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ANNOTATION

The behavior of an eleectron moving with arbitrary
velocity 1n a given strong low frequency radiation field

is considered, whenjlnduced Compton scatterlng 1s the prlmafy

mechanism of interaction of electrons with radlatlon %

— L e —— — =

The evolution eof the energy spectrum of the :
Electrons is investigated in a diffusel _approximation, -and

the equillibrium spectrum of relativistic electrons ig found’

in a radiation field with a high brightness temperature. The
induced radiation pressure, which acts on a moving electron

and the induced heating raéé of the édectron gas in an isotropic
radiation field are calculated. It is shown that the direction
of the induced force, in contrast to the well known spontaneous
brjaking force, depends-on the radiation spectrum. The condition
of’ the form of the spectrum, under which the induced force

can accelerate electrons up to superrelativistic énergies,
is foeund.
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COMPTON INTERACTION OF FREE ELECTRONS
WITH INTENSE LOW FREQUENCY RADIATTON

AF, Tllarionov and D.A. Kompaneyets
Institute of Space Research, Academy of
Sciences USSR, Moscow

The induced Compton scattering of electromagnetic radiation
by free electrons (see survey [1]) can play an important part
irvastrophysics, in the interaction of powerful radio emission
pulsars, quasars and other objects surroundeéd by a rarefied
plasma [2-4], as well as under laboratory conditions, in
examination of plasma heating by lasér, maser and ultrahigh
frequency unit emissions [5-7].

It is known that this nonlinear process [8] leads to
electron heating [5,9], the development of induced radiation
pressure [10,11], change in the radiation spectrum [12] and
in particular, the development of narrow spectral details and

solitons in the continuous radiation spectrum [13], to divergence

or convergence of the radiation beam [14], etec.

The questionrof the behavior of relativistic electrons
in a given radiation field is considered in the present work,
i.e., we will be interested in:

1. The energy distribution of electrons, in situatiéns
when the plasma is sufficiently ravefied, and scattering
processes, which result in electron diffusion in impulse space,
play. the basiec part in establishment of the energy distribution
of the éXectrons;

#Numbers in the margins indicate pagination in the foreign text.
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2. Induced radiation pressure which acts on free

electrons;

3. Relativistic electron heating by induced light
scattering.

Precise relativistic formulas were obtained for all
quantities; ~which characterize electron behavior in an iso-
tropic radiation fiéld, which are valid for arbitrary electron
energies and arbitrary radilation spectra. The resulting
formulas are fairly simple and convenient for the calculation of 11:4&

induced effects, and they permit the study of both nonrelativistic
and superrelativistic asymptotics.

A large number of studies has been devoted to the question
of the induced interaction.of: radiation with a relativistic
plasma [15-17]. The relationship of heating rate of mono-
energetic superrelativistic electrons to their energies, obtained
in these works, are valid only for radiation spectra of a
given type. However, for precisely these spectra, the plasma
heating pattern differs qualitatively from monoenergétic electron
heating. This is connected with pulsed electron diffusion, as
a consequence of induced scattering [10], which washés out the
menoenergetié¢ distribution in these spectra,l very much fastér
than it heats them.[18]. A%t the same time, in a broad class
of spectra, the electron heating pattern differs from both
the results of woerks [16-17] and [18]. The induced effects
are analyzed in our work, for arbitrary radiation spectra.

In the case of a high brightness temperature of the
radiatien field kaﬁﬁmc?, allowance for induced electron heating
and ceeling in spontaneous scattering results in establishment



of the equilibrium energy distribution of relativistic
electrons dNe/deve2rexp (-Aeh), 4<n<5, as a function of the
radiation spectrum. The average electron energy in this
distribution is <g>%mcz(§22)1/nj
me 2
Besides a systematic increase in electron energy, a
sysbematic change in its impulse occurs in induced radiation scat-

_tering, i.e., induced radiation pressure acts on the electrons.

In an isotropic radistion field, this pressuré can b divected”
both opposite and in the same direction as the electron velocity,
depending on - the type of radiation spectrum. In the electron
rest system, this pressure was calculated in work [11l], and it
was shown in survey [1] that, in this system, the pressure

always slows down the electrons. However, the presence of
induced heating in the electron rest system results in the
induced pressure in a laboratory system differing significantly
from the pressure “fiound in work [11], and precisely the heating
results in a change in direction of the inducedpressire, in

S et

certain situations.

