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PRACTICAL CALCULATION OF LAMiINARK AND TURBULENT
BLED-OFF BOUNDARY LAYERS!

R. Eppler
Bolkow-Entwicklungen KG

1. Introduction

Bleed-off of boundary layer material through small ori-
fices or porosities at the wall in contact with flow has long
been known as effective means for improvement of flow character-
istics [1]. On the one hand it permits longer conservation of
the laminar boundary layer and on the other it helps prevent
separation of the turbulent boundary layer,or retards it [2],
both of which can lead to considerable reductions of drag.
Often the two effects of bleed-off overlap. Where bleed off
is presert in an air foil, for preservation of laminarity at
high-speed flight, it will also have a certain effect in re-
tarding the separation when it can no longer prevent the
reversal during slow flight. Conversely, continuous siphoning
for lift increase, i.e., for retardation of separation during
slow flight, must in principle have a favorable influence on
the reversal at high-speed flight during a change in pressure
distribution. Up til now hardly any thought has been given to
the combination of these two effects, since entirely different
amounts of bleed-off are required at different points. But
lately there has been some approach to this combination. A
valuable a.d in realizing such a bleed-off combination is a
method of calculation that permits uniform treatment of all
cases.

lReport from Bolkow-Developments, Inc.

*Numbers in the margin indicate pagination in the foreign text.



This study will report on a solution of the problem. In
the foreground will be the method of calculation with one param-
eter by means of Kfrmén's [3] Conservation of Momentum and of
Wieghardt's [4] energy theorem, which was first applied suc-
cessfully by A. Walz for laminar boundary layers [S]. Since
then the method has proven itself for many other purposes.
Wieghardt [6] calculated laminar boundary layers with bleed-off
in which the minimum amount of suction needed for conservation
of laminar flow was also calculated. Truckenbrodt [7] extended
Nalz's method to turbulent boundary layers by using semiempir-
ical equations based on experimental and theoretical investi-
gations by Ludwieg and Tillmann [8],and Rotta [9],instead of
different relations derived from velocity profiles during
laminar flow. The mathematical simplifications used did
result in unattractive errors for a few special cases, partic-
ularly in the vicinity of the turbulent separation point.

Schulz [10] offered an improvement, particularly effective for
that point. A procedure by Walz []]] for the turbulent case
including compressibility, which operates without mathematical
simplifications, is semigraphical and thus little suited for
the digital computer. Only lately have Schlichting and Pechau
[(12,13] reported on the extension of Truckenbrodt's theory of
turbulence to bleed -off, in which additional mathematical
simplifications were carried out. Such simplifications are
particularly annoying since the empirical fundamentals of the
theory of turbulence are still uncertain. It is hard to dis- /222
tinguish whether existing shortcomings are of purely mathe-
matical nature or if they are due to the empirical fundamentals.

For a case without bleed-off it was recently tried to
avoid the simplifications introduced by Truckenbrodt; this led,
simultaneously, to further unification of laminar and turbulent
cases and a possibility for simple programming on digital com-
puters [14]. It was demonstrated that the empirical



fundamentals used by Truckenbrodt are better than the results
gained with the method had led one to suspect. Extension of
those methods to the case of bleed-off, which will be presented
subsequently, again permits simultaneous treatment of laminar
and turbulent boundary layers and solves the approximation dif-
ferential equations, according to the best presently available
empirical fundamentals, without an uncertain error. Here, too,
a big difference is shown from Schlichting and Pechau. Unfor-
tunately, possibilities for comparison of experiments are still
sparse. Jut the results gained are entirely plausible and
because a large amount can be obtained in a simple way, and
quickly, it has become possible to check any and all experi-
mental results with them. Differences between theory and ex-
periment can be pursued back to the empirical fundamentals
because of the easily grasped method of solution, permitting
their verification and correction.

The case without bleed-off, which is completely contained
as special case, will be treated in detail once more, since my
cited lecture appeared in print without the corresponding illus-
trations.

2. Basic Equations

The following quite well known relations (with subse-
quently explained symbols) can be formed from.L. Prandtl’'s
well known partial differential equations for velocity u(x,y)
in the boundary layer (see Fig. 1), by formation of moments
through application of Bernoulli's equation for the outside
flow U{x) in the plane incompressible case, according to von
Karmian and Wieghardt:
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where v, is normal velocity
at the wall, positive in the
y-direction (blow-off), .
According to Walz [5] dis-

Fig. 1 Sketch of Coordinates
and Velocities.

piacement thickness is shown as

3 = f (1= )% (3)

[
the so-called pulse and energy loss thickness as

(4)

3.

= [ -T)

°

o[-l

and

(3)

Symbol t,, which occurs in the Conservation of Momentum equa-
tion (1), is shearing stress at the wall

(6)

in dis '\‘ri'u Iy
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(7)



from equation (2), generated at first formally during formation /223
of moments, in which d is interpreted as energy dissipation and

t as change in turbulence (disappearing for laminar flow). The

whole equation (2) can be treated as energy theorem. The (con-
stant) density of the flowing medium is ¢, kinematic viscosity

is v.

Shearing stress T from equation (7) is analogous to (6)
for laminar flow

'_"‘l";;- (8)
bat still represents a big uncertainty for the turbulent boun-
dary layer.

Equations (1) and (2) are at first valid only for the as-
sumption that the solution u(x,y) of the partial Prandtl dif-
ferential equation is known for the given functions of U(x)
and vo(x) and that the values required for equations (1) and
(2) can be calculated from (3) to (7) with it. For the case
of turbulent flow velocities averaged over time can be used
during consideration of the contribution of turbulence to
shearing stress.

Reversal of the calculation procedure for an approximate
solution is carried out by making certain assumptions about the
distribution u(x,y), and for the case of turbulent flow also
+bout shearing stress 1. This will be described in more detail
in the following section.

3. Form Parameter, Wall Shearing Stress and Dissipation for
Turbulent Flow

Two relations, (1) and (2), are available for §;. A
statement can be made for u(x,y), which contains two independent

5



values. Usually one independent value is taken for the thick-
ness of the boundary layer, that is for distortion of u(x,y) in
the y-direction, another for the shape of the boundary layer
through a statement like

= - o ©

by entering this arrangement into (3) to (8) one gets all the
values defined by (3) to (7) as functions of §(x) and A(x);
equations (1) and (2) become a system of differential equations
for these two unknown values. Approximations can be obtained
subsequently with their solutions, for u(x,y) from equation
(9), for the Gi from (3) to (5).

There is a large number of different equations (9) and
many methods and procedures for their solutions. The following
one, introduced by Walz and Wieghardt, appears to be the most
easily understood calculation method. When entering (9) in (3)
the transformation n=y/8 shows that 6, is proportional to 6,
i.e., that 6:/6 depends on A only because

~ (10)
6, = .f (1 —fG.m)ddy

The same holds for 8, and 6;3. This makes the quotient of two
Gi a function of A only, which can be obtained once and for all
for each given (9). For instance, by puttirg

-3 = H32 (11)

and
‘IGINAL PAGE I8

81 2y, * POOR QUALITY (12)



H,,=F(H;;) can be obtained by elimination of A and &§,, which is
needed in equation (1), expressed in 6, and 6§5. Should one
succeed in expressing shearing stress and dissipation similarly
simply through 62 and 83, the solution of the (1) and (2)
equation system is recommended without further transformation.
According to (6) and (9) shearing stress at the wall is

S oyt o, (). 13)

Here is Gz/Gi, already shown as function of A only; this can
also be arranged for 3f/3 n through (9). Through reversal of

(11) shearing stress at the wall can also be expressed through
62 and §,.

Dissipation can also be brought into suitable form through /224

*

dis v 8, [ (e r (14
s = U, c; _‘ (Pll) dy U, D*(tl) )

As soon as the functions Hj3, (), Hi2(Hs2), €®*(Hs2) and D*(H;:)
have been obtained for a given equation (9) the system (1) and
(2) must be integrated numerically. With the results §2(x)

and Ge(x) one can find Hs2, from it A and, with the aid of
equation (9), the basic velocity distribution u(x,y). In most
cases the last step is not carried out; generally it is quite
satisfactory to have in 8, a value for friction losses and in

A [or equivalent value, like H32 from (11)] an indication for
the shape, resp. the separation tendency cf the boundary layer.

