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Introduction

In the description of sources of electromagnetic radia-

tion it is customary to regard them as located either at a 	 /3*
finite or at an infinitely large distance("celestial" sources).

An actual source is regarded as celestial if the parallax of

the source is close to the precision of its measurement. It

is proposed that phasometry of the radiation permits the de-

termination of the moments of passage of the radiation at var-

ious points of cosmic space at which are located stellite ob-

servatories (SO) with recording instruments. This method is

used to localize the source. The assumption of motion is ne-

cessary to resolve the problema of ambiguity of phasometry,

leading to ambiguity in the localization. Such a model is

applicable, for example, to bursts of gamma-radiation, which

occur as arae and short--lived increases in the intensity of

gammaradiation[1]. The methods of localization of such

sources is similar to the methods used in hyperbolic naviga-

tion (the LORAN system) [2].

The author acknowledges Dr. of mathematical sciences I.

V. Estulin and the participants of the Seminar of the Mathe-

matical Section and the Section of Astrophysics and Radio-

astronomy of the Institute of Space Research of the Academy

of Science of the Soviet Union for their interest in his work

and helpful comments.
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LOCALIZATION OF NON-STATIONARY SOURCES OF ELEC'T'ROMAGNETIC

RADIATION WITH THE AID OF PHASOMETRY

1.The Problem of Localization and Fundamental Relationships

By localization is meant the determination of the three 	 lij*

ccordinates of a source or the determination of the direction

to a celestial source. It may be assumed that the Surface of

the wave of radiation (that is, the geometric multiplicty of

points in space at the same phase of radiation) appears either

as a plane, normal to the direction to a celestial source, or

as a sphere, at the center of which the source is located.

For the localization we employ the measurements of the moments

t i of the passage of the wave at the points in space ri, given

in a certain coordinate system OXYZ. The possibilities of lo-

calization are defined by the collection n of the employed

base points ri(that is, by the number of SOs used in the ex-

periment).

In the case of the recording of a plane wave the quanti-

ties ri and ti are related by the expressions:

r * ly +c:(tt - v !!p t	 i _ i ̂n-1.	 (:i,J)

where T y is the direction to the source in the coordinate sy^3-

tem OXYZ;

t Y is the moment of passage of the ;Nave at the origin

of OXYZ: and

c is the speed of transmission of the radiation (an as-

terisk denotes the inner product)

From (1.1)-(1.2) the measured t i and the given ri deflne

the direction IY . The quantity t  appears only formally and

need not be determined.

In the case of the recording of a shperical wave the

quantities r i and t i are related by the following expression:

* ;lumbers in the margin indicate pagination in the foreign text
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(I.3)

where rY is the radius-vector of the source in the system OXYZ;

t  is the moment of the burst of radiation.

Here the tY does not appear sim 	 and must be

defined together with F 	 /5
YO

The system (1.3) ineludee within itself the solutions

of the systems (1.1) and (1.2) as asymptotes. However, if it

is known beforehand that the source may be regarded as celes-

tial, it is preferable to employ (1.1)-(1.2). Therefore for

the construction of an at;orithm for localization we will em-

ploy both systems.

Let us take the origin of the coordinate system OXYZ as

at the point ro , designate it as O&tj , and employ the radius-

vectors, defined by it, as p i , and pass to the time T. calcu-

lated From the moment to:

fi =r= ro

P = r^ - r^V	 .
T Y

-t: .Y - t 0* T I QA)

We introduce the matrix R. the i-th column of which is

the vector pi , and the vector T. the i-th element of which is

T i , and we rewrite (1.1) in the form:

R"Cy + CT v ,	 (1.6)

and (1.3) It ' the force :

_ -CT
	 (1.7)

IPt - PY -! p; =CTt	 i = 1, ti- 1 .	 (I.8)

Since (1.8) may be regarded as independent of (1.7), in the

following we will regard only (1.8) as defining pY.
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In order to evaluate the precision of the localization

we will take into account the error AT of the measurement

Of T and the errors Ap i of the given vectors p i . Since the

p i are defined in the coordinate system OEnC, the origin of

which is located at the point r o , the error in the desig,iation

of ro is excluded from the analysis. It is only necessary to

regard this error as systematic in the case of a spherical

wave. The importance of the errors will be evaluated in	 /6

the linear approximations, with the following relationships,

obtained by differentiation of (1.6) and (1.8), employed in

the linerization:

(I lIO)

6ij
d ^^	 (IJI)

ri

C6ij

dPY
P,

wrPre

tc,	 PV .

