## RESEARCH IN SUPPORT OF THE EODAP VALIDATION PROGRAM

AND

## SOLID EARTH GEOPHYSICS

Grant NSG 5148

Final Report
1 December 1976 to 30 September 1977

```
(NASA-CR-157422) RESEARCH IN SUPPOZ' OF THE
N78-32521
EODAP पू,-D:'ICN:PROGRAM AND SOLID EMETH
GEOPHYSICS Final Report, 1 Dec. 1976 - 30
Sept. 1977 {Smithsonian Astrophysical Eaclas
Observatory) 79 p HC A05/MF AD1 'CSCL O8B G3/43 31557
nipa investigator
Dr. E. M. Gaposchkin

Prepared for
National Aeronautics and Space Administration Greenbelt, Maryland 20771

September 1978


> Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138
\[
\therefore \dot{r} \because
\]

> The Smithsonian Astrophysical Observatory and the Harvard College Observatory are members of the
> Center for Astrophysics

\title{
RESEARCH IN SUPPORT OF THE EODAP VALIDATION PROGRAM
}

AND
SOLID EARTH GEOPHYSICS

Grant NSG 5148

Final Report
1 December 1976 to 30 September 1977

Principal Investigator
Dr. E. M. Gaposchkin

Prepared for
National Aeronautics and Space Administration Greenbe1t, Maryland 20771

September 1978

Smithsonian Institution
Astrophysical Observatory Cambridge, Massachusetts 02138

> The Smithsonian Astrophysical Observatory and the Harvard College Observatory are members of the
> Center for Astrophysics

\section*{TABLE OF CONTENTS}Page
1 INTRODUCTION. ..... 1
2 TECHNICAL APPROACH. ..... 3
3 HISTORICAL DATA AVAILABLE ..... 5
4 ANALYSIS OF DATA. ..... 13
5 DISCUSSION ..... 39
6 REFERENCES ..... 42
APPENDIX A

\title{
RESEARCH IN SUPPORT OF THE EODAP VALIDATION PROGRAM
}

AND
SOLID EARTH GEOPHYSICS

FINAL REPORT

\section*{1. INTRODUCTION}

The Smithsonian Astrophysical Observatory (SAO) program of participation in the Earth and Ocean Dynamics Application Program (EODAP) of the National Aeronautics and Space Administration (NASA) has been directed toward many of the EODAP objectives. As one element of this participation, the analysis program reported here, has concentrated on the validation program - that is, to verify that geodetic space techniques can measure intersite distances of several hundred to several thousand kilometers and polar motion, both with a precision of about 5 cm .

The original scope of this program element was intended to be broad, examining several options for acquiring and analyzing satellite laser. data, and planning and executing an observation program and the final data analysis to obtain a geophysical measurement. This program was envisioned to be a multi-year effort, proceeding through development of an operational system to support a primary EODAP objective - viz., the definition of Earthquake Hazard Assessment Models. Because of NASA's decision to redirect EODAP program resources, and the notification that no follow-on work would be supported in this area, SAO has phased out its capability in analysis of laser data, and charged the associated termination costs to this grant. Therefore the level of effort applied to this analysis, and the results are less ambitious than originally envisioned. The effort has almost totally been devoted to analysis of laser data using a new analytical approach "Scalar Translocation." Based on a limited but diverse set of data, it was found that this approach can give
geodynamic information and that the method is promising and can be used on a variety of satellites with data of different accuracy. This rescoping of the effort was negotiated with contract monitor, Dr. David Smith (NASA, Greenbelt).

\section*{2. TECHNICAL APPROACH}
"Scalar Translocation" is a method of analyzing satellite laser range data for accurately determining interstation baselines. It uses short (less than one revolution) overlapping arcs of laser data, from two stations to determine interstation distance. This distance is relatively uncorrupted by satellite orbital errors, is independent of satellite orbit scale, and, with suitable data distribution, is independent of range bias and noise in the data. With this technique, a number of baseline determinations could be averaged to provide an optimum estimate of the baseline, or could be analyzed as a time series to measure the periodic horizontal tidal displacement (the love number l) or the secular displacement. A network of such baselines could be adjusted or combined with other types of data to obtain station coordinates.

The basic theory of "Scalar Translocation" has been given in Latimer and Gaposchkin (1977) with some results. That report is included as Appendix A, and will be used•as the basic theoretical framework for the results given here.
- The additional data analysis has taken a number of consecutive steps. As described in Latimer and Gaposchkin, a number of data sets are available from previous observing programs. Though none of these programs (1967-DIADEM, 1968-RCP133/GEOS-2, 1971-ISAGEX, 1972-EPSOC/SAFE, 1975-GEOS-3) was planned around Scalar Translocation, some data were taken in each of these programs that could be analyzed by use of this technique. Therefore, the first step was to investigate available laser data archives to obtain a list of events that could be treated. The natural second step was to process some data from these historical archives to obtain a determination of some unique baselines, which will probably not be measured again with satellite techniques. Finally, Lageos was chosen as a useful satellite for Scalar Translocation application.

Lageos was designed to facilitate computation of an accurate orbit. The satellite design and orbit configuration were chosen to minimize the errors in modeling the orbit perturbations. Lageos has a very small area-to-mass ratio, which reduces in size the total perturbation due to non-gravitational forces. The error in representing these forces, either due to lack of knowledge of physical properties of the satellite, the total radiation (direct solar plus albedo), and the atmospheric density, or due to limitations in modeling these forces will be similarly reduced. Lageos also has a high altitude, which reduces the size of orbit perturbations owing to errors and omissions in the gravity field model employed. The high altitude also permits simultaneous or overlapping observations from stations separated by continental distances.

From this variety of data we can then compare and contrast sateliites and results, draw some conclusions about analysis of laser tracking data in the Scalar Translocation mode as well as other methods of analysis, and make some recommendations about the usefulness of this approach in the context of the original objective: "development of an operational system to measure and monitor crustal displacement and deformation to support a primary EODAP objective - e.g., the definition of Earthquake Hazard Assessment Models."

\section*{3. HISTORICAL DATA}

The first laser observations were taken in 1964. Laser tracking systems operated routinely in an organized program for the first time in 1967. At that time, the main objective in making these observations was to obtain a global geocentric datum. However, at that time the relatively poor distribution of laser stations was viewed as a problem, as these stations were located in continental Europe. In fact, for the purposes of Scalar Translocation, this station distribution is quite good. During 1968, two stations again-operated in Europe, which was quite good for Scalar Translocation. During 1969 and 1970 there was no major tracking effort. This was a period where programs were being consolidated, and tracking stations were improved, procured, and deployed in support of the final phase of the National Geodetic Satellite Program (NGSP). During 1971, a tracking campaign was initiated that had a more global coverage of laser stations, with the consequence that fewer opportunities existed to obtain "Scalar Translocation" data. With the exception of brief periods during SAFE, 1972 and 1974, little "Scalar Translocation \({ }^{1}\) data were obtained. In 1975, data taken in the calibration area for the GEOS-3 satellite provided many suitable events. The 1976 SAFE data added to the data base. Also, the launch of Lageos in 1976 provided data over longer baselines because of its significantly greater altitude. Therefore, some laser stations, previously treated as separate sites, began to make simultaneous observations.

During the decade from 1967. to 1977, substantial improvements were made in laser technology and in our understanding of the error sources in laser data. The early data achieved. 2- to 5-m accuracy with 1 millisecond epoch timing whereas recent data provide a range accuracy of 10 cm and an epoch accuracy of \(1 \mu \mathrm{sec}\).

During this decade more care has been taken in the design of retroreflector arrays mounted on satellites. By careful analysis, the effective reflecting point from the satellite center of mass can be calculated.

With successive satellites, this correction can be made with increasing accuracy; the early satellite 6508901 had an accuracy of 0.10 m and the latest, 7603901 (Lageos), an accuracy of 0.003 m (Arnold, 1972, 1974, 1975a,b 1978). The satellites with laser tracking data are listed in Table 1. The magnetically stabilized satellites can only be observed in the northern hemisphere. The relative signal strength is given.

Signal strength is directly related to accuracy. With multiple photoelectron events improved accuracy is obtained by using pulse processing of some kind to refer the light travel time to the centroid of the pulse rather than to the leading edge (Pearlman et al., 1975).

Many first- and second-generation laser systems (see Weiffenbach and Hamal, 1975) use visual acquisition to point the laser. Therefore a visual magnitude brighter than 10th magnitude is necessary. Faint satellites such as Starlette and Lageos cannot be observed by some systems, even today. The node rate prescribes how rapidly the satellite geometry changes. Satellite orbit geometry of course affects visibility-for visual acquisition. More important however is the orientation of the satellite pass to the station-to-station baseline. As we shall see, the optimum geometry is obtained when the baseline is parallel to and lies in the orbital plane. Therefore, for planning an observing program, the change in orbit geometry must be a factor. The area-to-mass ratio controls the amount of nongravitational acceleration experienced by the satellite, which is important for making predictions for the observation program and reducing the orbit error during data reduction.

The Scalar Translocation events available are indicated in Table 2. The station numbers are identified in Table 3, where the nominal geocentric coordinates are given. These geocentric coordinates are a homogenized set, and are obtained in the following way.

Table 1. Geodetic satellites equipped with laser cube corner reflectors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sat & te ation & bilizatio & \[
\stackrel{a}{(\mathrm{~mm})}
\] & e & \(I^{\circ}\) & & C.M. eduction ccuracy & \begin{tabular}{l}
Relative \\
Signal Strength
\end{tabular} & Visual Magnitude & Perrigee Ra
\[
(\stackrel{\dot{\mathrm{w}}}{\mathrm{/}} \mathrm{day})
\] & \[
\stackrel{\dot{\Omega}}{(\% \text { day })}
\] & \[
\begin{gathered}
\mathrm{A} / \mathrm{M} \\
\mathrm{~cm} \\
\hline
\end{gathered}
\] \\
\hline 6406401 & BE-B & Magnetic & 7.360 & 0.012 & 80 & 912 & 5. & \(2-4 \times 10^{4}\) & 7-9 & -2.537 & -1.081 & 0.10 \\
\hline 6503201 & BE-C & Magnetic & 7.503 & 0.026 & 41 & 941 & 5. & \(1-3 \times 10^{4}\) & 7-11 & 5.176 & -4.256 & 0.10 \\
\hline 6508901 & GEOS-1 & Gravity & 8.074 & 0.073 & 59 & 1121 & 10. & \(0.2-2 \times 10^{4}\) & 7-10 & 0.655 & -2.247 & 0.10 \\
\hline 6701101 & D1-C & Gravity & 7.319 & 0.052 & 40 & 579 & 10. & \(0.4-10 \times 10^{4}\) & 9-10 & 5.989 & -4.744 & 0.30 \\
\hline 6701401 & D1-D & Gravity & 7.603 & 0.053 & 39 & 569 & 10. & \(0.1-10 \times 10^{4}\) & 10-11 & 5.415 & -4.244 & 0.30 \\
\hline 6800201 & GEOS-2 & Gravity & 7.708 & 0.031 & 105 & 1101 & 10. & \(0.2-2 \times 10^{4}\) & 7-10 & -1.619 & 1.402 & 0.06 \\
\hline 7010901 & PEOLE & Gravity & 6.983 & 0.017 & 15 & 635 & 10. & \(3-9 \times 10^{4}\) & 5-6 & 13.345 & -7.033 & 0.20 \\
\hline 7501001 & Starlette & Sphere & 7.335 & 0.021 & 50 & 805 & 0.5 & \(3-7 \times 10^{3}\) & 11 & 3.306 & -3.946 & 0.0096 \\
\hline 7502701 & GEOS-3 & Gravity & 7.222 & 0.0005 & 115 & 840 & 2.0 & \(10^{5}\) & 7-8 & -. 347 & 2.727 & 0.04 \\
\hline 7603901 & LAGEOS & Sphere & 12.270 & 0.0044 & 109 & 5888 & 0.3 & 20 & 12-13 & -. 213 & 0.343 & 0.006897 \\
\hline
\end{tabular}

Table 2. Scalar Translocation events.


Table 3. SAO station coordinates used (geocentric.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline STA & X(:11) & \(Y(i)\) & 2 (19ti) & LOCATIOI. & \\
\hline 7061 & - -2.4288306 & -4.7997531 & 3.4172747 & SAiv Ditgu, CALIFORNIA & IASA \\
\hline 7063 & 1.1307118 & -4.8313719 & 3.9940900 & GOUDARD SPACF FLIGHT CFNTER. MARYLAND & SA \\
\hline 7067 & & & & EERHUDA ISLAPID & A \\
\hline 7068 & & & & GRAPD TURK ISLANO & NASA \\
\hline 7069 & & & & PATRICK AFB. FLORIDA & NASA \\
\hline 7080 & -7.5148977 & -4.1988464 & 4.0764145 & QUIHCY, CALIFORTiIA & NASA \\
\hline 7082 & -1.7360010 & -4.4250506 & 4.241 .4331 & bear lake, UTAH. & NASA \\
\hline 7804 & & & & SA! F Ferliando. SPAIN & CNES \\
\hline 7615 & 4.5783681 & . 4579858 & 4.4031510 & Ht. Province. france & CNES \\
\hline 7816 & 4.6543431 & 1.9592004 & 3.8843797 & STEPHAMIE, GRFECF & CNES \\
\hline 7907 & 1.9477877 & -5.8040801 & -1.7969196 & AREQUIPA, BRAZIL & SAO \\
\hline 7921 & -1.9367636 & -5.0777058 & 3.331922 .6 & MT. HOPKINS, ARIZONA & SAO \\
\hline 7929 & 5.1864655 & -3.6538602 & -0.6543273 & NATAL. BRAzIL & SAO \\
\hline
\end{tabular}

A recent set of coordinates for seven stations derived at Goddard Space Flight Center (GSFC) based on Lageos tracking data was adopted. The set of coordinates given by Learch et al. (1977) for 146 stations was then related to this fundamental set by using the five stations common to both sets and computing the transformation parameters, in the sense,
\[
\overline{Y_{H}}\left(\Delta x, \Delta y, \Delta z, \varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, S\right) \bar{X}_{\text {GEM10 }}=\bar{X}_{\text {Lageos }},
\]
where \(T\) is the linear transformation matrix. The remaining coordinates are taken from Gaposchkin (1974). These were related to the fundamental LAGEOS system by taking the 23 stations common to the GSFC homogenized system, computing transformation parameters in the sense,
\[
T\left(\Delta x, \Delta y, \Delta z, \varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, S\right) \bar{X}_{S A 0}=\bar{X}_{\text {Lageos }}
\]

Coordinates for a station are given in Table 3 if that station has a simultaneous event with another station used in this analysis. Not all combinations of these stations have suitable simultaneous events. Table 4 gives the transformation parameters.

Table 4. Transformation parameters.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \Delta x \\
& (\mathrm{~m})
\end{aligned}
\] & \[
\begin{aligned}
& \Delta y \\
& (\mathrm{~m})
\end{aligned}
\] & \[
\begin{gathered}
\Delta \mathrm{Z} \\
(\mathrm{~m})
\end{gathered}
\] & \[
\begin{aligned}
& \varepsilon_{x} \\
& (\operatorname{arcsec})
\end{aligned}
\] & \[
\begin{aligned}
& \varepsilon^{\varepsilon} y^{\text {arc sec) }}
\end{aligned}
\] & \[
{ }^{\varepsilon_{\text {zarc }} \text { ) }}
\] & \[
\begin{aligned}
& \text { S } \\
& \text { (ppm) }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{Coordinate Systems} \\
\hline GEM10-Lageos & -1.80 & -2.16 & -2.00 & 0.1799 & -0.0024 & 10.2475 & 0.016 \\
\hline SAO-GEM10 & - . 08 & -. 36 & +9.69 & -0.0328 & -0.0823 & 0.7200 & 0.257 \\
\hline SAO-Lageos & -1.88 & -2.52 & 7.69 & 0.1471 & -0.0897 & 0.9675 & 0.2730 \\
\hline
\end{tabular}

Finally, in Table 5, the number of individual events for each pair of station baselines, for each satellite, for each year is given. For 1976, statistics for 7603901 (Lageos) only have been assembled. However, some passes may not be useful because of bad data or poor pass geometry.

Table 5. Possible overlapping events.


\section*{4. ANALYSIS OF DATA}

Since no set of observations has been taken specifically for translocation, subsets of the available data (Table 5) were selected to establish some properties of the method: First, 'we set out to study how well baselines can be determined with data that are poor in quality but have good pass geometry. Second, we will look at the effect of orbit height on the results and compare results derived from a low satellite (6503201) with those from a high satellite (7603901).

A very rich period of data with an accuracy of 1 to 2 m was obtained during the Diadem experiment in 1967. The available satellites were low in altitude but the baseline distances were small, and within several months, a considerable number of overlapping events suitable for Scalar Translocation analysis were obtained (Table 5). We claim that baseline determination using Scalar Translocation is independent of observation range noise and bias provided the data have suitable distribution. From the data in 1967, we can test this claim. Of course the baseline determination will depend critically on the epoch timing. During 1967, epoch timing was known only with an accuracy of 1 msec . To minimize this uncertainty on the result, a data set from two satellites within a limited time interval of 60 days was selected. We assume that over such a short time clock drift was small and that whatever the constant error is, it will be the same for all the results. Since we are going to compare only the internal consistency of solutions, such errors will not be a factor.

From the available data, two satellites provided data with reasonable geometry in that time interval (6503201, 6508901). Two orbital arcs were computed for each satellite. The volume of data from the two stations (7815, 7816) including nonoverlapping passes was sufficiently large to determine a satisfactory orbit from those data alone.

The results from 33 events are listed in Table 6 . To understand the results we give plots of range residuals after the fitting. Figure la gives the residuals for an event with good solution. In Figure 1b detailed computer printout for this event is shown. An event is considered good when the condition number of the variance-covariance matrix is small, the formal standard error is small, the arcs overlap, and the data from each station are symmetrical about the point of closest approach (PCA). From Appendix A, we hold that a small condition number results with strong geometry, i.e., the satellite path is parallel to the baseline. Further, the idea of translocation provides that the orbit error, common to both arcs, cancels out. Then, the larger the part of both arcs that is common to each, the smaller the effect of orbit error. Finally, the most efficient averaging of system bias, orbit scale error, and noise occurs when each pass is symmetrical about the PCA. The plots, such as Figure \(1 a\), obtained from each pass are used as a diagnostic tool to choose passes. that are favorable for Scalar Translocation. The time base on these plots is the same for both stations; poor pass geometry and noisy data can be quickly identified.

The baseline distance determined from each satellite is given in Table 7 with the combined result.

Table 7. Translocation results for 7815-7816 baseline.
\begin{tabular}{llll}
\hline Satellite & \begin{tabular}{c} 
7815-7816 \\
Baseline \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c}
\(\sigma\) \\
\((\mathrm{m})\)
\end{tabular} & n \\
\hline 6503201 & 1590135.908 & \(\pm 0.599\) & 10 \\
6508901 & 1590138.399 & \(\pm .608\) & 22 \\
combined & 1590137.050 & \(\pm 0.479\) & 32 \\
EU 50 datum & 1590129.96 & \(\pm 3.18\) & \\
EU 50 scaled & 1590132.81 & \(\pm 3.31\) & \\
\hline
\end{tabular}
BOLUTICH SUMMARY FOR STATION PAIR \(7815 \quad 7816\)

FIX ELEMENTS 360000
\begin{tabular}{llllll} 
COVARIAFLE MATRIX IU1 SPFCIAL COORDINATE & SYSTEM & \\
\(2.75887 E-01\) & \(-2.70049 \mathrm{~F}-03\) & \(-5.67552 \mathrm{E}-02\) & \(-8.95704 \mathrm{E}-02\) & \(-5.91505 \mathrm{E}-01\) \\
\(-2.7004 \mathrm{GF}-03\) & \(9.99657 \mathrm{E}-01\) & \(3.82672 \mathrm{E}-01\) & \(6.03928 \mathrm{E}-01\) & \(3.98823 \mathrm{E}+00\) \\
\(-5.67552 \mathrm{E}-02\) & \(3.826 .72 \mathrm{~F}-01\) & \(1.13988 \mathrm{E}+00\) & \(7.77154 \mathrm{E}-02\) & \(1.80219 \mathrm{E}+00\) \\
\(-8.95704 \mathrm{E}-02\) & \(6.03928 \mathrm{E}-01\) & \(7.77154 \mathrm{E}-02\) & \(5.40976 \mathrm{E}-01\) & \(2.84419 \mathrm{E}+00\) \\
\(-5.91505 \mathrm{E}-01\) & \(3.98823 \mathrm{E}+00\) & \(1.80219 \mathrm{E}+00\) & \(2.84419 \mathrm{E}+00\) & \(1.87825 \mathrm{E}+01\)
\end{tabular}

ERROR CODE IS O
```

