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RESEARCH IN SUPPORT OF THE EODAP VALIDATION PROGRAM
 

AND
 

SOLID EARTH GEOPHYSICS
 

FINAL REPORT
 

1. INTRODUCTION
 

The Smithsonian Astrophysical Observatory (SAO) program of participation
 

in the Earth and Ocean Dynamics Application Program (EODAP) of the National
 

Aeronautics and Space Administration (NASA) has been directed toward many of
 

the EODAP objectives. As one element of this participation, the analysis
 

program reported here, has concentrated on the validation program - that is,
 

to verify that geodetic space techniques can measure intersite distances of
 

several hundred to several thousand kilometers and polar motion, both with
 

a precision of about 5 cm.
 

The original scope of this program element was intended to be broad,
 

examining several options for acquiring and analyzing satellite laser
 

data, and planning and executing an observation program and the final data analy­

sis to obtain a geophysical measurement. This program was envisioned to be
 

a multi-year effort, proceeding through development of an operational system
 

to support a primary EODAP objective - viz., the definition of Earthquake
 

Hazard Assessment Models. Because of NASA's decision to redi'rect EODAP pro­

gram resources, and the notification that no follow-on work would be supported in
 

this area, SAO has phased out its capability in analysis of laser data, and charged
 

the associated termination costs to this grant. Therefore the level of effort
 

applied to this analysis, and the results are less ambitious than originally
 

envisioned. The effort has almost totally been devoted to analysis of laser
 
data using a new analytical approach "Scalar Translocation." Based on a
 

limited but diverse set of data, it was found that this approach can give
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geodynamic information and.that the method is promising and can be used on a
 

variety of satellites with data of different accuracy. This rescoping of the
 

effort was negotiated with contract monitor, Dr. David Smith (NASA, Greenbelt).
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2. TECHNICAL APPROACH
 

"Scalar Translocation" is a method of analyzing satellite laser range
 

data for accurately determining interstation baselines. It uses short
 

(less than one revolution) overlapping arcs of laser data, from two stations
 

to determine interstation distance. This distance is relatively uncorrupted
 

by satellite orbital errors, ig independent of satellite orbit scale, and,
 

with suitable data distribution, is independent of range bias and noise in the
 

data. With this technique, a number of baseline determinations could be
 

averaged to provide an optimum estimate of the baseline, or could be analyzed
 

as a time series to measure the periodic horizontal tidal displacement
 

(the love number 1) or the secular displacement. A network of such baselines
 

could be adjusted or combined with other types of data to obtain station
 

coordinates.
 

The basic theory of "Scalar Translocation" has been given in Latimer and
 

Gaposchkin (1977) with some results. That report is included as Appendix A,
 

and will be used-as the basic theoretical framework for the results given
 

here.
 

The additional data analysis has taken a number of consecutive steps.
 

As described in Latimer and Gaposchkin, a number of data sets are available
 

from previous observing programs. Though none of these programs (1967-DIADEM,
 

1968-RCP133/GEOS-2, 1971-ISAGEX, 1972-EPSOC/SAFE, 1975-GEOS-3) was planned
 

around Scalar Translocation, some data were taken in each of these programs
 

that could be analyzed by use of this technique. Therefore, the first step was
 

to investigate available laser data archives to obtain a list of events that
 

could be treated. The natural second step was to process some data from these
 

historical archives to obtain a determination of some unique baselines, which
 

will probably not be measured again with satellite techniques. Finally, Lageos
 

was chosen as a useful satellite for Scalar Translocation application.
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Lageos was designed to facilitate computation of an accurate orbit. The
 
satellite design and orbit configuration were chosen to minimize the errors
 
in modeling the orbit perturbations. Lageos has a very small area-to-mass
 

ratio, which reduces in size the total perturbation due to non-gravitational
 
forces. The error in representing these forces, either due to lack of knowledge
 
of physical properties of the satellite, the total radiation (direct solar
 
plus albedo), and the atmospheric density, or due to limitations in modeling
 
these forces will be similarly reduced. Lageos also has a high altitude,
 
which reduces the size oforbit perturbations owing to errors,and omissions
 
in the gravity field model employed. The high altitude also permits simultaneous
 
or overlapping observations from stations separated by continental distances.
 

From this variety of data we can then compare and contrast satellites
 
and results, draw some conclusions about analysis of laser tracking data in
 
the Scalar Translocation mode as well as other methods of analysis, and make
 
some recommendations about the usefulness of this approach in the context
 

of the original objective: "development of an operational system to measure
 
and monitor crustal displacement and' deformation to support a primary EODAP
 
objective - e.g., the definition of Earthquake Hazard Assessment Models."
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3. HISTORICAL DATA
 

The first laser observations were taken in 1964. Laser tracking systems
 
operated routinely in an organized program for the first time in 1967. At
 

that time, the main objective in making these observations was to obtain a
 

global geocentric datum. However, at that time the relatively poor distri­

bution of laser stations was viewed as a problem, as these stations were
 

located in continental Europe. In fact, for the purposes of Scalar Translo­

cation, this station distribution is quite good. During 1968, two stations
 

again-operated in Europe, which was quite good for Scalar Translocation.
 

During 1969 and 1970 there was no major tracking effort. This was a period
 

where programs were being consolidated, and tracking stations were improved,
 

procured, and deployed in support of the final phase of the National Geodetic
 

Satellite Program (NGSP). During 1971, a tracking campaign was initiated
 

that had a more global coverage of laser stations, with the consequence that
 

fewer opportunities existed to obtain "Scalar Translocation" data. With the
 

exception of brief periods 'during SAFE, 1972 and 1974, little "Scalar Trans­

location" data were obtained. In 1975, data taken in the calibration area for
 

the GEOS-3 satellite provided many suitable events. The 1976 SAFE data
 

added to the data base. Also, the launch of Lageos in 1976 provided data
 

over longer baselines because of its significantly greater altitude. There­

fore, some laser stations, previously treated,as separate sites, began to
 

make simultaneous observations.
 

During the decade from 1967 to 1977, substantial improvements were made
 
in laser technology and in our understanding of the error sources in laser
 

data. The early data achieved 2- to 5-m accuracy with 1 millisecond epoch
 

timing whereas recent data provide a range accuracy of 10 cm and an epoch
 

accuracy of I usec.
 

During this decade more care has been taken in the design of retro­

reflector arrays mounted on satellites. By careful analysis, the effective
 

reflecting point from the satellite center of mass can be calculated.
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With successive satellites, this correction can be made with increasing
 

accuracy; the early satellite 6508901 had an"accuracy of 0.10 m and the
 
latest, 7603901 (Lageos), an accuracy of 0.003 m (Arnold, 1972, 1974, 1975a,b
 

1978). The satellites with laser tracking data are listed in Table 1. The
 
magnetically stabilized satellites can only be observed inthe northern
 

hemisphere. The relative signal strength isgiven.
 

Signal strength is directly related to accuracy. With multiple photo­

electron events improved accuracy isobtained by using pulse processing of some
 

kind to refer the light travel time to the centroid of the pulse rather than
 

to the leading edge (Pearlman et al., 1975).
 

Many first- and second-generation laser systems (see Weiffenbach and Hamal,
 

1975) use visual acquisition to point the laser. Therefore a visual magnitude
 

brighter than 10th magnitude isnecessary. Faint satellites such as Starlette and
 

Lageos cannot be observed by some systems, even today. The node rate pre­

scribes how rapidly the satellite geometry changes. Satellite orbit geometry
 

of course affects visibility-for visual acquisition.. More important however
 

is the orientation of the satellite pass to the station-to-station baseline. As
 

we shall see, the optimum geometry isobtained when the baseline isparallel to and
 

lies in the orbital plane. Therefore, for planning an observing program, the change
 

inorbit geometry must be a factor. The area-to-mass ratio controls the amount
 

of nongravitational acceleration experienced by the satellite, which is important
 
formaking predictions for the observation program and reducing the orbit error
 

during data reduction.
 

The Scalar Translocation events available are indicated inTable 2. The
 

station numbers are identified inTable 3,where the nominal geocentric
 

coordinates are given. These geocentric coordinates are a homogenized set,
 

and are obtained in the following way.
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Table 1. Geodeticsatellites equipped with laser cube corner reflectors.
 

C.M, Relative Perigee Rate A/M

Satellite 
 a q Reduction Signal Visual . 2Identification Stabilization (mm) e 
 10 km Accuracy Strength Magnitude w f cm /gram 

(0/day) (o/day] 

6406401 BE-B Magnetic 7.360 0.012 80 912 5. 2-4x104 7-9 -2.537 -1.081 0.10
 

6503201 BE-C Magnetic 7.503 0.026 41 941 5. 1-3x104 
 7-11 5.176 -4.256 0.10
 

6508901 GEOS-I Gravity 8.074 0.073 59 1121 10. 0.2-2x104 7-10 0.655 -2.247 0.10
 

6701101 
 DI-C Gravity 7.319 0.-052 40 579 10. 0.4-I0x10 9710 5.989 -4.744 0.30
 

6701401 D1-D Gravity 7.603 0.053 39 569 
 10. 0.1IOx101 10-11 5.415 -4.244 0.30
 

6800201 
 GEOS-2 Gravity 7.708 0.031 105 1101 10. 0.2-2x104 7-30 -1.619 1.402 0.06
 
7010901 PEOLE Gravity 6.983 0.017 
 15 635 10. 3-9x104 5-6 13.345 -7.033 0.20
 

7501001 Starlette Sphere 7.335 0.021 
 50 805 0.5 3-7x103 11 3.306 -3.946 0.0096
 

7502701 GEOS-3 Gravity 7.222 0.0005 115 840 2.0 10 7-8 
 -.347 2.727 0.04
 
7603901 LAGEOS Sphere 12.270 0.0044 109 5888 
 0.3 20 12-13 -.213 0.343 0.006897
 



Table 2. ScalarTranslocation events.
 

Year Stations Satellites
 

IS4 iI IS IS4 r ,4 SH 14 A I
 

ooooooocnn 

1967. 7815, 7816, 7818 X X X X X
 

1968 7815, 7804 X X X X X X
 

1969
 

1970
 

1971 7809, 7804 7 X X
 

1972 7061, 7080 X X X
 

1973
 

1974 7061, 7080, 7921 X X X
 

1975
 

1976 7061, 7063, 7067, 7068, 7069, XX X X X X
 

1977 7080, 7082, 7907, 7921 X X- X X X X
 

8
 



Table 3. SAO station coordinates used (geocentric.)
 

STA x(WV) UI W Z VitI) LOCATIO. 

7061 -4.42R8306 4 4 79r75341 , .4172747 SAN DIEGO, CALIFORNIA NASA 
7063 1.1107118 -4.8313719 
 3.9940900 
 GODDARD SPACF FLIGHT CFNTER. MARYLAND NASA
 
7067 


BERMUDA ISLAND 
NASA
 

706s 

GRAND TURK ISLAND NASA
 

7069 

PATRICK AFB. FLORIDA 
 NASA
 

7080 -7.5168977 
 -4.19884A4 
 4.0764145 
 QUINCY, CALIFoRhIA 

NASA
 

7082 -1.73A0010 -4.4250506 4.241,4311 
 BEAR LAKE. 'UTAH, 
 NASA
,7C04 
SAN FERNANDO. SPAIN 

CNES 
7615 4.57n36,1 .457988 
 4.4031510 
 HT. PROVINCE. FRANCE 
 CNES
 
7816 4.6543441 
 L.9592004 
 34.8S43797 STEPHANIE, GRFECF 
 CNES

7907 1.9427R77 -5.60408DI -1.7969196 
 AREQUIPA, BRAZIL 
 SAO
 
7921 -1.9367A36 
 -5.0777058 
 3.3319226 - MT. HOPKINS, ARIZONA SAO
 
7929 5.1864e55 -3.6538602 6543223 NATAL, BRAZIL
.-.


