https://ntrs.nasa.gov/search.jsp?R=19780024163 2020-03-22T02:00:06+00:00Z

N. VIEW. CALIFORNIA 94043 • PHONE [415] 961-4674

SYSTEMS TECHNOLOGY, INC.

2672 BAYSHORE FRONTAGE ROAD . MOUN

Technical Report No. 1063-2

N78-32106

(NASA-CR-152185) COMPUTED RESPONSES OF SEVERAL AIRCRAFT TO ATMOSPHERIC TURBULENCE AND DISCRETE WIND SHEARS Final Report (Systems Technology, Inc., Mountain View, Unclas 33099 CSCL 01C G3/08 Calif.) 79 p HC A05/MF A01

> COMPUTED RESPONSES OF SEVERAL AIRCRAFT TO ATMOSPHERIC TURBULENCE AND DISCRETE WIND SHEARS

> > Wayne F. Jewell Robert L. Stapleford Robert K. Heffley

> > > February 1977

Contract NAS2-8889

National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035

HOME OFFICE : HAN THORNE, CALLE

BRANCH OFFICE : PRINCETON, N.J.

FOREWORD

This report was prepared under Contract NAS2-8889 between Systems Technology, Inc., Mountain View, California, and the National Aeronautics and Space Administration. The NASA project engineer was John D. Stewart of NASA/Ames Research Center. The STI project engineer was Robert L. Stapleford.

ii

ABSTRACT

The computed RMS and peak responses due to atmospheric turbulence and discrete wind shears, respectively, are presented for several aircraft in different flight conditions. The responses are presented with and without the effects of a typical second order washout filter. A complete set of dimensional stability derivatives for each aircraft/flight condition combination evaluated is also presented.

TABLE OF CONTENTS

SECTION

I

PAGE

	INTRODUCTION · · · · · · · · · · · · · · · · · · ·	1. 1.
II	MODEL DEFINITION	3
	A. Uncoupled Aircraft Equations of Motion	3
	B. Kinematic Equations	3
	C. Atmospheric Turbulence	3
	D. Wind Shear	10
	E. Washout Logic	12
	F. Pilot Model	13
III	DESCRIPTIONS OF AIRCRAFT AND FLIGHT CONDITIONS	14
	A. General Descriptions of Aircraft	14
	B. General Descriptions of Flight Conditions	17
	C. Numerical Descriptions of Flight Conditions	25
IV	RESULTS	47
	REFERENCES	68

LIST OF TABLES

PAGE

II -1	Uncoupled Aircraft Equations of Motion	4
II-2	Required Kinematic Equations	5
II - 3	Equations for the Linear and Angular Components of Atmospheric Turbulence	7
III -1	Flight Condition Descriptions	18
III - 2	Trim Conditions and Stability Derivatives, Longitudinal, U.S. Units	26
III - 3	Trim Conditions and Stability Derivatives, Lateral- Directional, U.S. Units	31
III-4	Trim Conditions and Stability Derivatives, Longitudinal, S.I. Units	36
III - 5	Trim Conditions and Stability Derivatives, Lateral- Directional, S.I. Units	41
IV-1	Longitudinal Results, U.S. Units	48
IV-2	Lateral-Directional Results, U.S. Units	53
IV-3	Longitudinal Results, S.I. Units	58
IV-4	Lateral-Directional Results, S.I. Units	63

v

ł

LIST OF FIGURES

						PAGE
II-1	Probability of	Encountering	Turbulence	• • •	 • • •	9
II-2	Turbulence Scal Exceedance for	Le Factor Vers Constant Valu	sus Probabi. les of Alti	lity of tude .	• • •	11

LIST OF ABBREVIATIONS

- c.g. Center of gravity. Units are those associated with the the particular aircraft.
- FRL Fuselage reference line
- RMS Root mean square

TR 1063-2

q

and the second second second

LIST OF SYMBOLS

b	Wing span or characteristic width
g	Acceleration of gravity
h	Perturbed altitude of the aircraft
h _o	Initial altitude of the aircraft with respect to sea level
h _R	Reference altitude used to calculate the gust scale lengths
К _ө	Pilot model gain in pitch axis
К _ф	Pilot model gain in roll axis
L _u , L _v , L _w	Scale lengths used in the atmospheric turbulence model
$\ell_{\rm x}, \ell_{\rm Z}$	The x and z components of the pilot station with respect to the aircraft $c.g.$
Ρ	Probability of exceedance
P ₁	Probability of encountering turbulence
p,q,r	Components of the aircraft angular velocity with respect to an aircraft body-fixed axis system in the x, y, and z directions, respectively
p _g ,q _g ,r _g	Angular components of atmospheric turbulence with respect to an aircraft body-fixed axis system in the x, y, and z directions, respectively
SF	Scale factor used to compute RMS responses for values of P other than 0.01
S	Laplace operator
${ m I}_{ m E}$	Pilot lag
\mathtt{T}_{L}	Pilot lead
U _o ,W _o	x and z components of the aircraft trim velocity with respect to the aircraft body axis system
u,v,w	Linear perturbation components of the aircraft velocity with respect to an aircraft body-fixed axis system in the x, y, and z directions, respectively

 $\eta_1, \eta_2, \eta_3, \eta_4$ Uncorrelated white noise sources with unity power spectral density

ug, vg, Wg Linear components of atmospheric turbulence with respect to an aircraft body-fixed axis system in the x, y, and z directions, respectively

> Discrete wind shear in either the x or y directions of the earth axis system

Magnitude of the trim aircraft velocity with respect to the air mass

Aircraft weight

Perturbed components of the aircraft position with respect to an earth-fixed axis system

This parameter defines the axis system of the stability derivatives. $\alpha = 0$ implies the stability derivatives are with respect to the conventional body-fixed stability axis system. $\alpha = \alpha_t$ implies the stability derivatives are with respect to the FRL body-fixed axis system

Trim angle of attack with respect to the FRL

Sideslip angle, v/V_{η}

v_g/V_{To} Initial flight path angle

Aileron or primary roll control

Elevator or primary pitch control

 θ_{o} Initial pitch attitude of the aircraft

RMS value of the p-component of atmospheric turbulence

 $\sigma_u, \sigma_v, \sigma_w$ RMS values of the atmospheric turbulence in the x, y, and z directions with respect to aircraft axis system

 ϕ, θ, ψ Perturbation components of the aircraft Euler angles

 $\sigma_{\rm R}$

Vhw

V_{To}

W

x,y

αο

 α_{t}

β

β_g

 γ_{0}

δ_a

ဂိ_e

σp

Mode of the Rayleigh density function for σ_{μ}

TR 1063-2

ix

SUBSCRIPTS

x

p	At pilot station
WO	Washed out
g	Gust

TR 1063-2

SECTION I

INTRODUCTION

When using a motion simulator to conduct experiments involving piloted aircraft the researcher may ask the following questions: "How much motion is required to represent the piloted aircraft in a given flight condition?" and "Will these motions be within the capabilities of available simulators?" This report presents gust induced motion requirements of several aircraft in different flight conditions, and hence provides the researcher with a rough guide for answering the above questions. These motion requirements are based on computations of:

1. RMS response to atmospheric turbulence.

2. Peak response to a discrete wind shear.

The response calculations were done with and without the effects of a second order washout filter. A reasonable upper limit was used for the filter break frequency, and thus the results should be representative of the maximum effects of simulator motion logic.

It was desired that the results be indicative of responses when a pilot is flying the aircraft. However, because of the number of configurations, a complete multiloop pilot/vehicle analysis for each aircraft/ flight condition combination was too costly. Thus a relatively simple pitch and roll attitude pilot model was designed for each aircraft/flight condition combination. The pilot models stabilize the phugoid and spiral modes (which would otherwise tend to dominate the response calculations), and thus perform one of the major functions of a real pilot.

Section II of this report contains descriptions of the mathematical models used to make the response calculations. These models include the

1

aircraft dynamics, atmospheric turbulence, wind shear, washout logic, and pilot model.

Section III contains descriptions of the aircraft and flight conditions evaluated. These include a complete set of stability derivatives for each aircraft/flight condition combination.

2

Section IV contains the tabulated results.

SECTION II

MODEL DEFINITION

A. UNCOUPLED AIRCRAFT EQUATIONS OF MOTION

The uncoupled, small perturbation equations of motion used here are given in Table II-1. These equations are written with respect to an aircraft body-fixed axis system. They include provisions for one longitudinal and one lateral-directional control (δ_e , δ_a), random gusts with respect to all axes (u_g , w_g , etc.), and a discrete wind with respect to the horizon (V_{hw}). A complete discussion of these equations and their stability and control derivatives can be found in Reference 1.

B. KINEMATIC EQUATIONS

Table II-2a relates the aircraft Euler angle rates to the aircraft body axis angular rates. Note that the Euler angles would also be the gimbal angles of an aircraft simulator if the motion were one-to-one and the gimbals were arranged in the sequence Ψ , Θ , Φ progressing from earth to body.

Table II-2b contains expressions for the accelerations of the pilot station with respect to an earth-fixed axis system. Accelerations, velocities, and displacements are expressed in an earth-fixed axis system and would correspond to the motion of a simulator if it were to follow the actual aircraft's motion one-to-one. (The vertical offset of the pilot station from the aircraft c.g. has been neglected in the expression for \ddot{x}_{p} .)

C. ATMOSPHERIC TURBULENCE

The aircraft RMS response to atmospheric turbulence with and without motion washout filters was computed for all aircraft states except the

TABLE II-1

UNCOUPLED AIRCRAFT EQUATIONS OF MOTION

A. LONGITUDINAL

$$\dot{u} = X_u (u - u_g) + X_w (w - w_g) + X_q (q - q_g) - W_o q - (g \cos z_o) \theta$$
$$+ X_{\delta e} \delta_e - (X_u \cos \theta_o + X_w \sin \theta_o) V_{hw} + (X_q \sin \theta_o / V_{T_o}) \dot{V}_{hw}$$

$$\dot{w} = Z_u (u - u_g) + Z_w (w - w_g) + Z_{\dot{w}} (\dot{w} - \dot{w}_g) + Z_q (q - q_g) + U_o q$$

$$- (g \sin \theta_o) \theta + Z_{\delta_e} \delta_e - (Z_u \cos \theta_o + Z_w \sin \theta_o) V_{hw}$$

$$+ (Z_q \sin \theta_o / V_{T_o}) \dot{V}_{hw}$$

$$\dot{q} = M_{u} (u - u_{g}) + M_{w} (w - w_{g}) + M_{\dot{w}} (\dot{w} - \dot{w}_{g}) + M_{q} (q - q_{g}) + M_{\delta e} \delta_{e}$$
$$- (M_{u} \cos \theta_{o} + M_{w} \sin \theta_{o}) V_{hw} + (M_{q} \sin \theta_{o}/V_{To}) \dot{V}_{hw}$$

B. LATERAL-DIRECTIONAL

$$\dot{\beta} = Y_{v} (\beta - \beta_{g}) + \frac{Y_{p}}{V_{T_{o}}} (p - p_{g}) + \frac{Y_{r}}{V_{T_{o}}} (r - r_{g}) + \frac{W_{o}}{V_{T_{o}}} p - \frac{U_{o}}{V_{T_{o}}} r$$

$$+ \frac{g \cos \theta_{o}}{V_{T_{o}}} \phi + Y_{\delta a}^{*} \delta_{a} - \frac{Y_{v}}{V_{T_{o}}} V_{hw} - \frac{Y_{r}}{V_{T_{o}}^{2}} \dot{V}_{hw}$$

$$\dot{p} = L_{\beta}^{*} (\beta - \beta_{g}) + L_{p}^{*} (p - p_{g}) + L_{r}^{*} r + L_{\delta a}^{*} \delta_{a} - \frac{L_{\beta}^{*}}{V_{T_{o}}} V_{hw}$$

$$\dot{r} = N_{\beta}^{*} (\beta - \beta_{g}) + N_{p}^{*} (p - p_{g}) + N_{r}^{*} (r - r_{g}) + N_{\delta a}^{*} \delta_{a}$$

$$- \frac{N_{\beta}^{*}}{V_{T_{o}}} V_{hw} - \frac{N_{r}^{*}}{V_{T_{o}}} \dot{V}_{hw}$$

$$\begin{split} \ddot{\mathbf{x}}_{\mathbf{p}} &\doteq (\cos \theta_{\mathbf{0}}) \dot{\mathbf{u}} + (\sin \theta_{\mathbf{0}}) \dot{\mathbf{w}} + (\mathbf{W}_{\mathbf{0}} \cos \theta_{\mathbf{0}} - \mathbf{U}_{\mathbf{0}} \sin \theta_{\mathbf{0}}) \mathbf{q} \\ \\ \ddot{\mathbf{y}}_{\mathbf{p}} &= \mathbf{V}_{\mathbf{T}_{\mathbf{0}}} \dot{\boldsymbol{\beta}} - \boldsymbol{\ell}_{\mathbf{z}} \dot{\mathbf{p}} + \boldsymbol{\ell}_{\mathbf{x}} \dot{\boldsymbol{r}} - \mathbf{W}_{\mathbf{0}} \mathbf{p} + \mathbf{U}_{\mathbf{0}} \mathbf{r} \\ \\ \\ \ddot{\mathbf{n}}_{\mathbf{p}} &= (\sin \theta_{\mathbf{0}}) \dot{\mathbf{u}} - (\cos \theta_{\mathbf{0}}) \dot{\mathbf{w}} + \boldsymbol{\ell}_{\mathbf{x}} \dot{\mathbf{q}} + (\mathbf{W}_{\mathbf{0}} \sin \theta_{\mathbf{0}} + \mathbf{U}_{\mathbf{0}} \cos \theta_{\mathbf{0}}) \mathbf{q} \end{split}$$

5

B. LINEAR MOTIONS AT THE PILOT STATION

- $\dot{\psi}$ = (sec θ_0) r
- $\dot{\phi} = p + (\tan \theta_0) r$
- A. EULER ANGLES

 $\dot{\theta} = \dot{d}$

REQUIRED KINEMATIC EQUATIONS

TABLE II-2

linear positions without washout filters (x_p, y_p, h_p) , which were excluded because their RMS responses are unbounded.

For the longitudinal cases this involved the evaluation of the aircraft response to random gusts parallel and perpendicular to the aircraft's FRL x-axis (u_g, w_g) . The effect of an axial variation in $w_g (q_g)$ was also included.

For the lateral-directional cases this involved the evaluation of the aircraft response to random gusts parallel to the aircraft's y-axis (v_g) and to roll gusts^{*} (p_g) . The effect of an axial variation in v_g (r_g) was also included.

For the lateral-directional case the RMS values of the states \dot{y}_p and ψ only include the effects of v_g . This is because their RMS responses to p_g are unbounded.

The subsections below contain a succinct description of the atmospheric turbulence model used and a description of a method for scaling the RMS response data contained herein to different values of probabilities of exceedance.

1. Model Definition

The atmospheric turbulence model specified in References 2 and 3 was used. For convenience the bare essentials of that model are reproduced below.

Equations for the linear (u_g, v_g, w_g) and angular (p_g, q_g, r_g) components of atmospheric turbulence with respect to the aircraft body axis are delineated in Table II-3. In these equations η_1 , η_2 , η_3 , and η_4 are uncorrelated white noise sources with unity power spectral density. σ_u , σ_β , and σ_w are the RMS levels of the u, v ($\sigma_\beta = \sigma_v/V_{To}$), and w components of the atmospheric turbulence, respectively. All are functions of the aircraft altitude (h_o) and a specified probability of exceedance (P). These functions are defined below.

The Rayleigh distribution function of Equation II-1 was used to calculate ^ou.

* Roll gusts result from a spanwise variation of the vertical gusts.

TABLE II-3

EQUATIONS FOR THE LINEAR AND ANGULAR COMPONENTS OF ATMOSPHERIC TURBULENCE

$$w_{g} = \sigma_{w} \sqrt{\frac{3V_{T_{o}}}{L_{w}}} \left[\frac{s + \frac{V_{T_{o}}}{\sqrt{3} L_{w}}}{\left(s + \frac{V_{T_{o}}}{L_{w}}\right)^{2}} \right] \eta_{2}$$

$$\beta_{g} = \sigma_{\beta} \sqrt{\frac{3V_{T_{o}}}{L_{v}}} \left[\frac{s + \frac{V_{T_{o}}}{\sqrt{3}L_{v}}}{\left(s + \frac{V_{T_{o}}}{L_{v}}\right)^{2}} \right] \eta_{2}$$

$$p_{g} = \sigma_{w} \sqrt{\frac{0.8 \pi}{L_{w} V_{T_{o}}}} \left(\frac{\pi L_{w}}{4b}\right)^{1/6} \left[\frac{\pi V_{T_{o}}/4b}{s + \pi V_{T_{o}}/4b}\right] \eta_{4}$$

$$q_{g} = \left[\frac{-\pi/4b}{s + \pi V_{T_{o}}/4b}\right] \dot{w}_{g}$$

$$r_{g} = \left[\frac{\pi V_{T_{o}}/3b}{s + \pi V_{T_{o}}/3b}\right] \dot{\beta}_{g}$$

7

$$P = P_{1} \cdot EXP \left[-\frac{1}{2} \left(\sigma_{u} / \sigma_{R} \right)^{2} \right]$$

$$II-1$$

$$\sigma_{R} = 0.70 \text{ m/s } (2.3 \text{ ft/s})$$

The parameter P₁ in Equation II-1 is the probability of encountering turbulence at an altitude h_o. It is plotted in Figure II-1 for altitudes up to 30,480 m (100,000 ft). The parameter P was set to 0.01 for all work contained in this report (i.e., a 1% probability of exceedance). The parameter σ_R is the mode of the Rayleigh density function for σ_u (note that σ_R^2 is one half the expected value of σ_u^2).

 σ_{W} and σ_{V} are functions of σ_{u} and the scale lengths (L_u, L_v, L_w). The scale lengths are functions of altitude. Mathematical expressions for all these parameters are given in Equations II-2 through II-6.