EIGENVALUES
6.49417E-02 7.01033E-02 3.35959E-01 1.00563E+00 2.02623E+01
CONDITION NUMBER 3.120E+O2

```

\section*{EIGENVECTORS}
2.44451E~01 4.79575F-01-8.42250E-01-7.34011E-05 -2.94382E-02 -3.78637E-01 -7.28719E-01 -5.32018E-01 1.49438E-02 2.05755E-01 \begin{tabular}{lllll}
\(-1.83738 F-01\) & 1.01568 Em & 01 & \(1.25189 \mathrm{E}-03\) & \(-9.73037 \mathrm{E}-01\) \\
\hline
\end{tabular} \(-8.41647 \mathrm{E}-01\) 4.69773E-01 1.81022E-02 2.22281E-01 1.45627E-01 \(2.33985 \mathrm{E}-01\) 8.92883F-02 8.51039 Em -02 \(5.97260 \mathrm{E}-02\) 9.62533E-01
rORMAL SIGMA OF BASELINE \(=1.237\) METERS
```

SWUARE ROOTS OF DIAGONAL ELEMENTS
5.252E-01
9.998E-0
1.068E+00
7.355E-01
4.334E+00
CORRELATION MATRIX IN SPECIAL COORDINATE SYSTEM
1.0000E+00 -5.1422E-03 -1.0121E-01 -2.3185E-01 -2.5985E-01
-5.1422F-03 1.0000E+00 3.5848E-01 8.2124E-01 9.2040E-01
-1.0121E-01 3.584BE-01 1.0000E+00 9.8966Em02 3.8949E-01
-2.3185E-01 8.2124E-01 9.8966E-02 1.0000E+00 8.9226E-01
=2.3185E-01 %.2124E-01
SOLUTION VECTOR IN GECCENTRIC SYSTEM
1.1610E-06 -2.1407E-06 1.8469E-06 -1.0051E-06 -1.1145E-05 3.7660E-06 6.6446E-06
INITIAL BASELINE 1.590145146
PRELIMINARY NEW 1.590135915
SCALE IN METERS . .000001057
FINAL BASELINE 1.590136972
FINAL-INITIAL -.000008174

```

Figure 1 a .


Figure 1b. Plot of range residuals versus time for Geos \(A\) after adjustment by the translocation method. The baseline is between 7815 and 7816 (units: meters and days).

Table 6. SAO Scalar Translocation Program.
THERE WERE 33 EVEITS
\begin{tabular}{lllllllll} 
SOLUTION WEIGHTEO IS & 1590137.050 & +- & .479 & METERS WITH & 32 & OBSERVATIONS, SIGMA ZERO IS 2.665 \\
SOLUTION UNWEIGHTED IS & 1590137.994 & \(+\infty\) & .741 & METERS WITH & 33 & OBSERVATIONS, RMS IS 4.192 & \(M E T E R S\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7815 & 7816 & 6503201 & 39654.088410 & 1.388 & 14 & 1.279 & 92 & 1590140.949 & 4.156 & 3.899 & 2.955 \\
\hline 7815 & 7816 & 6503201 & 39654.977890 & 1.416 & 170 & 1.843 & 112 & 1590134.495 & 4.156
.365 & -2.555 & -3.499 \\
\hline 7815 & 7816 & 6503201 & 39655.057250 & 1.391 & 115 & 1.712 & 101 & 1590135.846 & . 415 & -1.204 & -2.148 \\
\hline 7815 & 7816 & 6503201 & 39655.871980 & 1.467 & 101 & 1.515 & 88 & 1590133.651 & . 743 & -3.399 & -4.343 \\
\hline 7815 & 7816 & 6503201 & 34655.951130 & 1.758 & 110 & 1.432 & 99 & 1590135.317 & . 516 & -1.733 & -2.677 \\
\hline 7815 & 7816 & 6503201 & 39657.001130 & 1.308 & 147 & 1.516 & 132 & 1590137.441 & . 288 & . 391 & -. 5.53 \\
\hline 7815 & 7816. & 6503201 & 39657.079930 & 1.606 & 48 & 1.504 & 93 & 1590137.529 & . 661 & . 479 & -. 465 \\
\hline 7815 & 7816 & 6503201 & 39659.917790 & 1.493 & 95 & 1.293 & 111 & 1590134.917 & . 574 & -2.133 & -3.077 \\
\hline 7815 & 7816 & 6503201 & 39648.020440 & 1.298 & 23 & 1.266 & 71 & 1590136.798 & 1.247 & -. 252 & -1.196 \\
\hline 7815 & 7816 & 6503201 & 39651.013590 & 1.331 & 68 & 1.659 & 121 & 1590130.331 & . 684. & -6.719 X & -7.663 \\
\hline 7815 & 7816 & 6503201 & 39652.062840 & 1.341 & 172 & 1.207 & 129 & 1590135.966 & . 257 & -1.084 & -2.028 \\
\hline 7815 & 7816 & 6508901 & 39650.984993 & 1.412 & 103 & 2.037 & 169 & 1590146.852 & 2.117 & 9.802 & 8.858 \\
\hline 7815 & 7816 & 6508901 & 39651.988131 & 1.396 & 78 & 1.588 & 143 & 1590147.324 & 1.769 & 10.274 & 9.330 \\
\hline 7815 & 7816 & 6508901 & 39653.992650 & 1.762 & 178 & 1.589 & 27 & 1590149.131 & 2.318 & 12.081 & 11.137 \\
\hline 7815 & 7816 & 6508901 & 39654.995805 & 1.676 & 173 & -1.669 & 12 & 1590133.268 & 3.587 & -3.7.82 & -4.726 \\
\hline 7815 & 7816 & 6508901 & 39656.913946 & 1.709 & 70 & 1.953 & 242 & 1590138.780 & 3.531 & 1.730 & . 786 \\
\hline 7815 & 7816 & 6508901 & 39659.925723 & 1.418 & 144 & 1.707 & 49 & 1590132.390 & 1.561 & -4.660 & -5.604 \\
\hline 7815 & 7816 & 6508901 & 39661.932321 & 1.149 & 202 & 1.387 & 13 & 1590131.750 & 1.492 & -5.300 & -6.244 \\
\hline 7815 & 7816 & 6508901 & 39662.846453 & 1.572 & 14 & 2.130 & 146 & 1590142.898 & 12.536 & 5.848 & 4.904 \\
\hline 7815 & 7816 & 6508901 & 39664.853716 & 1:537 & 132 & 1.778 & 92 & 1590135.753 & 2.337 & -1.207 & -2.241 \\
\hline 7815 & 7816 & 6508901 & 39679.074689 & 1.249 & 134 & 1.118 & 42 & 1590139.753 & 1.107 & 2.703 & 1.759 \\
\hline 7815 & 7816 & 6508901 & 39679.991060 & 1.341 & 59 & 1.300 & 34 & 1590137.133 & . .987 & . 083 & -.861 \\
\hline 7815 & 7816 & 6508901 & 39680.993850 & 1.422 & 57 & 1.483 & 86 & 1590138.609 & . 794 & 1.559 & . 615 \\
\hline 7815 & 7816 & 6508901 & 39681.998045 & 1.351 & 36 & 1.357 & . 126 & 1590136.752 & . 691 & -. 298 & -1.242 \\
\hline 7815 & 7816 & 6508901 & 39684.003504 & 1.246 & 44 & 1.631 & 10 & 1590139.715 & 1.028 & 2.665 & 1.721 \\
\hline 7815 & 7816 & 6508901 & 39685.007384 & 1.272 & 34 & 1.279 & 109 & 1590138.052 & . 617 & 1.002 & . 058 \\
\hline 7815 & 7816 & 6508901 & 39685.923389 & 1.161 & 24 & 2.210 & 36 & 1590141.673 & 3.249 & 4.623 & 3.679 \\
\hline 7815 & 7816 & 6508901 & 39686.009627 & 1.469 & 56 & 1.914 & 48 & 1590136.972 & 1.237 & -. 078 & -1.022 \\
\hline 7815 & 7816 & 6508901 & 39687.011787 & 1.170 & 108 & 1.894 & 24 & 1590136.602 & 1.569 & -. 448 & -1.392 \\
\hline 7815 & 7816 & 6508901 & 39687.929561 & 1.037 & 25 & 2.164 & 68 & 1590140.610 & 1.505 & 3.560 & 2.616 \\
\hline 7815 & 7816 & 6508901 & 39688.932317 & . 998 & 28 & 1.233 & 98 & 1590139.105 & 1.176 & 2.055 & 1.111 \\
\hline 7815 & 7816 & 6508901 & 39689.936948 & 1.048 & 18 & 2.371 & 99 & 1590140.673 & 2.166 & 3.623 & 2.679 \\
\hline 7815 & 7816 & 6508901 & 39696.869593- & 1.200 & 56 & 1.282 & 169 & 1590136.766 & . .450 & -. 284 & -1.228 \\
\hline
\end{tabular}

NO OVERLAP
\(\qquad\)
no overlap
no overlap

This result can also be compared with the datum coordinates of these stations. The Europe 50 coordinates for these two stations are taken from Gaposchkin (1973). The Europe 50 datum is assumed to have an uncertainty of 2 m . To compare the datum coordinates to a global set, the datum coordinates must be scaled. The scale difference (Gaposchkin, 1974) is \(2.6 \pm 0.92 \mathrm{~m}\), with the datum scale smaller than that of the satellite. However, the latter was derived from satellite data using a method of analysis that obtained scale from the value of the velocity of light \(c\) and the value of GM. The values used in Gaposchkin (1974) were
\[
\begin{aligned}
\mathrm{GM} & =3.986013 \times 10^{20} \mathrm{~cm}^{3} / \mathrm{sec}^{2} \\
\mathrm{C} & =2.997925 \times 10^{10} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
\]

The best present values for these constants are
\[
\begin{aligned}
\mathrm{GM} & =3.986005 \times 10^{20} \mathrm{~cm}^{3} / \mathrm{sec}^{2} \\
\mathrm{C} & =2.99792458 \times 10^{10} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
\]

Thus, we correct the satellite scale by
\[
\frac{1}{3} \frac{\delta G M}{G M}+\frac{\delta C}{C}=-0.809 \mathrm{ppm}
\]
and derive a correction to the Europe 50 datum baseline of \(1.79 \pm 0.92 \mathrm{ppm}\).

Clearly the Europe 50 datum coordinates are the weakest link in this comparison. Nevertheless, the internal consistancy of the baseline solutions from both satellites and the overall agreement to nearly a 1-sigma level with the datum coordinates are satisfactory. Analysis of all the data would further improve the baseline determination.

At this point we can summarize the results.
1) Scalar Translocation works with low-accuracy data: The effects of bias and noise are minimized by the method.
2) The results of Scalar Translocation used on satellites with different orbital characteristics (inclination and eccentricity) are compatibTe.
3) With suitable observing schedules, the necessary data for submeter baseline determination can be obtained within 60 days or less.
4) Passes with bad geometry (i.e., with the orbit motion perpendicular to the baseline vector) cannot be fit in the translocation mode with reasonable results. Those cases are generally rejected by the linear regression program that determines the final baseline.
5) Translocation computations are excellent for data screening. The orbit fit and station navigation leave residuals that can easily be examined for gross errors on a point by point basis. For example, during reduction of the data, several passes were observed to have multiple returns - i.e., two different but internally consistent sets of residuals. By chosing that set of residuals that best agreed with the a priori baseline distance, the bad data were easily eliminated.

During 1974, laser data were taken in the western United States as part of the San Andreas Fault Experiment (SAFE). The three stations 7061, 7080, and 7921 all participated. Two stations, 7061 and 7080, had data accuracy approaching 10 cm and station 7921 had an accuracy of about 1 m . The station locations are shown in Figure 2. The data taken in SAFE were not optimized for translocation. Most of the data was obtained on satellite 6503201, which has an inclination of \(I=39^{\circ}\). Since this inclination is comparable to the latitude of these stations, the observations were made with the satellite at its maximum latitude and, therefore, as it passed from west to east. • Such geometry is very strong for line 7061-7921, which is roughly west to east. However, the north-south baseline (7061-7080) is normal to the satellite motion and we would not expect such a strong geometry and, hence, a

\section*{original page is OF POOR QUALITY}


Figure 2. Locations of stations observing during 1976.
weaker solution. Fewer observations on other satellites exist for these lines, but they are also analyzed. So, for the strongly determined baseline (7061-7921), the data from one station (7921) are not so accurate, whereas, where we have accurate data from both stations (7061-7080) the geometry is not strong. Both considerations will be a factor for any method of analysis, not only for Scalar Translocation.

For the 1974 data, 47 events were analyzed. The list of individual baseline determinations and the solutions are given in Tables 8 and 9. Figure' 3 is a plot of the post-fit residuals for station pair 7061-7921 and Figure 4 is for station 7061-7080. We summarized the results in Table 10 for the 1974 data.

Table 8. SAO Scalar Translocation Program.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SOLUTION WEIGHTEC IS & 896273.938 & +- 1.050 & METERS WITH & 17 & OBSERVATIONS, & SIGma & ERO 15 & 4.199 \\
\hline SOLUTION UNWEIGHTED IS & 896273.009 & . 791 & Meters With & 21 & OBSERVATIONS, & RMS I & 3.537 & METERS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7061 & 7080 & 6503201 & 42316.717630 & . 500 & 140 & 3.663 & 56 & 896267.902 & 1.734 & -6.036 & -5.107 \\
\hline 7061 & 7080 & 6503201 & 42320.604277 & . 446 & 88 & 2.375 & 46 & 896272.176 & . .971 & -1.762 & -5.107
-.833 \\
\hline 7061 & 7080 & 6503201 & 42320.683730 & .178 & 125 & . 721 & 80 & 896266.975 & . 409 & -6.963 X & -6.034 \\
\hline 7061 & 7080 & 6503201 & 42.321 .655223 & .281 & 60 & . 265 & 129 & 896268.410 & . 182 & -5.528 & -4.599 \\
\hline 7061 & 7080 & 6503201 & 42331.575790 & -. 126 & 53 & . 457 & 53 & 896272.376 & . 252 & -1.562 & -4.633 \\
\hline 7061 & 7080 & 6503201 & 42332.417430 & . 533 & 56 & . 673 & 61 & 896268.736 & . 476 & -5.202 & -4.273 \\
\hline 7061 & 708 C & 6503201 & \(42,331.367894\) & . 507 & 102 & . 191 & 64 & 896267.395 & 1.016 & -6.543 & -5.614 \\
\hline 7061 & 7080 & 6503201 & 42331.526241 & . 183 & 129 & . 306 & 103 & 896270.342 & . 080 & -3.596X & -2.667 \\
\hline 7061 & 7080 & 6503201 & 42332.337190 & .557 & 136 & . 685 & 91 & 896275.032 & . 613 & 1.094 & 2.023 \\
\hline 7061 & 7080 & 6503201 & 42336.383174 & . 470 & 113 & - 558 & 157 & 896271.348 & . 344 & -2.590 & -1.661 \\
\hline 7061 & 7080 & 6503201 & 42336.465600
42337.354750 & . 239 & 55
81 & .128
.179 & 12
. & 896277.726
896278.087 & .344
.942 & 3.788 & -1.8617 \\
\hline 7061
7061 & 7080
7080 & 6503201
6508901 & 42337.354750
42331.248680 & .297
.385 & 81 & .179
.101 & 32
53 & 896278.087
896277.035 & .167 & 4.149 X & 5.078 \\
\hline 7061 & 7080 & 6508901 & 42321.395480 & . 294 & 28 & . 103 & 18 & 896277.035
896273.728 & .461
1.538 & 3.097
-210 & 4.026
.719 \\
\hline 7061 & 7080 & 6508901 & 42331.248680 & . 385 & 48 & . 101 & 53 & 896278.503 & 1.538
.463 & 4.210 & .719
5.494 \\
\hline 7061 & 7080 & 6800201 & 42295.472020 & . 116 & 69 & - 157 & 12 & 896275.475 & . 134 & 1.537 & 2.466 \\
\hline 7061 & 7080 & 7603901 & 43077.462761 & . 126 & 203 & -164 & 29 & 896274.741 & . 469 & . .803 & 1.732 \\
\hline 7061 & 7080 & 7603901 & 43085.181262 & . 115 & 79 & . 297 & 42 & 896275.395 & 5.513 & 1.457 & 2.386 \\
\hline 7061 & 7080 & 7603901 & 43088.256250 & . 154 & 566 & . 168 & 20 & 896274.991 & . 712 & 1.053 & 1.982 \\
\hline 7061 & 7080 & 7603901 & 43102.091448 & .170 & 458 & .197 & 12 & 896273.058 & 1.557 & -. 880 & . 049 \\
\hline 7061 & 7080 & 7603901 & 43104.124900 & . 102 & 135 & . 159 & 51 & 896273.762 & . 877 & -. 176 & . 753 \\
\hline
\end{tabular}

Table 9. SAO Scalar Translocation Program.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7061 & 7921 & 6503201 & 42336.305186 & . 130 & 52 & 2.331 & 26 & 571554.445 & . 653 & 1.138 & . 950 \\
