog2 MN steps. This algorithm is referred to as the (LP) algorithm for linked
parallel. It is then possible to show that the storage requirements for the
two algorithms ((SS) and (LP)) are such that they can be used together to avoid
the necessity of rearranging the data between half steps. It should be noted
that the ILLIAC IV has a storage scheme which allows the access of both rows and
columns of a matrix so that one can conveniently use (SS) to solve the equations
in both directions. Similarly, Texas Instruments Advanced Scientific Computer
(ASC) can access noncontiguous locations with a fixed separation but at reduced
rates. The average vector length for the ADI method is derived and arguments
are made that it can be an efficient algorithm for the STAR computer in some
circumstances. Other numerical methods which require the solution of tridiag-
onal systems (e.g., successive line overrelaxation (SLOR) or Crank-Nicolson)
are also discussed.

SYMBOLS AND ABBREVIATIONS

A matrix of coefficients .

ADI alternating direction implicit method

Ai,Bj,Ci submatrices in (SS) and SLOR algorithms

a,b,c diagonals of tridiagonal matrix

a,b,c diagonals of reduced tridiagonal matrix in odd-even reduction algorithm

6̂ ,0̂ wBi and wCj, respectively

d diagonal of U factor in equations (1) to (3)

g solution to forward substitution in equation .(2)

i,j,k indexing integers

(LP) linked parallel algorithm

L , U factors o f matrix A . . .

L2fQl»Q2 submatrices of Q in equation (11)

i subdiagonal of L factor in equations (1) to (3)

£ average STAR-TOO vector length in ADI method

2

M,N grid dimensions

Nx,Ny number of columns and rows, respectively, in grid

N N/2

N' largest power of 2 equal to or greater than N

p MN

P P/2

Q,R implicit and explicit matrix representations, respectively, in itera-
tive procedure

Rfc ratio of STAR-TOO times for ADI algorithms as defined in equation (15)

r,r right-hand side vector in matrix equations

r (i) ith subvector from r

SLOR successive line overrelaxation

(SS) simultaneous solution algorithm

s,t vectors defined in equations (5) and (6)

T block diagonal matrix in which each diagonal submatrix is tridiagonal

TQE STAR-TOO time to solve tridiagonal system by using serial Gauss elimi-
nation (minor cycles)

Tj ith tridiagonal submatrix of T

TLP(M,N) STAR-TOO time to solve M independent tridiagonal systems of size N
by using (LP) algorithm (minor cycles)

TOE STAR-TOO time to solve a tridiagonal system by using odd-even reduc-
tion (minor cycles)

Tgg(M,N) STAR-TOO time to solve M independent tridiagonal systems of size N
by using (SS) algorithm (minor cycles)

Trp(M,N) STAR-TOO time to transpose an M x N matrix (minor cycles)

u solution vector

u^1) ith subvector of u

v,v(i) ,w,w(i) vectors used in equation (T7)

x,y,z coordinate directions

6

u

0

,P, t f ,T vectors of coefficients for finite-difference equations

maximum of Nx and Ny

minimum of Nx and Ny

number of vector operations of length N^ in ADI implementation

q> number of vector operations of length N in ADI implementation

w relaxation parameter in SLOR

VECTOR TRI DIAGONAL SOLVERS

The usual approach to solve a diagonally dominant system Au = r, which is
given by

c2 a2 b2 u2

bN-l

is to apply Gauss elimination (or some equivalent form such as the Thomas
algorithm). The algorithm to factor A as A = LU where

1

*2 d2 b2

L = u =

dN

is given by

Hi = Ci/di_i

di = ai - *ibi-

Then, Lg = r is solved by

9T = M

91 = ri - ai9i-T

Finally, Uu = g is solved by

(i = 2, . . ., N) (1)

(i = 2, . . ., N) (2)

UN =

- u i+1bi)/di (i = N-l, (3)

This is a very efficient algorithm requiring only 8N arithmetic operations.
However, when considered for vector (or parallel) computers, the algorithm is
unsuitable since the computations are of a recursive nature. The algorithm
given by equations (1) to (3) is said to be nonvectorizable since it must be
carried out primarily with scalar code on a vector computer (assuming that this
is preferable to vectors of length one). Several parallel algorithms that use
direct methods have been proposed and investigated in references 1, 3, 4, and 5.
Iterative methods have been proposed in references 6 and 7.