SAO
 



A recent set of coordinates for seven stations derived at Goddard Space
 

Flight Center (GSFC) based on Lageos tracking data was adopted. The set of
 
coordinates given by Learch et al. (1977) for 146 stations was then related
 

to this'fundamental set by using the five stations common to both sets and
 

computing the transformation parameters, in the sense,
 

(Ax, Ay, Az, E, Cy, € z S) XGEMIO XLageos 

where T is the linear transformation matrix. The remaining coordinates are
 

taken from Gaposchkin (1974). These were related to the fundamental LAGEOS
 

system by taking the 23 stations common to the GSFC homogenized system,
 

computing transformation parameters in the sense,
 

T (Ax, Ay, Az, ,X' y' sZ' S) XSAO = XLageos 

Coordinates for a station are given in Table 3 if that station has a simultaneous
 

event with another station used in this analysis. Not all combinations of these
 

stations have suitable simultaneous events. Table 4 gives the transformation
 

parameters.
 

Table 4. Transformation parameters.
 

Ax Ay AZ ex e S S 
(m) (m) (M) (arc sec) ( rc sec) (arc sec) (ppm)
 

Coordinate
 
Systems
 

GEMlO-Lageos -1.80 -2.16 -2.00 0.1799 -0.0024 10.2475 0.016
 

SAO-GEMIO - :08 - .36 +9.69 -0.0328 -0.0823 0.7200 0.257
 

SAO-Lageos -1.88 -2.52 7.69 0.1471 -0.0897 0.9675 0.2730
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Finally, in Table 5, the number of individual events for each pair of
 
station baselines, for each satellite, for each year is given. For 1976,
 

statistics for 7603901 (Lageos) only have been assembled. However, some
 

passes-may not be useful because of bad data or poor pass geometry.
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Table 5. Possible overlapping events.
 

Station Pair 
 Year 	 Satellite
 

7815 7816 1967 

7816 7818 


7815 7818 

7804 7815 1968 

7804 7809 1971 


7061 7921 
 1972 


7061 7080 	 1972 


7907 7929 


7907 7929 	 1973 


7907 7929 	 1974 


7061 7080 	 1974 


7061 7063 	 1974 

7061 7921 	 1974 


7063 7090 	 1974 


7063 7921 	 1974 

7080 7921 	 1974 


7063 7067 	 1975 


7063 7068 


7067 7068 


7063 7921 


7068 7907 


7819 7842 


7819 7804 


7907 7929 

7061 7080 	 1976 


7061 i082 


7061 7907 


7061 7921 


7080 7082 


7080 7921 


7082 7907 


7082 7921 


7907 7921 


7907 7929 


00 0 00 000 

13 26 45 37 56
 
1 - -5 22
 

6 3 3 9 28
 
6 13 7 19 22
 
2 2 7 11 2 3
 

3
 

46 8 4
 

2
 

2 9
 

2 12
 

24 2 1
 

10
 

20 6
 

2
 

2
 
3 1
 

8 3 1 18
 

2 8 '4 2 31
 
11 9 9 6 42
 

5 	2 1
 

3 2
 
1
 

6
 
27
 

7
 

12
 
5
 

18
 

3
 

2
 

3
 

8
 

32
 

25
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4. ANALYSIS OF DATA
 

Since no set of observations has been taken specifically for transloca­

tion, subsets of the available data (Table 5) were selected to establish some
 
properties of the method; First, 'we set out to study how well baselines can
 
be determined with data that are poor in quality but have good pass geometry.
 
Second, we will look at the effect of orbit height on the results and compare
 
results derived from a low satellite (6503201) with those from a high satel­

lite (7603901).
 

A very rich period of data with an accuracy of 1 to 2 m was obtained during
 
the Diadem experiment in 1967. The available satellites were low in altitude but
 
the baseline distances were small, and within several months,a considerable
 

number of overlapping events suitable for Scalar Translocation analysis were
 
obtained (Table 5). We claim that baseline determination using Scalar
 
Translocation is independent of observation range noise and bias provided
 
the data have suitable distribution. From the data in 1967, we can test this
 

claim. Of course the baseline determination will depend critically on the
 
epoch timing. During 1967, epoch timing was known onlywith an accuracy of
 

1 msec. To minimize this uncertainty on the result, a data set from two sat­
ellites within a limited time interval of 60 days was selected. We assume
 
that over such a short time clock drift was small aid that whatever the
 

constant error is, it will be the same for all the results. Since we are
 

going to compare only the internal consistency of solutions, such errors
 
will not be a factor.
 

From the available data, two satellites provided data with reasonable
 
geometry in that time interval (6503201, 6508901). Two orbital arcs were
 

computed for each satellite. The volume of data from the two stations
 
(7815, 7816) including nonoverlapping passes was sufficiently large to
 

determine a satisfactory orbit from those data alone.
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The results from 33 events are listed in Table 6. To understand the
 
results we give plots of range residuals after the fitting. Figure la gives
 
the residuals for an event with good solution. In Figure lb detailed computer
 
printout for this event is shown. An event is considered good when the condi­

tion number of the 	variance-covariance matrix is small, the formal standard
 
error is small, the arcs overlap, and the data from each station are sym­

*metrical about the point of closest approach (PCA). From Appendix A, we
 
hold that a small condition number results with strong geometry, i.e., the
 
satellite path is parallel to the baseline. Further, the idea of transloca­
tion ptovides that 	the orbit error, common to both arcs, cancels out. Then,
 
the larger the part of both arcs that is common to each, the smaller the effect
 
of orbit error. Finally, the'most efficient averaging of system bias, orbit
 
scale error, and noise occurs when each pass is symmetrical about the PCA.
 
The plots, such as 	Figure la, obtained from each pass are used as a diagnostic
 
tool to choose passes-that are favorable for Scalar Translocation. The time
 
base on these plots is the same for both stations; poor pass geometry and
 

noisy data can be quickly identified.
 

The baseline distance determined from each satellite is given in
 

Table 7 with the combined result.
 

Table 7. Translocation results for 7815-7816 baseline.
 

Satellite 	 7815-7816 a n
 
Baseline (m)

(m)
 

6503201 	 1590135.-908 ±0.599 10
 

6508901 	 1590138.399 ± .608 22
 

combined 	 1590137.050 ±0.479 32
 
EU 50 datum 	 1590129.96 ±3.18
 

EU 50 scaled 	 1590132.81 ±3.31
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bOLULTICP SUMMARY FOR STATION PAIR 
 7815 7816
 

IX ELEMNTS 3 6 0 0 0 0 

LOVARIAtLCE MATRIX ItNSPrCIAL COORDINATE SYSTEM
 
2.75887E-01 -2.70049F-03 -5.67552E-02 -8.95704E-02 -5.91505E-01
 

-2.70049E-03 9.99657E-01 3.82672E-01 6.03928E-01 3.98823E+00
-5.67552E-02 3.82672F-01 1.13988E+00 7.77154E-02 1.80219E+00
 
-8.95704E-02 6.03928E-O1 
 7.77154E-02 5.40976E-01 2.84419E+00
 
-5.91505E-01 3.98823r.O0 1.80219E+00 
 2.84419E+00 1.87825E+01
 

ERROR CODE IS 0
 

EIUENVALUES
 
6.49417E-02 7.01033E.02 
 3.35959E-01 1.00563E+00 Z.02623E+01
 

CONDITION NUMbER 3.120E+02
 

EIbENVECTORS 
2.44451E-01 4.79575F-01 -8.42250E-01 -7.34011E-05 -2.94382E-02
 

-3,78637E-01 -7,28719E-01 -5.32018E-01 1.49438E-02 2.05755E-01
-1.83738F-01 
 1.01568E-01 1.25189E-03 -9.73037E-01 9.55105E-02
 
-b.41647E-01 4.69773E-,1 1.81022E-02 2.22281E-01 1.45627E-01
 
2.33985E-01 8.92883E-02 8.51039E-02 5.97260E-02 9.62533E-O1
 

rORMAL SIGMA OF BASELINE 1.237 METERS
 

SWUARE ROOTS OF DIAGONAL ELEMENTS
 
5.252E-O1
 
9.998E-01
 
1.068E400 
7.355E-01
 
4.334E+00
 

CORRELATION MATRIX IN SPECIAL COORDINATE SYSTEM
 
1.OOOE+O0 -5.1422F-03 -1.0121E-01 -2.3185E-01 -2.5985E-01
 

-5.1422F-03 1.O000E+O0 3.5848E-01 8.2124E-01 
 9.2040E-01
 
-1.0121E-01 3.5848E-01 1.OOOOE+00 9.8966E-02 3.8949E-01
 
-2.3185E-01 8.2124E-01 9.8966E-02 1.OOOOEO0 
8.9226E-01
 
-2.5985E-01 9.2040E-01 3.8949E-01 8.9226E-O1 1.OOOOE+O0
 

SOLUTION VECTOR IN GEOCrNTRIC SYSTEM
 
1.1610E-06 -2.1407E-06 
1.8469E-06 -1.O051E-06 -1.1145E-05 3.7660E-06 6.6446E-06
 

INITIAL bASELINE 1.590145146
PRELIMINARY NEW 1.590135915
 

SCALE IN METERS - .000001057
 
FINAL bASELINE 1.590136972
 
FINAL-INITIAL -.0Z0008174
 

Figure la.
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.STATION 7816 RMS= 1.91 

LU 
C? 000 

000 

-J 
C? 

( 0D 'k6LO 
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6508901
 
Figure lb. 
 Plot of range residuals versus time for Geos A after adjustment by the translocation
method. The baseline is between 7815 and 7816 (units: 
 meters and days).
 



Table 6. SAO Scalar Translocation Program.
 

THERE WERE 33 EVENTS 

bOLUTIOr WEIUHTED IS 

SOLUTION UNWEIGHTED IS 

1590137.050 

1590137.994 

+-

-

.479 

.741 

METERS WITH 

METERS WITH 

32 

33 

OBSERVATIONS, SIGMA ZERO IS 

OBSERVATIONS, RMS IS 4.192 

2.665 

METERS 

7815 7816 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816- 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816 6503201 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 
7815 7816 6508901 

39654.088410 
39654.977890 
39655.057250 
39655.871980 
39655.951130 
39657.001130 
39657.079930 
39659.917790 
39648.020440 
39651.013590 
39652.062840 
39650.984993 
39651.988131 
39653.992650 
39654.995805 
39656.913946 
39659.925723 
39661.932321 
39662.846453 
39664.853716 
39679.074689 
39679.991060 
39680.993850 
39681.998045 
39684.003504 
39685.007384 
39685.923389 
39686.009627 
39687.011787 
39687.929561 
39688.932317 
39689.936948 
39696.869593 

1.388 14 
1;416 170 
1.391 115 
1.467 101 
1.758 110 
1.308 147 
1.606 48 
1.493 95 
1.298 23 
1.331 68 
1.341 172 
1.412 103 
1.396 78 
1.762 178 
1.676 113 
1.709 70 
1.418 144 
1.149 202 
1.572 14 
1;537 132 
1.249 134 
1.341 59 
1.422 57 
1.351 36 
1.246 44 
1.272 34 
1.161 24 
1.469 56 
1.170 108 
1.037 25 
.998 28 

1.048 18 
1.200 56 

. 

