L
View metadata, citation and similar papers at core.ac.uk brought to you by:: CORE

provided by NASA Technical Reports Server

N78-32467

DYNAMIC STORAGE EAPANSION IN NASTRAN

Edwin N. Hess
Lockheed Electronics Co., Inc.

SUMMARY

Some functions of NASTRAN require a large block of working storage to
execute. The method of meeting this requirement, because of insufficient data,
has been to specify in advance an excessive amount to avoid a fatal exit. A
method has been developed at the Lyndon B. Johnson Space Center (JSC) to calcu-
late the amount of working space needed for the analysis and to inform the
analyst of this data or, in the case of UNIVAC computers, to acquire this extra
storage and continue the analysis.

INTRODUCTION

The design philosophy of NASTRAN dictated a completely open-ended design
whenever possible. The use of a “ixed dimensicn for large arrays was outlawed
since this 1imited the size of the analysis that could be solved. Instead,
modules were programmed to ~1locate space as required and to use spill Togic to
tiransfer data to scratch file if working space was Timited.

The first public release of NASTRAN for the UNIVAC 1100 computers

{(Tevel 11} assumed a limitation of direct addressing of 65,535 words. The
HICORE system, which allowed indirect addressing of up to 262,143 words, was
developed on level 12 NASTRAN at JSC. The UNIVAC computers were then competi-
tive. As structures became larger and more complex, la-r2r amounts of storage
are required. The amount of working space for a particuifar analysis has been
left to the analyst, with disastrous results. Either there was "insufficient
core", Teading to system fatal message 3008, or more working space than that
required was attached and computer throughput and turnaround time suffered.

At JSC, fatal message 3008 has been changed to reflect the amoun® of work-
ing space required by the offending subroutine. Going beyond this, the branch
to message 3008 was changed to branch to increase the space dynamically, and
continue processing. The extra working storage required by a particular
analysis is not necessarily that required to eliminate spill logic. We have
found that spill may be economically advantageous in regards to extra time as
opposed to an outrageous amount of working storage.

The subroutines mentioned will be ejther matrix subroutines which may be
used by more than one module or module subroutines which are an exclusive part
of the module. Utility and executive subroutines are not included except for
changes necessary for the analyst's information. The term "working storage" is

https://core.ac.uk/display/42872765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

used jnstead of core, and the word "problem" to mean analysis is avoided, A
problem is encountered when an analysis fails,

FATAL MESSAGE 3008 (ref. 1)

System fatal messages usually consist of three parameters:

1. The message number

2. The data block name

3. The subroutine name

In the case of message 3008, the second parameter is not used, but is always
set to zero, and the message reads:

SYSTEM FATAL MESSAGE 3008 - INSUFFICIENT CORE FOR SUBROUTINE NNN

Subroutine MSGWRT was altered to skip the FNAME call, which recovers the
data block name, and the message rewritten to read:

SYSTEM FATAL MESSAGE 3008 - MMM ADDITIONAL CORE NEEDED FOR SUBROUTINE NNN

MODULE MODIFICATIONS

Mast module and matrix subroutines have at least one branch to message
3008, but the majority of these are only safety valves and will not be taken if
the working storage length is in the range of 20,000-25,000 words, which is the
case when the UNIVAC is operating at the default core size of 65,536 words.

McCormick
arrived at the

Group O

Group 1

Group 2

Group 3

and Redner {ref. 2) studied the module core requirements and
following categories:

Modules which have no requirements of open core

Modules which require space for vectors or tablies which do not
exceed eight times the number of grid points in the model and do
not provide spill.

Modules which require space for tables or matrices of variable
size. Spill logic may be provided.

Medules for which the working space requirements are established
by one or more matrix routines. Spill Tlogic is usually present.

This information was used to determine which subroutines were likely to
need additional working space. The decomposition subroutines rea) symmetric,

real unsymnetric, and complex require the largest space. The group 2 modules
were also studied as to the working storage required.

Most subroutines have a preface section where file assignments and working
space are calculated from table and matrix trailers. A calculation of working
space is made with the result of a fatal message when insufficient. A simple
change in these subroutines to add the second parameter in the call to subrou-
tine message will give the analyst additioral information of core requirements
for subsequent analysis. Most of the matrix subroutines in group 3 were modi-
fied to state the amount of additional working space required.