Everything has not been traced back to equaticn (). The
closer on. comes to the exact solution u(x,y) with it the better



will be the results. The most important boundary conditions
are, therefore, fulfilled in advance in function f(A,y/8) from
equation (9)

£(2,0) =0, f(A,») =1, -_5 o0 (15)

It is already sufficient to fulfill the last two boundary
conditions in the finite, i.e., for the distance of a certain
bourdary layer thickness § from the wall, or n=1. Even though
Walz has shown that after consideration of (15) the special
equation (9) has little influence on results where no bleed-off
occurs, some attention will still be devoted to that question
since the joint treatment of bled off boundary layers and unin-
fluenced ones includes a large range of various velocity pro-
files, which cruld create inaccuracies. Important is only the
influence on the three functions required for (1) and (2).

A particularly good premise was already provided by
Pohlhausen (15). He puts

T=Pi(n) +A(x) P2(n) for n =1,

= 1 for n>1

cle

and fulfills the boundary conditions with the fourth degree
polynomials P; and P, (equation (15)). This so-called Ps-
statement is, like the improved Py -statement, too coarse for
our purposes. Much better suitable are surely the velocity
profiles that are generated at the so-called "similar boundary
layers" (Hartree profile), particularly for flows where the
form parameter does not vary quickly. Walz [5] already em-
ployed these solutions, which are exact for certain velocity
distributions, for calculation of the required connections.
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Inaccuracies that have slipped in do not play an important
role in Walz's case but they carry more weight in the calcula-
tion of bleed-off conditions. For that reason a few more
similar solutions were obtained with the corresponding values
for Hy,, H,,, €® and D* (Hartree profile). 1In Fig. 2 data
points are plotted for the similar solutions without bleed-off
for increasing pressure (Hartree profile) and others for solu-
tions of the flat plate with bleed off. In addition a data
point is plotted for Hy,=5/3, which was obtained from the so-
called asymptotic solution of the plate with constant bleed-
off. The following approximation was chosen for the calcu-
lation to provide good approximation for the entire range:

a. Values obtained from the Hartree profiles were approx-
imated for the range 1.51509§H32§1.57?58, which corresponds to
the pressure increase range between the flat plate and separa-
tion for Hartree profiles. H32=1.51509 is, therefore, the
separation boundary.

b. In place of the Hartree profiles of pressure decrease
the similar bleed-off profiles of the plate were used, comple-
mented by the point of asymptotic bleed off.

Boundary layers free of bleed-off are characterized somewhat
less accurately that way. But in this case accuracy is of less
importance.

The approximations

Iy = 4,02022 —— (58360182 — 724,35916 Iyy |- 227,18220 1) | 1y - 151509 (16)
for 151509 7 I, - 1,57238,

Hyg = 79,870815 — 89,582142 Ih, - 25,715786 1%,
for  Hy> 157238,

~~
N
(3]
o



¢* = 2,512589 — 1,686095 H,, + 0,391541 H{, — 0,031720 I},
for 151509 < Hy < 1,57258, (17)

= 1,372391 — 4,226253 Hy, + 2,221687 HY,
for I, > 157258,

D* = 7,853976 — 10,260551 H, - 3,418898 I13,

(18)
e 20%, a1,
as—- e S : -y
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Fig. 2 The General Boundary Layer-Functions H;:(Hj;2), €®*(Hs2)
and D*(H;3;,) in Several Directions.
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are suitable for generation of computer programs. The dif-
ference between these approximation functions and the approxi-
mated values is smaller by an order of magnitude than the dif-
ference between the various boundary layer profiles being dis-
cussed. For calculations by hand it °s best to use accurate
diagrams of the functions (16) to (I ), which are easily ob-
tained with Table I.

Tue choice made provides very good coverage of similar
solutions without bleed-off with pressure increase to the flat
plate (Blasius Flow), as well as for similar bleed-off boundary
layers of the flat plate. All other calculations of boundary
layers with the present method contain an error brought about
purely by the procedure, which will be explained with several
examples.

Table I

Values of Laminar Boundary Layer Functions
Hy2(Hs2), €®(H32) and D*(H;,)

My, : n, ' « ne

1.51509 402922 | 00000 4,15638
1,515 383366 | o0ll07 :  0,15639
1,52099 148079 004944 0,15672
1,52630 3,29673 0,07303 0,15741
1,53863 3,02095 0,11796 0,16006
1,54803 287118 0.14828 0.16292
155568 2,77120 0IT166  : 01657}
1,56214 2.69668 019074 [INT:EY)
1.5677 2,63838 020654 o lTion
1,57258 2.5911% 0,22052 w1738
1.60353 234011 0.30700 019219
1,62256 2.22429 03618 @,20,08
f.0t289 2.11182 012685 0.22559
166020 2,02846 0,18039 0.24313

1,66667 2,00000 50000 025000

11

/226



4. Form Parameters, Wall Slhearing Stress and Dissipation for
~ Turbulent Flow -

Since the laminar boundary layer is easily handled, ac-
cording to the results in section 3, § corresponding path will
be followed for solutions of the turbulent layer. The only
significant difference will be that shearing stress can no
longer be expressed through equation (8) in the turbulent
boundary layer. As function of the turbulent motions of vari-
ation and the energy transport connected with it additional
“apparent”™ shearing stresses occur at first, which call for
other relations in place of (8). In addition, the velocity
profiles take on completely different forms so that statement
(9) does no longer cover them completely and energy dissipation
cannot be obtaincd the same way as before. But wall shearing
stress (6) is not influenced since no turbulence is possible
and effective in close proximity to the wall.

So far it has not bcen possible to get mseful results for
the theory of turbulent boundary layers based only on laws
about the turbulent shearirg stress toéether with velocity
statements. But just as we could liberate ourselves, with the
aid of gcneral tunctiens from the velocity profile,of the boun-
dary layer in the laminar case so will relations which permit
calculation of wall shearing stress and energy dissipation from
the independent variables,52 and §,, also suffice in the turbu-
lent case. Such relations for the wall sheairing stress were
stated by Ludwieg and Tillmann (8] as

f & - 19
1.(.: '\_'.l".':l("") o.au8 10 *smm, (19)

for dissipation by Rotta [9]. Rotta's results were used by
Truckenbrodt [7] in simplified form

12



(20)

dgich has proven itself well for the case without bleed-off [1)
like the connection of form parameters based on Wieghardt {16]

_ a3,
Ha=y 1269 (21)

‘a5

The validity range for equations (19) to (21) must be ex-
plained in more detail since for the case of bleed-off larger
form parameter ranges will again overlap. At first (19) was
obtained for values of H,, between 1.2 and 2.4, corresponding
to H,, values between 1.5 and 1.85 per equation (21). Equa-
tion (20) also is valid in the same range. No overlap in
range will be of concern for the pressure increase up to sep-
aration, which occurs at about Hs2=1.5. But a strong tendency
to high Hs2 values is present for the range of pressure de-
crease or for bleed-off. Pechau [3] has given examples where
Hi2 values from 3 to 5 were reached. The range of high Hs:2
values or low H)2 values must, therefore, be observed sepa-
rately.

A possibility for extrapolation from the Ludwieg-Tillmann

law is offered by the following boundary consideration. After
8and §, are defined by equations (4) and (5) one gets

<

.s,zj;‘,(l --;‘)(l v :,)o(\‘<20., (22)

13
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as long as u<U, since the second parenthesis can be maximized
with the value of 2., As long as there are no excess velocities
present in the boundary layer, which is not to be expected
without tangential blow-off,

Hya < 2 (23)

according to statement (11). Based on the same assumption
H;2>1 from comparison of (3) and (4). The nature of boundary
layer profiles leading to Hiy2 values near 2 is also easily
grasped. For instance, if one wants to reach

H;z >2 - € (24)
then for 1-u/U=u in statement (S),

5y = Iu-aa(z-may > (2-€) 62 (25)

SO .