8

$$\sigma_{v} = \sigma_{u} \qquad II-2$$

$$\sigma_{w} = \sigma_{u} \sqrt{\frac{L_{w}}{L_{u}}} \qquad II-3$$

$$L_{u} = \begin{cases} h_{R} & \text{for } h_{o} \ge h_{R} \\ (h_{R}^{2} h_{o})^{1/3} & \text{for } h_{o} \le h_{R} \end{cases}$$

$$L_{v} = L_{u} \qquad II-5$$

$$L_{w} = \begin{cases} h_{R} & \text{for } h_{o} \ge h_{R} \\ h_{o} & \text{for } h_{o} \le h_{R} \end{cases}$$

$$II-6$$

$$h_{R} = 533 \text{ m (1750 ft)}$$

Figure II-1: Probability of Encountering Turbulence (Adapted from Reference 2)

9

DRIGINAL PAGE IS DE POOR QUALITY,

2. Scaling the RMS Response

As mentioned above, all data in this report are for a probability of exceedance of 1% (P = 0.01). However, because all RMS responses vary linearly with σ_u (which is a function of P and h), it is a simple procedure to scale the results contained herein for any desired value of P. The proper scale factor (SF) can be derived from Equation II-1. The result is:

$$SF \stackrel{\Delta}{=} \frac{\sigma (P)}{\sigma (P = 0.01)} = \sqrt{\frac{\ln (P_1/P)}{\ln (100 P_1)}} II-7$$

where P_1 is obtained from Figure II-1.

For convenience, Equation II-7 is plotted in Figure II-2 for a few key values of h_0 .

D. WIND SHEAR

The aircraft's peak response to a discrete wind shear with and without motion washout filters was computed for both the longitudinal and lateraldirectional cases. This was accomplished by saving the sign and maximum absolute value of each aircraft state. The search included the time from shear onset to 40 seconds after the shear ceased.

For the longitudinal cases an increasing tail wind was used. For the lateral-directional cases an increasing wind from the left side was used. In all cases the wind shear was 1 kt/sec and lasted for 10 seconds.

The peak response was computed for all aircraft states except the linear positions without washout filters (x_p, y_p, h_p) . These were excluded because their responses are unbounded.

Exceedance for Constant Values of Altitude

TR 1063-2

E. WASHOUT LOGIC

The underlying purpose of most simulator motion logic is to reduce the motions of the simulator such that the physical limits of the simulator are not exceeded. This is usually accomplished by the use of scale factors and/or washout filters.

The effect of scale factors on simulator motion fidelity (i.e., simulated versus actual aircraft motion) are easy to account for. However, the effect of washout filters are not. Thus the task of choosing the type of washout filter (and its associated parameters) best suited for a particular combination of aircraft and mission is very nebulous. In fact, the choice of the washout filter parameters has been described as an "organized art".

For the purposes of this study, though, it was decided to choose the following washout filter and parameters:

1. A second order washout filter,

$$i - \frac{s^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} - i_{wc}$$

- 2. A typical damping ratio, $\zeta = 0.7$
- 3. A reasonable upper limit of the break frequency, $\omega_n = 1.0 \text{ rad/sec.}$

The large value of ω_n was used to demonstrate the maximum effects of a washout filter on the resulting simulator motions.

The above described washout filter was applied to all the linear and angular positions, velocities, and accelerations of the aircraft. Note that the washed-out responses of the linear positions to atmospheric turbulence and discrete wind shears all have finite values (the unwashedout values are unbounded).

F. PILOT MODEL

Pilot models were used to stabilize pitch and roll attitudes. This prevents the phugoid or spiral modes from dominating the effects of external disturbances, and thus provides a more realistic evaluation of aircraft motions.

Both pilot models were identical and of the form shown below.

The pilot lag term, T_E , was set to 0.333 sec for all cases. The pilot lead term, T_L , was adjusted such that the phase margin would be at least 45 deg at a crossover frequency of 1.5 rad/sec. The pilot gain, K_p , was set to provide a crossover frequency of 1.5 rad/sec. Mathematically, T_L and K_p can be computed from:

If
$$\angle G$$
 (j 1.5) \geq -108.4 deg
(i.e., airplane plus pilot
lag = 135 deg)
 $T_{\rm L} = 0$
 $T_{\rm L} = 0$
 $T_{\rm L} = \frac{1}{1.5} \tan \left[-108.4 - \angle G (j 1.5) \right]$
 $K_{\rm p} = \frac{\sqrt{5}}{2 \mid G (j 1.5) \mid}$
 $K_{\rm p} = \frac{\sqrt{5}}{2 \mid G (j 1.5) \mid}$

where 4 G (j 1.5) = Phase of θ/δ_e or ϕ/δ_a at $\omega = 1.5$ rad/sec

 $| G (j 1.5) | = Magnitude of <math>\theta/\delta_e$ or ϕ/δ_a at $\omega = 1.5$ rad/sec and the factor of $\sqrt{5}/2$ accounts for the magnitude of the pilot lag term at s = 1.5 j

SECTION III

DESCRIPTIONS OF AIRCRAFT AND FLIGHT CONDITIONS

A. GENERAL DESCRIPTIONS OF AIRCRAFT

The 10 aircraft selected fall into the following general categories:

2 Light-weight, powered-lift STOL
2 Medium-weight, powered-lift STOL
1 Light-weight, non-powered-lift STOL
1 Medium-weight, conventional jet transport
1 Heavy-weight, conventional jet transport
1 Large supersonic bomber
1 Heavy-weight helicopter
1 Light-weight helicopter

Brief descriptions of each aircraft are contained in the following subsections. The data sources for each aircraft are also given.

1. AWJSRA

The NASA Augmentor Wing Jet STOL Research Aircraft is a light-weight powered-lift STOL aircraft modified from a de Havilland C-8A Buffalo. The flight conditions evaluated are:

a. Approach at an altitude of 30.5 m (100 ft)

b. Approach at an altitude of 610 m (2000 ft)

The data source used was Reference 4.

2. BR 941S

The Breguet 941S is a light-weight deflected slipstream powered-lift STOL aircraft. The flight conditions evaluated are:

- a. Approach at an altitude of 30.5 m (100 ft)
- b. Takeoff at an altitude of 30.5 m (100 ft)

The data source used was Reference 5.

3. STOL-X

The STOL-X is a medium-weight powered-lift STOL aircraft model developed for an FAA/NASA simulation investigation of STOL airworthiness criteria, and intended as a generic model representative of powered-lift STOL aircraft. The flight condition evaluated is approach at an altitude of 30.5 m (100 ft). The data source used was Reference 6.

4. AMST

The so-called "AMST" is a model of a medium-weight powered-lift STOL aircraft and is representative of the Advanced Medium STOL Transport being developed by the U.S. Air Force. The flight condition evaluated is approach at 30.5 m (100 ft). The data source used was Reference 7.

5. DHC-6

The de Havilland Twin Otter is a light-weight, non-powered-lift STOL aircraft. The flight conditions evaluated are:

a. Approach at an altitude of 30.5 m (100 ft)

- b. Approach at an altitude of 610 m (2000 ft)
- c. Takeoff at an altitude of 30.5 m (100 ft)

The data sources used were References 8 and 9.

6. CV-880M

The Convair 880M is a medium-weight conventional jet transport. The flight conditions evaluated are:

a. Approach at an altitude of 30.5 m (100 ft)

b. Turbulence penetration at an altitude of 7010 m (23000 ft)

c. Cruise at an altitude of 10675 m (35000 ft)

The data source used was Reference 10.

7. B-747

The Boeing 747 is a heavy-weight conventional jet transport. The flight conditions evaluated are:

- a. Approach at an altitude of 30.5 m (100 ft)
- b. Approach at an altitude of 610 m (2000 ft)
- c. Takeoff at an altitude of 30.5 m (100 ft)
- d. Turbulence penetration at an altitude of 6100 m (20000 ft)
- e. Cruise at an altitude of 10675 (35000 ft)

The data sources used were References 10, 11, and 12.

8. XB-70A

The XB-70A was originally designed as a weapons system with long range, supersonic cruise capabilities. It is used here to also represent a supersonic transport class of aircraft. The flight conditions evaluated are:

- a. Approach at an altitude of 30.5 m (100 ft)
- b. Approach at an altitude of 610 m (2000 ft)
- c. Subsonic cruise at an altitude of 12190 m (40000 ft)
- d. Supersonic cruise at an altitude of 18300 m (60000 ft)

The data source used was Reference 10.

9. CH-53A

The CH-53A is a heavy-weight, single rotor transport helicopter. The flight conditions evaluated are:

a. Approach at an altitude of 30.5 m (100 ft)

- b. Approach at an altitude of 610 m (2000 ft)
- c. Hover^{*} at an altitude of 30.5 m (100 ft)
- d. Cruise at an altitude of 30.5 m (100 ft)

The data source used was Reference 13.

10. H-19

The H-19 is a light-weight, single rotor helicopter. The flight conditions evaluated are:

a. Hover^{*} at an altitude of 30.5 (100 ft)

b. Cruise at an altitude of 30.5 m (100 ft)

The data source used was Reference 14.

B. GENERAL DESCRIPTIONS OF FLIGHT CONDITIONS

Brief descriptions of the aircraft/flight condition combinations selected are contained in Table III-1. These descriptions are intended to complement the purely numerical descriptions contained in Section III-C, and aid in the interpretation of the results contained in Section IV.

The parameter "aircraft" in Table III-1 is the standard designation used by the manufacturer. The "flight condition" describes the aircraft's state in terms associated with that aircraft. The parameters W, c.g., airspeed, γ_0 , θ_0 , and h_0 are all self-explanatory. The parameter "configuration" is derived from the aircraft and flight condition by compressing the manufacturer's designation, and then adding the following code:

-A for approach

-T for takeoff

• The "hover" case is actually for an airspeed of 15 kt. Zero airspeed cannot be used with the turbulence model.

TABLE III-1

FLIGHT CONDITION DESCRIPTIONS

Aircraft	AWJSRA	AWJSRA	BR 941S	BR 941S
Flight Condition	Approach 65 deg flaps 75 deg nozzles	Approach 65 deg flaps 75 deg nozzles	Approach 95 deg flaps zero trans.	Takeoff 45 deg flaps zero trans.
W ~ kg (lb)	18144 (40000)	18144 (40000)	20412 (45000)	20412 (45000)
C.g.	B.S. 341.2	B.S. 341.2	0.27 c	0.27 ē
Airspeed ~ kt or [M]	65	65	65	75
$\gamma_{0} \sim \text{deg}$	-7•5	-7.5	-7.5	10.8
$\theta_{o} \sim deg$	-2.3	-2.3	-9.6	10.2
$h_o \sim m_{(ft)}$	30.5 (100)	610 (2000)	30.5 (100)	30.5 (100)
Configuration	AWJSRA-A1	AWJSRA-A2	BR94 1 – A	BR941-T

Aircraft	STOL-X	AMST	DHC-6	DHC-6
Flight Condition	Approach Flaps down	Approach Flaps down	Approach 40 deg flaps	Approach 40 deg flaps
W ~ kg (lb)	56699 (125000)	68040 (150000)	4990 (11000)	4990 (11000)
C.g.	0.25 ā	0.30 ē	0.22 ē	0.22 ē
Airspeed ~ kt or [M]	63.5	85	70	70
$\gamma_{_{\rm O}} \sim {\rm deg}$	-6.0	-6.0	-5.4	-5.4
6 ₀ ∼deg	-3.5	0.1	-10.5	-10.5
$h_o \sim m_{(ft)}$	30.5 (100)	30.5 (100)	30.5 (100)	610 (2000)
Configuration	STOIX-A	AMST-A	DHC6-A1	DHC6-A2

Aircraft	DHC-6	CV-880M	CV-880M	CV-880M
Flight Condition	Takeoff 20 deg flaps	Approach 50 deg flaps	Penetration Clean	Cruise Clean
W ~ kg (1b)	5253 (11580)	57153 (126000)	70 <i>3</i> 07 (155000)	70307 (155000)
c.g.	0.22 ē	0.195 ē	0.25 ē	0.25 ē
Airspeed ~ kt or [M]	80	134	[0.60]	[0.86]
$\gamma_{o} \sim deg$	8.8	-3.0	0.0	0.0
$\theta_{o} \sim \deg$	6.2	2.2	5.3	4.0
$h_o \sim m_{(ft)}$	交、5 (100)	30.5 (100)	7010 (23000)	10670 (35000)
Configuration	DHC6 -ጥ	CV880-A	CV880-7	av880-c

Aircraft	B-747	В-747	B-747	B-747
Flight Condition	Approach 30 deg flaps	Approach 30 deg flaps	Takeoff 10 deg flaps	Penetration Clean
W ~ kg (lb)	258552 (570000)	258552 (570000)	332489 (733000)	288773 (636600)
C•g•	0.25 ē	0.25 c	0.25 c	0.25 ē
Airspeed ~ kt or [M]	142	142	173	[0.65]
$\gamma_{o} \sim deg$	-3.0	-3.0	2.5	0.0
$\theta_{o}^{} \sim \deg$	1.4	1.4	12.5	2.5
$h_{o} \sim m_{(ft)}$	30.5 (100)	610 (2000)	30.5 (100)	6100 (20000)
Configuration	B747 - A1	B747 - A2	в747-т	B747-P

Aircraft	B - 747	XB-70A	XB-70A	XB-70A
Flight Condition	Cruise Clean	Approach Tips Extended	Approach Tips Extended	Subsonic Cruise Clean
$W \sim kg$ (lb)	288773 (636600)	136077 (300000)	136077 (300000)	174417 (384524)
C.g.	0.25 ē	0.235 ē	0.235 ē	0.218 ē
Airspeed ~ kt or [M]	[0.88]	205	205	[0.90]
$\gamma_0 \sim \deg$	0.0	-3.0	-3.0	0.0
$\theta_{o} \sim deg$	1.7	4.5	4.5	7•5
$h_o \sim m_{(ft)}$	10670 (35000)	30.5 (100)	610 (2000)	121 <i>9</i> 0 (40000)
Configuration	в747-С	XB70A-A1	XB70A-A2	XB70A-C1

Aircraft	XB-70A	CH-53A	Сн-53А	CH-53A
Flight Condition	Supersonic Cruise Clean	Approach	Approach	"Hover"
W ~ kg (lb)	174417 (384524)	15195 (33500)	15195 (33500)	15195 (33500)
C•g•	0.218 c	F.S. 352	F.S. 352	F.S. 352
Airspeed ~ kt or [M]	[2.5]	60	60	15
γ_0^{\sim} deg	0.0	0.0	0.0	0.0
$\theta_{o} \sim deg$	4. ∙4			
$h_o \sim m_{(ft)}$	18290 (60000)	30.5 (100)	610 (2000)	30.5 (100)
Configuration	XB70A-C2	Сн53а-А1	Сн53а-а2	СН53А - Н

TABLE III-1 (Concluded)

Aircraft	CH-53A	н-19	H - 19
Flight Condition	Cruise	"Hover"	Cruise
W~kg (lb)	15195 (33500)	2902 (6400)	3175 (7000)
C•g•	F.S. 352		
Airspeed ~ kt or [M]	150	15	69
$\gamma_{o} \sim deg$	0.0	0.0	0.0
$\theta_{o} \sim deg$			
$h_o \sim m_{(ft)}$	30.5 (100)	30.5 (100)	30.5 (100)
Configuration	CH53A-C	H1 9 _H	H10_C

-C for cruise

-P for turbulence penetration

-H for hover

Any parameters that are either unknown or not appropriate are indicated by a dash (---).

There are five configurations described in Table III-1 that are simply variations in altitude for aircraft in the approach configuration (e.g., AWJSRA-A1 and AWJSRA-A2). These cases are intended to demonstrate the altitude effects of the atmospheric turbulence model on the resulting RMS responses. The peak responses to the discrete wind shear for these cases will, of course, be identical.

C. NUMERICAL DESCRIPTION OF FLIGHT CONDITIONS

Numerical descriptions of the flight conditions for all configurations evaluated are contained in Tables III-2 through III-5. Tables III-4 and III-5 are the S.I. unit equivalents of Tables III-2 and III-3, respectively.

Table III-2 contains parameters associated with the longitudinal equations of motion. Table III-3 contains parameters associated with the lateral-directional equations of motion. The information contained in these tables can be classified as follows:

25

- 1. Trim conditions
- 2. Geometry
- 3. Stability derivatives
- 4. Pilot model parameters
- 5. Atmospheric turbulence model parameters.

