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SUMMARY

A gquadrilateral shell element, CQUAD4*, has been added to level 15.5
and subsequently to level 16.0 of NASTRAN. The element exhibits doubly-
curved surfaces and uses bi-quadratic interpolation functions. Reduced
integration technigues are used to improve the performance of the element
in thin-shell probiems. Several detajls of previous authors' (ref. 1)
work are clarified with respect to the present NASTRAN impliementation.

The creation of several new bulk data items is discussed along with a
special module, GPNORM, to process SHLNORM bulk data cards. In addition
to the theoretical basis for the element stiffness matrix, consistent mass
and load matrices are presented.

Several potential sources of degenerate behavior of the element are
investigated. Guidelines for proper use of the element are suggested.
Performance of the element on several widely-published classical examples
is demonstrated. The results show a significant improvement over pre-
sently available NASTRAN shell elements for even the coarsest meshes,
Potential applications to two classes of practical problems are discussed.

INTRODUCTION

Until recently, onily the CQUAD2 and its analog CTRIAZ were available
in NASTRAN for analyzing shells of arbitrary geometry. Compared to
current shell element technology, these elements are subject to the
following Timitations:

o Faceted (flat) surface geometry is poorly adapted to model
curved shapes.

* After the initial implementation of the new element was completed, the

arthors became aware of a similar proprietary element under develop-
ment by the MacNeal-Schwendler Corporation which used the name CQUAD4.
The reader should take care not to confuse these two identically
named elements, since it is our understanding that the formulation
and performance are quite different.
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o Lower order polynomials used in membrane formulation cause
element to be excessively stiff for in-plane deformation.

0o While the enforced linear variation of the normal slope along
the sides of the element guarantees interelement compatibility,
it causes the bending behavior of the element to be quite
stiff as well.

o In problems exhibiting thick shell and/or three-dimensional
behavior over certain regions, the CQUAD2 element is an
inadequate model and is difficult to interface with three
dimensional elements.

To alleviate these problems development work on the present (CQUAD4)
element was begur with the intention of implementing it in NASTRAN
Level 15.5. The efforts were partially successful but full implementation
was not achieved until NASTRAN Level 16.0 became available last year.
The choice of the element was primarily influenced by the need to
accurately represent curved surfaces as well as thick shel1/3-D behavior.
Such extremely accurate elements as Cowper's (ref. 2) and Dupuis'
(ref. 3) were rejected due to the present authors' preference to adhere
to the standard six degrees of freedom (dof) preferred by the majority
of the user community. Although the theoretical development has often
been presented elsewhere (refs. 1, 4, 5, 6, 7, and 8), we choose to
repeat enough of the development to ciarify certain issues which caused
difficulty in the present impliementation.
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SYMBOLS (Scalars)

Values are given in both SI and U.S. Customary Units. The
measurements and calculations were made in U.S. Customary
Units.

a, b Plate edge dimensions

D Shell flexural rigidity [Et3/12(1-v2)]

E Elastic modulus

950 9o40 Components of interpolation derivative arrays
935> Mgy

k Shear correction factor

L Structure length dimension

Ni (¢, n, &) Inferpo]ation fupction for node i

P Constant pressure l1aad on =lement

P Concentrated lcad magnitude

q Displacement value

R Mean (midsurface) radius

ti Thickness at node i

U, v, w Transiational displacements at a point in basic
system

u'y, v, ow! Translational displacements at a point in local
system

Uis Vi Wi Translational displacements ati node i

v

i

i
V2x’

Vv

i
Ix?

.

i i

10 Y1y V17 Components of unit vector defining local x axis

v;y, V;z Components of unit vector defining local y axis

i i < .
VSy’ V3Z Components of the shell normal at node i

coordinate

coordinate

at node i

at node j
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XIZI:

Basic cartesian coordinate variables
Local cartesian coordinate variables
Basic cartesian coordinates at node i
Rotational displacements at node i

Shearing strain components in local coordinate system

Direct strain components in local coordinate system

Poisson's ratio

Naturai frequency of structure
Curvilinear coordinate variables
Curvilinear coordinate at node i

Direct stress components in local coordinate system

Shearing stress components in local coordinate system

Component of transformation matrix

Mass density per unit volume



SYMBOLS (Matrices and Vectors)

[ALPHAT] Diagonal matrix of nodal thicknesses times local x rotation

{BETAT] Diagonal matrix of nodal thicknesses times local y rotation

[B'] Strain-displacement relation referenced to local ceordinates

[Bi‘] Strain-displacement relation pertaining to node i

[DELTAT] Array of translational displacements at nodes

(D'} Constitutive relation in local coordinate system

F Consistent load vector for element

[Gil Derivative array transformed to Tocal coordinates

[Hi] Derijvative array transformed to local coc~dinates per-
taining to 8/8{ operator

[ Jacobian matrix relating (x, y, z) and (€, n, &) systems

[K] Element stiffness matrix referenced to basic coordinates

(M] Element mass matrix referenced to basic coordinates

R Third row of Jacobian - Interpolated value of nodal normals

N Vector of nodal interpolation functions

[N] Array of nodal interpolation functions

3 First row of Jacobian - vector tangent to surface
€ = const

t Second row of Jacobian - vector tangent to surface
{ = const

35 Unit vector tangent to surface £ = const, defining local x'
axis

3t Unit vector tangent to surface { = const, defining local y'
axis

3n Unit vector normal to surface { = const, defining lTocal z'
axis

wp

Vii 321' 331 Unit vectors defining local tangent coordinates at node i
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[VITAN]
[V2TAN]
[V3NORM)
[XCOORD]
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3
‘gn