A comparison of the predicted performance of most of these methods on the
STAR-TOO computer is contained in reference 1. There it is shown that, for most
situations, the one-dimensional version of cyclic (odd-even) reduction performs
the best. Briefly, this algorithm requires Iog2 N major steps to solve a sys-
tem of size N. At each step, one-half of the unknowns are eliminated, leaving
a new tridiagonal system half as large. A good estimate for the STAR-TOO timing
for this algorithm is

TOE K 525° Io92 N + 46N (4)

where TQE is given in units of STAR minor cycles (40 nsec). In figure T,
the ratio of TQE to TQE (the time for a scalar implementation of Gauss elim-
ination on the STAR-TOO computer) is plotted as a function of the number of
equations N. This algorithm is described in reference T, and experiments indi-
cate that TGE ra 1275 + 255N. It is clear that even the most promising parallel
solver is not relatively efficient until the size of the system is quite large.
Since the size of a system using ADI is the number of grid points in one direc-
tion of the grid, it is not likely that the parallel algorithm will be useful
in a straightforward implementation of ADI.

ADI METHOD

The ADI method is discussed in detail in many references. (See, for exam-
ple, ref. 8.) Although the method is applicable to three-dimensional problems,
this paper will only address the two-dimensional problem except where specifi-
cally noted. Briefly, when solving Au = r with the ADI method, the A matrix
is expressed as the sum of two matrices; this leads to the two-step procedure to
advance the solution from step 2k to step 2k + 2

Hu 2k+1 = (5)

and

Vu2k+2 = t (6)

,2k and respectively. TheThe vectors s and t are functions of
matrices H and V are chosen so that they are invertible, and if the method
is to be of practical value, easily invertible. When, for example, A arises
from the application of the five-point difference formula to a general second-
order elliptic partial differential equation, H corresponds to the finite-
difference approximation in the x-direction and V corresponds to derivatives
in the y-direction. The matrices H and V may include terms added to the
diagonal to increase stability and accelerate convergence. Under suitable per-
mutations, both H and V are tri.diagonal. In solving equation (5) , the direc-
tion of implicitness is said to be in the x-direction; similarly, in solving
equation (6), the direction of implicitness is said to be in the y-direction.

For illustrative purposes, consider the implementation of the ADI method
for a second-order elliptic partial differential equation with Dirichlet bound-
ary conditions on the model mesh (fig. 2); Let N be the number of interior
grid lines in either direction, which here is N = 3. Since the order in which
the grid points and the coefficients at each grid point are stored in the com-
puter is important, assume that the number of the grid point also indicates its
relative position in the pertinent arrays. Therefore, all arrays are stored so
that they correspond to rows of the grid. Assume further that the solution has
advanced through 2k steps and that at step 2k + 1, the direction of implicit-
ness is in the x-direction. The equation for any point i is of the form

Yiui+1]
2k+1 = 2k

and when all the points for that row of the grid are grouped together, a tri-
diagonal system of equations results. There is one such system for each row in
the grid. The equations for, say, the second, interior row are

T12

Y13

a14 814

U13

u14

2k+1 r12 - - T12U17

r13 - P13u8 - a13u13 - T13u18

r14 - Y14
U15 - Pl4"9 ~ a14u!4 ~ T14U19

2k

(7)

Note that quantities in equation (7) are stored appropriately to allow vector
operations of length N in the evaluation of the right side of the equation,

with the exception of the subtraction of the boundary value in the equation for
the first and last point of each row. Also, each diagonal of the matrix has its
elements stored consecutively, as required when using the cyclic reduction paral-
lel algorithm discussed in the section entitled "Vector Tridiagonal Solvers."

All of the independent tridiagonal systems (one for each row) to be solved
at step 2k can be grouped into one matrix equation which has the form

= Ru2k + r

where the matrices Q and R are as shown in figure 3 if it is assumed that
any references to the known boundary values are included in f. It is instruc-
tive to view the overall structure because the algorithms to be used in the ADI
implementation will be based first upon the computation of Ruk + r (in which
long vector operations can be used) and then on a solution to the matrix equa-
tion which exploits the structure of Q (as opposed to solving each system one
at a time) .