1.279 
1.843 
1.712 
1.515 
1.432 
1.516 
1.504 
1.293 
1.266 
1.659 
1.207 
2.037 
1.588 
1.589 
1.669 
1.953 
1.707 
1.387 
2.130 
1.778 
1.118 
1.300 
1.483 
1.357 
1.631 
1.279 
2.210 
1.914 
1.894 
2.164 
1.233 
2.371 
1.282 

92 
112 
101 
88 
99 
132 
93 

111 
71 
121 
129 
169 
143 
27 
12 

242 
49 
13 

146 
92 
42 
34 
86 

.126 
10 

109 
36 
48 
24 
68 
98 
99 

169 

1590140.949 4.156 
1590134.495 .365 
1590135.846 .415 
1590133.651 .743 
1590135.317 .516 
1590137.441 .288 
1590137.529 .661 
1590134.917 .574 
1590136.798 1.247 
1590130.331 .684. 
1590135.966 .257 
'1590146.852 2.117 
1590147.324 1.769 
1590149.131 2.318 
1590133.268 3.587 
1590138.780 3.531 
1590132.390 1.561 
1590131.750 1.492 
1590142.898 12.536 
1590135.753 2.337 
1590139.753 1.107 
1590137.133 .987 
1590138.609 .794 
1590136.752 .691 
1590139.715 1.028 
1590138.052 .617 
1590141.673 3.249 
1590136.972 1.237 
1590136.602 1.569 
1590140.610 1.505 
1590139.105 1.176 
1590140.673 2.166 
1590136.766 .450 

3.899 
-Z.555 
-1.204 
-3.399 
-1.733 

.391 

.479 
-2r133 
-.252 

-6.719X 
-1.084 
9.802 
10.274 
12.081 
-3.782 
1.730 

-4.660 
-5.300 
5.848 

-1.2a7 
2.703 
.083 

1.559 
-.298 
2.665 
1.002 
4.623 
-.078 
-.448 
3.560 
2.055 
3.623 
-.284 

2.955 
-3.499 
-2.148 
-4.343 
-2.677 
-.553 
-.465 

-3.077 
-1.196 
-7.663 
-2.028 
8.858 
9.330 
11.137 
-4.726 

.786 
-5.604 
-6.244 
4.904 

-2.241 
1.759 
-.861 
.615 

-1.242 
1.721 
.058 

3.679 
-1.022 
-1.392 
2.616 
1.111 
2.679 

-1.228 

NO OVERLAP 

NO OVERLAP 

NO OVERLAP 

-­,) 

C) 



This result can also be compared with the datum coordinates of these
 

stations. The Europe 50 coordinates for these two stations are taken from
 

Gaposchkin (1973). The Europe 50 datum is assumed to have an uncertainty of
 

2 m. To compare the datum coordinates to a global set, the datum coordinates
 

must be scaled. The scale difference (Gaposchkin, 1974) is 2.6 ± 0.92 m,
 

with the datum scale smaller than that of the satellite. However, the
 

latter was derived from satellite data using a method of analysis that
 

obtained scale from the value of the velocity of light c and the value of GM.
 

The values used in Gaposchkin (1974) were
 

20 3 2
 
GM = 3.986013 x 10 cm /sec
 

10
 
c = 2.997925 x 10 cm /sec
 

The best present values for these constants are
 

20 3 2
 
GM = 3.985005 x 10 cm /sec
 

10
 
c = 2.99792458 x 10 cm /sec
 

Thus, we correct the satellite scale by
 

1 6GM + 1s = -0.809 ppm
3 GM c
 

and derive a correction to the Europe 50 datum baseline of 1.79 ± 0.92 ppm.
 

Clearly the Europe 50 datum coordinates are the weakest link in this
 

comparison. Nevertheless, the internal consistancy of the baseline solutions
 

from both satellites and the overall agreement to nearly a 1-sigma level
 

with the datum coordinates are satisfactory. Analysis of all the data would
 

further improve the baseline determination.
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At this point we can summarize the results.
 

1) Scalar Translocation works with low-accuracy data: The effects of
 

bias and noise are minimized by the method.
 

2) The results of Scalar Translocation used on satellites with different
 

orbital characteristics (inclination and eccentricity) are compatible.
 

3) With suitable observing schedules, the necessary data for submeter
 

baseline determination can be obtained within 60 days or less.
 

4) Passes with bad geometry (i.e., with the orbit motion perpendicular
 

to the baseline vector) cannot be fit in the translocation mode with reason­

able results. Those cases are generally rejected by the linear regression
 

program that determines the final baseline.
 

5) Translocation computations are excellent for data screening. The
 

orbit fit and station navigation leave residuals that can easily be examined
 

for gross errors on a point-by point basis. For example, during reduction of
 

the data, several passes were observed to have multiple returns - i.e., two
 

different but internally consistent sets of residuals. By chosing that set
 

of residuals that best agreed with the a priori baseline distance, the bad
 

data were easily eliminated.
 

During 1974, laser data were taken in the western United States as part
 

of-the San Andreas Fault Experiment (SAFE). The three stations 7061, 7080,
 

and 7921 all participated. Two stations, 7061 and 7080, had data accuracy
 

approaching 10 cm and station 7921 had an accuracy of about 1 m. The station
 

locations are shown in Figure 2. The data taken in SAFE were not optimized
 

for translocation.' Most of the data was obtained on satellite 6503201,
 
°
 which has an inclination of I = 39 . Since this inclination is comparable
 

to the latitude of these stations, the observations were made with the
 

satellite at its maximum latitude and, therefore, as it passed from west to
 

east. Such geometry is very strong for line 7061-7921, which is roughly
 

west to east. However, the north-south baseline (7061-7080) is normal to the
 

satellite motion and we would not expect such a strong geometry and, hence, a
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weaker solution. Fewer observations on other satellites exist for these
 
lines, but they are also analyzed. So, for the strongly determined baseline
 
(7061-7921), the data from one station (7921) are not so accurate, whereas,
 

where we have accurate data from both stations (7061-7080) the geometry is
 
not strong. Both considerations will be a factor for any method of analysis,
 
not only for Scalar Translocation.
 

For the 1974 data, 47 events were analyzed. The list of individual
 
baseline determinations and the solutions are given inTables 8 and 9.
 
Figure'3 is a plot of the post-fit residuals for station pair 7061-7921
 
and Figure 4 isfor station 7061-7080. We summarized the results-in Table 10
 

for the 1974 data.
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Table 8. SAO Scalar Translocation Program. 

THERE WFRE 21 EVENITS 

SOLUTION WEI*ITE' 15 896273.938 

SOLUTION UNWEIGHTED 15 896273.009 

+-

+-

1.050 

.791 

METERS WITH 

METERS WITH 

17 

21 

OBSERVATIONS, SIGMA ZERO IS 

OBSERVATIONS, RM5 IS 3.537 

4.199 

METERS 

h) 
ro 

7061 7080 
7061 7080 
3061 708.0 
7061 7080 
7061 7080 
7061 7080 
7061 708C 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 
7061 7080 

6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6503201 
6508901 
6508901 
6508901 
6800201 
7603901 
7603901 
7603901 
7603901 
7603901 

42316.717630 
42320.604277 
42320.683730 
42321.655223 
42331.575790 
42332.417430 
42331.367894 
42331.526241 
42332.337190 
42336.383174 
42336.465600 
42337.354750 
42331.248680 
42321.395480 
42331.248680 
42295.472020 
43077.462761 
43085.181262 
43088.256250 
43102.091448 
43104.124900 

.500 140 

.446 88 

.178 125 

.281 60 

.126 53 

.533 56 

.507 102 

.183 129 

.557 136 

.470 113 

.239 55 
..297 81 
.385 48 
.294 28 
.385 48 
.116 69 
.126 203 
.115 79 
.154 566 
.170 458 
.102 135 -

3.663 
2.375 
.721 
.265 
.457 
.673 
.191 
.306 
.685 
.558 
.128 
.179 
.101 
.103 
.101 
.157 
.164 
.297 
.168 
.197 
.159 

56 
46 
80 
129 
53 
61 
64 

103 
91 

157 
12 
32 
53 
18 
53 
12 
29 
42 
20 
12 
51 

896267.902 
896272.176 
896266.975 
896268.410 
896272.376 
896268.736 
896267.395 
896270.342 
896275.032 
896271.348 
896277.726 
896278.087 
896277.035 
896273.728 
896278.503 
896275.475 
896274.741 
896275.395 
896274.991 
896273.058 
896273.762 

1.734 
.971 
.409 
.182 
.252 
.476 

1.016 
.080 
.613 
.344 
.942 
.167 
.461 

1.538 
.463 
.134 
.469 

5.513 
.712 

1.557 
.775 

-6.036 
-1.762 
-6.963X 
-5.528X 
-1.562 
-5.202' 
-6.543 
-3.596X 
1.094 

-2.590 
3.788 
4.149X 
3.097 
-.210 
4.565 
1.537 
.803 
1.457 
1.053 
-.810 
-.176 

-5.107 
-.833 

-6.034 
-4,599 
-.633 

-4.273 
-5.614 
-2.667 
2.023 

-1.661 
4.717 
5.078 
4.026 
.719 

5.494 
2.466 
1.732 
2.386 

1.982 
.049 
.753 

t 

t)i' 



Table 9. SAO Scalar Translocation Program.
 

THERE WEPE 42 EVENTS 

SOLUTION WEIbHTEP IS 571553.307 - .327 METERS WITH 42 OBSERVATIONS, SIGMA ZERO 15 2.092 

SOLUTION UNWEIGHTrD IS 571553.495 +- .442 METERS WITH 42 OJSERVATIONS. RMS IS 2.832 PETERS 

7061 7921 6503201 42336.305186 .130 52 2.331 26 571554.445 .653 1.138 .950 
7061 7921 6503201 42336.465255 .569 137 1.442 27 571552.873 1.898 -.434 -.622 
7061 7921 
7061 7921 

6503201 
6501201 

42337.354750 
42337.433690 

.230 

.411 
80 

121 
1.019 
1.171 

37 
39 

571552.679 
571548.029 

.579 

.916 
-.628 

-4.478 
-.816 

-4.666 
7061 
7061 

7921 
7921 

6503201 
6503201 

42345.205300 
42345.284910 

.112 

.265 
7 

53 
1.459 
1.396 

22 
31 

571554.128 
571552.857 

.638 

.777 
.821 

-.450 
.633 

-. 638 
7061 7921 
'7061 7921 
7061 7921 

6503201 
6503201 
6503201 

42345.365000 
42388.499203 
42388.365255 

.171 32 

.414 133 

.144 69 

1.353 
.766 

2.155 

30 
10 
13 

571551.490 
571553.916 
571547.869 

.692 
3.339 
1.078 

-1.817 
.609 

-5.438-

-2.005 
.421 

-5.626 C­
7061 7921 
7061 7921 
7061 7921 
7061 7921 

6503201 
6503201 
6503201 
6503201 

47390.442084 
42391.334910 
42391.413200 
42391.493230 

.783 80 

.643 154 

.792 164 
.155 126 

2.162 
2.109 
1.843 
1.267 

18 
30 
38 
33 

571548.483 
571552.460 
571550.078 
571551.044 

3.720 
2.328 
2.162 
.506 

-4.824 
-. 847 

-3.229 
-2.263 

-5.012 
-1.035 
-3.417 
-2.451 

0 
. 