\hline 7061 & 7921 & 6503201 & 42336.455255 & . 569 & 137 & 1.442 & 27 & 571552.873 & 1.898 & -. 434 & -.622 \\
\hline 7061 & 7921 & 6503201 & 42337.354750 & . 230 & 80 & 1.019 & 37 & 571552.679 & . 579 & -.628 & -.816 \\
\hline 7061 & 7921 & 6503201 & 42337.433690 & . 411 & 121 & 1.171 & 39 & 571548.829 & . 916 & -4.478 & -4.666 \\
\hline 7061 & 7921 & 6503201 & 47345.205300 & . 112 & 7 & 1.459 & 22 & 571554.128 & . 638 & . 821 & . 633 \\
\hline 7061 & 7921 & 6503201 & 42345.284910 & . 265 & 53 & 1.396 & 31 & 571552.857 & . 777 & ..450 & -.638 \\
\hline 7061 & 7921 & 6503201 & 42345.365000 & . 171 & 32 & 1.353 & 30 & 571551.490 & . 692 & -1.817 & -2.005 \\
\hline - 7061 & 7921 & 6503201 & 42388.499283 & . 414 & 133 & . 766 & 10 & 571553.916 & 3.339 & . 609 & . 421 \\
\hline 7061 & 7921 & 6503201 & 42388.365255 & . 144 & 69 & 2.155 & 13 & 571547.869 & 1.078 & -5.438. & -5.626 \\
\hline 7061 & 7921 & 6503201 & 42390.442084 & . 783 & 80 & 2.162 & 18 & 571548.483 & 3.720 & -4.824 & -5.012 \\
\hline 7061 & 7921 & 6503201 & 42391.334910 & . 643 & 154 & 2.109 & 30 & 571552.460 & 2.328 & -.847 & -1.035 \\
\hline 7061 & 7921 & 6503201 & 42391.413200 & . 792 & 164 & 1.843 & 38 & 571550.078 & 2.162 & -3.229 & -3.417 \\
\hline 7061 & 7921 & 6503201 & 42391.493230 & . 155 & 126 & 1. 267 & 33 & 571551.044 & . 506 & -2.263 & -2.451 \\
\hline 7061 & 7921 & 6503201 & 42391.574600 & .175 & 42 & 1.233 & 20 & 571556.678 & . 886 & 3.371 & 3.183 \\
\hline 7061 & 7921 & 6503201 & 42392.385440 & . 632 & 149 & 1.144 & 41 & 571548.659 & 1.642 & -4.648 & -4.836 \\
\hline 7061 & 7921 & 6503201 & 42392.465010 & . 179 & 123 & 1.595 & 29 & 571550.564 & . 725 & -2.743 & -2.931 \\
\hline 7061 & 7921 & 6503201 & 42337.354750 & . 222 & 150 & 1.139 & 37 & 571552.123 & . 590 & -1.184 & -1.372 \\
\hline 7061 & 7921 & 6503201 & 42337.433690 & . 215 & 169 & 1.144 & 39 & 571553.189 & . 509 & -. 118 & -. 306 \\
\hline 7061 & 7921 & 6503201 & 42388.499280 & 1.341 & 56 & . 968 & 10 & 571552.967 & 10.560 & -. 340 & -. 528 \\
\hline 7061 & 7921 & 6503201 & 42390.442080 & . 854 & 51 & 2.763 & 18 & 571558.446 & 3.942 & 5.139 & 4.951 \\
\hline 7061 & 7921 & 6503201 & 42391.334970 & . 792 & 51 & 2.079 & 30 & 571560.289 & 2.589 & 6.982 & 6.794 \\
\hline 7061 & 7921 & 6503201 & 42391.413200 & 1.387 & 55 & 2.036 & 38 & 571557.493 & 3.293 & 4.186 & 3.998 \\
\hline 7061 & 7921 & 6503201 & 42391.493230 & . 632 & 53 & 1.286 & 33 & 571552.937 & 1.751 & -. 370 & -. 558 \\
\hline 7061 & 7921 & 65032.01 & 42391.574600 & .142 & 42 & . 928 & 20 & 571553.692 & . 709 & . 385 & . 197 \\
\hline 7061 & 7921 & 6503201 & 42392.385430 & 1.017 & 49 & 2.152 & 41 & 571559.756 & 2.276 & 6.449 & 6.261 \\
\hline 7061 & 7921 & 6503201 & 42392.465010 & . 613 & 63 & 2.119 & 26 & 571554.976 & 2.267 & 1.669 & 1.481 \\
\hline 7061 & 7921 & 6503201 & 4:392.547890 & .148 & 40 & .1.767 & 24 & 571552.393 & . 703 & -. 914 & -1.102 \\
\hline 7061 & 7921 & 6503201 & 42394.406300 & 1.574 & 55 & 2.000 & 32 & 571554.632 & 4.430 & 1.325 & 1.137 \\
\hline . 7061 & 7921 & 6503201 & 42395.299020 & 1.063 & 52 & 1.373 & 23 & 571558.548 & 5.258 & 5.241 & 5.053 \\
\hline 7061 & 7921 & 7603901 & 43077.462761 & . 133 & 204 & 1.692 & 106 & 571555.408 & . 591 & 2.101 & 1.913 \\
\hline 7061 & 7921 & 7603901 & 43080.414758 & . 176 & 158 & . 872 & 13 & 571553.607 & . 748 & . 300 & . 112 \\
\hline 7061 & 7921 & 7603901 & 43081.358421 & .151 & 293 & 1.198 & 212 & 571553.775 & . 201 & . 468 & . 280 \\
\hline 7061 & 7921 & 7603901 & 43082.300956 & .147 & 343 & . 773 & 123 & 571553.620 & . 226 & . 313 & . 125 \\
\hline 7061 & 7921 & 7603901 & 43082.480730 & . 120 & 323 & 1.042 & 117 & 571555.067 & . 704 & 1.760 & 1.572 \\
\hline 7061 & 7921 & 7603901 & 43086.366147 & . 112 & 343 & 1.138 & 111 & 571555.172 & . 318 & 1.865 & 1.677 \\
\hline 7061 & 7921 & 7603901 & 43087.312153 & . 053 & 29 & 1.225 & 99 & 571551.490 & 1.165 & -1.817 & -2,005 \\
\hline 7061 & 7921 & 7603901 & 43089.195313 & .107 & 637 & 1.573 & 12 & 571552.347 & 1.437 & -.960 & -1.148 \\
\hline 7061 & 7921 & 7603901 & 43090.037414 & . 119 & 944 & 1.482 & 46 & 571552.703 & +549 & -.604 & -. .792 \\
\hline 7061 & 7921 & 7603901 & 43098.449930 & .103 & 26 & 1.053 & 53 & 571556.850 & . 929 & 3.543 & 3.355 \\
\hline 7061 & 7921 & 7603901 & 43101.252084 & .130 & 662 & 1.031 & 115 & 571553.499 & .274 & . 192 & . 004 \\
\hline 7061 & 7921 & 7603901 & 43102.226737 & .115 & 101 & 1.042 & 65 & 571551.135 & . 681 & -2.172 & -2.360 \\
\hline 7061 & 7921 & 7603901 & 43103.309630 & . 134 & 878 & 1.161 & 85 & 571553.039 & . 438 & . 332 & . .144 \\
\hline
\end{tabular}


Figure 3. Plot of range residuals versus time for \(\mathrm{BE}-\mathrm{C}\) after adjustment by the translocation method. The baseline is between 7061 and 7921 (units: meters and days).



Figure \(4 a, b\). Plot of range residuals versus time for \(B E-C\) after adjustment by the translocation method. The baseline is between 7061 and 7080 (units: meters and days):

Table 10. Baseline results for 1974.
\begin{tabular}{llllc} 
Station & Baseline & \(\pm\) & \begin{tabular}{c} 
number of \\
events
\end{tabular} \\
\hline \(7061-7080\) & 896272.662 & \(\pm\) & 1.185 & .17 \\
\(7061-7921\) & 571522.354 & \(\pm\) & 0.460 & 31 \\
\hline
\end{tabular}

During 1976, the Lageos (7603901) satellite was launched. It is in \(a^{\text {a }}\) significantly higher orbit than any other used in this analysis. LAGEOS was designed to minimize the orbit error due to gravity-field uncertainties, radiation pressure, and drag. It also has an extremely well-defined-center of-mass correction, and it should be an ideal satellite to use for any metric experiment using precision laser ranging data, including Scalar Translocation. The amount of data obtained on Lageos in 1976 is given in Table 5. With such a high satellite, much longer baselines can now be measured, as well as the shorter baselines obtained on lower satellites. The locations of observing stations in 1976 are shown in Figure 2. Of the stations observing, 7061, 7080 , and 7082 had an accuracy approaching 10 cm . The stations 7907, 7921, and 7929 had an accuracy of approximately 1 m . Furthermore, 7907, 7921, and 7929 acquired data, almost routinely, from launch and obtained observations for a whole pass - that is, more or less from horizon to horizon. However, stations 7061, 7080, and 7082 obtained data only during a 2-month period in 1976, and many of the pasises were partially observed. For example, in Figure 5, three examples are given where only partial passes are observed. Note that on each time line a vertical line is drawn indicating the point of closest approach. In 5 out of 6 passes, the data taken did not cover the midpoint of the pass, which would have strengthened the baseline determination. Due to this data distribution riucil of the strength of Scalar Translocation has been lost. In Table 11 all baselines determined with 1976 Lageos data are listed.


Figure 5a. Plot of range residuals versus time for Lageos after adjustment by the translocation method. The baseline is between 7061 and 7080 (units: meters and days).


Figure 5b. Plot of range residuals versus time for Lageos after adjustment by the translocation method. The baseline is between 7061 and 7080 (units: meters and days).



Table 11. Baselines from 1976 Lageos data.
\begin{tabular}{cllcc}
\hline Station pair & Baselines & \((\mathrm{m})\) & \((\mathrm{n})\) \\
\(7061-7082\) & 1140023.308 & \(\pm\) & 0.412 & 7 \\
\(7063-7921\) & 3147782.230 & \(\pm\) & 1.631 & 13 \\
\(7082-7921\) & 1137309.670 & \(\pm\) & 0.477 & 7 \\
\(7907-7921\) & 6471757.766 & \(\pm\) & 1.137 & 16 \\
\(7907-7929\) & 4055910.642 & \(\pm\) & 0.513 & 14 \\
\hline
\end{tabular}

The baselines 7061-7080 and 7061-7921 are determined from the 1974 SAFE data and the 1976 Lageos data. They agree reasonably well. The estimate based on all the determinations is given in Table 12. Table 13 lists each individual baseline determination for the 1977 Lageos data.

Table 12. Combined solution of 1974 and 1976 data.
\begin{tabular}{llllll}
\hline & & & & \\
Station Pair & Baseline & \(\pm\) & \(m\) & \(n\) \\
\(7061-7080\) & 896272.662 & \(\pm\) & 1.185 & 19 \\
\(7061-7921\) & 571553.269 &. & \(\pm\) & 0.451 & 44 \\
\hline
\end{tabular}

As mentioned eariier, and in Appendix A, the power of translocation is hat it reduces the effects of orbit error, observation bias, and noise. To chieve these benefits, good pass geometry and complete distribution about he PCA are necessary. For many of the Lageos passes, the data were incomplete. \(t\) is gratifying therefore to obtain such good solutions, even for partial lasses. Considerable improvement in baseline determination can be expected then complete coverage is obtained from all stations with \(10-\mathrm{cm}\) data.

Table 13. SAO Scalar Translocation program.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7907 & 7921 & 7603901 & 42952.097571 & . 946 & 51 & 1.233 & 11 & 6471762.766 & 8.307 & 5.000 & 5.973 & & & \\
\hline 7907 & 7921 & 7603901 & 43061.319185 & . 768 & 191 & 1.073 & 27 & 6471756.374 & .537 & -1.392 & 5.973
-.419 & & \[
\begin{aligned}
& \text { NO } \\
& \text { NO }
\end{aligned}
\] & OVERLAP \\
\hline 7907 & 7921 & 7603901 & 43062.414150 & .616 & 64 & . 626 & 59 & 6471750.973 & . 524 & - 6.793 & -5.419
-5.820 & & & \\
\hline 7907 & 7921 & 7603901 & 43063.351563 & . 646 & 211 & 1.081 & 56 & 6471754.854 & . 343 & -2.912 & -1.939 & & & \\
\hline 7907 & 7921 & 7603901 & 43066.327692 & . 765 & 256 & 1.255 & 81 & 6471756.624 & . 281 & -1.142 & -1.939
-.169 & & & \\
\hline 7907 & 7921 & 7603901 & 43067.276042 & .899 & 106 & 1.259 & 112 & 6471759.519 & . 390 & -1.152 & 2.726 & & NO & \\
\hline 7907. & 7921 & 7603901
7603901 & 43080.270313
43081.358421 & 1.162 & 54
156 & 1.116 & 37 & 6471748.416 & 1.578 & -9.350 & -8.377 & & NO & OVERLAP \\
\hline 7907 & 7921 & 7603901 & 43081.358421
43082.300956 & .419 & 156
220 & 1.191
1.044 & 212
123 & 6471752.364
6471758 & . 263 & -5.4c2X & -4.429 & & & \\
\hline 7907 & 7921 & 7603901 & 43085.275261 & . 952 & 28 & 1.044 & \(\begin{array}{r}123 \\ \hline 19\end{array}\) & 6471758.313
6471762.147 & .217
1.324 & .547
4.381 & 1.520
5.354 & & NO & \\
\hline 7907 & 7921 & 7603901 & 43086.366140 & .904 & 234 & 1.810 & 110 & 6471760.052 & . 266 & 4.281
2.286 & 5.354
3.259 & & NO & overlap \\
\hline 7907
7907 & 7921 & 7603901 & 43089.348264 & .755 & 202 & 1.465 & 84 & 6471.757 .492 & . 257 & -. 274 & . .699 & & & \\
\hline 7907
7907 & 7921 & 7603901 & 43101.252084 & . 650 & 136 & 1.070 & 115 & 6471758.292 & . 233 & . 526 & 1.499 & & NO & OVERLAP \\
\hline 7907 & 7921 & 7603901 & 43107.357460
43109.235850 & 1.521 & 80
168 & .965 & 142
92 & 6471750.289 & . 396 & -7.477x & -6.504 & & & \\
\hline 7907 & 7921 & 7603901 & 43111.268230 & . 805 & 249 & 1.347 & 67 & 6471760.546
6471760.834 & -261 & 2.780 & 3.753 & & & \\
\hline 7907 & 7921 & 7603901 & 43112.220226 & .907 & 82 & . .922 & 69 & 6471759.681 & . 270 & 3.068
1.915 & 4.041 & & NO & OVERLAP \\
\hline 7907 & 7921 & 7603901 & 43112.359202 & . 910 & 128 & 1.234 & 58 & 6471752.742 & . 400 & 1.915
-5.024 & 2.888
-4.051 & & NO & OVERLAP \\
\hline
\end{tabular}


Table 13. (Cont.)
THERE. WERE 14 EVFHTS
SOLUTION WFIGHTED IS 4055910.642
SOLUTION UNWEIGHTED IS 4055910.940
+-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7907 & 7929 & 7603901 & 42919.065710 & 1.333 & 58 & 1.016 & 91 & 4055912.101 & . 761 & 1.459 & 1.161 \\
\hline 7907 & 7929 & 7603901 & 42922.049210 & 1.064 & 78 & 1.291 & 37 & 4055905.899 & 1.428 & -4.743 & -5.041 \\
\hline 7907 & 7929 & 7603901 & 42922.984890 & 1.691 & 13 & 1.331 & 61 & 4055910.353 & 2.829 & -. 289 & -. 587 \\
\hline 7907 & 7929 & 7603901 & 42.927.050868 & 1.107 & 55 & 1.179 & 50 & 4055914.244 & 1.019 & 3.602 & 3.304 \\
\hline 7907 & 7929 & 7603901 & 42932.059897 & 1.475 & 15 & . 817 & 138 & 4055911.597 & 1.262 & . 955 & . 657 \\
\hline 7907 & 7929 & 7603901 & 42935.034540 & 1.724 & 16 & 1.646 & 72 & 4055909.394 & 2.306 & -1.248 & -1.546 \\
\hline 7907 & 7929 & 7603901 & 42943.031850 & 2.048 & 21 & . 907 & 48 & 4055911.437 & 2.075 & . 795 & . 497 \\
\hline 7907 & 7929 & 7603901 & 42945.053299 & . 774 & 18 & 1.563 & 79 & 4055906.904 & 2.939 & -3.738 & -4.036 \\
\hline 7907 & 7929 & 7603901 & 42945.992534 & 1.476 & 90 & . 722 & 184 & 4055910.855 & . 365 & . 213 & -. 085 \\
\hline 7907 & 7929 & 7603901 & 42948.980382 & 1.331 & 49 & . 827 & 16 & 4055917.186 & 5.066 & 6.544 & 6.246 \\
\hline 7907 & 7929 & 7603901 & 42.951 .008160 & . 985 & 123 & . 860 & 78 & 4055909.705 & . 445 & -. 937 & -1.235 \\
\hline 7907 & 7929 & 7603901 & 42956.963368 & 1.389 & 14 & . 511 & 30 & 4055915.238 & 2.833 & 4.596 & 4.298 \\
\hline 7907 & 7929 & 7603901 & 42958.993316 & 1.292 & 17 & 1.015 & 134 & 4055908.960 & . 862 & -1.682 & -1.980 \\
\hline 7907 & 7929 & 7603901 & 43088.256250 & . 996 & 121 & 1.532 & 88 & 4055909.289 & 1.706 & -1.353 & -1.651 \\
\hline
\end{tabular}
NO OVERLAP

NO OVERLAP

Table 13. (Cont.)
```