When the direction of implicitness is in the y-direction, the resulting
equation for the ith point is

[pj.ui_N + Tiui+N]
2k+2 .l + |2k+l (8)

When the equations for all points "in a column of grid points are grouped
together, a tridiagonal matrix arises. The matrix equation for the second
column is ' '

^8

P13

0

T13

P18

U8

u13

2k+2 re - P8U3 ~ Q8U7 - 8U8 ~ Y8U9

r13 - a13u12 - B13u13 - Y13u14

r18 - T18u23 - a18u17 -

2k+1

(9)

Observe that the right side of equation (9) cannot be evaluated with vectors of
length N, nor are the diagonals of the tridiagonal system stored consecutively.
When all of the independent systems at step 2k + 1 are grouped, the matrix
equation is of the form

Qu2k+2 = Ru2k+1 + r

where Q and R now have the structure shown in figure 4. In order to have
the same structure as in figure 3, one would need, for instance, us, followed
by u-|3, followed by U-\Q, etc. This, of course, corresponds to the transpose
of the original storage scheme. On a serial computer, the different structure
presents' no problem, at least not when all the data are contained in central
memory. The arrays of coefficients and the previous solution vector can be
stored in a two-dimensional array and accessed from there one at a time. How-
ever, on a vector computer, one apparently must transpose the arrays in order
to use the same algorithm in both steps. As ah alternative to the data move-
ment, two parallel approaches to solving the systems of tridiagonal equations

are described. It is then shown that when used together, they remove the neces-
sity to rearrange the data.

SIMULTANEOUS SOLUTION VECTORIZATION

Since each of the tridiagonal systems is independent of the others, any
algorithm for solving one of the tridiagonal systems becomes a parallel 'algo-
rithm when it is used to perform the identical operations on the corresponding
coefficients of each system. Hence, with M systems, each vector operation
would be of length M. The most obvious algorithm to use is the serial algo-
rithm in equations (1) to (3). This is the general approach used in reference 2
and it is referred to here as (SS). The only difficulty is to determine what
storage arrangement relative to the direction of implicitness is required. In
reference 2, the coefficients for any one system are stored in one of the pro-
cessors, and each processor solves the system whose coefficients are stored in
its memory.

Matrix equation (9) arises when the direction of implicitness is opposite
the direction of storage. A particular scalar operation for column two, say
P!3/̂ 8' must also be executed for columns one and three and will occur as
p-)2/a7 and PI 4/̂ 9. Hence, the scalar operation for each system can be per-
formed as a one-vector operation of length M. The conclusion is that (SS)
works when the direction of implicitness is opposite the direction of storage
(or numbering) of the grid. A quick glance at equation (7) shows that the same
approach would not work when the direction of implicitness corresponds to the
numbering of the grid.

Another view of this method can be obtained by examining the structure
of Q and R shown in figure 4. The matrix equation is of the form

>1 B] T u t 1)
u < 2)

u < 3)

S

" rnr
r (2)

r < 3)

where A^, B^, and Cj are diagonal matrices of size M, \j(i) refers to
the ith row of unknowns, and rt1) is the corresponding values of the right-
hand side. If the diagonal of each diagonal matrix is stored as a vector and
the obvious rules for multiplying, inverting, adding, and subtracting diagonal
matrices are observed, it is clear that there is a 1-to-l correspondence with
the operations in the scalar algorithm that is given by equations (1) to (3)
except that each operation is now a vector operation of length M. This algo-
rithm has been coded in STAR FORTRAN and timed. For M independent systems
of equations, each of size N,

TSS(M,N) * 1700N + 7.5NM (10)

Since N refers to the size of the system (the number of points in the direc-
tion of implicitness), Tgg(M,N) is smaller when the direction of implicitness
is along the side of the rectangle that has the smallest number of grid points.

8

LINKED PARALLEL VECTORIZATION

Now consider another approach to solving the M independent tridiagonal
systems, each of size N. When the direction of implicitness corresponds to
the direction in which the grid points have been ordered, the storage is correct
for using the parallel odd-even reduction algorithm. (See eq. (7).) However,
since the size of each system is the number of columns of the grid (still assum-
ing the grid is ordered by rows), the algorithm would not appear to perform
particularly well unless a very fine grid size is used. However, again it is
instructive to view the overall structure as given in figure 3. If each of the
M independent tridiagonal systems is denoted by Tju(i) = r(i), the resulting
matrix equation Tx = r is given by

T2

"r(D

r(2)

r(M)

It is clear that the matrix T is also tridiagonal, of size p = NM, and can
be solved with the odd-even reduction algorithm. The advantages of solving T
as one larger system of size p are clear from figure 1. In addition, the fol-
lowing theorem proves that it is not necessary to carry out all of the Iog2 P
steps.of the algorithm due to the special structure of T.