(I.I2)

(I.12a)

(I1126)

and where d ij is the Kroenecker delta function.

However, besides (1.9)-(1.10) it is necessary to consider

in linearization thr differential relationship impled by (1.2):

•	 f d ey = 0.
Y

(IM)

It follows from (1.10) and (1.12) that the precision Of

3



the localization of a celestial source in the linear approx-

imation is only Influenced by the projection of the errors

Ap i oil P Y :

Q rt - ;7 V' A P i	 z - i , rl - i ,	 (I ,.i ^ )
^L

and the precision of the localizaticn of the .ource of a

spherical wave by the projection of the errorn on 7fi

As a measure of the quality of the statistical character /7

of the errors of measurement we will employ the deviation c2

of the errors AT i and the deviations aRY and a l i of the
Pi	 Pi

errors Ap iY and Api i ,assuming these errors to be irremovable.

We will assume the errors of measurement of the time of pas-

sage of the wave ATi to be uncorrelated to the errors of the

coordinates of the base points A p i . The correlation among

the AT i , and among the Apfy and the Apii, we will assume to

be the "worst" possible case, that Js, maximizing the size

of the elements pi(V) of the covariant matrices V

of the errors ATY/T,ATY/P of the localization of celestial

sources and the covariant matrixes VP/T, VP/P of the errors

ApY/T, Ap Y/p of the localization of the source of a spherical

wave, denoting the size of the errors of measurement of the

time and the given coordinates of the SOs, respectively.

2. Case of na2

The solution to (1.6` in this case will be the simple

^vector Y , equal to:

._ ^ iN
+ ._c,^^x -+ zc ; ^[ S^ t^ mac.	 (2.I)

4



real to pl:

.2)

,2.3)

In th celestial sphere the colle l:tion of possible :solu-
tions forms a circle of radius a with its c.3nter at the
point p l o p .	 It follows from (1.9), (1.10), and (1.13), that

only the projections AQY^ T and Ak s 	of the errors AlY/t

and Aly/p may be defoined in the direction , orthogonal
to k  and lying in the plane passing through ^^. and pl:

Y

The size of these projections will be equal to:

of 
YET 

=c A 1 / P, Sillcx ,	 (2.5)

is

3
P,	 o p, /p, Sm Oe ,	 (2.6)

and their mean-square deviation:

^	 (2.?)I	 a`/^,= c 6t, /P , sin oe

U.q _ Crp' ^ P! sin a

The sum of the mean-square deviaticns a will equal:

5



(2.8a)6^ = 6^ /n 4 Sin (Y.

where

^! /`2

19Z^ = (a'p 
s
Y + C^a , (?_,84)

With the help of (2.6a) we may define the half-width of

the ring in the celestial sphere (take, for example, triple

a Z ) within the limits of which the source is located. Clear-

ly, the error of localization grows without limit upon the

approach of the direction to the source to the line of action

of the vector pl.

Let us now look at the localization of the source of a

spherical wave. The multiplicity of solutions of 61he system

(1.8) forms the surface of one of the branches of a hyper-

boloid of revolution. One focus of the hyperboloid is loca-

ted at the origin of the coordinate system OEn4, and the

other at the point p l . The major axis of the hyperboloid

is equal to IciI/2. For T>0 the surface of solutions is

that branch of the hyperboloid which encloses the focus pl,

and for T<0 the one which envelopes the focus located at the

origin of the doordinates. If T = 0 the hyperboloid is trans-

formed into a plane surface normal to p l and passing through

p l/2. The asymptotic surface of the hyperboloid is the cir-

cular cone, formed by the direction of (2.1), with its vertex

lying at the point 5 112. In this way the asymptotic solution

to (1.8) becomes the solution of (1.6).