    THERE WERE 3 EVENTS
    ```

```

| 7921 | 7929 | 7603901 | 43083.243317 | .790 | 59 | 1.360 | 72 | 8286009.479 | .762 | -.100 | -.786 | NO OVERLAP |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7921 | 7929 | 7603901 | 43085.275261 | 1.325 | 29 | 1.609 | 18 | 8286017.065 | 3.218 | 7.486 | 6.800 | NO OVERLAP |  |
| 7921 | 7929 | 7603901 | 43089.195313 | 1.607 | 12 | 1.242 | 52 | 8286004.250 | 2.428 | -5.329 | -6.015 | NO | OVERLAP |

THERE WERE 8 EVFATS
SOLUTION WEIGHTEO IS 6878048.101 t- 3.014 METERS WITH 7 OBSERVATIONS: SIGMA ZERG IS 7.384
SOLUTION UNWEIGHTED IS $6378048.477+\cdots 2.442$ METEPS WITH 8 OBSERVATIONS, RMS IS 3.816 METERS

| 7061 | 7907 | 7603901 | 43073.370313 | . 076 | 11 | . 645 | 186 | 6878052.575 | . 212 | 4.474 | 4.098 | NO OVERLAP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7061 | 7907 | 7603901 | 43076.347223 | .139 | 222 | 3.104 | 225 | 6878042.283 | . 290 | -5.818 | -6.194 | NO OVERLAP |
| 7061 | 7907 | 7603901 | 43081.358421 | . 163 | 298 | 1.971 | 155 | 6878044.818 | . 287 | -3.2H3 | -3.659 |  |
| 7061 | 7807 | 7603901 | 43082.300956 | . 149 | 344 | 1.212 | 22.0 | 6878053.264 | . 158 | $5.163 x$ | 4.787 | NO OVERLAP |
| 7061 | 7907 | 7603901 | 43088.256250 | . 153 | 566 | . 937 | 121 | 6878049.587 | . 279 | 1.466 | 1.110 | fo OVERLAP |
| 7061 | 7907 | 7603901 | 43100.304770 | - 144 | 472 | 1.562 | 277 | 6878046.665 | . 257 | -1.436 | -1.812 | no OVERLap |
| 7061 | 7907 | 7603901 | 43101.252084 | -131 | 663 | . 8.869 | 136 | 6878052.407 | . 196 | 4.306 | 3.930 | NO OVERLAP |
| 7061 | 7907 | 7603901 | 43103.281420 | .112 | 712 | 1.646 | 191 | 6878046.221 | . 166 | $-1.880$ | -2.256 |  |