7061 7921 6503201 42391.574600 .175 42 1.233 20 571556.678 .886 3.371 3.183 
7061 
7061 

7921 
7921 

6503201 
6503201 

42392.385440 
42392.465010 

.632 149 

.179 123 
1.144 
1.595 

41 
29 

571548.659 
571550.564 

1.642 
.725 

-4.648 
-2.743 

-4.836 
-2.931 

7061 7921 6503201 42337.354750 .222 150 1.139 37 571552.123 .590 -1.184 -1.372 
7061 7921 
7061 7921 
7061 7921 
7061 7921 

6503201 
6503201 
6503201 
6503201 

42337.433690 
42388.499280 
42390.442080 
42391.334970 

.215 
1.341 
.854 
.792 

69 
56 
51 
51 

1.144 
.968 

2.763 
2.079 

39 
10 
18 
30 

571553.189 .509 
571552.967 10.560 
571558e446 3.942 
571560.289 2.589 

-. 118 
-.340 
5.139 
6.982 

-. 306 
-. 528 
4.951 
6.794 

7061 7921 6503201 4?391.413200 1.387 55 2.036 38 571557.493 3.293 4.186 3.998 
7061 7921 
7061 7921 

6503201 
65032.01 

42391.493230 
42191.574600 

.632 

.142 
53 
42 

1.286 
.928 

33 
20 

571552.937 
571553.692 

1.751 
.709 

-.370 
.385 

-. 558 
.197 

7061 7921 
7061 7921 
7061 7921 

6503201 
6503201 
6503201 

42392.385430 
42392.465010 
4.392.547890 

1.017 
.613 
.148 

49 
63 
40 

2.152 
2.119 
.1.767 

41 
26 
24 

571559.756 
571554.976 
571552.393 

2.276 
2.267 
.703 

6.449 
1.669 
7.914 

6.261 
1.481 

-1.102 
7061 7921 
.7061 7921 
7061 7921 
7061 7921 

6503201 
6503201 
7603901 
7603901 

42394.406300 
42395.299020 
43077.462761 
43080.414758 

1.574 55 
1.063 52 
.133 204 
.176 158 

2.000 
1.373 
1.692 
.872 

32 
23 

106 
73 

571554.632 
571558.548 
571555.408 
571553.607 

4.430 
5.258 
.591 
.748 

1.325 
5.241 
2.101 
.300 

1.137 
5.053 
1.913 
.112 

7061 7921 
7061 7921 

7603901 
7603901 

43081.358421 
43082.300956 

.151 

.147 
293 
343 

1.198 
.773 

212 
123 

571553.775 
571553.620 

.201 

.226 
.468 
.313 

.280 

.125 
7061 7921 7603901 43082.480730 .120 323 1.042 117 571555.067 .704 1.760 1.572 
7061 7921 
7061 7921 
7061 7921 

7603901 
7603901 
7603901 

43086.366147 
43087.312153 
43089.195313 

.112 

.093 

.107 

343 
29 

637 

1.138 
1.225 
1.573 

111 
99 
12 

571555.172 
571551.490 
571552.347 

.318 
1.165 
1.437 

1.865 
-1.817 
-. 960 

1.677 
-2.005 
-1.148 

7061 7921 
7061 7921 
7061 7921 
7061 7921 

7603901 
1603901 
7603901 
7603901 

43090.037414 
43098.449930 
43101.252084 
43102.226737 

.119 

.103 

.130 

.115 

944 
26 

662 
101 

1.482 
1.053 
1.031 
1.042 

46 
53 

115 
65 

571552.703 
571556.890 
571553.499 
571551.135 

;549 
.929 
.274 
.681 

-. 604 
3.543 
.192 

-2.172 

-.792 
3.355 
.004 

-2.360 
7061 7921 7603901 43103.309630 .134 878 1.161 85 571553.t39 .438 .332 .144 
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Plot of range residuas versus time for BE-Cafter adjustment by the transocation method.
Figure 3. 

The baseine is between 7061 and 7921 (units: meters and days).
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Figure 4a,b. Plot of range, residuals versus time for BE-C after adjustment by the translocation
method. The baseline is between 7061 and 7080 (units: meters and days)'.
 



Table 10. Baseline results for 1974.
 

Station Baseline ± number of
 
events
 

7061-7080 896272.662 ± 1.185 .17 

7061-7921 571522.354 ± 0.460 31 

During 1976, the Lageos (7603901) satellite was launched. It is in a'
 

significantly higher orbit than any other used in this analysis. LAGEOS was
 

designed to minimize the orbit error due to gravity-field uncertainties,
 

radiation pressure,and drag. It also has an extremely well-defined-center
 

of-mass correction, and it should be an ideal satellite to use for any metric
 

experiment using precision laser ranging data, including Scalar Translocation.
 

The amount of data obtained on Lageos in 1976 is given in Table 5. With such
 

a high satellite, much longer baselines can now be measured, as well as the
 

shorter baselines obtained on lower satellites. The-locations of observing
 

stationsin 1976 are shown in Figure 2. Of the stations observing, 7061,
 

7080, and 7082 had an accuracy approaching 10 cm. The stations 7907, 7921,
 

and 7929 had an accuracy of approximately 1 m. Furthermore, 7907, 7921,
 

and 7929 acquired data, almost routinely, from launch and obtained observa­

tions for a whole pass - that is,more or less from horizon to horizon. However,
 

,stations 7061, 7080, and 7082 obtained data only during 'a2-month period in
 

1976, and many of the passes were partially observed. For example, in Figure 5,
 

three examples are given where only partial passes are observed. Note that
 

on each time line a vertical line is drawn indicating the point of closest
 

In 5 out of 6 passes, the data taken did not cover the midpoint of
approach. 


the pass-, which would have strengthened the baseline determination. Due to
 

this data distribution imuch of the strength of Scalar Translocation has been
 

lost. In Table 11 all baselines determined with 1976 Lageos data are listed.
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Figure 5a. Plot of range residuals versus time for Lageos after adjustment by the translocation
 

method. The baseline is between 7061 and 7080 (units: meters and days).
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Figure 5b. Plot of range residuals versus time for Lageos after adjustment by the translocation
 
method. The baseline is between 7061 and 7080 (units: meters and days).
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Figure 5c. Plot of range residuals versus time for Lageos after adjustment by the translocation
 

method. The baseline is between 7061 and 7080 (units: meters and days).
 



Table 11. Baselines from 1976 Lageos data.
 

Station pair Baselines (m) (n) 

7061-7082 1140023.308 ± 0.412 7 

7063-7921 3147782.230 ± 1.631 13 

7082-7921 1137309.670 ± 0.477 7 

7907-7921 "6471757.766 ± 1.137 16 

7907-7929 4055910.642 ± 0.513 14 

The baselines 7061-7080 and 7061-7921 are determined from the 1974
 

SAFE data and the 1976 Lageos data. They agree reasonably well. The
 

estimate based on all the determinations is given in Table 12. Table 13 lists
 

each individual baseline determination for the 1977 Lageos data.
 

Table 12. Combined solution of 1974 and 1976 data.
 

Station Pair Baseline ± m n
 

7061-7080 896272.662 ± 1.185 19
 

7061-7921 571553.269 ± 0.451 44
 

As mentioned earlier, and in Appendix A, the power of translocation is
 

hat it reduces the effects of orbit error, observation bias, and noise. To
 

chieve these benefits, good pass geometry and complete distribution about
 

For many of the Lageos passes, the data were incomplete.
,he PCA are necessary. 


t is gratifying therefore to obtain such good solutions, even for partial
 

iasses. Considerable improvement in baseline determination can be expected
 

then complete coverage is obtained from all stations with 10-cm data.
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Table 13. SAO Scalar Translocation program. 

THERE WFRE 18 FVENTS 

bOLUTION WEI(aHTED TS - 6471757.766 

SOLUTION UNWEIGHTED IS 6471756.793 

- 1.137 

*- 1.011 

METERS WITH 

METERS WITH 

16 

18 

OBSERVATIONS, SIGMA ZERG IS 

OBSERVATIONS. RMS 15 4.167 

4.402 

METERS 

L 

7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907'7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 
7907 7921 

7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 

42952.097571 
43061.319185 
43062.414150 
43063.351563 
43066.327692 
43067.276042 
43080.270313 
43081.358421 
43082.300956 
43085.275261 
43086.366140 
43099.348264 
43101.252084 
43107.357460 
43109.235850 
43111.268230 
43112.220226 
43112.359202 

.946 51 

.768 191 

.616 64 

.646 211 

.765 256 

.899 106 
1.162 54 
1.419 156 
.989 220 
.952 28 
.904 234 
.755 202 
.650 136 

1.521 80 
.859 168 
.805 249 
.907 82 
.910 128 

1.233 
1.073 
.626 

1.081 
1.255 
1.259 
1.116 
1.191 
1.044 
1.302 
1.810 
1.465 
1.070 
.965 

1.055 
1.347 
.922 

1.234 

11 
27 
59 
56 
81 
112 
37 

212 
123 
29 

110 
84 
115 
142 
92 
67 
69 
8 

6471762.766 
6471756.374 
6471750.973 
6471754.854 
6471756.624 
6471759.519 
6471748.416 
6471752.364 
6471758.313 
6471762.147 
6471760.052 
6471.757.492 
6471758.292 
6471750.289 
6471760.546 
6471760.834 
6471759.681 
6471752.742 

8.307 
.537 
.524 
.343 
.281 
.390 

1.578 
.263 
.217 

1.324 
.266 
.257 
.233 
.396 
.261 
.270" 
.497 
.400 

5.000 
-1.392 
-6.793 
-2.912 
-1.142 
1.753 

-9.350 
-5.4G2X 

.547 
4.381 
2.286 
-.274 
.526 

-7.477X 
2.780 
3.068 
1.915 

-5.024 

5.973 
-.419 

-5.820 
-1.939 
-. 169 
2.726 

-8.377 
-4.429 
1.520 
5.354 
3.259 
.699 

1.499 
-6.504 
3.753 
4.041 
2.888 
-4.051 

NO OVERLAP 
NO OVERLAP 

NO OVERLAP 
NO OVERLAP 

NO OVERLAP 

NO OVERLAP 

NO OVERLAP 
NO OVERLAP 

C) 

0 
PAc 



Table 13. (Cont.) 

THERE WERE 14 EVFIITS 

bDLUTION WFIbHTED 15 4055910.642 + .513 METERS WITH 14 OBSERVATIONS, SIGMA ZERO 15 1.849 

SOLUTION UNWEIGHTED IS 4055910.940 .- .822 METERS WITH 14 OBSERVATIONS, RMS IS 2.965 METERS 

7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 
7907 7929 

7603901 
760390, 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 

42919.065710 
42922.049210 
42922.984890 
42927.050868 
42932.059897 
42935.034540 
42943.031850 
42945.053299 
42945.992534 
42948.980382 
42951.008160 
42956.963368 
42958.993316 
43088.256250 

1.333 58 
1.064 78 
1.691 13 
1.107 55 
1.475 15 
1.724 16 
2.048 21 
.774 18 

1.476 90 
1.331 49 
.985 123 

1.389 14 
1.292 17 
.996 121 

1.016 
1.291 
1.331 
1.179 
.817 

1.646 
.907 

1.563 
.722 
.827 
.860 
.511 

1.015 
1.532 

91 
37 
61 
50 

138 
72 
48 
79 

184 
16 
78 
30 
134 
88 

4055912.101 
4055905.899 
4055910.353 
4055914.244 
4055911.5q7 
4055909.3q4 
4055911.437 
4055906.9n4 
4055910.855 
4055917.186 
4055909.7n5 
4055915.238 
4055908.960 
4055909.289 

.761 
1.428 
2.829 
1.019 
1.262 
2.306 
2.075 
2.939 
.365 

5.066 
.445 

2.833 
.862 
1.706 

1.459 
-4.743 
-.289 
3.602 
.955 

-1.248 
.195 

-3.738 
.213 

6.544 
-.937 
4.596 

-1.682 
-1.353 

1.161 
-5.041 
-.587 
3.304 
.657 

-1.546 
.497 

-4.036 
-.085 
6.246 

-1.235 
4.298 

-1.980 
-1.651 

NO OVERLAP 

NO OVERLAP 



Table 13. (Cont.) 00' 

THERE WERE 3 EVENTS 

SOLUTION WEIUHTED 15 8286009.579 

SOLUTION UNWEIGHTFD IS 8286010.265 

+- 1.587 

*- 3.720 

METFRS WITH 

METERS WITH 

3 

3 

OBSERVATIONS, SIGMA ZERO IS 

OBSERVATIONS. RMS IS 5.261 

2.244 

METERS 

44> 

7921 7929 
7921 7929 
7921 7929 

7603901 
7603901 
7603901 

43083.243317 
43085.275261 
43089.195313 

.790 
1.325 
1.607 

59 
29 
12 

1.360 
1.609 
1.242 

72 
18 
52 

8286009.479 
8286017.065 
8286004.250 

.762 
3.218 
2.428 

-.100 
7.486 

-5.329 

-.786 
6.800 

-6.015 

NO OVERLAP 
NO OVERLAP 
NO OVERLAP 

THERE WERE 8 EVFNTS 

SOLUTION WEICIHTED Is 6878048.101 

SOLUTION UNWEIGHTED IS 6878048.477 

* 

+-

3.014 

1.442 

M'ETER5 WITH 

METEPS WITH 

7 

8 

OBSERVATIONS', 5IGMA ZERO 15 

OBSERVATIONS, RMS IS 3.816 

7.384 

METERS 

7061 7907 
7061 7907 
7061 7907 
7061 7907 
7061 7907 
7061 7907 
7061 7907 
7061 7907 