TR 1063-2

	en an an an Arte An Arthreachan an Arthreachan An Arthreachan an Arthreachan an Arthreachan					
Configuration	- AWJSRA-A1	AWJSRA-A2	BR941-A	BR941-T	STOLX-A	AMST-A
$V_{T_O} \sim ft/sec$	109.7	109.7	109.7	126.7	107.2	143.6
h _o - ft	100.0	2000.	100.0	100.0	100.0	100.0
a ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
at ~ deg	5.19	5.19	-2.07	630	2.54	6.10
70 ~ deg	-7.50	-7.50	-7.50	10.80	-6.0	-6.0
$L_{\rm x}$ - ft	18.80	18.80	21.0	21.0	43.0	40.0
b – It	78.8	78.8	76.8	76.8	111.4	110.3
$x_{11} \sim 1/sec$	0680	0680	1190	0465	1178	0779
$Z_{\mu} \sim 1/sec$	281	281	397	288	-+419	316
$M_u - 1/\text{sec-ft}$	-,000350	000350	.001596	.00303	0001660	0001552
Z _¥ ~ 1/1	0130	0130	01250	01250	00644	00631
$M_{\tilde{W}} \sim 1/ft$	00374	00374	00281	00278	000838	000987
X _w ~ 1/sec	.1360	.1360	.1290	.1510	•0905	.0742
$Z_{W} \sim 1/sec$	505	505	557	908	422	430
M ~ 1/sec-ft	00450	00450	00396	00315		00383
$x_q \sim ft/sec$	0.0	0.0	0.0	0.0	0.0	0.0
$Z_q - ft/sec$	0.0	0.0	-3.60	-4.16	-4.64	0.0
M _q ~ 1/sec	-1.080	-1.080	807	921	494	779
$X_{\delta_e} - ft/sec^2$	0.0	0.0	0.0	0.0	0.0	0.0
$Z_{\delta_e} \sim ft/sec^2$	3.51	3.51	4.57	4.63	9.25	8.43
$M_{\delta_e} \sim 1/sec^2$	1.00	1.00	1.00	1.00	1.00	1.00
κ _θ - 1/1	3.20	3.20	2.58	2.84	1.746	5•58
T _L ~ sec	.269	.269	•40	.403	.699	•399
T _E ∼ sec	•333	•333	•333	.333	• 333	•333
o _u ~ ft/sec	6.85	6.08	6.82	6.82	5.82	6.82
ow - ft/sec	2.63	6.08	2.63	5.03	2.63	2.63
L _u ~ ît	673.	1750.	673.	673.	673.	673,
L ~ ft	100.0	1750.	100.0	100.0	100.0	100.0

TABLE III-2 TRIM CONDITIONS AND STABILITY DERIVATIVES. LONGITUDINAL, U.S. UNITS

TR 1063-2

26
TABLE III-2 (Continued)

DE POOR QUALTY

			The second second			
Configuration	DHC6-A1	DHC6-A2	DHC6-T	CV880-A	CV880-P	CV880-C
$V_{T_O} - ft/sec$	118.2	118.2	135.1	226.	615.	837.
h _o ~ ft	100.0	5000	100.0	100.0	23000.	35000.
ao ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
$\alpha_t \sim \deg$	-5.10	-5.10	-2.59	5.20	5.30	4.04
γ _o ∼ deg	-5.40	-5.40	8.78	-3.0	0.0	0.0
l _x - ft	9.75	9.75	9.75	49.2	49.2	49.2
b ~ 1 t	65.0	65.0	65.0	120.0	120.0	120.0
$X_u \sim 1/sec$	0678	0678	0646	0423	00642	00590
$Z_{u} \sim 1/sec$	+.524	524	383	284	1050	0772
$M_{\rm u} \sim 1/{\rm sec-ft}$.001050	.001050	.00515	0001372	249E-4	227E-4
$z_{\tilde{w}} \sim 1/1$	0389	0389	01271	01550	00550	00420
M. ~ 1/ft	00270	00270	00459	000726	000340	000243
X _w ~ 1/sec	.1840	.1840	.0629	.0828	.0321	.0219
Z _w ~ 1/sec	-,930	930	-1.504	661	628	631
M _w ~ 1/sec-ft	0245	0245 .	01191	001580	00277	00345
X _q - ft/sec	0.0	0.0	0.0	0.0	0.0	0.0
Z _q ~ ft/sec	0.0	0.0	0.0	-10.40	-9.34	-9,25
$M_q \sim 1/sec$	-1.750	-1.750	-1.332	481	578	530
$x_{\delta_e} \sim ft/sec^2$	0.0	.0.0	0.0	0.0	0.0	0.0
$Z_{\delta_e} \sim ft/sec^2$	2.83	2.83	2.79	11.30	9,23	9.39
$M_{\delta_2} \sim 1/sec^2$	1.00	1.00	1.00	1.00	1.00	1.00
$x_{g} \sim 1/1$	4•77	4.77	4.08	2.99	2.18	2.35
T _L ~ sec	0.0	0.0	•1597	.643	.1054	0.0
T _E ~ sec	.333	.333	•333	•333	•333	.333
$\sigma_{u} \sim ft/sec$	6.82	6.08	6.82	6.52	4.64	- 4.55
σ _w ∼ ft/sec	5.63	5.08	2.63	2.63	4.64	4.55
L _u ~ ft	673.	1750.	673.	673.	1750.	1750.
1, ~ 1t	100.0	1750.	100.0	100.0	1750.	1750.
		the second s				

TR 1063-2

ORIGIN IL PAGE IS OF POOR QUALITY

1

TABLE III-2 (Continued)

Configuration 8747-A1 8747-T 3747-P 8747-C 8747-A2 $V_{T_O} \sim ft/sec$ 856: 241. 241. 595. 674. h_o ~ ft 35000. 2000. 100.0 100.0 20000. ao ~ deg 0.0 0.0 0.0 0.0 0.0 at ~ deg 10.0 1.70 4.44 4.44 2.50 70 ~ deg -3.0 -3.0 2.50 0.0 .0.0 Ix ~ ft 86.0 86.0 86.0 86.0 86.0 b ~ ft 195.7 195.7 195.7 195.7 195.7 $X_n \sim 1/sec$ -.0209 -.00534 -.0284 -.0335 -.0335 $Z_u \sim 1/sec$ -.265 -.265 -.213 -.1070 -.0321 $M_{\rm H} \sim 1/{\rm sec-ft}$ -.000201 -.0001074 -.0001074 .574E-5 -.000306 Z. ~ 1/1 -.0338 -.00785 -.0338 -.0263 -.01560 $M_{\odot} \sim 1/ft$ -.0001550 -.000241 -.000218 -.0001830 -.000241 $X_{\rm w} \sim 1/{\rm sec}$.0314 .0492 .0492 .0249 -.001472 $Z_w \sim 1/sec$ -.521 -.472 -.521 -.537 -.468 M ~ 1/sec-ft -.00206 -.00206 -.00224 -.001841 -.00190 X ~ ft/sec 0.0 0.0 0.0 0.0 0.0 $Z_q \sim ft/sec$ -8.11 -7.70 -6.67 -6.67 -6.19 $M_q \sim 1/sec$ -.385 -.385 -.535 -. 474 -.413 $X_{\delta_e} \sim ft/sec^2$ 0.0 0.0 0.0 0.0 0.0 $z_{\delta_e} \sim ft/sec^2$ 16.95 15.62 15.56 16.95 14.40 $M_{\delta_e} \sim 1/sec^2$ 1.00 1.00 1.00 1.00 1.00 к_а ~ 1/1 1.545 1.581 1.793 1.545 1.860 $T_L \sim sec$.719 .719 .621 .270 .1609 $T_E \sim sec$.333 .333 .333 .333 .333 $\sigma_u \sim ft/sec$ 4.55 6.82 6.08 6.82 4.66

r^a ~.t

ow ~ ft/sec

L_u ~ ft

2.63

673.

.100.0

TR 1063-2

28

5.63

673.

100.0

4.66

1750.

1750.

6.08

1750.

1750.

4.55

1750.

1750. .

OF POOR QUALITY

TABLE III-2 (Continued)

			'	
Configuration	X870A-41	104-A2	X870A-C1	X370A-C2
V _{To} ~ ft/sec [.]	346.	346.	871.	2420.
h _o ~ ft	100.0	2000.	40000.	60000.
ao ~ deg	0.0	0+0	0.0	0.0
$a_t \sim deg$	7.50	7.50	7.30	4.40
γ _o ~ deg	-3.0	-3+0	0.0	0.0
$l_{\rm x}$ - ft	99+0	99.0	97.7	97.7
d - ft	105.0	105.0	105.0	105.0
$X_u \sim 1/sec$	0306	0306	00865	00323
$Z_u \sim 1/sec$	1850	1850	0888	0170
M _u ~ 1/sec-ft	395E+4	395E-4	000528	380E-4
Z. ~ 1/1	0.0	0.0	0.0	0.0
$M_{\star} \sim 1/ft$	•721E-4	•721E-4	.290E-4	0.0
$X_{w} \sim 1/sec$	0630	0630	0419	00577
$Z_{w} \sim 1/sec$	737	737	369	204
M ~ 1/sec-ft	00292	00292	001530	000810
X ~ ft/sec	0.0	0.0	0.0	0.0
$Z_{q} \sim ft/sec$	0.6	0.0	0.0	0.0
$M_q \sim 1/sec$	749	749	653	1070
$X_{\delta_e} \sim ft/sec^2$	0.0	0.0	0.0	0-0
$Z_{\delta_e} \sim ft/sec^2$	52.9	52.9	33+1	15.85
Mõe ~ 1/sec ²	1.00	1.00	1.00	1.00
к _ө ~ 1/1	2.23	2.23	1.734	.567
T _L ~ sec	.249	249	.211	.218
T _E ~ sec	.333	•333	.333	•333
$\sigma_{\rm u} \sim {\rm ft/sec}$	6.82	6.08	4.52	3.86
σ ~ ft/sec	2.63	6.08	4.52	3.86
L _u ~ ft	673.	1750.	1750.	1750.
I, ~ft	100.0	1750.	1750.	1750.
· · · · · · · · · · · · · · · · · · ·				

TR 1063-2

Configuration	CH53A-A1	CH53A-A2	CH53A-H	2H53A-C	н 19-н	н 19-С
$V_{T_O} \sim ft/sec$	101.0	101.0	25.3	253.	25.3	116.4
h _o ~ ft	100.0	5000.	100.0	100.0	100.0	100.0
a ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
at ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
γ _o ∼ deg	0.0	0.00	0.0	0.0	0.0	0.0
$l_{\rm x}$ ~ ft	17.0	17.0	17.0	17.0	2.40	2.40
b ~ ft	72.3	72.3	72.3	72.3	53.0	53.0
X _u ~ 1/sec	0227	0227	01540	0396 .	→. 0284	0525
Z _u ~ 1/sec	-,0893	0893	0.0	.0733	0.0	.01510
M _u - 1/sec-ft	.00322	.00322	.00204	.001650	.00609	.00612
$z_{\dot{w}} \sim 1/1$	0.0	0.0	0.0	0.0	0.0	0.0
$M_{\tilde{w}} \sim 1/ft$	000213	000213	0.0	0001120	0 • 0 • 0	0.0
X ~ 1/sec	000528	000528	6.0	.0301	9.0	.0207
$Z_{w} \sim 1/sec$	694	694	303	-1.080	~.690	810
$M_{\rm W} \sim 1/{\rm sec-ft}$.001695	.001695	.000746	.00702	- 0.0	00231
X ~ ft/sec	1.690	1.690	1.360	.790	2.73	3.81
$Z_q \sim ft/sec$.0954	.0954	.1260	.1620	0.0	40
$M_{q} \sim 1/sec$	562	562	438	724	610	-1.004
$X_{\partial_e} \sim ft/sec^2$	-7.10	-7.10	-7.69	-4.02	-4.84	-4.31
$Z_{\delta_e} \sim ft/sec^2$	-14.79	-14.79	0.0	-39.4	0.0	-12.96
$M_{\delta_e} \sim 1/sec^2$	1.00	1.00	1.00	1.00	1.00	1.00
K ₉ ~ 1/1	1.706	1.706	1.469	2.11	1.669	2.29
T _L ~ sec	.877	.877	.987	1.135	.828	.472
T _E ∼ sec	•333	.333	.333	,333	.333	.333
σ _u ~ ft/sec	6.82	6.08	5.82	5.82	6.85	6.82
σ _w ∼ ft/sec	2.63	6.08	2.63	2.63	2.63	5.63
$L_u \sim ft$	673.	1750.	673.	673.	673.	673.
	100.0	1750.	100.0	100.0	100.0	100.0

1

TABLE III-3

TRIM CONDITIONS AND STABILITY DERIVATIVES. LATERAL-DIRECTIONAL, U.S. UNITS

٠

Configuration	AWJSRA-A1	AWJSRA-A2	BR941-A	BR941-T	STOLX-A	AMST-A
$v_{T_o} \sim ft/sec$	109.7	109.7	109.7	126.7	107.2	143.6
h _o ~ ft	100.0	5000.	100.0	100.0	100.0	100.0
ao ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
a _t ~ deg	5.19	5,19	+2.07	630	2.54	6.10
γ _o ~ deg	-7.50	-7.50	-7.50	10.80	-6.0	-6.0
$z_{\rm x} \sim {\rm ft}$	18.80	18.80	21.0	21.0	43.0	40.0
ℓ ₂ ~ ft	-1.240	-1.240	0.0	0.0	0.0	0.0
b ~ ft	78.8	78.8	76.8	76.8	111.4	110.3
Y _v ~ 1/sec	1240	. 1240	1140	1610	0765	0851
$Y_p \sim ft/sec$	0.0	0.0	0.0	0.0	.975	0.0
Y ~ ft/sec	0.0	0.0	0.0	0.0	.474	0.0
$L_{\beta}^{\dagger} \sim 1/sec^2$.0403	.0403	206	805	505	675
$L_{p}^{\prime} \sim 1/sec$	624	624	• - • 786	704	625	750
$L_{r}^{i} \sim 1/sec$	1.567	1.567	0970	.749	.980	1.364
$N_{\beta}^{*} \sim 1/sec^{2}$	•534	.534	•554	.0706	.1788	•377
$N_{\rm p}^{\rm t} \sim 1/{\rm sec}$	232	- 235	1150	1560	140	199
$N_r^t \sim 1/sec$	238	538	490	428	0735	1660
$Y_{\delta_a}^* \sim 1/sec$	0239	0239	0.0	0.0	0.0	0.0
$L_{\delta_a}^i \sim 1/sec^2$	1.00	1.00	1.00	1.00	1.00	1.00
$N_{\delta_a}' \sim 1/sec^2$	1476	1476	.00190	01890	.0779	•0350
$K_{o} \sim 1/1$	1+928	1.928	1.914	1 + 744	1.465.	1.508
.T _L ~ sec	•375	.375	.702	.709	.937	•769
T _E ~ sec	•333	.333	.333	• 333	• 333	.333
σ _v ~ ft/sec	6.82	6.08	6.82	6.82	6.82	6.82
ap ~ deg/sec	1.684	1.502	1.714	1.714	1.337	1.346
L ~ ft	673.	1750+	673.	673.	673.	673.

÷.,

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III-3 (Continued)

Configuration	DHC6-A1	DHC6-42	UHC6-T	CVBB0-A	CVBJ0-P	CV880-C
V _{Tc} ~ ft/sec	118.2	118.2	135.1/2010	226.	615.	837.
h _o ~ ft	100.0	2000.	100.0	100.0	53000.	35000.
ao ~ deg	0.0	0.0	0.0	0 • 0 • 0 • 0 • 0	0.0	0.0
a _t ~deg	-5,10	-5.10	-2.59	5.20	5.30	4.04
γ _o ∼ deg	-5.40	-5.40	8.78	-3.0	0.0	0.0
$l_{\rm x}$ ~ ft	9.75	9.75	9.75	49.2	49.2	49.2
$l_z \sim ft$	-2.03	-2.03	-2.03	-4.15	-4.15	-4.15
b ~ ft	65.0	65.0	65.0	120.0	120.0	120.0
Y _v ~ 1/sec	1337	1337	1780	1390	1150	1080
$Y_{\rm p} \sim ft/sec$	0.0	0.0	0.0	0.0	0.0	0.0
Y ~ ft/sec	0.0	0.0	0.0	0.0	0.0	0.0
$L_{A}^{1} \sim 1/sec^{2}$	-2.21	-2.21	-2,95	-3.13	-5.82	-7.57
$L_{\rm m}^{\rm P} \sim 1/{\rm sec}$	-4.49	-4.49	-4.67	-1.30	-1.090	863
L' ~ 1/sec	2.47	2.47	2.46	1.080	.518	•450
$N_{A}^{\dagger} \sim 1/sec^{2}$	5.05	2.02	1.742	.786	1.970	2.36
$N_{\rm m}^{\rm i} \sim 1/{\rm sec}$.	-,738	738	307	01390	• 0424	.0'325
$N_{\perp}^{t} \sim 1/sec$	706	706	546	303	233	20
Y [*] _{δa} ~ 1/sec	0.0	0.0	1223E-4	00960	00150	00130
$L_{b_{2}}^{1} \sim 1/sec^{2}$	1.00	1.00	1.00	1.00	1.00	1.00
$N_{5_{0}}^{\prime} \sim 1/sec^{2}$.01063	.01063	•1463	.01330	01220	0218
K_~ 1/1	10.76	10.76	6,33	2.27	2.34	2.62
Ψ T _T ∼ sec	0.0	0.0	0.0	.517	.411	.258
ך ד _נ , ∼ sec	• 333	•333	.333	.333	.333	•333
₽ o_ ~ ft/sec	6.82	6.08	6.82	6.82	4.64	4.55
u ~ deg/sec	-1.915	1.708	1.915	1.272	.865	•549
	673.	1750.	673.	673.	1750.	1750.
V States		• • · · · · · · · · · · · · · · · · · ·				

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III-3 (Continued)

. 1 1

Configuration	8747-41	8747-A2	8747-T	3747-P	8747-C
V _{To} ~ ft/sec	241.	- 241.	292.	674.	856.
h _o ~ft	100.0	2000.	100.0	20000.	35000.
ao ~ deg	0.0	0.0	0.0	0.0	0.0
$\alpha_t \sim \deg$.	4.44	4.44	10.0	2.50	1.70
γ _o ~ deg	-3.0	-3.0	2.50	0.0	0.0
<i>t</i> _x ~ ft	86.0	86.0	86.0	86.0	86.0
$l_z \sim ft$	-10.0	-10.0	-10.0	-10.0	-10.0
b ~ ft	195.7	195.7	195.7	195.7	195.7
Y _v ~ 1/sec	0935	0935	0699	1040	0765
Yp ~ ft/sec	5.70	5.70	4.35	0.0	0.0
Y _r ~ ft/sec	.207	.207	1.035	0.0	.241
$L_{\beta}^{*} \sim 1/sec^{2}$	-1.321	-1.321	-1.240	-2.92	-3.06
$L'_p \sim 1/sec$	-1.016	-1.016	757	791	559
$L_r^i \sim 1/sec$	•315	.315	.344	344	- 314
$N_{\beta}^{*} \sim 1/sec^{2}$	•273	.273	.436	1.050	1.644
$N_{\rm p}^{\rm t} \sim 1/{\rm sec}$	0909	0909	0430	0270	.01092
$N_{\mathbf{r}}^{\prime} \sim 1/\text{sec}$	212	212	209	- 205	- 1738
$Y_{\delta_a} \sim 1/sec$	0.0	0.0	0.0	0-0	0-0
$L_{ba}^{1} \sim 1/sec^{2}$	1.00	1.00	1.00	1.00	1.00
$N_{\delta_a}^* \sim 1/sec^2$.0337	•0337	0718	-0507	- 0443
K_ ~ 1/1	2.18	2.18	1.818	1.803	1-494
Ψ T _{T.} ∼ sec	•589	•589	.680	.846	-714
T _p ~ sec	.333	.333	3 1 3		114
$\sigma_{\rm m} \sim {\rm ft/sec}$	6.82	6.08	6.42	4.66	• 333 A EE
a ~ deg/sec	.918	. 819	.012	¥.00	4.35
Р ~ <u>-</u> т	673-	1750	•710	•028	•613
T V		T.120.0	013.	1/50.	1750.