Theorem: If the tridiagonal matrix T consists of M independent .tridi-
agonal systems of size N, the odd-even parallel algorithm can be terminated
after Iog2 N steps.

Proof: For simplicity, assume N is a power of two. Denote the diagonals
of T by c, a, and b, and their ith component by c^, ai, and b^. Note
that for these uncoupled systems,

= 0

and

bN+(k-l)N =

(k = 2, 3, . . ., M)

(k = 1, 2, . . ., M - 1)

(11)

(12)

At each step of the algorithm, half of the unknowns are eliminated, leaving a
reduced tridiagonal system half as large as the original. Consider the first
reduced system after^one step of the algorithm. Call the diagonals of this
system c, a, and b. Then, as shown in reference 1,

-C2jC2j-l / p _ „
c-j = h = 2, 3, . . . , - = p
J 32J-1 \ 2

and

P
bj = j = 1, 2, . . ., - - 1 = p - 1

a2j+i \ 2

Now, in particular, when j = 1 + (k - 1)N for k = 2, 3, . . ., M and
N = N/2, then

C2j-l = c2+2(k-l)N-l = cl + (k - l) N = °

Also, when j = N + (k - 1)N for k = 1 , 2, . . ., M - 1, then

b2j = b 2N+2(k- l)N = b N+(k-1)N = °

Since Cj and bj are zero for those M - 1 values of j, the p x p system
still has M - 1 zero superdiagonal and subdiagonal coefficients separating
the independent systems. The same argument shows that after Iog2 N steps,
the reduced system, which is now M x M, still has M - 1 subdiagonal and super-
diagonal zeroes. Hence, it is diagonal.

The assumption that N was a power of two was made only to allow the.pre-
cise identification of the M - 1 zero subdiagonal and superdiagonal elements
in the reduced system. It is clear frcm equations (11) and (12) that the zero
off-diagonal elements must be propagated for any N!. The elimination procedure
can be stopped after Iog2 N1 steps where N1 is the smallest power of 2 equal
to or greater than N. Q.E.D.

The approximate timing for the M systems.of size N is

TLP(M,N) = 5200 Iog2 N + 46MN (13)

MIXED ADI ALGORITHM

The discussion concerning the (SS) and (LP) algorithms indicates that (SS)
is appropriate when the direction of implicitness is opposite the direction in
which the grid is ordered and that (LP) is appropriate when the direction of
implicitness is the same as the grid ordering!. This indicates that a mixed
algorithm can be used which will remove the necessity for rearranging the data.

Assume that the .grid is ordered by rows [columns] of the grid'. Then

(1) When implicit in the x-direction, use the (LP) f(SS)] algorithm

(2) When implicit in the y-direction, use the (SS) I(LP)] algorithm

10

Once the grid is ordered, the direction in which (SS) and (LP) are used
is determined. When the grid is square, the storage selection makes no dif-
ference. However, when the number of rows Nv does not equal the number of
columns Nx, the grid ordering should be selected to minimize the sum of the
time for each algorithm. Let u = min (Nx,Ny) and 6 = max (Nx/Ny). Then
if the grid is ordered in the direction corresponding to the maximum dimension,
the time T(ADI) for the mixed algorithm is

T(ADI) = TLP(y,6) + Tss(6,u)

= 5250 Iog2 6 + 1700y + 53.56y (14)

If the grid is ordered along the minimum dimension

T(ADI) = TL P(6,y) + Tss(y,6)

= 5250 Iog2 y + 17006 + 53.56y

Since 6 £ u

5250 Iog2 6 + 1700u
S 1

5250 Iog2 y + 17006

for any y ̂ 8. Thus, the grid should be ordered consecutively along the
largest dimension to yield the time given in equation (14).

The choice between the mixed algorithm and the more conventional algorithm
(that is, (SS) in both directions with matrix transposes) is problem dependent.
The advantage for the mixed algorithm occurs when the region is nonsquare and/or
when more than one data array must be transposed. This can be seen from table I
which gives the comparison for several combinations of M and N by using
equations (10) and (13). In that table

Tss(y,6) + Tss(6,y) + 2kTT(y,6)
Rk = (15)

TLP(y,6) + Tss(6,y)

is the ratio of the times for the conventional to the mixed algorithm where k
is the number of data arrays which must be transposed at each half step and
Tij(M,N) is the time to transpose an M * N matrix.

