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ABSTRACT
 

This document is Volume I of a three volume report issued as
 

MITRE/METREK Technical'Report, MTR-7519. The three volumes cover
 

the following principal subjects:
 

Volume I contains a synthesis of the results of two
 

previous MITRE/METREK studies [1,2] and an update of 

the information contained in them. The update was
 

made during the Summer and Fall of 1977. These studies
 

deal with a comprehensive review of stratospheric
 

trace constituent measurement requirements. The
 

scope of the study was "restricted to those constit­
uents which fall into the general category of "air
 

pollutants."
 

Volume II separates stratospheric trace constituent
 

measurement requirements into two somewhat overlapping
 

areas. 
 In the first area, it is assumed that the only
 

problem of interest is ozone; its chemistry chain, en­

vironmental effects and measurement requirements. In
 

like manner, in the second area it is assumed that the­

only problem of interest is stratospheric aerosols;
 

their chemistry, effects- and measurement requirements.
 

Volume ITTI contains material of a supportive nature
 

not considered to be of sufficient importance to be
 

included in the other two volumes. This material is
 

of two types:
 

* 	Information and numerical evaluations usedin the
 

development of mission evaluations forIstrato­

spheric trace constituent measurement.
 

Various spatial and temporal distributions for
 

those stratospheric trace species having sufficient
 

measurements available to warrant their presentation.
 

" 


The reader is advised to note that the results and conclusions pre­

sented here are based on the specific combination of remote sensors, 

Shuttle orbits and analysis values - selected to exemplify the tech­
are typical,nique presented. Although these sensors and orbits 


extension of the study to include all available sensors and many
 

orbits, or to another specific small combination .could result in
 

different results and conclusions.
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1.0 INTRODUCTION AND CONCLUSIONS
 

1.1 General .Objectives 

In previous work for the NASA/Langley Research Center, MITRE
 

completed two studies in the general area of remote measurement of
 

stratospheric trace constituents [1,2]. In the first of these, an
 

assessment was made of the capabilities of specific NASA remote
 

sensing systems to provide appropriate measurements of stratospheric
 

parameters. This study emphasized roles of. the aerosol, 
the nitrogen
 

oxide/ozone chemistry cycle, and the chlorine/ozone chemistry cycle
 

in 	the stratosphere. It also evaluated the capabilities of six
 

specific instruments to provide required measurements of stratospheric
 

constituents.
 

In the second study a more comprehensive view of all strato­

spheric trace constituents was taken.- This included:
 

* 	development of a prioritized list of requirements for strato­
spheric trace' constituent measurement.
 

" 	a comprehensive summary of present knowledge of stratospheric
 
trace constituents.
 

* 	development of a structured constituent/instrument/mission
 
evaluation technique.
 

* 	application of the technique to a specific set of instrument/
 
orbit combinations.
 

Since the completion of the two original studies a need has been
 

recognized to synthesize the previbus~studies along 7ith additional
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updated information to produce a single document having the following
 

principal objectives:
 

" 	providing the scientific community with a concise view of the
 
current status of knowledge of stratospheric trace consti­
tuents and adding to the impetus for frank and in-depth
 
discussions of future measurement requirements.
 

* 	providing the instrument development community with an
 
information'set which would guide them in selecting design
 

goals for new instrument development based on the combination
 
of scientific needs and instrument capabilities.
 

This document presents the results of this synthesis and updating.
 

(Additional supporting material to this synthesis is presented in
 

appendix form in Volume III.)
 

1.2 Approach Taken in This Study
 

In most areas covered by this study, considerable effort has
 

already been expended by many groups, not only within NASA but also
 

among other government agencies, the private sector and in the two
 

previous MITRE studies. MITRE's principal role in the present study
 

was to integrate and reconcile these sometimes disparate sources and
 

to provide informed opinions in the areas where either no data
 

existed or a consensus was absent. The following subsections sum­

marize the major sections of this report.
 

1.2.1 The Stratosphere
 

The purpose of section 2.0 is to provide a readily avail­

able short summary of the general characteristics of the strato­

sphere. The temperature regime and circulation are discussed in terms
 

of the general dynamic processes to illustrate the.formation of the
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unperturbed stratosphere. This leads to a summary of the strato­

spheric constituents and their role in atmospheric chemistry. This
 

section is intended only as a supporting base of information for
 

understanding the various topics covered later.
 

1.2.2 Current Status of Stratospheric Measurement Techniques
 

In section 3.0, the multitude of stratospheric measurements
 

which have been made are divided into two generic categories based on
 

the observation method; contact and remote. Within each general
 

category the measurement techniques are segregated into groups whiih
 

depend on the chemical, physical or optical technique used. Also
 

discussed is the current status and general characteristics of the
 

various platforms available for support of stratospheric measurements.
 

1.2.3 User Requirements for Stratospheric Measurements
 

The role of section 4.0 is to discuss some general features of
 

NASA's interaction with users of stratospheric data and offer two
 

major examples (solar ultraviolet radiation and climate) of pressing
 

atmospheric pollution problems which demand of NASA a careful and
 

effective development program. The emphasis is placed on who uses
 

the data and how they use it in order to develop the specifics of the
 

measurement requirements.
 

1.2.4 Science Requirements
 

In section 5.0 the analysis of user-needs and-general measure­

ment requirements developed in the previous section (4.0) are used in
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to 	develop
combination with the results of many other recent studies 


a set of scientific requirements for straztospheric,racecoflstituent
 

measurements. The section includes a discussion of the physical and
 

chemical properties of the stratosphere with particular emphasis -on
 

the nitrogen oxide cycle and-the chlorine cycle. This material is
 

presented to support the development of the scientific criteria and
 

the prioritized list of stratospheric measurements presented later in
 

the section.
 

1.2.5 Orbital Influences and Instrument Performance
 

The first part of section 6.0 presents a general discussion of
 

the interplay of the various generic types of instruments and
 

possible orbits in order to quantify the sampling characteristics.
 

The discussion centers on two topics:
 

" 	orbital properties, instrumentation and resulting global
 

coverage, and
 

" appropriateness-of a set of instrument/orbit parameters for
 

monitoring a set of significant stratospheric constituents.
 

In the later part of the section a number-of specific remote sensing
 

instruments that are either operational or under development for
 

stratospheric monitoring are discussed and their performance charac-­

teristics tabulated.
 

1.2.6 Mission Evaluation:
 

Section 7.0 presents the results of the application of a method
 

for the evaluation of various stratospheric species measurement mis­

sion and analysis efforts. The method itself was developed during
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previous MITRE effort [2] and is presented in detail in Appendix A. 

Much-,of the supporting data used in these evaluations has been 

assembled in several of the appendices of Volume III of this report. 

The evaluations include all possible combinations of three orbits (a 

300 Shuttle type, a 560 Shuttle type and a polar sunsynchronous 

type) with one or more of four remote instruments (LIMS, SAGE, 

CIMATS/solar occultation and HALOE).
 

1.3 	 Conclusions of the Study
 

All of the material presented in this report may be organized
 

into 	three main areas for discussion of the results and conclusions:
 

" Current and projected measurement capability
 

* Requirements for stratospheric measurements
 

* Selected instrument/orbit evaluations
 

Each 	of these areas is treated separately below.
 

1.3.1 Current and Projected Measurement Capability
 

Analysis of the material presented in section 3.0 indicates
 

three key conclusions:
 

(i) 	The performance of current remote stratospheric sensors,
 
in some cases, compares quite well with identified measure­
ment requirements. Their ability to measure other species
 
has not been demonstrated. A number of in-situ methods
 
also exist with comparable sensitivity and accuracy but
 
whose measurements are of a limited utility, given their
 
spatial and temporal sampling characteristics.
 

(2) None of the current, in situ methods have- the capability
 
to satisfy the requirements for global monitoring and the
 
temporal constraints derived from the users needs portion
 
of the study.
 

1-5
 



(3) 	Existing, non-remote techniques will continue to play an
 
important.role in stratospheric investigations for both
 
corroboration of remotely collected data and in the evo­
lutionary development of future remote sensors.
 

All of the measurement techniques discussed have their strengths
 

and weaknesses. The in-situ methods are extremely sensitive and
 

accurate but suffer from limited coverage and local contamination
 

problems. Remote sensing techniques offer wide area coverage and
 

relatively long mission lifetimes. Their disadvantages lie in the
 

reduced sensitivity to low concentration levels and the requirements
 

for auxiliary data to invert the integrated path measurements which
 

most utilize. Indeed, the masses of data which must be processed in
 

order to yield the desired information is at least a temporary
 

disadvantage of remote sensing methods. The development of better
 

models and improved data handling techniques is expected to minimize
 

these problems.
 

The general features of remote sensors of the stratosphere
 

aboard a satellite platform reveal two key features:
 

(1) 	nadir-viewing instrumentation provides superior performance
 
in the areas of horizontal resolution and measurement time
 
per orbit
 

(2) 	limb-viewing instrumentation provides superior sensitivity,
 
and vertical resolution
 

In most other areas, the two basic monitoring methods are
 

equally capable. The science requirements include the need for
 

vertical profiles and data of fairly high quality. Limb-viewing
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instrumentation appears to satisfy these needs but .provides limited
 

temporal sampling for solar occultation when certain orbits are used.-


As a result, instrumentation of the limb emiss-jon type represents the
 

optimum choice. In general, this type of instrument has the poten­

tial of satisfying scientific requirements for vertical profiles as
 

well as those for spatial and temporal sampling.
 

Orbital considerations emerge as a key element in the applica­

bility of various sensor systems to specific measurement roles. Sun­

synchronous orbits provide optimum coverage for nadir-viewing, thermal
 

source sensors and limb-viewing emission source sensors. High
 

angle non-sunsynchronous orbits are preferred for nadir-viewing
 

reflected solar source or limb-viewing solar occultation sensors, if
 

geographical coverage is to be maximized.
 

1.3.2 Requirements for Stratospheric Measurements
 

Material utilized in the selection of requirements for strato­

spheric monitoring has been derived from the user needs survey
 

as well as the detailed investigation of data needed for a better
 

understanding of stratospheric chemistry. In addition, a review of
 

current measurement methods examined the quality of data currently
 

available for a variety of gases of interest.- The proposed accuracy
 

requirements reflect improvements, where reqdired, over current
 

limitations.
 

In many cases no specific requirements have been expressed for
 

spatial or temporal sampling. In view of the generally infrequent
 

1-7
 



and localized nature of current measurements, any satellite moni­

toring system will represent an.improvement in these categories.
 

It is anticipated that the need will exist for global coverage at a
 

rate which provides data on diurnal and seasonal variations as well
 

as longer term trends.
 

Measurement requirements for various categories of users and
 

uses have been tabulated-in Tables 4-V through 4-XI. Based on these
 

results and numerous other specific studies a prioritized list of
 

properties and species has been developed (Table 5-1). The proper­

ties and species identified as having the greatest priority for
 

measurement were:
 

" Stratospheric temperature
 

* Solar irradiance
 

* Earth radiahce
 

" Water vapor
 

* Ozone
 

* Aerosols
 

" Carbon Dioxide
 

It must be remembered that this list has been developed on a purely
 

scientific basis; without regard to present knowledge of the distri­

bution or present or potential measurement capability. Later in the
 

report application of the evaluation methodology presented indicates
 

clearly that most of the above listed properties and species do not
 

receive the highest priority for planned satellite missions since
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their -distributions are much more understood-than most of the other
 

import;ant stratospheric species. Those species which show high-"
 

priority for satellite missions generally fall into priority groups 2
 

and 3 and are typically the components of the basic reactions involved
 

in the direct production or depletion of ozone. These species fall
 

into four general categories:
 

" Pure oxygen - Ox
 

" Hydrogen Oxides - H, H2 , HOx
 

* Nitrogen Oxides - NOx
 

* Chlorine Oxides - Cl and ClO x
 

As our understanding of the stratosphere matures, various consti­

tuents will receive more or less emphasis with respect to sampling
 

and data quality. While this list is presently current, changes
 

should be anticipated, particularly when measurements exceed the
 

current minimum requirements.
 

It should be noted that these requirements have been generated
 

independently of any instrument considerations. Therefore, this
 

material represents a set of performance goals for contact or remote
 

sensors placed on airborne, orbiting, or terrestrial platforms. In
 

the case of those species not yet measured, airborne measurements
 

should receive considerable attention in order to establish back­

ground levels and to corroborate proposed remote sensing techniques.
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1-3.3 Selected Instrument/Orbit Eialuations
 

Section 7.0 presented the results of ,the specific sensor-orbit­

species study undertaken by this task. Within the constraints
 

imposed by the sensor complement examined and the choice of three
 

orbits selected, the various sensor-orbit combinations were evaluated
 

for each species of interest. For stratospheric study, the limb­

scanners scored significantly higher than either the nadir-viewing or
 

the solar occultation class of instruments. This is attributable to
 

the direct vertical profiles which the limb-scanners provide. Among
 

the three orbits investigated, the 560 orbit scored higher than
 

either the 300 or the sunsynchronous orbit; This may be understood
 

by considering the offsetting effects of coverage provided by limb
 

viewing instruments that measure emission and those that depend upon
 

solar occultation. For limb emission instruments, the higher the
 

inclination angle the greater the global coverage. However,-the
 

poorest latitudinal coverage of all the combinations examined is
 

obtained in the case of solar occultation from sunsynchronous
 

orbits. For limb emission and nadir-viewing instruments, the sun­

synchronous orbit will provide excellent latitudinal coverage.
 

It must be emphasized that the present evaluation was performed
 

for a limited number of instruments and orbits. The methodology is
 

sufficiently flexible to allow new instruments to be included in
 

subsequent analyses of this type. If any of the instruments con­

sider-ed should prove incapable of all the measurements for which they
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are credited, their relative standing,in a later analysis would
 

suffer proportionately.
 

In Section 7.1 an analysis of various instrument combinations
 

is performed. The results confirm the relative superiority of limb
 

viewing instruments for a stratospheric measurement program. In
 

terms of scientific value, it is shown that a two-instrument mission
 

which contains Limb IR Monitor for the Stratosphere (LIMS) and
 

Correlation Interferometer for the Measurement of Atmospheric Trace
 

Species (CIMATS) provided greater values than half of the three­

instrument combinations and compares favorably even to the four­

instrument combination included. For all but one of the eleven
 

combinations examined, the 56 orbit is seen to be capable of satis­

fying the greatest number of scientific requirements.
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2.0 11TE STRATOSPHERE 

Thge purpose of this section is to acquaint the reader with the
 

stratosphere. The temperature regime and circulation are discussed
 

in terms of the geneial dynamic processes to illustrate the forma­

tion of the unperturbed stratosphere. This leads to a summary of
 

the stratospheric constituents and their role in atmospheric
 

chemistry.
 

2.1 General Properties
 

The two major reasons for observing or monitoring the strato­

sphere are to gaii a more complete understanding of the subject and
 

to be able to predict changes in the environment. Inadvertent modi­

fications of the atmosphere by pollutants can have far-reaching
 

effects upon man's activities. Chemical and physical processes, in
 

terms of b6th ozone (03) destruction and aerosol formation, will be
 

summarized below to provide a background for later discussions con­

tained in this report.
 

A series of atmospheric layers may be defined according to the
 

temperature structure. These layers are:
 

* troposphere,
 

* stratosphere arid,
 

* mesosphere.
 

Averaged over reasonable long periods of time, the temperature
 

of the troposphere decreases regularly with altitude. At an elevation
 

that varies systematically with latitude and season, thetemperature
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becomes constant. This property defines the tropopause, which lies
 

between 8 and 16 km. The stratosphere is the region above the
 

tropopause and below the stratopause. In this region, the temperature
 

is typically constant or increasing with~altitude. This increase is
 

reversed at an altitude of about 45 to 50'km--the stratopause. The
 

region immediately above the stratopause is the mesophere.
 

The vertical distribution of temperature in the tropical and the
 

polar zones is shown in Figure 2-1 [3]. The two temperature profiles
 

of Figure 2-1 show substantial differences between polar and tropical
 

regions. An indication of the temperature changes with latitude is
 

illustrated by a series of such profiles.
 

The special properties of the stratosphere--its temperature
 

inversion and the resulting slow vertical mixing--are a consequence
 

of the presence of 03, which is formed in the upper stratosphere.
 

The formation of 03 occurs at an altitude of 30 to 50 km by the
 

photolysis of molecular oxygen, (02) producing atomic oxygen (0),
, 


which in turn recombines with 02 to form 03. Some of the physical
 

reasons behind the temperature inversions at the tropopause are dis­

cussed below.
 

If heat from the ground were the only source of energy in the
 

atmosphere, the vertical temperature at a given location would
 

decrease monotonically with altitude. In contrast, measurement of
 

the vertical temperature profiles shows that beyond the tropopause,
 

to a height of about 50 km, the temperature increases. At this
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FIGURE 2-1 
SAMPLE TEMPERATURE PROFILES IN TROPICAL AND POLAR ZONES [3]
 

(Troposphere, stratosphere, stratopause, and mesosphere
 
defined in terms of vertical temperature profils)
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height, the stratopause, the temperature undergoes an inversion and
 

again-statstp decrease.
 

One to three percent of the incoming solar radiation is absorbed
 

by the 03 layer in the stratosphere. The absorbed energy heats
 

adjacent layers. The model now contains two sources of energy in'the
 

atmosphere, one at the surface and the other at an altitude of about
 

30 to 50 km. From this simplified picture, it is evident that a
 

temperature inversion should occur at a height between the two
 

sources. The region where the inversion occurs defines the tropo­

pause, which lies between 8 and 16 km depending on the season,
 

latitude, and synoptic weather situation.
 

2.2 	 Stratospheric Constituents
 

The constituents of the stratosphere may be separated into four
 

categories. 	 These are:
 

a major gaseous constituents,
 

* minor gaseous constituents,
 

* tra6e gaseous constituents, and
 

* aerosols.
 

The major atmospheric constituents are molecular nitrogen (N2),
 

02, Argon (A), and carbon dioxide (C02). The accepted value for N2
 

concentration is 78.08 percent by volume of dry air. Recent oxygen
 

measurements show a concentration of 20.95-percent by volume when
 

corrected to dry air conditions [4]. Argon has a stratospheric back­

ground concentration'of 0.93 percent and carbon dioxide of 0.03
 

percent at about 20 km.
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The minor constituents, such as 03, water vapor (H20), methane
 

(CH4), -etc.,-have concentrations of. a few parts per million,in the-t
 

stratosphere. Table 2-1 summarizes some of the minor constituents at
 

20 km that are important in stratospheric chemistr9. Table 2-11 sum­

marizes for some of the important trace gaseous constituents, such
 

as nitric oxide (NO), sulfur dioxide (SO2), etc., their concentra­

tions at 20 km, their variability, and their role in stratospheric
 

chemistry. These tables are intended as background material only.
 

A complete development of the properties and measurement requirements
 

of stratospheric species is given later, in Section 5.
 

Besides these chemical constituents, a "layer" of particles several
 

kilometers thick exists in the stratosphere. This layer, called the­

"Junge layer," is -located several kilometers above the tropopause.
 

The Junge, or sulfate layer, has a particle density of two to ten
 

times that exhibited above and below this layer. The particle size
 

is predominately in the 0.1 to 1.0 m radius range. The particle
 

distribution shows a decreasing concentration with increasing size.
 

The particles consist mainly of sulfuric acid solutions and are
 

probably in a supercooled liquid'state.
 

2.3 Transport Phenomena
 

Clouds, rain, and thunderstorms are strong evidence for the con­

siderable vertical motion-characteristic of- the -toposphere. In
 

thunderstorms vertical velocities,'which are generally 10 cm/sec in
 

normal latitude-cyclones and anticyclones, may .reach 10 to 20 m/sec.
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TABLE 2-I 

MINOR STRATOSPHERIC CONSTITUENTS 

Species Concentration at 20 km- Variability Importance 

03 6 ppmv *Factor of two 
or more diur-
nal, season, 
latitude and 
height. 

tUV-shield, 
radiative 
heating 
and cooling 
of strato­
sphere. 

H20 3 ppmv With latitude, 
season, and 
altitude. 

Radiative 
balance, 
Ulouds, 
particle
formation, 
03 chemistry. 

CH4 1 ppmv Decreases 
with height 
above tropo-
pause. 

Chemical 
source of 
OH. Possible 
sink of Cl, 
indicator of 
tropopause 
interchange. 

H2 0.55 ppmv Increases to 
a maximum of 
0.8 ppmv at 
28 km and 
decreases to 
0.4 at 50 km. 

03-chemistry. 

N2 0 0.1 ppmv Decreases with 
altitude, sea-
son, and 
latitude. 

Source of 
stratospheric 
NO. 

CO 0.0'5 ppmv May decrease 
above tropo-
pause, but 
actual pro-
file and 
variations 
are unknown. 

Indicator of 
troposphere­
stratosphere 
exchange. By­
product of CH4 
chemistry. 

2-6 



0 

TABLE 2-II
 

TRACE STRATOSPHERIC CONSTITUENTS
 

Species 


HN03 


NO2 


NO 


OH 


HCI 


Cl 

CIO 


CH20 


NH3 

so2 


<HC> 


Concentration
 
at 20 km 


3 ppbv 


3 ppbv 


0.1 ppbv 


10-4ppbv 

(estimated) 


1 ppbv 

10- 5 ppbv 

(estimated)
 

Unknown 


<2 ppbv 


10- 5 ppbv 

(estimated) 


Unknown 

Unknown 


Unknown 


Variability 


With height, ­

season, latitude 
and possibly 

diurnally. 


increases up to 


40 km; unknown 

above
 

Unknown, some 

variation with 

altitude
 

Unknown - may be 

related to H2) 


Unknown 


Unknown 


Unknown 


Unknown 


Unknown 


Unknown 

Unknown 


Unknown 


Importance
 

03-chemistry
 
spec fically sink
 
of NOx, long resi­
dence time, there­
fore, useful as a
 
tracer, and source
 
of nitrate particles
 

Catalytic reaction
 

with 03
 

Catalytic reaction
 
with 03
 

Ozone chemistry,
 
Aerosol chemistry,
 
methane oxidation
 
which generates CO
 

Ozone chemistry,
 
Aerosol chemistry
 

Ozone chemistry
 

Ozone chemistry
 

May be important
 
in OH budget
 

Involved in a
 
variety of photo­
chemical reaction
 

Particle formation, 
and involved in HCI 
chenthry-

Particle formation
 

OH budget, particle
 
formation
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In the stratosphere, however, the temperature increases with;
 

,height providing an: equilibrium condit-ion. For this reason, the 

vertical motions rarely exceed a few centimeters per second and are 

often much smaller. In other words, an air parcel moves up or down 

more slowly in the stratosphere than it does in the troposphere. 

This is not -true for horizontal motions in the stratosphere which are 

Typical horizon­significantly more rapid than the vertical motions. 


tal wind velocities in the stratosphere are of the order of 1 to 100
 
- 4 - I
to 10
 

m/sec, whereas vertical velocities are in 
the range of 10
 

m/sec.
 

The overall structure of the wind field in the stratosphere has
 

been investigated and shows a complicated latir !'i-a! and sedsonal
 

dependence [5,6]. In general, there are some correlations between
 

the meridional (N-S) and vertical wind fields at different times of
 

the year [41. No correlation seems to exist between the rapid zonal
 

(E-W) circulation and vertical wind data.
 

In summary, because of the slow vertical mixing, the contaminants
 

which are introduced into the stratosphere at a particular altitude
 

will remain near that altitude for periods as long as several years
 

[7]. This long-residence time allows the contaminants to take part
 

actively in the chemical and radiative processes of the stratosphere.
 

In the case where a cbntaminant- is capable of entering a catalytic
 

process which would lead to the destruction of an important stratos­

pherac constituent such as ozone, the consequences are of great
 

importance and must be thoroughly investigated.
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3.0 	 -CURRENT STATUS OF STRATOSPHERIC MEASUREMENTS AlP TECHNIQUES 

.1 General Techniques
 

For the purpose of this study, the multitude of stratospheric
 

measurements which have been performed are divided into two generic
 

categories; contact measurements and remote sensing measurements.
 

Within each general category the experiments are segregated into
 

groups which depend upon the chemical, physical or optical technique
 

used.
 

3.2 	Contact Measurements
 

Within this category are placed all of those experiments which do
 

not 	utilize remote sensing techniques. It could have been further
 

subdivided into grab-sample and in-situ techniques, but as the intent
 

is to compare the generic category with that of remote sensing, this
 

further distinction has not been made. Historically, contact measure­

ments have formed the bulk of the empirical data collected on stratos­

pheric constituents and processes. They will continue to be used for
 

local or regional measurement programs and to provide calibration for
 

satellite sensor systems now being developed. The following listing
 

provides a representative cross section of the contact measurements
 

which have been, and are being, made.
 