•

TABLE III-3 (Continued)

ORIGINAL PAGE IS OF POOR QUALITY

Configuration	X870A-A1	X870A-42	X870A-C1	X870A-C2
V _{To} ~ ft/sec	346.	346.	871.	2420.
h _o ~ ft	100.0	2000.	40000.	60000.
ao ~ deg	0.00	0.0	0.0	0.0
at ~ deg	7.50	7.50	7.50	4.40
$\gamma_{o} \sim deg$	-3.0	-3.0	0.0	0.0
$l_{\rm x}$ - ft	99.0	99.0	97.7	97.7
$l_z \sim ft$	-6.70	-6.70	-6.70	-6.70
b ~ ft	105.0	105.0	105.0	105.0
$Y_v \sim 1/sec$	0508	0508	0352	0548
$\mathbf{x}_{\mathbf{p}} \sim \mathbf{ft/sec}$	0.0	0.0	0.0	0.0
Yr ~ ft/sec	0.0	0.0	.0.0	0.0
$L_{\beta}^{1} \sim 1/sec^{2}$	-4.88	-4.88	-6.01	2.05
$L_p^{i} \sim 1/sec$	-1.730	-1.730	-1.220	411
$L_r^i \sim 1/sec$	01120	01120	.241	.0412
$N_{\beta}^{*} \sim 1/sec^{2}$	1.550	1.550	1.680	.757
$N_p^* \sim 1/sec$.0451	.0451	.206	.000752
$N_r^{*} \sim 1/sec$	1780	1780	1280	1530
$Y^*_{\delta_a} \sim 1/sec$	00639	00639	504E-4	0.0
$L_{\delta_a} \sim 1/sec^2$	1.00	1.00	1.00	1.00
$N_{\delta_a} \sim 1/sec^2$	1777	1777	1857	1175
$K_{\phi} \sim 1/1$	1.549	1.549	2.15	1.663
T _L ~ sec	.1833	.1833	.0533	1.049
T _E ~ sec	.333	•333	.333	•333
$\sigma_v + ft/sec$	6.82	6.08	4.52	3.86
ap ~ deg/sec	1.391	1.241	.922	.788
$L_v \sim ft$	673.	1750.	1750.	1750.

TR 1063-2

۲.

ORIGINAL PAGE IS OF POOR QUALITY,

TABLE III-3 (Concluded)

Configuration	CH53A+A1	CH53A-A2	CH53A-H	CH53A-C	H19-H	H19-C
$V_{T_O} \sim ft/sec$	101.0	101.0	25.3	253.	25.3	116.4
h _o ~ ft	100.0	5000.	100.0	100.0	100.0	100.0
a _o ~ deg	0.0	0.0	0.0	0 • 0	0.0	0.0
at ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
$\gamma_{o} \sim deg$	0.0	0.0	0.0	0.0	0.0	0.0
$l_{\rm x}$ ~ ft	17.0	17.0	17.0	17.0	2.70	2.70
$l_z \sim ft$	0.0	0.0	0.0	0.0	0.0	0.0
b ~ ft	72.3	72.3	72.3	72.3	53.0	53.0
Y _v ~ 1/sec	0867	0867	0352	1540	0731	1220
$Y_p \sim ft/sec$	-1.90	-1.90	-1.430	-1.240	-3.0	-5.0
Y _r ~ ft/sec	2.04	2.04	.850	3.23	1.420	1.30
$L_{\beta}^{*} \sim 1/sec^{2}$	-1.141	-1.141	324	-5.85	-1.316	-8.47
$L_p^i \sim 1/sec$	-2.0	-2.0	-2.31	-1.790	-3.18	-4.81
$L_r^i \simeq 1/sec$.227	•227	.0946	• 654	.804	1.00
$N_{\beta}^{\prime} \sim 1/sec^2$.901	.901	.1343	2.71	•891	3.78
$N_p' \sim 1/sec$.0471	.0471	-01660	.1150	•550	.201
Nr ~ 1/sec	553	553	232	842	-1+10	-1.10
$Y_{\delta_a} \sim 1/sec$.01450	.01450	.0586	.00573	.0436	.00651
$L_{\delta a}^{\prime} \sim 1/sec^2$	1.00	1.00	1.00	1.00	1.00	1.00
$N_{\delta_a} \sim 1/sec^2$.00409	.00409	.00384	.00937	0.0	0.0
$K_{\phi} \sim 1/1$	3.69	3.69	4.18	3,25	4.72	8.14
T _L ~ sec	.234	.234	.1908	.303	.0685	0.0
T _E ~ sec	.333	. 333	• 333	•333	.333	•333
o _v ~ ft/sec	6.85	6.08	6.82	6.82	6.95	6.82
ap ~ deg/sec	1.785	1,592	1.785	1.785	2•19	2.19
$L_v \sim ft$	673.	1750.	673.	673.	673.	673.

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III-4

TRIM CONDITIONS AND STABILITY DERIVATIVES. LONGITUDINAL, S.I. UNITS

					· · · ·	
Configuration	AWJSRA-A1	AWJSRA-A2	BR941-A	3R941-T	STOLX-A	AMST-A
VTo~m/sec	33.4	33.4	33.4	39.6	32.7	43.8
ћ _о ~ m	30.5	610.	30.5	30.5	30.5	30.5
ao ~ deg	0.0	0.0	0.0	0.0	0 • 0	0.0
at ~ deg	5.19	5.19	-2.07	630	2.54	6.10
$\gamma_{o} \sim \deg$	-7.50	-7.50	-7.50	10.80	-6.0	-6.0
<i>l</i> _x ∼ m	5.73	5.73	6.40	6.40	13.11	12.19
b ~ m	24.0	24.0	23.4	23.4	. 33.9	33.6
$X_u \sim 1/sec$	0680	0680	1190	0465	1178	0779
$Z_u \sim 1/sec$	281	281	397	288	419	316
M _u ~ 1/sec-m	001148	001148	.00524	.00994	000545	000509
$z_{\dot{w}} \sim 1/1$	0130	0130	01250	01250	00544	00631
$M_{\dot{w}} \sim 1/m$	01227	01227	00925	00912	00275	00324
$X_{\rm W} \sim 1/{\rm sec}$	•1360	.1360	.1290	.1510	.0905	.0742
Z _w ~ 1/sec	505	505	557	908	422	430
$M_{\rm W} \sim 1/{\rm sec-m}$	01476	01476	01299	01033	00840	01256
X _q ~ m/sec	0.0	0.0	0.0	0.0	0.0	0.0
Z _q ~ m/sec	0.0	0.0	-1.097	-1.268	-1.414	0.0
$M_q \sim 1/sec$	-1.080	-1.080	807	921	494	779
$x_{\delta e} \sim m/sec^2$	0.0	0.0	0.0	0.0	0.0	0.0
$z_{\delta e} \sim m/sec^2$	1.070	1.070	1.393	1.411	5.85	2.57
$M_{\delta_e} \sim 1/\mathrm{sec}^2$	1.00	1.00	1.00	1.00	1.00	1.00
к _в ~ 1/1	3.20	3.20	2.58	2.84	1.745	5.58
T _L ~ sec	• 269	•563	• 40	.403	• 699	.399
T _E ~ sec	.333	•333	.333	.333	•333	.333
σ _u ∼ m/sec	2.08	1.854	5.08	5.08	5.08	5•08
σ _w ∼ m/sec	• 801	1.854	.801	•801	• 30 1	.801
L _u .~m	205.	533.	205.	205.	205.	205.
L, ~ m	30.5	533.	30.5	30.5	30.5	30.5

TR 1063-2

36 . TABLE III-4 (Continued)

Configuration	DHC6-A1	DHC6-A2	DHC6-T	CV880-A	CV880-P	CV880-C
V _{To} ~ m/sec	36.0	36.0	41.2	(68.9	187.5	255.
h _o ~m	30.5	610.	30.5	30.5	7010.	10670.
∝ _o ∼deg	0.0	0.0	0.0	0.0	0.0	0.0
$\alpha_t \sim deg$	-5.10	-5.10	-2.59	5.20	5.30	4.04
γ _o ~ deg	-5.40	-5.40	8.78	-3.0	0.0	0.0
<i>L</i> x ~ m	2.97	2.97	2.97	15.0	15.0	15.0
b ~ m	19.81	19.81	19.81	36.6	36.6	36.6
$X_u \sim 1/sec$	0678	0678	0646	0423	00642	00590
$Z_u \sim 1/sec$	524	524	383	284	1050-	0772
M _u ~ 1/sec-m	.00344	.00344	.01690	000450	817E-4	745E-4
$z_{\tilde{w}} \sim 1/1$	0389	0389	01271	01550	00550	00420
M 1/m	00886	00886	01505	00238	001116	000796
$X_{w} \sim 1/sec$.1840	.1840	.0629	.0828	.0321	.0219
$Z_{\rm W} \sim 1/{\rm sec}$	930	930	-1.504	661	628	631
M _w - 1/sec-m	0804.	0804	0391	00516	00909	01133
X _q ~ m/sec	0.0	0.0	0.0	0.0	0.0	0.0
Z _a ~ m/sec	0.0	0.0	0.0	-3.17	-2.85	-2.82
M _a ~ 1/sec	-1.750	-1.750	-1.332	481	578	530
$x_{\delta e} \sim m/sec^2$	0.0	C.O	0.0	0.0	0.0	0.0
$Z_{\delta_e} \sim \pi/sec^2$.863	.863	.850	3.44	2.81	2.86
$M_{\delta_{e}} \sim 1/sec^{2}$	1.00	1.00	1.00	1.00	1.00	1.00
$K_{0} \sim 1/1$	4.77	4.77	4.08	2.99	2.18	2.35
TL ~ sec	0.0	0.0	.1597	•643	.1064	0.0
T _E ∼ sec	•333	•333	.333	.333	•333	• 333
σ ₁₁ ∼ m/sec	5.08	1.854	2.08	2.08	1.413	1.387
σ_ ~ m/sec	.801	1.854	.801	.801	1.413	1.387
L, ~ m	205.	533.	205.	205.	533.	533.
L. ~ m	30.5	533.	30.5	30.5	533,	533.

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III-4 (Continued)

		en de la companya de			
Configuration	B747-A1	B747-A2	8747-T	8747-P	8747-C
VTo~m/sec	73.3	73.3	89.1	205.	201.
h _o ~ m	30.5	610.	30.5	6100.	10670.
ao ~ deg	0.0	0.0	0.0	0.0	0.0
at ~ deg	4.44	4.44	10.0	2.50	1.70
γ ~ deg	-3.0	-3.0	2.50	0.0	0.0
<i>l</i> _x ~ m	56•5	56.5	26.2	26.2	26.2
b ~ m	59.6	59.6	59.6	59.6	59.6
$x_u \sim 1/sec$	0335	0335	0209	00534	0284
Z _u ~ 1/sec	265	265	213	1070	0321
M _u ~ 1/sec-m	000352	000352	000659	.1883E-4	001003
$z_{\dot{w}} \sim 1/1$	0338	0338	0263	01560	00785
$M_{\tilde{W}} \sim 1/m$	000790	000790	000716	000509	00060
$X_w \sim 1/sec$.0492	.0492	.0314	.0249	001472
$Z_{\rm w} \sim 1/{\rm sec}$	521	521	472	537	468
M. ~ 1/sec-m	00677	00677	00734	00623	00604
$x_{a} \sim m/sec$	0.0	0.0	0.0	0.0	0.0
Z ~ m/sec	-2.03	-2.03	-1.887	-2.47	-2.35
M ~ 1/sec	385	365	413	535	474
$x_{\delta_e} \sim m/sec^2$	0.0	0.0	0.0	0.0	0.0
Z _{be} ~ m/sec ²	5.17	5.17	4.39	4.76	4.74
$M_{6_e} \sim 1/sec^2$	1.00	1.00	1.00	1.00	1.00
$K_{A} \sim 1/1$	1,545	1.545	1.581	1.860	1.793
T _L ∼ sec	.719	•719	.621	.270	.1609
r _g ∼sec	.333	.333	•333	• 333 •	• 333
σ, ~ m/sec	5.08	1.054	2.08	1.421	1.387
σ _u ∼ m/sec-	.801	1.854	.801	1.421	1.387
L , ~ m	205.	533.	205.	533.	533.
L. ~ m	. 30.5	533.	30.5	533.	533

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III-4 (Continued)

Canfi muchi an			Y3704 01	¥3366 03
Configuration	XB70A-AI	X870A-A2	XBY0A-CI	X370A-C2
VTo~m/sec	105.5	105.5	265.	738.
h _o ~ m	30.5	610.	12190.	18290.
ao ~ deg	0.0	0.0	0.0	0.0
at ~ deg	7.50	7.50	7.50	4.40
7₀ ~ deg	-3.0	-3.0	0.0	0.0
<i>l</i> _x ∼ m	30.2	30.2	29.8	29.8
Ъ~ш	32.0	32.0	32.0	35.0
$x_u \sim 1/sec$	0305	0306	00855	00323
$Z_u \sim 1/sec$.	1850	1850	0888	0170
M _u - 1/sec-m	0001296	0001296	001732	0001247
$Z_{\hat{w}} \sim 1/1$	0.0	0.0	0.0	0.0
K. ~ 1/m	.000237	.000237	.951E-4	0.0
X _w - 1/sec	0630	0630	0419	00577
Z _w - 1/sec	737	737	369	204
$M_{W} \simeq 1/\text{sec-m}$	00958	00958	00502	00266
X _q ~ m/sec	0.0	0.0	0.0	0.0
$Z_q \sim m/sec$	0.0	0.0	0.0	0.0
$M_{q} \sim 1/sec$	749	749	653	1070
$X_{\delta_e} \sim m/sec^2$	0.0	0.0	9.0	0.0
z _{δe} ~ m/sec ²	16.12	16.12	10.10	4.83
$M_{\delta_e} \sim 1/sec^2$	1.00	1.00	1.00	1.00
x _θ ~ 1/1	2.23	5•53	1.734	.567
T _L ∼ sec	.249	•249	•511	.218
T _E ~ sec	.333	.333	•333	. 333
σ _u ~ m/sec	2.08	1.854	1.378	1.177
o, ∼ m/sec	.801	1.854	1.378	1.17.7
L _u ~ m	205.	533.	533.	533.
L _w ~ m	30.5	533.	533.	533.
사람이 가지 않는 것 이 아름다. 이렇게 집에 집에 들었다. 나라 나는	and the second		 A second sec second second sec	

TR 1063-2

OF POOR QUALITY

TABLE III-4 (Concluded)

				A Contraction of the second		
Configuration	CH53A-A1	CH53A-42	CH53A-H	CH53A-C	H19-H	H19-C
V _{To} ~ m/sec	30.8	30.8	7.71	77.1	7.71	35.5
h _o ~ m	30.5	610.	30.5	30.5	30.5	30.5
a _o ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
at ~ deg	0.0	0.0	0.0	0.0	0.0	0.0
70 ~ deg	0.0	0.0	0.0	0.0	0 - 0	0.0
<i>l</i> _x ∼ m	5.18	5.18	5.18	5.18	.732	.732
b ~ m	55.0	55.0	55.0	55.0	16.15	16.15
$X_u \sim 1/sec$	0227	0227	01540	0396	0284	0525
Z _u ~ 1/sec	0893	0893	0.0	.0733	0.0	.01510
$M_{\rm u} \sim 1/{\rm sec-m}$.01056	.01056	.00669	.00541	•020	.0201
$z_{\dot{v}} \sim 1/1$	0.0	0.0	0.0	0.0	0.0	0.0
$M_{\star} \sim 1/m$	000699	-,000699	0.0	000367	0.0	- 0.0
$X_{\rm w} \simeq 1/{\rm sec}$	000528	000528	0.0	.0301	0.0	.0207
Z. ~ 1/sec	694	694	303	-1.080	690	810
M. ~ 1/sec-m	.00556	.00556	.00245	.0230	.0.0	00758
X _a ~ m/sec	.515	•515	.415	.241	.832	1.151
Z _a ~ m/sec	.0291	.0291	•0384	•0494	0.0	1219
M ~ 1/sec	562	-:562	438	724		-1.004
$X_{\delta e} \sim m/sec^2$	-2.16	-2.16	34	-1.225	-1.475	-1.314
$Z_{\delta_e} \sim m/sec^2$	-4.51	-4.51	0.0	-12.01	0.0	-3.95
Mo ~ 1/sec ²	1.00	1.00	1.00	1.00	1.00	1.00
$x_{\rm p} \sim 1/1$	1.706	1.705	1.469	2.11	1.669	2.29
T _{T.} ~ sec	.877	.877	.987	1.135	.828	•472
T _E ~ sec	.333	•333	•333	.333	•333	•333
σ, ∼-m/sec	2.03	1.854	2.08	5.08	2.08	2.08
σ, ~ m/see	.801	1.854	.801	.801	.801	.801
L ,, ~ m	205.	533.	205.	205.	205.	205.
L. ~ M	30.5	533.	30.5	30.5	30.5	30.5
	and the second			(j) A set of the se		

TR 1063-2

ORIGINALI PAGE IS OF POOR QUALITY

TABLE III-5

TRIM CONDITIONS AND STABILITY DERIVATIVES. LATERAL-DIRECTIONAL, S:I. UNITS

Conf	iguration	AWJSRA-A1	AWJSRA-A2	88941-A	BR941-T	STOLX-A	AMST-A
VTo	~ m/sec	33.4	33.4	33,4	38.6	32.7	43.8
ho	~ m	30,5	610.	30.5	30.5	30.5	30.5
α ₀	~ deg	0.0	0.0	0.0	0.0	0.0	0.0
at	~ deg	5,19	5.19	-2.07	630	2.54	6.10
γ _o	~ deg	-7.50	-7.50	-7.50	10.80	-6.0	-6.0
l _x	~ <u>m</u>	5.73	5.73	6.40	6.40	13.11	12.19
l _z	~ <u>m</u>	378	378	0.0	0.0	0.0	0.0
Ъ	~ <u>m</u>	24.0	24.0	23.4	23.4	33.9	33.6
Y v	~ 1/sec	1240	1240	1140	1610	0765	0851
Y	~ m/sec	0.0	0.0	0.0	0.0	.297	0.0
Y	~ m/sec	0.0	0.0	0.0	0.0	.1446	0.0
L'	~ 1/sec ²	.0403	.0403	206	805	505	875
L,	~ 1/sec	624	624	786	704	625	750
L'	~ 1/sec	1.567	1.567	0970	•749	.980	1.364
N'	~ 1/sec ²	.534	•534	• 554	.0706	.1788	.377
N ^t _D	~ 1/sec	232	232	1150	1560	140	199
N'	~ 1/sec	238	238	490	428	0735	1660
Yoa	~ 1/sec	0239	0239	0.0	0.0	0.0	0.0
Lôa	~ 1/sec ²	1.00	1.00	1.00	1.00	1.00	1.00
Noa	~ 1/sec ²	-,1476	1476	.00190	01890	.0778	.0350
K	~ 1/1	1.928	1.928	1.914	1.744	1.466	1.508
T _{I.}	~ sec	.375	.375	702	.709	.937	.769
T _E	~ sec	.333	•333	.333	•333	•333	.333
σ,	~ m/sec	5.08	1.854	5.08	2.08	2.08	5.08
۳. م	~ deg/sec	.513	•458	•255	•255.	•408	•410
L	~ <u>m</u>	205.	533.	205.	205.	205.	205.