I‘ﬁzu-mdy < eby = e!l—n(l-ﬁ)dy. (26)
[]

As long as 630, i.e., as long
as no excess velocity is
present, this would be valid
if u<e everywhere. This
surely is not true close to

u the wall though. If we as-

sume, according to Fig. 3,

that in a range close to the
$;§é53Ca§¥§:§h0£2f the Esti- wall where 0SyZy, a share of

82, is already present of

. — .
pulse loss thickness while u=e in the rest of the range then

14



82 = 85, ¢+ F (27)

when F, the share of displacement thickness §;,is outside of y;.
The left side of (26) can be estimated at the lower limit as

feru—aa>fea—ny=fe—asa—ayefio—ny-K+am. (28)

where h is probably a constant different from 0 and smaller than
1. Using estimates (27) and (28), (26) becomes

(29)

or (K+e)dpy<ely+F)

F>-: Kéy.
(30)

Whenever a finite 62, and a finite u: is present for any »-,
Hs, can only go toward the value of 2 when F»», i.e., when the
share of displacement thickness far away from the v il, where
u<e, increases toward infinity. Simultaneously witw. (2-H;.),
(Hy2-1) also decreases towards zero because

~

% .
Ho——@—ta) =, [z | [wd+ MJ —aher (31)
[} 1]

Here 1/68, decreases to 0 at least with € for 2-H32=¢»0, be-
cause of (30), while F/6, is limited. The entire right side
of (31) decreases toward 0 with €. From this follows

“~
(384
N
(-}

1im H;j2 = 1 (32)
H32 » 2

I8
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This relation is not considered in the interrelations used so
fay (compare (21)), but can be introduced after some small
ch:nges that are in the uncertainty range of the eantire inter-
r¢ lation. For bleed-off calculations

11 Hy,+1S

- Hya = -
32

(33)

is recommended in place of statement (21).
il According to Fig. 4 there are
—— Trchenbrod! __| hardly any differences between
o Cwms (21) and (33). They are ef-
“““ i fective only in the vicinity
\\ of Hy2=2, in connection with
wd A ] | the following derived basic

R \ laws for wall shearing stress.
"‘:*\T”‘ » Other form parameter func-
“V\ tions are also plotted in
af - \\;-_.”,___-_J__m- Fig. 4 for the sake of clar-

ity. Significant differences

%

values are low. While the

| i . ] i 3 i i
L Rt ' B interrelation used by

____~__W-p e are present only where Hj»

Truckenbrodt [7] provides

Fig. « Vari»u, Interrelations slightly larger values of

of Form Para. .ters H,,(H;32) Hi2, lower values are gener-
}‘f‘.’

for a Turt-lent Boundary lLayer. ated by another interrelation,

based on data by Cornish, for

the . ncertainty region.

After extansive calculations with all three essentially
different interrelations, which were partially reproduced by
Seyb 17}, the interrelation (33) was recognized as being use-
ful in the normal range as well.

ORIGINAL PAGE IS
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Theorem (19) for the wall shearing stress can also not be
extrapolated in the present form for bleed-off examples. Ac-
cording to (L') wall shearing stress decreases toward zero for
H,2+1 because of (30), since 82 increases toward infinite.
This must be avoided. Apparently, very large contributions of
F to 8, or 62 must be available for small values of Hi2+*1, de-
rived from the regions far away from the wall with very small
differences in potential flow. Those regions cannot have any
influence on the wall shearing stress. A term must be added to
(19), therefore, to take care that the values for 2-Hj3z=¢,
which increase as 1/¢, not have any influence on 6, That is
done through

= o.ms-zw((n,,-— nY "3) e

v e—lavoll,,
r

(34)

The numerical constants in this relation are fixed so that
there is the best possible agreement with the wall shearing
stress theorems used so far. in the region of the most fre-
quently occurring values of Hi2. In Fig. 5 the comparison with

(19) is shown for three values of US,/v vs. Hi2. The difference

is appreciable only for values of H,; close to 1. For that
region (19) was not derived. The boundary condition treated
in (34) is represented here.

A further comparison of the wall shearing stress theorems
is shown in Fig. 6. In addition to (19) lines according to
Rotta [9] and Cornish [18] are plotted. The new theorem (34)
is not essentially different from the others in the normal
region. The straight lines are a little less inclined compared
to (19), which is caused by the slightly lower exponent of the
Re number. That appeared expedient so as to improve the agree-
ment with Rotta and Cornish for higher Re numbers.

17
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Equation (2) for dissipation has been very reliable. It
can already be seen for the laminar case that the form param-
eter has less influence on D® than on €2, In the turbulent

case it has so far been completely eliminated,according to
(20).

- Leawieg-limann

- oooe Rottg- uckentrod!
se-e - (ornish
J’Z"ﬂ.}/_ué",

.
| ~ ;
e - [ ! :

Y . P— L k
§ a0 2 Y s sw T 2 34 TF 8t 2 ¢ "

Fig. 6 Turbulent Wall Shearing Stress as a Function of Re62
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This can only be maintained approximately in the following
treatment. since dissipation for H;3;*2 or H;2»1 must also only
be dependent on (US2/v)2(Hi12-1), which is checked by means of
(7). Instead of (20)

i 1
z‘;t,‘ = 0,0100 ((u,,— ) ”"’)‘ . (35)

r
will be used subsequently, where the boundary condition is
fulfilled and only an insignificant influence of Hi2 is present
in the normal region. A large number of comparative calcula-
tion  has furthermore established that dissipation has less
influence on the results than shearing stress and that the
boundary condition is more important than a really exact value.

For all normal values of Hi2 (35) is,therefore,equivalent to
(20).

5. The Numerical Treatment

The differential equations (1) and (2) are completely de-
fined for the laminar and turbulent case, with the relations
derived in sections 3 and 4, and need only be integrated numer-
ically. This can be done with known methods. Wherever the
integration process will be discussed subsequently,it will be
only to point out various characteristics of the differential
equations themselves, which are used advantageously for the
numerical treatment. Solved according to the derivations of
the desired functions, equations (1) and (2) are as follows

(36)
db 8, dl; o . To
dx2 == Q1 Iy lj dx + grl?z-i- 'l *
ddy 38 dU  ddr
dx — U &'*'Qun+lr (37)
18
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(ﬁplﬂxﬁtcﬂu
= (amine), (B

s va= OSTI6((Hyg—1) Rep) 2 o= (rurbulent),  (39)
adtt _ 2Dy

i1 2o (laminar) , (40)
1
25 = 00100 ((lhy — 1) Rey) ¢ (urbeleat). @41

As abbreviatior the Reynolds number formed with 82 and U

. Us
Re = —2% (42)

v

was introduced. The function Hi2(Hs2),needed in (37) and (38),
is defined by (16), resp. (21), €® and D* by (17) and (18),
resp. Table I.

Equations (36) and (37) are apparently dimensionless since
velocities or lengths appear only simultaneously in numerator
and denominator. It is all the same, therefore, in which units
velocities and lengths are being measured. We introduce as
unit for the lengths 1=1 and for the velocities U_=1, both
chosen to be most suitable for the particular task. All lengths
and velocities can consequently be considered as ratios of the
chosen units, resp. as functions made dimensionless along with
the units. This changes nothing in the entire formula system.
Only in the introduction, for convenience's sake, of the Re
number formed with the units

1.1 Ul

-]

Re = 5723 (43)

will in place of (42)

U1 UGZ\
Re62 = Re U §;(=— g ~(44)

@x©

be used in the future.
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The cv.ffercntial equations (36) and (37) have the form of
%" = f(x,582,83), dj'fil = g(x,5828s),

where the only difference between laminar functions f and g in
the laminar and turbulent cases is that for wall shearing
stresses, energy dissipation and form parameter‘sometimes equa-
tions (38), (40) and (15), and sometimes (39), (41) and (21),
must be used. U(x) and vo(x) are given functions, dU/dx can
easily be formed during integration.