The use of different algorithms in different directions also applies to
the three-dimensional problem. Consider the ADI method applied to a cube such
as shown in figure 5. Assuming a dimension of N, the corresponding algorithm
would then be

(1) Implicit in the z-direction: Use (LP) algorithm on one system of
size N^

11

(2) implicit in the x-direction: Use (SS) algorithm N times, once for
each square grid in the x-z plane. Vector operations are of
length N

(3) Implicit in the y-direction: Use (SS) algorithm once on all N2 tri-
diagonal systems. Vector operations are of length N2

AVERAGE VECTOR LENGTH IN ADI

Even though the average vector length in the solution to the M triadiag-
onal systems is\only M with (SS), the length for the entire algorithm may be
considerably higher because the coefficients a^, (3j, Yi» Pi» ai» and TJ_
in equation (8) may be all evaluated with vectors of length MN since the equa-
tions are independent. In many cases, this computation may dominate the time
so that much of the work involves long vectors. To estimate the average vector
length i, assume that M = N and that 0 vector operations of length N2 are
performed to evaluate the coefficients; also assume that cpN vector operations
of length N are required to solve the resulting systems, as in the (SS) algo-
rithm. Then

0N2 + cpN (N) /cp + Q\
£ = ~ N

6 + cpN \ .cp /

Counting a multiplication as one operation, an addition as one-half, and a divi-
sion as two, cp = 7.5 so that

/7.5 + G\
H - N

\ 7-5 /

The value for 6 is at least 4.5 to evaluate Ruk + b and, of course, can
be considerably larger for nontrivial coefficient evaluation.

The evaluation of the coefficients and the right-hand side with vectors
which are 0(MN) requires the boundary points to be included in the vector of
unknowns. To have a valid equation for a point i on the boundary, set

Pi = TI = 04 = BI = Yi = 0 04 = 1 ri = Gi

in, for instance, equation (8), where u^ is the fixed boundary value for the
ith point.

OTHER APPLICATIONS

SLOR

The two algorithms can, of course, be used in any application where there
exist a number of independent tridiagonal systems to solve. It may be neces-

12

sary, however, to impose an ordering other than the usual row-by-row ordering
on the grid to obtain the independence required for these algorithms. For
instance, the usual row by row ordering of the grid in figure 2 yields a block
tridiagonal matrix Ci,Ai,Bi where C± and B^ are diagonal of size N and
each A£ is tridiagonal. When the successive line overrelaxation (SLOR) method
is applied to this matrix, the following matrix equation must be solved at each
step where Cj = wCj and U) is the relaxation factor:

AI

CN AN

u<2)

U(N)

r(2)

r(N)

Each u^i) is the updated solution on the ith row of the grid. Here the tridi-
agonal equations are not independent and must be solved one at a time. However,
as pointed out in reference 2, if the odd rows are improved first, followed by
the even rows, the resulting task requires two solutions of N/2 independent
systems of equations. Here the matrix equation is

h

*

*

AN-I

:2 B2 A2

64 84 A4

*

• » *

*

u < 3)

*

*

„(»-'>

„(«

*

*

u < N >

r (3)

*

*

r (N-l)

r (2)

r (4)

*

r (N)

(16)

13

where also
gi ven by

The matrix in equation (16) is of the form Qv = w

"Qi

_L2

0

Q2_

"V (D~

v<2).
.

w (2)

(17).

which is solved by

vd) = Ql-lwO)

v(.2) = Q2-1(W(2) .

The matrix results from the ordering shown in figure 6(a) and has the structure
shown in figure 7(a). With this ordering, (LP) is appropriate. As in the ADI
method, each of the grid points involved in the N/2 independent systems could
be numbered columnwise so that (SS) is appropriate. This ordering and the
resulting Q matrix are shown in figure 6 (b) and figure 7(b).