(el
a"n
(4]

(al
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Vectors defining the coordinate system for nodal rotations
Array of local x direction vectors at nodes

Array of local y direction vectors at nodes

Array of shell normals at nodes

Avrxy of nodal coordinates

Displacement dof at node i

Collection of nodal displacement vectors

Strain components in local coordinates

Local/global transformation matrix {(direction cosines)
Stress components in local coordinates

Transformation from (x', y', z') system to (£, n, L)
system

Differential operator matrix for computing strains



THE WMIFFNESS MATRIX

Basic Assumptions

Figure 1 shows the geometry of a typical element. The curvilinear
coordinate system (&, n, &) is used where £ and n Tie in the middle
surface of the element while { is directed through the thickness. Each
of these coordinates is allowed to vary from -1 to +1 on opposite faces
of the element. We adopt the customary assumption of shell theory that
the strain component (az.z.) in the thickness direction is neglected

compared to the other strains. The input items describing the element
geometry include the basic coordinates at each of the eight mid-surface
nodes (GRID cards) plus the vectors normal to that surface at each node
(SHLNORM cards). The length of each normal vector is taken to be the
thickness at that node. The thickness is interpolated quad—atically over
the element. At present only homogeneous, isotropic, materials (MATI
cards) are allowed. The element is not available for heat transfer
problems nor are thermal load vectors calculated.

Interpolation Functions

The nodal coordinates are related to the basic coordinates by the
equation:

£ ¥y
yS = [XCOORD] - T+ % [V3NORM] - W M
Z
X-I X2 P X8
where [XCOORD] = Y1 Y, Yg
Z-l 22 e e e e 28
e .
12 g |
V3x VBx VBx
a2 8
[VBNORW] = | vy, V5 . vy,
1.2 8
| Y3z Y3z - - Y3z
__— T
N = < N] N2 . e . N8 >

Details of the biquadratic interpolation functions (Ni) and their deriva-
tives are given in Appendix A.
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The trapslational displacements are chosen as u, v, and w in the x,
y, and z directions respectively. Two rotations, o, and Bi’ are defined

i
- >
about the local axes, Vi and v,

i tangent to the mid-surface at each
node {i). The choice of these two local axes is discussed in Appendix B.

We may relate the nodal displacements to the continuous displace-
ment representation in a manner analagous to equation (1).

u
vy = [DELTAT] - ® + § - [VITAN] - [ALPHAT] - N
W
- % . [V2TAN] - [BETAT] + N (2)
Uy 4y Ug
where [DELTAT] = Vl v2 V8
Y1 W Wg |
1 2 g8 |
Vla\ Vl)( Vl.-\
. _ 1 2 .8
[VITAN] = Vly v1y "1y
1 2 8
Vlz Vlz Vlz__
1 2 8 ]
V?.x V2x V?x
_ | .2 2 8
[V2TAN] = sz VZy . sz
1 2 &
_yZZ V22 “22
oty O 0]
[ALPHAT] = | 0 a,t, 0
0 0 agtg
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ity O 0o |
[BETAT] =] 0  Byt, . ... O
0 0 Bgty

Coordinate Transformations

T relation between the curvilinear coordinates (£, n, {) and the
basic coordinates (X, y, z) is commonly called the Jacecbian, [J], defined
as:

Ox/3E  dylof  dz/ok 3T
(31 = | ax/an  o®y/dn dz/on | = 4 (3)
ax/af  dy/sl  8z/3( rd
Using equation (1) we can write out these expressions as:
{ Bx/aﬁ) _
e, py/oE S = [XCOORD] - oN/ag + % - [V3NORM] - oN/ak (4)
laz/ag
ax/an '
T = {ay/an » = [XCOORD] - &N/an + % . [V3NORM, - aN/en (5)
9z/an
ax/af
> 1 =¥
ho= S ay/ol p o= 5 - [V3NORM] - N (6)
9z/d¢
where  BR/0E = < ON/0f ON,/0E . . . oNg/ak > |
al/on = < BNl/an aNz/an Coe . 3N3/aﬂ > T

The explicit forms of ONi/8f and 8Ni/9n are given in Appendix A.
Physically the % and T vectors may be considered tangent to the surface

[ = constant, while the N vector is merely the interpolated value of the
node normals and may not be exactly normal to that surface at the position

(€, n, ©).



Perhaps the most confusing point of the cited references is the use
of 5ti11 another Tocal coordinate system for definition of the stresses
and strains. The need four this additional (x', y', z') system arises
from the definition of the basic shell assumptions (particularly the
neglect of the through-the-thickness direct strain, Ez‘z‘)' We wish to

define, at any point in the element, a local (z') axis which is normal
to the surface { = constant along w1th two other orthogonal axes (x',
y'} which are tanhgent to that surface. Since we have previously deter-

. -r .
mined that $ and T are tangents to the surface, we can determine a
normal vector as:

<

= sxt (7)
V/IV, ] (8)

The other two unit vectors defining the local axes (35 and Vt) are

n

<
1

and
n

computed in a manner analagous te that given in Appendix B. Thus, x' is
measured along the 35 vector, y' is measured along the 3t vector, and z'

is measured along the 3n vector. We can define the transformation [8]
as:

[6) = [V, ¥ V. (9)
X x!