```

\section*{THERE WERE 3 EVENTS}
```

SOLUTION WEIGHTED IS • 8711138.206 +- 3.351 METERS WITH 3 OBSERVATIONS, SIGMA ZERU IS 4.739
SOLUTION UNWEIGHTED IS

| 7061 | 7929 | 7603901 | 43084.185417 | .140175 | 1.437 | 142 | 8711134.514 | .310 | -3.692 | -3.347 | NO OVERLAP |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7061 | 7929 | 7603901 | 43089.195313 | .107637 | 1.570 | 52 | 8711140.075 | .186 | 1.869 | 2.214 | NO | OVERLAP |
| 70617929 | 7603901 | 43090.140886 | .138 | 216 | 1.301 | 41 | 8711138.995 | .423 | NO | OVERLAP |  |  |

```

Table 13. (Cont.)
THERE WFPE 4 EVEATS

\(\underset{\ddagger}{\omega}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7063 & 7921 & 6503201 & 42390.444940 & . 160 & 155 & 1.656 & 16 & 3147782.656 & . 940 & . 426 & -1.163 \\
\hline 7063 & 7921 & 7603901 & 42919.204340 & .090 & 55 & . 768 & 164 & 3147778.202 & - 242 & -4.028 & -5.617 \\
\hline 7063 & 7921 & 7603901 & 42919.351910 & . 066 & 83 & . 795 & 169 & 3147779.818 & . 352 & -2.412 & -4.001 \\
\hline 7063 & 7921 & 7603901 & 42920.140450 & . 089 & 262 & . 644 & 129 & 3147785.696 & .257 & 3.466 & 1.877 \\
\hline 7063 & 7921 & 7603901 & 42920.287700 & . 281 & 884 & . 670 & 64 & 3147784.190 & 1.189 & 1.960 & . 371 \\
\hline 7063 & 7921 & 7603901 & 42921.235450 & . 074 & 672 & . 724 & 116 & 3147779.554 & .203 & -2.676 & -4.265 \\
\hline 7063 & 7921 & 7603901 & 42922.180370 & . 068 & 887 & . 673 & 33 & 3147784.011 & . 514 & 1.781 & . 192 \\
\hline 7063 & 7921 & 7603901 & 42922.326590 & .135 & 12 & .973 & 110 & 3147785.388 & . 414 & 3.158 & 1.569 \\
\hline 7063 & 7921 & 7603701 & 42926.246876 & . 349 & 925 & 1.018 & 58 & 3147789.200 & 1.702 & 6.970 & 5.381 \\
\hline 7063 & 7921 & 7603901 & 42935.168630 & . 340 & 970 & . 901 & 15 & 3147785.967 & 4.235 & 3.737 & 2.148 \\
\hline 7063 & 7921 & 7603901 & 42936.114900 & .174 & 644 & 1.979 & 22 & 3147791.171 & 1.741 & 8.941 & 7.352 \\
\hline 7063 & 7921 & 7603901 & 42939.243400 & . 108 & 258 & . 601 & - 77 & 3147785.183 & . 639 & 2.953 & 1.364 \\
\hline 7063 & 7921 & 7603901 & 42957.101818 & . 064 & 536 & .563 & 19 & 3147778.606 & . 766 & -3.624 & -5.213 \\
\hline
\end{tabular}
THERE WERE 2 EVEHTS
SOLUTION WEIGHTED IS 5285874.843 +- . 055 METERS WITH 2 OBSERVATIONS, SIGMA ZERL IS 055
SOLUTION UNWEIGHTED IS \(5285874.734+-129\) METFRS WITH 2 OBSERVATIONS, RMS IS 129


Table 13. (Cont.)
THERE WFPE 4 EVFITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SOLUTION WFIGHTFD is & 129575.611 & . 672 & METERS & WITH & 4 & OBSERVATIONS. & SIGMA & ZERC IS & 1.164 \\
\hline SOLUTION UNWEIGHTEO IS & 829575.069 & +* 1.780 & METERS & WITH & 4 & OBSERVATIONS, & RMS IS & 3.083 & HETERS \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
7080 & 7082 & 7603901 & 43063.104428 & .118 & 28 & .096 & 8 & 829578.849 & 1.558 & 3.238 \\
7080 & 7082 & 7603901 & 43065.133221 & .066 & 7 & .097 & 165 & 829575.430 & .272 & -18.780 \\
7080 & 7082 & 7603901 & 43095.201970 & .201 & 11 & .164 & 153 & 829575.741 & 1.839 & .361 \\
7080 & 7082 & 7603901 & 43095.295226 & .112 & 18 & .134 & 249 & 829570.257 & 3.608 & -5.354 \\
& & & & & & & & -4.872
\end{tabular}
THERE WERE 2 EVF:ITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SOLUTION WEIGHTER IS & 7547301.057 & +-3.643 & PEETERS WITH & 2 & OBSERVATIONS. & SIGNA 2 & 2Ekt 15 & 3.683 \\
\hline SOLUTION UNWEIGHTED IS & 7547302.271 & +-3.498 & Mfters with & 2 & UBSERVATICINS, & RMS IS & 3.498 & NETER \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 70807907 \\
& 7080 \quad 7907
\end{aligned}
\] & \[
\begin{aligned}
& 7603901 \\
& 7603901
\end{aligned}
\] & & \[
\begin{aligned}
& 988.256250 \\
& 95.295226
\end{aligned}
\] & \[
\begin{array}{r}
.168 \\
.112
\end{array}
\] & \[
\begin{aligned}
& 20 \\
& 18
\end{aligned}
\] & .830
.674 & \[
\begin{aligned}
& 171 \\
& 269
\end{aligned}
\] & 7547298.773
7547305.769 & \[
\begin{array}{r}
.518 \\
1.069
\end{array}
\] & & \[
\begin{array}{r}
-2.264 \\
4.712
\end{array}
\] & \[
\begin{array}{r}
-3.498 \\
3.498
\end{array}
\] \\
\hline THERE WER & RE 2 & \multicolumn{11}{|l|}{EVIITS} \\
\hline SOLUTIOM & WFIGHTED & IS & 1289662.073 & \multicolumn{2}{|l|}{+-2.796} & Meters & WITH & 1 & \multicolumn{2}{|l|}{IONS, SIGMA} & A zero is & 2.796 \\
\hline SOLUTION U & UNWEIGUTFi) & 15 & 1209659.034 & \multicolumn{2}{|l|}{\[
+-4.934
\]} & meteps & WITH & 2 OBSERVAT & TIONS, & \&MS I & 154.93 & METERS \\
\hline 70807921 & 6503201 & 423 & 336.465250 & . 116 & \(6 \quad 13\) & \(1.51 \%\) & 20 & 1289654.1n0 & & & & \\
\hline 70807921 & 7603301 & 430 & 77.462761 & . 163 & \(3 \quad 29\) & 1.214 & 106 & 1289663.967 & . 742 & & 1.894 & \[
4.934
\] \\
\hline
\end{tabular}

THERE WFPE 5 FVFIITS
SOLUTION WEIGHTER IS \(7203954.113+\infty 1.246\) IETERS WITH 3 OBSERVATIONS, SIGMA ZERC IS 1.762
SOLUTION UNWEIGHTFI If \(72.03956 .073+-1.388\) METERS WITH 5 OBSERVATIONS, RMS IS 2.775 METERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7082 & 7907 & 7603901 & 43071.336893 & . 154 & 208 & . 838 & 255 & & 117 & & & & \\
\hline 7082 & 7907 & 7603901 & 43093.263369 & . 166 & 433 & 2.153 & 180 & 7203953.061 & 245 & . 0.853 x & 4.933
-3.012 & NO & OVERLAP. \\
\hline 7082 & 7907 & 7603901 & 43095.245220 & . 248 & 248 & 2.101 & 273 & 7203954.258 & . 365 & -1.052 & -3.012 & & UVERLAP \\
\hline 7082 & 7907 & 7603901 & 43096.244440 & .149 & 584 & 1.273 & 176 & 7203955.072 & - 246 & . 14 & -1.815 & & \\
\hline 7082 & 7907 & 7603901 & 43100.304770 & . 132 & 85 & . 657 & 277 & 7203956.968 & . 209 & 2.855 X & . .895 & NO & ovtrlap \\
\hline
\end{tabular}

All regression solutions for baseline were made using the formal uncertainty computed for each event. The standard error of unit weight ranges from 3 to 10 , which indicates that in all cases some unmodeled error sources still exist. However, these standard errors are not unreasonably large. Also computed is the baseline, assuming all observations are of the same accuracy. This unweighted average is also given with the residuals derived from this solution. In general, the solutions are in good agreement. The very large residuals in the unweighted solution have a large variance when used in the weighted solution, which reduced their effect on the mean. It can also be noted that the large formal uncertainties correspond to poor pass geometry, sparce data, or noisy data (as reflected in the R.M.S. for the station). The weighted mean is taken as the best estimate of the baseline.

For an assessment of these results, we can make two comparisons given in Table 14. Here we give the baselines as determined from datum coordinates (suitably scaled), the results provided by GSFC (D. Smith, private communication), and the combined results of the Scalar Translocation. The scaling of the datum coordinates for the NAD27 was taken from Gaposchkin (1974). This scale factor of 1.78 ppm is modified by -0.809 ppm to reflect a change to the current best estimates of GM and c. The coordinates derived by GSFC are obtained from analysis of Lageos data in a global, geocentric, dynamical determination of station coordinates. It is based on 31, 5-day arcs of data and much of the Lageos data used here is common to both analyses. Therefore, what good agreement is found for those coordinates or baselines that are determined only from LAGEOS data may be due to use of the same data rather than both solutions being "correct" to that accuracy.

The datum comparisons are useful only as an overall check. For long baselines, satellite determinations are more accurate when they are reliable. In this case we can conclude that the satellite measurements are valid, and that the geodetic coordinates agree with both satellite determinations as well as might be expected.

Table 14. Comparison of baseline determinations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station Pair & NAD 27 Baseline (Mm) & Scaled Datum Baseline (m) & GSFC Lageos Cóordinates (m) & \begin{tabular}{l}
Translocation Result \\
(m)
\end{tabular} & \(n\) \\
\hline 7061-7080 & 0.89626931 & 896270.18 & \(896275.60 \pm 0.14\) & \(896272.66 \pm 1.185\) & 19 \\
\hline 7061-7082 & 1.14001784 & 1140018.95 & \(1140022.78 \pm 0.04\) & \(1140023.31 \pm 0.41\) & 7 \\
\hline 7061-7921 & 0.57154694 & 571547.50 & \(571552.89 \pm 0.03\) & \(571553.27 \pm 0.45\) & 44 \\
\hline 7082-7921 & 1.13730284 & 1137303.94 & \(1137309.89 \pm 0.04\) & \(1137309.67 \pm 0.48\) & 7 \\
\hline 7063-7921 & 3.14778452 & 3147787.57 & \(3147785.16 \pm 0.04\) & \(3147782.23 \pm 1.631\) & 13 \\
\hline 7907-7921 & & & \(6471750.94 \pm 0.03\) & \(6741757.77 \pm 1.14\) & 16 \\
\hline 7907-7929 & & & \(4055910.23 \pm 0.04\) & \(4055910.64 \pm 0.93\) & 14 \\
\hline
\end{tabular}

Comparison of the dynamical determination (GSFC) with the translocation result immediately shows two facts. The formal statistics differ by an order of magnitude, which is due to the different meaning attached to them. In the case of the dynamical determination, the formal uncertainty is obtained from the root mean square of the orbital residuals. With approximately 100,000 observations, the \(1 / \sqrt{n}\) is unrealistically reducing the formal uncertainty. Such an overoptimistic formal uncertainty is well known when a large amount of data is used. The Scalar Translocation uncertainty estimate is obtained from comparing the individual baseline estimates. This no longer used the enormous number of data points, though of course all data points were used to get each baseline estimate. In general the two estimates agree within the combined formal uncertainty.

The second point is that the transiocation result is systematically larger than the dynamical result. It is not clear from such a small number of baselines if this is a significant difference. If it is, then this difference will have significance in establishing an absolute scale from satellite laser ranging. The translocation method relies totally on the velocity of light to establish a length scale with the light second. Dynamical methods by their nature obtain scale in a complicated mixture of \(c, G M\), and the orbit theory.

The theory and results presented in this study are intended to establish Scalar Translocation as a viable option for determination of baseline distances with decimeter accuracy. With the data available, this has been established.

Scalar Translocation provides the following features:
1) Is independent of absolute orbit accuracy and GM.
2) Provides scale by laser range measurements.
3) Uses overlapping passes.
4) Is independent of observation bias and noise under certain well understood and simple conditions of data distribution.

To establish further the use of Scalar Translocation for precision metrology, two steps can be considered.
1) Further analysis of existing data is possible. In fact, originally all the data taken in 1975 and 1976 in support of GEOS-3 program was planned for. analysis. In that data set, a large number of simultaneous events are recorcled in the Western North Atlantic, involving stations at Goddard Space Flight Center, Bermuda, Grand Turk, and Florida. A braced quadrilateral can be computed to provide a needed internal check on the baseline determination.
2) A planned program of observation could be undertaken specifically for Scalar Translocation. The satellites could be chosen to obtain optimum pass geometry, and, if options on station deployment are possible, then optimum network configurations can be chosen. Such a program would be the most effective approach to establishing baselines independent of satellite orbit theory.