Three-Dimensional Crank-Nicolson

As s final example, consider a three-dimensional problem that uses a Crank-
Nicolson differencing procedure. (See, for example, ref. 9.) In figure 8, the
differencing scheme is shown for the point (i,j,k) looking down on the x-y plane
at the level z = k. At the point (i,j,k), there is an implicit reference to
the points immediately above and below at (i,j,k + 1) and (i,j,k - 1), respec-
tively. There is also reference to the points marked by a cross, as well as
some values directly above and below them in the z-direction. Now, assuming
the solution is specified on the boundary, one could start at the point denoted
by A by grouping all the equations from each plane at that point. A tridiag-
onal system of equations results for finding the solution at that column of
points in the z-direction. Since the boundary values are known, the system is
completely specified with the given differencing. One could now systematically
proceed to step 1 position in the y-direction, solve that system, step again,
etc., until all unknowns corresponding to x = 1 are determined. With this
approach, each tridiagonal system must be solved one at a time. It can be seen,
however, that once the solution at x = 1 , y = 1 is known, the differencing
allows the two systems denoted by B to be specified. They can be solved by
using either the (SS) or (LP) algorithms. Then, as shown, the three systems
denoted by C can be solved at the next step, etc. Ultimately, one has M
systems of size N where N is the number of grid points in the z-direction.

In the ADI method, both (SS) and (LP) were used due to the desire to remove
the transpose requirement. In the latter two examples, either algorithm could
be used.

14

CONCLUDING REMARKS

Several weaknesses of a straightforward implementation of the ADI method
on a vector computer have been pointed out. Two algorithms have been presented
which solve M independent systems of tridiagonal equations of size N in a
reasonably efficient manner in spite of the fact that no known tridiagonal sol-
ver solves any one system particularly efficiently. It is shown that if the
(SS) algorithm is used when the direction of implicitness is opposite the direc-
tion of storage of the grid values and the (LP) algorithm is used at alternate
steps, then the apparent necessity to rearrange storage at alternate steps is
eliminated.

The mixed algorithm is most likely to be an advantage when the grid is
rectangular and/or when several transposes are required. This is because the
greater speed of the (SS) algorithm is less, important. in these instances. In
the case of a rectangular grid, it is shown that the grid should be ordered
consecutively along the largest dimension.

An average vector length for the ADI method is derived which shows that,
in spite of the shortness of the vector lengths used in the solution to the
tridiagonal systems, the algorithm may still have a relatively large average
vector length if the evaluation of the coefficients involves a lot of
computations. • . . :

Other algorithms which require the solution of numerous tridiagonal systems
of equations have been discussed and order ings have been shown which lead to an
uncoupling of the system.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
July 14, 1978

15

REFERENCES

1. Lambiotte, Jules J., Jr.; and Voigt, Robert G.: The Solution of Tridiagonal
Linear Systems on the CDC STAR-100 Computer. ACM Trans. Math. Software,
vol. 1, no. 4, Dec. 1975, pp. 308-329.

2. Ericksen, James H.: Iterative and Direct Methods for Solving Poisson's
Equation and Their Adaptability to ILL1AC IV. CAC Doc. No. 60, Univ. of
Illinois at Urbana-Champaign, Dec. 10, 1972.

3. Lambiotte, Jules J., Jr.: The Solution of Linear Systems of Equations on
a Vector Computer. Ph. D. Diss., Univ. of Virginia, 1975.

4. Stone, Harold S.: An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations. J. Assoc. Comput. Mach., vol. 20,
no. 1, Jan. 1973, pp. 27-38.

5. Stone, Harold S.: Parallel Tridiagonal Equation Solvers. ACM Trans. Math.
Software, vol. 1, no. 4, Dec. 1975, pp. 289-307.

6. Heller, D. E.; Stevenson, D. K.; and Traub, J. P.: Accelerated Iterative
Methods for the Solution of Tridiagonal Systems on Parallel Computers. J.
Assoc. Comput. Mach., vol. 23, no. 4, Oct. 1976, pp. 636-654.

7. Traub, J. F., ed.: Complexity of Sequential and Parallel Numerical Algo-
rithms. Academic Press, 1973.

8. Young, David M.: Iterative Solution of Large Linear Systems. Academic
Press, 1971.

9. Dwyer, Harry A.: Solution of a Three-Dimensional Boundary-Layer Flow With
Separation. AIAA J., vol. 6, no. 7, July 1968, pp. 1336-1342.

16

TABLE I.- STAR-TOO TIMES FOR ADI METHOD

Grid size

N = 32, M = 32

N = 32, M = 64

N = 64, M = 32

N = 128, M = 32

N = 32, M = 128

N = 64, M = 64

TSS(M,N), sec

0.0026

0.0030

.0053

0.0106

.0038

0.0060

TLP(M,N), sec

0.0030

0.0048

.0051

0.0091

.0085

0.0089

TT(M,N), sec

0.0005

0.0010

0.0019

0.0019

R!