So = [8] < ¥' (10)
ra z!
u u'

and vy = [8] ¢ v (11)
W W'

The Strain-Displacement Relation

Using the newly developed local system and noting that e - is
neglected, we write the basic definition:
— -
Eytyt afax! 0 0
eylyl 0 d/ay! g u'
g = (y gyt ) = |9yt e/ 0 v! (12)
Yoig 3/oz' 0 8/8x" w'
yy‘z' h‘o a/sz' B/Byiﬂ
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We make use of equations (10) and (3) to develop the relation

d/9x’ a/9x a/9k
asey's = [0]7F {asmy > = 1817t 1317t { a/en (13)
d/oz' 8/dz 3/8¢
Define
6] = [e1' [a17? (14)

Where [E)]"1 is equal to [0]T, since [6] is defined to he an orthonormal
matrix. Then [¢] will have the form:

P17 9y O ]
b1 by O (15)
P31 93p P33

— —

A complete derivation of the terms in [¢] is given in Appendix C.

However, [J]_] is best evaluated numerically at each integration point
and cannot be written out explicitly. We combine equatijons (13), (14),
and (15) with (12) to arrive at:

{_¢11 8/28 + ¢, 8/80 0 0 ]
0 byy B/OE + B,y B/0N 0 N
N $,, 9/3E + ¢,, 8/0n b, &/9E + ¢., 8/3n 0 .
2 _ | t; 22 11 12 v
dqy /9E + g, /00 . 011 8/3E + dy, 0/on | |,

+ ¢33 3/d¢
0 by B/3E + dgy 3/3n b,y B/BE + 4y, B/2n
+ ggq 8/5C
— —

L,
= (@) 1\/'} (16)

w[

Finally we use (11) along with (2) to substitute the appropriate expres-
sion for the displacements < u' v' w' >

¢ = [a] (o) [OELTAT] - B+ [y - [0)7 - [VATAN] - [ALPHAT] - R - §

=[] - [6]" - [V2TAN] - TETAT] - R - % (17)

167



By carrying out the indicated operations to allow the differential
operator [Q] to appropriately interact with { and N and by rearranging
terms, we arrive at the relation:

2 = [B']138 (18)
- 3 T
where 3 =< Sl 32 N 38 >
_ ) T
and gi =<uy vy W oy Bi >

The expiicit form of [B'] 1is shown in Appendix D.

The Stress~Strain Relation

Again referring to the primed local coordinates, the constitutive
Taw is:

g = (o] ¥ (19)
T
Wher'e g" = < Ux|x[ Uy|y; txlyl txlzi tylzl >
and {for a homogeneous isotropic material):
1 v 0 0 0
v 1 0 0 0
'] =S50 0o B 0o o0 (20)
1-v 1-v
0 0 0 K 0
1-v
0 0 0 0 K
s —

Here k is used to improve the shear representation. The displacement
assumption causes the shear to be constant through the thickness, whereas
the proper distribution is closer to parabolic. The ratic of the strain
energies of the two distributions (parabolic/constant) is 1.2 which is
substituted for k.

The Element Stiffness Matrix (Subroutine KQUAD4)

The standard virtual work arguments lead to the stiffness computation
as follows: '

K] = f (8'1 [D'] [B'] dvVol (21)
Vol

The usual volumetric measure is dx dy dz, Here the variables of integra-
tion are £, n, and {. The conversion of the cartesian volume to the
curvilinear volume is via the Jacabian. Thus,
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dVol = dx dy dz = det [J] d§ dn df (22)
1 1 1 T
So [K}] = { { { [B']" [D'] [B'] det {J] d€ dn df  (23)

The integration is carried out numerically using two Gauss points in
each direction. While capable of properly integrating the element's
volume, this “reduced" integration is not sufficient to exactly evaluate
the complex polynomials produced by equation (23). This implies that,
while ultimate convergence is assured, the behavior will not be either
baunded or monotonic, However, several authors (ref. 4 and 9) have
shown that, by purposely underestimating the energy, the performance of
the element js enhanced. By taking [J] and [8] to be invariant through
the thickness, it is possible to explicitly carry out the integration in
{. We choose not to do so, however, in order to ensure complete gen-
grality of the formulation for both thin and thick shell cases.

Stress Recovery (Subroutines SQUD41 and SQUD42)

Once the elements are assembled and the system equations solved for
the displacements, the user needs to know the element stresses as well,
Combining equations (18) and (19) with & now known, we obtain:

Y

o' = [D'] [B'] 8 (24)

Recall however that, in general, [B'] is a function of the curvilinear

coordinates (£, n, &). o' is therefore also a functian of these cocr-
dinates, so we must choose which points we will use for stress evalua-
tion. It is known that the numerical integration points are the best
"samples" of the overall element stress vield. Unfortunately the values
of { = £0.57735 do not give the maximum stresses through the thickness
it bending is present. We have compromised to select the eight points
given by § = +0.57735; n = +0.57735, and { = *1.0 to allow evaluation of
the stresses at the top and bottom surfaces of the element (c.f. diagram
in Appendix A). Since the values of Oyt s Uy'y' and tx,y,
in the (x', y', z') local system, the stress directions may not be mean-
ingful to the user. Consequently, the principal stresses (nl, Oy, and
tmax) are also calculated and form the additicnal portion of each line

¢f output.
THE CONSISTENT MASS MATRIX (Subroutine MCQUD4)

For simplicity we will neglect the rotational inertias associated
with the a and B degrees of freedom. This assumption is particularly

*Notice that Tytg and ty.z. are zero on the top and bottom surfaces.