TR 1063-2

Driginal page is De Poor Quality

TABLE III-5 (Continued)

Conf	iguration	DHC6-A1	DHC6-A2	DHC6+T	CV890-A	CV880-P	CV880-C
VTo	~ m/sec	36.0	36.0	41.2	68.9	187.5	255.
h	~ <u>m</u>	30.5	610.	30.5	30+5	7010.	10670.
æo	~ deg	0.0	0.0	0.0	0.0	0.0	0.0
at	~ deg	-5.10	-5.10	-2.59	5.20	5.30	4.04
70	~ deg	-5.40	-5.40	5.78	-3.0	0.0	0.0
l _x		2.97	2.97	2.97	15.0	15.0	15.0
l _z	- 10	619	619	619	-1.265	-1.265	-1.265
Ъ	~ m	19.81	19.81	19.81	36.6	36.6	36.6
Y.	~ 1/sec	1337	1337	1780	1390	1150	1080
Yp	~ m/sec	0.0	0.0	0.0	0.0	0.0	0.0
Y	~ m/sec	0.0	0.0	0.0	0.0	0.0	0.0
L ¹ B	~ 1/sec ²	-5.51	-5.51	-2.95	-3.13	-5.82	-7.57
Ľ	~ 1/sec	-4.49	-4.49	-4.67	-1.30	-1.090	863
L'r	~ 1/sec	2.47	2.47	2.46	1.080	.518	.450
N ^s B	~ 1/sec ²	5.05	5.05	1.742	•786	1.970	2.36
N!	~ 1/sec	738	738	307	01390	.0424	.0325
N ^t	~ 1/sec	705	706	546	303	233	20
$Y^{\bullet}_{\delta_{\mathbf{a}}}$	~ 1/sec	0.0	0.0	1223E-4	00960	00160	00130
L_{δ_a}	~ 1/sec ²	1.00	1.00	1.00	1.00	1.00	1.00
N_{δ_a}	~ 1/sec ²	.01063	.01063	.1463	.01330	01220	0218
ĸ	~ 1/1	10.76	10.76	6+33	2.27	2.34	2.62
TL	~ sec	. 0.0	0.0	0.0	.517	•411	•258
TE	~ sec	•333	,333	•333	.333	•333	•333
σ	~ m/sec	5.08	1.854	2.08	2.08	1.413	1.387
σ	~ deg/sec	•584	•251	•584	.388	•264	,259
L	~ <u>n</u>	205.	533.	205.	205.	533.	533.

ORIGINAL PAGE IN OF POOR QUALITY

TABLE III-5 (Continued)

Conf	iguration	B747-A1	8747-A2	8747-T	8747-P	8747-C
V _T o	~ m/sec	73.3	73.3	89.1	205.	261.
h	~ m	30.5	610.	30.5	6100.	10670.
a.	~ deg	0.0	0.0	0.0	0.0	0.0
at	~ deg	4.44	4.44	10.0	2.50	1.70
70	~ deg	-3.0	-3.0	2.50	0.0	0.0
L	.	56.5	26.2	26.2	56.5	26.2
l _z	~ n	-3.05	-3.05	-3.05	-3.05	-3.05
Ъ	~n	59.6	59.6	59.6	59.6	59.6
Y v	~ 1/sec	0935	0935	0699	1040	0765
Yp	~ m/sec	1.737	1.737	1.326	0.0	0.0
Y,	~ m/sec	.0631	.0631	.315	0.0	.0735
L.	~ 1/sec ²	-1.321	-1.321	-1.240	2.92	-3.06
L [‡]	~ 1/sec	-1.016	-1.016	757	791	559
I,	~ 1/sec	•315	.315	.344	.344	•314
N'B	~ 1/sec ²	.273	.273	•436	1.050	-1.694
N'	~ 1/sec	0909	0909	0430	0270	.01092
N'r	~ 1/sec	212	212	209	205	1738
$\mathtt{Y}^{\bullet}_{\delta_{\mathtt{A}}}$	~ 1/sec	0.0	0.0	0.0	0, • 0	C • O
\mathtt{L}_{δ_a}	~ 1/sec ²	1.00	1.00	1.00	1.00	1.00
Noa	~ 1/sec ²	.0337	.0337	0718	.0507	0443
κ _φ	~ 1/1	2.18	5.18	1.818	1.803	1.484
TL	- sec	.589	•589	.680	.846	.714
T _E	~ sec	.333	•333	.333	.333	.333,
σv	~ m/sec	2.08	1.854	2.08	1.421	1.387
σ P	~ deg/sec	.280	•250	.290	•1914	.1868
L	** m	205.	533.	205.	533.	533.

TR 1063-2

TABLE III-5 (Continued)

A	· · · · · · · · · · · · · · · · · · ·				
Conf	iguration	X870A-A1	X8704-42	XB70A-C1	X370A-C2
VT _o	~ m/sec	105.5	105.5	265.	738.
^h o	~ <u>n</u>	30.5	610.	12190.	18290.
°°°	~ deg	0.0	0.0	0.0	0.0
at	~ deg	7.50	7.50	7.50	4.40
γ ₀	~ deg	-3.0	-3.0	0.0	0.0
ľ _x	~ m	30.2	30.2	29.8	29.8
ľ,	~ m	-2.04	-2.04	-2.04	-2.04
Ъ	~ m	32.0	32.0	32.0	35.0
Y _v	~ 1/sec	0508	0508	0352	0548
Y p	~ m/sec	0.0	0.0	0.0	0.0
Y _r	~ m/sec	0.0	0.0	0.0	0.0
L ^s B	~ 1/sec ²	-4.88	-4.88	-6.01	2.05
L'	~ 1/sec	-1.730	-1.730	-1.220	-,411
L'r	~ 1/sec	01120	01120	.241	.0412
N	~ 1/sec ²	1.550	1.550	1.680	.757
N [*] p	~ 1/sec	.0451	,0451	.206	.000752
N ^t	~ 1/sec	1780	1780	1280	1530
$\mathtt{Y}_{\delta_{\mathtt{A}}}^{\bullet}$	~ 1/sec	00639	00639	504E-4	0.0
$\mathtt{L}^{i}_{\delta_{a}}$	~ 1/sec ²	1.00	1.00	1.00	1.00
Noa	~ 1/sec ²	1777	1777	1857	1175
К	~ 1/1	1.549	1.549	2.15	1.663
T _L	~ sec	.1833	.1833	.0533	1.049
TE	~ sec	•333	• 333	.333	•333
σ v	~ m/sec	2.08	1.854	1.379	1.177
σ	~ deg/sec	•424	.378	•581	•240
L	~ m	205.	533.	533.	533.

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III-5 (Concluded)

Conf	iguration	CH53A-A1	CH534-42	CH53A-H	CH53A-C	H19-H	H19-C
VTo	~ m/sec	30.8	30.8	7.71	77.1	7.71	35.5
ho	~ m	30.5	610.	30.5	30.5	30.5	30.5
a _o	~ deg	0.0	0.0	0.0	0.0	0.0	0.0
a _t	~ deg	0.0	0.0	0.0	0.0	0.0	0.0
70	~ deg	0.0	0.0	0.0	0.0	0.0	0.0
l _x	~ m	5.18	5.18	5.18	5.18	.823	.823
l _z	~ m	0.0	0.0	0.0	0.0	0.0	0.0
Ъ	~ m	55.0	22.0	55.0	55.0	16.15	16.15
Y v	~ 1/sec	0867	0867	0352	1540	0731	1220
Y _p	~ m/sec	579	579	436	378	914	-1.524
Yr	~ m/sec	•655	•622	• 259	.985	.433	•396
L [‡] B	~ 1/sec ²	-1-141	-1.141	324	-5.85	-1.316	-8.47
L [†]	~ 1/sec	-5.0	-2.0	+2.31	-1.790	-3.18	-4.31
$\mathbf{L}_{\mathbf{r}}^{t}$	~ 1/sec	.227	.227	.0946	•654	.804	1.00
N's	~ 1/sec ²	•901	.901	.1343	2.71	.891	3.78
N'p	~ 1/sec	.0471	.0471	.01660	.1150	•550	.201
N"r	~ 1/sec	553	553	232 .	842	-1.10	-1.10
$Y^{\bullet}_{\delta_{a}}$	~ 1/sec	.01450	.01450	.0586	.00573	.0436	.00651
Loa	~ 1/sec ²	1.00	1.00	1.00	1.00	1.00	1.00
$\mathtt{N}_{\delta_a}^{\prime}$	~ 1/sec ²	.00409	.00409	.00384	.00937	0 • 0	0.0
ĸφ	~ 1/1	3.69	3,69	4.18	3.25	4•72	8.14
T _L	~ sec	•234	•234	•1908	.303	.0585	0.0
T _E	~ sec	•333	.333	.333	.333	.333	• 333
σv	~ m/sec	2.08	1.854	2.08	2.08	2.08	2.08
σ	~ deg/sec	•544	• 485	•544	.544	• 6 6 9	• 669
L	~ m	205.	533.	205.	205.	205.	205.

TR 1063-2

Note that the stability derivatives $L_{\delta_a}^{\prime}$ and $M_{\delta_e}^{\prime}$ are unity for all configurations (c.f., Tables III-2, III-3). This was intentionally done at the time the data was compiled, and is, in effect, a scaling change accomplished by dividing Y_{δ_a} , N_{δ_a} and X_{δ_e} , Z_{δ_e} by the original values of $L_{\delta_a}^{\prime}$ and $M_{\delta_e}^{\prime}$, respectively. The motivation for the scaling change was to simplify the procedure for calculating the pitch and roll pilot parameters.

A caveat is in order here. The data presented in Tables III-2 and III-3 have been collected from very diverse sources over a long period of time. In a few cases the original source of the data is now unclear. Those familiar with the art will know the considerable difficulty which attends the attempt to discover definitive data. In many cases we, our colleagues, and (we suspect) our predecessors have, according to the best judgment available, altered the data as may have been indicated by internal inconsistencies or physical improbabilities revealed by the attempt to use them. For these reasons we wish to make it clear that the data are only <u>nominally</u> representative of the several aircraft configurations. In particular, the manufacturers of the aircraft cannot be held accountable for this information, nor would they be bound to concur in any conclusions with respect to their aircraft which might be derived from its use.

Second and the second se

SECTION IV

RESULTS

The results of this study are summarized in Tables IV-1 through IV-4. Tables IV-3 and IV-4 are the S.I. unit equivalents of Tables IV-1 and IV-2, respectively.

The contents of these tables can be summarized as follows:

- Linear and angular RMS values of the aircraft motion due to 1% probability atmospheric turbulence with and without the effects of a second order washout filter.
- Linear and angular peak values of the aircraft motion due to a discrete wind shear (1 kt/sec lasting for 10 seconds) with and without the effects of a second order washout filter.

TABLE IV-1: LONGITUDINAL RESULTS, U.S. UNITS

a. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

		•	"E-nista	BBO(1) - T	STOLX-A	AMST-A
Configuration	AWJSRA-AL	AWJSRA-A2	RKA41-H			
$: ~ ft/sec^2$.253	.203	.315	.237	-585	.229
$:= - ft/sec^2$.1366	.0925	.1497	.0976	.1084	.0946
WO = St/sec	1.525	1.659	1.657	1.405	1.676	1.436
x 10/300	.0930	.0772	.1230	.10	.1008	.0786
wo TU/SCC	.213	.1912	.279	.217	.261	.209
x_{wo} 10	•486	.445	.618	.764	.562	.516
h _ it/sec	.399	.268	.466	.673	.393	.397
h _{pwo} ~ it/sec	.80	1.866	1.121	.915	1.213	1.045
h ~ it/sec	•555	.203	.299	.342	•568	•553
h _{pwo} ~ ft/sec	.281	.357	.410	.368	.405	.333-
$h_{p_{WO}} - ft$.526	.330	.511	.854	.1367	.230
$\theta \sim deg/sec$.516	.321	.488	.828	.1221	.218
θ _{wo} ~ deg/sec	.213	.1491	.282	•40	.1170	.1434
0 ~ deg/sec	- 1940	.1337	.224	.340	.0698	.1044
θ_{WO} ~ deg/sec	-207	.1589	.40	.477	.276	,290
θ ∼ đeg	•CU1	- 0806	1582	.220	.0630	.0776
θ ~ deg	*1023					

ORIGINAL PAGE IS b. Peak Values Res OF POOR QUALITY,

1

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind.

AMST-A STOLX-A 8R941-T AWJSRA-A2 BR941-A Configuration AWJSRA-AL .423 .495 ,498 .416 .423 ~ ft/sec² .423 x -.0223 -.0316 -,0336 -.0333 ~ ft/sec² -.0236 -.0236 x. 5.19 5.24 5.15 5.17 5.15 ~ ft/sec 5.15 x .0538 .0706 .0645 .0796 .0559 .0559 ~ ft/sec xwo .414 .483 .403 .488 .411 .411 ~ ft Xwo -.287 -.251 -.270 ~ ft/sec² -.1699 -.233 -.1699 'n -.0510 -.0681 -.0724 h_{pwo} ~ ft/sec² -.0595 -.0383 -.0383 -2.03 -2.05 -1.865 -1.296 -1.481 ~ ft/sec² -1.296 'n .0976 .1552 .1186 .0975 hpwo ~ ft/sec² .0686 .0686 -.255 -.289 -. 264 -.1697 -.230 hpwo ~ ft -.1697 .0464 .0479 .0909 ~ deg/sec² .0521 .1354 .0521 ë -.01618 .0744 -.0274 .0733 ö_{wo} ∼ deg/sec² -.0258 -.0258 -.0712 -.0778 -.1488 -.1372 -.0539 -.0539 ~ deg/sec ó -.01411 -.0213 -.0571 -.0422 -.01523 -.01523 0wo ~ deg/sec -.568 -.511 -.803 -.576 -.337 -.337 8 ~ deg .0315 .0366 .0702 .0581 .0244 .0244 ~ deg 0w0

TABLE IV-1 (Continued)

a. IMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

· · · · · · · · ·						
Configuration	DHC6-A1	DHC6-A2	DHC6-T	CV380-A	CV880-P	CV860-C
$\ddot{x} \sim ft/sec^2$.364	. 272	.277	•1559	.0440	.0379
$\ddot{x}_{WO} \sim ft/sec^2$.1856	.1255	.1578	•0955	.0257	.0248
x ~ ft/sec	1.693	1.746	1.385	.944	• 333	.250
x _{wo} ~ it/sec	.1441	•1108	.1236	.0577	.0519	.0199
x _{vo} ~ ft	.314	.243	.229	.1263.	•0360	.0269
$\ddot{h}_p \sim ft/sec^2$.821	.611	1.067	.575	.504	.505
ipwo ~ it/sec ²	.647	•409	.978	• 520	•415	.452
h ~ ft/sec	1.324	1.972	1.005	•650	• 123	.738
h _{pwo} ~ ft/sec	.382	•586	.444	•552	•225	.204
h _{pwo} ~ ft	.512	•458	.436	.249	•590	•559
$\ddot{\theta} \sim deg/sec^2$	1.050	.651	1.032	.1522	•391	.720
$\ddot{\theta}_{wo} \sim deg/sec^2$	1.014	•627	.996	•1504	.374	.702
e ~ deg/see	•543	.352	.514	•0526	.218	•345
ewo ~ deg/sec	.446	•286	.432	.0476	.1978	.328
9 ~ deg	.753	.525	.636	.0575	.1665	.211
θ _{wo} ~ deg	•285	.1874	.284	.0248	•1223	.1752
 A state of the sta	and the second second second					

ORIGINAL PAGE IS

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	DHC6-A1	DHC6-A2	DHC6-T	CV880-A	CV830-P	CV880-C
x ~ ft/sec ²	.517	.517	•414	.284	.0826	.0645
$\bar{x}_{vo} \sim ft/sec^2$	0361	0361	0390	01354	00241	001752
x ~ ft/sec	5.21	5.21	5.14	5.06	2.92	2.43
x ~ ft/sec	0854	0864	.0698	.0342	.00849	.00656
x _{ro} ~ ft	•511	.511	.399	•591	•0950	.0646
h ~ ft/sec ²	•586	•586	292	1684	1364	1250
Bpun ~ ft/sec ²	0685	0685	0837	0385	.0203	.01565
fin ~ ft/sec ²	-1.633	-1.633	-1.812	-1.428	-1.329	-1.234
hpun ~ ft/sec ²	.1160	.1160	.1293	.0650	.0327	.0257
h _{pun} ~ ft	+277	.277	-+272	1706	1300	1234
ë ~ deg/sec ²	•596	•539	.1401	.00721	.00518	00415
$\bar{\theta}_{\rm m} \sim {\rm deg/sec}^2$.1886	.1886	.1107	.00340	00203	.001461
ê ∼ deg/sec	254	-• 254	1977	01396	01780	01510
$\hat{\theta}_{m} \sim deg/sec$	0893	0893	0782	00357	.00277	.001854
0 ~ deg	-1.107	-1.107	-1.049	1188	1735	1495
9 _{wa} ~ deg	•1172	.1172	.0939	.00558	.00422	.00332

TABLE IV-1 (Continued)

a. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

Configuration	· · · · · ·	· · · · ·			
	8747-A1	8747-A2	8747-T	8747-P	8747-C
$\ddot{x} - ft/sec^2$.1243	.1321	.0833	.0364	• 0 4 3 0
$\ddot{x}_{vo} \sim ft/sec^2$.0607	.0509	.0350	.0205	.0290
x ~ ft/sec	.907	1.186	.692	.309	.307
x _{wo} ~ ft/sec	.0415	.0461	.0319	.01740	.0209
x _{wo} ~ ft	.1087	.1555	.0758	.0303	.0320
$\ddot{n}_p \sim ft/sec^2$.489	.540	+397	.473	.381
h _{pwo} - ft/sec ²	•405	• 333	.349	.382	.324
h _p ~ ft/sec	•852	1.801	.625	.888	.650
h _{pwo} ~ ft/sec	•509	.254	.1511	.219	.1693
h _{pwo} ~it	.276	.428	.1909	•595	.203
$\ddot{\theta} = deg/sec^2$.140	.1322	.1707	.243	.346
θ _{wo} ~ deg/sec ²	.1320	.1201	.1635	•558	•359
θ ~ deg/sec	.0867	.0978	•0912	.1457	.1973
θ _{wo} ~ deg/sec	.0632	:0701	.0740	.1284	.1791
θ ~ deg	.1714	.1945	.1461	.1270	.1475
$\theta_{\rm WO} \sim \deg$.0482	.0568	.0511	.0852	.1129