The consequences of the continuous solutions of (1.8)

appear practically more suited to the solution of the problem /9
which is the reverse of the problem of localization : the

confirmation by means of system (1.8) of the coordinates of

possible astronomical objects (for example, a portion of the

region of the surface of the Sun) which might be the source

of the radiation. From this follows the consideration, that

6
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.!„T = C k'5 T 	 ein gyp, (2.I2)

(2.I3)

of VOM 
OUALITt

the source may be located not only on the surface of tree hy-

perboloid, but also in the neighborhood defined by the errors

of measurement. For a definition of the possible statistical

dispersion of the source from the surface of the hyperboloid,

we turn our atten';ion to the errors of measuremciit. According

to (1.11), (1.12), the errors of localization Ap Y/T and Ap.Y/p
are related to AT 1 and Apil in the following expressions:

These relationships only define the projections of the errors,
c

Ap Y/T and Ap s /p , on the perpendicular S l normal to the
surface of the hyperboloid (1.8) at the point p

Y

-^, _(^ ^ ^o ) / ^ ^ t	 to f -	 ► -- ^ , rl ^
	 (2.II)

The mean-square deviations of these projections are equal to:

where p1 is the angle between 1 1 and To (that is, the parallactic
displacement of the source arising from the transfer of the

point of observation from the origin of the coordinate system

to the point pl:

Jr)^	 `^(At'cS>>I ^ f, -t^^/2),	 2 - 1. n-i .	 (2.I4)	
I

The sum of the mean-square deviations a  will be equal to:

IL

k
	 (s	 CT /2 	

(2.I5)
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3. Case n=3

We will assume, that

rank (R) = 2	 (3.1)

since for a rank of R equal to 1 the problem is reduced to

that of part 2. We introduce the vector K, equal to

x = ! x 
^'2	

(3.2)

with the help of which we rewrite (1.6) in the form

where [RK] is a compound matrix, and [ c^] is a compound

vector, with the unknown element X. On the basis of (3.1)

we may write:

Y	 t [X 1 .
Having inverted the matrix (see Appendix, p.l) we obtain:

(3.5)

We now find the value of a fromthe condition (1.2):

—C 
	 D-{ i	 (3.6)

P=f,AK
Thus, for

C 2f  '^ D-; r <

the system (1.6) has two solutions symmetrically placed about

the base plane passing through the points 0, ] ,and -02-



For
/11

(3.9)

the system (1.6) has one solution, lying in the base ,lane. The

ellipse (3.9) bounds the possible area of measurement of T.

This ellipse is inscribed in t.e rectangle JcT11< p l , IcT 2 1< p2.

Because of errors the measure quantity t may pass beyond

the permissible region specific to the localized source near,

the base plane. In such a case it is necessary to place i

within the boundary of the region corresponding to the sta-

tistical fluctuations of the errors.

It follows from (1.9), (1.10), and (1.13) that errors

of localization are related to the errors of measurement in

the following manner:

c.Jr r^ ^ ^	 , 	 __C.,T^ 	 Xt.

1. I V x o -	 \ t Y,.t,) . - 	 to I X f V I	
A.)

fix

Obviously, errors of localization grow without limit as

ZY* K-+Q	 The quantity Q Y
*K is equal to zero where K= 0, that

is, when the vectors pland p2 are colinear, or when Y 
is or-

thogonal to K. In the first case the entire system of mea-

surement degenerates, since the rank of R is equal to 1. In

the second case X = 0 and the system has a single solution,

lying in the base plane, but its precision in the direction

orthogonal to the base plane is undefin-d.