Some unresolved issues remain. First is the question of possible systematic differences in scale between translocation and orbital methods. We believe that translocation as applied here, obtains scale directly from laser range data. It is convenient to assume that this difference occurs in the dynamical method because of its inherently greater complexity. However, the sources of this scale difference must be known before we have real confidence that both translocation and dynamical methods are understood.

Next is the issue of the amount of data necessary. Some improvement in baseline determination was obtained by using all the data points available for each pass. One can wonder where the point of diminishing returns sets in. Must we have 500 or 1000 points in a pass to reduce the random error, and cancel the systematic error? Further study is required.

Then we come to the question of how many individual baseline determinations are necessary to obtain a \(10-\mathrm{cm}\) accuracy. The largest number of successful baselines where both stations acquired \(10-\mathrm{cm}\) data on Lageos with significant overlaps of the data span was seven for stations 7061-7082. In this case, we obtained an uncertainty of 0.41 m . A simple scaling argument indicates that 112 events are necessary to obtain a \(10-\mathrm{cm}\) accuracy.

This conclusion then leads to the question of how much time is necessary to obtain such a data set. If we assume a \(50 \%\) loss of opportunities due to weather, logistics, system failure, etc., and that this loss is uncorrellated at the two stations and that each station has 4 opportunities each day to observe each satellite, then we have one successful event per satellite per day. For short baselines that can obtain overlapping data on low satellites and, say, four satellites are used, then we have
\[
\frac{112}{4} \approx 28 \text { days of data taking. }
\]

This could be reduced further if the data loss due to weather was correlated between stations. If the baselines are such that only Lageos can be used
then the full 112 days are necessary. In addition, an analysis where the translocation baseline information is combined with the dynamical determination of station locations can be envisioned. The improvement possible using all the data in this way also needs study. Further work on this point is warranted.

\section*{6. REFERENCES}

ARNOLD, D.A.
1972. Calculation of retroreflector array transfer functions.

Final Technical Report, NASA Grant NGR 09-015-196, December.
[This report gives results computed for satellites \(B E-B(6406401)\), BE-C(6503201), Géos 1(6508901), DIC(6701101), DID(6701401), Geos 2(6800201), Peole(7010901), and Geos 3]
1974. Optical transfer function of NTS-1 retroreflector array. Technical Report RTOP 161-05-02, NASA Grant 09-015-022, Supplement No. 57, October.

1975a. Optical transfer function of Starlette retroreflector array. Technical Report RTOP 161-05-02, NASA Grant NGR 09-015-002, Supplement No. 57, February.

1975b. Optical and infrared transfer function of the Geos 3 retroreflector array.
Technical Report RTOP 161-05-02, NASA Grant NGR 09-015-002
- Supplement No. 57,

October.
1978. Optical and infrared transfer function of the Lageos retroreflector array.
Technical Report, NASA Grant NGR 09-015-002.
May.

\section*{Gaposchkin, E.M.}
1974. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data. J. Geophys. Res. Vol. 79, No. 35, pp 5377, 5411.

December 10, 1974.

Latimer, J.H. and Gaposchkin, E.M.
1977. Scalar Translocation using laser range data. . Presented at the Spring Annual Meeting of the American` Geophysical Union, June. Center for Astrophysics Reprint Series \#750.

Lerch, 'F.J'., Klosko, S.M. and Laubscher, R.E.
1977. Gravity model improvement using Geos \(3^{\circ}\) (GEM 9\&10). Presented at the Spring Meeting of the American Geophysical Union, Washington, D. C. May 31, 1977 55pp.

Pearlman, M.R., Lanham, N.W., Lehr, C.G., and Wohn, J.
1977. The Smithsonian Astrophysical Observatory laser tracking system. Phil. Trans. R. Soc. Lond. A. 284, 431-442.
(1977) 12pp.

Weiffenbach; G.C., and Hamal, K.
1975. Laser tracking instrumentation. Proceedings of 2nd Workshop held at Faculty Nuclear Science and Physical Engineering, Technical University of Prague, Prague, 11-16 August 1975. Publication of the Façulty of Nuclear Science and Physical Engineering, Technical. University of Prague, 140pp.

Appendix A.

\title{
CENTER FOR ASTROPHYSICS
}

\section*{PREPRINT SERIES}

No. 750

SCALAR TRANSLOCATION USING LASER RANGE DATA

\author{
James H. Latimer and E. M. Gaposchkin
}

\author{
Presented at the \\ Spring Annual Meeting of the American Geophysical Union Washington, D.C. June 1, 1977
}

Center for Astrophysics
60 Garden St.
Cambridge, Massachusetts 02138

Center for Astrophysics
Preprint Series No. 750

\section*{SCALAR TRANSLOCATION USING LASER RANGE DATA}

\author{
James H. Latimer and E. M. Gaposchkin \\ Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138
}

Presented at the
Spring Annual Meeting of the
American Geophysical Union Washington, D.C.

June 1, 1977

\title{
SCALAR TRANSLOCATION USING LASER RANGE DATA
}

\author{
James H. Latimer and E. M. Gaposchkin \\ Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138
}

ABSTRACT

Short overlapping arcs of laser data from two stations are used to determine the interstation distance. This distance is relatively uncorrupted by satellite orbital errors and is independent of satellite orbital scale, which is determined by GM. Here, scale is defined by the adopted velocity of light. Several individual such baselines are averaged to give an estimate of the baseline distance. A network of baselines can be adjusted or combined with other types of data to obtain geocentric station coordinates in the FK4 system referred to the Conventional International Origin.

\section*{1. INTRODUCTION}

The satellite methods used to determine stations positions fall into three categories: geometrical methods, dynamical methods, and semidynamical or short-arc methods. For many years, geometrical methods have been used with simultaneous camera observations* to obtain interstation directions (Veis, 1967; Aardoom, Girnius, and Veis, 1967; Schmid, 1974). Since camera observations are given with respect to a celestial system, absolute directions in space can be determined; but, being directions only, they provide no origin nor scale. These geometrical directions are very powerful when used in combination with other types of data, notably dynamical methods, such as was done with great advantage in constructing the Smithsonian Standard Earth (SE) models SE I, SE II, and SE III (Lundquist and Veis, 1966; Gaposchkin and Lambeck, 1970; Gaposchkin, 1973). Even so, the need that data be simultaneous resulted in a very slow acquisition of successful events because of the restrictions caused by twilight conditions, weather, and other operational considerations.

Camera data have now been supplanted by laser range data, and the analogous geometrical method is called multilateration. To be effective, multilateration requires simultaneous events involving at least six stations, with a minimum of four stations participating in each event; however; owing to weather and . logistical factors, successful multilateration events will not occur very frequently. Furthermore, dedication of six laser systems to this one endeavor may not be practical. MuTtilateration provides no origin, and no orientation of the network, although scale is strongly determined by the adopted value of the velocity of light, c.

\footnotetext{
In practice, it is virtually impossible to define and obtain a truly simultaneous observation. Since independent time standards can be synchronized only to between 1 and \(50 \mu \mathrm{sec}\), predicted satellite positions will have uncertainties approaching several meters, or many milliseconds in light travel time. Therefore, we really mean quasi-simultaneous observations with time differences (determined after the fact) small enough that linear interpolation in satellite position is possible. Thus, simultaneous events can be considered as limiting cases of the semidynamical method.
}

Dynamical methods depend on knowledge of precise ephemerides (Lundquist and Veis, 1966; Gaposchkin and Lambeck, 1970; Gaposchkin, 1973; Anderle, 1974; Smith, Lerch, Marsh, Wagner, Kolenkiewicz, and Kahn, 1976). An ephemeris defines the reference system and can be related to the center of mass of the earth implicitly by adopting a geopotential-force model with \(\mathrm{J}_{1}=0\). The orientation of the orbit is similarly implicitly defined to be along the axis of maximum moment of inertia by having \(\overline{\mathrm{C}}_{21}=\overline{\mathrm{S}}_{21}=0\); but in fact, owing to elastic deformation, this is never exactly true. The origin of longitude can be defined for orbit computation only by using observations somehow related to an inertial reference frame, e.g., camera observations referred to a star background.

Therefore, using metric measurements that are invariant under coordinate translation and rotation, we can approximate the center-of-mass coordinates with one undetermined origin of longitude. The scale in dynarical methods is derived from the adopted value of GM, which relates the dynamical scale (the mean motion \(n\) ) and the geometrical scale (the semimajor axis a) through an appropriate statement of Kepler's third law:
\[
n^{2} a^{3}=G M(1+\varepsilon)
\]
where \(\varepsilon\), a small parameter, depends on the satellite orbit, the even zonal harmonics, and any nongravitational force affecting the energy of the orbit, such as radiation pressure and atmospheric drag. Since metric measurements imply a scale through the velocity of light, a consistent set of \(c\) and GM must be chosen. A value for the velocity of light \(c\) has now been adopted by the International Astronomical Union, the International Association of Geodesy, and the International Union of Geodesy and Geophysics (Melchior, 1975):
\[
\mathrm{c}=2.99792458 \times 10^{10} \mathrm{~cm} / \mathrm{sec}
\]

We are thus obliged to deterinine GM to be consistent with c ; the currently accepted best value for GM is
\[
G M=3.986005 \times 10^{20} \mathrm{~cm}^{3} / \mathrm{sec}^{2}
\]
where \(M\) here includes the mass of the atmosphere.

Semidynamical methods (Brown, 1976; Strange, Hothem, and White, 1975) rely on the use of short arcs and assume that the orbital error can be corrected to fit the data from one station and that the observations from the second station determine that station position with respect to the corrected orbit and therefore with respect to the first station position. This technique has many guises, the most successful being translocation with doppler data. The method described here is a variant of the semidynamical method.

\section*{2. OUTLINE OF THE METHOD}

We consider a short arc of a satellite trajectory to be less than half a revolution, although trajectories can be computed by using data from a global network of observing stations for a longer interval, say several days. The trajectory will have errors that depend on model errors in the orbitdetermination computation due to uncertainties in the geopotential, other geophysical quantities such as tides, atmospheric drag, geocentric station coordinates, and errors in the observations. Trajectory errors - comprising translation, orientation, and scale biases - are more or less constant during a short arc. However, during a short arc, we assume that the shape of the trajectory is known. Therefore, if we consider a trajectory in space, with an arbitrary position and orientation, the observed laser range data from a station can be used to compute the position of the station relative to the trajectory, which is equivalent to correcting the satellite ephemeris. In addition, data from a second station observing the same trajectory can be used in the same way. Both stations are now related to the same arbitrary trajectory, and their relative positions are therefore established. Although the vector difference cannot be interpreted, because the position and orientation of the trajectory are arbitrary and unknown, the scalar distance between the stations is invariant under this unknown translation and rotation and therefore can be interpreted - hence the name scalar translocation.

Each simultaneous, or overlapping, event provides an individual, independent estimate, together with an uncertainty, of the interstation baseline, which can be used in a number of ways. After calculating the standard error of unit weight, a weighted mean of several determinations can give an improved estimate of the baseline and a more reliable estimate of the accuracy. Gross errors can be eliminated by performing a \(3 \sigma\) or similar test on a number of independent baseline estimates. Alternatively, if the change of a baseline is desired - for example, to study secular (tectonic) or periodic (tidal)
motions - then the determinations with their epochs can be analyzed as a time series. In addition, a network of baselines, each obtained with a weighted mean, can be analyzed to obtain the three-dimensional coordinates of the observing sites; the network, of course, would have an arbitrary origin and orientation. For this, the mini.lliil network would have to have four stations, the six baselines forming a braced quadrilateral, with no redundancy. In general, with \(n\) stations and all possible interstation distances measured, there will be \(\left(n^{2}-7 n+12\right) / 2\) degrees of freedom in a network adjustment. Finally, the individual baselines can be used in a general network adjustment with other data, such as with interstation directions determined with simultaneous camera observations, very long-baselineinterferometer observations of direction and distance, or normal equations for station coordinates developed by using long-arc orbital analysis. Direction observations can give an orientation to the network with reference to, say, the FK4 or FK5 system of fundamental stars, while orbital analysis can provide an origin related directly to the center of mass of the earth.

\subsection*{2.1 Scale.}

The two length scales are provided by the speed of light and the value of GM. Distance is obtained with a light-travel-time measurement suitably corrected for refraction. The speed of light has been defined by the International Union of Geodesy and Geophysics in terms of meters and seconds and is known with sufficient accuracy for our needs. Therefore, our unit of length is, in reality, the light second. Satellite motion also has scale through a suitable definition of Kepler's third law, the defining constant being the product of \(G\), the gravitational constant, and \(M\), the mass of the earth. GM is not now known with sufficient accuracy and is almost certainly inconsistent with the adopted value of \(c\). Therefore, the two scales must be separated and reconciled. The determination of GM, given a defined length scale, comprises a study by itself and will not be discussed here.

If, for the moment, we consider satellite motion on a sphere, then an error, or inconsistency, in GM would model the satellite's motion slightly larger or smaller than reality, as shown in Figure 1. Consider observations of distance \(\rho_{\boldsymbol{j}}=\rho\left(\mathrm{t}_{\boldsymbol{j}}\right)\). If the shape of the trajectory is known, then barring certain degenerate geometries (Blaha, 1971, 1972), the position of R can be determined. With a scale error in the model, each point on the orbit will increase its geocentric distance by the same amount. For a more general surface, the increase is proportional to the geocentric distance. Also, a change in distance between each pair of points is proportional to the distance. The actual ranges, of course, can then be used to determine the position and the scale factor corresponding to the correction to GM. Alternatively, assuming a scale error in the observation, the constant of proportionality by which all the geocentric distances change could be applied to the observed ranges. This would then scale the position \(\bar{R}\) accordingly if the orbital scale is assumed to be correct. In either case, the position \(\bar{R}\) and the scale parameter can be determined from the data to make the observed ranges, fit the satellite range. These two interpretations of scale are equivalent for each arc, although the observation equations and the numerical solutions, as reflected by the condition number, are significantly different. For purposes of '. 'י'cal analysis, we have computed the station position and the scale parameter assuming a scale error in the observed range because the leastsquares solution is much better conditioned; the condition numbers are \(10^{3}\) to \(10^{6}\) smaller. Since the observed ranges are assumed to be without scale error, the scale parameter is identified with an orbital scale error. The consequence is simply that after the adjustment, the scale parameter is then applied to the determined baseline to refer it back to the observed distance scale.