UF POOR QUALITY

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	B747-A1	8747-A2	B747-T	8747-P	B747-C
x ~ ft/sec ²	•566	.266	.1969	.0774	•1141
ž _{wo} – ſt/sec ²	01052	01052	00848	0020	00638
x ~ ft/sec	5.07	5.07	4.79	2.79	3.46
x _{wo} ∼ ft/sec	.0301	.0301	.0213	.00790	.01252
x _{wo} ~ ft	•599	.266	.1985	•0774	•1113
$\ddot{h}_p - ft/sec^2$	-,234	234	-•591	160	.01245
h _{pwo} ~ ft/sec ²	.0429	.0429	.0392	.0211	00351
$h_p - ft/sec^2$	~2.11	-5•11	-2.45	-1.567	•1119
hpwo ~ ft/sec ²	.0757	.0757	.0717	.0347	 00396 ₀
h _{pwo} ~ ft	237	237	-•595	1590	.01184
ö ~ deg/sec ²	•01896	.01896	.01457	.00548	01204
$\ddot{\theta}_{wo} \sim deg/sec^2$	00735	00735	01021	00226	.00916
0 ~ deg/sec	0448	0448	0399	01842	.01389
ø _{wo} ∼ deg/sec	.00708	.00708	•00356	.00553	.00556
θ ~ deg	404	404	375	1801	.0892
[∂] wo ∼ deg	.01598	.01598	.01011	.00457	00617

TR 1063-2

TABLE IV-1 (Continued) '

a. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

				the second se
Configuration	X870A-41	X870A-A2	XB70A-CI	X8704-C2
tt ~ ft/sec ²	.0492	.0518	+064T	•0338
$= \frac{1}{10000}$.0318	.0328	•060	.0309
WO, TU/SEC	.429	.599	.281	.0713
x ~ 1t/sec	.0211	.0230	.0336	.01968
xwo ~ ft/sec	.0378	.0403	.0251	.01421
xwo ~ ft	.734	.772	.408	,233
h ~ ft/sec	.714	•653	.366	•553
h _{Pwo} ~ ft/sec	.480	1.544	.58>	.1923
h ~ ft/sec	.1938	.351	.1661	.1135
h _{Pwo} ~ ft/sec	.1753	.461	.1848	.0708
h _{pwo} ~ft	. 430	.406	.464	.353
ë ∼ deg/sec	. 425	.394	.451	•334
θ _{wo} ~ deg/sec ⁻	1358	.1864	.515	•503
9 ~ dcg/sec	1258	.1697	.1949	.1935
B ~ deg/sec	1220	. 1683	.1489	.1377
θ ~ deg	-16C1	.1010	.1170	+1225
e deg	•0993	2 - 1		

ORIGINAL PAGE IS OF POOR QUALITY

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	X870A-A1	XBTOA-A2	XB70A-CI	X3704-C2
······································	.1037	.1037	0256	.01899
\mathbf{I} \mathbf{I}/sec^2	00508	00508	.00261	000698
WO - ft/sec	3.31	3.31	-1.010	•788
X - It/sec	.01125	.01125	00322	.001617
Xwo ~ 1t/sec	.1025	.1025	0254	-01899
x 1t		1696	0586	0391
$h_p \sim it/sec$.0273	.0273	.00795	.00287
$h_{p_{WO}} \sim ft/sec$	-1 641	-1.641	789	874
$h_p \sim ft/sec$	0445	.0446	01117	00469
hpwo ~ it/sec	• • •	1705	0557	0371
h _{Pwo} ~ ft	1703	-01203	0218	00266
ë ~ deg/sec	.01203	- 00587	.01528	.001947
ë vo ∼ deg/sec	00587	- 0716	.0235	00375
ė ~ deg/sec	0315	-,0310	-00957	.001433
ewo - deg/sec	.00635	.00633	-1749	0403
0 ~ deg	-,306	~. 300	- 0100	001237
e _{vo} ~ deg	.00921	.00921		

TR 1063-2

51

.

TABLE IV-1 (Concluded)

a.	RMS	Response	to	Atmospheric	Turbulence	(1%	Probability	oſ	Exceedance	
----	-----	----------	----	-------------	------------	-----	-------------	----	------------	--

	Configuration	CH53A-41	CH53A-42	CHS3A-H	CH53A-C		H19-C
	x ~ ft/sec ²	.1076	.0893	.0786	.1189	•1471	.1739
	x ~ ft/sec ²	.0338	.0252	.0214	.0509	.0460	.0616
	x ~ ft/sec	1.124	1.343	1.551	.819	1.843	1.307
	x _{uo} ~ ft/sec	.0391	.0305	.0271	.0471	.0568	.0677
	x _{wo} ~ ft	.1025	.0859	.0759	.1078	.1402	.1632
	h ~ ft/sec ²	•545	-476	.205	•928	.356	.599
	ij _{puro} ~ ft/sec ²	.489	.324	.1444	.884	.263	•543
	$\dot{h}_{n} \sim ft/sec$	•596	1.773	.532	.565	.669	.540
	h _{pwo} ~ ft/sec	.237	.224	.0953	.306	.1826	.278
	hpun ~ ft	•246	.351	.1469	•530	.243	•560
	$\frac{\partial}{\partial}$ ~ deg/sec ²	1.118	.707	•215	1.964	• 90	1.780
	$\tilde{t}_{wo} \sim deg/sec^2$	1.078	.670	.476	1.944	.839	1.734
	θ ∼ deg/sec	.550	.405	.330	.586	.572	• 784
	$\dot{\theta}_{wo}$ ~ deg/sec	.463	•355	•249	•514	•435	.687
DACE	19 ~ deg	.706	.606	.542	.586	.913	.876
ORIGINAL PACE	TV _{wo} ~ deg	.311	.237	.1959	.293	•338	•425

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	CH53A-A1	CH53A-A2	СН53А-Н	C-153A-C	H19-H	H19-C
x ~ ft/sec ²	.230	.230	.1836	.247	.358	.339
xvo ~ ft/sec ²	01102	01102	00770	01043	0225	0216
* ~ ft/sec	4.81	4.81	4.47	4.91	5.13	5.11
xwo ~ ft/sec	.0294	.0294	.0551	.0311	.0523	.0482
x _{wo} ~ ft	•558	.228	.1832	.245	•356	.331
$\ddot{h}_p \sim ft/sec^2$	1050	1050	01304	0925	0367	0775
hpwo ~ ft/sec ²	01871	01871	.00291	01690	00598	01813
$h_p \sim ft/sec^2$	906	906	1237	654	271	562
hpwo ~ ft/sec ²	.0328	.0328	.00373	.0344	.01399	•0332
h _{pyo} ~ft	1064	1064	01312	+.0902	0363	0744
ë ∼ deg/sec ²	.1386	.1386	.0969	.0770	.267	.216
ë _{wo} ∼ deg/sec ²	0711	0711	0467	.0276	.1408	
θ ∼ deg/sec	1860	1860	1377	1397	351	271
$\dot{\theta}_{wo} \sim \text{deg/sec}$	0545	0543	0369	-,0290	1037	0908
9 ~ deg	-1.369	-1.369	-1.102	+.984	-2,15	-1.528
e _{wo} ∼ deg	.0793'	.0793	.0554	.0515	.1534	.1218

TR 1063-2

-52

TABLE IV-2: LATERAL-DIRECTIONAL RESULTS, U.S. UNITS

RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

Configuration	AWJSRA-A1	AWJSRA-A2	BR941-A	87941-T	STOLX-A	AMST-A
ÿn ~ ft/sec ²	-,858	858	.495	5.33	307	266
ÿpwo ~ ft/sec ²	1248	1248	0627	1774	0605	0756
y ~ ft/sec	-5,78	-5.78	4.32	24.0	.891	862
ý _{Pwo} ~ ft/sec .	-,259	259	.1239	.429	•0B48	0874
y _{Dro} ~ ft	847	847	.495	2.27	297	-•558
φ ~ deg/sec ²	276	276	1235	354	1777	235
φ ~ deg/sec ²	.1625	.1625	.0704	231	.1443	.1937
φ ~ deg/sec	451	451	.1346	.477	•50	-,251
φ ~ deg/sec	.1472	.1472	.0635	.1544	1126	1510
φ ~ deg	-1.410	-1.410	.291	1.848	688	571
φ	1749	1749	0566	204	1201	1521
$\vec{v} \sim \text{deg/sec}^2$	456	456	402	1442	.304	-•355
ÿ ~ deg/sec ²	1640	1640	•245	0807	.0821	.1130
₩ ₩ ~ deg/sec	-1.784	-1.784	870	.372	-1.130	834
v ∼ deg/sec	.1904	.1904	1858	.0910	1072	1333
wo ↓ ~ deg	-12.88	-12.88	-7.09	3.54	-10.10	-7.46
v ∼ deg	858	.495	5•33	307	266	251
πv						

Note: RMS \dot{y}_p and ψ are for v_g only

Α.

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	AWJSRA-A1	AWJSRA-A2	BR941-4	BR941-T	STOLX-A	AMST-A
ÿ_ ~ ft/sec ²	1.601	1.103	.681	1.804	.60	• 748
y y _{Dwo} ~ ft/sec ²	.610	.404	.374	.770	•253	.407
y _n ∼ ft/sec	3.02	5.59	1.560	6.83	1.018	.894
ý _{pwo} ~ ft/sec	.823	.546	.345	.794	.305	.407
y _{Pwo} ~ ft	1.489	1.032	.574	1.639	.548	•632
φ ~ deg/sec ²	1.617	1.266	1.193	1.948	1.559	1.939
⊕ ~ deg/sec ²	1.397	1.135	1.134	1.817	1.121	1.784
¢ ∽ deg/sec	1.451	1.012	.653	1.559	.855	1.269
∲uo ~ deg/sec	.859	•644	.539	.945	.625	1.005
φ ~ deg	2.31	1.585	.692	1.662	1.139	1.405
₽ _{₩0} ~ deg	.832	•576	.387	•727	•519	•786
₩ ~ deg/sec ²	1.460	.931	.871	.708	•660	.989
₩ deg/sec ²	•790	.502	.611	.660	•399	.737
v v ∼ deg/sec	2.48	1.616	1.102	.552	1.135	1.192
Vuo ~ deg/sec	.782	.494	•539	.283	.376	•60
	5.84	4.75	2.67	1.204	3.66	2.75
ψ _{wo} ~ deg	1.103	.581	1.804	.60	•748	.671

TR 1063-2

	Configuration	DHC6-A1	DHC6-A2	DHC6-T	CV480-A	CV880-P	CARRAD-C
	$\ddot{y}_p - ft/sec^2$.759	•60	. 896	1.141	•524	.708
•	ÿpwo ~ ft/sec ²	.567	•432	.750	•8e1	.451	.637
	ý - ft/sec	.677	.608	.755	1.385	•425	.503
•	ypwo ~ ft/sec .	•395	.306	.490	•703	-355-	.429
	ypwo - ft	•510	.420	.501	.804	•274	•320
	φ – deg/sec ²	5.85	4.85	6.40	4.36	3.39	5.22
	Ģ _{wo} ∼ deg/sec ²	5.80	4.82	6.30	4.08	3-19	4.94
	o deg/sec	1.876	1.528	2.37	2.55	5.0	3.05
	♥wo ~ deg/sec	1.794	1.458	2.25	5.50	1.829	2.65
	φ ~ đeg	1.083	.904	1.490	2.05	1.360	1.921
•	φ _{wo} ∼ deg	•842	.683	1.20	1.580	1.204	1.763
	₩ ~ deg/sec ²	2.47	1.643	2.57	1.183	•28•	.722
	$\tilde{\psi}_{wo} \sim deg/sec^2$	5•59	1.508	2.36	•956	•742	.662
	v ∼ deg/sec	1.741	1.157	1.80	1.105	•60	. 482
	Wwo ~ deg/sec	1.270	•848	1.425	•759	•0÷•	•417
	¥ ~ deg	5.95	2.65	2.64	1.574	.573	.422
	Ψ _{wo} ~ deg	•60	.896	1.141	. 524	.708	.299

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wint

Configuration	DHC6-A1	DHC6-A2	DHC6-T	CV980-A	-04940-b	CV880-C
$\ddot{y}_{p} \sim ft/sec^{2}$.237	•534	.267	•453	.1533	• .1431
ÿ _{pwo} ~ ft/sec ²	0760	0760	.1170	.1234	•0685	•0758
ý _p ~ ít/sec	1.743	1.743	1.687	2.85	•796	•583
ypwo - ft/sec	.0917	.0917	1132	1523	.0559	0571
y _{pwo} ~ ft	.1901	.1901	.217	•395	.1250	.1030
ö − deg/sec ²	289	583	398	• 377	408	646
$\ddot{\phi}_{wo} \sim deg/sec^2$	420	420	395	+. 365	•375	.473
o ~ deg/sec	•512	.217	.274	340	-•293	•431
∲wo ~ deg/sec	.1885	.1882	.243	273	237	308
φ ~ deg	1379	1379	238	•568	•563	279
⇔ _{wo} ∼ deg	0861	0851	.1606	.251	-1658	•1984
∛ − deg/sec ²	756	766	•676	•269	-+1536	.1309
$\dot{\psi}_{wo} \cdot \sim deg/sec^2$	424	424	- 382	-,1431	1104	0738
v ∼ deg/sec	+.896	•.896		494	-•233	1777
Vwo - deg/sec	.232	•535	•237	1261	.0941	.0635
¥ ~ deg	-7.62	-7.62	-6.73	-3.43	-1.581	-1.178
₩wo ~ deg	•237	•267	.453	. 1533	•1431	0672

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY

TABLE IV-2 (Continued)

a. RMS	Response to Atm	ospheric Turl	milence (14 p		
Configuration	8747-A1	B747-42	8747-T	B747-P	B747-C
$\ddot{y}_{p} \sim ft/sec^{2}$.741	•503	.569	.404	.503
ypwo ~ ft/sec ²	•561	• 340	.441	.343	.437
$\dot{y}_{p} \sim ft/sec$	1.181	1.171	• 753	•354	.347
$\dot{y}_{p_{WO}} \sim ft/sec$	•350	•214	.242	.225	.317
y _{pwo} ~ ft	.489	•373	.360	.218	•257
$\ddot{\varphi} \sim \text{deg/sec}^2$	1.678	1.088	1.552	1.378	1.581
$\overline{\phi}_{wo} = deg/sec^2$	1.569	1.017	1.446	1.254	1.449
φ ~ deg/sec	1.015	•662	•958	.908	1.039
φ. ~ deg/sec	.805	•518	•759	•770	•915
φ ~ deg	1.053	•733	.988	•739	.780
φ _{wo} ∼ deg	-618	•40	•586	•591	.658
₩ ~ deg/sec ²	•470	.304	.474	•621	• 6.0
₩wo ~ deg/sec ²	•325	.203	•325	•215	•533
₩ ~ deg/sec	•607	• 435	.607	•535	• 4 4 1
₩wo ~ deg/sec	•284	•1786	.287	•412	.365
¥ ∼ deg	1.260	1.215	1.175	• 565	•418
^ψ wo [∼] deg	• 503	•568	.404	• 5 0 3	•286
Note BAS & and a					

Note: RMS \dot{y}_p and ψ are for v_g only

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Cont	iguration .				The THE HOLTSON	cal wind
		8747-41	8747-A2	8747-T	3747-P	8747-C
ÿp	~ ft/sec ²	•426	•426	.274	.1483	.1190
y pw	o ~ ft/sec ²	0443	0443	0357	0467	- 057/
ý _p	~ ft/sec	3.48	3.48	2.06	060	05/4
ÿ _{Pwc}	~ ft/sec	0879	0879	•0617	•732 0450	•457
J _{Pwc}	~ ft	•418	•418	•265	.1333	-0491
φ	~ deg/sec ²	•1865	•1865	•1547	1576	•1762
Ψ wo	~ deg/sec ²	•1508	.1508 -	.1294	•1405	•1685
Φ	~ deg/sec	•558	•558	•1894	1459	1447
[∲] wo	~ deg/sec	1077	1077	+.0950	1067	•1265
φ.	~ deg	•488	•498	• 390	.1850	+1507
₽ wo	~ deg	1020	1020	0923	1001	1002
Ŷ	~ deg/sec ²	1496	1495	1350	1184	1133
₩o	~ deg/sec ²	•0563	• 0 5 6 3	.0509	•0812	.0703
Ý	~ deg/sec	433 '	433	407	+ •535	1706
wo	~ deg/sec	0657.	0657	0558	0729	•0643
1	~ deg	-3.51	-3.51	-3.20	-1.441	-1.153
wo	∼ deg	•426	•274	.1483	.1190	0662
	and the second					

TR 1063-2

•	DAGE IS		TABLE IV-2	(Continued)		
ORIGINAL OF POOR	QUALITY. a. RM	S Response to Atmo	spheric Turb	wlence (1% Pr	obability of E	xceedance)
ŬF °	$\ddot{y}_{p} \sim ft/sec^{2}$	2.84	1.821	.493	.233	
	ÿ _{Pwo} ~ ft/sec ²	2.47	1.524	.367	.214	
	ý _p – ft/sec	5.51	1.683	.564	.1295	
•	ý _{pwo} ∼ ft/sec	1.677	1.053	.293	.0991	
an an the second se Second second second Second second	ypwo - ft	1.442	1,019	.342	.0950	•
e e da la composición de la composición En el composición de la composición de l	φ ~ deg/sec ²	6.10	3.85	2.28	.509	
	$\overline{\phi}_{wo} \sim deg/sec^2$	5.77	3.66	2.18	.462	
	op ~ deg/sec	3.49	2.18	1.192	• 318	
	φ _{wo} ~ deg/sec	3.14	1.942	1.043	.244	
	φ ~ deg	2.65	1.808	.985	.296	
	φ _{wo} ~ deg	2.09	1.304	.686	.218	
	∛ ~ deg/sec ²	1.525	•931	•555	.268	
	$\dot{\psi}_{wo} \sim deg/sec^2$	1.388	.840	.20	.208	
	v ∼ ceg/sec	1.052	•680	.1316	.246	
•	·₩wo ~ deg/sec	•891	.548	.1080	.1786	
	¥ ∼ deg	• 969	.843	.306	.243	
	ψ _{wo} ∼ deg	1.821	.498	.233	.1735	
	NT 1					

Note: RMS \dot{y}_p and ψ are for v_g only

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	X870A-41	X870A-42	X870A-C1	XB70A-C2
$\ddot{y}_p \sim ft/sec^2$	•569	•569	•515	.0334
$\ddot{y}_{p_{WO}} \sim ft/sec^2$.237	.237	0649	.0206
$\dot{y}_{p} \sim ft/sec$	3.72	3.72	.804	.216
y _{pwo} ~ ft/sec	244	244	•0823	0210
y _{Pwo} ~ft	.473	•473	.1770	.0302
φ̈́ ∼ deg/sec ²	•489	.489	238	0658
$\ddot{\phi}_{wo} \sim deg/sec^2$	•454	•454	.237	.0497
🔹 ~ deg/sec	433	433	.215	~.0698
¢wo ~ deg/sec	.327	.327	1679	•0460
φ ~ deg	•756	.756	•405	.0653
φ _{wo} ~deg	.250	.250	1344	0473
∛ ~ deg/sec ²	•1869	.1869	0515	•0558
V _{wo} ∼ deg/sec ²	1343	1343	0205	.0410
♥ ~ deg/sec	-•586.	286	1562	0724
wo ~ deg/sec	1022	1022	•01938	0394
v ∼deg	-5•53	-2.29	-1.140	450
ψ _{wo} ∼ deg	•569	•515	•0334	.0465

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY.