It is possible to show (see the Appendix p.2-p.6) that

for the worst possible corrleation between AT  and AT  and

between OpiY and Ap2 Y the mean-square deviation of the er-

rors (3.10), (3.11) will be:

^- X^ P fQt P^)I(3"t ^t = 3Y	 aria: ( Y Gtr
	 (3.12)

9
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x	 il _
/12

Max i t x 
(6P, C a + Opa

Y	 (3.13)

With the help of the triangular inequality it is possible to

obtain the more satisfactory but larger values for ak/T and

0	 Ct^.'I	 +j 	 (3. 1 4)b

at,/P 
c(^^,^+&( /Pj = 111 0 -SMY 9 	(3.I5)

 ; s P2

where s is the angle betweca p l and p2

^ is the angle between 7  
and the base plane.

Designating the smaller value between p l and p 2
 as Amin'

we obtain the following final value for the sum of the mean-

square deviations of tha errors of localization:

Q` 
°min 

Sir, 0 Sin^y

=((C Qt 4 C Q )2--+- (0' + 6,' ^2 1/ c ? (C2(Yr + ^A 
)i/2 '	 3.'56)

where a  and a  are the larger of a Tl , a T2 and aPl and ap22L
respectively.

We move now to the localization of the source of a spher-

ical wave. According to (1.8), the multiplicity of possible

solutions forms a curve defined by the line of intersection

of two hyperboloids. This curve has two asymptotes, colinear

to (3.5). As with n=2, it is approrpiate here to solve the 	 /13

reverse problem. For this, in order to define the area with-

in the limits of which the source may be found, we turn our

attention to the errors of measurement.

Tha expressions (1.12), (1.12) relate the errors of lo-

calization in the perpendicular (2.11) and the curve (1.8)

10



at the point p  solely to the projections of the errors of

measurement 
ApY/T 

and ApY/p . If the vectors (2.11) are not

linearly independent, that is if the source is not located

along one side or the extension of a side of the triangle

formed by the base points O,p l ,p
21
 then it is possible to

define the projection App of the errors of the localization
of the source on the plane passing through the normal vectors

(2.11). Assuming, as before, the worst possible correlation

between AT l and AT 2 and between Api l and Ap Z -, it is possible
to obtain the following values for the mean-square devia-

tion of this projection App:

CT 	 L C (^ ? Sj,J (Pi ^ +	 P'^	 2	 30^ T i	 ( ^,. ^ Chi 2^.. S i 2'l (. /2, )^ / S i r^ ^ ^ ^ . 16 )

t

O /F <	
siti(1'i!2) +0^^ /^ sir.(P^/^w)^% sip ^'	 (3,1'7)

where Y is the angle between 7
1

-7 0 and k 2 -10 and p i is defined

in correspondence with (2.14).

Analogous to (3.15a) and (3.15b) we obtain the following

values for the sum of maen-square deviations of the errors of

localization:

and for small parallax:

1P _< C^ / min `^tYl Y	
(3oI9)

4. Case n=4

We will assume that:	 ^RjG ^' 
jAGE

OF PooR

1

T
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rank (R) = 3
	

(4.1)

that is, the base points do not lie in one plane. For the

localization of celestial sources it is possible to employ

algorithm (3.5)-(3.7), selecting the three of the lour

points which provide the most precision of localization,

while using the remaining point to resolve ambiguity. How-

ever, it is more satisfactory to immediately obtain the sole

solution to the system (1.6), using condition (4.1). We in-

troduce the vector S, equal tc:

In the absence of errors of measurement the vector 7 would be

the solution to (1.6). The influence of errors makes appar-

ent the consequences of the redundance of (1.6) for n = 4 and

introduces a violation of the condition (1.2). Therefore the

solution to (1.6) will be the normalized vector S:

f^, = S/S	 (4.3)

Expressi6n (4.3), essentially, averages the :measurements, in-

cluding the redundance of the fourth measurement. Therefore

the precision of the localization in this case can be greater

than with the use of (3.5i--!3.7). However, this greater pre-

cision does not qualitatively change the preceding analysis,

and the values obtained there may be emplayed in this case.