By determining a scale parameter for each arc, the baselines are found to be independent of orbital bias. This bias could be due to an inconsistency between GM and c, to errors in the orbital theory, or to other causes. However, for this analysis, we have decoupled the scale errors from the desired quantity, the baseline distance. Some numerical tests were performed, during which we changed the value of \(G M\) in the orbit computation by as much as
\(\pm 20 \mathrm{ppm}\). The baselines recovered in this way, from both high (Lageos) and low (BE-C) satellites, were not identical, but they changed by only a few centimeters individually and the mean of several determinations was virtually the same for each.

\subsection*{2.2 Observational Bias}

The determination both of satellite positions with respect to an arbitrary trajectory and their relative positions is done by the method of least squares. The data, however, can have biases as well as random errors. If we consider an optimum pass whose subsatellite track is along the direction between the stations (the baseline of interest) and if the data are uniform about the point of closest approach, then bias in the observed range will cancel along the track and the root-mean-square (rms) residuals will increase. Clearly, the satellite-to-station height will also change, but we are not interested in that component here. Numerical tests in which a bias of 1 m was added to the data left the base?ine determination unchanged. Of course, for poor geometry, this independence of bias is reduced.

From Figure 2, it is evident that an epoch time offset from one station to the next will translate directly into a baseline change. The error is about 7 mm for each microsecond bias in station timing for close-earth satellites.

\subsection*{2.3 Adjustment Procedures}

The adjustment of a station position to the trajectory is, in general, poorly conditioned since the three coordinates are not determined with equal accuracy. To identify the coordinates that are well determined, we created a local terrestrial coordinate system with its origin at one station and its \(x\) axis oriented toward the second station. The difference in the correction to the \(x\) coordinate is thus the desired correction to the baseline distance.

For the first station, the point of closest approach is identified and the \(y\) axis lies in the plane containing the point of closest approach and the \(x\) axis; the \(z\) axis is the third direction forming the orthogonal rectangular triad. The station is then "navigated" in this system. In general, the \(z\) coordinate is very weakly determined (as shown numerically by an eigen-vector/eigen-value analysis) and is deleted from the solution. For the second station, the \(y\) axis is also defined by the point of closest approach of the trajectory with respect to the second station, and the \(z\) axis is orthogonal to the \(x\) and \(y\) axes in a similar way. The \(z\) coordinate for this station is also generally deleted from the solution. We are left with a least-squares solution for \(\Delta x_{1}, \Delta y_{1}, \Delta x_{2}, \Delta y_{2}\), and the scale parameter \(\varepsilon\). The correction to the baseline \(\Delta r\) is
\[
\Delta r=\Delta x_{1}-\Delta x_{2}+\varepsilon\left(x_{1}-x_{2}\right)
\]
[Note: \(\Delta y_{1}\) and \(\Delta y_{2}\) are in different coordinate systems. Since these parameters are included only to obtain a satisfactory adjustment, they are not considered further here.].

Because the adjustment depends on the coordinate system, which depends on the positions of the points of closest approach to both stations, the solutions are quite dependent on the geometry: The baseline distance can be detemined very well if the satellite's motion is parallel to the interstation direction, but it is poorly determined if the motion is across this line. The limiting worst case is for a straight-line trajectory \(: 1\) to the interstation line; in this degenerate case, there is an infinite number of solutions. In practice, however, the curvature of the satellite trajectory is sufficient to allow a degraded determination even with poor geometry.

\subsection*{2.4 Translocation Mathematics}

The observation equation for station 1 is
\[
\begin{equation*}
\rho_{i} \text { (computed) }=\sqrt{\left(x_{1}-x_{i}\right)^{2}+\left(y_{1}-y_{i}\right)^{2}+\left(z_{1}-z_{i}\right)^{2}}(1+\varepsilon) \tag{1}
\end{equation*}
\]
where \(i\) is the observation index; \(x_{i}, y_{i}\), and \(z_{i}\) represent the satellite position; \(x_{1}, y_{1}\), and \(z_{1}\) are the station coordinates; \(\rho_{i}\) is the range from the station to the satellite; and \(\varepsilon\) is the proportional scale change. The same equation holds for station 2 by using \(x_{2}, y_{2}\), and \(z_{2}\) as its coordinates. Equation (1) is the usual metric scaled by the scale factor \(\varepsilon\) interpreted as an instrumental error (see Section 1).

The 1 inearized form of equation (1) is
\[
d \rho_{i}=\left(\frac{x_{1}-x_{i}}{\rho_{i}}\right) d x_{1}+\left(\frac{y_{1}-y_{i}}{\rho_{i}}\right) d y_{1}+\left(\frac{z_{1}-z_{i}}{\rho_{i}}\right) d z_{1}+\rho_{i} \varepsilon
\]
for observations from station 1, and similarly for station 2. After applying weights, this leads to the following system of normal equations in matrix form, where \(p_{i}\) is the weight of the observation:


This matrix of coefficents will be very poorly conditioned, reflecting the indeterminacy of station navigation perpendicular to the Guier plane* (defined as that plane containing the station-to-satellite direction and the satellite velocity direction at the point of closest approach).

To improve the condition of our matrix, it is necessary to reduce the rank of the system in a manner that will minimally affect the interstationrange determination. Our technique is to rotate the coordinate system such that two of the unknowns (corresponding as closely as possible to the indeterminant parameters) can be dropped, thereby reducing the rank to five. This is done by adopting a local coordinate system with one station as the origin and the other station on the \(x\) axis. The direction from station 1 to the satellite at the point of closest approach, together with the \(x\) axis, defines the plane in which station 1 is navigated. The \(z\) axis is perpendicular to this plane and therefore dropped from the normal system. A similar plane is established for station 2, using the direction to the point of closest approach to station 2. The corresponding \(z\) axis for station ? is also eliminated from the normal system. It will be noted that the two planes of navigation intersect at the interstation baseline.

The optimum station-to-satellite geometry is clearly that in which both stations lie in the orbital plane. In this case, we are navigating both stations in their coincident Guier planes. In all other cases, we are navigating in planes that merely approximate the Guier plane. However, except when the interstation baseline is nearly perpendicular to the orbital plane, the approximation is satisfactory.

The Guier plane was first introduced by \(W\). Guier in developing the basic analysis for doppler data supporting the Transit network. It has been carried over into all analyses of doppler data and has many additional advantages specific to doppler data, where a system parameter (the satellite oscillator correction) needs to be determined from each pass of data; in addition, certain environmental errors average out in that case. We have not investigated the extent to which those advantages can be utilized in this analysis, although intuitively we believe that, for example, in analyzing range data, refraction-model errors will be reduced.

Transformation to the local coordinate system is as follows:
\[
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=[\mathscr{C}]\left[\begin{array}{l}
\left(x-x_{1}\right) \\
\left(y-y_{1}\right) \\
\left(z-z_{1}\right)
\end{array}\right]
\]
where \(\mathscr{R}\) is defined as three rows of three vectors \(\hat{\mathrm{R}}_{1}, \hat{\mathrm{R}}_{2}\), and \(\hat{\mathrm{R}}_{3}\) :
\[
\begin{aligned}
& \vec{R}_{1}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right), \\
& \hat{R}_{1}=\frac{\vec{R}_{1}}{\left|\vec{R}_{1}\right|}, \\
& \vec{J}_{p c a}=\left(x_{p c a}-x_{1}, y_{p c a}-y_{1}, z_{p c a}-z_{1}\right), \\
& \vec{R}_{3}=\hat{R}_{1} \times \vec{J}_{p c a}, \\
& \hat{R}_{3}=\frac{\vec{R}_{3}}{\left|\vec{R}_{3}\right|}, \\
& \hat{R}_{2}=\hat{R}_{3} \times \hat{R}_{1}
\end{aligned}
\]

The orientation vector \(\mathscr{\mathscr { O }}\) for the transformation of station 2 and its observed satellites is similar except that the coordinates of the point of closest approach, \(x_{p c a}, y_{p c a}\), and \(z_{p c a}\), refer to a different position and
\[
\vec{J}_{p c a}=\left(x_{p c a}-x_{2}, y_{p c a}-y_{2}, z_{p c a}-z_{2}\right)
\]

It can be seen that equation (2) is an adjustment performed by varying a scale parameter and the coordinates of the two station positions, each station constrained to a distinct plane. The two constraint planes intersect at the baseline, so the baseline length is unaffected. Satellite positions are not adjusted and must be taken a priori. Clearly, the results we obtain
are functions of the assumed satellite positions, and care must be taken to use the best estimates possible.

For this analysis, we use the same precision differential-orbit-improvement program that we use in our gravity-field determination and our long-arc station-coordinate determination. One useful feature of this computer program is the capability of archiving on magnetic tape a large assemblage of data, including all adjusted satellite positions at the times of the observations.

The procedure, then, is to determine an orbit (typically spanning 10 days) from all available observations. When an orbit is optimized, it is no longer necessary to recompute the archive file, but only to access it in order to obtain a trajectory from best-fitting (in a global sense) estimates of satellite positions. The archive file is also a convenient place to keep observations, station coordinates corrected for tidal motion, pole position, sidereal time, and other auxiliary information.

Since the orbital routine operates in an inertial frame of reference, it is necessary to transform the satellite and station positions to a rotating (terrestrial) system according to the well-known relation:
\[
\vec{x}_{t}=\left[\begin{array}{ccc}
1 & 0 & P_{x} \\
0 & 1 & -P_{y} \\
-P_{x} & P_{y} & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \vec{x}_{i}
\]
where \(\vec{x}_{i}\) is the inertial position, \(\vec{x}_{t}\) is the terrestrial position, \(\theta\) is the sidereal angle, and \(P_{x}\) and \(P_{y}\) are the pole-position angles in radians.

\section*{3. DATA ANALYSIS}

The results reported here are based on the data available in mid-1977. Clearly, future data will be more comprehensive and the results more accurate. Furthermore, the data currently available were not taken for use with scalar translocation. In this section, we discuss the data available, give an example of a baseline determination, and review the translocation results to date.

The locations of laser stations used in this analysis are plotted on a map in Figure 3. Our analysis included data from the retroreflector- . equipped satellites listed in Table 1. Unfortunately, the basic assumption that two (or more) stations observe the same part of an orbital arc - limits the number of events to be analyzed. For stations with wide geographical distribution, a high satellite such as Lageos is necessary, but Lageos has been in orbit only for about 1. year. While geographically close stations can use lower satellites, few of the clusters of stations in western Europe and western United States operated for any extended periods of time. The data available to us for this program have accuracies as outlined in Table 1.

Some caveats are in order regarding the data in Table 1. First, the 1967-1968 data (provided by the Centre National d'Etudes Spatiales) were taken with first-generation laser stations. The 1- to \(2-m\) noise should be no limit on the analysis. It was argued above that the bias, probably 1 to 2 m , should cancel; however, epoch timing was certainly no better than 1 msec and probably worse, which immediately places an accuracy limit of 5 to 10 m for each event. Second, the 1974 San Diego-Quincy baseline is almost north-south, and the laser data (provided by the National Aeronautics and Space Administration's Goddard Space Flight Center) were taken on the BE-C satellite. With an inclination of \(39^{\circ}\) (approximately the latitude of the northern station, Quincy), BE-C's tracks passed normal to the baseline, resulting in a poor overall geometry. The baseline from San Diego to Mt. Hopkins was east-west, which is favorable, but the data from Mt. Hopkins were only of 1- to 2-m accuracy. In 1974, the laser at Mt. Hopkins operated with a low repetition rate, which limited the data available. Furthermore, the 1976 Lageos data from Brazil, Peru, and

Mt. Hopkins were of 1 to 2 m in quality. Finally, there were only eight successful simultaneous passes from San Diego to Bear Lake.

From this mixture of data, we present detailed results from the San DiegoMt. Hopkins baseline. The 1974 data on BE-C were run in 7-day arcs using all the available laser data, a 24th-degree-and-order gravity field, and initial coordinates derived from the analysis of laser tracking data on nine satellites. The laser data, being of unequal number for each station, were edited to obtain approximately a maximum of 150 points evenly distributed throughout each satellite pass. We used simultaneous events in which any overlap in the observed part of the orbit occurred; therefore, most of each observed arc was not common to both stations. From the orbital residuals (rms \(=5 \mathrm{~m}\) ), each station was navigated in its special coordinate system, as described above, by using a least-squares estimator and assigning uncertainties of 10 cm to the San Diego data and 1 m to Mt. Hopkins.

Twenty simultaneous events were obtained on BE-C from this 2-month period; results of the individual baselines determined are given in Table 2. Some long-wavelength structure (compared to the pass length) remains in the residuals - i.e., the orbital motion yet to be modeled - indicating that our assumption about the shape of the trajectory may not be completely true. However, this structure, when present, does not seem to limit the baseline accuracy. Since this method was first developed, improvements in both gravityfield models and orbital theory have noticeably reduced the \(\pi \cdots r^{2} \rightleftharpoons\) of structure in short-arc analyses. Although such structure increases the formal uncertainty of a baseline determination, it does not, in the mean, change the value of the averaged baseline. Therefore, as general orbit-computation capabilities improve, we can expect individual baselines to be more accurately determined, thereby either increasing the accuracy of the averaged baseline or reducing the number of individual determinations necessary to obtain a given accuracy.

Each solution was iterated to delete bad observations. Using the computed uncertainty as a weight, we obtained the mean of 19 events (one was deleted); the results are summarized in Table 3.

The same analysis procedure was done on Lageos data taken in 1976. The main difference here is that the Lageos satellite is in a much higher altitude than BE-C and has a significantly smaller area-to-mass ratio. Therefore, both gravitational and nongravitational perturbations are smaller and the uncertainties in these perturbations are smaller still. The overall orbital fit for Lageos is considerably better, and the amount of structure in the residuals is very small. The residuals for one arc of Lageos data are shown in Figure 4, while the results of the 14 baselines determined on this satellite are given in Table 4. In the figure, the data from both stations are on the same time base, but the meter scale has been adjusted to reflect the difference in noise levels. The weighted mean of these results is given in Table 5.

Combining the 33 San Diego-Mt. Hopkins baselines, we computed a single weighted mean, shown in Table 6.

Finally, Table 7 presents the results of a scalar transformation analysis performed from the data in Table 1.