For step-by-step integration Runge's second order method
is most suitable. With initial values xi, 821, 832, Uy, Vo1,
final values X2=x;+Ax, and analog U,,v,. given, the differences
between the desired variables are calculated by means of

A0 = (x5, 8y 8yy) Ax 1Y = B(x). 0. 8y) 1%
A8y = I("l + : dx, 8y ;—Jd(.‘)"’n + ; .ld‘,") dx, 18y = g(...) M=

For hand calculation little schedules for the calculation /231
of the right-hand sides f and g must be made. Often it will be
noticed that after the first half-step a repetition of the cal-
culation will have no significant influence and so this step
can be eliminated.

On occasion one will observe another, much more unpleasant,
characteristic of the solution. Differences fluctuate in a
strange way rather heavily around the true value, particularly
when the boundary layers are still thin, as for stagnation
point flows or in the vicinity of an intake. The reason for
it is that neighboring solutions, to which one turns because of
inaccuracies or mistakes in rounding off, tend strongly toward
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the desired solution, particularly for Hy.. The step-by-step
integration folloﬁé, according to Fig. 7, by going halfway in
the direction toward the tangent to the point of departure

then calculating the tangent direction and following in the
tangent direction for completion of the entire step. When the
neighboring solutions tend too strongly toward the solution, as
sketched in Fig. 7, the error during one step increases greatly.

The reason for numerical
instability is not based on
this particular approach to

a solution but is character-

Fﬂggb istic for differential equa-

/adiacent sotution,” |
/ Nockbarfbry tions (36) and (37) and,

therefore, in more or less

apparent fashion built into

all previous studies based on

£ 5/ Az % the pulse and energy theorem.

The better the applied numer-

Fig. 7 Sketch of the Numérical

Instability Occurring. ical method, the more the

instability becomes apparent.
For that reason alone it was not discovered in the previous

studies.
It is apparently of little use to employ a method of a

higher order, like that of the fourth degree by Runge-Kutta, to

remove the instability. 1In that case the instability can even
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greatly increase. The successive step decrease has so far been
the most reliable, generally applicable,way. As long as the
numerical calculation is carried out by hand and one can survey
not only theé fluctuations but the entire calculation constantly
other paths are open. From time to time a check can be made
whether the initial calculation. for stagnation po{ht or intake,
for instance, as discussed later, can be further extended.
Often that can already lead away from the instability region
but it must not be considered as panacea. An uncritical ex-
tension of the initiﬁl step can lead to serious errors. When
programming instructions for calculations on digital computers,
which are very suitable for it, checks must be built into

every step, for recognition of numerical instability. When

it occurs only a decrease of the step length is still indi-
cated, best to half. The required criteria will now be pro-

. vided, briefly. All other details of programming need no
further explanation. We designate a few of the functions that
occur in the course of the integration step

833 + %6551)

H3zy = %%%, HY, = s H32z = %%%

62, + %86;)

After that there should be stabilization with
) g — 2 Mgt Hoggl> 6, (e 20,0000 bis 0,01) ,
W N2,
) Mgy 2,
&) dy ), AN S0,
) dgy -7 0,
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The excluded possibilities from (b) to (e) occur normally any-
way only in cases that already fulfill the condition (a) and
thus aim for a stcp decrease. They must be recognized before
check (a) only because they might require [as in (39)] useless
calculations which would lead to a stop of the computer before
check (a). Once the step decrease has been prograrmed i“ 3
no trouble to catch all these absurd cases and to chang r

to step decrease if need be.

Quite a few other refinements ~f the calculation can be
achieved through step decrease. For instance, Hs;, often de-
creases steeply in the vicinity of separation points, creating
some inaccuracies with it. This makes it advisable to limit
the entire contribution to change of Hy;, and to carry out the

step bisection when

£f) 1is |Hs22-Hs21| > €2 (e2 = 0.01 1> 0.03).

Naturally, the bisectioned steps are checked again for
fluctuations of differences that are too strong and bisectioned
againyif needed. This bisectioning process shuuld be carried
on at random, a lower limit being set for Ax=(1/2)"Ax. which,
in order of magnicude,is 1/1000 of the smallest initially oc-
curring step size. Going below this 1limit may stop the program.
It has been shown that a large number of programming errors can

be laid to continued step bisectioning. These errors are found
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easiest after the program is stopped because the step < ...
have become too small. If one were to try to continue cne cal-
culation the search for errors would at best be made more dif-
ficult, since memory locations are overwritten whe: e errors

could otherwise be recognizcu.

furing bisectioning of the examples shown later U and v,
were l.aearily interpolated, i.e., held constant over the en-
tire initial step dU/dx, ever though it was subdivided into
perhaps 32 or 64 partial steps Ax. This is justifiable when
the step size of the particular problem was chosen so small
that linear interpolation between supnorting points is mean-
ingful within the context of this problem. With the integra-
ticn method chosen it leads to a second order approximation
when the output interval Ax is handled without bisectioning.
A step decrease is, after all, introduced for elimination of
purely numerical instsbIlity and not for increase of calcula-
tion accuracy. It is easiest to increase the number of support
points if there is concern about the linear interpolation.
Better interpolation of U and dU/dx is not a principal diffi-
culty, however. It is to be used with care only when dU/dx

shows nonuniformities, which happens often in practice.

The numerical integratioa of differential equations has

now been taken care of. Calculation by hand is very simple;
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just the same it is more effective to program it so as to ob-
tain far wore voluminous result material at considerably lower
cost. A few matters have to be considered, as always during
programming, which do not become conspicuous during calculation
by hand since there is constant monitoring of the calculation
flow and immediate intercession when something is not quite
normal. Now there remain only a few special cases,at the start
of the calculation, at the boundary layer shift and at the
separation, t» be discussed.

6. Initial Values

The integration of the differential cquatiop systea (36),
(37), so far discussed, does not assume disappearing values for
U, 62 and 83. These conditions are not fulfilled at the start
of a boundary layer. The two most important cases are the
"shockfree approach" of the potential flow at a¢§g§rp edge and
the stagnation point flow. In both cases considéfations of the

boundary are required, the first steps of the bouhdary layer
calculation being easily carried out with their results.

‘

a. Shockfree Approach

In this case the boundary flow starts with a U that does
not disappear. It is shown through well known procedures that
the boundary layer then starts with disappearing 62 and §,. In
(36) and (37) only those terms with the smallest powers of §,
and §; are of importance for small values of §;. If the others
are neglected then

- (45)
Ay - |"' *.

Rel

s ape.

(46)
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Bquation (467 provides a value for Hs;:, which is exactly the
ome that also holds true for the plate flow U=constant. Since
we have obtained the interrelations of the form parameters

(16) and (18) from the similar boundary layers, which contain
the plate flow, (46) must be fulfilled for the Hs: value of

the plate flow, namely H»2=1.57258. That can be checked easily
with Table I and the equations (16) and (18). It also serves
for easy calculation of §; from (45). By put.ing the value of
c¢® that belongs to Hy;=1.57258 into the equation at the onset
of flow where x=0 and U=l,,

& = o.suu"ﬁ . (47)

83 is also known through (11) and the equations (36) and (37)
can be further integrated numerically.

b. Stagnation Point

In the vicinity of the stagnation point U=U'x. It is
shown that the functions §; and §, must be constant for small
values of x and for ve=0. The well known boundary considera-
tion then furnishes

(48)
3Hge® 22 Uy D*

and ; 1 pe
L) .
: l!"ukrl

(49)

Although the boundary consideration proceeds independent of v,
during the inflow, ve#0 would change equations (48) and (49).
But since bleed-off is hardly used in the vicinity of the

*From 48. Sce [17].
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stagnation point it is sufficient to neglect it for at least a
small part of the way in initial calculations.