* are evaluated
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appropriate for thin and moderately thick she11s It allows us to

reference everything to the mid-surface ({ = In particular:
M = § p [N1' (] avol (25)
Vol

Choosing p = constant and making use of the above assumption (i.e.
1

J df =
-1

Ml = p [t [N]' [N] dA (26)
A
= 1 1 [
N1 0 0 : N2 0 0 : : N8 0 0
- { |
where [N] =10 N1 0 : 0 N2 0 : : 0 N8 0
| |
8] 0 N1 : 0 0 N2 : ; 0 0 N

In general p may be allowed to vary quadrat1ca11y over the element in a
manner similar to the thickness. This feature is not required for most
cases of interest,

Since { = 0 on the midsurface, we must resort to the device of
computing the unit area in curvilinear coordinates as (using equations
{4) and (5)):

dA = dx dy = |3 x | d& dn (26)

where |s X %1 may be interpreted as the projection on the normal vector
i of the normal vector associated with infinitesimal area, dx - dy.

Thus,

t (N7 [N] V| d dn (27)

e

1
Ml = p J
-1

In this case the full three-point Gauss integration must be used to
properly evaluate the expression.

THE CONSISTENT LOAD VECTOR (Subroutines PLOAD4 and PWORK)

We derive the expression for a constant pressure (p) normal to the
mid-surface of the element. As before, a quadratic variation of the
pressure would cause no inherent difficulties. The development is
entirely analagous to that used for the consistent mass matrix. Thus,
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1.,
{ (N1 V_ dE dn (28)

Again, the three-point Gauss rule is used to evaluate the expression.
SPECIAL NASTRAN CONSIDERATIONS

New Bulk Data Cards

Three new Bulk Data cards have been added to NASTRAN in coenjunction
with the new element. They are:

CQUAD4 - describing the element connectivity

PLOAD4 - specifying the elements to which constant pressure (p)
is applied at the mid-surface

SHLNORM - inputting the direction vector of the normal to the shell
surface at each grid point.

A complete description of each of these items is found in Appendix E.

Module to Process She:” Normals*

A new module, GPNORM, has been coded which converts the “external
grid point ID's on a SHLNORM card to the appropriate internal SIL's.
The module also transforms the normal vector into the basic coordinate
system for the problem and writes the results on the output data block
SHLNRM. The BDMAP calling sequence for the module is:

GPNORM GEOM1,EQEXIN,BGPDT,CSTM / SHLNRM §

GPNORM must be added to the DMAP rigid format immediately prior to the
TALl module. SHLNRM must be added as the final input data block of TAl.

Augmented ECPT and EST Data Blocks*®

The make up of the EST (and by analogy the ECPT) for the CQUAD4
element follows the standard format for the first 43 words.

Word Contents
1 Element ID
2 Material ID
3-10 8 Grid Point SIL's
11-42 8 sets of Grid Point CSID's
plus basic x, y, z coordinates
43 Element Temperature

*The idea to use GPNORM to process the shell normals as well as the
technique for augmenting the ECPT and EST data blocks is credited to
Miles Hurwitz of NSRDC.
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The formulation of the element requires the components of the shell
normals. These must be appended to the EST by subroutine TAlA.

44-67 8 sets of X, ¥, z components of
the shell normals in basic
coordinates

Subroutine TAIB performs a similar augmenting process for the ECPT data
block.

VERIFICATION

Consider the limiting case of a square, simply supported flat plate*
subjected to two Toad conditions, 1) a central load normal to the plate
and 2) a uniform normal pressure. Figure 2 indicates that excellent
convergence to the Timoshenko {ref. 10) result can be obtained with a
1 x1oratmst a2 x2 grid. Note, however, that the usual bound
theorems are not available with this particular elemént due to the use
of reduced integration.

The next step in analytical complexity is ._presented by the prob-
lem portrayed in Figure 3, a pinched cylinder with free ends.®* Accord-
ing to Timoshenko, the radial deflectjon at the point of application of
the load, for the geometry given, should be -2.76 mm (-0.1087 in.).
Timoshenko's result is based on an assumption of inextensional deforma-
tion which neglects the middle surface strain of the shell. The CQUAD4
element gives a slightly higher result of -2.89 mm (-0.1139 in.) for a
325 degree of freedom model of one-eighth of the cylinder. Cantin and
Ciough (ref. 11) predict a deflection of -2.87 mm (-0.1128 in.) using a
cylindrical shell element model with 1200 degrees of freedom for one-
eighth of the cylinder. Therefore, the CQUAD4 element, alithough not
monotonic in convergence, does give excellent results for a minimum
number of degrees of freedom.

An example problem which has become a classic for checking the
response of shell-type elements is shown in Figure 4. The example is a
cylindrical shell roof loaded by its own weight.* The ends of the shell
are supported by diaphragms and the sides are free. It should be noted
that two "exact" solutions have been quoted by various researchers.
These two solutions may be attributed to Scordelis and Lo (ref. 12) and
Cowper, Lindberg, and Olson (ref. 2).