The effects being considered, which devéidop uvpon induced
scattering of 1light by electrons, are classical, i:e., they
ulimately do not include the Planck constant h. However, the
calculation of these effects in quantum language, in which
electromagnetic radiation is considered as a photon gas, is

significantly more convenient than the classical [19].

We will consider the electromagnetic #fiield to be random,
and we will characterize it by the quantity N(v,n) the photon
filling number with frequency v and direction of propagation
E of phase space. Then, in this state, the probability of
photon scattering from any other state 1s proportional to
1+N(v,3). One corresponds to spontianeous scatfering and
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N, to induced. The change in frequency of'the photon upon
scattering by an electron moving with random velocity v, equals
[20] T

U ;or_ - T

[ _un

Y 1- ¢ -3 (1)
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! C n?cz

where vy v' and n, n' are the f?equency and direction of
propagation of the photon before and after scattering, )
y=(1-v%/c?)"1/2 ¢ is the velocity of light, m is the

electron mass. When the Thomsennapproximation is valid, the

last term in the denominator of (1), connected with output,
is a small correction to the Doppler effect compared with
h. Thus, in the scattering of low frequency photonssby
electrons, the change in frequency is primary connected with
the Doppler effect. However, the induced scattering effects
owe their existence to this small correction connected with
output. ,
We proceed to the electron rest system, and we show
that, without accounting for output in induced scattering,
there is no exchange of either energy or impulse between
an electron and the radiation field. This is easlly seen
from the following example. We place an electron in crossed
radiation beams. The induced scattering of photons from the
first beam is possible only in the diréction of the second
beam, and the number of photons from the first beam scattered
from the second per unit time is proportion to NyN,. Photons
from the second beam with the same vélocity (groportional to
NiN2) are scattered in the first, in which, by disregarding
output, the frequency in scattering remains as before. Thus,
with induced scattering, the radiation "fi&dd does not change

and the electrons acquire néithér impulse nor energy, iLwe.,



both induced heating and induced radiation pressure are

absent. In the reverse transition in a laboratory system
{where the electrons move at velocity %), the induced heating
and induced pressure rates are, in accordance with the Lorentz
tranform Q=w+§f, ?=iﬁ%'w, where @ and ¥ are the rates of change
of energy and impulse in the laboratory system, and W and

T, are the same in the rest system. It is evident that, if
heating and pressure equalled zero in the rest system, they
equal zero in any other inertial coordinate system. Thus,

the pure Doppler effect makes no contribution fo induced electron
heating, and only allowance for the oufput effects results in
the effects indicated.

We nete that the coenditiens of applicability of thHe Thomson
appreximation are different 1in the cases -of induced and i
spontaneous scattéring. Thié is connected with the fact that
induced radiation scattering by a rélativistic electron occurs
mainly at small angles l—ﬁﬁ’ml/yz. In this case, the Thomson

approximation is wvalid at hv<<me?y.

ORIGINAL PAG"‘"J;T%
1. Electren Diffusion in Impulse Space OF POOR QUAL

We coensider a system of electrons in a given radiation
fileld with high brightness temperature, when induced scattering
effects are important. Upon scattering radiation, an electron
changes its impulse beth systematically and randomly. While
the impulse of an electron changes by a relatively small
ameunt as a result of each scattering, to find the electron
distribution functien in impulse space ¢, the Fokker-Planck

equatien can be used, accerding to which

¥, 20 _ 2 ( 2 D -1 tﬂ (2)
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Fig. 1. Systematic Ap=fAt and random dép=
change of initial impulse E of group of electrons
in small time At, connected with pressure and
diffusion, respectively; induced pressure results
in relatively small value of Ap compared with
random &p; the figure represents the situation
in the case of accelerating induced pressure and
nonrelativistic electrons; in this case, Ap 1s
proporticnal %o p, and dp does not depend on p.

where fi, the average force on an electron from the dirvection
of the radiation field, and Dik, the electron impulse diffusion

tensor in this radiation field, are determined by the formulas

i;’f RN e
A

here,

ap, _h (V”.z. - v’ré) : (1)
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is the transmission of an impulse to an electron as a result

of a single scattering, and the Thomson scattering cross
section

Ca0R\B 4 dpn T, {-bp )‘«‘» |
" a4 d - s (5)
6=(;5) Tk |4 ({ Y HpijiEn) |

L

In formula (3), one in the square brackets corresponds to
spontaneous scattering, and N(v',ﬁ') to induced. The guantity
ApiApyvh®. Therefore, spontaneous diffusion is a quantum
guantity and induced diffusion, eclassical [10]. This is
evident, if the diffusion coefficient is written as the

classical quantity, spectral .intensity

o a LTI ey
F(\?,h}=-2—§§ N(v,#) s [F] o? ax eRp U (6)