3.2.1 Hygrometers
 

There-are two types of hygrometers currentl-y--in-use for measure­

ments of atmospheric water vapor; the frostpoint hygrometer and the
 

aluminum oxide hygrometer.
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Zn the frostpoint hygrometer a thermoelectric cooler is used to
 

chill a stainless steel mirror to the dew point, the temperature of
 

which is monitored by a platinum resistance element. The onset of.
 

condensation is detected by optical sensors using light reflected
 

from the mirror surface.
 

The aluminum oxide hygrometer consists of an aluminum base, an 

a'1:.1:11 oxide layer, and a porous gold film on top of the oxide. 

The a-c impedance of this device is dependant upon the amount of 

adsorbed water. Calibration curves relate the output signal to water 

vapor concentration. 

3.2.2 Other Water Vapor Contact Sensors
 

Several other techniques for contact sensing of water vapor have
 

been investigated. The Office of Naval Research (ONR) has xamined
 

the Tritium Water Vapor Sensor substrate [26]. The rate is propor­

tional to the exchange of hydrogen ions from water vapor with the
 

polymer-bound tritium.
 

NASA/AMES Research Center has investigated a lithium chloride
 

crystal oscillator as a means of determining water vapor concentra­

tion [26]. The impedance of the crystal, and thus its frequency of
 

oscillation, is changed by the adsorption of water molecules.
 

3.2.3 Electrochemical Measurement of Ozone
 

Most electrochemical techniques utilize Variations on the Komhyr
 

cell. This device depends upon the oxidation of potassium iodide by
 

ozone. The reaction produces iodine which, upon conversion to
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iodide, produces free electrons. The resulting current is directly
 

propoxtional to the ozone concentrationof the gas sample.
 

3.2.4 Chemiluminescence Measurement of Gases
 

These devices depend upon the luminescence induced in dyes such
 

as Rhodamine B by the presence of ozone. The luminescence is propor­

tional to the ozone concentration and the flow rate of the gas through
 

the sensor. A photomultiplier is used to monitor the light flux from
 

the excited dye. The device is uiii]y coupled with pressure and
 

temperature sensors when used in a rocket-deployed ozonesonde.
 

A chemiluminescence technique is also used for detection of 

nitrogen oxides (NO ). This variation utilizes the reaction between NO 

and 03 to produce an excited state of nitrogen dioxide (NO2) and 02. 

The excited state gives up its energy in the form of a photon which
 

is detected by a photomultiplier tube. For NO2 , a catalytic converter
 

is first employed to reduce NO2 to NO, and the previous reaction is
 

followed.
 

3.2.5 Other Nitrogen Oxide Contact Sensors
 

Other contact techniques have been used for the detection of
 

NO . Balloon measurements performed by NASA/Goddard Space Flight
 
x 

Center (OPSC), have used a combination of photoionzation and mass
 

spectroscopy to identify NO and NO [26]. A group at the Illinois
 

2
 

Institute of- -Technology Research Institute has.used-tacryogenic_­

sampler to detect nitrogen oxides as well as CH4, carbon monoxide
 

(CO), and molecular hydrogen (H2) [26]. The technique is usually
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coupled with electron spin resonance for laioratory identification of­

the trace species-.
 

3.2.6 Particulate Techniques
 

Impact filters continue to be the mainstay of the contact
 

measurements of particles in the atmosphere, They are used to
 

collect particles as small as 0.1 p m in radius. The analysis of the
 

samples may take one of many forms, depending upon the species and
 

the preference of the investigator. Among those used are: gamma
 

radiation, X-ray fluorescence, scanning electron microscopy and
 

neutron activation. For smaller particles, Aitken nuclei detectors
 

are utilized by experimenters, e.g., the University of Wyoming
 

[27]. These devices are modifications of cloud chambers, with par­

ticle detection being dependent upon vapor condensation.
 

Table 3-I summarizes these contact techniques.
 

3.3 	 Remote Measurements
 

All current efforts in remote sensing of atmospheric constitu­

ents 	involve either passive or active optical techniques. Active
 

techniques include LIDAR, for aerosol detection, and Raman spectro­

scopy for other trace constituents. The passive techniques involve
 

either emission or absorption of radiation by the species of concern.
 

Instruments may be either spectrometers or interferometers. Some
 

representative examples are described below.
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TABLE 3-I 

CONTACT MEASUREMENTS 

TECHNIQUE SPECIES 
ABSOLUTE 
ACCURACY 

INTEGRATION 
TIMES SENSITIVITY 

DYNAMIC 
RANGE LIMITATIONS ADVANTAGES 

*-
INVESTIGATORS 

Frostpoint 
Hygrometer 

120 Vapor <1 in. 30(B)* Mastenbrook-NRL 
Sissenwine-AFCRL 

Aluminum 
oxide 
Hygrometer 

H20 Vapor +50% 30 see. +3*C in dew 
temperature 

30(B) Calibration 
problems 

Hilsenrath-GSFC 
Goodman-ONR 

Tritium 
Sensor 

HO Vapor +10% 0.5 ppb @ 
50 mb 

20(A/C) ONh-

LiCI Crystal 
IOscillator 

H20 Vapor! 1 ppb 20(A/C) NASA-ARC 

L4N 
Ln 

Electro-
chemical 

03 
.pump 

+10% 90 sec. 2 to 3 ppb 30(B) Response tinme, 
efficiency 

Good vert. 
resolution 
<25 km 

Kroenig-Minn. 

Chemilumin-
escent 

03* 
NO 

+20% 
+-60% 

<1 see. 10 ppb 
(0 to 1 ppb) 

70(R) 
20(A/C) 

Calibration 
problems 

Past 
respones 

Hilsenrath-GSFC 
Popoff-NASA/ARC 

Photoion-
iqeation/Mass 
Spectroscopy 

NO 
x 

30(B) NASA-GSFC 

__ _ 

Cryogenic 
Sampler 

NO , CH4 
Coll2 

1 to 10 ppb 20(A/C) IITRI 

Impact 
Filters 

Particles 
20.1 vm 

+40% 20(A/C) Paper background, 
air flow varies 

Sedlacek-LASL 

Aitken 
nuclei 
detector 

Particles 
i.003 pm 

+10% 10 see. 0.1 to 106 
nuclei/cc 

30(B) University of 
Wyoming 

B: Balloon; A/C: Aircraft; R: Rocket 

NRL - Naval Research Laboratories 
AFCRL - Air Force Cambridge Research Laboratories 
GFSC ­ NASA/Goddard Space Plight Center 
ON& - Office of Naval Research 
NASA-ARC - NASA/Ames Research Center 
Minn. - University of Minnesota 
ZITRI - Illinois Instibute of Technology Research Institute 
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3.3.1 LIDAR
 

Active laser studies of the atmosphere have beenmade since 

1964. Various groups at NASA have made ground-based measurements
 

while Shuster of National Center for Atmospheric Research (NCAR) has
 

used an airborne version on the NASA Convair 990 [26]. Other investi­

gators have measured the concentration of C02, So2, and N2 [29].
 

While theoretically, the Raman technique offers the advantages of
 

requiring but a single laser wavelength for excitation and unique
 

backscattered frequencies, it is limited , in practice, by its extreme­

ly low sensitivity. The scattering cross-section for Raman processes
 

is several orders of magnitude lower than that for Rayleigh scattering.
 

J3;2 kadiomt~tts
 

Radiometers are used to measure the intensity of electromagnetic
 

radiation incident upon a detector. They are, usually, designed to
 

measure over fairly wide spectral regions. This results in relatively
 

simple design criteria but at the price of specificity. Their
 

application to remote sensing is therefore limited, but for the
 

purposes of tenperature measurements, they are still widely used.
 

When used in a scanning mode, with the scan perpendicular to the
 

spacecraft heading, the radiometer may produce imagery after suitable
 

processing. This technique is used in the'Cloud Imager class of
 

instruments.­
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3.3.3 Spectrometers
 

In order to obtain high specificity of atmospheric chonstituents;
 

greater spectral isolation is required. There are two general
 

classes of spectrometers of interest; nondispersive and dispersive.
 

Nondispersive spectrometers obtain spectral isolation by the
 

simple means of optical filtering. Some instruments utilize narrow­

band interference filters to pass the wavelength or wavelengths of
 

interest for detection and subsequent analysis. Other varieties use
 

a -sample of the gas of interest as a filter and perform'a correlation
 

between the incident radiation from the scene and that from a refer­

ence black body source. Filters may be arranged so as to cover
 

several portions of the spectrum simultaneously, or mounted on a
 

rotating filter wheel which permits sequential viewing of selected
 

spectral regions. Nondispersive spectrometers are sometimes referred
 

to as spectroradiometers.
 

Dispersive spectrometers may depend •upon either refraction or
 

diffraction of the incident radiation. Refrdctive.spectrometers use
 

prisms of various materials to provide the spectral separation of the
 

received energy. Resolving power is limited in prism instruments and
 

the energy thr:.ig'ipi'i is quite low. Diffraction gratings provide
 

greater resolution but still suffer from the relatively low efficiency,
 

imposed by the requirement--for -narrow lit widths--on--the entrance and
 

exit apertures.
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A variation of the nondispersive spectrometer was -mentioned
 

above in discussing the gas filter correlation techniques. Similar
 

variations of dispersive spectrometers also exist and should be
 

-mentioned. While the conventional dispersive instrument scans the
 

spectral components across a single exit slit, several techniques.
 

utilize masks in the exit plane to perform either correlation
 

measurements with a known spectra or to simultaneously measure the
 

contributions of the source at several wavelengths.
 

3.3.4 Interferometers
 

In order to view a large spectral interval with high resolution,
 

and greater throughput than that provided by spectrometers, many
 

investigators have turned to the interferometer. Most interferometers
 

used for remote sensing are variations on the Michelson instrument,
 

in which the incident radiation is collimated and passed through a
 

beamsplitter in order to obtain separate path lengths which are
 

eventually recombined. One path contains a movable mirror, or other
 

technique to produce a variation in path length with time. Upon
 

recombination, the resultant intensity shows variations due to the
 

phase difference introduced in one path. These variations in inten­

sity, as a function of displacement of the mirror, produce an inter­

ferogram. The interferogram contains all the spectral information of
 

the incident radiation. Mathematical techniques, such ad-Fourier
 

transformations, may be used to extract the spectrum. One current
 

technique, (CIMATS) [30, 31, 32] compares the interferogram directly
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with one which contains the spectral information on the constituent
 

of interest rather than transforming it into an optical spectrum.
 

3.4 Platforms
 

Stratospheric measurements may be made from balloons, rockets,
 

aircraft, satellites and from the ground. General characteristics of
 

some of the platforms are shown in Table 3-I.
 

Most of the current measurements of the stratosphere have been
 

made from aircraft platforms. These offer a maximum payload, and
 

significant range and duration. Aircraft may also serve as a test
 

bed for satellite instrumentation in the development stages. Coverage
 

may be made nearly global with the development of unmanned instrument
 

packages, such as that developed for the GASP program, to be installed
 

on commercial Boeing 747 aircraft flying world wide routes.
 

Rockets are still used extensively for the measurement of
 

atmospheric state variables such as temperature, pressure and wind
 

profiles. They have an obvious altitude advantage over aircraft and
 

are relatively inexpensive to operate. Rockets may be used to
 

delineate the range of measurement capability which may be required
 

for satellite sensors or to provide corroboration of satellite data.
 

Balloons provide for larger payloads than rockets with the
 

further advantages of extended operating range and measurement time.
 

They provide accurate wertical profiles up to altitudes Of 50 km.
 

Like aircraft platforms, balloons may be used for flight tests of
 

developmental satellite systems. •
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PLATFORM 

Airplanes' 

Balloons 

Sounding. 
Rockets 

0U-

Earth 
Satellites 

TABLE 3-I
 

SELECTED CHARACTERISTICS OF SENSING PLATFORMS
 

OPERATING OPERATING OPERATING 

ALTITUDE RANGE TIME 


<23 km 4000 km 5 hrs - 8 hrs 

0 to 50 km 4000 km 24 ras -30 days 


0 to 200 km 5 km - 500 km 	 minutes (can 

return by
 

parachute)
 

200 to 40,000 km Global Indefinite 


MAX. PAYLOAD
 
CAPABILITY
 

<5000 kg
 

2b00 kg
 

200 kg
 

10 kg ­
30,000 kg
 



'With the 'current requirements for global coverage of the strato­

sphere, there'is no platform equal: to the satellite. Since the
 

development of the NIMBUS payloads, improved measurements have
 

already been obtained on solar ultraviolet radiation (UV), temperature
 

and ozone. Future NIMBUS systems will measure other trace consti­

tuents in the stratosphere on a global scale, for the first time.
 

3.5 Results and Limitations
 

All of the measurement techniques discussed have their strengths
 

and weaknesses. The in situ methods are extremely sensitive and
 

accurate but suffer from limited coverage and local contamination
 

problems. Remote sensing techniques offer wide area coverage and
 

relatively long mission lifetimes. Their disadvantages lie in the
 

reduced sensitivity to low concentration levels and the requirements
 

for auxiliary data to invert the integrated path measurements which
 

most utilize. Indeed, the masses of data which must be processed in
 

order to yield the desired information is at least a temporary
 

disadvantage of remote sensing methods. The development of better
 

models and improved data handling techniques is expected to minimize
 

these problems.
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4.0 USER REQUIREMENTS FOR STRATOSPHERIC MEASUREMENTS
 

The role of this section is to discuss,.some general features of 

NASA interaction with users of stratospheric data,and offer the two
 

major examples (UV and climate) of pressing atmospheric pollution
 

problems which demand of NASA a careful and effective program of
 

development. The examples serve to demonstrate the need for an
 

understanding of the overall physical problem in order to provide
 

effective user support.
 

The approach to user needs must recognize the-synergistic rela­

tionship between the user community and the technology community.
 

In the next section (5.0), these user needs are integrated into a
 

set of scientific requirements for stratospheric measurements and
 

in later sections (6.0 and 7.0) the capabilities of proposed satel­

lite remote sensing instruments are codified and compared with
 

requirements of the potential user community. Depending on the user,
 

modifications of capabilities may be required for the successful
 

.melding of instrument capabilities and user requirements.
 

The - ;. r:;, the rdcipients of observed data, have been grouped 

into three major categories, those concerned with scientific studies 

(stratospheric physics and chemistry, biological research studies, 

etc.), monitoring activities (for example, regulatory functions and 

long'term trend analysis),-and predictive modeling (particularly-in 

the climate field). 
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The totality of users-of stratospheric data is potentially
 

limitless. In an attempt to reduce the problem to manageable pro­

portions and still provide sufficient detail to specify user require­

ments, two specific problems are addressed. The two topics chosen,
 

the climatic and solar ultraviolet radiation (UV)* changes which may
 

result from alteration of the balance of stratospheric constituents
 

is defined to a great extent by the current national and global
 

interest in these two topics. In this way, the information devel­

oped can be directly related to any on-going NASA program planning
 

which addresses analysis of these problems. Furthermore, there is
 

an overriding requirement that the development of scientific require­

ments rely upon an understanding of the physical processes being
 

studied by the users.
 

In order to separate the two topics as-much as possible, the
 

UV study concentrates on users interested in the effects of such
 

changes on the biosphere, while the climate study concentrates on
 

those physical processes which may alter the climate.
 

The next section discusses the development of user requirements
 

for the UV and climatic change studies. The information presented
 

here is summarized principally from previous MITRE work [1] and
 

exists in much greater detail in that study.
 

*Biologists divide the UV spectrum into three wavelength regions:
 

UV-A: 0.32 to 0.4 ym; UV-B: 0.28 to 0.32 im; UV-C: less than 0.28
 

Um. Unless specifically stated, the term UV when used in this report
 
refers to all three regions.
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4.1 	Influences on the Biosphere
 

T-rovision of useful data from observations of the upper atmos­

phere is determined by a consideration of atmospheric influences on
 

human activities and on subjects of human interest. The Climatic
 

Impact Assessment Program (CLAP) [33,34] has examined the cause and
 

effect interactions between human activities and the stratosphere.
 

Because of the wealth of data which this study has produced, this
 

section will focus on the influence of the stratosphere on the
 

biosphere, i.e., the region near earth's surface where life is
 

concentrated.
 

Most of the solar ultraviolet light (UV) at wavelengths below
 

0.3 	jam is absorbed by stratospheric ozone before it reaches the
 

troposphere. This absorption limits the amount of UV received by the
 

biosphere and produces the stratospheric heating and temperature
 

inversion which, by limiting stratosphere-troposphere mixing, main­

tains the amount of stratospheric ozone at its present levels. The
 

UV energy absorption and the temperature inversion "ceiling" affect
 

the 	Earth's climate.
 

UV at the earth's surface is composed of both direct and scat­

tered sunlight. Galactic UV is negligible and artificially generated
 

UV is not found in the upper atmospheie. Changes in surface UV
 

intensity are due to the solar zenith angle and to variations in the
 

solar source intensity and atmospheric transparency. Although air
 

molecules, aerosols and clouds affect UV transmission, the primary
 

influence is in the amount of ozone present in the stratosphere.
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'Climate is a complex system depending on many factors other than
 

solar rad'iation and atmospheric transparency. It is a function of
 

albedo, a-snow and ice distribution, of global and regional atmos­

pheric and oceanic physical and -chemical properties and motions, and
 

of the vegetation and human activity on the surface. Agricultural
 

and grazing practices, e.g., irrigation or replacement of forest by
 

cropland, and industrial activity can change the climate [35]. In
 

turn, climate influences all forms of life, and inorganic materials
 

as well. An attempt to represent climate in a block diagram would
 

require inputs from everywhere and outputs to everywhere, due to the
 

complexity of the set of phenomena collectively called "climate."
 

In such a situation, the numerous feedback relationships make it'
 

difficult to determine the precise relationship of any one element to
 

climate and to separate its effects from those of other phenomena.
 

For this reason, this section concentrates on UV and its rela­

tionship to the biosphere. The relative simplicity of the chain of
 

effects producing surface UV makes it easier to isolate its effects
 

compared to the-effects of climate. This simplifies the determination
 

of physical phenomena and the functional relat'ionships involved, or
 

organizations concerned, and of the associated data requirements and
 

use. Anjinitial survey of the effects of UV on the biosphere can
 

then serve as a guide to the treatment of the more complicated area
 

of climatic effects. 

In previous MITRE work [1], a four-step procedure was used to
 

identify the data requirements and utilization involved instudies of
 

UV influences on the biosphere:
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(1) 	the first step was identification and tabulation of the 

Aimportant physical and biological effects-of UV-. 

(2) The-second step was classificationof the physical/biolo­

gical 	phenomena through the human activity concerned,
 
Such classification
rather than by a biological taxonomy. 


information, and is a natural
follows the end use of the 


consequence of the preceeding steps, since both information
 

sources and organizations tend to be grouped according 
to
 

some pattern of end use.
 

(3) The third step was identification and tabulation of 
the
 

related human activities and the groups involved.
 

(4) The final step was identification of the information flow
 

within each category of activity. In the biological fields
 

considered here, research was -shown to be an obvious use,
 

but the need for operational monitoring for UV purposes was
 

not 	demonstrated.
 

Until the requirement for operational-monitoring is established,
 

the 	UV studies should focus on data requirements for research pur­

poses. Since these studies are generally concerned with living
 

organisms, the focus is usually on surface UV, and direct use of
 

Typical biological
satellite observations may not be required. 


research work involves data from many sources, and assessment of
 

While UV may have a major -an
these is part of the final step. 


critical effect on some area of activity, the study of that activity
 

need-not involve satellite observation at all. Rather the influence
 

of satellite observations may be in establishing the parameters which 

indicate that a.critical sittiat'ion may occur. A - of the 

application of the above four step procedure is given in the following
 

subsections.
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4.1.1 Biophysical Effects of&UV
 

Thotochemistry concerns the effects of radiation, including UV,
 

on matter. Here the interest is in the effects of UV on living
 

matter, and primarily concerned with radiation of wavelengths between
 

0.28 and 0.32'F m, in the "UV-B!' region. Radiation at wavelengths below
 

0.28 Lm is still effectively removed by the atmosphere, even with very
 

reduced levels of stratospheric ozone, and wave-lengths longer than
 

Thus variations in
0.32 m are relatively unaffected by ozone.. 


stratospheric ozone produce intensity canges mostly in-the shorter
 

UV wavelengths penetrating to the surface,, and consequently the
 

following distussion relates primarily to-U-. 

f, general,. UV 2s ]v 1:g olga..±&A. The production-t 


of vitamin D and Its use in i'sact'vf6ion are twd of the few known 

beneficial effects.. Reactions of the high-energy UV radiation with 

organic compounds in the cell usually result in products which are 

not part of normal cell chemistry. Of the variety of photochemical
 

reactions possible with the complex constituents of living matter,
 

certain important and common effets, involving primarily DNA and
 

proteins, can be mentioned.
 

Individual UV photochemical reactions lead to physiological
 

response which produce complex and synergistic effects and result in
 

varying sensitivities to UN [36,37]. Sunburn (erythema) and tanning
 

of the human skin by UV stimulation of pigment production are familiar
 

examples of physiological effects [38]. Erythema from abrupt UV-B
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exposure is not important in-itself since changes in UV levels need
 

not have serious consequences for this avoidable problem. However,
 

UV-B and erythema are both related via long-term effects to skin
 

cancer, and increased levels of UV can have serious results. The
 

medical community has been concerned with the problem for years, and
 

recently it has received additional attention under the ClAP program,
 

the NAS Climatic Impact Committee (NAS-CIC) and Council on Environ­

mental Quality Task Force on Inadvertent Modification of the Strato­

sphere (IMOS) studies [39,40].
 

Both erythema and skin cancer appear to be produced by, or
 

related to, wavelengths below 0.32 im, and especially below 0.3 Fm,
 

although individual sensitivities vary [41,42,43]. Skin cancer takes
 

two forms. Malignant melanoma, the less common but more virulent and
 

frequently fatal form (median survival time of 7 years), has an
 

annual incidence of new cases in white populations varying from
 

3 x 10- 5 in the northern U.S. to 8 x 10- 5 in the southwest. The
 

geographic incidence, the location of lesions on sun-exposed areas,
 

and the striking differences in location and frequency according to
 

sex and life habits (e.g., occurrence on women's legs) clearly relate
 

it to sunlight. Frequency among fair skinned people, compared to
 

darker pigmented groups, strongly suggest UV. While UV is not the
 

sole cause or malignant melanoma, a relationship seems clear [39].
 

Normelanoma skin cancer is the most common of all cancers in
 

humans and is generally grossly underreported. Incidence statistics
 

4-7
 



- 3

for clder groups of white males range up to 5 x 10 at lower lati­

tudes, and prevalence among whites of all ages may range up to 0.Ol
 

according to some recent estimates.
 

Evidence clearly links UV to nonmelanoma cancer. While rare
 

among heavily pigmented races, it is more common among albinos of
 

such races. Nonmelanoma cancer occurs chiefly among light pigmented 

races, especially Celts. Incidence increases with cumulative sun­

light exposure, i.e., with increasing age, with lower latitudes, and
 

with outdoor occupations.
 

There is little evidence currently relating UV to serious
 

opthalmological problems, although there is some indication of
 

cataract formation from animal experiments [44].
 

Skin cancer is not limited to man; some light colored animals
 

lacking melanin, are subject to it. Most higher forms of animal life
 

have e,1 ur l protection against UV such as fur, feathers or thick
 

skin.
 

Insects can see in the UV range, but relatively little is known
 

about the effects of UV-B. To date, it appears that many insects are
 

not particularly sensitive to UV, although a few may be strongly
 

sensitive [40]. There are indications that fish populations may vary
 

with solar cycles but UV effects are probably on the eggs rather than
 

the adults.
 

In ',,.;--y, the major animal problems determined to exist relate
 

mostly to man and domesticated species.
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Studies of effects of-UV on higher plants have been supported by
 

the -CIAP program and conducted principally at the USDA Agricultural
 

Research Service, Beltsville, MD, and at the Universities of Florida
 

and Utah [34].
 

Plants cannot avoid sunlight and consequently have physiological
 

defense mechanisms, especially photoreactivation [45]. The nonlinear
 

relationships resulting from synergistic effects and from repair
 

systems make the design of experiments and the interpretation of
 

results difficult [39,46]. One cannot make very small, and conse­

quently linear, perturbations in a plant experiment as one does with
 

a mathematical problem. Nature provides her own perturbations, so
 

small artificial perturbations yield undeterminable results unless
 

enormous statistical samples are used.
 