7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 

43073.370313 
43076.347223 
43081.358421 
43082.300956 
43088.256250 
43100.304770 
43101.252084 
43103.281420 

.076 11 

.139 222 

.163 298 

.149 344 

.153 566 

.144 472 

.131 663 

.112 712 

.645 
3.104 
1.971 
1 212 
.937 

1.562 
.869 

1.646 

186 
225 
155 
220 
121 
277 
136 
191 

6878052.575 
6878042.263 
6878044.818 
6878053.264 
6878049.587 
6878046.665 
6878052.4n7 
6878046.221 

.212 

.290 

.287 

.158 

.279 

.257 

.196 

.166 

4.474 
-5.818 
-3.283 
5.163X 
1.4b6 

-1.436 
4.306 

-1.880 

4.098 
-6.194 
-3.659 
4.787 
1.110 

-1.812 
3.930 

-2.256 

NO OVERLAP 
NO OVERLAP 

140 OVERLAP 
NO OVERLAP 

NO OVERLAP 

THERE WERE 3 EVENTS 

SOLUTION WEI3HTED I5 '8711138.206 

SOLUTION UNWEIGHTED IS 8711137.861 

+-

+-

3.351 

1.702 

METERS WITH 

METERS WITH 

3 

3 

OBSERVATIONS, SIGMA ZERO 15 

OBSERVATIONS, RMB 15 2.408 

4.739 

METERS 

7061 7929 
7061 7929 
7061 7929 

7603901 
7603901 
7603901 

43084.185417 
43089.195313 
43090.140886 

.140 175 

.107 637 

.138 216 

1.437 
1.570 
1.301 

142 
52 
41 

6711134.514 
8711140.075 
8711138.995 

.310 

.186 

.423 

-3.692 
1.869 
.789 

-3.347 
2.214 
1.134 

NO OVERLAP 
NO OVERLAP 
NO OVERLAP 



Table 13. (Cont.) 

THERE WFPE 4 EVrTS 

SOLUTION WEIk3HTED IS 5928015.899 .- 2.403 METERS WITH 4 OBSERVATIONS, SIGMA ZERO 15 4.161 

SOLUTION UNWEIGHTED IS 5928015.806 +- 1.437 METERS WITH 4 OBSERVATIONS, RMS IS 2.488 METERS 

7063 7907 
7063 7907 
7063 7907 
7063 7907 

7603901 
7603901 
7603901 
7603901 

42920.140450 
42921.086130 
42926.096934 
42957.101818 

.091 263 

.285 760 

.144 65b 

.064 536 

1.041 
.923 
.957 
.836 

79 
133 
110 
17 

5928013.318 
5928018.188 
5928018.398 
5928013.319 

.314 

.528 

.300 

.580 

-2.581 
2.289 
2.499 

-2.5uO 

-2.488 
2.382 
2.592 

-2.487 14OOVERLAP 

THERE WERE 13 EVENTS 

SOLUTION'WFI(HTED 15 

SOLUTION UNWEIGHTED IS 

3147782.230 

3147783.819 

- 1.631 

+- 1.103 

METERS WITH 

METERS WITH 

13 

13 

OBSERVATIONS, SIGMA ZERC IS 

OBSERVATIONS, RMS 15 3.822 

5,650 

METERS 

(A) 
.p. 7063 7921 

7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 
7063 7921 

6503201 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 
7603901 

42390.444940 
42919.204340 
42919.351910 
42920.140450 
42920.287700 
42921.235450 
42922.180370 
42922.326590 
42926.246876 
42935.168630 
42936.114900 
42939.243400 
42957.101818 

.160 155 

.090 55 

.066 83 

.089 262 

.281 884 

.074 672 

.068 887 

.135 12 

.349 925 

.340 970 

.174 644 

.108 258 

.064 536 

1.656 
.768 
.795 
.644 
.670 
.724 
.673 
.973 

1.018 
.901 

1.979 
.601 
.563 

16 
164 
169 
129 
64 
116 
33 

110 
58 
15 
22 

- 77 
19 

3147782.656 
3147778.202 
3147779.818 
3147785.696 
3147784.190 
3147779.554 
3147784.011 
3147785.388 
3147789.200 
3147785.967 
3147791.171 
3147785.183 
3147778.606 

.940 

.'242 

.352 

.257 
1.189 
.203 
.514 
.414 

1.702 
4.235 
1.741 
.639 
.766 

.426 
-4.028 
-2.412 
3.466 
1.960 

-2.676 
1.781 
3.158 
6.970 
3.737 
8.941 
2.953 

-3.624 

-1.163 
-5.617 
-4.001 
1.877 
.371 

-4.265 
.192 

1.569 
5.381 
2.148 
7.352 
1.364 

-5.213 

NO OVERLAP 

NO OVERLAP 

THERE WERE 2 EVEIITS 

SOLUTION WEIUHTED IS 5285874.843 *- .055 METERS WITH 2 OBSERVATIONS, SIGMA ZER, IS .055 

SOLUTION UNWEIGHTFD IS 5285874.734 - .129 METFRS WITH 2 OBSERVATIONS, RMS 15 .129 METERS 

7067 7907 
7067 7907 

7603901 
7603901 

42954.132885 
42955.070767 

.096 

.116 
47 
59 

.766 

.956 
16 

100 
5285874.606 
5285874.863 

2.877 
.239 

-. 237 
.020 

-. 129 
.129 

NO OVERLAP 



Table 13. (Cont.)
 

THERE WFPE 4 rVrtTS 

SOLUTION WF313IITFf IS d29575.611 

SOLUTION UNWEIGHTFD I, 829575.069 

4-

*-

.672 

1.780 

METERS NITH 

METERS WITH 

4 

4 

OBSERVATIONS. SIGMA ZERC IS 

OBSERVATIONS, RMS IS 3.083 

1.164 

PETERS 

7080 7082 
7080 7082 
7080 7082 
7080 7082 

7603901 
7603901 
7603901 
7603901 

43063.104428 
43065.133221 
43095.201970 
43095.295226 

.118 

.066 

.201 

.112 

28 
7 

11 
18 

.096 

.097 

.164 

.134 

a 
165 
153 
249 

829578.849 
829575.430 
829575.741 
829570.257 

1.558 
.272 
1.839 
3.608 

3.238 
-. 181 
.130 

-5.354 

3.780 
.361 
.672 

-4.812 

NU OVhRLAP 

THERE WERr 2 EVF'TS 

SOLUTION WIbHTFP IS 7547301.057 

SOLUTION UNWEIGHTrD If- 7547302.271 

- 3.683 

+- 3.498 

METERS WITH 

MFTERS WITH 

2 

2 

OBSERVATIONS, SIGMA ZkE, 15 

OBSERVATIONS, RMS 15 3.498 

3.683 

PETERS 

7080 7907 7603901 43088.256250 
7080 7907 7603901 ,3n95.295226 

THERE 
4
ERE 2 EVF'JTS 

SOLUTIOM WFI(HTED 15 1289662.073 

SOLUTION UNWEIGtiTF) IS 1289659.034 

.168 20 

.112 18 

+- 2.796 

*- 4.934 

.830 121 

.674 269 

METERS WITH 

METERS WITH 

7547298.773 .5t8 -2.284 
7547305.769 1.069 4.712 

2 OBSLRVATIONS, SIGMA ZERO 15 

2 OBSERVATIONS, RMS 15 4.934 

-3.498 

3.498 

2.796 

METERS 

140 OVERLAP 
NO OVERLAP ( 0 

C 

r 

7080 7921 
7080 7921 

6503201 
7603)01 

42336.465250 
41077.462761 

.116 
.163 

13 
29 

1.5f6 
1.214 

20 
106 

1289654.1no 
1289663.967 

3.123 
.742 

-7.973 
1.894 

-4.934 
4.934 

THERr WERE 5 

SOLUTION WEIbHTE' 

SOLUTION UNWFIGHTF 

FVFIITS 

IS 7203954.113 

I' 7203956.073 

*-

*-

1.246 

1.388 

HETERS WITH 

METERS WITH 

3 

5 

OBSERVATIONS, SIGMA ZERG IS 

OBSERVATIONS, FINS IS 2.775 

1.762 

METERS 

7082 7907 
7082 7907 
7082 7907 
7082 7907 
7082 7907 

7603901 
7603901 
7603901 
7603901 
7603901 

43071.336893 
43093.263369 
43095.295220 
'.3096.244440 
43100.304770 

.154 

.166 

.248 

.149 

.132 

288 
433 
248 
584 
85 

.838 
2.153 
2.101 
1.273 
.657 

255 
180 
273 
176 
277 

7203961.006 
7203953.061 
7203954.258 
7203955.072 
7203956.968 

.117 

.245 

.365 

.246 

.209 

6.893X 
-1.052 

.145 

.959 
2.855X 

4.933 
-3.012 
-1.815 
-1.001 

.895 

NO OVERLAP 
HO OVERLAP" 

NO OVtRLAP 
NO OVERLAP 



All regression solutions for baseline were made using the formal un­
certainty computed for each event. The standard error of unit weight ranges
 

from 3 to 10, which indicates that in all cases some unmodeled error sources still
 

exist. Howeverthese standard errors are not unreasonably large. Also
 
computed is the baseline,assuming all observations are of the same accuracy.
 

This unweighted average is also given with the residuals derived from
 
this solution. In general, the solutions are in good agreement. The very
 

large residuals in the unweighted solution have a large variance when used
 

in the weighted solution, which reduced their effect on the mean. It can
 

also be noted that the large formal uncertainties correspond to poor pass geometry,
 
sparce data, or noisy data (as reflected in the R.M.S. for the station). The
 

weighted mean is taken as the best estimate of the baseline.
 

For an assessment of these results,we can make two comparisons given in
 

Table 14. Here we give the~baselines As determined from datum coordinates
 
(suitably scaled), the results provided by GSFC (D.Smith private communica­

tion), and the combined results of the Scalar Translocation. The'scaling of
 

the datum coordinates for the NAD27 was taken from Gaposchkin (1974). This
 

scale factor of 1.78 ppm is modified by -0.809 ppm to reflect a change to
 

the current best estimates of GM and c.. The coordinates derived by GSFC are
 

obtained from analysis of Lageos data in a global, geocentric, dynamical
 
determination of station coordinates. It is based on 31, 5-day arcs of
 

data and much of the Lageos data used here is common to both analyses.
 

Therefore, what good agreement is found for those coordinates or baselines
 

that are determined only from LAGEOS data may be due to use of the same 

data rather than both solutions being "correct" to that accuracy. -

The datum comparisons are useful only as an overall check. For long
 

baselines, satellite determinations are-more accurate when they are reliable.
 

In this case we can conclude that the satellite measurements are valid, and
 

that the geodetic coordinates agree with both satellite determinations as
 

well as might be expected.
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Table 14. Comparison of baseline determinations. 

