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CALCULATION OF ELECTROSTATIC FIELDS IN PERIODIC 

STRUCTURES OF COMPLEX SHAPE 

v. F. Kravchenko~ v. I. Polevoy~ A. M. Andrusenko 

and A. V. Kobyakova 

ABSTRACT. A method is presented for developing 
a universal algorithm for calculating electro
static fields in an infinite periodic structure 
consisting of electrodes of arbitrary shape which 
are located in mirror-symmetrical manner along 
the axis of electron-beam propagation. The 
method is based on the theory of R-functions~ and 
the differential operators which are derived on 
the basis of the functions. Numerical results 
are presented and the accuracy of the results is 
examined. The algorithm can be applied to the 
investigation of such devices as electron-optic 
systems~ microwave-oscillator components~ mass 
spectrometers~ and linear accelerators. 

A method for developing a universal algorithm for 
calculating electrostatic fields in an infinite 
periodic structure consisting of electrodes of 
arbitrary shape which are randomly located in 
mirror-symmetric manner along the electron-beam 
propagation axis. The method is based on appli
cationrofthe theory of R-functions. The accuracy 
of the results is evaluated. 

The problem of the distribution of electrostatic field in struc- /3 
tures with electrodes of complex form is of great practical value in 

electron optics. In the majority of cases, the complex geometry of 

; ~ . 

* Numbers in the margin indicate pagination in the foreign text. 
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electronic lenses does not permit the use of exact methods of 

solution; thus it becomes necessary to em\ploy me:thods of approximation. 

Since the numerical realization of these methods is usually accom

plished by means of an electronic computer, the choice of the method 

to be used should be made primarily in terms of its practical 

effectiveness. 

In the present paper, a method is proposed for developing a 

universal algorithm for calculating electrostatic fields in an 

infinite periodic structure consisting.of electrodes whose shape is 

arbitrary and which are located at random in mirror-symmetric fashion 

along the propagation axis of the electron beam. 

The method is based on the use of special properties of R

functions and the introduction 6f the differential operators which 

are derived from them [1, 2J. R-functlons are widely used iD the/4 

solution of a broad range of problems in electrostatics and electro

dyanmic s . [3 - 7 J. The merits of ~h~ present method, which is based 

on the above principle, lies in the possibility of des~ribing analy

tically the shape of any piecewise~smoothregion and the broad 

applicability of the method to an entire class of similarly formu-

lated problems. Moreover, the present method, as distinguished 

from the method of finite differences, requi~es a smaller expenditure 

of machine time and furnishes a solution in analytic form, which 

materially facilitates the analysis of the focus!ir1.g pr;operties of the 

structures under consideration. 

Given the following problem: to find the potential distribution 

of the electrostatic field in a certain structure consisting of an 

infinite set of electrodes, piecewise smooth in shape, located along 

the z-axis so that zn=1l1 (11=0, +1, ±2 ... ) are the planes of symmetry 

for the entire structure as well as for those electrodes which are 

intersected by these planes (Figure la, b, c). If in~this case the 

potentials of the electrodes have the same symmetric form, then 

the condition: 

dUI' 
a7 Zn 

=0, (n=O, ±1, +2 ... ), (1) 
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Figure 1 

must be satisfied in the planes, where U is the desired potential 
+ 

of the electrostatic field, and v is the normal to the corresponding 

planes. 

The boundary condition (1) makes it possible to restrict the 

region to be considered along the z-axis to the planes zn and zn+l' 

and to reduce the boundary problem to be considered to the equivalent 

proplem for one "cell" of this structure of length l along the z-axis. 