Thus, the differences resulting from the removal of natural
 

UV-B, which is fairly easily and inexpensively achieved, are not
 

necessarily the negative of those resulting from addition of a like
 

amount of UV-B. Photorepair and synergism imply the need for pro­

viding both the correct spectrum of light and correct growing condi­

tions to obtain useful experimental results. This may be difficult
 

and expensive, especially for field tests, whose results frequently
 

differ from those of simpler laboratory tests. Thus, interpretation
 

of results of plant experiments is no easier than predicting the
 

increase in skin cancer corresponding to a certain decrease of
 

stratospheric ozone.
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All microorganisms and most small organisms tend to be extremely
 

to UV because they lack protective coverings. Thus, the

sensitive 


the basis of major ecosystems must be
importance of such organisms as 


recognized and their vulnerability considered. Microorganisms-make
 

up for their vulnerability by enormous rates of reproduction in­

favorable conditions.
 

Statistical prediction in this area is as questionable as in
 

skin cancer or higher plant effects. The major cause of concern is
 

that any periods of change of population not be too destructive. An ­

ecosystem involves interactions between microbiota, plants, insects,
 

and other animals - if all are changing simultaneously it is difficult
 

to predict the eventual mix which will previal.
 

Studies of ecosystems take time to accomplish. Potentially
 

important problems may conceivably exist, although the probability of
 

their existence currently appears low.
 

4,1.2 UV Influence on Human Affairs
 

The preceding section has identified a number of effects of UV
 

on living organisms and on systems of organizations. This was Step 1
 

of the methodology set forth earlier. The list of phenomena makes it
 

obvious that all humans are affected in some way. Steps 2 and 3 of
 

the methodology examine the types of effects and the human organiza­

tiohs involved, and are followed by consideration of how the flow of
 

information may be related to NASA missions (Step 4).
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Zable 4-1 list's a few types of effects, -classified by human
 

interest; generally in a descending order,of immediacy-or.urgency-of
 

requirement. Alongside each of the categories of effects is a list
 

of the organized human activities which are involved.
 

Essentially all of the material on UV effects presented in the
 

previous section is drawn from research publications. The only
 

"operational" uses of UV known are its use by some insects in vision,
 

-the production of vitamin D in humans, and the deliberate exposure-of
 

the skin by humans to acquire a fashionable suntan.
 

Research activity in the effects of UV on living organisms are
 

conveniently classified, for the purposes of this report, as basic-or
 

applied. Basic research, as defined here, is concerned with under­

standing the mechanisms of biological 'and ecological responses to UV,
 

and may thus be considered to be a branch of photobiology, photophy­

siology, photochemistry, or ecology.
 

Applied research, as defined here, is concerned with some of the
 

specific applications listed in Table 4-I. It is aimed at the
 

development of methods of solving specific problems, including the
 

development of plant or animal organisms with desired characteristics.
 

The results of applied research are actual or recommended practices
 

in agriculture, medicine, etc.
 

4.1.3 Organizational Involvement
 

Organizations are involved in this work either by conducting the
 

research or by sponsoring it. Sponsoring organizations generally
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TABLE 4-I
 

HUMAN ACTIVITIES CONCERNED WITH UV
 

NATURE OF UV EFFECT-


1. 	Direct effects on humans. 


2. 	Effects on other organisms 

used by humans for food, 

material, etc. 


3. 	Long-term and indirect 

effects on: systems of 

organisms, climate, societal
 
problems and stability, etc.
 

FIELD OF HUMAN ACTIVITY CONCERNED 

Medicine: Cancer, opthalmology,
 
dermatology.
 

Agriculture, horticulture, for­
estry, animal husbandry, fish
 
culture and fisheries, veterinary
 
medicine, water purification.
 

Ecology, conservation practices,
 
regulatory activity.
 

Effects on cultural interests: Ecology, water purification,
4. 

leisure resources, species preservation, environmental
 

preservation, etc. planning.
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-represent the individuals -and groups of people concerned-with a 


problem .or an activity, and usually include the Federat Government.
 

NASA!s concern lies more closely with the various,Federal organiza­

tions involved, with which NASA may have to deal.
 

A tabulation of the Federal executive departments or agencies
 

with a major role in subjects-affected by UV is presented in Table
 

4-11. Federal organizations with only minor or peripheral involvement
 

are not mentioned.
 

Figures 4-1, 4-2, and 4-3 indicate the major breakdowns in UV
 

research activity according to the various biological categories with
 

basic research shown in the first and applied research in the later
 

two. These figures and the foregoing table are not intended nor
 

claimed to be complete, since they were based upon a limited, selec­

tive sampling of the literature. A somewhat more complete listing of
 

organizations, subjects, and principal investigators is given in
 

reference 1. In compiling the material for that reference and the
 

current work, numerous organizations active in medical research and
 

The intent is rather to
in photobiology are not mentioned at all. 


indicate the nature of the overall activities by presenting a repre­

sentative sample.
 

4.1.4 Information Flow and Use of Results
 

Since life is concentrated at or near.the Earth's surface, it is
 

subjected only to surface UV, which therefore is the real topic of
 

concern in terms of biological effects. Stratospheric observations
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TABLE 4-Il
 
FEDERAL DEPARTMENTS AND ACENC[ES WITH MAJOR CONCERN WITH UV 

ORGANIZATION 	 ACTIVITY
 

1. Department of Agriculture
 

1.1 Animal and Plant Health Inspection Service Operational - animal inspection

1.2 Packers and Stockyards Administration 	 Operational - effects on food, animals
 
1.3 Agricultural Research Service 	 Research -
UV effects on plants, farm
 

animals
 
1.4 Forest Service 	 Forestry effects
 
1.5 Soil Conservation Service 	 Ecological effects
 
1.6 Cooperative State Research Service 	 Research by states on above topics
 

2. Department of Commerce
 

National Oceanic and Atmospheric Administration
 

2.1 National Weather Service 
 Operational satellite observations
 
2.2 National Marine Fisheries Service 
 Effects on marine fisheries
 
2.3 National Ocean Survey 	 Oceanic ecological effects
 
2.4 Envitonmental Data Service 
 Operational data transmission
 

3. Department of Health, Education, and Welfare
 

3.1 Public Health Service
 

3.3.1 National Institute of Health
 
(i) 	National Cancer Institute Human cancer effects
 
(ii) 	Nation Eye Institute Opthalmological effects - human
 
(iii) National Institute of Arthritis, Dermatological effects - human
 

Metabolic, and Digestive Diseases
 
(iv) 	National Institute of Environmental effects - human
 

Environmental Health
 
(v) 	National Institute of General Basic research-cellular and molecular
 

Medical Science basis of disease
 



TABLE 	4-11 (Continued)
 

ORGANIZATION 	 ACTIVITY
 

3. 	 Department of Health, Education, and Welfare (Continued)
 

3.1.2' Food and Drug Administration
 
(i) 	 Bureau of Radiological 


Health 

(ii) 	 Bureau of Drugs 

(iii) 	Bureau of Foods 


3.2 	Health Resources Administration, 

National Center for Health Statistics
 

4. 	 Department of Interior
 

4.1 	National Park Service/U.S. Fish and 


Wildlife Service
 
4.2 	Office of Water Resources and Technology 

4.3 	Office of Land Use and Water Planning 

4.4 	 Bureau of Land Management 

4.5 	 Bureau of Reclamation 


5. 	 State Department
 

Assistant Secretary for Oceans and Inter-

national.Environmental and Scientific Affairs
 

6. 	 Department of Transportation
 

Assistant Secretary for Systems Division
 

and Technology
 
Climatic Inipact Assessment Program (e.g.) 


Safety standards, exposure effects and
 
control methodology
 

Synergistic photosensitive effects on humans
 
Synergistic phot6sensitive effects on humans
 

Providing data to researchers
 

Ecological effects - sport fisheries, game
 

Ecology - water quality
 
Ecological effects
 
Ecological effects
 
Ecological effects
 

International programs-policies, proposals
 

Overall research
 



l 

TABLE 4-11 (Concluded)
 

ORGANIZATION 	 ACTIVITY
 

7. Environmental Protection Agency 	 Potential regulatory aspects
 

8. National Academies of Science and Engineering Advisory aspects
 

9. 	Smithsonian Institution
 

Radiation Biology Laboratory Basic research
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are of interest generally only to predict the-surface intensities.
 

Thus, research-on biological effects is only at best an indirect user
 

of satellite observations, i.e., these researchers are interested
 

only in the long-term predictions which the atmospheric and climatic
 

models can make on the basis of such observations.
 

At present the only users of surface UV observations, among the
 

community concerned with biological effects, are research workers.
 

Their use is in statistical correlation of surface UV intensity with
 

the incidence of various biological phenomena, and with the recording,
 

and perhaps modification, of surface UV levels during ongoing experi­

ments. They may also be used for correlative purposes. Thus, there
 

are no operational users of UV data as distinct from research users,
 

nor is there now any obvious future operational need for stratospheric
 

UV monitoring for biospheric effects.
 

Operational surface UV monitbring in the future may be a possi­

bility as one part of a system for the early detection of long-term
 

trends in biological effects, such as skin cancer, and their cotrela­

tion with UV. However, in light of the large and slow variations in
 

surface UV which normally exist, this would probably only be part of
 

a large statistical survey system, i.e., the "operational" us& does
 

not present .a real-time requirement in the same sense as weather
 

observation.
 

Note that the research approach used can affect the data require­

ments very strongly. For example, the attempt to use statistical
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methods and modeling techniques to correlate UV with skin cancer,
 

requires much data. A few deterministic experimehts with mice, on
 

the other hand, prove that UV can create skin cancer. In fact, the
 

two methods are complementary, for the experimental approach provides
 

no basis for prediction of the increase in cancer to be expected from
 

a given increase in surface UV.
 

Thus, the large classes of people who are undoubtedly concerned
 

with UV may be termed beneficiaries, rather than direct users, of any
 

UV observations. They are users of the applictions research work in
 

biological effects, since this research work affects their actual
 

practices. The research workers in biological effects are the users
 

of surface observations, and of the predictions furnished by climatic
 

modelers. The last group are potential direct users of both satellite
 

and surface measurements.
 

4.1.5 Measurement Requirements for UV Studies
 

It is clear from the material of this section that the predomi­

nant interest in the field of UV in the biosphere is in interaction
 

of biological systems with UV. Until recently, little interest had
 

been expressed in the interaction between the UV environment-and
 

conditions of the atmosphere. As a result, it appears that this
 

field is dominated by users far removed from the ability to effec-


Lively utilize observations which describe the state or variability
 

of those features of the atmosphere which control UV transmission.
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There is at the same time considerable interest in measurements which
 

will telp clarify the physical and chemical .processes which control
 

the UV environment. There is an evident gap between those groups of
 

users. That gap can only be filled by scientists interested in the
 

interdisciplinary study of the coupled system of biosphere and
 

atmosphere.
 

Specific measurement requirements are not clear, particularly
 

because the largest potential group of users is not specifically
 

interested in the physics or chemistry of the atmosphere but rather
 

the reaction of biological systems to changes in their environment.
 

The most effective method for establishing priorities is as suggested
 

in Section 4.4, where the constituents which play a role in deter­

mining the UV transmission of the stratosphere are identified as
 

key subjects of an experimental program. However, some general
 

requirements for support in the field can be developed.
 

First, it is clear that a topic of primary concern is the
 

intensity and wavelength distribution of ultraviolet radiation at the
 

Earth's surface. Inference of this data from spacecraft measurements
 

provides a unique opportunity to supplement the world-wide network of
 

ground stations and provide more comprehensive coverage in-space and
 

time.
 

Secondary studies would include determination of the variability
 

of radiation features, studies of the influence of polluting gases on
 

the atmospheric transmission in the UV spectrum and data which
 

relates the UV environment to biological variability.
 

4-22
 



Clearly, further direct NASA contact with those.studying the
 

-subject will begin the communication cycle so necessary if experiments
 

are 	to be developed which satisfy these users.
 

4.2 	Influence on Climate
 

Climate effects are much more pervasive than those defined in
 

the previous section for ultraviolet (UV). In the case of UV, the
 

chain of concern is traceable from the stratosphere directly to the
 

For climate,
well-defined set of users, both direct and indirect. 


the end point of such a consequence chain is much more diffuse.
 

Nearly everyone is concerned, in some degree at least, with climate
 

and 	the effects of climatic modifications. This interlocking
 

relationships with all human affairs gives climate a more profound
 

influence upon terrestrial life than that attributed to the UV
 

chain.
 

These considerations dictate a different approach than that
 

taken in the UV section. In this section, the user community will be
 

restricted to the primary users of remotely sensed data, with the
 

tacit understanding that the ultimate users are omnipresent. For
 

purposes of discussing the general areas of climate study, the
 

primary user community will be divided into two categories, modeling'
 

(including physical processes) and monitoring. The interests and
 

requirements of each category will be discussed separately, although
 

there is considerable overlap in both interests and activities
 

between the two groups.
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4.2.1 Modeling and Studies of Physical Processes
 

The total system which comprises the Earth's climate is extreme­

ly complex and highly interrelated. With the attendant risk of
 

over-simplification, it is usually desirable to separate the system
 

into various components. These components result not only from the
 

different spatial regimes which help to define them but, also, from
 

the differing techniques of observation involved in the description
 

of their characteristic processes.
 

By considering the processes rather than the spatial location,
 

it will be easier to visualize the interactions and other effects
 

which will be treated in subsequent sections. The major processes to
 

be considered are: radiation, cloud, surface and atmospheric. Each
 

will be defined below.
 

4.2.1.1 Radiation Processes. The most fundamental driving
 

force for Earth's climate is solar irradiance. While the effects of
 

this external energy may be modified by surface and atmospheric
 

effects, it remains the single most important element in the entire
 

climatic system. For purposes of climate modeling, the most useful
 

inputs are the boundary fluxes and the internal sources and sinks of
 

the atmosphere. Solar radiation, in all spectral bands, provides the
 

major input to the system, while scattering and reradiation provide
 

the primary outputs. All of these parameters are amenable to mea­

surement from satellite platforms.
 

4.2.1.2 Cloud Processes. Clouds influence the terrestrial cli­

mate 	in several distinct ways:
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* 	By reflection, absorption and emission of solar and terres­
trial radiation;
 

" 	By the redistribution of heat and momentum through condensa­
tion and evaporative processes; and
 

* 	By the ground-atmosphere coupling provided by precipitation.
 

The modeling community is interested in the areal and temporal
 

variations in cloud types and coverage. The interactions of radia­

tion, local turbulence, large-scale circulation and microphysical
 

processes need to be investigated further.
 
4.2.1.3 Surface Processes [47]. The interaction with the
 

Earth's land areas produce profound atmospheric effects with climatic
 

implications. One of the more basic aspects is found in the surface
 

albedo, which may range from 0.1 to 0.9 for land areas. Other
 

parameters of interest are the surface topography, land use-and
 

distributions of moisture. These directly affect the transfer of
 

momentum and energy from the atmosphere as well as the surface
 

emissivity.
 

The world's oceans represent the largest component of thermal
 

and mechanical inertia on the Earth's surface. This is due to 
their
 

high heat capacity and the long time constants found in the oceanic
 

circulation processes. Most of the interactions of the air-sea
 

boundary are determined by the temperature of the sea surface itself.
 

Very little data is available on ocean parameters and-their time and
 

space varfability. Vertical and horizontal movements of warm and
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colS water masses impact upon local climate directly and through the
 

air-sea interface; influence atmospheric processes on a much larger
 

scale.
 

Ice cover, both sea and terrestrial, exerts a large influence
 

upon the Earth's climatic system. Seasonal variations in snow cover
 

and sea ice are extremely large and alter the surface-atmosphere
 

interface as well as the albedo. In the-case of sea ice, changes
 

also are produced in the sea surface conditions and in-the upper
 

ocean layers. From the hydrological standpoint, ice sheets of
 
Greenland and Antarctica alone, contain 80 percent of the Earth's
 

fresh water supply; Although any changes in these ice sheets-occur
 

on time scales of the order of 105 years, their presence impacts
 

directly on models of the short-term climatic variability.
 

4.2.1.4 Atmospheric Processes [47,48]. With the exception of
 

cloud processes, which are described separately, atmospheric processes
 

may be conveniently grouped into the generic headings of gases and
 

aerosols. As examples of the gases of primary concern, carbon
 

dioxide, ozone and freons will be described in this section. In
 

subsequent paragraphs, other species will be described which may
 

impact either directly upon the climate system or upon other gases
 

and aerosols.
 

Carbon dioxide (CO2) has a relatively high and spatially constant
 

concentration in the Eartif's atmosphere, on the order of 320 ppm.
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This concentration has been rising with man's increased burning of
 

fossil fuels and is expected to increase another 20 percent by 2000
 

A.D. The major concern with increasing C02 levelsis in its ability
 

to absorb infrared radiation and thereby influence the Earth's heat
 

budget and climate. The effects of high levels of CO2 upon the
 

biosphere is also a matter of increasing concern since some studies
 

have indicated that the ability of the oceans and land plants to
 

take up CO2 is decreasing as the ambient levels increase.
 

Ozone has a highly variable concentration in the atmosphere.
 

Section 4.2 has addressed the effects of ozone depletion on the
 

biosphere. There is a climatic effect attributable to ozone as
 

well. It provides the principal mechanism for radiative heating of
 

the stratosphere. This heating results from the absorption, by
 

ozone, of solar radiation, mainly in the ultraviolet region of the
 

spectrum. The stratospheric heating determines the relative stabil­

ity as well as the dynamic behavior of the stratosphere and, thus,
 

the interactions with the troposphere where most climatic processes
 

occur. Much more information is required on the natural spatial and
 

temporal variability of ozone in the stratosphere before meaningful
 

predictions can be made on the effects of maimade pollutants.
 

An example of trace gases which may impact indirectly upon the
 

climatic system is found in the freon family.of chemicals. Primary
 

concern with freons is centered in their deleterious effects upon the
 

stratospheric ozone and the subsequent effects of increased UV-B
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radiation on the biosphere. More recent interest in the photo­

chemical reaction§.in which freons take phrtis'centeredin the
 

potential climatic effects of ozone depletion. The direct impact-of­

ozone absorption on the warming of the stratosphere and troposphere
 

was mentioned above. A recent article [491 considers the infrared
 

absorption by the chlorofluorocarbons themselves and concludes that
 

this mechanism may enhance the greenhouse effect with a concomitant
 

impact upon the climate chain.
 

Atmospheric aerdsols are the result of both natural and antropo­

logical processes. While aerosols are found in both the troposphere
 

and stratosphere, the sources are thought to be different in most
 

cases. Complex homogeneous and heterogeneous chemical reactions are
 

the source bf most aero'sols. Some direct injection does occur in
 

both altitude regimes. Volcanic eruptions may increase the background
 

stratospheric aerosol level by as much as a factor of 50 in the case
 

of major eruptions [50]. These perturbed levels may remain for
 

periods of 3 to 5 years. In the case of the troposphere, direct
 

injection is attributable to sea spray and mineral dust particles.
 

Most aerosols, however, in both the troposphere and stratosphere, are
 

the result of gas to particle conversion. Major gases involved in
 

these reactions are SO2 , NH3, NO2 and hydrocarbons, from either
 

natural or manmade sources [47]. The density and size distribution
 

is a strong function of relative humidity as they depend upon the
 

absorption of water for their growth. The effects of aerosols on the
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climate are twofold: changes in the radiation budget -through their
 

scattering and-absorptive properties, and-providing condensation
 

nuclei for cloud formation.
 

4.2.2 Climatic Monitoring Programs [51]
 

In late 1961, the National Academy of Sciences proposed the
 

establishment of several international programs in atmospheric
 

science. These recommendations were subsequently adopted by the
 

United Nations General Assembly and form the basis for the present
 

international programs administered by the World Meteorological
 

Organization (WMO) in consultation with the International Council of
 

Scientific Unions (ICSU). The first result of these proposals was
 

the creation of the World Weather Watch (WWW) with the required
 

regional weather service centers and the necessary telecommunications
 

system to link them together in a world-wide network. In 1967 WMO
 

and ICSU agreed to co-sponsor a Global Atmospheric Research Program
 

(GARP), and created the Joint Organizing Committee (JOC) to define
 

and direct all efforts within the CARP.
 

The Federal Committee for Meteorological Services and Supporting
 

Systems approved the plan for U.S. participation in CARP in 1970 and
 

assigned planning responsibility to NASA. Goddard Space Flight
 

Center (GSFC) was delegated this responsibility by NASA Headquarters
 

at the same time. ­

4.2.2.1 Current Status [47,52]. Many of the current efforts
 

were originally instituted as weather programs. -Since climate may be
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considered as the historical statistics of weather, the variables are
 

similar and weather data is the major input to climatological data
 

banks.
 

Data from operational satellite systems is assembled by NOAA's
 

National Environmental Satellite Service (NESS) and becomes available
 

to the atmospheric research community. Satellite data will increase
 

in both importance and volume in the years ahead. They will provide
 

man's first global view of the Earth's climate system.
 

Within the framework of GARP, several regional observational
 

programs have already been performed. The GARP Atlantic Tropical
 

Experiment (GATE) has had a short data collection phase in 1973 and a
 

3 month long observation period in 1974. The Air-Mass Transformation
 

Experiment (AMTEX) has completed three phases, one each year from
 

1973-1975. The Polar Experiment (POLEX) has been underway since 1973
 

and will continue into mid-1978. The Monsoon Experiment (MONEX) has
 

had two collection periods to date, 1973 and 1975. At least one more
 

MONEX is planned for mid-1977. The Complex Atmospheric Energetics
 

Experiment (CAENEX) ran from 1973 through early 1976.
 

4.2.2.2 Planned Programs [47,51,52]. The next major interna­

tional program planned for this time is the First GARP Global
 

Experiment (FGGE). Scheduled for 1977-1978, this will utilize the
 

expanded facilities'of the World Weather Watch, five geostationary
 

satellites, two polar orbiting satellites, a combination of dedicated
 

ships and carrier ballons, buoys and constant level balloons, and
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special automatic ground stations. FGGE represents the first major
 

attempt at global coverage for an extended time period. The Global
 

Experiment has four major objectives:
 

(1) 	Obtain better understanding of atmospheric motion for the
 

development of more realistic models for extended range
 

forecasting, general circulation studies and climate.
 

(2) 	Assess the ultimate limit of predictability of weather
 

systems.
 

(3) 	Develop more powerful methods for assimilation of meteoro­

logical observations and, in particular, for using
 

nonsynchronous data as a basis for predicting the large­

scale motion.
 

(4) Design an optimum composite meteorological observing system
 

for routine numerical weather-prediction of the larger-scale
 

features of the general circulation.
 

The timing of FGGE is such that both MONEX and POLEX will over­

lap with the Global Experiment. This will allow a study of model
 

capabilities to simulate the start of the southwest Asian monsoon in
 

the case of MONEX, and increased data coverage in the polar regions
 

with POLEX.
 

As a result of the Global Experiment, it is felt that most of
 

the requirements for a permanent global monitoring capability will
 

have been identified. Such a monitoring system could become a
 

reality in the 1980's. The U.S. involvement in FGGE will be major.
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Overall GARP coordination has been assigned to NOAA, preliminary
 

planning for FGGE is the responsibility *f NASA, while NSF is respon­

sible for university support of all GARP-related activities: NASA is
 

also planning and managing the Data Systems Test (DST) for the Global
 

Experiment.
 

While FGGE represents a major phase of the United States climatic
 

effort for the next several years, there will continue to be purely
 

domestic programs. NASA has a continuing satellite development
 

program planned through the 1980 time frame. Examples of satellites
 

which will have climatic or meteorological capability are TIROS-N,
 

NIMBUS-G, SEASAT, and SAGE. NASA will continue to develop instruments
 

and platforms for satellite missions while NOAA will assume opera­

tional control of monitoring capabilities subsequent to launch.
 

4.2.3 Climatic Data User Categories and Their Requirements
 

In order to present an overview of the data requirements of the
 

climatological community, an analysis was designed to reflect par­

ticular uses and categories of users who might be important in a
 

number of areas relating to experiment definition [1]. Sources of
 

information for this analysis included previous experience obtained
 

during evaluation of the Earth Energy Experiment [53] study, field
 

interviews and comprehensive literature survey.
 

Three basic branches of climatological data utilization were
 

addressed:
 

o 	Climate modelers - whose goal is long-term prediction of
 
global atmospheric and oceanic circulation as well as the
 
statistics of variation of climatic variables-.
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* 	Atmospheric physicists - whose goal is a.clearerunderstanding
 
of the physical and chemical processes occurring in the
 
atmosphere including the effects of changes in atmospheric
 
constituents and albedo as a result of pollution, land use
 
and other anthropogenic activity.
 