Another method of calculating working storage is to read a record into
working storage where the full record must be in core. If the number of words
available is filled before the end of record is reached, the call to fatal
message 3008 is taken. The following branch was added:

1. Reset the address of storage
2. Read the remainder of the record

3. The number of words read on the subsequent call(s) to read is the
amount of insufficiency

This is necessary in modules such as TA1 (subroutine TA1A). This method
is also used in subroutine XSORT as it prepares the continuation card dic-
tionary. A correction was made by inserting a count, from which the space
requirements could be calculated, of the continuation cards as they were read
on the first pass through the bulk data cards.

Some care must be taken when using the results given by this message. On
a large static analysis we found the following storage requirements:

TAl 80,000
RBMG2 90,000
55G3 103,000

TYPICAL SUBROUTINE (SDCOMP)

Decomposition of a symmetric matrix is performed in steps by rows, The
row under consideration is called a pivotal row. The contribution of the pivot
row into each row of the resulting matrix is dependent upon the active (non-
zero) column elements of that row and are combined with the corresponding
column positions of the other rows. A1l computations can occur without spill
if sufficient space is available to contain a triangular matrix whose row
dimension is equal to the maximum number of active columns. When sufficient
space is not available, the spill logic divides the triangular matrix into
spill groups containing consecutive rows which will fit into the available
space. It is expected that a reasonabie compromise between time and space can

3

be realized by requesting sufficient working storage to contain a triangular
matrix with a dimension equal to the average number of active columns, This
scheme would allow for the majority of processing to be contained in core and
allow spill for the larger pivotal rows (see fig. 1).

Current preface procassing of SDCOMP involves the organization of working
storage and the determination of spill groups. Before beginning computational
processing, statistics gathered during the preface are printed for the user's
information. The statistics reported include:

0 Maximum number of active columns

0 Space required to eliminate spill

o Number of spill groups

o Average number of rows in each spill group

Tests on a Space Shuttle analysis were made to determine the costs of
spill to conform to available core, as shown in the following table. A

decreasing benefit was derived after a certain point which shows eliminating

spill is not beneficial. The figure for additional core should be that needed
for the average column.

Storage size total (K) Percent increase Time in SDCOMP Percent decrease

65 1520
80 22 992 53
137* 7l 657 50

*Required to eliminate spill.

The choice of subroutine SDCOMP as being typical was made because of the
completeness of calculating optimum working space. This same method is used in
subroutine GENVEC, which is & slave of both real unsymmetric and complex

decompositions. Spill has not been calcuiated into requirements of any other
subroutines at this time.

DYNAMIC CORE ALLOCATION

The ability to dynamically extend main storage without terminating an
execution is available on the UNIVAC 1100 computers. This function has been
successfully implemented at JSC.

The calls to message 3008 were changed to call a computer dependent sub-
routine EXPAND, reset necessary parameters, and return to the beginning of the

subroutine. Figure 2 shows the subroutine SDCOMP flow as regards dynamic
expansion.

The design requirements of subroutine EXPAND were as follows:

o Provide for Tevels of expansion

o Access the UNIVAC 1100 function MCORES$

0 Place a Timit on expansion

0 Provide for moving the contents of reserved storage

0 Restore the contents of reserved storage

o Inform the user of the expansion

Levels of expansion were provided in case a matrix subroutine {SDCOMP)
needed additional working storage after a module subroutine (INVPWR) had
requested additional working storage and, as in these cases, the moduie sub-
routine reserves a section of storage not available to the matrix subroutine.
Figure 3 shows a typical map of working storage area.

The 1imit on main storage is required by the addressable 1imit of 262,143
or by the computer facility.

The subroutine that requires additional working space calls EXPAND with
the following parameters:

o Address of working storage

o Additional storage required

o Length of working space currently available

o The calling subroutine name

An additional entry into subroutine EXPAND {SHRINK) is called before
exiting to provide for the restoration of the contents of the reserved area to
its original position and to reduce the level index.

A new call tc the 1100 executive (LCORE$)} was made on each reentry into

the main Module driver subroutines XSEMii. This provided for the release of
core to its default value following each module.

MODIFICATION TECHNIQUES

Executive and Utility Modifications

The use of the system data block (ref. 3, section 2.4.1.8) was expanded to
store the following data:

31 Current length of main storage

35 Maximum length of main storage

36 Default length of main storage

57 First level length of assigned main storage

58-61 Subsequent level lengths of assigned main storage

Two functions were added to the computer dependent subroutine MAPFNS
(ref. 3, section 5.4.7) to execute the executive requests to MCORE$ and LCORES.
These were labeled GETCOR and RELCOR, respectively.

Subroutine MSGWRT was modified to skip the call to subroutine FNAME for
message 3008 and to write the modified message. This change is computer
independent.