Then the:problem can be formulated as follows: in the region D, 

which is bounded with respect to z, the solution of the equation: 

(2) 

subject to the boundary conditions 

(i= I, 2,3: .. , s). (3) 

where ~ are the surfaces or boundaries bf the ele~trodes for which 

the corresponding values of the potentials Vi are given; '[\+1- is the 
-0-

surface or the boundary formed by the planes (axes) of symmetry; " 

is the internal normal to fs+1 . 
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In those cases when the region D is bounded (Figure la), or can 

be bounded (Figure lb) in the plane XOY, the solution for (2) with 

the conditions (3) can be represented in the following structural 

form: 

where 

s s 

~- V, n (r)/ 

<Do = {=I ;~l.r'~1 

s s s 

~ n (11;+ n-Wj 

' .... 1 j=J ;=1 
/+1 . - -

- (d= II (J) • DI(" = ')"'n ..!!.- + ,)'''0 .2.-- ~ 0,.", ~ 
i,. I - cJx dx cJy uy lIz Ilz' ,-1 -. 

where ~ is a function of class C2 subject to determination; 

function which gives an analytic description of the surface 

the 

( 4 ) 

(5) 

Wj is the 

r i of the 
analytic corresponding electrode; Wo is the function which gives 

description of the surface ~s*l formed by the planes of 
ing the region D along the z axis. 

symmetry bound~:~ 

It is not difficult to show that a solution in the form (4) 
subject to (5) satisfies the conditions (3), regardless of the form 

of the function,~. For this purpose, it is sufficient to take account 

of tne following,properties of wj ' wo' and the \_~I2~r9:.t.9r Dl (0) [1]: 

Cl)il~/=O; CI>olrs+J=O; dl~l __ =1 (i=f. 2 ..• , s). 
- _. dv rs+1 

(6) 

tJ)1 (M) >0; tJ)o (M) >0; 

D',ol (f)Irs+,= (~I ; Dlol (wof) Irs+l=f/rS+I ' 
- _ dv rs+1 

:_w~~re M_is __ ~n arbitrary point of the region D, and f is any differ

entiable function. 

In the case the region D is not bounded in the plane XOY and the 

dimensions of the electrodes in this plane are finite, it becomes 

necessary to take into account the behavior of the field at infinity. 
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In this case, a more general form of the solution must be selected: 

(7) 

where 

W II) 

. = _Qm+l; 

and m and mO are the degrees of the functions 00 and 00 0 , respectively. 

The solution in the form (7) not only satisfies the conditions 

(3), but also ensures the regularity of the function U at infinity 

for any choice of the function Cl> !;'C
l

; :~; z) from the class C2 . 

The arbitrariness which is permissible in the choice of the 

Ifunctio~~makes i t possible to seek it by any method of approximation 

such that the structure (4) or (7) provides the best solution to 

equation (2). 

Let us represent ~ by means of the following approximation: 

P 

-t1) = \., CH.JZi.:N • 
...i 

t+i+q=ll 

where Xkiq is a certain complete system of functions represented in 

the form: 

XkIQ=P k (x) P, (y) Pq (z) for the structure ( 4) ; 

tX 
" y 'I.lclq=P Il :.l j Pll~-_ Pq (z) for the structure (7) . 

On substutiting (8) into (4) and (7) , and by virtue of the linearity 

of the operator DZ 
(0) we obtain: , 

~ 

~ . em 'V Itl~. - (9) 
It+I+q-O 

where, for the structure (4), 

(10) 
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Analogously, we have for the structure (7): 

, WWo D'tO' (W ) 
, '1'0 = <Do - ii7+"Wo 1 XAlq • 

(lOa) 

'Yllq = WXAlq - ::;1 Dim (WXklq). 

Next, we introduce the function; 

V= 

p . 

V C Irlq 'l' krq. 
J,..J . 

t+t+q-o 

The problem (2) with the mixed conditions (3) can be reduced 

relative to V to the following problem with uniform boundary 

conditions: 

V Ir -0' ~I . =0. I ,- • a; rs+1 

(11) 

(12) 

We shall seek the solution on the lineal of the functions Vn 

.belonging to C2 and satisfying the Qonditions (12). The given 

problem is equivalent to the problem of constructing an element of ~ 

the energy space which realizes the minimum of the functional [8J: 

J.(V)=(-,-~V. V) -2 (V. ~'l'o):"'- \ (~VV+2V~'l'o) d-r,. 
. b . (13) 

On applying Green's theorem to (13)·we have: 

J (V)= r[(~)2+(~)'I+(~)2 +2(~ cJ'I'o +~ cJll'o + . .l . ax dy' dz ux dx dy ay. I 

. D 

+ ~ d'l'o)l d. -5 V av dS -25 V 0'1'0 dS. 
. ~ ~ ~. ~ 

(14 ). 