TABLE IV-2 (Concluded)

a. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

Configuration	CH53A-A1	CH53A-42	СН5ЗА-Н	CH53A-C	н19-н	H19-C
ÿ _p ~ ft/sec ²	• 652	.491	•524	1.422	.960	1.329
ÿ _{pwo} ~ ft/sec ²	.427	.322	.229	1.232	•583	1.165
ý _p ~ ſt/sec	.963	.859	1.735	1.286	3.34	1.155
ypwo ~ ft/sec	.380	.278	.258	.847	.494	.715
y _{pwo} ~ ît	.499	.375	•474	.729	•769	•654
$\ddot{\varphi} \sim \text{deg/sec}^2$	3.17	2.51	1.774	8.22	4.33	12.03
φ _{wo} ~ deg/sec ²	3.05	2.43	1.710	7.95	4.20	11.92
φ ~ deg/sec	1.533	1.156	.878	4.01	2.03	4.53
¢ _{wo} ∼ deg/sec	1.354	1.033	.739	3.76	1.807	4.36
φ ~ deg	1.257	.944	1.078	2.48	1.827	2.41
φ _{wo} ~ deg	.883	•651	.494	5.50	1.137	2.16
₩ ~ deg/sec ²	1.363	.783	.549	5.59	1.489	3.92
₩wo ~ deg/sec ²	1.028	.585	.214	2.14	1.213	3.74
∳ ~ deg/sec	1.511	.909	1.665	1.409	1.857	5.51
₩wo ~ deg/sec	•871	.499	.251	1.511	.842	1.886
¥ ~ deg	3.33	2.98	10.99	1.410	7.33	2.90
₩ _{wo} ~ deg	.491	.524	1.422	.960	1.329	1.216

Note: RMS \dot{y}_p and ψ are for v_g only

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	CH53A-A1	CH53A-A2	CH53A-H	CH53A-C	н19-н	H19-C
$\ddot{y}_{p} \sim ft/sec^{2}$.316	.316	•515	.423	1.121	•448
ÿ _{Pwo} ~ ft/sec ²	0677	0677	.01932	•1417	307	218
ý _p ~ ft/sec	2.49	2.49	4.83	2.75	8.95	2.63
y _{pwo} ~ ft/sec	1115	1115	0953	1602	428	•1931
ypwo ~ ft	.297	•297	.517	.330	1.004	.305
φ̈́ ~ deg/sec ²	•272	.272	• 304	.822	-1.429	-1.126
	-•585	-•585 •	238	-,576	-1.204	-1.10
∲ ~ deg/sec	282	-•585	433	518	1.364	.776
¢ _{wo} ∼ deg/sec	•509	•509	.1534	.331	.791	681
φ ~ deg	•513	.513	1.142	.627	2.19	•733
φ _{wo} ~ deg	.1708	.1708	.1705	.244	524	387
₩ ~ deg/sec ²	.609	.609	.929	.421	1.675	-1.069
₩wo ~ deg/sec ²	.360	.360	• • 323	234	1.686	•732
₩ ~ deg/sec	-1.106	-1.106	-4.03	••454	-3.04	-1.00
Wwo ~ deg/sec	.309 .	.309	.411	1318	-1.001	366
¥ ~ deg	-8.66	-8.66	-31.8	-3.35	-18.92	-7.26
₩ _{wo} ~ deg	•316	•515	.423	1.121	•448	430

TR 1063-2

OF POOR QUALITY

TABLE IV-3: LONGITUDINAL RESULTS, S.I. UNITS

a. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

Q 2 -			-			
Configuration	AWJSRA-A1	AWJSRA-A2	BR941-A	8R941-T	STOLX-A	AMST-A
$\ddot{x} \sim m/sec^2$.829	.666	1.035	.778	.924	.752
x _{wo} ∼ m/sec ²	• 4 4 8	.303	•491	.320	• 356	.311
☆ ~ m/sec	5.0	5.44	5.44	4.61	5.50	4.71
xwo ~ m/sec	•305	• 253	.404	,328	• 331	.258
x _{wo} ~m	.70	.595	. 914	.712	.855	.687
$\ddot{n}_p \sim m/sec^2$	1.594	1.459	2.03	2.51	1.844	1.693
h _{pwo} ~_m/sec ²	1.309	.879	1.530	5.51	1.290	1.302
n _p ~ m/sec	2.63	5.12	3.68	3.0	3.98	3.43
h _{pwo} ~ m/sec	.729	.665	.980	1.121	.879	•752
h _{pwo} ~m	.921	1.172	1.345	1.207	1.330	1.093
$\ddot{\theta} \sim \text{deg/sec}^2$.526	.330	.511	.854	.1367	.230
ë _{wo} ∼ deg/sec ²	•516	.321	.488	•828	•1551	.218
0 ~ deg/sec	.213	•1491	•585	.40.	•1170	.1434
θ _{wo} ~ deg/sec	•1940	.1337	.224	.340	.0698	.1044
θ ~ deg	.207	.1589	•40	.477	.276	.290
θ _{wo} ~deg	.1093	.0805	.1582	•550	.0630	.0776

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configu	ration	AWJSRA-A1	AWJSRA-A2	BR941-A	BR941-T	STOLX-A	AMST-A
ž ~	m/sec ²	1.386	1.386	1.633	1.365	1.623	1.388
x _{wo} ∼	m/sec ²	0774	0774	1092	1102	1036	0733
* ~	m/sec	16.89	16.89	16.96	16.88	17.18	17.01
×wo ~	m/sec	.1834	.1834	.261	.212	•535	.1765
x _{wo} ~	m	1.347	1.347	1.601	1.322	1.584	1.358
hp ~	m/sec ²	+.558	558	764	885	940	823
hpwo ~ 1	m/sec ²	1256	1256	1952	238	223	1673
	m/sec	-4.25	-4,25	-4.86	-6.12	-6.72	-6.66
h _{pwo} ~1	n/sec	.225	.225	.320	• 389	.402	•320
hpwo ~ r	1	557	557	754	867	947	838
ë ~ (leg/sec ²	.0521	.0521	.1354	.0909	.0479	.0464
ë _{wo} ∼ c	leg/sec ²	0258	0258	.0733	.0744	0274	01618
ê ~ d	leg/sec	0539	0539	1372	1488	0778	0712
θ _{wo} ~ d	leg/sec	01523	01523	0422	0571	0213	01411
θ · ~ d	leg	337	337	576	803	511	568
θ _{wo} ~ đ	leg	.0244	.0244	.0581	.0702	.0366	.0315
•							

TR 1063-2

ONICINAL	PAGE IS a. RMS	Response to Atmo	ospheric Turb	ulence (1% P	robability of 1	Exceedance)	
OKIGITAR OF POOR	QUALITY	DHC6-A1	DHC6-A2	DHC6-T	CV880-A	CAR90-b	CV880-C
₹/1 -	$\ddot{\mathbf{x}} \sim \mathrm{m/sec}^2$	1.193	.893	.908	.512	.1445	•1242
1 N 1 1 1	x _{wo} ~ m/sec ²	.609	•412	.518	.305	.0843	.0814
	x ~ m/sec	5.56	5.73	4.54	3.10	1.091	.819
	x _{wo} ~ m/sec	.473	• 364	.406	•1894	.0708	.0654
	х ~ ц	1.031	•796	.750	. 414	.1182	.0947
	$\dot{h}_p \sim m/sec^2$	2.70	2.01	3.50	1.886	1.654	1.656
	$h_{p_{wo}} \sim m/sec^2$	2.12	1.341	3.21	1.706	1.361	1.482
an a	$\dot{h}_p \sim m/sec$	4.34	6.47	3.30	2.13	3.03	2.42
	h _{pwo} ~ m/sec	1.255	•938	1.458	•739	.738	•668
	h _{Pwo} ~m	1.679	1.504	1.430	.816	.951	.750
	ë ∼ deg/sec ²	1.050	•651	1.032	.1522	.391	•720
	$\ddot{\theta}_{wo} \sim deg/sec^2$	1.014	.627	•996	.1504	.374	.702
	e ~ deg/sec	.543	.352	.514	.0526	.218	.345
	9 _{wo} ~ deg/sec	.446	.286	.432	.0476	.1978	.328
	0 ~ deg	.753	• 525	.636	.0575	.1665	•511
•	θ _{wo} ~ deg	•285	.1874	.284	.0248	.1223	.1752

TABLE IV-3. (Continued)

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Conī	iguration	DHC6-41	DHC6-A2	DHC6-T	CV880-A	CV480-P	CV880-C
x	~ m/sec ²	1.697	1.697	1.359	.932	.271	•515
x.wo	~ m/sec ²	1185	1185	1278	0444	00792	00575
ż	~ m/sec	17.09	17.09	16.88	16,59	9.57 ·	7.97
х _{wo}	~ m/sec	283	283	.229	.1123	.0279	.0215
x wo	~ m	1.677	1.677	1.310	.923	.272	.212
ĥp	$\sim m/sec^2$	•938	.938	958	552	447	410
h _{pwo}	$\sim m/sec^2$	225	225	275	1565	.0567	.0514
h	~ m/sec	-5.36	-5.36	-5,95	-4.69	-4.36	-4.05
h Pwo	~ m/sec	• 381	.381	.424	.213	.1072	.0543
h _{Pwo}	~ m	•909	.909	891	560	448	405
ë	$\sim \text{deg/sec}^2$	•296	.296	.1401	.00721	.00518	00415
ë ₩0	~ deg/sec ²	.1886	.1886	.1107	.00340	00203	.001461
ė	~ deg/sec	254	254	1977	01396	01780	01510
wo	~ deg/sec	0893	0893	0782	-,00357	.00277	.001854
θ.	~ deg	-1.107	-1.107	-1.049	1188	1735	1495
⁰ ₩0	~ deg	.1172	•1172	.0939	•00558	.00422	.00332

TR 1063-2

ORIGINAL PAGE IS OF POOR QUALITY a. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

Configuration	8747-A1	8747-A2	8747-T	8747-P	874 7- C
ж ~ m/sec ²	.408	.433	.273	.1193	.1410
x _{wo} ~ m/sec ²	.199	.1670	•1147	.0672	.0951
х́ ~ m/sec	2.98	3.89	2.27	1.014	1.009
× _{wo} ∼ m/sec	.1360	.1513	.1047	.0571	.0684
x _{wo} ~m	.357	.401	.249	.0992	.1050
$h_p \sim m/sec^2$	1.604	1.771	1.302	1.550	1.251
h _{pwo} ~ m/sec ²	1.330	1.092	1.145	1.254	1.064
n _p ~ m/sec	2.79	5.91	2.05	2.91	2.13
h _{pwo} ~ m/sec	.677	.832	.496	.718	•556
h _{pwo} ~m	,906	1.404	.626	.924	.667
θ ~ deg/sec ²	•140	•1355	.1707	.243	• 346
θ _{wo} ~ deg/sec ²	.1320	.1201	.1635	•558	• 329
e ~ deg/sec	.0867	.0978	.0912	.1457	.1973
θ _{wo} ~ deg/sec.	.0632	.0701	.0740	.1284	•1791
θ ~ deg	.1714	.1945	.1461	.1270	.1475
θ _{wo} ~deg	.0482	.0568	.0511	.0852	.1129

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configurat	ion (3747-A1	8747-A2	8747-T	8747-P	B747-C
	ec ²	•872	.872	.646	•254	.374
	ec ² -	• 0345	0345	0278	00658	0209
x ∼m/s	ec	16.63	16.63	15.71	9.16	11.35
×wo ~ ш/s	ec	•0988	.0988	.0698	.0259	.0411
x _{wo} ~m		.874	.874	.651	•254	.365
$h_p \sim m/s$	ec ²	769	769	856	525	•0408
h _{pwo} ~ m/s	ec ²	.1408	.1408	.1288	•0693	01152
h _p ~ m/se	ec	-6.91	-6.91	-8.03	-5.14	.367
́р _{wo} ∼ п/se	80	•248	.248	.235	.1138	01298
h _{pwo} ~m		779	779	859	522	.0388
ë ∼ deg,	/sec ² .	01896	01896	.01457	.00548	01204
ë _{wo} ∼ degj	/sec ² -	.00736 -	00736	01021	00526	.00916
θ ∼ deg	/sec -	.0448	0448	0399	01842	.01389
ė _{wo} ∼ deg/	/sec .	00708	.00708	.00356	.00223	.00566
0 . ~ deg		404	404	375	1801	.0892
$\theta_{wo} \sim deg$		01598 .	01598	•01011	.00457	00617

TR 1063-2

	PAGE IS		TABLE IV-3	(Continued)		
ORIGINAL	QUALITY a.	RMS Response to Ata	ospheric Tur	bulence (1% P	robability of	Exceedance)
Ú.	Configuration	XB70A-A1	X8704-42	XH70A-C1	X870A-C2	
	$\ddot{\mathbf{x}} \sim \mathrm{m/sec}^2$.1615	.170	.212	.1110	
 A state of the sta	$\ddot{x}_{wo} \sim m/sec^2$	-1044	.1077	.1968	.1015	
	ż ~ m/sec	1.408	1.965	.921	.234	
•	ż _{wo} ∼ m/sec	.0692	.0754	.1104	0646	
	x _{wo} ~m	.1240	.1324	.0825	.0466	
	n ~ m/sec ²	2.41	2.53	1.340	.763	•
	$E_{p_{wo}} \sim m/sec^2$	2.34	2.04	1.20	.731	
	'n _p ~ m/sec	1.574	5.07	1.933	.631	
	hpwo ~ m/sec	.636	1.151	.545	.372	
	h _{Pwo} ~ m	•575	1.514	.606	•535	
	$\ddot{\theta} \sim deg/sec^2$.430	•406	.464	•353	
	$\ddot{\theta}_{wo} \sim deg/sec^2$	•425	•394	.451	.334	an an taon Ang taong taong
	9 - deg/sec	•1358	•1864	.215	•503	
	9wo ~ deg/sec	•1258	.1697	.1949	•1935	
	θ ~ deg	.1551	.1683	.1489	.1377	

[⊕]wo

deg

b. Peak Values Resulting from a 10 Second Ramp in Herizontal Wind

.1170

.1010

.

.1377

.1225

Configuration	XBTOA-A1	XB70A-A2	X870A-C1	X9704-09
$\ddot{x} \sim m/sec^2$	•340	• 340	+.0839	AST 04-02
$\ddot{x}_{wo} \sim m/sec^2$	01668	01668	.00857	- 0023
x ∼ m/sec	10.88	10.88	-3,31	3 60
x _{wo} ~ m/sec	.0369	.0369	01055	- 00570
x ~ m	•336	• 336	0834	
$h_p \sim m/sec^2$	556	556	1922	-1283
n _{pwo} ∼ m/sec ²	.0896	.0896	•0261	.00942
hp ~ m/sec	-5.38	-5.38	-2.59	-2-87
h _{Pwo} ~ m/sec	.1463	•1463	0355	01538
h _{Pwo} ~ m	→ •559	559	1826	1218
$\ddot{\theta}$ - deg/sec ²	.01203	.01203	0218	00266
ë _{wo} ∼ deg/sec ²	00587	00587	.01528	-001947
e ~ deg/sec	0316	0316	•0235	00375
θ _{wo} ~ deg/sec	•00635	.00635	.00957	.001433
θ , ^{l∼} deg	305	*•3 05	.1349	0403
9 _{wo} ~dcg	•00921	.00921	0100	001237
الم المراجع المراجع المنتخب المحمد المراجع المراجع المحمد المراجع المراجع المراجع المراجع المراجع المراجع المر مستخبر المراجع				

.0669

TR 1063-2

ORIGINAL PAGE IN

TABLE IV-3 (Concluded)

1): 2:): Six QUALITY. RMS Response to Atmospheric Turbulence (1% Probability of Exceedance)

Configuration	CH53A-A1	CH530-02	CHE34-4	Current of the	Exceedance)	
x - m/sec ²	.353	.293	-258	UN33A-C	HTA-H	H19-C
" m/sec ²	.1108	.0828	.0703	- 1670	1500	.570
x ~ m/sec	3.69	4.41	5.09	5.69	6.05	• 202
x _{wo} − m/sec	.1282	.0999	.0839	•1546	.1862	222
x ~ m wo	• 336	• 585	.249	.354	•460	.535
$h_p \sim m/sec^2$	1.789	1.561	.673	3.04	1.169	1.965
h _{pwo} - m/sec ²	1.604	1.063	.474	2.90	.863	1.781
$\dot{n}_p \sim m/sec$	1.954	5.82	1.745	1.855	2.19	1.773
h _{pwo} ~ m/sec	.779	•736	.313	1.004	.599	•911
h _{pwo} - m	.806	1.153	.482	.951	.799	.852
ë ∼ deg/sec ²	1.118	•707	• 512	1.964	.90	1.780
ë _{wo} ~ deg/sec ²	1.078	.670	• 476	1.944	.839	1.734
0 ~ deg/sec	.550	.405	•330	•586	.572	.784
ewo ~ deg/sec	•463	•355	.249	.514	.435	.687
9 – deg	.706	.606	.542	.586	•913	.875
θ _{wo} ~ deg	•311	.237	.1959	.293	.338	.425

b. Peak Values Resulting from a 10 Second Ramp in Herizontal Wind

Conf	iguration	CH534-41	CH53A-A2	CH53A-H	CH53A-C	насы	
ž	~ m/sec ²	•756	.756	.602	.810	1.174	лту-с 1. л. л.
х wo	~ m/sec ²	0362	0362	0252	0342	0739	0708
x	- m/sec	15.78	15.78	14.68	16.09	16.93	16.78
×wo	~ m/sec	.0964	.0964	.0726	.1019	•1716	.1582
×wo	~ m	.746	•746	.501	.803	1.166	1.085
ĥp	~ m/sec ²	345	345	0428	303	1204	254
h _{Pwo}	$\sim m/sec^2$	0614	0614	.00953	0554	01963	0595
'np	~ m/sec	-2.97	-2.97	406	-2.15	-,889	-1.844
h _{Pwo}	- m/sec	.1077	+1077	.01224	•1128	.0459	.1090
hpwo	~ m	349	349	0431	296	1190	244
ë	~ deg/sec ²	.1396	.1386	.0969	+0770	•267	.216
⁰ wo	~ deg/sec ²	0711	0711	0467	•0276	.1408	1372
9 -	~ dcg/sec	1860	1860	1377	1397	351	271
⁰ wo	~ deg/sec	0545	0545	0369	0290	1037	0908
θ	- deg	-1.369	-1.369	-1.102	984	-2.15	-1.528
θwo -	- deg	.0793	.0793	•0554	.0515	.1534	•1519
				가 많이 제 집안 많은		요즘 이 같은 것이 같은 것이 같다.	