An additional line was placed in subroutines XSEMii to call subroutine
RELCOR on each return from a module execution.

Matrix and Module Subroutine Modifications

When a call to subroutine EXPAND is necessary, all files must be closed
before returning to the beginning of the subroutine to reexecute the preface.
The GIND buffers will be reassigned, Care must be taken that files opened
previously be closed without rewind and reopened without rewind. This is the
case of the FG file in module SSG1 (Static Solution Generator, Phase 1). This
load vector file is epened in subroutine SSG1 and the load vectors written by
subroutine EXTERN for the external load vectors and by subroutine EDTL for the
element deformation and temperature load vectors. Either EDTL or EXTERN may
require extra storage.

If a matrix subroutine is denied the use of a section of upper storage,
the additional storage requested must be at least as large as the total Tength
of the GINO buffers to prevent GINO error 1151 (buffer overiaps a previously
assigned buffer). GINO will remember the address of the buffer in the reserved
area and prohibit this area to be used as a buffer again.

RESULTS

Dynamic expansion has been successfully demonstrated in static and normal
modes analysis from the following modules and/or subroutines. These subrou-
tines reflect the size required by the analysis by their varying needs and
hence are calls to the prime candidates for calculating the required working
storage and the improved message 3008:

Hodule Subroutines
READ INVPWR

SDR2C
SDR2 {

SDR2D
SSG1T EDTL
RBMG2 S30MP
SS8G3 MIYAD
XSORT AGURT

The following subroutines have haa the call to subroutine MESAGE changed
but have not called for increased storage and are therefore untested.

RCOVB TRDIAZ
AMG TRHT
PARTN FONTL
TRD TRNSP
TRDIA INVP3

GENVEC (preface for both DECUMP and CDCOMP)

A1l of the above subroutines should calcuiate the storage requirements and
relay this information to the analyst on all computers.

CONCLUDING REMARKS

The improvement in user fatal message 3008 is a useful tool to the analyst
and is a guide to total main storcge requirements of an analysis. After this
improvement to the message, a zero value of additional storage is an alert to

the system programmer that the minor change in the offending subroutine is
desirable.

For the sake of keeping the computer independence, it is recommended that
a call to the vumputer dependent subroutine EXPAND be made in all cases of
insufficient main storage. This subroutine would then directly make the call
to subroutine MESAGE for those computers where the insufficiency is fatal.

A11 of the areas of storage insufficiency have not been discussed; others
are anticipated as the structural models get larger and other paths through
NASTRAN, particularly dynamic analysis, are explored.

Further work on the storage requirements should include earlier detection
of insufficient size. Table trailers are sparsely used and could, in some

cases, be used to cause an earlier demise of an analysis that has insufficient
main storage.

REFERENCES

7. The NASTRAN User's Manual. NASA SP 222(03), July 1978, Section 6.2.2.

2. McCormick, C. W., and Redner, K. H.: Study of Moditications Needed for
Effective Operation of NASTRAN on IBM Virtual Storage Computers. NASA
CR-2527, April 1975,

3. The NASTRAN Programmer's Manual. NASA SP 223(03), July 1978.

(smaer)

PREFACE
PHASE

MIN SPACE

(£

COMPUTE
SPACE
FOR

AVAIL.

NO
WORKING SPACE »r
PRINT
STATISTICS
COMPUTATIONAL
PHASE
Figure 1. — Storage Calculation

¥ith Spill Optimizat

3

AVERAGE
ACTIVE
CCLUMN
- -

I

CALL MESSAGE
3a08

on {SDCOMP).

0t

<G—
P — - A]
] PREFACE
| PHASE l

R |

IS
OPEN SPACE

NO

AVAIL.

GROUPS < 10

PRINT
STATISTICS

r — —— — ﬁ
|COMPUTATIONAL |
.PHASE |

Figure 2. — Dynamic Expansion With Spill Optimia Optimization (SDCOMP).

NO

YES

COMPUTE

SPACE REQUIRED
FOR AVERAGE
ACTIVE COLUMN

iS
SPACE
ALREADY

AVAIL.

ALLOCATE
STORAGE

ORIGINAL
AREA 1
WORK
OPEN AREA
CORE
AREA 2
GINO BUFFERS
AREA 3%
RESERVED

v

EXPANDED

L

GINO
¥ This area, if present, must be restored to its BUFFERS
original addvess before exiting the subroutine AREA 3
which triggered expansion. MOVED
Figure 3. — Open Core Allocation Subroutine Any.

11