Written this way, constant h disappears from the expression for
induced Dyji. The radiation pressure on an electron, both
spontaneous and induced, is a classical guantity. Calculation
of %ind by formula (3) must be carried out, with allowance

for the first correction of hv/me? in the expression for
frequency v' in Api and N(v',ﬁ'). In this case, allowance

for the guantum correction to the. scattering cross section
gives a zero conftribution. In calculation of the diffusion
coefficient, quantum corrections+need not be taken into account

at all, in substituting v'=v 1- I in formula (3). With this

L—gn
substitution taken into account and with the use of formulas
(4) and (5), it can be shown, by direct differentiation of

formula (3), that the induced pressure 3 ind=_dDik

o and




equation (2) coincides with the equation, which is known in
gquasilinear plasma theory [21]. In the case of uniform electron
and photon distributions, equation (2) has the form

i D.. oY 9 ) (7)
2‘3& . | iR ?g};;{ T ‘%"PL?/) i

In the case of an isotropic radiation field, coefficient Dij

can be presented in the form

B o e By
”b( S (3, T} (8

4

where Dy and Dt are the longitudinal and transverse diffusion
coefficients, respectively.

In this case, equation (7) is written in the following

W4 2pep % g g, D
Ko ?.):4,.5;?9 (355;“ ﬁpt?)*‘ Pf Q%‘{’ (9)

Wwhere A¢’e is the angular part of the Laplacian in spherical
coordinates. We multiply both parts of equation (7) by
e= Ymc , and we integrate it over phase space. After substituting

¢= ,,rpz
electrons. In the calculation on ocne eleciron

§(g-p), we obtain the heating rate of monoenergetic

————— R MY e e

(ch-f? 1‘1 (p‘“a?il)e) ff 7,0- ‘(10)

In a similar manner, by multiplying (7) by p and substituting
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-+
$=6(q-p), we obtain an expression for the radiation pressure
on a moving electron

-

[ -t ""9 = . {
- ) = [ D, + &(D,-D,) (1)
. -;’f = $ S’P * %Lﬁ“«:i gg? + 53 i-h ;Z);, ) F} {Qj\":’: :Z,é%) -

The known expression for the spontaneous force [22] can be obtained /11
from formula (3)

8
Wheie o= 3ﬂ (ecz) 1s the Tompson cross section, and
Er———dev is the radiation energy density.

2. ihduced Pfessqréfﬁcting on Electron‘in Radiat;oﬂ‘Fig;@

We find the expression for the induced pressure acting
on an electron, moving at velocity $=c§ in a given radiation
field, for simplicity of calculation, through: guantvities
written in the electron rest system. In accordance with the
Lorentz transform

‘——--" — = e T T —— el

j (ﬂh - ,,..AE,)/\/ (,n) Ny, n)c'@ 2v*® dﬁg’ndw ,(12)

md

where Ap=—(vn-v'n') and Ae=h{v-v') are the change in impulse

and energy of the electrons in the rest system in single

+ +cos oy,
scattering, the Thomson scatteri ng cross section o=rg —F——,
2 - 2

e . . > . .
Ye=—- 18 the electron radius, cosoa=nn', o is the scattering
me? 2

angle; frequency of photon with hv<<mec? after scattering by
hv?
v me 2

power series and by substitubing the highest

(1-cose). By expanding formula (12) /12

& rest electron vwi=v-
v

N(v',ﬁ') in a
(second of h) order terms, known beforehand not to disappear



after integration by angle, we obtaln an expression for the

induced pregsure

L;; - m?a &hfg&d){ﬁ@éd)ﬁ(ﬁ”} , (13)

R LGk (ﬁfﬁ)vd"‘”"”)]v SR

'
——— ———
st T T ____,___———n—"'""'_P_” T —
T — e

Let an electron move in an isotropic radiation field with
a given spectrum N(v). Since filling number N is an invariant
guantity, the radiation spectrum in the electron rest system
(already anlsotroplc, of course) has the form

N, )= NV (’5“*/5%‘3@)) (14)

>3
Here and below, Scose=%?, and the plus sign in the parenthesis

corresgonds to the fact that E is the direction of the
photon wave vector, which differs by angle 7 from the direct

from which we receive the photon.