* 	Monitoring - for climatological archive development.
 

It should be clear that improvements in models and validation of
 

their results will rely on results produced by the last two categories
 

of users. An overlap in research areas is common.
 

Governmental interest and awareness of the need to study and
 

monitor potential climatic change has been increasing even to the
 

extent that congressional action is underway [121] to provide direct
 

support to climatic related activities. At the same time major
 

agencies of the 'government are formulating plans for agency involve­

ment in these climatic activities. NASA [122]Lhas published a
 

proposal for climatic programs supported by satellite and other
 

space activities. In addition the Energy Research and Development
 

Agency is uidertaking a program of study of climate/energy problems.
 

4.2.3.1 Modelers. *Within the modeling community, further dis­

tinctions can be drawn. There are two major groups engaged in the
 

development of a capability for predicting the time evolution or time
 

averaged statistics of future climates. The groups include climate
 

modelers who utilize general circulation models and those who have
 

developed global one- or two-dimensional models of climate. Each of
 

the modeling groups has its own specific requirements. The tables
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shown later in Section 4.4 present a summary of the general measure­

ment requirements as derived from the anilysis. Of course, the
 

requirements expressed are by no means unique to any individual group
 

but rather represent the requirements of the community as a whole.
 

4.2.3.2 Physical and Statistical Studies. In order to satisfy
 

the needs of this user group, a slightly different approach must be
 

taken. Two major categories of experiments can be defined which
 

support work of this type. Simply because climate and its variation
 

is the topic of interest, it is clear that long-term and uninterrup­

ted data represents one of the goals. Historically, this data has
 

been provided by a number of individual sensing stations reporting on
 

a periodic basis. The utilization of more advanced techniques,
 

including satellite-based remote observations, will allow the measure
 

of several additional parameters on a global, synoptic basis. Among
 

these data are the solar constant, albedo, long and shortwave fluxes,
 

cloud patterns, trace gases and vertical profiles of temperature and
 

humidity.
 

In addition to the requirement for long-term data, it is clear
 

that an ideal measurement program would also provide data of high
 

absolute accuracy with a spatial and temporal sampling rate which at
 

least compares with the typical averaging intervals of climate
 

models, such as 30 day .averages and 50 x 5' surface grid (for model
 

validation).
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Experimeiits of this type, which are characterized by the GATE
 

experiment, nieed not be as long as the monitoring role discussed
 

above nor need they provide the same level of coverage.
 

In summary, this groupwill require, for a number of different
 

applications, experiments which range widely in spatial, temporal
 

and radiometric requirements.
 

4.2.3.3 Monitoring. Clearly, the requirement in this area is
 

to provide reliable, long-term calibrated data which can be used to
 

initialize and carry out a program of observation of features of the
 

climate which are observable from space. As mentioned elsewhere in
 

the report, spacecraft probably should not be expected to perform
 

this role without assistance from the many groundbased observing
 

stations which have been in use for many years and have provided the
 

information available to date. The unique feature of spacecraft
 

which will justify their utilization is their ability to make global
 

observations at a high rate and to measure features not observa4ble
 

from Earth.
 

As discussed in Section 4.4, the requirements for the types of
 

experiments will include virtually anything which can be observed.
 

While the sampling rate and spatial resolution requirements cannot be­

clearly stated, the general unavailability of global data sets will
 

guarahtee the use of any archive which offers such quality.
 

4.-.3.4 User Needs Conclusions. Summarized below are the
 

results of the various sources of information and relationship of
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them to the specific goal of the study.- The comments represent
 

MITRE's interpretation of the various -user requirements.-.
 

" Some of the numerical measurement requirements expressed by
 
the users are merely best informed opinions. To date, little
 

sensitivity analysis has been reported in the modeling
 
community with the exception of solar constant, aerosols and
 
CO2 . Other features, partibularly those related to radi­

ation climatology remain to be studied in ord&r that model­
specific measurement requirements can be expressed.
 
While it is not -clear how well the various requirements
 
expressed represent what will be found in a detailed analysis,
 
a number of these contacted felt that discrepancies could
 
result. A related resulf is that it is almost universally
 

felt that a minimum of 3-4 years will be required for the
 
completion of the required sensitivity studies or for the
 
completion of the model development so that such studies can
 
be performed.
 

* 	The wide variation in the user goals has guaranteed that no
 
one experiment represents a unique or essential part of the
 

program. This is particularly appropriate in the case of
 
radiation climatology which retains a level of importance
 
which is quite high. While there is scientific interest in
 
an experiment of that type due to perVasiVe features of
 
radiation in climatology, only the users specifically inter­
ested in understanding the role of radiation in the climate
 

feel that this experiment is of unique value. The value of
 
the experiment is most limited in the case of the modelers
 
who face considerable problems with the parameterization of
 
complex systems such as clouds,- although the information could
 
be of value in those cases where the model predicts.the
 
radiation field and'dafa is needed for validation rather than
 

initialization. However, many other climate features emerge
 
as being utilized as representative of climate and its
 
variability. In fact, for the use of those who study the
 

physical and statistical features of the climate, it is clear
 
that the largest number of experiments possible are required.
 

a For optimum suppoit of the global climate models, the.'
 
measurements will have to be long-running but will not require
 

the high absolute radiometric accuracy demanded by the
 
general circulation models. In fact, due to the methods of
 

model "tuning," trends in the data would be sufficient to be
 

of value to the global models. The use of the data in the
 
service of-the GCM's,'however, will generally require highly
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detailed experiments of relatively short duration (approxi­
mately 1 year) which include measurements of a number of
 
interactive features of the climate (temperature and cloudi­
ness, radiation properties and albed6, etc.), 
on a scale
 
which is at least regional. These models will also be well
 
served by the short-term experiments of the CARP type which
 
can provide details unavailable from space but which are
 
complemented by spacecraft measurements.
 

* 
Based on current usage, the demands of the modeling community
 
on the quality and completeness of the data archive is the
 
highest of any user community.
 

" 
The data archive already extracted from spacecraft measure­
ments has been used by only a limited number of scientists
 
mostly in the areas of physical processes and validation of
model output. Further exploitation of those older
 
archives could be of value.
 

* 
Experiments of the type discussed will have application under
 
any conditions just because they add to the store of informa­
tion which describes the climate and its variability.

However, NASA should not expect the results of any single

experiment alone to have a significant impact on the quality

of the models currently under development. In fact, it is
 
hard to imagine any single experiment, regardless of length
 
or data quality, heavily impacting the capabilities of the
 
predictive models. The limitations they face at this time go

deeper than the quality of the initialization or validation
 
data.
 

* 
The current use of radiation climatology, especially that
 
obtained from space, has been to validate the results of

model predictions, initialization of particular features of
 
the models, and generation of parametric relationships for
 
model development. The majority of the data appears to have

been used for model validation although examples of each type
 
of use can be found.
 

4.3 Specific User Measurement Requirements
 

The previous sections have had as 
their goal the identification
 

of users, their general uses of data and their general measurement
 

requirements if they exist. 
 This section seeks to summarize all that
 

has been learned concerning the specific numerical measurement
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to
requirements which must be met in atmospheric observation so as 


serve the wide variety of interested users. The data presented in
 

this section includes that data which was obtainable from interested
 

to other measurement requirements.
users and MITRE's opinion as 


A major source of particular requirements is meetings and con-


Over the last few years, a
ferences held to address these issues. 


number of such conferences and meetings have been held, including the
 

participation of a number of interested organizations, related to the
 

assessment and prediction of climate and its relation to atmospheric
 

properties. As a result of a survey of these conferences, a list of
 

their requirements has been organized into Tables 4-111 and 4-IV. In
 

addition, requirements of specific experiments (like the GARP, GATE
 

and FGGE) have been included.
 

Inspection of the tables indicates the considerable detail of
 

the identified measurement requirements. Similar detail cannot be
 

developed in the case of UV effects. However, because of the intimate
 

link between atmospheric properties and the UV environment of the
 

biosphere, the data presented in the tables represents a reasonable
 

set of requirements for monitoring for eventual changes in climate or
 

UV.
 

The preceding discussion and tables represent an amalgamation
 

of the user requirements from the scientific and monitoring communi­

ties &s represented by interviews and in the literature. With the
 

present pace of stratospheric investigation, it should not be sur­

prising to find additional species achieving requirement status.
 

the status periodically.
Therefore, it is prudent to assess 
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Duration 


Time 

Spatial 

Resolution 


(I 

Temporal 

Resolution
 

Radioietric 
Resolution 


Coverage 


Importance 


Use 


Radiation 

Transfer( .r~ave.,
lon , 
shortwave 
solar 


In excess of -* 
3 years 

Regional of 

little interest. 

Global averages 

required. 


High resolution 

not required 


Global
 

Desirable but 

not a complete 

experimnt 

Parameteri-

zation 


TABLE 4-Tin
 

GENERAL MEASuREMENT REQUIRENENTS OF GLOBAL CLIMATE MODELS
 

Ocean CryospberPhysical Cloud Atmospheric Land Trace 

Features Features Features constituent. Features ( ice and

4he""'th h~dI1odo ) afo0 Itrfotype\ = 	 gases, -srface e s C ktemperature *temperature 

albedo, global) wind, humidit albedo aPerature 
circulation
\distribution 


,
 

Rd-p-	 Start within 3 to 4 years.-


Radiation prop­

erties needed
 
in future
 

Global average. Zonal average of 	 Zonal Aerosols on a Zonal Zonal
 
Multiple layer 500 mb temperature, regional scale.
 
resolution may Profile desirable Water vapor one
 
be required. of humidity and year average.
 

temperature.
 

-	 Yearly average -• 

Decade average
 
for gases other
 
than water vapor
 

Moderate Trends more Moderate Desirable Desirable
High resolution 
not required 	 important than
 

absolute
 
measurement
 

Moderate Moderate Desirable Desirable
Cloud top tem- Moderate 

perature and interest
 
albedo highly
 
desirable for
 
model valida­
tion 

Paraeteri- Parameteri- Parameteriza- Parameteri- ParameterizationParameteri-

ration ration 	 ration tion sensiti- zation sensi­

vity ktudies tivity studies 



_ _ 
__ 

-)0 

TABLE 4-IT
 

-

(including coupled models)
 

GENERAL MEASUREMENT REQUIREMENTS FOR A GENERAL CIRCULATION MODEL 

Trace Ocean Cryosphere
Radiation Physical Cloud Atmospheric Land 

Features Constituents Features ( ice andTransfer Features Features 


stperature, (temperature (gases, [surfae (snow cover)(longave.\ fheit, typhe temperature,'
shortwavej |albedo, global) wind, humidit albedo aerosol) 

_tam huiiy_ _ _ 0__ _) _ solar distribution __circulation.)
 

Duration. I 
Begin in 3 to 4 years -'
 

Time 


Spatial Regional with Cloud top Profiles Regional Regional Regional Regional 

Resolution equator-pole ' height and cloud 
variation distribution 

5 days 5 to 15 5 days- 5 to 15 days

Temporal 5 to 15 5 days 5 days 


daysResolution days 


Moderate Moderate Moderate-high Moderate

Radiometric High _ High High 
Resolution 

Coverage Global
 

Low, except Highly Desirable,

Importance Highly Highly Desirable, Desirable 


ozone desirable especially ice

desirable desirable especially 


cover and snow cover
winds 


Parameteri- Parameteriztion
Parameteri- Paramateri-
Use Parameteri- Validation Initiali-

zation vali- zation vali- validation


zation val- zation para- zation val-

dation dation
meterization I dation 

validation 
dation 




In addition to the requirements defined above for domestic
 

research requirements, the WMO-ICSU has developed a set of require­

ments for the GARP. Some of the more-pertinent of these are given in-,
 

the following tables. Tables 4-V and 4-VI represent the preliminary
 

requirements for model validation and monitoring definition. Tables
 

4-VII through 4-X address the tentative measurement requirements for
 

a long-term monitoring program as now envisioned. Results from FGGE
 

and other programs will undoubtedly modify some of-these stated
 

requirements. The final table, 4-XI, presents the opinions of
 

experts in climatic effects.
 

In addition to the measurement requirements expressed by the
 

various user meetings, measurement requirements have been developed
 

by evaluating the constituents which play a major role in the chemis­

try of the stratosphere. The importance of any one constituent
 

varies somewhat, depending upon the potential user, from absolutely
 

necessary to desirable. An effort has been made to harmonize these
 

requirements and place them in context with the proposed application.
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TABLE 	4-V 

OBSERVATIONS REQUIRED FOR VALIDATION OF CLIMATE MODELS [47] 

TIME 
VARIABLE 	 ACCURACY (1u) RESOLUTION
 

Desired Useful
 

Wm-2  
1. 	 Net radiation 2 15 Wm-2 5 days 

budget at top
 
of atmosphere
 
(solar and
 
terrestrial) 

2. 	 Clouds: hori- 5% amount
 
zontal distri- PC cloud top temp. 5 days
 
bution of clouds
 
and measure of
 
diurnal variation
 

3.a) 	 Sea-surface 0.50 C L.5*C 5,days
 
temperature -2- -2
 

by 	 Heat content I keal cm 3 keal cm 5- days
 
of upper layer
 
(200 m)
 

4.a), SAow' Presence/Absence 5 dhys
 
(100' kmresoluLion.)
 

b) 	Sea-fce Presence/Absence 5 days
 

5e 	 Surface albedo, 0.01- 0.03 5 days 

6.a) 	Precipitation I mm/day 3 mm/day 5 days
 
over land
 

b) Precipitation 1 mm/day 4 levels of 5 days
 
over sea discrimina­

tion
 

7. 	 Soil moisturl " 10% of local, 2 levels of
 
field capacity discrimina- 5 days
 

tion
 

8. 	 Runoff(river 10% 15-30 days
 
basin)
 

9. 	 Land surface IC
 
temperature 10%
 
and relative
 
humidity
 
(over land)
 

10. 	 Ozone Profile 0.5 ppm 5 days
 
(2 km vertical
 
resolution)
 

11. 	 Wind stress 0.1 -2 0.4 -2 5 days
 
over ocean dyne cm dyne cm
 

* 
. oRIGINAL PAO I
 

The tentative specification of useful accuracy for precipitation
 
and soil moisture cannot be used for critical quantitative checking OF POOR QUALITY
 
of heat and hydrological budgets, but could be useful for qualita­
tive evaluation.
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TABLE 4-Vt 	 d
 

DATA REQUIREMENTS FOR FG4E[47] 

HORIZONTAL
BASIC PARAMETERS RESOLUTION VERTICAL RESOLUTION ACRCACCURACY RQECFREQUENCY 

(km) TROPOSPHERE STRATOSPHERE
 

Temperature 500 4 Levels 3 Levels + 1K 1/day 

Wind 500 4 Levels 3 Levels + 2m/sec 1/day 

Mid and High Relative Humidity 500 2 Degrees + 30% 1/day
 
Latitudes of Freedom
 

Sea"Surface 500 + IK 3 day avg.

Temperature
 

Pressure 500 + 0.3% I/day
 

Wind 500 4 Levels 3 Levels + 2m/sec 1/day
 
.


Tropics *c Temperature 	 500 4 Levels 3 Levels + 10K I/day
 

Relative Humidity 500 2 Degrees + 30% I/day 
.of Freedom

Sea-Surf aceTeaure 500 	 + 10KTemperature	 3 day avg.
 

Additional Parameters: 	 * 
2 Per Day Would Be Highly
 

* Cloud, Snow and Ice Cover 	 Desirable for All Parameters
 
* Precipitation Area and Intensity 	 Except Sea-Surface Temperature.
 
* Soil Moisture
 
" Earth Radiation Budget

* Sea Temperature/Currents 	 ** Data Requirements for the Tropics

* 	Oceanic Variables in the Upper are Currently Being Reexamined
 

Mixed Layers
 
* Aerosols
 
* Stratospheric Constituents
 



TABLE 4-VII
 

TENTATIVE SPECIFICATION OF GLOBAL OBSERVATION OF GASES AND PARTICULATES[47]
 

Variable 
Space 

Resolution 
Time 

Resolution 
Accuracy (l) 
of Determination Period 

Additional remarks, 
)bserving Technique, Etc. 

1. Water 
vapor 

500 km 1 per day 1 per day FGGE 

2. CO2 2 to 4 base-
line stations 
and 10 addi-
tional regional 
stations 

15 days + 0.1 ppm FGGE-Iimi-
ted number 
of stations 
and post-. 
FGGE 

Chemical analysis of 
air sample 

41 
Sresolution 

3. Ozone dis-
tribution 

500 km -

2 km vertical 
1 day +0.5 ppm FGGE Backscatter UV spectro­

photometry by NIMBUS-G 

3a Total 
Ozone 

Existing WMO 
network 

1 day 1 to 5% PGGE Ground-based optical 
measurements (prefer­
ably Dobson spectro­
photometer) 

3b Ozone 
Profile 

10 stations 
distributed 

1 week + 1 ppm FGGE Ozonesonde profile 
measurement 

over the globe 

4. Tropospher- WMO baseline 
ic Aerosols air-chemistry 

stations 

1 day 5% FGGE Aerosol analysis of 
air sample 

5. Atmospheric WMO baseline 
Turbidity atations 

1 week 1. FGGE Need to measure direct 
and diffuse radiation 
separetly 

6. Stratosph-
eric Aero- 
sols 

2 to 4 baseline 
stations 

1 day 5% FGGE Lidar. Sunlight 
polarization 

t relative accuracy 



OF pOORTABLE 4-VIII 

AEROSOL PROCESSES-SUWJARY OF TENTATIVE OBSERVATIONALQ.-RRQUIR R 4LrSK47t, 

I. STUDY OF PROCESSES
 

a) Radiative effects of aerosols.
 

Required aerosol parameter 	 Observational require­
ment and accuracy
for troposphere and stratosphere 


Size distribution
 

cm	 5%d-n in - 4 STP 

dr
 

Vertical profile of size 	 5%
 
Required vertical reso­distribution 

lution generally 0.5 to
 
1.0 kilometer
 

1% over the range
Real refractive index of bulk 

1.0 s n < 2
material n 


10% over the range
Imaginary part of the re-

0.001 < k < 0.1
 fractive index k 


5% over the range
Bulk density 6 of aerosol 

-3 	 1.0! S < 3.0
-particles, in g c
 

Use of 3 to 4 typical
Solubility of aerosol particles 

growth curves
and/or growth characteristic 


with relative humidity
 

For necessary data to calculate
 
energy balance of the atmosphere
 

Cannot be specified at
 b) Aerosol cloud interaction 

this time.
 

II. MONITORING Space 
 Time Accuracy
 

Resolution
Resolution
Variables to be monitored 


1) Total number concentration about 20
 

2) Concentration of optically baseline
 

important particles stations daily 5%
 

3) Total mass concentration distributed
 
over the
4) Concentration of gaseous 

globe
precursors 
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TABLE 4-IX 

TENTATIVE SPECIFICATION OF LONG-TERM MONITORING REQUIREMENTS
 
FOR --

RADIATION BALANCE COMONNTrS[47] 

ACCURACY TIME 

VARIABLE (DESIRED) (USEFUL) RESOLUTION 

- 2 	 - 2  2 WM 10 WM 3-6 months1. 	 Solar irradiance 
(top of atmosphere) 
(reproduction accu­
racy required) 

2. 	 Net radiation bud- 2 W-2 15 t-2 15 days 

get (top of atmo- ­

sphere) solar and
 
terrestrial, 104-105
2
km


* 	 *3. 	Clouds 


4. 	Snow and sea-ice Presence/Absence 5-15 days
 
(104 km2) 

5. 	Carbon dioxide 0.1 ppm 15 days
 
(2-4 baseline
 
stations, 10 re­
gional stations)
 

6. 	Ozone profile 0.5 ppm 10-30 days
 
(latitudinal dis­
tribution,- 2 law
 
vertical resolution)
 

Will be specified as more is learned of the radiative properties of
 

clouds.
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TABLE 4-X
 

TENTATIVE SPECIFICATION OF GLOBAL OBSERVATION REQUIREMENTS
 
FOR
 

VERIFICATION OF OCEAN MODELS
 

SPACE* TIME ACCURACY (1 a) 
QUANTITY, SCALE SCALE (DESIRED) (USEFUL) PERIOD 

Surface temperature 200 km 5-10 days 0.5C 	 1.50C FGGE
 

-2 	 -2
 
1.0 kcal cm 3.0 kcal cm 2
 

Heat content upper 200 km 5-10 days 


layer**
 

-2 	 -2 
0.1 dyne cm-2 0.4 dynes cm 2
 

Surface stress 200 km 5-10 days 


Sea level 	 200 km 5-10 days 2 cm 10 cm
 

5-10 days -Ice cover 	 200 km 


* 	The space scale is defined as a distance L, where a representative sample for a region LxL is 
desired. Extra resolution required in special regions. 

V* Measurements by drifting buoys, ships of opportunity. 



TABLE4-XI
 

TRACE SPECIES MEASUREMENT REQUIREMENTS FOR CLIMATE 

03 a2147] Profile 10Z[7] 1 day a e a e 7] 
aud fter volts..e. 

0.5'ppm[471 

100471 gl b.147,57] satellite monitoring . 

considered especially 
appropriate[471 

Total 1-1.5%[471 30 day erge[471 

1%[571 
higshrate notrequired[471 high resolution-not required[47[ 

CDO2 a 0.5 pp.[57] global[57[ [41 ntolateeeadesrmr[7fr. atel­

attractive[35[ 

glo PPb range[35[20 ppb[401 
lover, ttaphere[05,561gIoba1156,57] [47,41 

• 2 t ppb range[35[
10 ppb[571 

lower tu~tcsphete[35,561
global56,57] 

14714) 

ENO * I ppb[57] 1obal[.57] s47, o.te 

H20 50.ppb jI1oa1157 -

U20 
appn[35] pro 

fil0.5 ppC[71 
a f local 

gin.47]c global[56 571 
[47,41 crosoveritrt.rphcr.[35,56]expected eromNiBUS-F 

and C[47] 

total 101[57 30tdtudana![35ag [ 

CO 10 ppb[57] sporadial1y[47J jupper stratosphere[351
1lobal[57[ 

_[47,4,1 

Fl*orocarbon e0.001 ppb[57 [3d 

H2 l47] 
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5.0 	 SCIENCE REQUIREMENTS
 

A number of recent major study groups (CIAP, GARP; etc.) and
 

many smaller ones have addressed the general question of man's
 

interaction with and impact on the- stratosphere. Further consider­

able interest has developed recently concerning the effects of the
 

stratosphere (and its constituents) on man's environment--particularly
 

weather, climate and the radiation environment. In the previous
 

section (4.0) the results of many of these efforts were used to
 

analyze user needs and present general measurement requirements. In
 

this section the results of these efforts are summarized and used to
 

develop a set of scientific requirements for stratospheric trace
 

constituent measurements.
 

5.1 	 Background - ­

5.1.1 Physical and Chemical Properties of the Stratosphere
 

The stratosphere contains many different kinds of reactive
 

chemical species. Any one of these species can react with a number
 

of others, or be generated by a variety of other reactions in which
 

it does not directly take part.
 

As related to stratospheric chemistry in general, three types
 

of reactions may be distinguished. These are:
 

* Photochemical reactions,
 

" Homogeneous reactions, and
 

* Heterogeneous reactions.
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:hotochemical reactions involve the interaction of electro­

magnetic radiation of varying wavelengths with constituents of the
 

stratosphere. Photochemical interactions are the only known source
 

of stratospheric ozone production.
 

Homogeneous reactions are those reactions in which both the
 

reactant species and the products are in a gaseous phase. If in
 

these reactions a "third body" is needed to carry off energy to
 

prevent dissociation of the product, that third body is a gas
 

molecule.
 

Heterogeneous reactions are those reactions in which a particle,
 

solid or liquid, interacts with gaseous species. The interaction
 

may be catalytic, or the particle itself may take part in the
 

reaction.'
 

The photochemical reaction scheme that involves the decompo­

sition of 03 by NOx (NO, NO2, NO3,etc.) is at present considered
 

to be dominant in the natural ozone balance. The complete nitrogen
 

cycle included in many current stratospheric mathematical models is
 

shown in Figure 5-1.
 