Scordelis and Lo based their calculations on the theory of Gibson
(ref. 13) essentially using shallow shell equations. Cowper, Lindberg,
and Olson claimed that the shallow shell approximations were not used
consistently when particular Teadings were considered. They expanded
the trigonometric representation of the Joad variation up to second
order within =ach element by means of a Taylor Series. In addition

*When proper symmetry conditions are applied, only 1/4 or 1/8 of the
entire structure need be modeled in each of these cases.
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Cowper, et al. performed the integration of both the stiffness and load
matrices over the avea of the actual shell surface. Hence, the primary
difference between the two "exact'" solurions is the manner in which the
consistent load matrices are formulated. ine formulation of the present
element follows more closely the ~evhud af 3Scordelis and Lo and hence
will be compared to their "exacl” solutis

Table 1 gives the computed displazements based on the grids defined
in Figure 4. Note that excellent conve~gence is obtained. Figure 5
compares the predictions of the CQUAD4 element with the CQUAD2 element
as well as slightly different formulations of the CQUAD4 element in the
MARC (ref. 14) and SUPERB (ref. 15) finite element programs. Based on
the results indicated in Figure 5 the CQUAD4 element is judged to be the
most accurate.

To demonstrate the appliicability of the CQUAD4 element in madeling
dynamics problems, consider the rectangular cantilever plate vibration
problem reported by Zienkiewicz (ref. 16) (see Figure 6). Compared in
Figure 6 are test results by Plunkett (ref. 16} and finite element pre-
dictions based on a non-conforming triangle by Zienkiewicz and results
from the CQUAD4 element. Note that even the two element idealization
with the CQUAD4 element gives excellent results for the first four
mades.

POTENTIAL SOURCES OF ELEMENT DEGENERACY

Three potential sources of element degeneracy were investigated.
The first, non-rectangularity of the mesh, is iliustrated in Figure 7.
One quarter of a simply supparted flat plate subjected to uniform pres-
sure was modeled as shown with apngular "offsets" or variations in the
mesh rectangularity of up to 30°. As indicated in Figure 7 by the
displacement prediction for the center of the plate, variations of up to
20° resulted in only 2% variation in deflection compared to the regular
rectangular grid. The 30° variation resulted in a 7% difference. It
would appear from these results that, for most applications, non-
rectangularity will not have a significant effect on the results. How-
ever, care should be taken to maintain small angle variations of less
than 30° as good practice.

The second potential source of degeneracy investigated was the shell
thinness ratio, t/R. A pinched cylinder example was once again selected
and the t/R ratio varied from 0.1 to 0.0001 as shown in Figure 8. By
examining the product of the radial deflection at the point of toad
application and the flexural rigidity of the shell it is evident that no
numerical instability exists even for very thin shells. Notice that for
thicker shells (e.g. t/R > 0.1) Timoshenko's assumption of thin shell
behavior is increasingly violated and some deviation of the finite
element results from the classical solution is obtained.
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The third potential source of element degeneracy to he investigated
was similar to the mesh non-rectangularity of the flat plate probTem.
This example considers the event of a misalignment of the edges of the
element with the directions of principal curvature in a shell idealiza-
tion. Such a discretization may necessarily occur as a result of com-
plex intersections of several shell elements. The pinched cylinder
probiem discussed previously was chosen as a simple 1imiting case. A
2 X 2 grid was selected for one-eighth of the cylinder and symmetry
conditions were enforced. The element edges in the circumferential
direction were allowed to vary from the direction of curvature as shown
in Figure 9. The authors found that the radial deflection at the point
of load appiication was virtually unaffected for the cases examined.

It may be concluded that, based upon the previously described
investigations regarding element degeneracy which could possibly result
from potential misuse, the CQUAD4 element appears to be exceptionally
stable. Care should be used, however, in maintaining "relatively"
rectangulay, element configurations,

APPLICATIONS

At Jeast two potential sources of application for the CQUAD4 ele-
ment exist in the offshore industry. Offshore drilling and production
platforms are typically either a space frame of tubular members, commonly
called a steel jacket structure, or a reinforced, prestressed concrete
structure, commoniy called a gravity structure. The welded intersec-
tions of tubular members in a steel jacket are called tubuiar joints and
represent sources of potential fatigue problems due to high stress
concentrations. The CQUAD4 element represents a significant increase in
computational accuracy compared to the CQUAD2 element for conducting
stress analyses of these tubular intersections.

The reasons for the improved accuracy are two-fold. The curved
surface of the CQUAD4 element is jts most obvious advantage. It was
often necessary to use excessive CQUAD2 elements in otherwise coarse
mesh regions of the joint model just to approximate the cylindrical
geometry. An extremely important but less obvious advantage of the
CQUAD4 element is its higher-order representation of the dispiacements,
strains, and stresses, without having to expend any additional degrees
of freedom. This advantage manifests jtself in the degree of mesh
refinement required to achieve a given Tevel of accuracy. Whereas a
FINE or EXTRA FINE mesh was requirea to achieve acceptable results using
CQUAD2 elements (c.f. reference 177, a COARSE or MEDIUM mesh of CQUAD4
elements is sufficient. Such a typical mesh is shown in Figures 10 and
11 for a T-Joint and a K-Joint respectively. The mesh was automatically
generated using the TKJOINT program described in reference (17). That
program has recently been recoded to allow generation of the appropriate
SHLNORM bulk data cards at each substructure grid point.
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It should be pointed out that the CQUAD4 element, does not specifi-
cally address the problem at the intersection line of the tubular mem-
bers. Here the question is not whether the Yocal behavior is more
closely approximated by thin-shell or thick-'4211 theory, but how hest
to provide a transition to the three-dimensicnar state of stress which
exists and how to include the weld geometry. Again the CQUAD4 element
has an advantage over the CQUADZ since it has been derived from a 20-
node hexahedron. If a mesh of these 20-node elements is designed for
the locality of the intersection, the transitional behavior between the
CQUAD4 and the CIHEX2 should be smooth due to the compatibility of the
basic interpolation functions. Unfortunately the trans!tion between the
two element types will still require a rather complex set of MPC's to be
generated and this problem has not been adequately addressed at the time
of publication,