Let us look at a more general algorithm, which includes

the localization of both a celestial source and the source

of a spherical wave. We square both sides of equation (1.8)

and rewrite it in the form:

)

12
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where the elements of the vector q are:

ci )/	 t	 1 . n f	 ( 4.5)

Since	 IcTil	 pi	 ,	 then:

` (4.E)

As a consequence of (4.1) we may solve (4.4)	 with	 v,^6pect	 /15

to	 p Y :

V
Where 5 is as defined in (4.2), but

f

4 p-	 q
If all qi equal zer.),	 theca:

(o y = F'y s (4.9)
and since according to this S 1,	 the only solution to equa-

tion (4.9) would be p Y = U.	 On the other hand, from p Y = a

it follows that q = 0. 	 Excluding from further analysis the

case py = 0	 let us assume that:

•1

>C. PY >C.	 (4.10)

and let us introduce the variable:

with the help of which we rewrite (4.7) in the form:

I	 ^^	 r + .^ .	 14.12)

where Z 0 is the single vector of the direction to the source

from the origin of the coordinate system O&nt (1.12b).

13
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If	 = 0, that is if T = 0, then it follows from (4.10)

that p o is equal to the vector po:

p2	
(4.I3)

L '5

Since for CT = 0 the source is located at an equal distance

from all base points, the p o is the radius-vector of the cen-

ter of the sphere which passes through the base points

P 2 ^ A3

In the general case we obtain from (4.12) the following

equation:	 /16

P JLv + 2fit;	 E^	
+ 2.__

 i = ^, I' ?!0 , P! C .
(4.14)

Y

For S<l (4.2) has the single positive solution:

In conjunction with (4.2) the condition S<l satisfies the

collection of vectors cT lying within the region of the

ellipsoid:

c 2t 'D i T - t ,	 D=R ' R.
	 (4.16)

For S>l both solutions of (4.14) may be positive. In par-

ticular, when S = 1 (that is, when eT lies on the surface

(4.16)), one of the solutions corresponds to a celestial

source, the direction to which is

^, _•^	 (4.17)

and the second, to a source located at the distance:

14
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For S>l the solution lies on the various sides of the three-

sided figure with its vertex at the point ' and edges p1, p2,

P3' For the solution lying on the interior side (that is,

on the side on which is located the center of the sphere de-

scribed by (4.13)), the quantity p  is equal to (4.15) and

0<pY< P
o . For the solution lying on the exterior side of

the figure, the value of 
p  

is equal to

^^ Y -^-^S -(P^- ^^(^ x^^^(^	 (4.I9)

and 0 < pY < - .

We turn now to the precisio7 of the localization of the	 /17

source of a spherical wave. In accordance with (1.11) and

(1.12) the errors AP ,/ ,t and DpY/p will be equal to:

V	 (4.zn)

^YiP = t,	 n P
	

t'= .?I)

wher L is the matrix whose i-th column is Qi-R,

and Ap p' is the vector whose i-th element is 4p^ i (1.15).

Thus, the system of measurement degenerates for ILI - 0.

The determinant ILI is equal to zero when the ends of the

vectors To , T 1 , 1 2 j3 9 constructed from one axis, all lie
in the same plane. In particular, ILI - 0 if the source is

situated along one of the edges or the extension of an edge

of the pyramid whose vertices are the base points. In the

general case only the quantities of the parallaxes p i (2.14)

Influence the precision of the localization, since the ma-

trix L, and consequently the characteristics of the precision

of localization as well, remain unchanged under the arbi-

15
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t

(4.26)

wiaere

2 
aCT +6^t 2 )t/z
rj (4:2?)

1DRIGINPLL V	 A

UK kWR QUA:.:TY

trary rearrangement of the base points from any original ar-

rangement along a straight line passing through the original

base points and the source.