Initiaily, we find the induced pressure in the non-
relativistic limit. Expression (14), in the first approximation
of B<<1l has the form R

Nf\}‘;) Al{v) pn W’W("j

By substituting this formula in (13) and by calculating the
integrals, with the expression for the scattering angle
cosa=cosecose'+sinesine’cos(¢;¢') taken into account, by

recording the answer through the spectral intensity (6), we

obtain
[y - - _ 2 “—_"——‘——-—._t
J o= G BT CEZ L CdENE T a8
Fna= ERe & [0 Sx v - f (2w

10
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Here and everywhere further on, in calculation of effects

connected with induced scattering, we assume that F(v) decreases
more rapidly than v'/2, as v+0.

It was pointed out in survey [1] that the pressure in
the electron rest system always is directed against the velocity.
In distinction from this pressure (15), i.e., the pressure
calculated in the laboratory system can, depending on the
radlation spectrum, be directed both against and wﬁth the
electron rate of movement. For example, for spectra’of the
form Fwle~—V& with 1/2<a<1l/7, the pressure accelerates the
electron and, with a>11/7, slows it down. The critical
value of index o depends on the rate of decay of the radiation

spectrum 'at high freguencies.

As an example, we compare the spontaneous and induced
pressures acting on a nonrelativistic electron, moving in an
isotropic.,. quasi-Planck N(v)=A[exp(%%)—l]_1 radiation field.

The induced pressure in this spectrum is braking, and intro-
duction of factor A>>1 permits description of a situation with
a high radiation brightness btemperature Tb=%;N(v)=AT, in the low

frequency hvixkT region of the spectrum,.where N>>1. For the

ratio of the pressures, we obtain -¥?~-ﬂ ] - ‘1n‘ﬁ1
- Find 03 26
0 mes 4

! 43? ’ . 3
Normally, the induced pressure coﬁséﬁ%ﬁ%gg“éméﬁéiiwborféction
to the spontaneous (on the surface of the sun, it equals only
2+10-7). However, in an’ astrophysical situation, for example,

near that of pulsars, the radiation is essentially nonplanckian

and the brightness temperature of the radio emission is tremendous, /14

2»
T =10 30K ~ 1020%—. Under these conditions, the induced pressure

11



plays a major role in the interaction of the radiation with
the surrounding plasma. It must be taken intoe account, in the

interaction of powerful radiation beams with a rarefied laboratory
plasma.

For the case of relativistic electrons moving in an
isotropic radiation field, the induced pressure is determined
by expression (13), with formula (1l4) taken into account.

The result of exact calculations of the multiple integrals
included in expression (13) for the pressure, in the case

of arbitrary radiation spectra, is presented in the appendix.
The induced pressure, just .as in the nonrelativistic case,
can, depending on tThe form”of the radiation spectrum, both
slow down an electron and accelerate 1t. The sign of the
effect depends only on the behavior of the spectrum at low
frequencies. Thus, for spectra

‘-F(t’}wvd ' .v’@of (16)

asymptotic at ¥>>1, the induced pressure at o>l slows down an
electron, and it has the form —

e e ——

w,_-‘:—-»—;:""/
i 405 6 2 )dy
:#Mg _f:'zf;—k% S@b(g}g(«! )g an

and it behaves as Y-? [181. Here,

—— m———

Cb(g): Séf{v} N(vg)v Ty ‘: (18)

1s a universal function, which, as we shall see subsequently,
determines the dependence of all the induced effects on the
radiation spectrum.

12
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In the case of spectrum (16), with 1/2<a<l, the pressure

~
=
U

accelerates an electron, and its asymptote coincides with the
asymptotic heating rate (see the following section) in such
spectra, and it equals

:_m;} -f=2a T
‘gmaaé’a@“’? :

3. Induced Electron Heating in Isotropic Radiation Field

An electron in a radiation field changes its energy
due to both induced and spontaneous scattering. Since the
heating of electrons due to spontaneous scattering is a
gquantum effect proportional to h, it will not be considered.
In the case of a nonrelativistic electron and isotropic
radiation, the induced heating rate follows [5,9] from the
equation of A.S. Kompaneyets [8]

- 8‘?"6 h* ﬁ}gy%jv - E?TG’J £2 0 a9
Q- 312 § G syzdv_n

Due to spontaneoug heating, an electron can acquire an energy

on the order of the average energy of a photon in the radiation.
Radiation with a high brightnesstemperature'Tbl at low frequencies

is capable of more. It heats electrons to energies much greater

than the average photon energy, due to induced scatfering.