A simple description of the NO picture in the stratosphere is
 

essentially as follows. NO is formed in the stratosphere by the
 

reaction
 

O(D) +N 20 -2NO, ()­

where O( D) is produced by Hartley dissociation of ozone, as
 

described above, while nitrous oxide (N20) is formed on the ground
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through-biological processes and diffuses upward. Once NO is formed,
 

a photochemical steady state is established between NO and nitrogen
 

dioxide (NO2). The reabtions involved are:
 

NO + 03 - NO2 + 02, (2)
 

NO2+ 0 - NO + 02, and (3)
 

NO2 + hv-- NO +O. (4)
 

This results mainly in NO2 at night and NO in the daytime. This
 

is followed by:
 

NO + HO2 + M - HNO3 + M (5) 

NO2 + OH + -M,-HNO3 + M , and (6) 

NO + OH + M--'HNO2 +M (7) 

which may possibly proceed through heterogeneous reactions involving
 

ambient sulfate droplets or particles. HNO2, and especially nitric
 

acid (HNO3), are the only presently known sinks of stratospheric
 

NO
 x 

Another chemical compound which has recently been recognized
 

as essential in the stratospheric ozone chemistry is hydrogen chlo­

ride (HCI) [58]. HCI can produce free chlorine which can, in turn,
 

interact catalytically with 03* A simplified diagram shows the
 

interaction mechanisms, Figure 5-2.
 

The reactions described so far are homogeneous and photo­

chemical. Recent investigations indicate that the effects of
 

heterogeneous reactions may be quite significant in the overall
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stratospheric chemistry [59]. For this reason, further work in this
 

direction is presently being conducted by several groups.
 

of at least equal importance to stratospheric processes is the
 

concentration and composition of stratospheric aerosols. The con­

centration of these sub-micron aerosols has been observed to vary
 

over the years depending upon the frequency and magnitude of volcanic
 

eruptions. The Junge, or sulfate layer, which is predominately
 

composed of sulfate aerosols is located at about 20 kilometers
 

altitude, more precisely between 6 and 10 kilometers above the
 

tropopause. Several studies have been conducted to assess the
 

effect these aerosols could have upon the earth's energy budget.
 

Although the concentration of stratospheric aerosols is less than
 

that of the in situ gases, these studies suggest that variations
 

in the aerosol population can significantly affect atmospheric
 

process. It is, therefore, useful to understand their sources and
 

sinks.
 

5.1.2 Sources of Stratospheric Pollutants
 

The contaminants introduced into the stratosphere originate
 

from both man-made and natural sources. Whether the contaminants
 

are directly introduced into the stratosphere, or are diffused
 

from the troposphere, three categories of man-made sources should
 

be identified. To the first category belong the supersonic (SST)
 

and subsonic aircrafts, flying above the tropopause, and the
 

Shuttle booster. The additional nitrogen oxide produced by the
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aircraft engines increases the rate of catalytic chemical reactions
 

-
between NOx and 03, and may seriously diminish the ozone layer which
 

protects the earth from the UV rays of the sun. -In addition to this,
 

the aircraft engine effluents, such as SO2 (sulfur dioxide) andH20,
 

may form sulfuric acid particles which alter the heat transfer to
 

and from the earth and affect the earth's climate. In the case of
 

the Space Shuttle, the engine effluent of concern is HCl; Hydrogen
 

chloride acts as a catalyst to NOx, thereby reducing the ozone.
 

The aluminum oxide (AI203) particles emitted by the Shuttle engines
 

play a similar role to-produce sulfuric acid particles which affect
 

the radiation balance on the earth's surface.
 

The second category of man-made sources is contaminants released
 

in the troposphere and which-diffuse into the stratosphere. Chloro­

fluoromethane gases CFC13 and CF2Cl known as Freon 11 and 12 respec­

tively, are ised as propellants in aerosol sprays and as a refrigerant.
 

In the troposphere, Freons are themselves chemically inert, and do not
 

react directly with ozone or ordinary oxygen atoms. However, after
 

diffusing into the stratosphere they absorb short wavelength ultra­

violet radiation (0.19 to 0.225 Ftm) and each chlorofluoromethane molecule.
 

decomposes to release atomic chlorine. Atomic chlorine attacks 03
 

through the catalytic chain reaction.
 

iMore recently it has been- suggested that bromine may be consid­

erably more potent in destroying stratospheric ozone, but so far no
 

bromine carriers similar to the Freons have been found in the
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stratosphere. The extensive use of bromine fumigants in agricul­

ture mould be a significant source. This-usage combined with wide­

spread application of nitrogen fertilizers forms the third possible
 

large source of pollutants.
 

The investigation of the natural sources of stratospheric
 

pollutants is in its early stages. In general, volcanos, oceans,
 

and plants have been suggested as natural sources of stratospheric
 

contaminations. Preliminary estimates of the annual emission of
 

HC1, HF, and SO2 to the stratosphere from volcanic eruptions
 

consider such emissions as nonsignificant [60]. Exceptions, however,
 

are possible for short periods following very intense volcanic
 

activities.
 

The contaminants introduced in the stratosphere by these
 

sources have two consequences:
 

(1) Reduced 03 concentrations, and
 

(2) Increased aerosol concentrations.
 

Since 03 concentration controls the amount of UV-B radiation
 

(0.28-0.32km) that reaches the surface of the earth, a reduction in
 

03 Concentration will increase the amount of this radiation, which
 

has been shown to cause skin cancer and other biological effects
 

[39]. The increase in aerosol,1 oncentrations (besides increasing
 

the potential for hetrogeneous reactions whose effects are not well
 

understood at present) will perturb the radiation balance of the
 

earth's atmosphere and may lead to climatic changes, affecting
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sunshine, temperature, and precipitation. In addition to these,
 

O2 and H20 vapor intioduced into the stratosphere by aircraft
 

or Space Shuttle vehicles may increase the greenhouse effect and
 

lead to stratosphericwarming, which would perturb the natural
 

circulation of the stratosphere. In general the interrelationships
 

among pollution sources and their implications belong to two chains.
 

These chains are the I chain and the climate chain.
 

5.1.3 The Role of Atmospheric Constituents in Climate
 

A number of components of the atmosphere can be identified as
 

playing a role in climate and its variability. Among these are CH4,
 

N20, Cx, C02, and H20 , whose role and impact are fairly well under­

stood, and aerosols, whose effects are not so well understood [47].
 

In each case there is considerable interest in man's ability to
 

alter the natural concentration and location of these constituents
 

either by their direct release or by the emission of constituents
 

which interact in a physical or chemical way with components of the
 

atmosphere. Furthermore, a complex chemical balance exists in the
 

atmosphere among its many constituents. Among these constituents
 

are those mentioned above as well as others which do not directly
 

participate in determination of the climate in an important way but
 

which indirectly affect climate by their interaction with other,
 

more important species.
 

Generally, the connection between the concentration of gases
 

and climate parameters is by way of the electromagnetic absorption,
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emission and scattering properties of the material. For example,
 

the gases mentioned above participate in the -establishment of the
 

vertical temperature profile of the atmosphere by way of their
 

absorption spectra. Considerable ultraviolet radiation
 

is absorbed in the upper atmosphere by 02 and in the stratosphere
 

and mesosphere by 02 and 03. In the lower stratosphere and
 

troposphere 02, H20' C02. clouds and particulates participate
 

in the absorption process. In addition to the absorption of solar
 

radiation, the constituents of the atmosphere participate in radia­

tion and absorption processes in the infrared wavelengths which
 

determine both the atmospheric temperature profile and the amount of
 

radiation lost from the earth-atmosphere system to space. The loss
 

of radiation from various levels from the atmosphere to space is
 

balanced by convective transport of warmer air of the lower atmos­

phere. It is in this convection process that the-latent heat of
 

condensation is released during the formation of clouds.
 

5.2 	 Development of Scientific Criteria
 

The scientific criteria developed for stratospheric pollution
 

measurements must have as their basis the major objectives of the
 

entire stratospheric program. These objectives may be primary or
 

secondary depending upon the nature of their interaction with man
 

and his environment. The primary objectives are:
 

* 	Monitoring climatic changes caused by changes in the
 

concentrations of the various stratospheric trace
 

constituents, particularly aerosols; and,
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v Monitoring changes in ultraviolet received at the earth's
 
surface as a result of changes in the concentrations of
 
the 	various stratospheric trace constituents, particularly
 
ozone.
 

The secondary objectives may be considered as indirect objectives of
 

the entire program. These are:
 

o 	Increased understanding of the chemistry and physics of
 
the stratosphere and its constituents; and,
 

o 	Increased understanding of the meteorology and hydro­
dynamics of the stratosphere.
 

Obviously, there is considerable overlap between the primary and
 

secondary objectives, since the latter have a much broader scope
 

which includes the former.
 

The next section presents a discussion that supports the
 

prioritization of the measurements into the various groupings
 

shown.
 

5.2.1 Prioritization of Measurements
 

The list of stratospheric measurements has been presented in
 

six groups which are considered to be of descending order of impor­

tance in terms of the absolute need for the measurement without
 

regard to present knowledge or measurement capability. However, it
 

must be emphasized at this point that none of these groups is
 

considered unimportant. The groupings merely show the degree of
 

importance, and relative placement within a group has no signifi­

cance.
 

The rationale for placement of a required measurement in any
 

one of the categories is given below:
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Group 1. This group contains those properties and species
 

which are considered to be directly related to changes in
 

climate and/or the ultraviolet flux. For example, 6zone is
 

directly related to the major absorption of ultraviolet while
 

the Freon compounds are not. This group has been subdivided
 

into Group IA which lists direct measurement of stratospheric
 

properties such as temperature; and Group IB which lists
 

measurements of stratospheric species directly associated with
 

changes in climate and/or ultraviolet flux such as ozone.
 

Group 2. Groups 2 through 5 list the various components of
 

the major chemistry chains of the stratosphere, such as the
 

chlorine chain or the nitrogen oxides chain. The four species
 

shown in Group 2 have been so identified since they are asso­

ciated in a'major way with both ozone and aerosol chemistry
 

chains.
 

Group 3. In this group are listed the components of the basic
 

reactions involved in the direct production or depletion of the
 

ozone concentration in the stratosphere (except for atomic
 

oxygen and the hydroxyl radical which are already shown in
 

Group 2). These species participate in the principal chemical
 

equations which directly involve ozone. These equations are
 

given below for each of.the significant chemistry chains:
 

Pure oxygen reactions:
 

03 + hv (X :0.45-0.675im) 0 0 + 02 

03 + hv (X :0.31-0.34 m) - 02 + O(3 P) 
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http:0.31-0.34


03 + hv(X <0. 3 1lm) a 0 (ID) + 02
 

0 + 02 + M ->03 +bM
 

03 + 0- 02 + 02 

Hydrogen-oxygen reactions:
 

H + 0 -- OH + 02
 

OH + 03 -*HO2 + 02
 

HO2 +0 3 OH + 202
 

Nitrogen-oxygen reactions:
 

03 + NO -- NO2 + 02
 

NO2 +0 - -NO 3 + 02
 

Chlorine-oxygen reactions:
 

Cl + 03 - CO + 02 

Group 4. This group contains those species considered to
 

be the most important ones in the indirect chemistry chains;
 

that is, those which result in the production or depletion of
 

the major species discussed under Group 3.
 

Group 5. This group contains those species considered to be
 

involved in a lesser but not unimportant way in the indirect
 

chemistry chains discussed above.
 

Group 6. This group lists those specific aerosols mentioned
 

in the various references consulted. For the most part their
 

role in the stratospheric aerosol chain is not understood.
 

In fact, the existence of some of the species is only specu­

lative or based on theory.
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5.2.2 Species and Properties of Interest
 

As stated previously, this section presents the list of strato­

spheric measurements that should be made or would be of interest.
 

The measurements are grouped according to the criteria discussed
 

id Section 5.2.1. These groupings were made after analyzing all
 

available references that discuss the importance of the various
 

species. Table 5-1 presents this list along with the major references
 

supporting the selection of the measurement and its placement in the
 

appropriate group. A number of other references [49, 57-61, 74-103,
 

113-120] were consulted during preparation of the list.
 

5.3 Properties of the Species of Interest
 

- In this section a summary of the properties of the measure­

ments and species of interest is presented. -Table 5-11 summarizes 

the present knowledge of the four dimensional distributions (lati­

tude, longitude, altitude, and time) of those species and measure­

ments in the prioritized list of desired stratospheric measurements
 

(Section 5.2.2). In addition, the table contains a few of the
 

measurement requirements considered to be pertinent. The distribu­

tion information was gathered in general from the same references
 

used to develop the prioritized list of measurements shown in Table
 

5-I plus various otker references. It is not considered necessary
 

to present this information in any detail other than the table
 

summary to satisfy the objectives of this study. The references
 

cited above present these distributions in detail.
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TABLE 5-I
 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS
 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND----
SYMBOL 39 40 62 63 64 65 66 67 68 69 70 

GROUP 1A, DIRECT MEASUREMENTS OF CLIMATIC 

CHANGE AND ULTRAVIOLET CHANGE 


Temperature % % / / N/ / 


Solar Irradiance N/ N/ VV V V V#V 
(including UV) 

Earth Radiance V ViZ V V / 

GROUP IB, SPECIES DIRECTLY ASSOCIATED WITH
 
•CHANGES IN CLIMATE AND/OR ULTRA-

I VIOLET 
H* Water Vapor, H2 0 V/ VV 

Ozone, 03 / / 


Aerosols VVV V/Z V 


Carbon Dioxide, CO2 V/ V V/ V V 

Pt 72 73 

V y I 

%/ ' 

V/ 

V V V 

V V / 

V V V 

/ V V 



TABLE 5-I 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS 

(Continued) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 

--SYMBOL' 39 40 62 63 64 65 66 67 68 69 

GROUP 2, IMPORTANT SPECIES ASSOCIATED WITH 
TWO OR MORE CHEMISTRY CHAINS 

. 

7bi 72 73 

Hydroxyl, HO /V V.V%/ / V V VV 

Atomic Oxygen, O(3p) N/V / V V / N/ N/ 

Atomic Oxygen, O(D) N/ N/ V V N._ 

Ul 

Ammonia, NH3 V N/VV 



TABLE 5-I
 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS
 

NAME OF SPECIES/PROPERTY 
AND- - -

SYMBOL 

GROUP 3, COMPONENTS OF THE BASIC REACTIONS
 
INVOLVED IN THE DIRECT PRODUCTION
 
OR DEPLETION OF THE OZONE CONCEN-

TRATION
 

Nitric Oxide, NO 


Nitrogen Dioxide, NO2 


Atomic Chlorine, Cl 


Chlorine Monoxide, C10 

Hydrogen, H2 or H 

Hydroperoxyl, HO2 


(Continued) 

MAJOR REFERENCES WHERE CITED 
- - - - - --------.... 

39 40 62 63 64 65 66 67 68 69 70 7J 72 73 

v V v'v' V V V V V/ V V 

V V V V V V V V V " V // 

V V V V VV VV. V 

V V V V / / V/ V v V/ 

V V / V / v vv / v 

V V V V v V v v v 

V 



TABLE 5-1 

GROUP 

PRIORTTIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS 

(Continued) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 62 63 64 65 66 67 68 69 

4, MAJOR COMPONENTS OF THE BASIC RE-
ACTIONS INDIRECTLY INVOLVED IN THE 
PRODUCTION OR DEPLETION OF OZONE 

70 71 72 73 

Nitrous•Oxide, 20 

Nitrogen Pentoxide, N2O 

V 

V 

v 

/ V V V 

V 

V 

VV V V V 

V 

V 

V 

Nitric Acid Vapor, HNO3 V/ VV V/ V V 

Chlorine Nitrate, CiONO2 V V/ V 

I Carbon Monoxide, CO V V N/V %/V / V 

Methane, CH4 VV V/ / / / V/ V' A/ V V 

Hydrogen Chiojide Gas, HCI V VV V V V VN/ V V 

Triehlorofluoromethane, F-I1, CFC13 V V V V V. V 

Dichlorodifluoromethane, F-12, CF2C12 V V V V / / ,V/ N/ 

Sulfur Dioxide, So2 N/VNV / V V V 

[0 



----------------------------------------------------------

TABLE 5-1 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS
 

(Continued)
 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED .... 
AND 

69 '73SYMBOL .39 40 62 63 64 65 66 67 68 70 71 72 

GROUP 5, OTHER SIGNIFICANT COMPONENTS OF THE 
CHEMISTRY CHAINS 

Tetrachloromethane, CCl4 -(Carbon / V V V V V V 
Tetrachloride) 

Chloromethane, CH3Cl (Methyl Chloride) V 

Dichloromethane, CH2Cl2 (Methyl Dichloride) / 

Trichloromethane, CHCl3 (Chloroform) V 

I Methanal, CH2O (Formaldehyde) V 

Chlorodifluoiomethane,'F-22, CHClF2 V 

/
Dichlorofluoromethane, F-21, CHC12F 


Bromomethane, CH3Br (Methyl Bromide) N/vV /
 

Trichloroethylene, CCI 2 -- CHCl V V/
 

Methylchloroform, CH3CC13 V3 /
 

Trichlorotrifluoroethane,.F-1l3, CF2C1CFCl2
 

Carbonyl Fluoride, F2CO V V/
 



TABLE 5'I 

PRTORITIZED LTST OF DESIRED STRATOSPHERIC MEASUREMENTS 
(Continued) 

NAME OF SPECXES/PROI'ERTY MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 62 63 64 65 66 67 68 69 

GROUP 5 (Continued) 

1b )1 72 73 

FluoroformylChloride, ClFCO / 

Tetrabromomethane, CBr4 (Carbon Tetrabromide V 

Methyl Peroxy Radical, CH302 V 

u. 

Methyl Oxy Radical, CH30 

Chlorodifluoromethane Radical, CF Cl 

V 

V V/ 

Dichlorofluoromethand Radical, CFC12+ N/ 

Chlorine Dioxide, CIQ
2. 

Methyl Sulfide, (CH)S. V 

Carbonyl Sulfide, COS, 

Carbon Disulfide,.CS2 . V 

Dichloroethane, C2HC 2 V 

Ethyl Chloride, C2H5C 

Carbonyl Monochloride', COCI V­



TABLE 5-I 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS 

(Continued) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 62 63 64 65 66 67 68 69 10 71 72 73 

GROUP 5 (Continued) 

Tetrachloroethene, CI2C:CC12 

(Perchloroethylene) 

Vinyl Chloride, CH2 :CUC1 

Hydrogen Sulfide, H2S // v 
Hydrogen Fluoride, HF. V V V / v/ / 

Hydrogen Bromide, HBr / V V 

Hydrogen Peroxide, H202 

Ammonium Ion, NH 

/ / 

V 

V V 

V V 

V / 

Sulfur Hexafluoride, SF6 A/ / 

Sulfur Trioxide, SO3 V / V 

Bisulfite Radical, HSO 3 V/ 

Nitrogen Tribxide, NO3 / N/ V 

Bromine Oxide, BrO V V 

Atomic Bromine, Br V V 



TABLE 5-I 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS 
(Continued) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 

SYMBOL 39 40 62 63 64 65 66 67 68 69 70 1 72 73 

GROUP 5 (Concluded)-

Atomic Oxygen, O(1) 

Oxygen, 0 2 (A) 

Non-Methane Hydrocarbons, CxH V 

Various Organics, H C 0 
x y, 

,V 



TABLE 5-I 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS 

(Continued) 

NAME OF SPECIES/PROPERTY MAJOR REFERENCES WHERE CITED 
AND 
SYMBOL 39 40 62 63 64 65 66 67 68 69 10 7i 72 73 

GROUP 6, SPECIFIC AEROSOLS 

Aluminum Oxide Aerosol, nA1203 

Sulfuric Acid Aerosol, H2SO4.nH2 0 

V 
V/ V V 

V 
V 

Sulfate, SO4 V V V V V 

Sulfur Dioxide (in cluster formation), nSO 
2 

Nitric Acid Aerosol, nHNO3 

/ 

V 

V 

V 

~ Nitrate, NO3 V/ V V 

Nitrite, NO2 V V 

Nitric Oxide (in cluster formation), nNo V 

Nitrogen (in cluster formation), nN2 V 

Ammonium Ion Aerosol, nNH4+ V V V . 

Amnonium Sulfate, (NH4)2 SO4 V V/ V 

Ammonium Peroxydisulfate, (NH4 )2 S208 V V 

Liquid Water or Ice (as aerosol or in clus-
ter formation), nH20 

V V V 



TABLE 5-1
 

PRIORITIZED LIST OF DESIRED STRATOSPHERIC MEASUREMENTS
 

(Concluded)
 

NAME OF SPECIES/PROPERTY 
 MAJOR REFERENCES WHERE CITED 
AND- - - - - -- -- -- --

SYMBOL 39 40 62 63 64 65 66 67 68 69 io 21 72 73
 

GROUP 6 (Concluded),
 

Carbon Dioxide (in cluster formation), nCO22
 

'Aluminum Ion, A1 / 

Bromide Ion, Br- '/ V
 

Ca + V/
Calcium Ion, -/ 

Chloride Ion, Cl V/ V
 
If 

"
Copper Ion, Cu
 //
 

Iodide Ion, I V V
 

Iron Ion, Fe++ or Fe+++
 

Magnesium, Mg V
 

4
Manganese Ion, Mn++or Mn+ V/
 

Potassium Ion, K/
 

++
Silicon Ion, Si+ H '/V
 

V
Sodium Ion, Na+ / 




:xplanations of the various columns inlTable 5-11 related to
 

requirements and present knowledge and capability are given below:
 

Desired Accuracy. Desired accuracy refers to the accuracy
 

of the data given to the user. In most cases this accuracy is
 

given in percent of the reading. In those cases where no present
 

measurements exist any valid measurement would-be a reasonable
 

goal. Accuracies shown were assigned by MITRE after analysis of
 

all available reference material.
 

Present Measurement Capability. These data are presented
 

for contact and remote techniques. Two factors are worthy of note.
 

First, where the entry shows no technique exists, it does not
 

imply that there is absolutely no way to make such a measurement or
 

that no measurement has ever been made. It merely indicates that
 

in the normal progression of stratospheric investigation no measure­

ment capability exists. Second where adequate techniques are
 

shown to exist, it is not intended as an indication or recommendation
 

that further instrument or technique development is unnecessary.
 

Present Knowledge of Distribution. There are no stratospheric
 

constituents for which additional measurements would be useless.
 

The entries are given generally in a relative sense; in most cases
 

where the distribution is shown as well measured much more data
 

are needed for a thorough understanding of stratospheric processes.
 

Requirements for Time of Launch. This requirement refers
 

basically to the time of the year for the launch and-not the time
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of day. Generally speaking, time of launch is important only
 

for short missions where complete diurnal and longitudinal coverage
 

It can also be a factor in missions of
would not be possible. 


only a few months' duration if measurements are desired during a
 

Since the concentrations of many of the
certain season of the year. 


species of interest are assumed to be affected by volcanic ash,
 

their objective measurements made before
 some missions may have as 


or after large volcanic eruptions. However, since most satellite
 

missions are multipurpose, it is difficult to establish a launch
 

requirement based on unpredictable volcanic activity.
 

Vertical Profile. Requirements for vertical profile informa-


If theoretical or actual
tion are stated in one of three ways. 


knowledge of the species distribution indicates a significant
 

vertical variation, then the requirement for vertical profile
 

If the species is constant with altitude the.
measurements is noted. 


vertical profile is not required. For some species with unknown
 

distributions, vertical profile measurements are indicated as
 

desired rather than required.
 

The total length of the
Duration of Measurement.Program. 


basic measurement program given here is based on present knowledge
 

In some cases, although the total duration of
of distributions. 


the program is long, the actual mission requirements may be inter­

mittent at some medium or long interval, depending on the nature 
of
 

the species.
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5.4" Summary 

This section has.presented a general background on.the physical
 

and chemical properties-of the stratosphere and has discussed
 

the development of the scientific criteria for prioritization of
 

measurements for the various species. Background information has
 

been given on both the natural and anthropogenic sources of strato­

spheric contaminents and the role each plays in the ozone balance
 

and in climatic change.
 

A prioritization of properties and species has been developed.
 

This prioritization was based principally on the relative role
 

any given property or species pays in either the ozone balance
 

or climatic change. The properties and species identified as
 

having the greatest priority for measurement were:
 

* Stratospheric temperature
 

* Solar irradiance
 

* Earth radiance
 

* Water vapor
 

* Ozone
 

o Aerosols
 

o Carbon dioxide
 

It must be remembered that this list has been developed-purely on
 

the needs of the scientific community without regard to present
 

knowledge of the distribution or present or potential measurement
 

capability. Later in this report these factors will be integrated
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into the analysis, and it will be shown that most of the above
 

listed properties and species do not receive the-highest priority
 

for -planned satellite missions since their distributions are much
 

more understood than most of the other important stratospheric
 

species.
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6.0 	ORBITAL INFLUENCES AND INSTRUMENT PERFORMANCE­

6.1 	 Orbital Influences
 

As in any spacecraft mission, compromises must be made
 

in the selection of the orbit based on the ideal coverage and
 

available instrumentation. Monitoring of the stratosphere is no
 

exception. Maximum spatial and temporal sampling is required
 

because of the generally scant information on the global distribu­

tion and time variance of the various stratospheric constituents.
 