In the case where the distance to the source is compara-

ble to the distances between the base points, there is an

optimal distribution of base points which maximizes the pre-

cision of the localization, where the columns of the matrix

L are orthogonal and the parallaxes p i (2.14) are equal to

2 aresin (11V-3). In this case, assuming the worst possible
correlation (p.2-p.6), the mean-square deviation of the er-

rors of localization Opy/T and Apy/p are bounded by the

following quantities:r6P/t < ^,̀,g e 6^	 (4.22)
w

g^	
('x.23 )6P/P 4 2 6P -

In the case where the distance to the source is significantly /18

greater than the distances between base points, the precision

of localization is reduced proportionate to the square of the

smallest parallax of the p 1 (2.14) (let it be pl):

aV/P	 6Pi / ^) i	 (4.25)

The sum of the mean-square deviations of the errors of lo-

calisation will be bounded by the following quantities:

16



Since py= p ly 
pl' then for the relative error of localization

i	 we obtain the following expression:

f

s

CT 	 6 p /^, ^t^,
l

Pt/ (4.2b)

Assuming
r

that the relative error may not, in any case exceed
i

unity, we may conclude that:

^l	Pi < K	
K >, !

(4.29)

Thus, for a given precision a  there is a limiting distance

pYmax'
for which we may obtain the statistically probable

value:

2

E Y rna a	 i	 `— h (S^
(4.30)

^. Conclusion

For the localization of a celestial source it is suffi- 	
119

cient to register the burst at three SOs. Ambiguities which

arise in this case may be removed by the use of directional

detectors. With the use of detectors with an angle of di-

rectional reception equal to 2H steradians, for unambiguous

localization there must be in one SO a plane surface, co-

inciding with the base plane, dividing it into two direc-

tional detectors. Another possible means to resolve ambi-

guity is to take steps leading to a fourth SO.

Using three SOs it is impossible to distinguish a plane

wave from a spherical one (this is only possible if the source

is located on the base plane). Thus the treatment of the de-

tection of a pulse from a nearby source defines a direction

to a celestial source which may be altogether different form

the direction to the true source. Therefore, in the use

17



of three SOs it is necessary to verify (the reverse problem)

the possibility of radiation pulses from "suspicious" areas.

If these regions are sufficiently small in one measurement

(for example, a thin layer of the surface of the Sun), then

in the process of solving the reverse problem one may define

all three coordinates of the source.

Id ntification of the form of the wave and the resulting

definition of the direction to a celestial source or the

three coordinates of a nearby source is possible with the use

of four SOs.

In the general case with the use of four SOs the coordi-

nates of a nearby source are defined ambiguously.

In all cases localization suffers a degeneration of the

system of measurement if the source is located on a line

extending through any two of the base points. In the treat-

ment one of these points must be discarded, and localization 120

based on the remaining points.
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APPENDIX

We introduce several relationships used in the funda-

mental parts of the work.

a.) For the nondegenerate matrix A, its inverse may be

represented as:

	

A =(ac ) ^^: xc	 cxa	 a xE	 (p•1)

where a, b, c are columns in the matrix A*.

b.) Consider matrices of the type V = AKA*, where A is

the given matrix and K is an arbitrary correlation matrix:

ii	 .l	 htj 
' hjI	 Ih j;IsI,	

tj
- 17 n

The largest result S of the matrix V is reached when K = Kmax'

where

	

(Ui *	 p.2)

and equal to

n

m	 h	 t	

t- L	

(p. 3)

	

J	 i

where a  is the i-th column of A.

The maximum of the values of the matrix V is bounded by

Smax'

(p.4)

In particular, if the rank of Vmax is equal to unity, then:

(p•5)
14 m ax S m a.'jc
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n=2 the rank of Kmax is always equal to one. For n>2 	 121

IF u 
max 

and S 
max 

are constructed of various K max' 
For example,

if 11 = 3 there exist four different K max , 
dependent on A, from

which Smax may be constructed:

Vi i _ !	 i	 11 2 =-s ! !	 fi g= -^ i i . h4= -^

	

i! f	 i! f	 -1 i{ - IA !

(p.6)

The rank of K 1 and K, is equal to 1, but the rank of K 2 and

K 4 is equal to 3.
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