Thus, radlation with a Rayleigh-Jeans spectrum F=§%;ka, at

O0<v<yy and F=0 and v>v,, hvo<<kT,, is capable of heating electrons /16
to energies 4e>=%kTeq=%kT2 (for the relativistic case, see

formula (24)). In the case kTp>>me?, which is not a rarity

under astrophysical conditions, electrons are capable of belng

!Consideration of induced scattering is equivalent to a change
to high brightness temperatures.

13



heated to relativistic energies. In this section, we
find expressions which determine relativistic electron
heating.

The expression for induced heating of an electron moving
at velocilty §=Ec is similar to that of the induced pressure
and, with the same designations, it has the form

’@ 5@—‘5 * ""Z-\P) A (v, ”)N(V'g)66 2v" dv dnof ."(.20)

p—

In the nonrelativistic case B<<l, this formula gives result
(19). After integration (see Appendix), formula (20) leads to

the expression

;Qg 42”6 /) f¢@9 @.05%’)@’,9’ } g‘ (21)
a

a

were 30-24p%25°) 0 4. _ 60 28 >y
@,U’:“ﬁ) e T E( pep ,jf I+ o

/f + ’3(5'-]%)(3?{5 )(._3;) 4-5]5 '(» ﬁ) 1

[ A=
o

and function ¢ is determined by formula (18). In the limit
R,B'<<1l, the function .

———— i —— —
N . — -
e —— -y N T

1§@ Q‘?’zﬁ)““ jé%f [kéﬂﬁﬁaﬁ’% 2/3.’ 4‘;,“-0 \ (220)

We note that the expression for @ does not change, upon
substitution of B for -~B. The behavior of @, as a function
of quantity vy, is determined by the form of ¢(y) at small y,

1 -
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i.e., by the radiation spectrum at low frequencies. In the
Y In the case 1/2<a<2,

|

case of spectrum (16), at a>2, @
we have Quy—'-2%%, At =2, Qwin?y/v°®

4., Electron Impulse Diffusion Coefficients. Equilibrium State.

In an isotropic radiation field, the electron impulse
distribution functions obey equation (7), where Dg=Dj kp;pk
and Dt=%(Dii—Dg). Quantity Dy 1is calculated from general
formulas (3), with (4) taken into account, similar to the

case of quantities Ting and Q (see Appendix), and it equals

i?w ! S‘”&’) Co (pp)a’,
where G@g(f?’ P) !§3(4+)g [(3_’/52)%}% -f-2j3 _Zﬁf(gjz
Co TRy )(P"ﬁ)

In the limit B, B‘<<l in accordance with the result or [6],

..__.__._‘__

%(pp)» [41’13 45]5}3 -M’O/a /5 5’/:) (221)

To find the form of Di, we use the connection between Dg
and D¢, which follows from equations (10) and (11)

15
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Fig. 2., Electron impulse vs., a. electron heating
rate Q, b. dififfusion coefficients Dy and Dt and

c¢. induced pressure find for radiation spectra of
the type Favle—av; the dashed line corresponds to

a Wien spectrum with g=3 and the s0lid line, to a
spectrum with a=3/4; in the case =3, Dg practis.
cally coincides with D¢ in case ¢, a positive find
corresponds to an accelerating pressure; the values

are reduced to units of QD=12ﬁc%h2 FN2v¥av, Dy=mQo ..
fp=Qqc—1t. me ’




where W has the meaning of the rate of increase of energy by
an electron in its rest systemn.

In the nonrelativistic limit, DQ=Dt=%Q.

In the relativistic case, with y>>1, the behavior of

~
=
\D

quantity Dy (as in the cases of Q and fipd) depends on the

behavior of the spectrum at low frequencies. Tn the case of a
spectrum of the type of (16), Dgvwy—% at a>l, and Dgvy—2% at
1/2<0<1l. As it is easy to show, the asymptotic -value of W is
proportional to y—l, and the formula for vazc coincides with
the formula for pressure (17), and it is valid for any radiation
spectra. It follows from formula (23) and the asymptotes Dg

and W that, regardless of the radiation spectrum, Deg=mWy>'~y=2.