, I 

Taking into account the conditions (6) and also for (7) the 

condition for the decrease of the potential at in~inity, it is not 

difficult to verify that the surface integral in (14) equals zero. 

Using the variational method of Rietz to minimize the functional /7 

(14), we obtain the following system of equations: 
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p .• l'r :"1' . 1'1' u'I' cJ'I' d'l'" .''''' C \ t( ~/II'~ nlII' '. (Hq nm'·. 1I111 "."t I d -, itlll '""'--- -- ., -- --'- T -- -.-- t-
. .:.;.& • cJJC UJC uy oil ·cJZ Ul I 

, . 'l+l+q-\J D 

= \' {(J'I"" cJ'I' nI~t (}'I'o d'I' '!!!!' + cJ'I'~ €lll' mnt) d~. 
'. uz' ox I + cJ!/ ci!J cJz Uz. . 

(15) 
U 

Re~lization of the system (15) on an elecitronic comp~t~r permits 

the determination of the coefficient ~~ in the expansion (8), and 

therefore the solution of the problem posed. 

The proposed method is illustrated below in an example of con

crete structures which are used in electron optics. 

Let us consider the structure (Figure la) consisting of two 

rows of bars with rectangular cross-section, infinitely long along 

the y;;;axis and distributed so that the planes ~n =nl. (l=a5~ and the 

plane x = 0 are the symmetry pUmes of this structure. Moreover, 

above and below, the structure i~ bounded by the two conducting planes 

x=+b7 

In particular, when the dimensions of the bars and the distance 

between them are the same V.=O and VI = l'3=- V2 we obtain the struc-. - , 
ture.which is used for focusing the electron. current in generators 

of diffraction radiation [9J. 

Taking into consideration the homogeneity of the structure 

along the y-axis and its boundedness with respect to the x-axis, 

we shall seek the solution in the form (4) for a two-d~mensional 

region D bounded by the lines .2"=0. z=a:; • .\"=0. x=b7 (the solid lines 
in Figure la). 

For the given case: 

(16) 
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(17) 

t , " 

\" {1=al-z;;::::O; j,;.=x-b3 ;;::::0; fl1=b 7 -x;;::::O; 

/2=X - b.;;::::O;" f;=b4 - x;;:::: 0; fI2=Z;;::::0; 

/3=b 2 - X~O; fa=z - a4;;::::0; fl3=aS - Z;;::::O;" 

/4=Z - a2;;::::0; f9=X - bs;;::::O; fI4=X;;::::0; 

is=a3 - z;;::::O; '.o=b6 -,- X;;:::: 0; 

AO is the symbol for the operation of R-conjunction [lJ 

It can be verified by direct checking that (4) together with 

(16) and" (17) satisfies (3) for any choice of ~. 

Representing ~ in the form (8) artd using the method described 

above, we have for Ckl a system analogous to (15) where '0 and 'ki 
have the form (10). 

Let us consider a periodic structure (Figure Ib) consisting of 

infinite plates of thickness 2d, the potentials of which alternately 

equal Vl and V2 . In the plates there are openings formed by the /8 
intersection of these plates ;with the surfaces of the form: 

z"ll !l2t . (Z _ Ztt)21 

~ + ~21 + 21 = I. a v- c 
(18) 

where Zk =nl (n=O. ±I. ~2 ... ); (is the distance between the center of 

two neighboring plates, t is the exponent (I;;:::: I); -ci:-b. c. d are constant s 

which determine the magnitude and shape of the openings, and c~d. 

The appearance oroan opening in (18) is selected in connection 

with the fact that, depending on the magnitude of the exponent and 

the relationships among the quantities a, b, c, and d, the possibility 

emerges of obtaining openings of the most varied shape. Thus, if 

{~"r, we obtain an opening of practically rectangular shape (slit 

diaphragm). Then t = 1 and a = b, we obtain various types of 

axially dymmetric openings from segmental (when c = a = b) to cylin

drical (when c~a, b. and d). 