\section*{CONCLUSIONS}
A. Scalar translocation can provide baseline determinations independent of GM and a global scale based on the light second. The accuracy is currently better than 1 m , and, aside from data accuracy, there seems to be no limitation to obtaining results with an accuracy better than 10 cm . This accuracy is independent of baseline length.
B. Both high and low satellites can be used with equal success.
C. Scalar translocation baselines provide another independent data type that can be combined with other data to obtain a global reference system.
D. Continued acquisition of laser data and continued improvements in data accuracy and in orbit-computation capabilities will enable baseline determinations to be made with centimeter accuracy.

\section*{5: ACKNOWLEDGMENT}

This work was supported in part by Grant NSG-5148 from the National Aeronautics and Space Administration.

\section*{6. REFERENCES}

Aardoom, L., Girnius, A., and Veis, G., 1967, Determination of the absolute space directions between Baker-Numn camera stations. In The Use of Artificial Satellites for Geodesy, ed. by G. Veis, National Tech. Univ., Athens, vol. II, pp. 315-344.
Anderle, R. J., 1974, Transformation of terrestrial survéy data to doppler satellite datum. Journ. Geophys. Res., vol. 79, pp. 5319-5331.
Blaha, G., 1971, Investigation of critical configurations for fundamental range networks. Ohio State Univ. Dept. Geodetic Sci. Rep. No. 150, 274 pp.
Blaha, G., 1972, Critical configurations of fundamental range networks. In The Use of Artificial Satellites for Geodesy, ed. by S. W. Henriksen, A. Mancini, and B. H. Chovitz, Amer. Geophys. Union Monograph No. 15, pp. 1-8.
Brown, D. C., 1976, Doppler positioning by the short arc method. Presented at the International Geodetic Symposium, Satellite Doppler Positioning, Las Cruces, New Mexico, October.
Gaposchkin, E. M., editor, 1973, 1973 Smithsonian Standard Earth (III). Smithsonian Astrophys. Obs. Spec. Rep. No. 353, 388 pp.
Gaposchkin, E. M., and Lambeck, K., 1970, 1969 Smithsonian Standard Earth (II). Smithsonian Astrophys. Obs. Spec. Rep. No. 315, 93 pp.
Lundquist, C. A., and Veis, G., editors, 1966, Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth. Smithsonian Astrophys. Obs. Spec. Rep. No. 200, 3 vols., 686 pp.
Melchior, P., publisher, 1975, Comptes Rendus de la XVIe Assemblée Générale de l'U.G.G.I., I.U.G.G. Publ. Office, Paris.
Schmid, H. H., 1974, Worldwide geometric satellite triangulation. Journ. Geophys. Res., vol. 79, pp. 5349-5376.
Smith, D. E., Lerch, F. J., Marsh, J. G., Wagner, C. A., Kolenkiewicz, R., and Kahn, M. A., 1976, Contribution to the National Geodetic Satellite Program by Goddard Space Flight. Center. Journ. Geophys. Res., vol. 81, pp. 10061026.

Strange, W., Hothem, L. D., White, M., 1975, Results of satellite positioning in the United States. Presented at the 1975 Spring Annual Meeting of the American Geophysical Union, Washington, D.C., June.
Veis, G., 1967, Results from geometric methods. In Space Research VII, ed. by R. L. Smith-Rose, S. A. Bowhill, and J. W. King, North-Holland Pub1. Co., Amsterdam, pp. 778-782.

Table 1. Translocation data summary.
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Stations & Satellites & Duration & Data accuracy \\
\hline 1967 & France; Greece & Geos 1, D1C, D1D & 2 months & 2 m \\
\hline 1968 & France; Spain & \[
\begin{aligned}
& \text { Geos } 1 \text { and 2, D1C, } \\
& \text { D1D }
\end{aligned}
\] & 2 months & 2 m \\
\hline 1974 & Mt. Hopkins, Ariz.; San Diego, Calif.; Quincy, Calif. & BE-C & 2 months & 10 cm to 2 m \\
\hline 1976 & Bermuda; Grand Turk; GSFC, Maryland; Patrick AFB, Calif. & Geos 3, Starlette,
\[
\mathrm{BE}-\mathrm{C}
\] & on-going & 10 cm \\
\hline 1976 & Brazil; Peru; Mt. Hopkins; GSFC & Lageos & 2 months & 10 cm to 1 m \\
\hline 1976 & \begin{tabular}{l}
Brazil; Peru; \\
Mt. Hopkins; \\
San Diego; Quincy; \\
Bear Lake, Utah
\end{tabular} & Lageos & 2 months & 10 cm to 1 m \\
\hline
\end{tabular}

Table 2. Individual baselines determined from \(1974 \mathrm{BE}-\mathrm{C}\) data between Mt. Hopkins and San Diego.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MJD} & \multicolumn{2}{|l|}{San Diego} & \multicolumn{2}{|l|}{Mt. Hopkins} & \multirow[b]{2}{*}{Overlap time (min)} & \multirow[b]{2}{*}{Condition number} & \multirow[b]{2}{*}{\begin{tabular}{l}
Scale \\
(ppm)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Baseline \\
(m)
\end{tabular}} \\
\hline & Max elev. & Points & Max elev. & Points & & & & \\
\hline 42336 & \(45^{\circ}\) & 62. & \(42^{\circ}\) & 26 & 6.1 & \(3: 1 \times 10^{3}\) & -4.7 & \(571554.547 \pm 0.6544\) \\
\hline 42336 & 74 & 54 & 63 & 27 & 9.5 & \(6.2 \times 10^{2}\) & 0.7 & \(571548.495 \pm 0.8048\) \\
\hline 42337 & 51 & 80 & 53 & 37 & 10.5 & \(5.0 \times 10^{2}\) & 3.1 & \(571552.680 \pm 0.5790\) \\
\hline 42337 & 86 & 111 & 75 & 39 & 12.0 & \(4.9 \times 10^{2}\) & 0.8 & \(571548.612 \pm 0.9168\) \\
\hline 42345 & 44 & 7 & 43 & 22 & 3.4 & \(3.9 \times 10^{3}\) & -2.1 & \(571554.129 \pm 0.6377\) \\
\hline 42345 & 68 & 53 & 75 & 31 & 7.3 & \(5.0 \times 10^{2}\) & 0.0 & \(571552.872 \pm 0.7775\) \\
\hline 42345 & 50 & 31 & 41 & 31 & 7.1 & \(1.3 \times 10^{3}\) & -5.1 & \(571551.490 \pm 0.6920\) \\
\hline 42388 & 68 & 53 & 79 & 9 & 7.2 & \(1.7 \times 10^{3}\) & 0.0 & \(571561.104 \pm 13.77\) \\
\hline 42388 & 56 & 56 & 47 & 10 & 5.2 & \(3.3 \times 10^{3}\) & -2.2 & \(571552.967 \pm 10.56\) \\
\hline 42390 & 46 & 36 & 63 & 13 & 3.3 & \(2.4 \times 10^{3}\) & 1.9 & \(571563.591 \pm 1.124\) \\
\hline 42390 & 71 & 51 & 58 & 18 & 6.9 & \(9.4 \times 10^{2}\) & 1.5 & \(571558.446 \pm 3.942\) \\
\hline 42391 & 38 & 51 & 52 & 30 & 10.8 & \(7.7 \times 10^{2}\) & 1.1 & \(571560.289 \pm 2.589\) \\
\hline 42391 & 81 & 55 & 70 & 38 & 11.1 & \(2.6 \times 10^{2}\) & 2.2 & \(571557.493 \pm 3.293\) \\
\hline 42391 & 47 & 53 & 42 & 33 & 9.2 & \(5.2 \times 10^{2}\) & -1.2 & \(571552.937 \pm 1.751\) \\
\hline 42391 & 51 & 42 & 53 & 20 & 1.1 & \(2.3 \times 10^{3}\) & 5.1 & \(571553.692 \pm 0.7093\) \\
\hline 42392 & 87 & 49 & 74 & 41 & 10.2 & \(2.5 \times 10^{2}\) & 2.2 & \(571559.756 \pm 2.276\) \\
\hline 42392 & 50 & 63 & 44 & 26 & 7.7 & \(9.6 \times 10^{2}\) & -0.4 & \(571554.976 \pm 2.267\) \\
\hline 42392 & 48 & 40 & 49 & 24 & 5.1 & \(4.3 \times 10^{3}\) & 2.5 & \(571552.393 \pm 0.7034\) \\
\hline 42394 & 60 & 55 & 50 & 32 & 10.1 & \(3.9 \times 10^{2}\) & -0.5 & \(571554.632 \pm 4.430\) \\
\hline 42395 & 52 & 52 & 69 & 23 & 5.7 & \(1.6 \times 10^{3}\) & 1.2 & \(571558.548 \pm 5.258\) \\
\hline
\end{tabular}

Table 3. Results of 1974 San Diego - Mt. Hopkins baseline.
\begin{tabular}{cc} 
Baseline & \(571552.685 \pm 0.510 \mathrm{~m}\) \\
rms & 2.16 m \\
\(\sigma_{0}\) & 2.19
\end{tabular}

Table 4. Individual baselines from 1976 Lageos data between Mt. Hopkins and San Diego.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & \multicolumn{2}{|l|}{San Diego} & \multicolumn{2}{|l|}{Mt. Hopkins} & \multirow[b]{2}{*}{\[
\underset{(\min )}{\text { Overlap }} \text { time }
\]} & \multirow[b]{2}{*}{Condition number} & \multirow[b]{2}{*}{Scale (ppm)} & \multirow[b]{2}{*}{Baseline (m)} \\
\hline & MJD & Max
elev. & Points & Max elev. & Points & & & & \\
\hline & 43077 & \(63^{\circ}\) & 49 & \(57^{\circ}\) & 69 & 17.2 & \(2.0 \times 10^{3}\) & -1.0 & \(571552.612 \pm 1.392\) \\
\hline & 43080 & 61 & 77 & 66 & 51 & 34.6 & \(2.3 \times 10^{3}\) & -1.3 & \(571556.037 \pm 1.123\) \\
\hline & 43081 & 70 & 76 & 80 & 65 & 41.8 & \(6.5 \times 10^{2}\) & -1.6 & \(571556.198 \pm 0.4878\) \\
\hline & 43082 & 48 & 81 & 47 & 68 & 11.8 & \(9.2 \times 10^{3}\) & -1.6 & \(571555.416 \pm 1.745\) \\
\hline & 43086 & 79 & 182 & 89 & 142 & 34.6 & \(9.5 \times 10^{2}\) & -1.5 & \(571556.111 \pm 0.3166\) \\
\hline & 43087 & 31 & 23 & 61 & 119 & 3.7 & \(3.7 \times 10^{3}\) & -0.5 & \(571552.249 \pm 1.659\) \\
\hline \(\stackrel{\sim}{\omega}\) & 43090 & 56 & 168 & 49 & 55 & 29.3 & \(3.6 \times 10^{3}\) & -0.1 & \(571549.287 \pm 0.5390\) \\
\hline & 43092 & 25 & 174 & 25 & 11 & 8.1 & \(8.3 \times 10^{4}\) & 0.8 & \(571554.450 \pm 2.202\) \\
\hline & 43098 & 52 & 25 & 47 & 66 & 1.6 & \(2.2 \times 10^{4}\) & -0.6 & \(571554.349 \pm 2.296\) \\
\hline & 43101 & 42 & 173 & 46 & 136 & 31.6 & \(1.1 \times 10^{3}\) & -0.1 & \(571554.365 \pm 0.3272\) \\
\hline & 43104 & 37 & 184 & 40 & 58 & 11.0 & \(2.7 \times 10^{4}\) & -0.1 & \(571553.893 \pm 0.9981\) \\
\hline & 43106 & 49 & 166 & 54 & 68 & 22.4 & \(2.7 \times 10^{3}\) & -0.6 & \(571554.150 \pm 0.4635\) \\
\hline & 43106 & 42 & 102 & 47 & 78 & 7.3 & \(4.4 \times 10^{4}\) & 0.1 & \(571549.649 \pm 1.240\) \\
\hline & 43107 & 74 & 155 & 78 & 91 & 32.8 & \(1.7 \times 10^{3}\) & -1.4 & \(571555.108 \pm 0.5900\) \\
\hline
\end{tabular}

Table 5. Results of 1976 San Diego - Mt. Hopkins baseline.
\begin{tabular}{cc}
\hline Baseline & \(571554.582 \pm 1.14 \mathrm{~m}\) \\
rms & 2.05 m \\
\(\sigma_{0}\) & 3.40 \\
\hline
\end{tabular}

Table 6. Combined results for San Diego - Mt. Hopkins baseline.
\begin{tabular}{cc}
\hline Baseline & \(571553.947 \pm 0.401 \mathrm{~m}\) \\
rms & 2.27 m \\
\({ }^{\sigma_{0}}\) & 3.01 \\
\hline
\end{tabular}

Table 7. Baseline determinations.
\begin{tabular}{llrlc}
\hline Station pair & \multicolumn{1}{c}{ Location } & \multicolumn{1}{c}{ Distance (m) } & rms (m) & \begin{tabular}{c} 
Number of \\
observations
\end{tabular} \\
\hline \(7061-7921\) & San Diego - Mt. Hopkins & \(571553.947 \pm 0.401\) & 2.271 & 33 \\
\(7907-7921\) & Peru - Mt. Hopkins & \(6471755.860 \pm 0.808\) & 3.790 & 23 \\
\(7907-7929\) & Peru - Brazi1 & \(4055910.289 \pm 0.833\) & 3.228 & 16 \\
\(7061-7080\) & San Diego - Quincy & \(896271.494 \pm 0.993\) & 4.439 & 21 \\
\(7063-7921\) & GSFC - Mt. Hopkins & \(3147781.344 \pm 0.619\) & 2.052 & 12 \\
\(7921-7082\) & Mt. Hopkins - Bear Lake & \(1137306.990 \pm 0.758\) & 2.004 & 8 \\
\(7061-7082\) & San Diego - Bear Lake & \(1140020.309 \pm 0.711\) & 2.012 & 9 \\
\hline
\end{tabular}

\section*{FIGURE CAPTIONS}

Figure 1. Illustration of the effect of an error in GM.

Figure 2. Coordinate system used in the translocation analysis.

Figure 3. Illustration of the network of baselines obtained from the method of translocation.

Figure 4. Plot of range residuals versus time for Lageos after adjustment by the translocation method. The baseline is between San Diego and Mt. Hopkins.


Figure 1


Figure 2


Figure 3


Figure 4```