We find the equilibrium electron impulse distribution
function. It follows from equation (9) that ¢eq(p)%exp[
[- $§ E%%:dp'ﬂ. In the nonrelativistic case, the problem of
the electron energy distribution in their Comptoh interactions
with radiation with a broad spectrum was solved by Zel'dovich
and Levich [9]. The steady state function proves to be
Maxwellian, with temperature

Tk e |

Vo (24)

, - - \
Lk W‘?’fz__.;ﬁ

— . ————

Wecoconsider the case of relatividstie electrons, which
corresponds to the condition kTeq>>me?.’ Depending on the
form of radiation specktrum (16) at low frequencies, the

electron equilibrium distribution function-has:the form

!L (P)w @xyfa(’ ap) (25)

17



where n=5 at a>1 and n=342q at 1/2<a<l, and parameter aka (me )1,
In this case, the average energy <e>= c<p>mca—1/n, and éeq (25)
corresponds to a flat electron spectrum, cut off at high

energlies by the spontaneous braking pressure.

5. EBEvolution of Electron Spectra of a Result of Induced
Scattering and Electron Gas Heating.

Analytical solution of equation (9) in the isotropic case,
with diffusion coefficient Dy (see (22)), which 1s dependent on
impulse in a complicated manner, does not appear possible.
However, asymptotic solution of the diffusion equation at large
p>mec, where Dl(p) is a certain power function of impulse

D=Dyp—K, is easy to find

| ';. 2 | - _ P |
) R TG wp (i), 9

where k=k+2. This sclution is valid in the region of impulses,
where the sponantecus braking pressure can be disregarded, i.e.,
at p<<p> and in times t<£%%5, when equilibrium distribution

(25) still has not been reached.

Based on the resulting solution, the electron gas
heating rate with induced radiation scattering can be found

T —r  r——

———— et e

5 Q) ¢ (pe) frp 4. @

J——

\

By substituting Q from asymptote (21), we find that, depending
on the radiation spectrum at low frequencies (16),
= - o> 4 -
0’!5.\,4' i 3 ;
.;ZE o Ras .
{ 4 3wz | Z<d<d

pUEN
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The dependence of the relativistic electron heating rate on
the average electron energies with-a~spectrum in form (26)

corresponds fto this:

_ - i

iy "'3 ] 'c
!dfi [ & : 2> (g
dE — ~1=32 -

In the case of equilibrium distiibution of electrons (25),
their induced heating is compensatéd by spontaneous cooling.
However, cooling of the electron gas is determined by the high
energy.end of the electron spectrum, and cooling (at a%l),
by the presence of semirelativistic particles with p=mc,
since integral (27) is accumulated precisely in region p=mc.

In the case 1/2<a<l, heating is determined by energetic
electrons, which results in the same dependence of heating rate
on the average energy of electrons with distribution (26),

as for monocenergetic electrons.

Together with heating of the electron gas, wé consider
the problem of the time evolution of the average electron
impulse, as a result of induced scattering. Interest in this
problem is due to the fact that the induced radiation pressure,
in principle, can accelerate the motion of an electron up to
superrelativistic energies. It follows from equation (9) that
some induced processes (without dllowance for the spontaneous
braking pressure) cannot in themselves lead to an equilibrium
distribution of electron energies. The effect of the spontaneous
pressure is equivalent to the presence of an effective
"reflecting" wall, at energies on the order of Xe». Since the
eguilibrium impulse distribution is symmetrical, regardless of

the initial conditions in the direction of the induced pressure,
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the final electron distribution has zero impulse. However, the
direction of the induced pressure significantly affects the
pattern of evolution of the total impulse distribution. Thus,
in the case of a radiation spectrum which results in an induced
pressure accelerating in the helativistic limit (a<l), the

~
no
N

ineguality Dyp>>Dg is valid, and equation (9) (the spontaneous

braking pressure can be disregarded for the present) can be

e R e o

: F g-A ' p :}
"BV’(E} ;a 2 P“Z)é 3(9[5)
y 9T - Pop - ?op
This form of equatioen corresponds to strong diffusion in

written in the form ‘ N

+
direction p and an increase in total electron impulse up to

<p> in the given direction.