7 
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Consequently, from (18) it is possible to obtain in particular 

cases the basic forms of diaphragms widely used in electrostatic 

focusing system. 

We shall seek a solution in the region D bounded by the planes 

z = 0, .. z - I, x~O, y=O (the solid lines in Figure Ib), given on them 

conditions of the type (1). Note that, beginning with some xo><.a,!lo-;;Pb, 

the field between the plates may be considered as practically homo

geneous with ~ linear distribution of the potential along the z-axis. 

This makes it possible to restrict the region D in the plane XOY to 

a cylindrical surface of the form: 

(19 ) 

along z, where xo~a, yo-;;Pb • 

Here on the surface (19) in the interval d~z~ (1- d) " it is',' 

necessary to assign a distribution of the potential analogous to that 

which exists between two infinite planes. Taking this into account, 

the boundary conditions for the region D can be written in the 

following form: 

U/r.=V I ; Ulr.=V2; U1r=V,(Z-d)+V,(I-d-Z) . .2!!-( =0,· 
. • 1-2d • dv r. • (20) 

where f l , f2 are the surfaces of the electrons; f3 is the surface 

(19) bounding the region D in the plane XOY, f4 is the surface formed 

by the planes of symmetry. We shall select the structure of the 

solution in the form (4), where for the, given case: 

8 

«I> _ V,III21l11+ V 7I'I,CIlJ+q>IJI,(,)1. 

0- OI2W3+W,W3+tJI,tJJ2+1U • 

w= (')IW2W3; WI = - [1 I Aof2/J] ; W2 ='-- [fIAof 4f5]; 

U)3=-[f2f4Aoib); Wo= lMsAofgAoflo]; 

x21 I/ZI z21 

I. = a21 + b21 + ;?l - 1 ~O; f2=d - z~O; 

fs=d+z~O; ,.=z -1+.d~U; is=i+,j - "'~O~ 

(21) 



~ ." I 

I 
I " " ,= 7'(1-:- z) ~O; Ig=x~~;: 110=g~O; 

" " .,.,.+ V,'t 
tp= 2d -I . 

"_-~~L>resentIf"!.g_ Cl>" in ttE form (8) and performing the sequence of /9 
operations described above, we obtain the system (15) to determine 

eM!. The limits of integration with respect to z are from 0 to 1; 

with respect to x, from 0 to xO; with respect to y, from 0 to YO. 

It should be noted that the values Xo and YO are selected in 

the process of numerical realization on an electronic computer, based 

on the condition that their subsequent increase must not influence 

(to a given degree of accuracy) the value of the~potential of the 

field U at any pointo_oT the domain D under consideration. 

Let us consider the periodic structure (Figure lc) consisting of 

a system of cylindrical rings with internal radii r l and r 2 , thick

ness hl andh2 , length 2d l and 2d 2 , located along the z~axis at equal 

distances L between their centers. In the present instance, the 

region can be bounded only along the z-axis. Here the planes of sym

metry have the following form in cylindrical coordinates: 

z=O; z=L; p C_o.s <p=0; p sin <p=O'o 

Since the region D is not closed along p, together with the 

boundary conditions (3) it is necessary to take into account also 

the behavior of the field at infinity. Therefore, the potential of 

the field U must be select~d in the form of the structure (7) in 

the present case, thus ensuring the requisite behavior of ~he pot~~-J 

tial and its partial derivatives when ~~. The quantities occurring 

in (JJ fiave the following form~ 

9 



<ill. =-[ftf2J\of3]; W2= - [f.f5;\of6]; 

. I 6)0= [f7J\ofaJ\of9]; 11= P - '1 ~O; 

f2='1 +h,- P~O; 13=d~ -:- Z2~O; 
f.=p - r2~O; f5=r2+ h2 ~ p~O; 

f6= (z -1+d2) (i+d2 - z) ~O; 

f7= + (/- z) z~O; fs=p cos <p~o; 

f9=P sin rp~O, 

(22) 

We shall represent ~ in the form of the following approximation: 

p 

CD= L CkltiPk (~ ) P, (cp) Pq (Z), (23) 
t+'-,-~~n 

where PilIP" Pq is some complete system of functions. 