These requirements are discussed in Sections 4.0 and 5.0 where a
 

common feature is the requirement for global coverage.
 

A-general set of instrument/orbit criteria has been derived
 

from other sections- of the report. As expected these criteria
 

include requirements for:
 

" 	diurnal sampling,
 

" 	the largest possible latitude coverage,
 

* 	frequent periods when the various types of instrumentation
 
can monitor the same region for corroboration of data quality,
 
and
 

a 	seasonal sampling.
 

This section'is devoted to the interplay of the various generic
 

types of instruments and possible orbits in order to quantify the
 

sampling characteristics. The discussion will center about two
 

topics:­

(1) 	properties of the orbit, instrumentation, and -resulting
 
coverage of the globe, and
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(2) 	appropriateness of a set of instrument/orbit
 
parameters for monitoring a set of significant
 
stratospheric constitutents. '
 

Some 	topics which will be utilized in theevaluation of a
 

monitoring system include properties of the orbit, influences of the
 

solar position as a function of position in the orbit, and season of
 

the year. The influence of mean cloud cover, day/night performance,
 

and the spatial distribution of selected stratospheric constituents
 

will 	be discussed.
 

6.1.1 Orbit Parameters
 

A number of potential orbits have been considered. For example,
 

a typical sunsynchronous orbit provides morning equatorial crossing
 

and high inclination circular orbits. Typical orbital parameters
 

are found in Table 6-1. Similar parameters are used in the subsequent
 

sections to determine the latitudes over which occultation and nadir
 

measurements can be made, and to identify any operational limitations.
 

6.1.2 Instrument Operation
 

The performance of the remote sensors being considered in this
 

document is greatly influenced by the selection of the spacecraft
 

orbit. The position of the Sun, with respect to the spacecraft for
 

a variety of orbital and seasonal conditions is important in deter­

mining global coverage. Table 6-11 compiles the basic requirements
 

for each generic type of sensor system. Each of the four cases
 

depicted in Table 6-11 will be discussed in this section.
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TABLE 6-I
 

TYPICAL ORBIT PARAMETERS UTILIZED IN THE ANALYSIS
 

(representing a sunsynchronous, high inclination, circular orbit).
 

PROPERTY VALUE UNITS
 

Equatorial Crossing Time 0900 hours
 

Altitude 958 km
 

Period 104.3 minutes
 

Westward displacement per orbit 26.1 0 of longitude
 

13.8 -
Orbits per day 


99.3 o
Inclination 


Precession Rate 0.986 0/day relative to Earth
 

'0.0 */Day relative to Sun
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TABLE 6-1l
 

SENSOR REQUIREMENTS ON SOLAR POSITION DURING MEASUREMENT IN ORBIT
 

Reflected 
Solar Source Solar Source Thermal 

Limb (Occultation) Sun must appear Sun must 

in stratospheric not appear 

limb in FOV 

Nadir Local elevation Sun not 
angle must be required 
large enought to 

provide adequate 
radiance 

6-4
 



6-1.2.1 Limb - Solar Source (Occultation). Limb instru­

mentation utilizing the Sun as a radiation source has a-large
 

potential for monitoring the stratosphere. The resulting high
 

signal-to-noise ratio and sensitivity are ideal performance criteria.
 

However, instrumentation of this type is limited to a short measure­

ment period per orbit (0.5 - 3 minutes for both the sunrise and
 

sunset) as well as to the location of measurements which are con­

centrated in relatively narrow latitude bands.
 

Figure 6-1 illustrates the experiment configuration. The
 

tangent point is some distance from the spacecraft and produces a
 

measurement made through a large segment of the stratosphere. By
 

definition, the tangent point, which moves about 21 km during a given
 

sunrise or sunset, is called the data point.
 

An important computation is the determination of the latitudes
 

covered (defined by the data points) as a function of the season.
 

Since it takes approximately five days for the spacecraft (with an
 

orbit similar to that in.Table 6-) to repeat coverage of a given
 

ground point, the orbit to orbit variations-in latitude can be
 

ignored. However the small changes in latitude coverage for each
 

succeeding orbit result in large seasonal changes which must be
 

taken into account when computing maximum and minimum latitude
 

coverage for the-different seasons. For sunsynchronous orbits, the
 

designed precession rate of the satellite orbit plane guarantees
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Spacecraft Orbit
 
Stratosphere
 

- Sun's 

Area of the Stratosphere Radiation
 

Monitored During a Given
 

Sunrise or Sunset ­

0 0% -,..Tropopause 

/Tangent Point
 

/ (Associated with Measurements) 

FIGURE 6-1 
EXPERIMENTAL CONFIGURATION DURING SOLAR OCCULTATION EXPERIMENT 



that a constant angle exists between the plane of the orbit and the
 

Earth-Sun line.
 

The latitude coverage is defined by determining the tangent
 

point, which is the intercept of the Earth with the satellite-Sun
 

line. Calculations of this type have been performed for a variety
 

of sunsynchronous and other orbits. A typical set of results of
 

the coverage obtained are depicted in Figures 6-2 and 6-3, for
 

sunsynchronous and non-sunsynchronous orbits, respectively.
 

Data of this type make it clear that limb instruments in
 

sunsynchronous orbits using the Sun as a radiation source have
 

several disadvantages:
 

o 	the range of latitude sampled is quite restricted,
 

* 	each latitude is seen a maximum of only four times per year
 
(90 days apart),
 

* 	the measurement period is quite short (on the order of
 
minutes),
 

* 	no diurnal sampling of various latitudes,
 

* 	no seasonal sampling of various latitudes, and
 

* 	each data point represents the integral of the observed
 
constituent along a substantial path thereby providing
 
limited spatial resolution.
 

Use of non-sunsynchronous orbits avoids the first two limita­

tions, thereby more nearly satisfying the requirements for near-global
 

coverage. However, the interpretation of the data, in order to ­

obtain the desired spatial resolution, demands considerable attention.
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EFFECT OF TIMING 
i 99.04, 

ON LATITUDE COVERAGE 
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LATITUDE COVERAGE, OF SOLAR OCCULTATION INSTRUMENTATION IN TYPICAL SUN-SYNCHRONOUSORBITS [103]
 



DISTRIBUTION OF MEASUREMENTS DURING A I YEAR MISSION 
i =50° , h=600 km 

90 

60
 

30
 
0 . . ...... 4...LAT ITUDE, ,..,

deg0 

ON, I 4. ,* '*o,',-30" 

-90 I I I 
-180 -120 -60 0 60 120 180LONGITUDE, deg 

FIGURE 6-3" 
SAMP LING CHARAC.TERISTICS OF SOLAR OCCULTATION INSTRUMENTATION IN A 

NONSUN-SYNCHRONOUS ORBIT. EACH DOT REPRESENTS A DATA POINT'[10] 



6.1.2.2 Reflected Solar Source. Nadir-looking sensors,
 

which rely onreflected solar radiatipn,- are limited in their
 

6peration to those areas where the local solar zenith angle is
 

sufficiently small to provide adequate radiance. Consequently,
 

latitude coverage, as a function of season, is limited. An example
 

of this limitation follows for a nominal solar zenith angle of 450,
 

the latitudes covered as a function of season of the year and time
 

of the descending node, are illustrated in Figure 6-4 for three
 

equatorial crossing times.
 

Clearly, such coverage provides monitoring of the Northern
 

Hemisphere during the summer periods and the Southern Hemisphere
 

between September 21 and March 21. The value of such coverage has
 

yet to be determined, but several points can be made:
 

" 	latitude coverage is maximized in each hemisphere
 

only once per year,
 

* 	seasonal variations in each hemisphere cannot be
 

monitored,
 

* 	the equatorial regions (approximately 100N to 100 S) 
can be monitored almost continuously for orbits with 
descending nodes between 9:30 and noon, and ­

* 	maximum coverage is obtained for 12:00 noon orbits
 
allowing continuous monitoring for latitudes from
 
23.50 N to 23.50 SA".
 

The results indicate that nadir-reflected solar instrumenta­

tion has a quite limited geographic coverage under the given condi­

tions. Improved performance can be-expected if elevation angles of
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less than 450 can be used. The selection of a non-sunsynchronous
 

orbit would improve the coverage to somre extdnt although the dominant
 

feature remains the variation of the Sun's position throughout the
 

year.
 

The occurrence of cloud cover over the globe, as well as
 

instruments relying upon ocean radiation as a source, also limit
 

sensitivity. Significant limitations in the operation of near­

infrared instrumentation can be anticipated under these conditions,
 

thus further reducing the area coverage.
 

6.1.2.3 Nadir-Thermal Source. The operation of nadir-thermal
 

emission instrumentation is not influenced by the Sun's position,
 

with the possible exception that specular reflection of sunlight
 

cannot be directly incident on the receiver. In general, nadir­

thermal instruments can be expected to provide day/night, global
 

coverage and can provide frequently sampled data utilizing both­

sunsynchronous and non-sunsynchronous orbits.
 

6.1.2.4 Limb-Emissions Source. As in the case of the nadir­

thermal instrumentation, the position of the Sun is only critical
 

for the limb-emissions instrument insofar as it does not appear in
 

the field of view of the receiver. Therefore, no significant
 

demands are made on sensor orientation or orbital characteristics.
 

However, the selection of an early morning (6-8 a.m.) sunsynchronous
 

orbit allows effective diurnal ampling.
 

6-12
 



6.1.3 Coverage Requirements
 

As discussed in some detail earlier, many of the constituents
 

of the stratosphere require a global observation in order to
 

adequately determine their concentration, seasonal, and latitudinal
 

variations.
 

These requirements impose several demands on the orbits chosen
 

and, based on the work appearing earlier in this section, one may
 

conclude that no measurement method/orbit combination can satisfy
 

all of the coverage requirements. A review of Section 6.1.2 reveals
 

that both-diurfal and seasonal sampling cannot be provided by either
 

the solar occultation or nadir-reflected solar instrumentation in
 

sunsynchronous orbits due to their demand on the relative position
 

of the Sun (which, of course, is a seasonal factor). The thermal
 

emission instrumentation (described in Sections-6.1.2.3 and 6.1.2.4)
 

are superior in terms of their coverage capability although their
 

sensitivity may be lower.
 

The conclusion is that, based on the classes of instrumenta­

tion identified in Sections 6.1.2.1 and 6.1.2.4, coverage require­

ments from a sunsynchronous orbit are met sufficiently well to
 

monitor the detailed temporal and spatial variations of stratospheric
 

constituents only in the cases of nadir thermal and limb-emission
 

-instruments. 
 The selection of a non-sunsynchronous orbit will
 

improve the coverage of the solar occultation class of instruments,
 

but will not provide polar coverage. In order to obtain the temporal
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sampling rates demanded by some constituents, it may be necessary to
 

use multiple satellite systems.
 

6.2 Instrument Performance
 

The previous section has indicated the constituents of scientific
 

interest. Many very important species were shown not to be detect­

able by current remote sensing methods. In this section, those
 

instruments that are either operational or under development and are
 

reported to be capable of measuring one or more of the species of
 

interest are presented.
 

Table 6-111 presents a representative instrument selection
 

for a satellite measurement program. Information contained therein
 

represents the present claimed capabilities of the various sensors
 

for measuring some of the species of interest. Question marks refer
 

to design decisions that have yet to be made with regard to the
 

instrument's final configuration. The remainder of this section
 

will provide capsule descriptions of the instruments appearing in
 

the table.
 

6.2.1 LIMS (Limb IR Monitor for the Stratosphere)
 

This instrument is an evolutionary development of LRIR and
 

LACATE. As a limb scanner, it is capable of providing vertical
 

profiles of the measurable species. It is planned to be used for
 

measurements of CO2 (used for temperature determination), 033 H 20,
 

NO2 and HNO3. Operating in the thermal IR region, it has a require­

ment for cryogenic cooling of its detectors. Vertical scanning, of
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TABLE 6-11I 

INSTRUMENT CAPABILITY VS. SPECIES [30 

INSTRUMENT 

TEMP/ 
CO2 03 H20 Aerosols Clouds NO2 HNO3 HCI CH4 N20 NH 3 CO so2 HF 'NO CF2Cl2 
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SER 
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the few degrees required, will be provided, but the-azimuthal view
 

will -probably be fixed at about 300 from the -orbital plane.
 

6.2.2 	SER (Solar Extinction Radiometer)
 

SER is an outgrowth of the SAM II and SAGE instruments.
 

It operates in a solar occultation mode using the visible, near-UV,
 

and near-IR portions of the spectrum. The instrument is designed to
 

measure aerosols and 03' primarily, with either H20 or NO2 secondarily.
 

Azimuth scan capability of + 1800 ad a vertical scan of + 30 for
 

tracking are provided. Once the sun is acquired, a lock-on mode
 

retains it in the field of view during its transit of the atmosphere.
 

6.2.3 	CIMATS (Correlation Interferometer for the Measurement
 
of Atmospheric Trace Species)
 

This sensor is a next generation to the COPE instrument which
 

has been flown aboard aircraft and helicopters. Based on the
 

Michaelson principle, it produces interferograms which are sub­

sequently computer-correlated with interferograms of known species.
 

CIMATS may be configured for nadir viewing or solar occultation.
 

The current model is constructed for nadir viewing only using
 

two channels, one in a solar IR band (2-2.5 Vm) and the other in
 

a thermal IR Band (4-9 im). The solar IR channel will be used for
 

measurement of CH4, N20, NH3, CO and possibly H20. The thermal IR
 

channel 	will be used for measurement of CO and SO2 with the possible
 

later 	addition of CH4 and N20. When dadir viewing in, the solar IR
 

band it requires a solar elevationangle sufficient to provide
 

6-16
 



adequate'radiance and a relatively hom6geneous field of'view for
 

optimum data interpretation. In the nadir mode measurements will be
 

made primarily of the tropospheric column burden.
 

If a solar occultation model is constructed possible species
 

to be measured include CH4, N20 , NH3, CO and H20. In this mode the
 

primary measurement will be stratospheric.
 

6.2.4 MAPS (Measurements of Air Pollution from Satellites)
 

MAPS (TRW version) is configured to measure CO total burdens 

in the troposphere. Instrument design also allows for future 

measurement of CH4 and NH3. - Using differential absorption of IR 

wavelengths, the instrument will operate in a nadir-viewing mode. 

Each gas channel will be provided with three optical paths; two will
 

contain a sample of the gas at different partial pressures, and the
 

other will contain an identical evacuated cell. Incoming radiation
 

is alternately passed through the cells and relative ratios of
 

signal strength obtained, which are used to determine the concentra­

tions of the species. Cryogenic cooling for the detectors is
 

required, as is information on vertical temperature distribution,
 

vertical water vapor distribution, and cloud cover.
 

6.2.5 HALOE (Halogen Occultation Experiment)
 

This instrument is, essentially, the MAPS instrument described
 

above in-a solar occultation mode. The gas cell complement is cur­

rently designed for measurements of HF, CH4, HCl, and NO with filter
 

cells and C02, H20, 03 and CF2CI2 (Freon-12) by direct radiometric
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measurement. The limitations are similar to any solar occultation
 

radiometric measurement with the additional constraint of the pQssi­

ble d1fects of doppler shift of the signal through the relatively
 

narrow spectral band pass of the gas cells.
 

6.2.6 APP (Atmospheric Physical Properties)
 

The APP is a new instrument that is being designed to measure
 

aerosols and ozone. Operating in the 0.3 to 1.0 1m region, APP will
 

use solar scattering in, probably, four or five spectral bands in
 

order to obtain size and distribution data on aerosols and ozone
 

concentration.
 

6.2.7 VRPM (Visible Radiation Polarization Monitor)
 

Designed to measure tropospheric aerosols; the VRPM utilizes
 

three or four spectral bands in order to analyze both the polariza­

tion and intensity of the incoming radiation. This, in turn, allows
 

the description of aerosol size distribution and concentration. The
 

instrument is locked on to a specific ground target and receives the
 

backscattered radiation from this scene. Tracking of this area is
 

allowed by a + 600 scan about the spacecraft nadir. In common with
 

other scattered radiation sensors, the VRPM requires solar elevation
 

angles of 200 to 80'. Intaddition, like CIMATS, it requires-a
 
-'I ­

relatively homogeneous fie td of view. ­

6.2.8 -BUV/TOMS (Backscattered UV/Total Ozone Mapping System)
 

This instrument is an improved versi&fbof the BUV sensor
 

that flew on Nimbus 4. Operating in the 0.16 to 0.40 vm region of
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the spectrum;tBUV/TOMS will measure the flux reflected by-the
 

earth's atmosphere. As many as twelve discrete wavelengths-may be
 

utilized in order to measure the total ozone buiden and oto obtain a
 

crude vertical profile of the ozone concentration. Concurrent
 

measurements of the solar flux in the same spectral region will be
 

used to assess the differential absorption due to ozone in the
 

atmosphere. 'The TOMS component of the system will have a cross­

track scan capability of + 480 and will include a silicon photodiode
 

used to detect cloud cover. The presence of clouds or aerosols
 

could cause errors in the instrument's performance.
 

6.2.9 Supporting Instrumentation
 

Many of the above instruments require auxiliary data for
 

the interpretation .of their measurements. Most common among these
 

requirements are those for water vapor, cloud cover, and aerosols.
 

The prdsence of these constituents may cause erors in the instrument
 

data if uncorrected. Among the supporting instruments available for
 

a Shuttle mission-would be:
 

* THIR - Water vapor and cloud cover
 

a VTPR - CO and water vapor
 

*. VRPM - Aerosols
 

Table 6-IV presents an operational summary of the instruments
 

described in this section and -includes the three supporting
 

instruments.
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TABLE 6-1V
 

INSTRUMENT SUMMARY
 

INSTRUMENT 
LtMS 

SPECIES 
do2 0y 1120, 

NO2, HNO 3 

MODE 
Limb Emission 

WAVELENGTH 
(Jim) 

6 to 20 

BAND/CHANNELS 

5 to 8 

AZIMUTH 
SCAN 

No (fixed at 
30* from head-
ug line) 

VERTICAL 
SCAN 

Yes 

COMMNTS 

Modification of 
LRIR, LACATE 

SER Aerosols, 03 
and either-
H20, N02 

Solar 
Occultation 

0.3 to 1.1 5 Tracking No Modification of 
SAM I, SAGE 

CIMATS H20, CH4, N20 

NH3, CO 

Solar 

Occultation 

2.0 to 3.5 Probably 2 or 3 No: May be 

fixed as L MS 

N/A Modification of 

COPE 

CIMATS CO, CH, NH3, 

N29,SO2 

Nadir-Solar
Reflected and 
Thermal 

2.0 to 3.5 
and 

4.0 to 9.0 

2 No N/A Modification of. 
COPE 

01 
MAPS CO Nadir -

Differential 
4.6 2 No N/A 

I) Absorption 

THR H2O,Cloud 

Cover 

Nadir-Thermal 6.5 to 7.0 
and 

10.5 to 12.5 

2 Cross-track N/A 

VTPR -CO2. 120 Nadir-Thermal 6 to 15 and 19 8: 6 for C02 
2 fo H20 

Cross-track N/A 

HALOE HF, CH4, HCl, 
NO 

Solar 
Occultation -
Differential 
Absorption 

2.4 to 6.0 4 Tracking No MAPS In a solar 
occultation mode 

HALOE C02, H20 , 03. 

CF2Cl 2 

Limb Emission 6 to 20 Probably 4 No Yes* Similar to 
LACATE 

APP 

VRPM 

BUV/TOMS 

Aerosols, 03 

Aerosols (TROPO) 

0 
03 

Solar Scattering 

Nadir-Solar 
Reflected -
Polarization 

Nadir-Solar 
Reflected 

0.3 to 1.0 

0.4 to 1.0 

BUV: 0.16 to 0.40 

TOMS: 0.31 to 0.38 

Probably 4 to 5 

3 or 4' 

2 

Some 

± 60 about 
Nadir lock-on 

BUV: No 
TOmS: 488 

N/A 

N/A 

N/A 

n 
Cross-track 



The inability of current remote sensing technology to provide
 

measurements of some of the more important properties of the
 

atmosphere remains an area of importance. It is hoped that the
 

results of this study will provide guidance in choosing the
 

scientific and engineering goals that will be pursued next. Until
 

sufficient monitoring capability is developed, instrumentation
 

improvements will be a factor in the development of the related
 

atmospheric research programs.
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7.0 MISSION EVALUATIONS 

- This section presents the results of the application of a method 

for the-evaluation of various stratospher-ic-species -measurement 

missions. The method was developed previously [2] and-is presented 

in detail in Appendix A. The current application differs from the 

one 	already reported in two aspects;
 

* 	Input data to the method has been updated to reflect the
 
latest knowledge on distributions of stratospheric trace
 
species
 

* 	 Remote sensor characteristics have been updated to reflect
 
the current status of development of the instruments evalu­

ated
 

7.1 	 Evaluation of Specific Missions
 

A number of missions and instruments were selected for evaluation
 

using the methodology discussed above and presented in Appendix
 

A. 	The missions evaluated were:
 

* 	A Shuttle-type mission with a 300 inclination and a four- to
 

six-month duration.
 

* 	A Shuttle-type mission with a 56o inclination and a four- to
 
six-month duration.
 

* A polar-type mission with a one- to two-year duration.
 

Several instruments under development were evaluated for each of
 

these missions. The instruments evaluated are shown in Table 7-I
 

along with the generic type of each and the species that were
 

evaluated.
 

Tables 7-I through 7-XVII show the results of these evaluations
 

for each species/instrument/mission combination. -Included with
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TABLE 7-I 

STRATOSPHERIC INSTRUMENTS AND SPECIES 
EVALUATED
 

Generic
 
Species


Name Type 


CO2
Limb scanning
LIMS 

S03
 

HO0
 
H20
 

NO
 
*2
 

HNO3
 

03
Solar occultation
SAGE 


r ,Aerosols 

H20
Solar occultation
-CIMATS 


CH4
 

NO0
 

Nil3
 

CO
 

HF
Solar occultation
HALOE 

CH4
 

H1
 

NO
 

rAGE ISORIGINAL7-2 

?OO-R QUALITYOF 



TABLE 7-11
 

EVALUATION OF CARBON DIOXIDE, CO2, LIMS WITH 800 AZIMUTH SCAN
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXWF 

Latitude 0.1 8 0.8 9 0.8 5 

900 

0.5 8 0.8 

1400 

10 1,0 

1700 

Duration of 
Program 

0.3 8 2.4 8 2.4 5 1.5 
4-6 mos 

5 1.5 
4-6 mos 

7 2.1 
1-2 yrs 

Diurnal 
Coverage 

0.1 8 0.8 8 0.8 10 1.0 
Full 

10 1.0 
Full 

9 1.0 
Part D&N 

00 

V C 

Launch Time 

Vertical Profile 
Coverage 

0 

0.2 

10 

10 

0 

2.0 

10 

10 

0 

2.0 

10 0 

10 2.0 
Full 

10 , 0 

10 2.0 
Full 

10 0 

10 2.0 
Full 

Vertical Profile 

Resolution 

0.2 8 1.6 9 1.8 10 2.0 

<iKm 

10 2.0 

<1Km 

10 2.0. 

<iKm 

Longitude 0.1 8 0.8 8 0.8 10 1.0 

Full 

10 1.0 

Full 

10 i.-0 

Full 

1.0 8.4 8.6 8.0 8.3 9.1 

Total 

Valu6 
8 9 8 8 9. 

Incremental 

Gain Over 
Present 

< <1 < 1 

LEGEND: 

V = Value 

VXWF = Value x weighting factor 



TABLE 7-111
 

EVALUATION OF OZONE, LIMS WITH 800 AZIMUTH SCAN
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Synd 
Noon 
V VXWF 

Latitude .25 10 2.5 10 2.5 5 
90 

1.25 6 1.5 
1400 

10 2.5 
1700 

Duration of 
Program 

.25 7 1.75 10 2.5 4 1.0 
4-6 mos 

4 1.0 
4-6 mos 

6 1.5 
1-2 yrs 

Diurnal. 
Coverage 

.15 2 .3 8 1.2 10 1.5 
Full 

10 1.5 
Full 

8 1.2 
Part D&N 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.1 7 .7 10 1 10 1.0 
Full 

10 1.0 
Full 

10 1.0 
Full. 