6. Spectrally Narrow Radiation Lines

The formulas presented above for the quantities which
descrlbesgthe induced effects (electron heating rate, diffusion
coefflclents etc.) permit fairly simple calculation of them
for any specific radiation spectrum. In particular, it is
easy -to carry out this calculation for existing characteristic
features of the case of spectrally narrow radiation, consisting
of one or more linesg. This situatidny.ocecurs in cosmic masers,
or it can be brought into being in a laser experiment. The
case of one narrow line was considered in [6]. The basic
results of [6] (diffusion coefficients and electron heating)
follow.. from formulas (21) and (22) presented above, with the
substitution of nonrelativistic expressions for functiocns
a(B,R') (see (21') and (22')). In tThe case of one narrow line
Sv<<vy, overlap function ¢(1+B,) (see formula (18)) decreases

rapidly at B'>E%. For example, in the case of a line with a
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Gaussian profile Nvexpl-G,)2/2(6v)2], with dispersion
(6v)2<<qutiguﬁction-¢%§XpEy028’2/(6v)2]. Therefore, the values

of Dy and Q decrease rapidly with increase in electron

velocity. Thus, for a Gau331an‘line which is greater at /23
5<<§3~-$he-va&ues—of qy ft;; and Dg=Dt=mg decrease at
ﬁﬁ%ﬁ?ﬁ ‘ 3

ot BF {29)

where F ff‘o@.ﬂ?“ f}?engﬁ g}:‘f@'g is the total radiation

output in the line. At the smme tlme a decrease in wvalue of

Dt with increase in B is slower:

. . 2,

D, = 23O Fo 1 (29)

LA vy il

t 90 J
An interesting situation arises with several narrow lines

in the radiation spectrum. We congider the case of two lines
displaced with respect to each other by freguency Av<<6év;,dva,
in which we assume that Av<<v;=v, when the nonrelativistic
case 1s ol Iinterest.

At small B<%%T, the quantities which describe the induced
effects of both lines add up arithmetically. Quantity Fy?
in formulas (29) and (29') is replaced by Fi2+F.2, where
Fy, and F» are the total radlatlon output in the first and
second lines. However, at Bz v Av >, an induced photon
“Vitvz 2ve
transition from one line to another by scattering becomes

possible. Function ¢ has a sharp maximum (with dispersion

21



F(8vy)%+(6v,)27/Uv 2<<l), at B'=é%— . This results in a
e

considerable inerease 1n the induced effects at B>Av

_%Epﬁ;
{@fz 37 Gr R ¢ ) MG, Fr ('éi;) _.{.1-{ I
& o \;3' hm NE AVl PTSGO)
{@ 3uF' E&, (}3 —TMTF A\J) ,{‘
T AT Y
At the same Time, overlap of the lines at B>%¥— shows up-_
8lightly in the quantity . ©
L s 2
7 s 2376, @+ ) (301)
e 40 5 B -

.._‘_...__»-AP

It is evident from this tThat, at 8>§5€ , The difference Iin
the line frequencies Av (but not 8v; and §vp) plays the part
of erffective width of the radiation spectrum. Thus, for

example, the heating rate of Maxwellian electrons with temper--
ature kTeR,mcz(Av)2
a colder plasmacw1th kTe<m02(

considerably exceeds the heating rate of
Av 2
)

In conclusion, we thank Ya.B. Zel'dovich and R.A.
Syunyayev for interest in the work and valuable comments.
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APPENDIX

As an example, We present the calculation of the value
of W, for an electron moving in an isotropiec radiation field
at velocity wv=cf. Quantity W, which has the meaning of the
rate of accumulation of energy by an electron in its rest
system, is determined by formula (23), and it equals

W+ jaa (s SRUCE .:)csé.k; dv o off

- - —— o e —— — ————

After substituting Ag=h(v—v‘) and integrating over agzimuth

angles ¢ and @’, we obfain

2
- f:cé' J Rulp) A/(ugmﬁ/u;)f\/(/g@w)) ) dv dp dp i)

where

/
M= cozg ir:wgér’,/

[ Rulpp )= 3 '+ 3

We present The scheme of calculation of angular integrals
in (A.l). We substibute (A4.1) in the Fform

W = fdv y Z a1, 1, (8-2)
) Vi(tt)
’ ~-{-K
where 0+« “'; K épz" P IK: (I}XP) ) é;ﬂ 13)/\#/(;?):}rz dx

and coefficients aji are functions of parameter g. By

dlfferentlatlng Ik, we obtain
-av_-'_'.—-___—_'- e ——

K'*r-f

V-"—- = = (keI + /——ﬁ) M(W(«ya}) (%@\ A/(Va»ﬂ,s)) (a.3)
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01 4T 5]
By 1ntegrat1ng expression ES:IL dJc V™ dv by parts and
by using- (A 3) for Ug%E and for  9Li, we obtain the
dv
formula
. VT
{x+_gm3}tgilfkﬁde y (A.u)

= (‘i"f)L*iST Nwﬁ(-ﬁ-p)}y v - (” ’3) ()I Aj(vf(»f-ys))v otV

plus symmeftric expression relative to the indexes.