The second source of potential application regards the structural
modeling of the relatively thick shell cylinders and panels which com-
prise the base and towers of gravity siructures (see Figure 12). Sec-
tion A-A in Figure 12 illustrates the shel% connections where the pres-
ent element could be used. The individual cells are on the order of
20 meters in diameter and from 0.5 meters to 1.0 meters thick. The
CQUAD2 element would be incapable of accurately modeiing the structura?
behavior associated with this geometry. The CQUAD4 element provides the
possibility of coupling with the CIHEX2 element to perform glebal
stress analyses of these structures,



APPENDIX A

The biquadratic interpolation functions are well-known throughout
the 1iterature. They are repeated here along with their derivative
forms only for the sake of completzness.

4

7
s *— *

+o
+o

8¢ I———»s +6

= +
w

1 5 2
Integration
Node £ n ¢ Point g€ n L

1 -1 -1 0 A -0.57735 -0.57735  +0.57735
2 1 -1 @0 B 0.57735 -0.57735 +0.57735
3 1 1 0 ¢ -0.57735 0.57735 +0.57735
4 ~1 1 0 D 0.57735 0.57735 +0,57735
5 D -1 0 O

6 1 0 0

7 0 1 0

8 -1 0
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Corner Nodes (i =1, 2, 3, 4)

Ny =g L+ EED (@ mp (Eg + g - 1)
AN, /8¢ = % E; (L +angd (286, + n,)
aNi/an = % n; (1 + ggi) (ggi + Znni)

Midside Nodes with Ei =0(i=5,7)

- 1 _ g2
Ni =3 (1-§&7) (U + nni)
BN, /3E = = £ (1 + nn,)
=31 - g
aNi/aﬂ-gfli (1 E )
Midside Nodes with n; = 0 (i=6, 8)
_D 2
Ni "'2"(1"'&&.{) (L -n")

-1 2

BNi/ﬂn =-~-n 1+ Egi)

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)
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APPENDIX B

At each node we are given the vector Vsi which is normal to the
midsurface aE that point. thh reference to the basic gx, ¥, z) coordinate
system, let 1 = (1 0 0) and j = (0 1 0). Choose Vl. =19 X vBi which
makes Vl perpend1cu]ar to V31 and the x axis. If VB‘ is parallel to

i, then choose V1 =3j X \a'3-1 to remove the ambiguity. The third vector
of the triad is then V21 = V31 X Vli'

To compute the coordinate system transformation matrix, .: normal-
ize the components of each vector by its scalar length and form the set

> > ->
[Vli Vo3 Vsi] where

v 3 2
Vig = V3:/lV45]  ete
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APPENDIX C
Equations (3-6) define the components of the Jacobian as:
ET
01 ={t (c-1)
A

The schematic form of the inverse may be written as:

7 = g [ExH AxdH Exdy (c-2)
Equations (7-9) define the local transform [8] as
6] = [V, ¥, V. (c-3)

where v_ was computed as the normal to the surface { = const by taking
s x t/]s x £| and 35 as well as Wt were defined to be perpendicular to
3n' It is therefore clear that 35 and 3t will 1ie in the same plane as

¢ and T but that 3n may not in general be considered parallel to S

Consider the computation oY [¢] = [0]T [J"l]
3 T
5
) = gerardie p [EXD G xH Ex D) (C-4)
3 T
LN
vedxh 3T dxdh v @dxh
e L IR RN G N AR B 51 >
_?HT cdxh VT oa@xd v Ex %2_
Now we know that (s x ) = vn = |§n] . 3n . Therefore, since the dot

product of perpendicular vectors is zero, we have 3ST . (Z X f) = 0.
This compietes the derivation of [¢]. Notice that the terms L and
¢“2 are not set to zero as was done ir reference (4). The only time

that these terms would be zero is when the vector n is exactly nermal to
the surface at the point (£, n, {). This event will only occur in the
case of flat plates. The consequence of neglecting these two terms is
to introduce an imbalance in the moment equilibrium of the shell (c.f.
ref. 18).
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APPENDIX D

We choose to divide the [B'] matrix into the following nodal
partitions:

§ o= [BY By . ... By 2 (D-1)

We shall write out the expression fur a typical partition [B ] by
rearranging appropriate terms from equatien (17):

t, . t.
[B}] = [[n] Ny [81" + [ N, &5 101 V' - 01 N & o g6l V)]

I

Define 915 = 914 8Ni/85 + 1, AN./80
9pi = 0p1 ANG/BE + 0,5, AN, /3N
(D-3)
O3; = 03 ON;/BE + ¢, ON./BN
hy; = 33 N
rgli 0 0|
[N d5; 0
S0 [Gi] = (0] Ni = 9o dy ¢ 0 (D-4)
% 0 9y
0 Y3 924
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0 0 0
0 0 0
and [Hi] = 0 0 0 (D-5)
hy; O 0
0 hgy 0|
Finally,
. T.Y Tai Y T i
(B = 6] 18] + 5 (¢ te,1 + ;D 10 V1 - ot ra) ¢ D 17 Y,
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Input Data Card

Description

-
-

CQUAD4

APPENDIX E
BULK DATA DECK

Quadritateral Element Connection

element (QUAD4) of the structural model.