If the same form parameter interrelations had been used
for Hy»2>1.57258 as for the similar boundary layers free of
bleed-off then (48) should be fulfilled for the exact value of
Hs2 at the stagnation point flow, namely Hi2=1.%2575, which
would give 62=0.29234//Re U'. But since more consideration
must be paid to bleed-off in this region, condition (48) is
fulfilled for (16), (17) and (18) when H;»=1.61998, which leads
to

§2 = 0.29004 —1 (50)
JRe U

The deviation in 82 is unimportant, being less than 1%,
but is more significant in Hj3. since there is no way to compare
the absolute amounts. When rcferred to the Hjy,-region between
separation (1.51509) and asymptotic bleed-off at the plate
(1.66667) the deviation in H;., amounts to 3.8%, which is toler-
able in relation to other methods of approximation.

This error is, incidentally, a basic one for all methods
with one parameter. It stems from the fact that in reality
different boundary layer profiles can belong to the same form
parameter H3;, and so can different values for e¢* and D*, while
in this case a special relation was selected. According to a
suggestion by Seyb [1] one might attempt to use various func-
tions H,;, €* and D* for cases with or without bleed-off.

That would certainly allow significantly impr.ved accuracy in
the handling of many other examples, for instance the stagna-
tion point flow and also the flat plate with blow-off, which
is particularly poorly covered in section 8. It is question-
able, however, if that will always involve higher accuracy,
particularly for examples where there is only partial bleed-off.
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The error at the stagnation point flow may be taken as
indication 6f the general shortcoming of the method, even though
it is problematical to judge the efficiency of a method from
special examples. Examples with much smaller errors will be
calculated but some with considerably larger deviations can
also be constructed. Such a one is the flat plate with blow=
off. 1In practice it is unimportant but it clearly demonstrates
the limits of the method.

7. Boundary Layer Separation, Boundary Layer Shift

a. Laminar Separation

The separation point of the laminar boundary layer is de-
fined by disappearing wall shearing stress. The disappearing
wall shearing stress is assigned to the value H3;2=1.515M9, since
a clear relation between the functions €¢* and H;; was introduced
in the present method.

It is no problem for calculation by hand to fix the exact
point where 1§, reaches the separation value, either by extrapo-
lation or by change of step sizes.

For computer programming there are again certain consider-
ations, since H32<1.51509 can never be entered into equations
(16) to (18) because that would lead to - root with negative

~
(%)
w
&

radicand and again to a computer stop. The following method

has been shown to be the must reliable one. A check is made
after each half-step whether H%,<1.51509 or H;,,<1.51509. If
yes, new values for Ax must be obtained by the Regula falsi
(approximation method for obtaining the solution of an equation)
with the aim to repeat the step with the changed Ax so that in
the end H;3,,=1.51509+¢. 1f the separation boundary is again
transgressed after this step the Regula falsi is used again for
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calculation of a somewhat smaller step size, if H,,,31.51509
calculation is continued. It only remains to check before each
partial step that Hy2<1.51509+2¢. If so then the starting
point of the partial step is the laminar separation point.
Function € is only a threshold value, which prevents the pro-
gram. from getting lost in a rounding off error. At the same
time the accuracy with which the separation point is determined
can be gauged with €. With €=0.5 .10 ° that accuiacy should be
good enough. With this value very few step decreases are re-
quired until the point of separation is found.

If the calculationm is not finished after the laminar sepa-
ration\but continued for the turbulent case, it must be
remembered that the Ax of the preceding calculation step did
not result any longer from step bisectioning. In contrast to
step reduction through stabilization one would not come to the
final point of the total step if one were to continue the calcu-
lation with the existing Ax. For that reason the entire piece
between the separation point and the ond of the integration
step is used as Ax after the laminar separation. After that,
step bisectioning through stabilization is again permissible.

b. Turbulent Separation

Turbulent separation still presents a big uncertainty
today. It is generally assumed that separation can occur for
H;2=1.58 and that it definitely has happened for H;,=1.46.

These boundaries can be considerably extended (upward and down-
ward) particularly for bleed-off. Fortunately, the uncertain-
ties are not quite as big as it may appear at first glance from
the H;, values. According to Seyb [19], and to one of my inves-
tigations [20], the turbulent boundary layer does not permit a
layer gradient any longer, if the value of Hi, is permitted to
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drop below 1.58 (without bleed-off). The result is, conversely,
that for Hy3<1.58 the influence of the pressure gradient of the
form parameter is very sensitive. In many cases the change of
Hy2 in that region is so great that only a small distance lies
between the two points at which the values of Hs2=1.58 and
Hy2=1.46 are reached, there being little influence on the point
of separation by the chosen value of the separation parameter.
For bleed-off, however, the influence of the amount bled off

is quite critical, so that one can stay on the safe side with-
out much additional bleed-off.

All the examples shown here were calculated up to the
value of H32=1.46. A decision must be made in each case
whether another separation criterion would have had significant
influence.

The location of the point where H3;,=1.46 is reduced can be
exactly as in the laminar case, but the check after the first
half-step can be eliminated since no stop of the computer oc-
curred even for Hs2<1.46.

Reasons for continuation of the calculation may remain
even after the turbulent separation, but the size of the re-
maining step must then be readjusted. Often the friction drag,
after Squire and Young [21],1is calculated after a boundary laver
calculation. This formula is valid only up to the separation
point, of course. For technical reasons of programming it is
simpler, however, not to calculate the drag part immediately
at the separation point but through

a3,

t 2
4\2: . (, ") h 6“

to provide for continuation of the calculation after the sepa-
ration, in a way that leaves the drag after Squire-Young
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fﬁhéhangeh(: At the end of the entire calculation it can be
‘optained uniformly,

. <

c. Boundary Layer Shift

The boundary layer shift is considered in the present
method simply by using equations (33) end (35),instead of
-.{16) and (it) for calculations from a certain point on. A /235
fSuaaen'incfeasé in Haaﬁit the shift poinf, as was required in
other methods to supe'bxtent [i], is eliminated. Later on
the examples will show that in most cases, but not always, a
strong increase in Hj3; occurs after the shift. It seems sig-
nificant that this increase is the result of the relations
used only and must not be introduced artificially. Those cases
where no rapid increase of H3, occurs appear also of importance
in practice, which is pointed out during discussion of the ex-
amples.

Where the shift takes place is of no special relevance to
_the method discussed. It should be pointed out, however, that
the most varied shift conditions can be introduced in a simple
manner. The laminar separation point will be introduced as
the latest shift point. It has been shown to be a good prac-
tice to continuve the calculation from the laminar separation
point on principle as for the turbulent case. Additional
simple shift conditions that are often used are shift when

U2z - Uy <0 (UB1)

or

A

U, - Uy 0 (UB2)
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"That means shift at minimum pressure. A difference between
(UB1) and (UB2) exists only when U is constant over a finite
distance. The transition from (UBl) to (UB2) permits calcula-
tion of the influence, in this case of the advancing migration
of the shift point from the end to the beginning of the distance
with constant velocity. This influence is important for lawinar
profiles. It determines the depth of the so-called laminar de-
pressions in the polar diagram.

It will be important for maay calculations to comsider
the instability of the laminar boundary layer. It depends
mainly on the form parameter and on the Re number. The results
of various stability calculations are plotted in Fig. 8. There [236
is some dispersion, depending on the exact shape of the boun-
dary layer profiles on which they are based. The boundary of
stability is higher, for instance, according to the mean by
Ulrich [22], for the Iglisch-profiles of homogeneous bleed-off
than, according to Pretsch [23], for the Hartree-profiles. A
certain amount of dispersion is contained in the r thods of
calculation as well because two different values are given for
the stability boundary of the so-called Blasius-profile, which
is mentioned in both categories as a special case. Wieghardt
[6] carried out a rough interpolation for his calculated values,
therefore, which has been included in Fig. 8.