1.1

1.3

1.5

1.1

*5

1.8

2.3

2.7

2.1

17

3r

'OE
fGE

12.58

i i i i i i i i i i i i II
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

l o g 2 N

Figure 1.- Comparison of odd-even reduction with Gauss elimination
for tridiagonal system of order N.

21

16

11

22 23 24 25

17

12

7

2

18

13

8

3

19

14

9

4

20

15

10

5

Figure 2.- Model grid.

18

Q =

XX
xxx
XX

1

0

0

0

XX
xxx
XX

1

0

0

_

0

XX
xxx
XX

R =

X 1 X
X j X

X j X
X X
X X

1

1 X
0 j X

1

0

"
X
X
X

l_
X
X
X

Figure 3.- Structure of ADI matrices when implicit in x-direction.

Q =

X
X

X
— — "• 1

X
X

X
1

0

X
X

X
1

X
X

x\
X

1 X1 *

0

X
X

X

X
X

X

XX
XXX
XX

0

0

0
.

XX
XXX
XX

0

.

0

r
0

XX
xxx
XX

Figure 4.- Structure of ADI matrices when implicit in y-direction.

1 5 4 / 4 8 / 3 2 16

60

52

51

56

36

35

40 /24

20

19

12

11

10

15

14

13

50 34 18

49 33 17 1

Figure 5.- Model cube.

31

13

25

7

19

32

14

26

8

20

33

15

27

9

21

34

16

28

10

22

35

17

29

11

23

36

18

30

12

24

21

3

20

2

19

24

6

23

5

22

27

9

26

8

25

30

12

29

11

28

33

15

32

14

31

36

18

35

17

34

1 2 3 4 5 6 1 4 7 1 0 1 3 1 6

(a) Ordering for (LP) with SLOR. (b) Ordering for (SS) with SLOR.

Figure 6.- Mesh orderings for SLOR.

20

II
<3

OT
W

T)

ID

O
3

cn
i
•

r-
ai

01
•H

II
C?

21

I

5'

4<

3'

2

1

0

E
•
D
•
C

•
B
•
A

E
•
D

•
C
•
B

D
•
C

E
•
D

•
E

X •

X X

1 2 3 4 5

Figure 8.- Three-dimensional Crank-Nicolson differencing.

22

1. Report No.
NASA TP-1282

4. Title and Subtitle
AN ALTERNATING DIRECTION

THE CONTROL DATA STAR- 100

7. Author(s)

Jules J. Lambiotte, Jr.

2. Government Accession No.

IMPLICIT METHOD FOR

VECTOR COMPUTER

9. Performing Organization Name and Address
NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address
National Aeronautics and
Washington, DC 20546

Space Administration

3. Recipient's Catalog No.

5. Report Date
September 1978

6. Performing Organization Code

8. Performing Organization Report No.

L-12287

10. Work Unit No.
505-15-33-02

11. Contract or Grant No.

13. Type of Report and Period Covered
Technical Paper

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

An implementation of the alternating direction implicit (ADI) method for the Con-
trol Data STAR-TOO computer is presented and analyzed. Two parallel algorithms,
both of which are most efficient when used to solve many independent tridiagonal
systems of equations, are discussed relative to their usefulness in an ADI imple-
mentation on the STAR-TOO
nate between the parallel

computer. It is shown that it may be desirable to alter-
algorithms as the direction of implicitness is alternated

in order to eliminate the data rearrangement which would otherwise be required.
The applicability of the two parallel tridiagonal solvers to several other numeri-
cal algorithms is also discussed.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

STAR- TOO Unclassified - Unlimited
Vector computer
ADI
Parallel tridiagonal solver

Subject Category 64
19. Security Oassif. (of this report) 2

Unclassified

0. Security Classif. (of this page) 21. No. of Pages 22. Price'

Unclassified 22 $4.00

* For sale by the National Technical Information Service, Springfield. Virginia 22161
NASA-Langley, 1978

National Aeronautics and
Space Administration

Washington, D.C.
20546

Official Business

Penalty for Private Use, $300

THIRD-CLASS BULK RATE Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

US. MAIL

NASA POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return