TR 1063-2
TABLE IV-4; IATERAL-DIRECTIONAL RESULTS s

OF POOR	QUALITAUration	AWJSRA-A1	AWJSRA-A2	BR941-A	BR941-T	STOLX-A	AMST-A
	$\dot{y}_{p} \sim m/sec^{2}$.488	.336	.208	.550	.1829	+558
	$y_{p_{WO}} - m/sec^2$.1859	.1232	•1139	.235	.0771	.1241
	$\dot{y}_{p} \sim m/sec$.920	.698	•475	2.08	.310	•272
	ý _{pwo} ~ m/sec	.251	.1663	.1050	:242	.0928	.1242
	y _{Pwo} ~ m	.454	.314	.1748	• 50	•1669	.1927
	$\ddot{\varphi} \sim deg/sec^2$	1.617	1.566	1.193	1.948	1.229	1.939
	$\ddot{\varphi}_{wo} \sim deg/sec^2$	1.397	1.135	1.134	1.817	1.121	1.784
	φ́ ∼ deg/sec	1.451	1.012	•653	1.226	.855	1.269
	$\phi_{wo} \sim deg/sec$.859	.644	• 539	.945	.625	1.005
	φ ~ deg	5•31	1.585	•692	1.662	1.139	1.405
e set tak Alata	φ _{wo} ~ deg	.832	.575	.387	•727	•519	• 786
	ų̃ ∼ deg/sec ²	1.460	•931	.871	.708	.660	.989
	Ÿ _{wo} ∼ deg/sec ²	•790	.502	.611	•560	.399	.737
	∛ − deg/sec	2.48	1.616	1.102	•552	1.135	1.192
	¥wo ∼ deg/sec	.782	.494	•539	•283	.376	•60
	∜ ~ deg	5.84	4.75	2.67	1.204	3.66	2.75

Note: RMS \dot{y}_p and ψ are for v_g only

.336

. ₩wo

~ deg

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

.550

.1829

.558

.508

2.75

.671

Configuration	AWJSRA-AI	AWJSRA-A2	BR941-A	BR941-T	-	
$\ddot{y}_p \sim m/sec^2$	-•565	565	•1509	.710		AMST-A
ÿ _{pwo} ∼m/sec ²	0380	0380	01912	0541	01844	0811
ý _p ∼ m/sec	-1.763	-1.763	1.318	7.31	.271	
ý _{pwo} ∼m/sec	0789	0789	.0378	.1309	.0259	- 0066
y _{pwo} ∼m	258	258	•1508	•693	0905	- 0600
$\ddot{\varphi} \sim deg/sec^2$	276	-•576	1235	354	1777	- 936
$\ddot{\phi}_{wo} \sim deg/sec^2$	•1625	.1625	•0704	231	.1443	-•235
φ́ ~ deg/sec	451	451	.1346	.477	.20	•1737 - 251
$\dot{\phi}_{wo} \sim deg/sec$.1472	.1472	•0635	•1544	1126	-1510
φ ~ deg	-1.410	-1.410	•591	1.848	688	- 571
φ _{wo} ~ deg	1749	1749	0566	204	-•1501	1551
$\dot{\psi} \sim deg/sec^2$	456	456	402	1442	-304	- 333
₩wo .~ deg/sec ²	1640	1.640	•245	0807	•0821	1120
v ∼ deg/sec	-1.784	-1.784		•372	-1.130	- 934
₩wo - deg/sec	.1904	-1904	1858	.0910	1072	1333
v ∼ deg	-12.88	-12.88	-7.09	3.54	-10.16	-7.46
ψ _{wo} ∼ deg	-•565	.1509	•710	0935	0811	251

TR 1063-2

NAL	PAGE
Tar	ATTAL TIL
	(HI MAN

TABLE IV-4 (Continued)

ORIGINA	Ċ
OF POCAR	ľ

S.	20-		res treatoure to transhuarte 1			arbuten	
	Conf.	lguration		DHC6-A1	DHC6-A2		
	ÿp	~ m/sec ²	-	•531	.1828		
	ÿ _{рwo}	$- m/sec^2$.1727	.1318		
	Уp	~ m/sec		•506	.1853		
	ýn	- m/sec		.1203	-0932		

RMS Response to Atmospheric Turbulo ace (1% Probability of Exceedance)

Configuration	DHC6-A1	DHC6-A2	DHC6-T	CVBB0-A	CV380-P	CV850-C
$\ddot{y}_p = m/sec^2$	•231	•1828	.273	• 348	.1597	.216
ÿ _{pwo} ∼ m/sec ²	.1727	.1318	.259	.250	.1374	.1942
ýp ~ m/sec	•506	.1853	.230	.422	•1599	.1534
ýpwo - m/sec	.1503	.0932	•1493	.214	•0380	.1309
y _{pwo} ~ m	•1556	•1591	.1526	.245	.0336	.0970
φ ∼ deg/sec	2 5.85	4.85	6.40	4.36	3.39	5.22
φ _{wo} − deg/sec	2 5.80	4.82	6.30	4.08	3.19	4.94
φ ~ deg/sec	1.876	1.520	2.37	2.55	2.0	3.05
∲wo ~ deg/sec	1.794	1.458	5.52	5•50	1.853	2.85
φ ~ deg	1.083	.904	1.490	2.05	1.360	1.921
φ _{wo} ~ deg	.842	.683	1.20	1.580	1.204	1.763
∛ ~ deg/sec	2 2.47	1.643	2.57	1.183	•859	.722
₩wo ~ deg/sec	5•56	1,508	5•36	• 956 '	.742	.662
∳ - deg/sec	1.741	1.157	1.80	1.105	•60	.482
₩wo ~ deg/sec	1.270	.848	1.425	•759	.506	•417
∳ ~ deg	5.95	2.65	2.64	1.574	.573	.422
ψ _{wo} ∼ deg	•1858	.273	.348	.1\$97	•519	.299
		a an			· · · · · · · · · · · · · · · · · · ·	

Note: RMS \dot{y}_p and ψ are for v_g only

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	DHC6-A1	DHC6-45	DHC6-T	CV880-A	- CV880-P	CV880-C
ÿ _p ∼ m/sec ²	.0721	.0721	.0913	.1380	.0467	.0436
ÿ _{pwo} ∼ m/sec ²	0535	0232	.0356	.0376	.0209	.0231
ý _p ∼ m/sec	+531	.531	•514	.870	.243	.1778
ý _{pwo} ~ m/sec	.0279	.0279	0345	0464	.01704	01742
^у р _{wo} ^{~~} ш	.0579	.0579	.0662	.1204	.0381	.0314
ÿ ∼ deg/sec ²	289	289	398	. 377	408	=.646
ÿ _{wo} ∼ deg/sec ²	420	420	396	365	.375	.473
φ ~ deg/sec	•217	•512	.274	340	-+589	. 431
∲ _{wo} ∼ deg/sec	-1882	•1885	.243	273	237	308
φ ~ deg	1379	1379 -	-•538	•568	.283	279
φ _{w0} ∼ deg	0861	0861	.1606	• 251	.1658	-1984
∛ ∼ deg/sec ²	766	766	.675	•598	1535	.1309
₩wo .~ deg/sec ²	424	~. 424	-•395	1431	1104	0738
v ~ dcg/sec	896	896	80	494	-•533	1777
₩ _{wo} ~ deg/see	•535	•535	.237	-•1501	•0941	.0635
v ∼ deg	-7,62	-7.62	-6.73	-3.83	-1.541	-1.178
¥ _{wo} ∼ deg	.0721	.0813	.1380	•0467	.0435	0672
			and the second		and the second of the second such as a	en en la companya de

TR 106-32

64

ORIGINAL PAGE IS OF POOR QUALITY

TABLE IV-4 (Continued)

a. RMS Re	sponse to Atmo	spheric Turbu	Lence (1% Pro	bability of E	xceedance)
Configuration	8747-A1	8747-A2	8747-T	8747-P	B747-C
$\ddot{y}_p - m/sec^2$	•559	•1532	.1730	.1230	.1534
ÿ _{pwo} ~ m/sec ²	.1710	.1035	.1345	.1045	.1333
ý _p ~ m/sec	•360	.357	•530	.1080	.1181
$\dot{y}_{p_{WO}} - m/sec$.	.0975	.0653	.0736	.0686	.0966
y _{Dwa} - m	.1490	.1137	.1098	.0664	.0783
φ̈́ ~ deg/sec ²	1.678	1.088	1.552	1.378	1.581
$\ddot{\phi}_{wo} \sim deg/sec^2$	1.569	1.017	1.446	1.254	1.449
ψ́ ~ deg/sec	1.015	.662	.958	• 908	1.039
$\phi_{wo} \sim deg/sec$,805	.518	.759	.770	.915
φ ~ deg	1,053	.733	.988	.739	.780
° _{wo} ∼ deg	.618	• 4 0	.586	.591	.658
$\ddot{\psi} \sim \text{deg/sec}^2$.470	.304	. 474	. 521	•60
$\dot{\psi}_{wo} - deg/sec^2$.355	.203	•325	.512	•533
ų́ − deg/sec	.607	.435	.607	.535	.441
₩wo ~ deg/sec	.284	.1786	•287	.412	• 365
∳ ~ deg	1.260	1.215	1.175	.565	.418
Ψ _{wo} ∼ deg	.1532	.1730	.1230	. 1534	•586

Note: RNS \dot{y}_p and ψ are for v_g only

b. Feak Values Resulting from a 10 Second Ramp in Horizontal Wind

 generative states of a significant state of the states of t			والمراجع المراجع	a an is an a start a s	
Configuration	8747-A1	B747-A2	8747-T	3747-P	8747-C
$\ddot{y}_{p} = m/sec^{2}$	+1297	.1297	.0837	.0452	.0363
ÿ _{pwo} - m/sec ²	01351	01351	01087	01422	01749
ýp ~ m/sec	1.062	1.062	.628	.290	•1394
ýp _{wo} ~ m∕sec	0288	0268	.01881	01373	.01475
y _{Pwo} ~ m	.1274	.1274	.0808	.0406	.0255
φ ~ deg/sec ²	.1865	.1865	•1547	1576	.1762
ÿ _{wo} ∼ deg/sec ²	•1508	.1508	•1294	.1405	.1685
∲ ∼ deg/sec	•558	•558	.1894	1459	1447
♥wo ~ deg/sec	1077	1077	0950	1067	.1265
φ ~ deg	.488	.488	.390	•1850	.1507
₽ <mark>wo</mark> ∼ deg	1020	1050	0923		1002
∛ ~ deg/sec ²	1496	1496	1350	1184	1133
V _{wo} · ~ deg/sec ²	.0563	.0563	.0509	.0815	.0703
∳ ~ deg/sec	433	433	407	-•535	1705
Wwo ~ deg/sec	֥0657	0657	0538	0729	.0643
¥ ~ deg	-3.51	-3.51	-3.50	-1.441	-1.153
Ŷ _{wo} ∼ deg	•1597	.0837	.0452	.0363	0662

TR 1063-2

65

ORIGINAL PALITY

WARTE

·∕₩.		-	
Ur.	Ξ.		

UAL		TUDIE TAN	(Continued)		
a. RMS Configuration	Response to Atm XB704-A1	ospheric Turi X870A-A2	XB70A-Cl	obability of	Exceedance)
$\ddot{y}_{p} \sim w/sec^{2}$.855	• 555	.1518	.0710	
ypwo~m/sec	.752	.465	.1118	.0651	
$y_p \sim m/sec$.673	.513	.1720	.0395	
ypwo m/sec	.511	•351	.0892	.0302	
y _{pwo} ~ m	•440	.310	•1041	•0530	•
φ ~ deg/sec ²	6.10	3.86	5•58	.509	
Φ _{wo} ~ deg/sec ²	5.77	3.66	5.18	.462	
φ ~ deg/sec	3.49	2.18	1.192	+318	
$\phi_{WO} \sim deg/sec$	3.14	1.942	1.043	•244	
φ ~ deg	2.65	1.808	.985	.296	
φ _{wo} ~ deg	5.03	1.304	.686	+218	
	1.522	•931	•555	•598	
V _{wo} ~ deg/sec ²	1.388	•840	•50	.208	
¥ ∼ deg/sec	1.052	.680	.1816	•246	
Ψ _{wo} ~ deg/sec	.891	.548	.1080	+1786	

~ deg .969 ~ deg Www •555 Note: RMS \hat{y}_p and ψ are for v_g only

b. Peak Values Resulting from a 10 Second Ra

.306

.0710

.843

.1518

.1786

.243

.1735

		G riom d l	o second Ram	o in Horizontal Wind
Configuration	X8704-41	X870A-A2	XB70A-C1	X3704-03
$\ddot{y}_{p} \sim m/sec^{2}$.1736	.1736	•0645	-01010
$v_{p_{wo}} \sim m/sec^2$	•0721	.0721	01977	.01019
ý _p ∼ m/sec	1.135	1.135	•245	
ÿ _{pwo} ∼ m/sec	0742	0742	•0251	֥0058
y _{pwo} ~m	.1442 .	.1442	• 0540	.00420
φ̈́ ~ deg/sec ²	.489	.489	238	0659
$\dot{\phi}_{wo} \sim deg/sec^2$.454	• 454	•237	0497
φ́ ~ deg/sec	433	433	•215	- 0699
♥ _{wo} ~ deg/sec	•357	• 327	1679	- 0440
φ ~ deg	•756	• 756	.405	0453
φ _{wo} ~ deg	•520	• 250	1344	- 0473
₩ ~ deg/sec ²	•1869	•1869	0515	-055b
₩ _{wo} ~ deg/sec ²	-•1343	1343	0205	.0.10
¥ ∼ deg/see	-•286	586	1562	- 0774
₩wo ~ deg/sec	1022	1022	•01938	- 0304
¥ ~ deg	-5.53	-2.29	-1.140	- 40334
V _{wo} ∼ deg	·1736 ·	.0645	•01019	. 0465
TR 1063-2		66		C012

ORIGINAL PAGE IN OF POOR QUALITY

TABLE IV-4 (Concluded)

a. RMS Response to Atmospheric Turbulence (1% Probability of Exceed

Configuration			Lience (1% Probability of Exceedance)			
o o margar a o ton	CH534-41	CH53A-A2	CH53A-H	CH53A-C	H19-H	H19-C
$\ddot{y}_p \sim m/sec^2$.1987	•1496	.1598	•433	.293	.405
y _{pwo} ~ m/sec ²	.1302	.0980	.0699	• 375	.1778	.355
ÿ _p ∼ m/sec	•593	• 595	• 529	.392	1.018	.352
ÿ _{pwo} ∼ m/sec	•1157	.0846	.0696	•258	.1505	•518
У _{Рwo} ~ m	•1520	•1143	.1443	•555	•234	.199
$\dot{\varphi} \sim \text{deg/sec}^2$	3.17	2.51	1.774	B•55	4.33	12.08
^φ wo ~.deg/sec ²	3.05	2.43	1.710	7.95	4.20	11.92
φ́ ~ deg/sec	1.533	1.156	.878	4.01	2.03	4.53
$\dot{\phi}_{wo} \sim deg/sec$	1.354	1.033	•739	3.76	1.807	4.36
φ ~ deg	1.257	.944	1.078	2.48	1.827	2.41
φ _{wo} ~ deg	.883	•651	• 494	2.20	1.137	2.16
$\ddot{v} \sim \text{deg/sec}^2$	1.363	•783	.549	2.29	1.489	3.92
₩wo ~ deg/sec ²	1.028	•585	•214	2.14	1:213	3.74
v ∼ deg/sec	1.511	•909	1.565	1.409	1.857	2.21
Ψ _{wo} ~ deg/sec	.871	.499	+251	1.211	.842	1.886
ψ ∼ deg	3.33	2.98	10.99	1.410	7.33	2.90
₩ _{wo} ~ deg	.1496	•1598	•433	• 293	.405	1.216
Note: RMS v and w a	and for at only					

mode: MMS y_p and ψ are for v_g only g

b. Peak Values Resulting from a 10 Second Ramp in Horizontal Wind

Configuration	CH534-41	00500		•	1-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
* ~ / 2	0.10.04-41	CH234-45	СН5.3А-н	СН5ЗА-С	H19-H	H19-C
p m/sec	.0964	.0964	•1569	•1289	.342	.1366
$y_{p_{WO}} \sim m/sec^2$	0206	0206	.00589	•0432	0937	- 0665
ÿ _p ∼ m/sec	•759	•759	1.472	•839	2.73	- 801
ý _{pwo} ∼ m/sec	0340	0340	0291	0488	1306	.0588
y _{Pwo} ~m	.0905	.0905	•1577	.1007	•306	. 0928
$\ddot{\varphi} \sim \text{deg/sec}^2$	•272	.272	.304	.822	-1.429	-1.126
$\ddot{\phi}_{wo} \sim deg/sec^2$	-•585	-•585	238	576	-1.204	-1.10
\$\phi & deg/sec \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-•585	-•585	433	518	1.364	.776
φ _{wo} ~ deg/sec	•502	•206	•1534	•331	•791	- 651
φ ~ deg	.513	.513	1.142	.627	2.19	
φ _{wo} ∼ deg	.1708	.1708	•1705	.244	624	- 307
∛ ~ deg/sec ²	.609	.609	•929	•421	1.675	
ÿ _{wo} .~ deg/sec ²	•360	•360	323	234	1.086	722
	-1.106	-1.106	-4.03	454	-3.04	-1.00
Wo ~ deg/sec	.309	.309	•411	1318	-1.001	-1.00
ψ ∼ deg	-8.66	-8.66	-31+8	-3.32	-18.92	-7.56
∜wo ~ deg	•0964 .	•1569	•1289	•342	•1366	-,430