Station Pair 
NAD 27 

Baseline 
(Mm) 

Scaled 
Datum Baseline 

(m) 

GSFC Lageos 
Coordinates 

(m) 

Translocation 
Result 
(m) 

n 

7061-7080 0.89626931 896270.18 896275.60 ± 0.14 896272.66 ± 1.185 19 

7061-7082 1.14001784 1140018.95 1140022.78 ± 0.04 1140023.31 ± 0.41 7 
7061-7921 0.57154694 571547.50 571552.89 ± 0.03 571553.27 ± 0.45 44 

7082-7921 1.13730284 1137303.94 1137309.89 ± 0.04 1137309.67 ± 0.48 7 
7063-7921 3.14778452 3147787:57 3147785.16 ± 0.04 3147782.23 ± 1.631 13 
7907-7921 6471750.94 ± 0.03 6741757.77± 1.14 16 
7907-7929 4055910.23 ± 0.04 4055910.64 ± 0.93 14 



Comparison of the dynamical determination (GSFC) with the translocation
 

result immediately shows two facts. The formal statistics differ by an order
 

of magnitude, which is due to the different meaning attached to them. In the
 

case of the dynamical determination, the formal uncertainty is obtained from
 

the root mean square of the orbital residuals. With approximately 100,000
 

observations the I/An- is unrealistically reducing the formal uncertainty.
 

Such an overoptimistic formal uncertainty is well known when a large amount
 

of data is used. The Scalar Translocation uncertainty estimate is obtained
 

from comparing the individual -baseline estimates. This no longer used the
 

enormous number of data points, though of course all data points were used
 

to get each baseline estimate. In general the two estimates agree within
 

the combined formal uncertainty.
 

The second point is that the translocation result is systematically
 

larger than the dynamical result. It is not clear from such a small number
 

of baselines if this is a significant difference. If it is, then this
 

difference will have significance in establishing an absolute scale from
 

satellite laser ranging. The translocation method rdlies totally on the
 

velocity of light to establish a length scale with the light second. Dynamical
 

methods by their nature obtain scale in a complicated mixture of c, GM, and
 

the orbit theory.
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5. DISCUSSION
 

The theory and results presented in this study are intended to establish
 

Scalar Translocation as a viable option for determination of baseline distances
 

with decimeter accuracy. With the data available, this has been established.
 

Scalar Translocation provides the following features:
 

1) Is independent of absolute orbit accuracy and GM.
 

2) Provides scale by laser range measurements.
 

3) Uses overlapping passes.
 

4) Is independent of observation bias and noise under certain well under­

stood and simple conditions of data distribution.
 

To establish further the use of Scalar Translocation for precision
 

metrology, two steps can be considered.
 

1) Further analysis of existing data is possible. In fact, originally
 

all the data taken in 1975 and 1976 in support of GEOS-3 program was planned
 

for.analysis. In that data set, a large number of simultaneous events are
 

recorded in the Western North Atlantic, involving stations at Goddard Space
 

Flight Center, Bermuda, Grand Turk, and Florida. A braced quadrilateral can
 

be computed to provide a needed internal check on the baseline determination.
 

2) A planned program of observation could be undertaken specifically
 

for Scalar Translocation. The satellites could be chosen to obtain optimum
 

pass geometry, and, if options on station deployment are possible, then
 

optimum network configurations can be chosen. Such a program would be the
 

most effective approach to establishing baselines independent of satellite
 

orbit theory.
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Some unresolved issues remain. First is the question of possible
 
systematic differences in scale between translocation and orbital methods.
 

We believe that translocatibn- as applied here, obtains scale directly from
 
laser range data. It is convenient to assume that this difference occurs in
 

the dynamical method because of its inherently greater complexity. However, the
 

sources of this scale difference must be known before we have real confidence
 

that both translocation and dynamical methods are understood.
 

Next is the issue of the amount of data necessary. Some improvement in
 

baseline determination was obtained by using all the data points available for
 

each pass. One can wonder where the point of diminishing returns sets in.
 

Must we have 500 or 1000 points in a pass to reduce the random error, and
 

cancel the systematic error? Further study is required.
 

Then we come to the question of how many individual baseline determinations
 
are necessary to obtain a 10-cm accuracy. The largest number of successful
 

baselines where both stations acquired 10-cm data on Lageos with significant
 
7082
 overlaps of the data span was seven for stations 7061 . In this case, we
 

obtained an uncertainty of 0.41 m. A simple scaling argument indicates that
 

112 events are necessary to obtain a 10-cm accuracy.
 

This conclusion then leads to the question of how much time is necessary
 

to obtain such a data set. Ifwe assume a 50% loss of opportunities due to
 

weather, logistics, system failure, etc., and that this loss is uncorrellated
 

at the two stations and that each station has 4 opportunities each day to
 
observe each satellite, then we have one successful event per satellite per
 

day. For short baselines that can obtain overlapping data on low satellites
 
and, say, four satellites are used, then we have
 

112 28 days of data taking.

IF 

This could be reduced further if the data loss due to weather was correlated
 

between stations. If the baselines are such that only Lageos can be used
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then the full 112 days are necessary. In addition, an analysis where the translo­
cation baseline information iscombined with the dynamical determination of
 
station locations can be envisioned. The improvement possible using all the
 

data in this way also needs study. Further work on this point is warranted.
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SCALAR TRANSLOCATION USING LASER RANGE DATA
 

James H. Latimer and E. M. Gaposchkin
 

Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138
 

ABSTRACT
 

Short overlapping arcs of laser data from two stations are used to
 
determine the interstation distance. This distance is relatively uncorrupted
 
by satellite orbital errors and is independent of satellite orbital scale,
 
which is determined by GM. Here, scale is defined by the adopted velocity of
 
light. Several individual such baselines are averaged to give an estimate of
 
the baseline distance. A network of baselines can be adjusted or combined
 
with other types of data to obtain geocentric station coordinates in the
 
FK4 system referred to the Conventional International Origin.
 



1. INTRODUCTION
 

The satellite methods used to determine stations positions fall into
 
three categories: geometrical methods, dynamical methods, and semidynamical
 

or short-arc methods. For many years, geometrical methods have been used
 , 

with simultaneous camera observations to obtain interstation directions (Veis,
 
1967; Aardoom, Girnius, and Veis, 1967; Schmid, 1974). Since camera observa­
tions are given with respect to a celestial system, absolute directions in
 

space can be determined; but, being directions only, they provide no origin nor
 
scale. These geometrical directions are very powerful when used in combina­
tion with other types of data, notably dynamical methods, such as was done
 
with great advantage in constructing the Smithsonian Standard Earth (SE)
 
models SE I, SE II,and SE III (Lundquist and Veis, 1966; Gaposchkin and Lambeck,
 
1970; Gaposchkin, 1973). Even so, the need that data be simultaneous resulted
 
in a very slow acquisition of successful events because of the restrictions
 
caused by twilight conditions, weather, and other operational considerations.
 

Camera data have now been supplanted by laser range data, and the analogous
 

geometrical method is called multilateration. To be effective, multilateration 
requires simultaneous events involving at least six stations, with a minimum 
of four stations participating in each event; however, owing to weather and ­

logistical factors, successful multilateration events will not occur very
 

frequently. Furthermore, dedication of six laser systems to this one endeavor
 
may not be practical. Multilateration provides no origin, and no orientation
 

of the network, although scale is strongly determined by the adopted value 
of the velocity oflight, c. 

In practice, it is virtually impossible to define and obtain a truly simul­
taneous observation. Since independent time standards can be synchronized
 
only to between 1 and 50 lisec, predicted satellite positions will have un­
certainties approaching several meters, or many milliseconds in light travel
 
time. Therefore, we really mean quasi-simultaneous observations with time
 
differences (determined after the fact) small enough that linear interpolation

in satellite position is possible. Thus, simultaneous events can be considered
 
as limiting cases of the semidynamical method.
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Dynamical methods depend on knowledge of precise ephemerides (Lundquist
 

and Veis, 1966; Gaposchkin and Lambeck, 1970; Gaposchkin, 1973; Anderle,
 

1974; Smith, Lerch, Marsh, Wagner, Kolenkiewicz, and Kahn, 1976). An ephemeris
 

defines the reference system and cai be related to the center of mass of
 

the earth implicitly by adopting a geopotential-force model with J1 = 0. The
 

orientation of the orbit is similarly implicitly defined to be along the
 

axis of-maximum moment of inertia by having C21 =$21 = 0; but in fact, owing
 

to elastic deformation, this is never exactly true. The origin of longitude
 
can be defined for orbit computation only by using observations somehow re­

lated to an inertial reference frame, e.g., camera observations referred to
 

a star background.
 

Therefore, using metric measurements that are invariant under coordinate
 

translation and.rotation, we can approximate the center-of-mass coordinates
 

with one undetermined origin of longitude. The scale in dynai~ical methods
 

is derived from the adopted value of GM, which relates the dynamical scale
 

(the mean motion n) and the geometrical scale (the semimajor axis a) through
 

an appropriate statement of Kepler's third law:
 

na eGM(1 + E) 

where c, a small parameter, depends on the satellite orbit, the even zonal
 
harmonics, and-any nongravitational force affecting the energy of the orbit,
 

such as radiation pressure and atmospheric drag. Since metric measurements
 

imply a scale through the velocity of light, a consistent set ofc and GM
 
must be chosen. A value for the velocity of light c has now been adopted
 

by the International Astronomical Union, the International Association of
 
Geodesy, and the International Union of Geodesy and Geophysics (Melchior,
 

1975):
 

c = 2.99792458 x 1010 cm/sec
 

We are thus obliged to determine GM to be consistent with c; the currently
 

accepted best value for GM is
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GM = 3.986005 x 1020 cm3/sec 2 

where M here includes the mass of the atmosphere.
 

Semidynamical methods (Brown, 1976; Strange, Hothem, and White, 1975) rely
 
on the use of short arcs and assume that the orbital error can be corrected to
 
fit the data from one station and that the observations from the second station
 
determine that station position with respect-to the corrected orbit and there­
fore with respect to the first station position. This technique has many guises,
 
the most successful being translocation with doppler data. The method described
 

here is a variant of the semidynamical method.
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2. OUTLINE OF THE METHOD
 

We consider a short arc of a satellite trajectory to be less than half
 

a revolution, although trajectories can be computed by using data from a
 

global network of observing stations for a longer interval, say several days.
 

The trajectory will have errors that depend on model errors in the orbit­

determination computation due to uncertainties in the geopotential, other
 

geophysical quantities such hs tides, atmospheric drag, geocentric station
 

coordinates, and errors in the observations. Trajectory errors - comprising
 
translation, orientation, and scale biases - are more or less constant during
 

a short arc. However, during a short arc, we assume that the shape of the
 

trajectory is known. Therefore, if we consider a trajectory in space, with
 

an arbitrary position and orientation, the observed laser range data from a
 

station can be used to compute the position of the station relative to the
 

trajectory, which is equivalent to correcting the satellite ephemeris. In
 
addition, data from a second station observing the same trajectory can be
 

'used in the same way. Both stations are now related to the same arbitrary
 

trajectory, and their relative positions are therefore established. Although
 

the vector difference cannot be interpreted, because the position and orienta­

tion of the trajectory are arbitrary and unknown, the scalar distance between
 

the stations is invariant under this unknown translation and rotation and
 

therefore can be interpreted - hence the name scalar translocation.
 

Each simultaneous, or overlapping, event provides an individual, inde­

pendent estimate, together with an uncertainty, of the interstation baseline,
 

which can be used in a number of ways. After calculating the standard error
 

of unit weight, a weighted mean of several determinations can give an improved
 

estimate of the baseline and a more reliable estimate of the accuracy. Gross
 
errors can be eliminated by performing a 3 a or similar test on a number of
 

independent baseline estimates. Alternatively, if the change of a baseline
 

is desired - for example, to study secular (tectonic) or periodic (tidal)
 



motions - then the determinations with their epochs can be analyzed as a
 

time series. In addition, a network of baselines, each obtained with a
 

weighted mean, can be analyzed to obtain the three-dimensional coordinates
 

of the observing sites; the network, of course, would have an arbitrary
 

origin and orientation. For this, the minilm network would have to have
 

four stations, the six baselines forming a braced quadrilateral, with no
 

redundancy. In general, with n stations and all possible interstation
 

distances measured, there will-be (n2 - 7n + 12)/2 degrees of freedom in a 

network adjustment. Finally, the individual baselines can be used in a 

general network adjustment with other data, such as with interstation direc­

tions determined with simultaneous camera observations, Very long-baseline­

interferometer observations of direction and distance, or normal equations
 

for station coordinates developed by using long-arc orbital analysis. Direc­

tion observations can give an orientation to the network with reference to, 

say, the FK4 or FK5 system of fundamental stars, while orbital analysis can
 

provide an origin related directly to the center ofmass of the earth.
 