Vertical Profile 
Resolution 

.15 5 .75 10 1.5 10 1.5 
<1Km 

10 1.5 
<1Km 

10 1.5 
<iKm 

Longitude .1 10 1 10 1 10 1.0 
Full 

10 1.0 
Full 

10 1.0. 
Full 

1.0 7.0 9.7 7.25 7.5 8.7 

Total 
Value 

7 10 7 8 9 

Incremental 
Gain Over 

Present 

3 <1 1 2 

LEGEND: 

V = Value 

VXWF = Value x weighting factor
 



TABLE 7-IV
 

EVALUATION OF OZONE, SAGE, SOLAR OCCULTATION
 

Parameter 


Latitude 


Duration of 

Prdgram 


Diurnal 

Coverage 


Launch Time 


Vertical Profile 

Coverage 


Vertical Profile 

Resolution. 


Longitude 


Total 

Value
 

Incremental 

Gain Over
 
Present
 

LEGEND:'.,
 
V -Value
 

WF 

0-1 


.25 


.25 


.15 


0 


.1 


.15 


.1 


1.0 


Present 

Knowledge 

V VXWF 


10 2.5 


7 1.75. 


2 .3 


10 0 


7 .7 


5 .75 


10 1 


7.0 


7 


Required 

Capability 

V VXWF 


10 2.5 


10 2.5 


8. 1.2 


10 0 


10 1 


10 1.5 


10 1 


9.7 


10 


3 


Shuttle 

300 


V VXWF 


4 1.0 
900 sparse 

at extremes 

4 1.0 

4-6 mos 


2 0.3 

Part Day 

2 points 


10 0 


10 1.0 

Full 


7 1.05 

-10 points 


10 1.0 

Full 


5.35 


5 


<1 


Shuttle Sun-Sync
 
560 Noon
 
V VXWF V VXW?
 

7 1.75 0 0
 
1500 sparse 5
 

at extremes.
 

4 1.0 6 1.5
 
4-6 mos 1-2 yrs
 

2 0.3 2 0.3
 

Part Day Part Day
 
2 points 2 points 


10 0 10 0
 

10 1.0 10 1.0
 
Full Full
 

7 1.05 7 .105
 
-10 points -10 points
 

10 1.0 10 .1.0
 
Full Full
 

6.1 4.85
 

6 5
 

<1 <1
 

VXWF = Value x weighting factor
 

0 



TABLE 7-V 

EVALUATION OF WATER VAPOR, H20, CIMATS SOLAR OCCULTATION
 

Parameter 

Latitude 

WF 

0-i 

.3 

Present 

Knowledge 
V VXWF 

6 1.8 

Required 

Capability 
V VXWF 

9 2.7 

Shuttle 

300 
V VXWF 

6 1.8 

90' sparse 

Shuttle Sun-Sync 

560 Noon 
V VXWF V VXWF 

8 2.4 0 0 

1500 sparse 50 

at extremes at extremes 

Duration of 
Program 

.2 5 1.0 9 1.8 6 1.2 
4-6 mos 

6 1.2 
4-6 mos 

9 1.8 
1-2 yrs 

Diurnal 
Coverage 

.1 7 0.7 8 0.8 2 0.2 
Part Day 

2 points 

2 0.2 
Par.t Day 

2 points 

2 0.2 
Part Day 

-2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.15 5 0.75 10 1.5 10 1.5 
Full 

10 
Full 

1.5 10 1.5 
Full 

Vertical Profile 
Resolution 

.15 7 1.05 10 1.5 5 
-20 

.0.75 
points 

5 
-20 

0.75 
points 

5 
-20 

0.75 
points 

Longitude .1 0 0 8 0.8 10 0.1 
Full 

10 
Full 

0.1 10 0.1 
Full 

1.0 5.3 9.1 5.55 6.15 4.35 

Total 
Value 

5 9 6 6 4 

Incrdmental 
Gain Over 

Present 

4 1 1 <1 

LEGEND:' 
V Value 
VXWF =.Value x weighting factor 



TABLE 7-VI
 

LIMS WITH 800 AZIMUTH SCAN
EVALUATION OF WATER VAPOR, H20, 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 

V VXWF 

Latitude .3 6 1.8 9 2.7 7 
900 

2.1 9 2.7 
1400 

10 
170 

5;0 

Duration of 
Program 

.2 5 1.0 9 1.8 6 1.2 
4-6 mos 

6 1.2 
4-6 mos 

9 1.8 
1-2 yrs 

Diurnal 
Coverage 

.1 7 0.7 8 0.8 10 1.0 
Full 

10 1.0 
Full 

9 0.9 
Part D&N 

Launch-Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

Vertical Profile 

Resolution 

.15 

.15 

5 

7 

0.75 

1.05 

10 

10 

1.5 

1.5 

10 1.5 
Full 

10 1.5 

<IKm 

10 1.5 
Full. 

10 1.5 

<1Km 

10, 1.5. 
Full 

10 1.5 

<1Km. 

C 

tj 

Longitude .1 0 0 8 0.8 10 1.0 
Full 

10 1.0 
Full 

10 1.0 
Full 

1.0 5.3 9.1 8.3 8.9 9.7 

Total 
Value. 

5 9 8 9 10 

Incremental 
Gain Over. 
Present 

4 3 45 

LEGEND: 
V = Value 
VXWF = Value x weighting factor 



TABLE 7-VI1
 

EVALUATION OF AEROSOLS, SAGE SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

Sun-Sync 
Noon 
V VXW 

Latitude .15 9 1.35 10 1.5 4 0.6 
900 sparse 
at extremes 

7 1.05 0 
1500 sparse 
at extremes. 

' 0 
5 

Duration of 
Program 

Diurnal 
Coverage' 

.15 

.05 

8 

9 

1.2 

0.45 

9 

9 

1.35 

0.45 

7 1.05 
4-6 mos 

6 .3 
Part Day 
2 points 

7' 1.05 
4-6 mos 

6 .3 
Part Day 
2 points 

9 1.35 
1-2 yrs 

6 .3 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.25 8 2.0 10 2.5 10 2.5 
Full 

10 
Full 

2.5 10 2.5 
Full 

Verti.al Profile 
Resolution 

.15 7 1.05 10 1.5 7 1.05 
-10 points 

7 
-10 

1.05 
points 

7 '1.05 
-10 points 

Longitude .25 6 1.5 10 2.5 10 2.5 
Full 

10 
Full 

2.5 10 2.5 
Full 

1.0 7.55 9.8 8.00 8.45 7.7 

Total 
Valpe 

8 10 8 8 8 

Incremental 
Gain Over 
Present 

2 <1 . < 11 

LEGEND: 
V = Value 
VXWF - Value-,x weighting factor
 



TABLE 7-VIII
 

EVALUATION OF AMMONIA, NH3, CIMATS SOLAR OCCULTATION
 

Parameter 

WF Present 
V VXWF 

Required 
V VXWF 

Shuttle 
V VXWF 

Shuttle 
V VXWF 

Sun-Sync 
V VXWF 

Latitude .2 0 0 7 1.4 7 1.4 
900 sparse 
at extremes 

8 1.6 
1500 sparse 

at extremes 

0 0 
-50 

Duration of 
Program 

Diurnal 
Coverage 

.1 

.15 

0 

0 

0 

0 

6 

6 

0.6 

0.9 

8 0.8 
4-6 mos 

4 0.6 
Part Day 
2 points 

8 0.8 
4-6 mos 

4 0.6 
Part Day 
2 points 

9 0.9 
1-2 yrs 

4 0.6 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

Vertical Profile 
Resolution 

.25 

.25 

0 

0 

0 

0 

7 

7 

1.75 

1.75 

10 2.5 
Full 

9 2.25 
-20 points 

10 '2.5 
Full 

9 2.25 
-20 points 

10 2.5 
Full 

9 2.25 
-20 points 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 0 6.8 8.05 8.25 6.75 

Total 
Value 

0 7 8 8 7 

Incremental 
Gain Over 
Present 

7 8 8 7 

LEGEND: 
V = Value 

VkU = Vaiue x weighting factor 



TABLE 7-Tx
 

EVALUATION OF NITROGEN DIOXIDE, NO2, LIMS WITH 
800 AZIMUTH SCAN
 

Parameter 

WF 
0-1 

Present 
Knowledge 

V VXWF 

Required 
Capability 

V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-Sync 
Noon 

V VXWF 

Latitude .15 4 .6 10 1.5 7 
900 

1.05 9 1.35 
1400 

10 1.5 
1700 

Duration of 
Program 

Diurnal 
Coverage 

Launch Time 

.15 

.35 

0 

5 

5 

10 

.75 

1.75 

0 

9 

9 

10 

1.35 

3.15 

0 

7 1.05 
4-6 mos 

10 3.5 
Full 

10 0 

7 1.05 
4-6 mos 

i0 3.5 
Full 

10 0 

9 1.35 
1-2 yrs 

8 2.8 
Part D&N 

10 0. 

H 

Vertical Profile 
Coverage 

Vertical Profile 

Resolution 

.15 

.15 

6 

4 

0.9 

0.6 

10 

10 

1.5 

1.5 

10 1.5 
Full 

10 1.5 

ZIKm 

10 1.5 
Full 

10 1:5 

2IKm 

10 1.5 
Full 

10 1.5 

2iKm 

Longitude .05 0 0 8 0.4 10 .5 
Full 

10 
Full 

.5 10 
Full 

.5 

1.0 4.6 9.4 9.1 9.4 9.15 

cValue 
Total 5 9 9 9 9 

Incremental 
Gain Over 
Present 

4 4 4 

LEGEND: 

V = Value 

VXWF = Value x weighting factor 



.TABLE 
7-X
 

AZIMUTH SCAN
 
EVALUATION OF NITRIC ACID VAPOR, NHO 3, LIMS WITH 80 


Parameter 

WF 
0-1 

Present 
Knowledge' 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-Sync 
Noon 

V VXWF 

Latitude .3 5 1.9 10 3.0 7 

900 

2.1 9 2.7 

1400 

10 3.0, 

1700 

Duration of 
Program 

.25 3 .75 9 2.25 7 1.75 
4-6 mos 

7 1.75 
4-6 mos 

9 2.25 
1-2 yrs 

Diurnal 
Coverage 

.1 7 .7 8 .8 10 1'.0 
Full 

10 1.0 
Full 

8 0.8 
Part D&N 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.15 7 1.05 10 1.5 10 1.5 
Full 

10 1.5 
Full 

10 1.5 
Full 

Vertical Profile 
Resolution 

.1, 8 .8 10 1.0 10 1.0 
ZlKm 

10 1.0 
lKmf 

10 1.5 
zIKm 

Longitude .1 0 0 8 .8 10 1.0 
Full 

10 1.0 
Full 

10 11.0 
Full, 

1.0 4.8 9.35 8.35 8.959 9.55 

Total 5 9 8 9 10 

Value 

4 '54 3
Incremental 

Ca'in Over
 
Present
 

LEGEND:
 
V = Value
 
VXWF = Value x weighting factor
 

D,& N- Day & Night
 



TABLE 7-XI
 

HALOE SOLAR OCCULTATION
EVALUATION OF HYDROGEN CHLORIDE GAS, HC, 


Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 
V VXWF 

SunSync 
Noon 
V VXWF 

Latitude .35 4 1.4 9 3.15 6 2.1 
900 sparse 
at extremes 

8 2.8 
1500 sparse 
at extremes 

0 0 
50 

Duration of 
Program 

.1 5 .5 8 .8 8 0.8 
4-6 mos 

8 0.8 
4-6 mos 

9 0.8 
1-2 yrs 

Diurnal 
Coverage 

.1 0 0 7 .7 3 0.3 
Part Day 
2 points 

3 0.3 
Part Day 
2 points 

3 0.3 
Part Day 
2 points 

Ladnch Time 0 10 0 10 0 10 0 10 0 10 0 

F 
Vertic~l Profile 
Coverage 

.2 6 1.2 9 1.8 9 1.8 
10-40Km 

9 1.8 
10-40Km 

9 1.8 
10-40Km 

Vertical Profile 
Resolution 

.2 7 1.4 9 1.8 9 
2Km 

1.8 9 
2Km. 

1.8 .9 
2Km 

1.8 

Longitude .05 0 0 8 .4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 4.5 8.65 7.35 8.0 5.2 

Total 
Value 

5 9 7 8 5 

Incremental 
Gain Over 
Present 

4 2 3 <1 

LEGEND: 
V =Value 
VXWF = Value x wedght±ng factor 



TABLE 7-XI
 

EVALUATION OF METHANE, CH4, CIMATS SOLAR OCCULTATION
 

Parameter 

Latitude 

WF 
0-1 

.4 

Present 
Knowledge 

V VXWF 

0 0 

Required 
Capability 

V VXWF 

8 3.2 

Shuttle 
300 

V, VXWF 

7 2.8 
900 sparse 

at extremes 

Shuttle Sun-Sync 
560 Noon 

V VXWF V VXWF 

8 3.2 -o d 
1500 sparse 50 

at extremes 

Duration of 
Progzam 

Diurnal 
Coverage 

.1 

.15 

0 

0 

0 

0 

6 

6 

0.6 

0.9 

8 0.8 
4-6 mos 

4 0.6 
Part Day 
2 points 

8 0.8 
4-6 mos 

4 0.6 
Part Day 
2 points 

9 0.9 
1-2 yrs 

4' 0.6 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 .10 0 

Vertical Profile 
Coverage 

Vertical Profile 
Resolution 

.15 

.15 

6 

3 

0.9 

0.45 

8 

9 

1.2 

1.35 

10 1.5 

Full 

9 1.35 
-20 points 

10 1.5' 

Full 

9 1.35 
-20 points 

10 1.5 

Full. 

9 1.35 
-20 points 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 1.35 7.65 7.55 7.95 -4.85 

Total 
Value 

1 8 8 8 5 

Incremental 
Gain Over 
Present 

7 7 7 4 

LEGEND: 

V '= Value 
VXWF = Value x weighting factor 



TABLE 7-XlIl
 

EVALUATION OF METHANE, CH4, HALOE SOLAR OCCULTATION
 

Parameter 

WF 
0-I 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sut-gynac 
Noon 

V VXWF 

Latitude .4 0. 0 8 3.2 7 2.8 
900 sparse 

at extremes 

8 3.2 
1500 sparse 

at extremes 

0 0 
-5 

Duration of 
Program 

Diurnal 
Coverage 

.1 

.15 

0 

0 

0 

0 

6 

6 

0.6 

0.9 

8 0.8 
4-6 mos 

4 0.6 
Part Day 
2 points 

8 0.8 
4-6 mos 

4 0.6 
Part Day 
2 points 

9 -0.9 
1-2 yrs 

4 0.6 
Part Day 
2 points 

Laundh Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 

Coveiage 

Vertical Profile 
Resolution 

.15 

.15 

6 

3 

0.9 

0.45 

8 

9 

1.2 

1.35 

10 1.5 
Full 

9 1.35 
2Km 

10 
Full 

9 
2Km 

1.5 

1.35 
.2Km 

i0 1.5 
Full 

9 .1.35 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 1.35 7.65 7.55 7.95 4.85 

-Total 
Value 

1 8 8 8 5 

Incremental 
Gain Over 
Present 

77 4 

LEGEND' 

-1Xlfle - , r4,n 



TABLE 7-XIV
 

EVALUATION OF NITROUS OXIDE, N20, CIMATS SOLAR OCCULTATION
 

WF Present Required Shuttle Shuttle Sun-Sync 

Parameter 

0-1 Knowledge 

V VXWF 
Capability 

V VXWF 
300 

V VXWF 
560 

V VXWF 
Noon 
V VXWF 

Lafitude .25 4 1.0 10 2.5 7 1.75 
900 sparse 

9 2.25 
1500 sparse 

0 d 
5' 

at extremes at extremes 

Duration of 
Program 

.15 5 0.75 9 1.35 7 1.05 
4-6 mos 

7 1.05 
4-6 mos 

9 1.35 
1-2 yrs 

Diurnal 
Coverage 

.1 8 0.8 8 0.8 1 0.1 
Part Day 
2 points 

1 0.1 
Part Day 
2 points 

1 0.1 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 10 0 10 0 

Vertical Profile 
Coverage 

.15 6 0.9 10 1.5 10 1.5 
Full 

10 
Full 

1.5 
-

10 1.5 
Full 

Vertical Profile 
Resolution 

.15 4 0.6 10 1.5 9 
-20 

1.35 
points 

9 
-20 

1.35 
points 

9 1.35 
t20 points 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 
Full 

0.5 10 0.5 
Full 

1.0 4.05 8.05 6.25 6.75 4.8
 

4 8 6 7 5
 
Total 

Value
 

3 1
4 2
Incremental 

Gain Over
 
Present
 

LEGEND:
 
V = Value
 

VXWF - Value x'weighting factor
 



TABLE 7-XV
 

SOLAR OCCULTATION
 
EVALUATION OF CARBON MONOXIDE, 

CO, CIMATS 

Latitude 

Paoramr 

WE0-i 

.4 

PresentKnowledge 

0 0 

Requiredcapability 

8 3.2 

Shuttle 
300 

7 2.8 

90 0sparse 

at extremes 

Diurnal 

Launch 
Time 

Po rm4-6 

. 
.15 

0 

.15 

0 

0 

5 

0 

0 

.75 

6 

0 

9 

0.9 

0 

1.35 

mnos 
4 0.6 

Part 

Day 

010 
101.5 

VerticalProfile 

~Coverage 

'Ver ical pr
ofile 

ResolutionLongitude
Guaiin ofr 

.15.05 30 .45
0 9 

8 
1.35 
0.4 

06 

9 

2 
8 

1.359 

ons 

100.5 

7.55 

. 

7.8 

n Q.Full 2 

8 '8 

Sun-Sync
Shuttle 

560 Noon
o 0
 

3.2
8 

5 0
 

150 0sparse 


extremes
at 

Day
 

Part 


1-2 yrs4-6 mospay 4 0 0.600.64 100 1.50 a1.5 

Part 

150 


10
0.5
 
0.5
0 


. 5
 
. 1 359 

85
4.

-0pit
-2 ons~ 501.
7.
 

Full
 
Full 


.
 

incremental777
 

Present
 

factor

JLEGEND:
 

Value x 
weighting


v. V lue
 
VXF 




TABLE 7-XVI
 

EVALUATION OF HYDROGEN FLUORIDE, HF, HALOE SOLAR 
OCCULTATION
 

WF 
0-i 

Present 
Knowledge 

Required 
Capability 

Shuttle 
300 

Shuttle 
560 

Sun-Sync 
Noon 

Parameter 
Latitude .2 

V 
0 

VXWF 
0 

V 
7 

VXWF 
1.4 

V VXWF 
7 1.4 

900 sparse 

V VXWF V 
8 1.6 0 

150* sparse 

vXWF 
0 

N50 

V4 

at extremes'at extremes 

Duration of .1 0 0 6 0.6 8 0.8 
4-6 mos 

8 0.8 
4-6 mos 

9, 0.9 
1-2 yrs 

Program 

Diurnal 

I 12 

.15 0 0 6 0.9 4 0.6 
Part Day

points 

4 0.6 
Part Day 
2 points 

4 0.6 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 1010 10 0 

Vertical Profile .25 0 0 7 1.75 10 2.5 
Full 

10 2.5 
Full. 

10 2.5 
Full 

C r 

Vertical Profile .25 0 0 7 1.75 9 2.25 
2Km 

9 2.25 
2Km 

9 2.25 
2Km 

Resolution 

Longitude .05 0 0 8 0.4 10 0.5 
Full 

10 0.5 
Full 

10 0.5 
Full 

1.0 0 6.8 8.05 8.25 6.75 

Total. 0 7 8 8 7 

Value 

Incremental 
7 8 8 7 

Gain Over 
Present 

LEGEND: 
V = Value 
VXWF -Value x weighting factor 



TABLE 7-XVII
 

EVALUATION OF NITRIC OXIDE, NO, HALOE SOLAR OCCULTATION
 

Parameter 

WF 
0-1 

Present 
Knowledge 
V VXWF 

Required 
Capability 
V VXWF 

Shuttle 
300 

V VXWF 

Shuttle 
560 

V VXWF 

Sun-SydC 
Noon 

V VXWF 

Latitude .25 4 1.0 10 2.5 6 1.5 
900 sparse 
at extremes 

9 2.25 
1500 sparse 
at extremes 

0 0 
b5o 

Duration of 
Program 

.2 8 1.6 9 1.8 5 1.0 
4-6 mos 

5 1.0 
4-6 mos 

9 1.8 
1-2 yrs 

Diurnal 
Coverage 

.3 5 1.5 9 2.7 3 0.9 
Part Day 
2 points 

3 0.9 
Part Day 
2 points 

3 0.9 
Part Day 
2 points 

Launch Time 0 10 0 10 0 10 0 i0 0 10 0 

HVertical 
Coverage 

Profile .1 7 0.7 10 1.0 10 1.0 
Full 

10 1.0 
Full 

10 1.0 
Full 

0 

VerticalProfile 
Resolution 

Longitude 

.1 

.05 

7 

0 

0.7 

0 

10 

8 

1.0 

0.4 

8 0.8 
2Km 

10 0.5 
Full 

8 0.8 
2Km 

10 0.5 
Full 

8 0.8 
2Km 

10 0.5 
Full 

1.0 5.5 9.4o 5.7 6.5 5. 

Total
Value 6 9 6 7 5 

Incremental 
Gain Over 
Present <1 1 < 

LEGEND: 
V = Value 
VXWF - Value x weighting factor 



each -arameter value for the three missions is the performance used
 

to determine the value. The values (V)shown in each table for
 

present, required and mission capability are taken from the value
 

matrices presented in Volume III of this report. The values represent
 

the relative value on a scale of 0 to 10 (low to high) for the stated
 

performance where 0 indicates no capability and 10 indicates perfect
 

capability. The weighting functions show the value of one parameter
 

relative to the others under study. The product of the value and its
 

corresponding weighting function (VXWF) yields the desired weighted
 

value for each parameter. The sum of the weighted values for each
 

parameter yields the total relative value for eacli pollutant (see
 

Appendix A for full explanation).
 

In Table 7-XVIII the incremental gains have been summarized
 

to show the totals for each instrument/orbit/species combination.
 

The results have been weighted by the weighting factors for the
 

various pollutant groups. These weights adjust the individual
 

pollutant values to account for the different priority groups into
 

which they were placed in Section 5.2 (Table 5-1).
 

The incremental gain totals for each instrument/orbit combination
 

are summarized in Table 7-XIX. It is obvious that those combinations
 

showing the highest gains exhibit two prominent characteristics,
 

e. The instrument measures a larger number of species;
 

* Most of the species measured represent those for which
 

little data now exist; this allows large incremental gains
 
for any successful measurement.
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SUMMARY OF INCREMENTAL GAINS FOR EACH SPECIES/
 
INSTRUMENT/ORBIT COMBINATION 

WeLghted Weighted Incremental Gain 

Priority Weighting Required 
Species Group Factor Instrument Gain 300 orbit 560 orbit Polar orbit 

CO 
2 

1 1 LIMS <1 <1 <1 1 

03 1 1 LIMS 3 <1 1 2 

1 1 SAGE 3 <1 <1 <1 

1]22 I i CIMATS 4 1 1 <1 

1 1 LIMS 4 3 4 5 

Aerosols 1 1 SAGE 2 <1 <1 <1 

43 
NH3 2 0.9 CIMATS 6 .7 7 6 

NO 3 0.9 HALOE 3 <1 1 <1 

No2 3 0.9 LIMS 4 4 4 4 

HNO 3 4 0.8 LIMS 3 2 3 4 

HC1 4 0.8 HALOE 3 2 2 <1 

'.1- CII 4 4 0.8 CIMATS 6 6 6 3 
4 

0 t 4 0.8 HALOE 6 6 6 3 

N 02 4 0.8 CIMATS 3 2 2 <1 

E4 4 0.8 CIMATS 6 6 6 3 

HF 5 0.6 HALOE 4 5 5 4 

Sr * 
47-48 

U-icertainty due to use of values <1. Total equals sum of best valies for each pollutant.
 



TABLE 7-XIX 

Instrument 

LIMS 

SUMMARY OF INCREMENTAL GAINS FOR EACH 
INSTRUMENT/ORBIT COMBINATION 

Weighted 

Required 
Species Measured Gain 300 orbit 

CO2, 03, H20, NOV HNO 3 14-15* 9-10* 

56* orbit 

12-13* 

Polar orbit 

16 

SAGE 

CIMATS 

(solar 
occultation) 

HALOE 

03, Aerosols 

H0, NH C 4, N0, CO 

2' N 3, 4 2 

HCI, CH4, NO, HF 

5 

25 

16 

<1 

22 

13-140 

<1 

22 

14 

<1 

l2-13* 

7-8* 

to 

*Uncertainty due to use of values of <1. 