The stability boundary alone does not suffice for predeter-
mination of the shifting point, however, since a certain dis-
tance is always required between the onset of instability and
the shift. The unstable waves must reinforce themselves con-
siderably at first until their amplitude is sufficient for the
shift over into the completely irregular turbulent motion.
During this unstable interval of operation 62 usually increases
to such an extent that the motion moves, in Fig. 8, from the
stability boundary away upward, becoming more unstable. For



a constant form parawmeter,

A _ o __ the Blasius flow for instance,
1 : ;ul,z;z;:~w-+‘(" - —1;4 only 62 will increase but in
. L] N T I . 4 .
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: 1l LA / _ A |7{—1] therefore, somewhere above

! ',/’./4;7?‘ the stability boundary in

> ////mu Fig. 8 with the degree of
: ,A’L ?A: 1 1 711 turbulence of the outside
. // 1/9 N . flow and the wall roughness
’"“'Tﬂ; ,?’Vl"" TTTT playing a certain role, of
’t;’£<////L 111 11 course.
: / N 111 Experiments provide a
° ._J_.ﬂﬁ’&certain indication about the
3 3

55 w 7] practical occurrence of the
shift for the least distur-

Fig. 8 Theoretical Instability bance of the flow and the

Boundaries, Experimentally De-

termined Data for Boundary wall. Some experimental re-
ggggi-gg;ggtgggsfntroduced sults have been entered in

Fig. 8 for that reason.
Schubauer and Skramstad [24] made their careful experiments
with the flat plate, i.e., without a change in the form param-
eter. Granville [25] investigated the shift for laminar pro-
files and found a rather clear relation for the difference in
Re numbers for instability and shift and the mean form param-
eter during the unstable interval of operation.

BReS§ = Red, shifr) - Reaz(inst.)

By exchanging the mean form parameter with that at the shift
point, which is,strictly speaking,only correct for a constant

B
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form parameter, data points from Granville can be plotted in
Fig. 8. This was done only for two characteristic values. More
recent experiments by Raspet [26], for free flight for instance,
show that the shift occurs even later for smaller Re numbers.
Two data points from Raspet's experiment are plotted in Fig. 8.
On the other hand, it must be expected that the region of high
Re numbers and, with it, high form parameter values can only be
reached through bleed-off. The relation between Hy, and §: may
change completely in that case. For example, bleed-off may
proceed in such a way that the motion takes place always along
the instability boundary (see examples in section 8) or paral-
lel to it so that there is no move away from the boundary of
stability during the unstable interval of operation in Fig. 8.
It must at least be taken into account that the shift takes
place close to the boundary there. For that reason the straight
line plotted in Fig. 8

In Reé2 > 34.2 H32 - 46.78 (UB3)

is recommended as shift condition if one wants to hit the shift
approximately as it occurs in practice. But if a certazin pre-
vention of the shift is required then the also plotted straight
line

In Reé, > 34.2 H;, - 47.81 (us4]
is used. If no shift appears in a calculation with this condi-

tion then one can be reasonably sure that the experiment will
also remain laminar.

The choice remains, of course, to introduce different /237

shift conditions. Each coidition introduced will normally be
checked before the calculation of an integration step. An
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exact check is not necessary for hand calculations until it
becomes apparent that the boundary is being approached.

8. A Few Bleed-0ff Theorems

The principal boundary layer data can be calculated with
the methods described, when the normal velocity ve(x) is given
in addition to the always provided functions Re and U(x).
Often it is also the other way around, namely vo(x) is to be
calculated so that the boundary layer will fulfill certain
conditions; for instance, the prevention of shift of the boun-
dary layer or of the separation of the turbulent boundary
layer.

This problem is also solved easily with the equations de-
scribed and with the associated methods of calculation and
programs. Several different aims of bleed-off are jointly at-
tained when the requirement is to fix the bleed-off velocity
ve so that

H32 = 9(62) = a + b 1n Res,; (51)

Constant H;, for the laminar and for the turbulent case is
designated by b=0. But if one chooses a=1.40, b=0.2924, then
one is always right below the condition for certain shift in
the laminary case of Fig. 8 and so prevents the boundary

layer shift. In the turbulent case there are also a few possi-
bilities with b#0, which are explained through examples.

Using (11) in (51) we get
"3 = (ll {4 [} ln Rl'a.) 68 = vl(bz) 68 (5 2)
and through derivation
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2=lo+b(L+lnRe)] Sy g, OV (53)

&

With these two relations the functions 83, dé63/dx and dé./dx
can be eliminated from (36) and (37) and one gets

Gry— Dy =27 — v, Gt b —p+ G bl (54)
This makes vy a function of dU/dx and 82; with 82 one also gets
H32 because of (51) and the required boundary layer functions
can be calculated as before. For continued calculation only
the change of 62, given with (36), is required and the differ-
ential equation (37) is not needed. This exactly corresponds
to the accepted procedure. as given by Wieghardt [6], for
instance.

This procedure does require, however, that the equation
be already fulfilled at the spot where the calculation with
the bleed off theorem (51) is to start. But normally,values
for the pair of functions §,, Hs2, are already present from a
previous calculation at that starting point, which may not be
compatible with (51). That difficulty can be eliminated by
treating (54) and (51) together only as additional equation
to vo(62) and by carrying out the actual boundary layer calcu-
lation again with the two equations (36) and (37), with no need
for agreement between the Hj3;, used and y. Because this pro-
cedure uses the bleed-off thuorem only for v, and not for Hja,
it is questionable whether and how fast Hi,, which is generated
in the course of the calculation, adapts itself to the value of
v per (51). As the examples will show, that happens very well
and rather quickly.

This procedure does require a bit more calculation effort
than that by Wieghardt, since boundary layer functions for the
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values ¥ and Hs2 must be calculated. As long as the two values
are not equal this double calculation cannot be av. ded. When
calculating by hand equation (37) can be dropped as soon as
there is close enough proximity between ¢ anrd H3;,. For pro-
gramming this transition is not necessary. This keeps the
program in its old form, which is beneficial for functional
clarity. Possible time savings in calculation do not justify
the effort Ianvolved. Besides, the condition vo§0 is possible
for the recommended method, which is appropriate to many prob-
lems. According to it bleed-off takes place only when the bleed-
off theorem really requires it and not when, for instance,

the boundary layer is brought to the edge of the stability
boundary artificially, through blow~off,when normally it

would still be far away perhaps near the stagnation point.

9. Examples

It should again be pointed out that the unit of length in
all following examples is that which is also used in the
Reynolds number Re, according to equation (43). The same
holds true for the unit of velocity. If one wanted to reintro-
duce the designations 1 and U, later for the units, then all
functions would have to be represented as ratios to these units.
But that is superfluous. The only *hing to be \ept in mind 1s
that for x=1 the unit of length, 1, is meant, from (43), which
can also he designated as 1; the same is true for all veloci-
ties.

a. Parabola-shaped Velocity Distribution for Different
Step Sices

To provide an example for the influence of linear interpo-
lation on U within one integration step, the curved distribu-
tion U(x)=x(2-x) for Re=10° with widely varying step sizes was
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Fig. 9 Influence of Step Size on Pulse Loss Thickness &2

calculated. Consecutively,Ax=1,0.5,0.2,0.1,0.02 and 0.01 was

chosen. Results for the four biggest step sizes are shown in

Fig. 9. The comparison was demonstrated only on §2. The errors

in Hy, are smaller. The data points for U used and those calcu-
lated for 6. were always joined by straight lines to character- /239
ize the step size. The effect of decreasing Ax to below the

value of 0.1 can no longer be shown graphically. For that

reason the results were put together in Table II for the two

points x=1 and x=1.6 with their errors.
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The step size 0.1 already shoms good results when a total
of only sixteen steps is counted in the interval. But gross
errors must be expected when the velocity increase is linearized

too roughly and the stagnation point solution too far extended,
wvhich often happens.