2.1 Scale
 

The two length scales are provided by the speed of light and the value
 

of GM. Distance is obtained with a light-travel-time measurement suitably
 

corrected for refraction. The speed of light has been defined by the Inter­

national Union of Geodesy and Geophysics in terms of meters and seconds and
 

is known with sufficient accuracy for our needs. Therefore, our unit of
 

length is, in reality, the light second. Satellite motion also has scale
 

through a suitable definition of Kepler's third law, the defining constant
 

being the product of G, the gravitational constant, and M, the mass of the
 

earth. GM is not now known with sufficient accuracy and is almost certainly
 

inconsistent with the adopted value of c. Therefore, the two scales must be
 

separated and reconciled. The determination of GM, given a defined length
 

scale, comprises a study by itself and will not be discussed here.
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If, for the moment, we consider satellite motion on a sphere, then an
 
error, or inconsi'stency, in GM would model the satellite's motion slightly
 
larger or smaller than reality, as shown in Figure 1. Consider observations
 
of distance pi = p(ti). If the shape of the trajectory is known, then barring
 
certain degenerate geometries (Blaha, 1971, 1972), the position of R can be
 
determined. With a scale error in the model, each point on the orbit will
 
increase its geocentric distance by the same amount. For a more general
 
surface, the increase is proportional to the geocentric distance. Also, a
 
change in distance between each pair of points is proportional to the distance.
 
The actual ranges, of course, can then be used to determine the position and
 
the scale factor corresponding to the correction to GM. Alternatively, as­
suming a scale error in the observation, the constant of proportionality by
 
which all the geocentric distances change could be applied to the observed
 
ranges. This would then scale the position R accordingly if the orbital scale
 
is assumed to be correct. In either case, the position R and the scale
 
parameter can be determined from the data to make the observed ranges fit the
 
satellite range. These two-interpretations of scale are equivalent for each
 
arc, although the observation equations and the numerical solutions,.as re­
flected by the condition number, are significantly different. For purposes
 
of .- cal analysis, we have computed the station position and the scale
'. 

parameter assuming a scale error in the observed range because the least­
squares solution is much better conditioned;-the condition numbers are 103
 

to '106 smaller. Since the observed ranges are assumed to be without scale
 
error, the scale parameter is identified with an orbital scale error. The
 
consequence is simply that after the adjustment, the scale parameter is then
 
applied to the determined baseline to refer it back to the observed distance
 

scale.
 

By determining a scale parameter for each arc, the baselines are found
 
to be independent of orbital bias. 
 This bias could be due to an inconsist­
ency between GM and c, to errors in the orbital theory, or to other causes.
 
However, for this analysis, we have decoupled the scale errors from the
 
desired quantity, the baseline distance. Some numerical tests were performed,
 
during which we changed the value of GM in the orbit computation by as much as
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±20 ppm. The baselines recovered in this way, from both high (Lageos) and
 

low (BE-C) satellites, were not identical, but they changed by only a few
 

centimeters individually and the mean of several determinations was virtually
 

the same for each.
 

2.2 Observational Bias
 

The determination both of.satellite positions with respect to an arbitrary
 

trajectory and their relative positions is done by the method of least squares.
 

The data, however, can have biases as well as random errors. Ifwe consider
 

an optimum pass whose subsatellite track is along the direction between the
 

stations (the baseline of interest) and if the data are uniform about the
 

point of closest approach, then bias in the observed range will cancel along
 

the track and the root-mean-square (rms) residuals will increase. Clearly,
 

the satellite-to-station height will also change, but we are not interested
 

in that component here. Numerical tests, inwhich a bias of 1 m'was added
 

to the data left the baseline determination unchanged. Of course, for poor
 

geometry, this independence of bias is reduced.
 

From Figure 2, it is evident that an epoch time offset from one station
 

to the next will translate directly into a baseline change. The error is
 

about 7 mm for each microsecond bias in station timing for close-earth
 

satellites.
 

2.3 Adjustment Procedures
 

The adjustment of a station position to the trajectory is, in general,
 

poorly conditioned since the three coordinates are not determined with equal
 

accuracy. To identify the coordinates that are well determined, we created
 

a local terrestrial coordinate system with its origin at one station and its
 

x axis oriented toward the second station. The difference in the correction
 

to the x coordinate is thus the desired correction to the baseline distance.
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For the first station, the point of closest approach is identified and
 

the y axis lies in the plane containing the point of closest approach and the
 

x axis; the z axis is the third direction forming the orthogonal rectangular
 
triad. The station is then "navigated" in this system. In gicneral, the z
 

coordinate is very weakly determined (as shown numerically by an eigen­

vector/eigen-value analysis) and is deleted from the solution. For the second
 
station, the y axis is also defined by the point of closest approach of the
 

trajectory with respect to the second station, and the z axis is orthogonal
 

to the x and y axes in a similar way. The z coordinate for this station is
 

also generally deleted from the solution. We are left with a least-squares
 

solution for AX1 , Ay1 , AX2, Ay2 , and the scale parameter E. The correction
 

to the baseline Ar is
 

Ar = 1 - Ax2 + s(x1 - x2) 

[Note: Ay, and Ay2 are in different coordinate systems. Since these parameters
 

are included only to obtain a satisfactory adjustment, they are not considered
 

further here.]
 

Because the adjustment depends on the coordinate system, which depends
 

on the positions of the points of closest approach to both stations, the
 

solutions are quite dependent on the geometry: The baseline distance can be
 

determined very well if the satellite's motion is parallel to the interstation
 

direction, but it is poorly determined if the motion is across this line.
 

The limiting worst case is for a straight-line trajectory - 1 to the inter­

station line; in this degenerate case, there is an infinite number of solutions.
 

In practice, however, the curvature of the satellite trajectory is sufficient
 

to allow a degraded determination even with poor geometry.
 

2.4 Translocation Mathematics
 

The observation equation for station 1 is 

i)2 zi)
Pi (computed) = _ +(Xl, (Y1 _ yi)2 + (zl - (1 + E) , (1) 
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where i is the observation index; xi, yi, and zi represent the satellite 

position; x1, Y1, and zI are the station coordinates; pi is the range from 

the station to the satellite; and e is the proportional scale change. The 

same equation holds for station 2 by using x2,Y2, and z2 as its coordinates. 

Equation (1)is the usual metric scaled by the scale factor E interpreted
 

as an instrumental error (see Section '1).
 

The linearized form of equation (1) is
 

= (xi- x dx1 + Q dy+ ( 1 -" dz1 + 

for observations from station 1, and similarly for station 2. After applying
 

weights, this leads to the following system of normal equations inmatrix
 

form, where pi is the weight of the observation:
 

Iii (- z 0 P d x 1 ( x ) d 
7 0 0 x i 

j)" (, ( , o, o, 

0,.0 dz 1 

I Z)2 0 0 i Zlp-pi dZl i(I- i d 

(similar terms for station 2) dx2 (station 2) 

dy2 

(symmetrical matrix of coefficients) dz2
 

Pip2 c Pipi dpi 

solution residual 
vector vector 
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This matrix of coefficents will be very poorly conditioned, reflecting the
 
indeterminacy of station navigation perpendicular to the Guier plane (defined
 

as that plane containing the station-to-satellite direction and the satellite
 
velocity direction at the point of closest approach).
 

To improve the condition of our matrix, it is necessary to reduce the
 

rank of the system in a manner that will minimally affect the interstation­

range determination. Our technique is to rotate the coordinate system such
 
that two of the unknowns (corresponding as closely as possible to the indeter­
minant parameters) can be dropped, thereby reducing the rank to five. This
 
is done by adopting a local coordinate system with one station as the origin 
and the other station on the x axis. The direction from station 1 to the 
satellite at the point of closest approach, together with the-x axis, defines 
the plane in which station 1 is navigated. The z axis is perpendicular to
 

this plane and therefore dropped from the normal system. A similar plane is
 
established for station 2, using the direction to the point of closest approach
 
to station 2. The corresponding z axis for station 2 is also eliminated from
 

the normal system. Itwill be noted that the two planes of navigation inter­

sect at the interstation baseline.
 

The optimum station-to-satellite geometry is clearly that inwhich both
 
stations lie in the orbital plane. In this case, we are navigating both
 

stations in their coincident Guier planes. In all other cases, we are navigat­
ing in planes that merely approximate the Guier plane. However, except when
 
the interstation baseline is nearly perpendicular to the orbital plane, the
 

approximation is satisfactory.
 

The Guier plane was first introduced by W. Guier in developing the basic
 
analysis for doppler data supporting the Transit network. It has been
 
carried over into all analyses of doppler data and has many additional
 
advantages specific to doppler data, where a system parameter (the satellite
 
oscillator correction) needs to be determined from each pass of data; in
 
addition, certain environmental errors average out in that case. We have
 
not investigated the extent to which those advantages can be utilized in
 
this analysis, although intuitively we believe that, for example, in analyz­
ing range data, refraction-model errors will be reduced.
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Transformation to the local coordinate system is as follows:
 

- x 

'] [M [z Zl 

where is defined as 
three rows of three vectors kI' 2' and R3
 

R = 2 x- "Y- y1 ' z2 - Z1 )(x X 


A 
1
R1 ­ ii
 

Jpca = (xpca - 1' Ypca - Y Zpca - Zl) 

3 1 pca
 

R 3
 

R2 R3 x R1 

The orientation vector 
 for the transformation of station 2 and its observed
 
satellites is similar except that the coordinates of the point of closest
 
approach, Xpca, Ypca' andZpca' refer to 
a different position and
 

Jpca = (xpca - x2' Ypca -
Y2 ' Zpca - z2 )
 

It can be seen that equation (2) is an adjustment performed by varying 
a scale parameter and the coordinates of the two station positions, each 
station constrained to a distinct plane. The two constraint planes intersect
 
at the baseline, so the baseline length is unaffected. Satellite positions
 
are not adjusted and must be taken a
priori. Clearly, the results we obtain
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are functions of the assumed satellite positions, and care must be taken to
 

use the best estimates possible.
 

For this analysis, we use the same precision differential-orbit-improve­

ment program that we use in our gravity-field determination and our long-arc
 

station-coordinate determination. One useful feature of this computer program
 

is the capability of archiving on magnetic tape a large assemblage of data,
 

including all adjusted satellite positions at the times of the observations.
 

The procedure, then, is to, determine an orbit (typically spanning 10
 

days) from all available observations. When an orbit is optimized, it is no
 

longer necessary to recompute the archive file, but only to access it in order
 

to obtain a trajectory from best-fitting (in a global sense) estimates of
 

satellite positions. The archive file is also a convenient place to keep
 

observations, station coordinates corrected for tidal motion, pole position,
 

sidereal time, and other auxiliary information.
 

Since the orbital routine operates in an inertial frame of reference,
 

it is necessary to transform the satellite and station positions to a rotating
 

(terrestrial) system according to the well-known relation:
 

1 0 _Px cos a sin e li 
t:i- sin 6 cos 0 xi 

Px Py 0 1
 

where xi is the inertial position, xt is the terrestrial position, 6 is the
 

sidereal angle, and Px and Py are the pole-position angles in radians.
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3. DATA ANALYSIS
 

The results reported here are based on the data available in mid-1977.
 
Clearly, future data will be more comprehensive and the results more accurate.
 

Furthermore, .the data currently available were not taken for use with scalar
 
translocation. In this section,.we discuss the data available, give an example
 
of a baseline determination, and review the translocation results to date.
 