7.2 	'valuation of Multiple Species or Instrument Missions
 

Table 7-XX'shows the summary of incremental gains resulting
 

when various combinations of two, three, or four instruments are
 

flown on the same mission. These values are obtained by adding
 

the 	individual contributions of each species/instrument except­

in 	those cases where two or more ins truments measure the same species.
 

In 	this latter case, the value is determined by using the best value
 

for 	each parameter among the instruments involved.
 

Not 	surprisingly, the results indicate that those missions that
 

contain the most sensors score the highest. On more limited missions,
 

those sensors that claim to measure the most species score higher
 

than 	those designed for more special-purpose applications.
 

Inspection of the actual results reemphasizes some previous
 

intuitive knowledge and also presents some new concepts. In the
 

former category are such results as:
 

* 	 The more individual species and/or instruments involved the
 

greater the value
 

* 	 Solar occultation-type instruments give poor global coverage
 

in polar orbits
 

* 	 Limb-looking instruments give excellent global coverage in
 

polar orbits
 

The principal conclusion in the later category is that the highest
 

potential for gain in value lies in the measurement of those species
 

in Groups 2, 3, or 4 which play very important roles TInstratospheric
 

processes but whose characteristics and spatial/temporal distribu­

tions are poorly known. These factors consistently place instruments
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TABLE 7-XX 

SUMMARY OF INCREMENTAL GAINS RESULTING 
VARIOUS INSTRUMENT COMBINATIONS 

FROM 

Instruments Species Measured 

Weighted 
Required 

Gain 300 Orbit 560 Orbit 

FOUR INSTRUMENTS 
LIMS, SAGE, CIMATS, 

HALOE 

CO2, 03, H20, NO2, HN03, 

Aerosols, NH3, CH4, N20, 
CO, HCI, NO,-HF 

47-48* 38-39* 42 

THREE INSTRUMENTS 

LIMS, CIMATS, HALOE CO2' 03, 120, NO2 , HNO3 

NH3, CH4, N20, GO, 1c, 
NO, HF 

45-46* 38-39* 41-42* 

LIMS, SAGE, CIMATS CO2' 03) H20 , NO2' HNO3, 

Aerosols, NH3, CH4' N20 
CO 

37-38* 31-32* 34 

SAGE, CIMATS, HALOE 03, Aerosols, H120, NH3, 

CH4, N20, CO, HC1, NO 
HF4 

40 30-31* 31 

LIMS, SAGE, HALOE CO2, 033 H20, NO2, HN03, 

Aerosols, HC., CH4, NO, 

HF 

32-33* 23-24* 27 

*Uncertainty due to use of values of <1 

Polar
 
Orbit
 

32-33*
 

32-31t
 

28-29*
 

18-19*
 

'23-24*
 



TABLE XX (Concluded) 

Instruments Species Measured 

Weighted 

Required 
Gain 300 Orbit .560 Orbit , 

Polar 
Orbit 

TWO INSTRUMENTS 
LIMS, CIMATS C02, 0, H20, NO2, HNO3 , 

NH3, CH4, N20 , CO 

35-36* 31 33-34* 28 

4 

CIMATS, HALOE 

SAGE, CIMATS 

LIMS, HALOE 

H20, NH3, CH4, N20, CO, 

HC, NO, HF 

03, Aerosols, H0, NH, 

CH4' N2,2 O 

CO2, 0^, H20, NO2, HNO3, 

35 

30 

30-31* 

29-30* 

23 

23-24" 

30 

23 

26-27" 

17-181 

14 

23-24 

HlI, CR4, NO, HF 

LIMS, SAGE CO2,O ; H20, NO , 'NO3,Aero sol s 22 3 16-17* 10-11* 13 16 

SAGE, HALOE 03 Aerosols, HCI, CH4 , 

NO, HF 

21 14-15* 15 9 

*Uncertainty due to use of values <1 



such as LIMS, CIMATS and HALOE considerably higher in all instrument/
 

orbit combinations evaluated.
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APPENDIX A
 

MISSION EVALUATION METHODOLOGY
 

A.I INTRODUCTION 

In order to properly determine how well any aelected strato­

spheric species measurement mission improves on present knowledge of
 

the characteristics and spatial/temporal distribution of the species,
 

a method is presented that evaluates a selected mission in terms of
 

the present status of stratospheric knowledge of the species of
 

interest and the required level of knowledge (as expressed by the
 

scientific user community). 
 The method has also been inverted and
 

used to 
select the mission that is most effective.
 

The selection of an optimum mission involves not only the
 

evaluation of orbital characteristics but also the selection of those
 

species to be measured that provide the optimum incremental improvement
 

from present knowledge to required knowledge. Thus, two factors are'
 

involved:
 

(1) Prioritization of pollutants based on 
a combination
 
of present knowledge and required knowledge.
 

(2) Selection of the "optimum" mission (orbit plus instrt­
ment) based on present measurement knowledge and re­
quired knowledge.
 

The following sections will be limited 
to a discussion of the
 

"optimum" mission selection for a single species. 
 The prioritiza
 

tion of species based on requirements was disdussed in Section­

5.2. Incorporation of these priorities into the evaluation method­

ology will be discussed later.
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1This evaluation technique can be 
applied specifically to orbit
 

evaluation, instrument evaluation, or both 
by selection of the appro­

priate parameters.
 

A.2 	DEVELOPMENT OF THE METHOD
 

Approach to the Ranking and Evaluation
 A.2.1 


For each stratosphere species of interest 
one may assign a
 

10
 
ranking or value in'terms of an arbitrary 

scale of, say, 0 to 


(3) the present knowledge of the
 based on a comparison of either: 


species distribution, (2)'the required 
knowledge of the species
 

(3) the projected measurement capability 
of a
 

distribution, or 


specific missionf with the total possible 
four-dimensional knowledge.
 

follows:
 
For a typical species this may be 

exemplified as 


10
5
0 

.
Arbitrary 
 Full


Scale 	 Full
No 

Knowledge


Knowledge 


KnowledgeK
 2
 

[
Knowledge	 I .1"iRequired 


.6
 

I 	 iiMission 

4
Capability 
 84 6 

C
A B 
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The key to assessing, the value of a particular mission lies in
 

comparing the mission capability with the incremental improvement
 

between -present knowledge and required knowledge. In the example
 

illustrated above, the present level of knowledge has been given an'
 

arbitrary rating of 2 and the required knowledge an arbitrary rating
 

of 6. It is important to note that the required knowledge level is
 

not always set at the maximum. This may be for two reasons. On the
 

one hand, a full capability of 10 may provide the user with much more
 

data than he needs or could ever make use of. On the other hand, the
 

present level of knowledge may be so low that the user would require
 

only a small increase in knowledge to achieve a significant-improve­

ment in understanding the chemistry and distribution of the pollutant.
 

Requirements should be set at the level that best equals the capabili­

ty of the user community to assimilate the data measured.
 

Thus, in the given example, the-critical area for gain lies
 

between the present knowledge and the required knowledge. Therefore,
 

system C is not automatically much better than system B. However,
 

each (B and C) is significantly better than system A.
 

In order to indicate this in a more powerful way, the ranking
 

scheme may be presented in a slightly different manner:
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R 
 P - Present
 

Knowledge
 

4R - Required
5Knowledge
 

F - Full Capability
 
P 

0 5 10 

Knowledge
 

Here we see a sharp rise in value between present and required knowledge
 

and little gain thereafter. Present knowledge is assigned a value at
 

or near zero and required knowledge is assigned a value approaching 10
 

but allowing some small value for additional knowledge up to full.
 

In other cases the present knowledge may be such that it commands
 

a high value in relation to full capability leaving little room for
 

improvement. Conversely, the current requirements may be such that
 

they can be fulfilled with only a minimum additional capability.
 

10 F 1/0 F 
1------Only 

R _.__F_ Here, require­

minimum : ments are set 

improvement at a low level 

necessary 
P 

of knowledge 

0 0 0 
0 - 10. 0~ 10 

Knowledge Knowledge
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This type of evaluation has been used previously 
in a variety of
 

These reports give the details of the
 system evaluations[108-1121. 


and illustrative examples.

application of 	the method to both real cases 


The evaluation method makes use of value judgments 
of experts, either
 

individually or by consensus, to provide 
information where "hard"
 

data are unavailable. The objective is to make use of as much
 

Much of this information
the system.
is available to
information as 


is derived from the experience of experts 
associated with the system
 

It is the objective of the evaluation to extract
 
being evaluated. 


Critical
 
this information and check for its validity and utility. 


information would
 
areas can be identified where further gathering 

of 


on two critical
The success of the method depends
be most effective. 


factors:
 

or 
facts on the subject either
 * 	Availability of expert opinions 


through adequate documentation.
directly or 


e A thorough understanding of the structure 
and utilization of
 

the evaluation procedure.
 

A logical sequence of steps in the application 
of the evaluation
 

The first step is to identify the.
 
method is shown in Figure A-i. 


These parameters when measured
 appropriate evaluation parameters. 


will provide the information needed to describe and adequately
 

The'selec­
evaluate the candidate species, instruments, and orbits. 


tion of the parameters must be made independent 
of any particular
 

s .
 
knowledge of instruments or'orbit
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DEVELOPESTABLISH 
SYSTEM VALUE
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I' 
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SYSTEM VALUE
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RELATIONSHIPS
REVIEW 


EVLUATION
 
RESULTS
 

FIGURE A-1
 
DEVELOPMENT AND VALIDATIONEVALUATION TECHNIQUE 



Once the parameters are identified, measurement scales must be
 

established for each parameter.-- The ranges of the technical parameter
 

measurement values can be based either oh established facts (which
 

are generally unavailable) or expert judgments. The analytical
 

formulation of the technique begins with the development of the value
 

The value function and its graphic representation, the
functions. 


are the basic inputs of the method. The value
value judgment curve, 


function relates points on the parameter measurement scale to a value
 

scale that ranges between zero for no value to the user and some
 

(Ten was
arbitrary positive number for maximum value to the user. 


selected as maximum in this study.)
 

The first step in developing a typical value judgment function is
 

to establish the maximum and minimum points for each of the evaluation
 

parameters. Additional points between the parameter maximum and
 

minimum points are defined and each assigned a value to the user.
 

Identification of all break points is very valuable in this procedure.
 

These points are then plotted on a value judgment scale to indicate
 

the nature of the actual relationship. In most cases the judgment
 

curves should have the following characteristics,
 

* 	Smooth variation over the entire range
 

* 	Zero slope at the origin ­

o 	An-asymptotic approach to zerb or the maximum for large
 

values of the parameters
 

that special cases are easily incorporated
e 	Flexibility so 
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These characteristics are best represented by the family of hyperbolic
 

tangent curves characterized by the scale factors a and n. 'Then,
 

V_= l-tanh(axn)
or
V = tanh(ax) 


where, V = value to the user; x = parameter value; adetermines at 

what point a change in parameter value begins to have a significant
 

effect on the value to the user and n determines the slope of the
 

change. In order for value to user to increase with increasing
 

parameter change n must be greater than 1. While the hyperbolic
 

tangent curve is used in most cases, it should be noted that other
 

types of value functions can be used. These may in some cases be
 

step functions or binary functions.
 

The next phase in the formulation of the technique is to develop
 

the overall system value relationship. This is accomplished by
 

establishing the relative importance of each of the parameters
 

through weighting functions. The initial step in developing-these
 

functions is to designate each parameter as a factor or a term. A
 

parameter is designated as a factor if 'it is of such paramount
 

importance that if the value to the user is zero for that parameter,
 

the entire system is considered valueless. If a parameter is not of
 

the same level of criticality as a factor, it is designated a term.
 

A term is telated'to Ehe other parameters through' an additive relation­

ship.
 

The second step in establishing the relative importance of the per­

formance parameters is to assign weights to each parameter designated
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a term; where the sum of these weights is equal to unity. Various
 

methods can be used to assign the weights. -For example, the-Delphi
 

technique developed by the RAND Corporation.has been-used to reach a
 

consensus within a group of experts as to the weights which should be
 

assigned. Another method is to assign an initial set of weights and
 

evaluate them against candidate species whose characteristics and
 

relative importance are known. Refinement of the weights is then
 

made based on the results. However, there is no substitute for the
 

participation of experts in the field, either actually or by proxy.
 

The-relationship among all parameters, including terms and factors,
 

is then established, taking the general form of the following equation:
 

n 	 m 

j=l 	 il 

n 

where H A = 1 

i=l
 

V 	 = value
 

= weight
A i 


F. 	 = value function (factor)
3 

G 	 = value function (term) 

* x±~x. = parameter measurement 
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This equation is termed a value set and can be used to evaluate for
 

example all candidate instruments and/or orbits for a single stratos­

pheric species.
 

A total system value can be calculated by combining all the indi­

vidual value sets for the various species into one equation such
 

as,
 

Total System Value = VIV2W3'++ W8v8) 

where 
VV are individual value sets which are factors
2 

V3.. V8 are individual value sets which are tetms 

W3 W8 are term weighting functions where W3 +3.. 4 W8= 1 

A sensitivity analysis can be performed on all value sets and value
 

functions if desired. The analysis should indicate which evaluation
 

parameters are most critical to the system value. In additionthis
 

analysis may also indicate if the various weighting functions or
 

value set algorithms should be modified.
 

This technique is of high utility for decision making. However,
 

it is a tool for use in decision making and not a decision maker
 

itself. The ultimate decisions should be made by the experts in the
 

field who have benefited from the logical presentation of available
 

information by means of this structured technique.
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A.2.2 	Application of the Method to Stratospheric Species
 

Measurement
 

The evaluation method'discussed in the-previous section was used in
 

the development of the evaluation techniques applied to stratospheric
 

species measurement. However, two basic changes were made in its
 

present application:
 

(i) 	Incremental values were used in place of smoothly varying
 
value functions
 

(2) 	Two-dimensional value functions were used for each measure­
ment parameter
 

The first change was indicat&d by the minimal amount of information
 

available about most species of interest. The second change was made
 

because the quality and quantity of the various measurements were
 

considered to be an important part of the-value function development.
 

In a sense, these may be considered as weighting factors on each
 

measurement parameter. In the actual application, these were combined
 

into a common parameter called the data status.
 

The parameters considered to be of sufficient importance to be
 

included in stratospheric species miss-ion analysis are:
 

* 	Latitude coverage
 

* 	Duration of the mission or measurement
 
program
 

* 	Diurnal coverage
 

* Launch date
 

" Vertical coverage
 

A-f
 



" Vertical resolution, and
 

* Longitude coverage
 

Each of the above parameters must be analyzed and values assigned to
 

the various performance levels from zero to full capability. The
 

measurement scales selected for each parameter are shown in Figures
 

A-2 through A-5.
 

For each matrix shown, values must be .selected for each incre­

mental improvement from no capability for both the parameter and
 

the status of the data up to full capability for both. The general
 

approach is first to determine the level of present knowledge and the
 

required level of knowledge for each species. These levels are
 

then assigned appropriate values from 0 to 10 and the levels beyond
 

and in between these levels are given other appropriate values based
 

upon the present and required knowledge. For example, for the cast
 

of latitude coverage for nitric acid vapor, it is known from Section
 

5.3 and-supporting information that nitric acid has been measured in
 

the stratosphere over various latitudes that cover approximately
 

1200. However, the quantity of data available is very small. Thus
 

the value matrix for nitric acid versus latitude becomes:
 

Nitric acid vapor, 
DATA Good R HNO 3 

10 

STATUS Med 

Sparse P 

None 

None 60 120 18.0 

LATITUDE BAND COVERED
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latitude Coverage -


Good 10
 

DATA Med
 

STATUS Sparse
 

None- 0
 

None 600 1200 1800
 

LATITUDE BAND COVERED
 

Includes nadir coverage plus any additional coverage due to
 
orientation of instrument.
 

Duration of Measurement Program -


Good 10
 

Med
DATA 


STATUS Sparse
 

None 0
 

None 	Short One Decades
 
Survey Year
 

-Plus
 

DURATION OF MEASUREMENT
 
PROGRAM
 

FIGURE A-2 
PARAMETERIZATION OF LATITUDE COVERAGE AND PROGRAM DURATION 
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Diurnal Coverage­

10
Good 


Med
DATA 


STATUS
 
Sparse
 

None 0 

None Fixed Partial Full Partial Full
 
Time- Day Day Day Diurnal
 

and
 
-Night 

DIURNAL COVERAGE
 

Based on both orbit and instrument capability.
 

Launch Date or Beginning of Experiment -

Good 10
 

Med
DATA 


STATUS
 
Sparse
 

None 0
 

2700 1800 900 None or
 
DNA
 

SEASONAL PHASE DEVIATION
 
4­

900 - Launch is one season.prior to desired season, 
1800 - Launch is two seasons prior to desired season 
2700 - Launch is three seasons prior to desired season 
DNA - Launch time not important therefore does not apply-

FIGURE A-3 
PARAMETERIZATION OF DIURNAL COVERAGE AND TIME OF LAUNCH 
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Vertical Coverage -

Good 
 10
 

Med
DATA 


STATUS
 Sparse
 

None 0
 

None <10% 50% 100%
 

STRATOSPHERIC VERTICAL COVERAGE
 

Vertical Resolution -

Good 
 10
 

Med
DATA 


STATUS
 Sparse
 

0
 

None <1 1 10 >40
 

NUMBER OF DATA POINTS OBTAINED*
 

Note: 


None 


<1 data point refers to column density through entire atmo­
sphere which provides only part of a stratospheric data point.
 

FIGURE A-4
 
PARAMETERIZATION OF VERTICAL COVERAGE AND VERTICAL RESOLUTION 
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Longitude Coverage -

Good 	 10
 

Med
DATA 


STATUS
 
Sparse
 

None 0
 

-
None 	 0- 9o 180 ­

900 1800 3600
 

LONGITUDE BAND COVERED
 

It is assumed that all orbits being considered for stratospheric
 
pollution missions automatically provide good longitudinal coverage.
 
Therefore mission capability is automatically raised from present
 
knowledge to full capability.
 

FIGURE A-5
 
PARAMETERIZATION OF LONGITUDINAL COVERAGE
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where the P indicates the present knowledge. Since nitric acid vapor
 

is considered to be one of the very important members of the NO
 
X 

chemistry chain, requirements (R) have been set'at full- capability.
 

Values from 0 to 10 are then assigned to each of the matrix areas
 

yielding:
 

Nitric acid vapor, 
DATA Good 6 9 R HNO3 

10 

STATUS Med 4 8 9 

Sparse 2 P " 7
 

5
 
None 0
 

None 60 120 180
 

LATITUDE BAND COVERED
 

These value matrices were prepared for all species prioritized into
 

Groups I and 2 plus those in Groups 3 and 4 for which satellite-borne
 

remote sensing instruments either exist or are under development.
 

The matrices are presented in Volume III of this report.
 

A.2.3 Weighting Factors
 

In order to determine the extent (in terms of value) to which
 

each orbit and/or instrument under consideration raises the present
 

knowledge of the species distribution up to or beyond the required
 

knowledge, the capability of the mission for each parameter (i.e.,
 

latitude coverage, vertical coverage, etc.) must be known. The
 

values corresponding to the capabilities for each parameter are then
 

combined into the value set for each species which provides a measure
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*	of how the entire orbit/instrument improves on present knowledge and
 

how it compares with other orbit/instrument missions. However, as
 

indicated in Section A.2.1, simple combination of such values
 

assumes that all of the parameters are of equal importance. This is
 

definitely not true. For any given species some of the parameters
 

are of much greater interest to the user community than others.
 

Thus weighting factors must be assigned for each measurement para-


For example, in general the latitudinal distribution of
meter. 


stratospheric species is considered to be more important than the
 

longitudinal distribution. Thus, it is more valuable to measure the
 

latitudinal distribution before the longitudinal distribution if both
 

cannot be measured simultaneously. However, if the latitudinal
 

distribution is already well known then the primary value lies in
 

extending knowledge to include the longitudinal distribution.
 

For most stratospheric species distributions the desirable
 

progression from "no knowledge" to "full knowledge" would be:
 

(1) No data
 

(2) 	a. Fixed point data exist (one latitude, longitude, altitude,
 
and time.)
 

b. 	Fixed point column burden data exist (one latitude, longi­
tude, and time.)
 

(3) Fixed point vertical profile
 

(4) Latitude coverage
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(5) Seasonal coverage*
 

(6) Diurnal coverage*
 

(7) Longitude coverage
 

(8) Long time coverage (years or decades)
 

Thus weighting factors must be assigned to each parameter for
 

each species based on present and required knowledge and the
 

logical progression of desired knowledge given above. High weights
 

should be given to those parameters that would yield the best
 

improvement from present to required knowledge and smaller weights to'
 

the other parameters.
 

The various values for each parameter (adjusted by the weighting
 

functions) are combined to yield the total value for the mission
 

under study. Each mission value is then compared with the value of
 

the present knowledge and the required knowledge. The mission that
 

provides the largest improvement from present knowledge to required
 

knowledge should be considered the "optimum" system. If any mission
 

achieves a value beyond the required knowledge level, the mission
 

value should be truncated at the required knowledge level since this
 

is the goal for each pollutant. However, if several missions achieve
 

approximately equal values then this additional benefit should be
 

acknowledged.
 

In some cases the mission may show only a small improvement
 

o-ver present knowledge or in fact none at all. Thus, the incremefital
 

* 	For a few specific species diurnal coverage may be more important
 

than seasonal coverage and possibly latitude coverage.
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gain in value over the value of 
present knowledge would be zero.
 

However, tlis in no way implies that the 
entire mission under evalua-


At the present state of the art of remote
 tion has-flO value at all. 


sensing of the stratosphere any successful 
mission would have value
 

The
 
in terms of engineering, technological, 

and scientific advances. 


value derived from the present evaluation 
only indicates that the
 

mission would not significantly advance 
our knowledge of the mean
 

For this reason,
 
stratospheric distribution of the species 

measured. 


no mission will be given an absolute zero 
in the actual application
 

Such cases will be indicated as less than 
one.
 

of this method. 


In order to evaluate a multiple pollutant 
or multiple instrument
 

mission the value of each individual 
orbit/instrument is added to
 

In the case where several instruments 
measure
 

give the total value. 


the same pollutant the highest capability 
for each parameter is used
 

However, in the case of a
 
to determine the contributing value. 


multi-species mission, simple addition 
of the individual species
 

values assumes that all are of equal 
importance. As was discussed in
 

Section 5.2 and again at the 
beginning of this section, 

the species
 

have been prioritized. These priorities must be taken into 
account
 

This is accomplished
 
when comparing the values of different 

species. 


These factors have been assigned to
 by applying weighting factors. 


the different species groups as follows:
 

1.0
 
Group la - Direct measurements of climatic 


change and ultraviolet change
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Group lb - Species directly associated with 

changes in climate and/or ultra­

1.0 

violet 

Group 2 - Important species-associated with 0.9 

two or more chemistry chains 

Group 3 - Components of the basic reactions 

involved in the direct production 

0.9 

or depletion of ozone 

Group 4 - Components of the basic reactions 

indirectly involved in the produc­

0.8 

tion or depletion of ozone 

Group 5 - Other significant components of the 0.6 

chemistry chains 

Group 6 - Specific aerosols 0.6 

On a scale
 
The rationale for selecting these factors is 

as follows. 


Groups la and lb since no dis­of 0 to I a factor of I was given to 


tinction in importance could be identified. 
Group 2 rates almost
 

the fact that the species are involved in more 
than
 

as high due to 


The Group 3 species are considered to
 one major chemistry chain. 


All of these
and Cl chemistry chains.
be primary from both the NO 


the ozone generation and destruction
 species are directly related to 


Group 4 species are
 
reactions. Thus, the weighting remains high. 


considered to be secondary in the sense that 
they are primarily
 

involved in the production of the primary 
species listed in Group 3.
 

The Groups 5 and 6 species, although very 
important in stratospheric
 

chemistry, cannot be considered as important 
as the species in the
 

In the actual evaluation an initial set of weights
previous groups. 


This set was exercised against a small set of
 was postulated. 


A-21
 



species for which relative importance was 
known with-some confidence.
 

From this the final revised set of weights 
was determined.
 

The combined values for present and required 
knowledge for all
 

,pollutants for which value matrices 
were generated are given in Volume
 

The combined values also include the parameter
III of this report. 


It
 
weighting functions and the rationale for 

the selection of each; 


should be mentioned, that for the particular 
stratospheric species
 

and missions considered here, all final values 
are rounded off to the
 

nearest integer since this is considered to be 
the maximum preciseness
 

that can be justified by.the accuracy of the 
input values.
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APPENDIX B
 

REFERENCES
 

NOTE: For the convenience of the user, the same set of
 

references is presented in Volumes I, II and III of this
 

report. Therefore, in any one volume, all references are
 

not cited in the text.
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