Table 11

Pulse Loss Thickness for U=x(2-x), Re=10°* for x=1 and
x=1.6 as Fuactions of Step Size

s ] waas ﬁ. a0s ﬁ. -
1 i 2% i W7
5 3,766 n3 :
2 4,10 235 223 i
[ X | 4214 0.7 4181 3.1
[ T 3 4223 [ 3 4267 1l
Y 420 i e 4308 ol
o0l 4243 . 3,13

b. Howarth-Flow with Turbulent Continuation

The velocity distribution U(x)=1 was treated rigorously by
Howarth [27] and recalculated accurately by Leigh [28]). This
calculation often served for comparisons with the results from
approximation methods (¥alz [5], for instence). In particular
the point of laminar separation is very critical and could
heretofore not be calculated with satisfactory accuracy by ap-
proximation methods. The equations and functioms now available
produce an error that is smaller by an order of magnitude. A
graphic comparison with the exact solution is no longer pos-
sible because the lines do not provide sufficient difference
for it. Numerical values for the separation point are shown
for various metho..s in Table III. It comes as surprise that
the present procedure offers much better results than that by
Walz even though the basic equations and the boundary line
profiles on which functions H;,, ¢® and D* are based are the
same ones for the laminar case. As mentiored before, it was
found that the functions used by Walz had been incorrectly
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Table 111

Separation Point for Howarth-Flow in Various Directions

’ x Error
Procedure (Separation) $
Howarth-Leigh 0.1198 0.0
Pohlhausen P4 0.16 33.0
Pohlhausen with Hartree profiles 0.103 14.2
Walz with Pohlhausen P4 0.125 4.2
Walz with Hartree profiles 0.114 5.0
Wieghardt 2 parameter method 0.116 3.3
Gortler (difference method) 0.1183 1.2
Prel. method with Walz-Hartree function 0.1137 5.0
Prel. method with new Hartree functions
ax=0.01 0.1202 0.4
Ax=0.002 0.1199 0.1

calculated. With the interrelations for Hj;,, €* and D* used
by Wal-z the same results are achieved here as there, with the
present formulas. Further improvement can only be attributed
to accurate evaluation of the Hartree profiles. The actual
statemeut by Walz is significantly better, therefore, as can
be concluded from the results up to now.

Fig. 10 also gives the curve of the form parameter H;. for
various Re numbers. The laminar separation point was here
assumed as shift point. In the laminar part Hj3, is independent
of Re, which can already be deduced from the basic equations,
but that is not true in the turbulent part. In Fig. 10 it can
be clearly recognized how Hs3: increases rapidly with the higher
Re numbers after the shift, at approximately the rate at which
Truckenbrodt [7] introduced it artifically. But for smaller
Re numbers the jump does not occur. Here Hi2 still moves for
awhile after the shift in the region Hj3,<1.58, where separation
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is already possible. This result agrees with the observation
that local separation is often found [29]) before the boundary
shift, for smaller Re rnumbers. According to Fig. 10, the
reason for this separation bubble must not only be sought in
the insufficiency of excitement of the unstable disturbances,
but also in the too slow formation of the turbulent boundary
layer and with it the removal of flow reversal danger at the
wall for this range of Re number and form parameter.

Additional calculations with uninfluenced turbulent boun-
dary layvers have already been carried out in large numbers,
also comparisons with experiments. Two of these comparisons
have been published previously [14]. There it is shown, in /240

particular that the increase of §:, according to the much
applied method by Truckenbrodt for the area of high pressure
increase, seems too small while better values are achieved
with the equations presented here. One considerable improve-
ment of Truckenbrodt's method,mertioned by Scholz [10], does
correct the shortcoming for the pressure increase in the turbu-
lent region but generalization of this improvement for the
laminar case and for bleed -»ff has not been tried so far.

¢. Laminar Plate Flow with Homogeneous Bleed-=Off and
Blow-Off

A further classical example, for which an exact solution
is available, is the flat plate U=1, with constant blced-off
vo. The recalculation of this case, which is shown in Fig.

11, also provides very accurate results. Iglisch's [30] solu-

I~
to
=
—

tion agrees in 32 almost completely with the present one,
there being only insignificant differences for Hi,. To achieve
such good agreement the step size of the first step Ax, which

is calculated without blecd-off here, must be hept very small
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Fig. 10 Form Parameter H;, for Howard-flow U=1 and its Con-
tinuation for different Re numbers.
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Fig. 11 Form Parameter H;, and Pulse Loss Thickness §. for

Plate Flow with Constant Bleed-0Off and Blow-Off. Re=10
Vo=10.001.
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since the influence of bleed-off is particularly significant
there.

For comparison, the lengths that were made dimensionless
by Iglisch are recalculated. In the function used there
TU lx
E=(i%) T
only the Re number need to be introduced,per (43), along with
the units 1 and U_; the interrelation between the values chosen

here for vy and Re, and £ and x, can then easily be established.
The same holds for function

_teh _—nd

EE Al et

The same case of plate flow but with positive vy, i.e.,
blow off, is shown also in Fig. 11. As in all approximation
methods, laminar separation occurs for x=0.4, which cannot
occur for rigorous treatment. That is the case mentioned in
section 5(b) in which the present method does not work too well.
In practice it is unimportant since the blow-off profiles are
anyway very unstable and boundary layer shift cannot be avoided
here. Still, it may serve as an example of how little signifi-
cance errors found in special cases have for the entire method.
As far as the laminar part is concerned in the present method,
it must be concluded from results up til now that it offers
very good results when pressure increase without bleed-off or
bleed-off to high values of Hs;, is involved. This exactly
corresponds to the choice of functions Hi2, €* and D*, made
in section 3. For more detailed investigations of errors we
refer to Nickel [31].
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d. Plate Bleed-Off with Constant Form Parameter

In Fig. 12 the distributions §2(x) and vo(x) for the flat
plate with constant form parameter, which have been obtained
with the present method, are compared with the exact solutions.
Again very good results are generated for H3;»>1.57258. That is
only natural because the form parameter interrelation was taken
from the corresponding exact solutions. On the other hand for
blow-off, i.e., for Hi2 values below 1.57258, results would be
somewhat worse because for that region other interrelations for
form parameters were chosen. Since blow-off is not allowed in
the programs used here, for reasons already mentioned in sec-
tion 8, blow-off cases of the "similar" plate flow (anyway
again largely unstable) were not calculated.

”

i i
- : 4 7

Fig. 12 Recalculation of Bleed Off Velocity ve for Similar
Bleed-0ff Boundary Layers at U=const., Re=10¢.
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¢. Bleed-Off of Laminar Boundary Layer for Strong Pres-
sure Increase

An important area of application for bleed-off is the
prevention of boundary separation, for instance on air foils
with high lift coefficients. Large negative pressures and,
subsequently, long and strong pressure increases occur on the
topside. To get an overall picture for the bleed-off required
in such cases a large number of calculations were carried out
for a velocity distribution composed of linear sections, shown
in Fig. 13. The pressure increase in the distribution on which
it is based goes from U=4 to U=0.4, thus attaining a value that
could never be overcome without bleed-off. This order of
magnitude approximately corresponds to what occurs on air foils
with very high 1ift coefficients (between 3 and 5).
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Fig. 13 Quantity Coefficient c, and Plus Loss Thickness §,
for Strong Pressure Increase and Form Parameter of the Laminar
Boundary Layer, H;,, Being Constant; R = 2.10%.

In Fig. 13, as well as in the following Figs. 14-16, the
function
X

EQ = - Ivodx (55)
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is used throughout in place of v,, in addition to §, and H;..
This function offers a better overall picture than v, itself
since the total amount of bleed-off is more important. At the
trailing edge Eb agrees with the often used quantity coeffi-
cient cQ’ before that EQ provides the amount of bleed-off
needed up to a point x while -vy is proportional to the slope
of curve EQ.