The locations of laser stations used in this analysis are plotted on
 

a map in Figure 3. Our analysis included data from the retroreflector­

equipped satellites listed in Table 1. Unfortunately, the basic assumption ­
that two (or more) stations observe the same part of an orbital arc - limits
 

the number of events to be analyzed. For stations with wide geographical
 
distribution, a high satellite such as Lageos is necessary, but Lageos has
 

been in orbit only for about 1.year. While geographically close stations can
 
use lower satellites, few of the clusters of stations in western Europe and
 

western United States operated for any extended periods of time. The'data
 
available to-us for this program have accuracies as outlined in Table 1.
 

Some caveats are in order regarding the data in Table 1. First, the 
1967-1968 data (provided-by the Centre National d'Etudes Spatiales) were taken 

with first-generation laser stations. The 1- to 2-m noise should be no limit 
on the analysis. Itwas argued above that the bias, probably 1 to 2 m, should 
cancel; however, epoch timing was certainly no better than 1 msec and probably 
worse, which immediately places an accuracy limit of 5 to 10 m for each event.
 

Second, the 1974 San Diego-Quincy baseline is almost north-south, and the
 
laser data (provided by the National Aeronautics and Space Administration's
 

Goddard Space Flight Center) were taken on the BE-C satellite. With an inclina­

tion of 390 (approximately the latitude of the northern station, Quincy), BE-C's
 
tracks passed normal to the baseline, resulting in a poor overall geometry.
 
The baseline from San Diego to Mt. Hopkins was east-west, which is favorable,
 

but the data from Mt. Hopkins were only of 1- to 2-m accuracy. In 1974, the
 
laser at Mt. Hopkins operated with a low repetition rate, which limited the
 

data available. Furthermore, the 1976 Lageos data from Brazil, Peru, and
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Mt. Hopkins were of 1 to 2 m in quality. Finally, there were only eight
 

successful simultaneous passes from San Diego to Bear Lake.
 

From this mixture of data, we present detailed results from the San Diego-


Mt. Hopkins baseline. The 1974 data on BE-C were run in 7-day arcs using all
 

the available laser data, a '24th-degree-and-ordergravity field, and initial
 

coordinates derived from the analysis of laser tracking data on nine satellites.
 

The laser data, being of unequal number for each station, were edited to
 

obtain approximately a maximum of 150 points evenly distributed throughout each
 

satellite pass. We used simultaneous events inwhich any overlap in the
 

observed part of the orbit occurred; therefore, most of each observed arc was
 

not common to both stations. From the orbital residuals (rms = 5 m), each
 
station was navigated in its special coordinate system, as described above,
 

by using a least-squares estimator and assigning uncertainties of 10 cm to
 

the San Diego data and 1 m to Mt. Hopkins.
 

Twenty simultaneous events were obtained on BE-C from this 2-month period;
 
results of the individual baselines determined are given in Table 2. Some
 

long-wavelength structure (compared to the pass length) remains in the resid­

uals - i.e., the orbital motion yet to be modeled - indicating that our 
assumption about the shape of the trajectory may not be completely true.
 

However, this structure, when present, does not seem to limit the baseline
 
accuracy. Since this method was first developed, improvements in both gravity­

field models and orbital theory have noticeably reduced the a:io ;t of structure
 

in short-arc analyses. Although such structure increases the formal uncertainty
 

of a baseline determination, it does not, in the mean, change the value of the
 

averaged baseline. Therefore, as general orbit-computation capabilities im­

prove, we can expect individual baselines to be more accurately determined,
 

thereby either increasing the accuracy of the averaged baseline or reducing
 
the number of individual determinations necessary to obtain a given accuracy.
 

Each solution was iterated to delete bad observations. Using the computed
 

uncertainty as a weight, we obtained the mean of 19 events (one was deleted);
 

the results are summarizedin Table 3.
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The same analysis procedure was done on Lageos data taken in 1976. The
 

main difference here is that the Lageos satellite is in a much higher altitude
 

than BE-Cand has a significantly smaller area-to-mass ratio. Therefore, both
 

gravitational and nongravitational perturbations are smaller and the uncertain­

ties in these perturbations are smaller still. The 'overall orbital fit for
 

Lageos is considerably better, and the amount of structure in the residuals
 

is very small. The residuals for one arc of Lageos data are shown in Figure 4,
 

while the results of the 14 baselines determined on this satellite are given
 

in Table 4. In the figure, the data from both stations are on the same time
 

base, but the meter scale has been adjusted to reflect the difference in
 

noise levels. The weighted mean of these results is given in Table 5.
 

Combining the 33 San Diego-Mt. Hopkins baselines, we computed a single
 

weighted mean, shown in Table 6.
 

Finally, Table 7 presents the results of a scalar transformation analysis
 

performed from the data in Table 1.
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CONCLUSIONS
 

A. Scalar translocation can provide baseline determinations independent
 

of GM and a global scale based on the light second. The accuracy is currently
 
better than 1 m, and, aside from data accuracy, there seems to be no limita­

tion to obtaining results with an accuracy better than 10 cm. This accuracy
 

is independent of baseline length.
 

B. Both high and low satellites can be used with equal success.
 

C. Scalar translocation baselines provide another independent data
 

type that can be combined with other data to obtain a global reference system.
 

D. Continued acquisition of laser data and continued improvements in 

data accuracy and in orbit-computation capabilities will enable baseline 

determinations to be made with centimeter accuracy. 
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Table 1. Translocation data ummary. 

Data 
Year Stations Satellites Duration accuracy 

1967 France; Greece Geos 1, DIC, DID 2 months 2 m 
1968 France; Spain Geos I and 2, DIC, 2 months 2 m 

DID 
1974 Mt. Hopkins, Ariz.; BE-C 2 months 10 cm to 2 m 

San Diego, Calif.; 
Quincy, Calif. 

1976 Bermuda; Grand Turk; Geos 3, Starlette, on-going 10 cm 
GSFC, Maryland; BE-C 
Patrick AFB, Calif. 

1976 Brazil; Peru; Lageos 2 months 10 cm to 1 m 
Mt. Hopkins; GSFC 

1976 Brazil; Peru; Lageos 2 months 10 cm to 1 m 
Mt. Hopkins; 
San Diego; Quincy; 
Bear Lake, Utah 
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Table 2. Individual baselines determined from 1974 BE-C data between Mt. Hopkins and*San Diego.
 

San Diego Mt. Hopkins 
Max Max Overlap time Condition Scale Baseline 

MJD elev. Points elev. Points (min) number (ppm) (m) 

42336 450 62 420 26 6.1 3:1 x 103 -4.7 571554.547 ± 0.6544 

42336 74 54 63 27 9.5 6.2 x 102 0.7 571548.495 ± 0.8048 

42337 51 80 53 37 10.5 5.0 x 102 3.1 571552.680 ± 0.5790 

42337 86 111 75 39 12.0 4.9 x 102 0.8 571548.612 ± 0.9168 

42345 44 7 43 22 3.4 3.9 x 103 -2.1 571554.129 ± 0.6377 

42345 68 53 75 31 7.3 5.0 x 102 0.0 571552.872 ± 0.7775 

42345 .50 31 41 31 7.1 1.3 x 103 -5.1 571551.490 ± 0.6920 

42388 68 53 79 9 7.2 1.7 x 10 0.0 571561.104 ± 13.77 

42388 56 56 47 10 5.2 3.3 x 103 -2.2 571552.967 ± 10.56 

42390 46 36 63 13 3.3 2.4 x 103 1.9 571563.591 ± 1.124 

42390 71 51 58 18 6.9 9.4 x 102 1.5 571558.446 ± 3.942 

42391 38 51 52 30 10.8 7.7 x 102 1.1 571560.289 ± 2.589 

42391 81 55 70 38 11.1 2.6 x 102 2.2 571557.493 ± 3.293 

42391 47 53 42 33 9.2 5.2 x 102 -1.2 571552.937 ± 1.751 

42391 51 42 53 20 1.1 2.3 x 103 5.1 571553.692 ± 0.7093 

42392 87 49 74 41 10.2 2.5 x 102 2.2 571559.756 ± 2.276 

42392 50 63 44 26 7.7 9.6 x 102 -0.4 571554.976 ± 2.267 

42392 48 40 49 24 5.1 4.3 x 103 2'5 571552.393 ± 0.7034 

42394 60 55 50 32 10.1 3.9 x 102 -0.5 571554.632 ± 4.430 

42395 52 52 69 23 5.7 1.6 x 10 1.2 571558.548 ± 5.258 



Table 3. Results of 1974 San Diego -Mt. Hopkins baseline.
 

Baseline 571552.685 ± 0.510 m 
rms 2.16 m 

F0 2.19 
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Table 4. Individual baselines from 1976 Lageos data between Mt. Hopkins and San Diego.
 

San Diego Mt. Hopkins
 
Max Max Overlap time Condition Scale Baseline
 

MJD elev. Points elev. Points (min) number (ppm) (N)
 

43077 630 49 570 69 17.2 2.0 x 103 -1.0 571552.612 ± 1.392 

43080 61 77 66 51 34.6 2.3 x 103 -1.3 571556.037 ± 1.123 

43081 70 76 80 65 41.8 6.5 x 102 -1.6 571556.198 ± 0.4878 
43082 48 81 47 68 11.8 9.2 x 103 -1.6 571555.416 ± 1.745 

43086 79 182 89 142 34.6 9.5 X 102 -1.5 571556.111 ± 0.3166 
43087 31 23 61 119 3.7 3.7 x 103 -0.5 571552.249 ± 1.659 

43090 56 168 49 55 29.3 3.6 x 103 -0.1 571549.287 ± 0.5390 
43092 25 174 25 11 8.1 8.3 x 104 0.8 571554.450 ± 2.202 

43098 52 25 47 66 1.6 2.2 x 104 -0.6 571554.349 ± 2.296 

43101 42 173 46 136 31.6 1.1 x.103 -0.1 571554.365 ± 0.3272 
43104 37 184 40 58 11.0 2.7 x 104 -0.1 571553.893 ± 0.9981 
43106 49 166 54 68 22.4 2.7 x 103 -0.6 571554.150 ± 0.4635 

43106 42 102 47 78 7.3 4.4 x 104 0.1 571549.649 ± 1.240 
43107 74 155 78 91 32.8 1.7 x 103 -1.4 571555.108 ± 0.5900 



Table 5. Results of 1976 San Diego - Mt. Hopkins baseline.
 

Baseline 571554.582 ± 1.14 m 

rms 2.05 m 

o0 3.40 
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Table 6. Combined results for San Diego - Mt. Hopkins baseline.
 

Baseline 571553.947 ± 0.401 m 

rms 2.27 m 

a0 3.01 
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Table 7. Baseline determinations.
 

Station pair Location Distance (m) rms 
Number of 

(m) observations 

7061 ­ 7921 San Diego - Mt. Hopkins 571553.947 ± 0.401 2.271 33 
7907 ­ 7921 Peru - Mt. Hopkins 6471755.860 ± 0.808 3.790 23 
7907 - 7929 Peru - Brazil 4055910.289 ± 0.833 3.228 16 
7061 ­ 7080 San Diego - Quincy 896271.494 ± 0.993 4.439 21 
7063 ­ 7921 GSFC - Mt. Hopkins 3147781.344 ± 0.619 2.052 12 
7921 - 7082 Mt. Hopkins - Bear Lake 1137306.990 ± 0.758 2.004 8 
7061 - 7082 San Diego - Bear Lake 1140020.309 ± 0.711 2.012 9 
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FIGURE CAPTIONS
 

Figure 1. Illustration of the effect of an error in GM.
 

Figure 2. Coordinate system used in the translocation analysis.
 

Figure 3. Illustration of the network of baselines obtained from the method
 

of translocation.
 

Figure 4. Plot of range residuals versus time for Lageos after adjustment
 

by the translocation method. The baseline is between San Diego and
 

Mt. Hopkins.
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