Substituting (23) into (7) and perfo~ming the operations de- /10 

scribed above, we obtain for finding Ckl . a system of the type: 
, . I 

" CD n2 , .. 
V c f \' \' ,d'I'"," -)'I'n"" +!.. (J'l'lllq d'I'mlll + (I'l'",., d't'na",·). ,d ,ddz.= 

.. ~ tf J J J \ vv uV 1,2 v'9 dIp . dz dz f I cP 
-+,-0. 0 0·0. 

CDZl 2 I 
_ 

\ \ \
• (0'1'0 d'l'm,,'··· _I d'l'o d'l' "in' + 0'1'0· d'I'mn, \ . + . --:>-z J ndndmdZ, 

-. •. dp dV p2 dl:p.. vq: dz OJ "" T 
o 0 0 . 

(24) 

where 'I'll and ;.\l't,q have the form (lOa), and in the present case: 

(25) 

The numerical realization .of the system (24), as well as (15) 

also, was accomplished with the help of an electronic computer. 

As an example of the numerical realization of the method de

scribed, the structure was selected which is represented in Figure 

la.· The solution of the corresponding algorithm was accomplished on 

the electronic computer "Minsk-3211 for v.arious values of the dimen-

sions of the bars and the distances between them. The system (15) 

10 



was solved and the values of the coefficients .~, (in the two

dimensional case) obtained. Then the patterns of the distribution 

of the equipotential surfaces in the region D were constructed in 

accordance with formula (4) ~ taking: In-to-accounn-gy .-

" 

5 

~ 

a ;'II~[/-
~liIl 

III \1\ \\~//(I{ III ibJ 

Figure 2 

The polyriomials of the form: 

X/ll =x"!l. (k +1 =0; I; 2; ... ,p). 

were chosen as a complete system of functions. 

The set of coordinatecfunctions ~!' were chosen subject to the 

condition that their subsequent increase would provide a correction 

to the result not exce~ding the prescribed precision of the numeri- /11 

cal realization of the potential at any pOiht:;of the domain D under 

consideration. 

11 



The results of the calculation in the form of patterns display

ing the distribution of the equipotential surfaces are presented in 

Figure 2a, b, c. The values of the potentials at the corresponding 
boundaries are VI--_-lOO. V2;= + 100, V3 =-100B. V.=O . 

The equipotentials in Figure 2a, b, c are denoted by numerals, 

representing ~voIfa&.es-.as follows: 

. 
1-100' 2-80' 3-60' 4 - 40'5 - 20'·6 -0' 7·- 20' 8- 40' 9:.- 60' 

t '.' , • , • , . . ' 

. 10 - 80; JJ - 100 V 

The relative sizes o~ the regions in Figure 2a: 

41 ==0,225, a2==0.2i5. a3=0.725.a.=0.775, as= I; b l ="0.5, b2=0.501~ b3=O.5, 
b4~O.501. bs=O.5, b6 =O.501, b7 = 1. 

The relative sizes of the regions in Figure 2b: 

al=0.1~5, a2=0.375,'a3=0.625, a.=0.875, ·as=J; b,=O,J, b2=0.35, b3 =0,I, 
b.==0.35, bs=O.J, b6 =0.35, b7 = 1. 

The relative sizes of the regions in Figure 2c: 

QI==0~25, a2=0.4, a3=0.6, a.=0.75, as=J; b,=0.55, b2 =0.75, 63=0.25, b.= 
:==0.750, bs=0.25, b6 =0.45, b7 = 1. 

In conclusion it should be noted that the proposed method, and 

the machine algorithm based on it make it possible to calculate the 

field in structures with elements having arbitrary profiles, and it 

can be used effectively during the development of electron optical 

systems, the focusing devices of superhigh \frequency generators 

(in particular GDI*), mass spectrometers, and linear accelerators. 

* Translatorls note. Expansion unknown. 
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