A simple method for preventing separation is holding the
form parameter constant through appropriate bleed-off. This
bleed-off calculation can be carried out for laminar or turbu-
lent cases by means of (54), setting b=0. At first the laminar
boundary layer was calculated for various form factors, without
consideration of instability and shift. The resulting values
for 62 and EQ are shown in Fig. 13. At first glance the re-
sult is surprising. One suspects at first that bleed-off to
high H3, values should be much stronger and give correspond-
ingly smaller values for 82. The calculation offers for x=1
values of EQ that differ very little, while §, is high for
high H;, values and low for low ones, the exact opposite of
what is expected offhand. Only at the start of the calculation
does the picture correspond to expectation. As soon as this
condition has become pronounced a smaller §, occurs because of
(54), in consequence (and because of the larger ¢*) a larger
dé2/dx with the increase in 8, predominating, so that the pic-
ture is quite reversed in the end. The reversal is easily
recognized when (54) is entered into (36), b=0 and H;,=y.

This results in

dc).‘.: 2D* —¢* fa__He—1 1 db
dx Iy - 1) Res, ) ’—':n_:—l) 207 de ” (56)

The first term, which is not dependent on §:dU/dx, actually
gives a smaller dé:2/dx with increasing H;, since the numerator
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decreases and the denominator increases, according to Fig. 2.
The second term shows the opposite tendency. Since §, is in
the denominator of the first term, but in the numerator of the
second one, the character of Fig. 13 is easily understood.

The second term predominates as soon as §, has become larger.
Since §, also goes into v, the lines for Eb diverge later, but
much less so than those for §,.

During prevention of the separation the required amount
of bleed-off is predominant while 6, only goes into the resis-
tance (anyway quite high for high life coefficients). Ac-
cording to Fig. 13, the value of the form parameter,up to which
bleed-off takes place,does not have any big influence on the
amount of bleed-off.

That result is important because it shows that stability
of the laminar boundary layer, which increases strongly with
Hiy2, can be obtained even for strong increases of pressure
without a very large amount of bleed-off. This also confirms
another calculation where two pairs a,b, are entered into (54).
For case (A) a=1.40, b=0.02924,was chosen so that the region
below the strict shift condition in Fig. 8 not be excecded,
while case (B):a=1.37, b=0.02924,permits the region to
the upper straight line in Fig. 8, along which shift may al-
ready be expected. The results shown in Fig. 14 again demon-
strate very small differences for EQ, but bigger ones for Hj.
and 6;.

Particular attention is called to H3, having a maximum.
That points to a maximum of Red., which is a function of the
strong increase of U. In case (B) even 62 has a maximum,
Since -v, also becomes very big, along with function (1/U)dU/dx
at around x=1, §, does not continue to increase here any longer.
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Fig. 14 Quantity Coefficient , Form Parameter H;. and
Pulse Loss Thickness 6,, for Stgong Pressure Increase, Re =
2.10°%--(A) Bleedoff for Certain Prevention of Shift; (B) Pre-
vention of Shift no Longer Certain.

By putting (54) into (36) a closer picture can be obtained

here too.
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f. Bleed-Off of the Turbulent Boundary Layer at Strong
Pressure Increase

Since it is often not easy to maintain the boundary
layer laminar with certainty, various attempts have been made
recently to bleed-off the boundary layer so that no separation
could occur [2]. To get some indication about how correct
and rational such bleed-off is, some examples of turbulent /244
boundary layers were calculated also for the velocity dis-
tribution of the previous examples.

Here, too, it is again easiest to start calculating with
constant form parameter. The resulting values for EQ are
shown in Fig. 15. Bleed-off starts a little later than for
the laminar cases because there is a wait for the shift.
Compared to the laminar cases the picture shows a complete
shift. The EQ lines show surprising overlapping. For smaller
H;, values they seem to be more favorable. Later on the per-
mitted increase of §, during the initially small v, takes its
toll with bleed-off amounts that can hardly be realized.

The high values for H,;, on the other hand are very high at
the start with the required bleed-off. Even though bleed-off
with a value of H;,=1.95 is most favorable in the end, the
case appears unfavorable when compared to laminarity. The
impression is gained therefore, at first, as if turbulent
bleed-off is much less favorable. A series of additional
calculation of samples shows, however, that the difference
need not be so great. Apparently, bleed-off must be carried
out with variable form paramter so that at first the values
for H;, are small, increasing later on. For that reason (54)
was used for the calculation and constants a,b set so that
for,
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1n Rer = 10(Re62~2000) H;2 = 1.95,

and for
1n Re = 6(Re, “400) H3, = 1.95 + k.
8, 62
That results in

a=1.95+25%k b =-0.25 k. (57)

—

and Pulse Loss Thickness §:
8 Constant Form Parameter H;:
of the Turbulent Boundary Layer, Re = 2.10%,

Fig. 15 Quantity Coefficient
for Strong Pressure Increase an

Since for higher values of k the form parameter attains
high values close to 2, the calculation was carried out with
a,b, calculated from (57) but only to H3;,=1.99; above that
a=1.99, b=0,was used.

The results are shown in Fig. 16. It appears that values

for EQ have decreased significantly. It should be remembered
that these calculations stop at values for H;, that are far
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away from separation. Much more bleed-off than was necessary
for prevention of separation took place then. By taking that
into consideration and bleeding less off the trailing edge EQ
will perhaps not decre.se exactly down to laminar values but
it will be of the same order of magnitude.

The most favorable combination in Fig. 16, a=1.35, b=C.06,
also turned out to be favorable for other cases where velocity
is not linear. For the choice of a,b, in the turbulent case
the total pressure increase is almost the only decisive indi-
cator.

Values of cQ obtained so far are of the same mzgritude as
those obtained experimentally by Raspet [2]. Unfortunately,
no straightforward comparisons are possible since no experi-
ments have been published so far for which distributions of
pressure and bleed-off have beer supplied. Another difficulty
should be pointed out. The turbulent bleed-off calculations
may in part lead to combinations of H;, and §, where, according
to estimates firom section 4, the boundary layer thickness ex-
ceeds by far anything that is expected from the derivation of
the boundary layer equations. Raspet and Cornish have pointed
(unpubl. ,hed) to experimental results that are not in agreement
with the boundary layer equations. Understandably,d2 increases
less in the experiment than in theory. On the one hand the
theoretically available contribution F to §., according to (30)
cannot be determined experimentally from regions where the dif-
ference between u and U is very small, since potential flow can
already be detected in such regions.

On the other hand the contributions of §, that exceed a

permissible boundary layer thickness reach into regions of
potential flow where dU/dx is smaller than at the wall. It is
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to be expected that the ircrease of §;, according to the pulse
theorem, wili not be reached, i.e., that the theoretical values
for §, and wi*h it for v,, are too large. That will keep »ne
on the safe side for most prcblem si.uations.

M
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4

Fig. 16 Quantity Coefficient cg, Pulse Loss Thickness &§2, and
Form Parameter H32 for Strong Pressure Increase and Blesd-Off
of the Boundary Layer per (54) and (56), Re=2.10%. Dashed line:
EQ of case (A), Fig. 14.

Turbulent bleed-off is also to be censidered as definitely
positive for the high-1ift case in general. Ths gu .tion which
of the two tvpes of bleed-off is preferable must be decided by
practical considerations. Such a significant practical co. sid-
eration would be that of safety.

Once a separation has taken place it can only bc removed
by a basic change in the pressure distribution, in all cases
of bled off boundary layers. In the polar diagrams of air
foils that produce a marked hysteresis both in the laminar and
in the turbulent case. But judging from the line for the
laminar EQ in Fig. 16 that requiies a little less bleed-off.
But boundary layer shift alone can also lead to separation.
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Since the high-lift case occurs primarily during takeoff and
landing, where gmats, bugs and birds can force a boundary layer
shift, it seems nor;mgppropriate here to apply turbulent bleed-
off and even te monivor constantly whether laminar flow was

not gene;atéd theough oversight. In theory that can hardly
happen siace bieed -off comes too late for it. In practice
bleced-off i. .ore or less discontinuous so that the slight
differences be®ween laminar and turbulent siphoning are hard

to verify at the start. It will probably be required tc¢ take
precamtionary measures not to work in a region where pure
boundary layer shift alone can already cause separation and
craesh. It is possible that this may be the reason for two
seriouws crashes that are so far unexplained.
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