Format and Exampie:

Defines a homogeneous quadrilateral membrane and bending

1 2 3 4 5 3] 7 8 9 10
CQUAD4 EID MID Gl G2 G3 G4 G5 Ge |abc
CQUAD4 72 13 13 14 15 16 21 22 |ABC
+bc &7 G8 TH
+B8C 23 24 25.2
Field Contents
EID Element jdentification number (Integer > 0)

MID Identification number of a MAT1 material card (Default is

G1,G2,G3,G4
G5,66,57,G8

TH

172

EID) (Integer > 0)

Grid point identification numbers of connection points
(Integer > 0; G1 # G2 # G3 # G4 # G5 # G6 # G7 # G8)

Material property orientation angle in degrees (Real)

The sketch below gives the sign convention for TH.




G4

G6

a8 TH

G5
Gl . G2

—-.—.._..._.__._._-

Remarks:

1,

Element identification numbers must be unique with respect to all
other element identification numbers.

Grid points G1 through G4 are corner nodes and must be ordered
consecutively around the perimeter of the element in a counter
clockwise direction. G5 through G8 are midside nodes and must have
similar ordering where:

G5 lies between Gl and G2
G6 lies between G2 and G3
G7 lies between G3 and G4
G8 Ties between G4 and Gl

The continuation card must be present.
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BULK DATA DECK

Input Data Card PLBAD4 Pressure Load

Description: Defines a uniform static pressure load applied to two-
dimensional elements. Only QUAD4 elements may have a pressure load
applied to them via this card.

Format and Example:

1 2 3 4 5 6 7 8 9 10
PLBADS SID P EID EID EID EID EID EID
PL@AD4 21 ~3.6 4 16 2

Alternate Form

PLPADS SID P EIDL | "THRU"} EID2

PLAADA 1 36.4 16 THRU 48

Field Contents

SID Load set identification number (Integer > 0)

P Pressure value (Real), positive pressure value indicates

pressure in the negative normal direction.

EID

EID1 Element identification number (Integer > 0; EID1 < EID2)

EID2

Remarks:

1. EID must be 0 or blank for omitted entrys.

2. Load sets must be selected in the Case Control Deck (LBAD=SID) to
be used by NASTRAN.

3. At least one positive EID must be present on each PLEAD4 card.

4, If *he alternate form is used, all elements in the range EID1
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through EID2 must be present.



B.

The "work equivalent" load vector is computed for each element
using the relation

F=p T

[N]' ¥ det [3] d& dn

e
ot by 1

A1l elements referenced must exist.
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BULK DATA DECK
Input Data Card SHLNORM Shell Normal

Description: Defines the direction of a normal to the shell of the
structural model.

Format and Example:

1 2 3 4 5 6 7 8 9 10

SHLNORM b cp X1 X2 X3

SHLNORM 2 3 1.0 2.0 | 3.0

Field Cantents

10 Grid point identification number (0 < Integer < 999939)
at which this normal is located.

cp Ildentification number of coordinate system in which the
shell normal is defined (Integer > 0 or blank ).

X1,%X2,X3 Components of the shell normal in coordinate system CP
(Real).

Remarks:

1. All grid point identification numbers must be unique with respect
to all other structural, scalar, and fluid points.

2. The meaning of X1, X2 and X3 depend on the type of coordinate

system, CP, as follows: (see CARD _ _ card descriptions).
Type X1 X2 X3
Rectanguiar X Y Z
Cylindrical R B(degrees) z
Spherical R o(degrees) d{degrees)
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TABLE 1. BISPLACEMENT CONVERGENCE FOR CYLINDRICAL SHELL ROOF

GRID Va Wy Ug We

1x1 -0.226 -9.609 ~5.413 1.801 cm
~0.089 -3.783 ~2.131 0.709 in.

2x2 -0.368 -8.966 -4.752 1.313 cm
-0.145 -3.530 -1.871 0.517 in

3x3 -0.381 -9.241 -4.379 1.346 cm
-0.150 -3.638 -1.82% 0.530 in.

4 x4 -0.281 -9.208 -4.854 1.379 cm
-0.150 -3.626 -1.911 0.543 in,

EXACT -0.3B4 -9.406 ~4.986 1.324 em
-0.150 -3.703 -1.963 0.625 in.
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FIGURE 1. ELEMENT GEOMETRY AND LOCAL COGRDINATE SYSTEMS
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FIGURE 2. CONVERGENCE STUDY FOR SIMPLY-SUPPORTED FLAT PLATE

ALI'IYIID ¥004d 10
ST 89Vd "T¥YNIDTHO

-
|
I
} E = 69.4 KN/mm? (1.0 x 107 psi)
| v =03
o F———— b
/ a =b = 254 mr {10 in.)
! t = 2.54 mm {0.1 in.}
/IA P = 178.4 N (40 1b.), 6.94 KN/m? (1.0 psi)
[ —
VERTICAL DEFLECTION AT CENTER
GRID CENTRAL LOAD UNIEORM PRESSURE
mm in. mm in.
1x%1 -1.286 ~5.062 x 10°2 -1.214 -4.778 x 1072
2x2 -1.284 -5054 % 1072 -1.142 ~4.498 x 1:0"2- )
3x3 -1.294 -5.095 x 1072 -1.143 -4.50 x 1072
4x4 -1.295 -5.098 x 1072 -1.139 -4.483 x 1072
TIMGSHENKO -1.287 -5.068 x 1072 -1.128 —4.44 x 1072
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FIGURE 3. CONVERGENCE STUDY FOR PINCHED CYLINDER PROBLEM