By substituting the variables, we obtain

o ‘ -4 1 31 (w-d)
STty viar - BEL oy 4° (.?’)a&,. (4:5)

5, K+
Rl Jo B
where ¢(y) is the overlap function introduced by formula (18),
yo=l:%. At i+k#3, formula (A 4) is written in the form

-y ] T

- (¥473) ik~ (A.6)
1.v4 )y HL
SI v (w-zc 3)3/513"*‘“2 ; (3)(3 g} 4 jfi&

At i+k=3, this formula, after the llmltlng trangition i+k+3,

has the form

Sl

SIIV&V;“‘“ (#)( ¢ fé’n d | (A.7)
P J 5) g dy

_And, finally, by substituting the resulting formulas (A 5-A.7)

. . . _1-B" 1-8
in (A.2), after the substitutions y'= TR and y=yg= 1+B’

we obtailn
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L2 P N !
W= i%.f:.;}.%i‘— S¢(g)cw OB{P)AP - LA:8)
- 0

(oo | BT I L 2pp]s
}%fg) yé+ js)eﬁ{ A m‘g)\

eyl ) 35 *%"fﬁ%“'fﬂ(ﬁ ).

. (A.9)

~
no
-l

In thé nonrelativistic limit, with B,B'<<1

The superrelativistlo asymptote glves

' a"‘xz’f("ﬁ)("*Zﬁ) 517y dy _‘ :
Gw‘( o>/ 3}{ (4+f5)§ (1 '%zf?) é{j’ . (A.10)

pigk’ where Dik is detérmined by formula (3), is calculated,

Dg=Dik
(like find and Q), by changing to the electron rest system and
by substituting Aps in accordance with (4). After integration

over ¢, ¢'

Ch ?ﬁgi , v X Po () W ("a’f'f%f))f\f(va’/%yyx’)) Vo(da/(u(!u

where

(Folppihs Yo opip 3

By calculating this integral according to the schemne
represented above, we obtain expression (23).
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The induced heating is found by the formula (see (10))

Q= % ‘*’(ﬂw)

e .

The result is represented by formula (21).

In a similar manner, based on formula (23), we find
the quantity

| \
D, = 42’:?6/) S d:(g) G@t{f"d )dg (A.11)

o e A e

where G
/(*‘Q'J,L(Pﬁ) ‘%\"\o;-‘“ %@ae).
P % 28§ |

o (A.12)
G ’ ( 3 >4 i)y
(PP ()f/5 45/ J 3/3)3 45j3/5 ﬁ o
In the case | -
Vs f
d S
— ‘ (4.13)
{ AT
\E@t ('f,ﬁ’»“z—i’ Gw (’l:»f’ ) .
We find the induced pressure acting on an electron
moving in an isotropic radiation field from the relationship
(see (23)) T T
y ¥ -w):
f;/nd 19(2 (@ X_?. - i
From formulas (21) and (A.8), we obtaiﬁ
ﬁé;mp{g 6. b’ 3 f -“h“’:“- (A.14)
: _ N O ! ¢ . .
e e )G 0
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In the case of

a %fﬁé radiation spectrum, we expand ¢ in a R' power SEPlE% ;
to the second order in B8'. We note that, at B'=0, the

relationship gg, ‘g is satisfied. After in integrating
expression f¢afd8' “and the necessary algebraic transformations,

we reach formula (15). For the case of a spectrally narrow
radiation (U_<<l see section 6), at B>§%, the first term of
the expansion afp= 235'%53 which corresponds to the relationship
::}Llnd——% E%L_ In the superrelativistic asymptote ap=-ayWy=>,

for spectra which fall to zero more rapldly than the first
power of the frequency and ap=aq, with a slower decrease in

spectral 1nten51ty :

} ?
i
- - . JU,
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