—z-jo
y
-~

E = 72,9 KN/mm? (10.5 x 10° psi}
» = 03125
= 125.8 mm {4.953 in.}
L = 262.¢ min (10.35 in.)
t = 2.39 mm {0.094 in.}
P = 4459 N (100 ib.}

c 1x1 D c 2x2 0
A B A B
c D c D
A 3x3 B A sxa B
GRID DOF RADIAL DISPLACEMENT
(TOTAL) AT POINT D
mm in.
1x1 40 ~2.517 -0.99% x 1971
2x2 105 -2.753 -1.084 x 1077
3x3 200 -2.863 -1.127 x 1671
4x4 325 -2.893 -1.139 x 1071
TIVISHENKO -2.761 -1.087 x 107
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FIGURE 4. MESH CONFIGURATIGNS FOR CYLINDRICAL SHELL ROOF

FREE EDGE

15.24 m (50 )

E = 20.8 KN/mm? (3.0 x 10° psi
v= 0,0
t = 7.62 cm (3.0 in.)

SHELL WEIGHT = 4.34 KN/m?
{30 Ibfftd)

2x2

d Jd0

81 5Vd TVvNIOIMO
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VERTICAL
PISPLACEMENT
AT CENTER OF

FREE EDGE

FIGURE 5. ELEMENT CONVERGENCE COMPARISON
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25F

2.0

FOR CYLINDRICAL ROOF PROBLEM

cm

b

EXACT = 9.406 mm

9.0

8.0+

7.0+

6.0}

5.0

Ne—"—

{3.703 in.;

® CQUAD4 ELEMENT
m NASTRAN CQUAD2

4 MARC/AHMAD ELEMENT

o SUPERB/AHMAD
EL EMENT (REF. 156)

— EXACT (REF, 12}

100

] L
200 300
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FIGURE 6. FREE VIBRATION OF A CANTILEVER PLATE

E = 208.3 KN/mm? (3.0 x 107 psi)

v = 0.3
/l = 7.85 t/m° {6.283 Ibfin)

"

e
L = 50.8 min {20in.)
h =

25.4 mm (1.0 in.)

1 = 2.54 mm (0.1 in.}

w/V plptL?
EXPERIMENTAL NON-CONFORMING TRIANGLE
MODE (PLUNKETT) ZIEN KIEWICZ CQUAD4 ELEMENT
2x1 4x2 2x1 4x2
1 3.50 3.39 3.44 3.45 3.43
2 14.50 15.30 14.76 14.64 14.43
3 21.70 21.16 21.60 22.63 21.30
4 48.10 49.47 48.28 48.79 46.82
5 60.50 67.46 60.56 60.55
6 82.30 88.84 90.76
7 92.80 92.24 97.17
8 118.70 1172.72 123.05
g 125.10 118.96 130.23
10 154.00

4 40

O
oyd NI

ot W

b8}
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FIGURE 7.DEGENERACY RESULTING FROM NON-RECTANGULARITY

Choome— 4D
i
i
i
|
|
1
] L
A B
E = 69.4 KN/mm? (1.0 x 107 psi)
v=03
a=hb = 254 mm (10 in.}
t = 254 mm (0.1 in.}
P = 6.94 KN/m? (1.0 psi)

>
]

L

[ ]
)

>
[
'3
w

GRID VERTICAL DISPLACEMENT
AT POINT D
mm in.

RECTANGULAR -1.143 ~4.498 x 1072
10° OFFSET -1.145 -4,506 x 10°%
20° OFFSET -1.118 -4.403 x 1072
30° OFFSET -1.059 -4.169 x 1072
TIMOSHENKO -1.128 -4.44 x 1072




FIGURE 8. DEGENERACY DUE TO THINNESS RATI

L8T

P
‘g YT E = 63.4 KN/mm? {1.0 x 107 psi)
é -l v =03
R = 25.4 cm (10.0 in.}
% o L = 50.8 cm {20.0 in.)
l l P = 445.9 N {100 Ib)
L
3
1 PR ] 2
= - — (0.149) ——— — D = -1.0716 x 10° N mm
Qmax 7 (01481 =0 Amax
D Ymax
t/R (N mm) {rmm) (qmax) (D)
0.1 1.047 x 108 -1.185 x 1072 -1.234 x 108
]
0.01 1.041 x 10° -1.035 x 107 -1.078 x 10°
0.001 1.041 x 102 ~1.024 x 10% -1.066 x 10°
0.0001 1.041 x 107" -1.024 x 107 -1.066 x 10°
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FIGURE 9. DEGENERACY {JE TO MISALIGNMENT
WITH DIRECTIONS OF PRINCIPAL CURVATURE

*NOTE USE OF DEVELOPED SURFACE COORDINATES



FIGURE 10. SUBSTRUCTURE MESHES FOR TYFICAL T-JOINT

ORIGINAL PAGE I8
OF POOR QUALITY
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FIGURE 11. SUBSTRUCTURE MESHES FOR TYPICAL K~JOINT

H

CHORD

NOTE USE OF DEVELOPED SURFACE COGRDINATES
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FIGURE 12. TYPICAL CONCRETE GRAVITY STRUCTURE

SECTION A-A




