A A \boldsymbol{A}

AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT

ENGINEERING EXPERIMENT STATION, COLLEGE OF ENGINEERING, UNIVERSITY OF ILLINOIS, URBANA

Aeronautical and Astronautical Engineering Department University of Illinois Urbana, Illinois

Technical Report AAE 78-5
UILU ENG 780505
NASA Grant NSG 1400
Allen I. Ormsbee, Principal Investigator

FINAL REPORT
A DISTRIBUTION MODEL FOR THE AERIAL APPLICATION OF GRANULAR AGRICULTURAL PARTICLES
by
S. T. Fernandes and A. I. Ormsbee

University of Illinois Urbana, Illinois

Abstract

A model is developed to predict the shape of the distribution of granular agricultural particles applied by aircraft. The particle is assumed to have a random size and shape and the model includes the effect of air resistance, distributor geometry and aircraft wake. General requirements for the maintenance of similarity of the distribution for scale model tests are derived and are addressed to the problem of a nongeneral drag law. It is shown that if the mean and variance of the particle diameter and density are scaled according to the scaling laws governing the system, the shape of the distribution will be preserved. Distributions are calculated numerically and show the effect of a random initial lateral position, particle size and drag coefficient. A listing of the computer code is included.

ORIGINAIP PAGE IS OF POOR QUALITY

TABLE OF CONTENTS

Page
NOMENCLATURE i
I. INTRODUCTION 1
II. PARTICLE CHARACTERISTICS 2
III. TRAJECTORY EQUATIONS 13
IV. THE DISTRIBUTION MODEL 28
V. SOME DISTRIBUTIONS 31
VI. SCALING CONSIDERATIONS 41
VII. CONCLUSIONS 49
REFERENCES 51
APPENDIX 52

NOMENCLATURE
b wing semispan (m)

ORIGINAL PAGE IS OF POOR QUALITY
C_{D} particle drag coefficient
C_{L} aircraft lift coefficient
d particle diameter (II)
g acceleration due to gravity ($\mathrm{m} / \mathrm{sec}^{2}$)
g* non-dimensional acceleration due to gravity
K constant in drag relation
K_{V} constant in initial velocity relation
m particle mass (kg)
t time (sec)
U aircraft speed (m/sec)
u non-dimensional x-velocity of particle
ua \quad-velocity of air (m/sec)
u_{p} particle x-velocity (m/sec)
v non-dimensional y-velocity of particle
$v_{a} y$-velocity of air (m/sec)
$v_{0} \quad$ initial y-velocity of particle
v_{p} particle y -velocity ($\mathrm{m} / \mathrm{sec}$)
V_{r} magnitude of relative particle-air velocity ($\mathrm{m} / \mathrm{sec}$)
w non-dimensional z-velocity of particle
$w_{a} \quad z$-velocity of air (m/sec)
W_{0} initial z-velocity of particle
w_{p} particle z-velocity ($\mathrm{m} / \mathrm{sec}$)
x longitudinal particle coordinate
y lateral particle coordinate

```
yg}\quad\mathrm{ lateral ground intersection point
yo initial lateral coordinate of particle
z vertical particle coordinate
zo initial vertical coordinate of particle
a modified ballistic parameter
\beta ballistic parameter
\delta non-dimensional particle diameter
\eta non-dimensional y-velocity of air
\mu mean (expected) value
v kinematic viscosity of air (m}\mp@subsup{\textrm{m}}{}{2}/\textrm{sec}
5. non-dimensional z-velocity of air
\rho non-dimensional density of particle
\rhoa air density (gm/cm}\mp@subsup{}{}{3}
\rho
\sigma square root of variance (standard deviation)
T non-dimensional time
```


I. INTRODUCTION

Aerial application of material has played an increasingly significant role in United States agriculture, forestry, and other related industries since the Second World War. One of the major problems associated with the use of aircraft in this field has been the difficulty of obtaining desired distribution patterns with present equipment. This problem has been addressed by several groups in the academic and research fields, notably Henry (1962) and Yates, et al. (1970). However, most of this work has been of a trial and error nature with only sketchy guidelines being offered by theoretical considerations, mostly with regard to particle trajectories.

It would appear, then, that an investigation of the factors which go to make up the structure of the distribution and which directly affect its shape would be of some use in designing better aircraft/distributor systems. Accordingly, this paper presents a model of the distribution of dry agricultural material which is based on the application of basic probability theory. The model takes into account the random nature of the size and shape of the particles, air resistance, distributor geometry and the effect of aircraft wake. Some results, based on data obtained for three grains (wheat, corn and oats), are presented in order to demonstrate the applicability and to show the effect of certain parameters on the distribution. In addition, a discussion of the effects of scaling on the distribution is presented and requirements for maintaining similarity in the distribution are discussed.

II. PARTICLE CHARACTERISTICS

One of the first requirements in the development of a method for predicting the distributions of agricultural particles is a knowledge of the physical and aerodynamic characteristics of these particles. A literature search revealed that the necessary data were available for some particles but would have to be collected from numerous individual sources and investigations. An attempt was made to gather as much information as possible on these characteristics from the literature. No attempt was made to make additional measurements.

It was found that fairly complete characteristics could be assembled for several of the grains (corn, oats and wheat), while the same information was almost totally lacking for all of the solid fertilizers. The data presented here were collected from references (3-9), and were reduced via the method outlined below.

The delineation of physical characteristics which best suited the point of view of this study was to assume the particle to have three fundamental characteristics which define its physical properties. They are: density, size (which together determine the weight) and shape (which determines the drag coefficient relation). A sample collection of one type of particle will contain specimens possessing a wide range of each of these characteristics. That is, the characteristics will possess an apparent random nature, even though each individual specimen will have a fixed density and size, and will possess a definite relation between its drag coefficient and Reynolds number. The form of this relation is dependent on the shape of the particle (just as a streamlined body possesses a different drag coefficient from a flat plate or a sphere) and thus
allowing the drag coefficient to be a random variable will reflect the random nature of the particle shape.

Here the drag coefficient is defined in the conventional way

$$
C_{D}=\frac{D}{\frac{1}{2} \rho_{a} V_{r}^{2} S}
$$

where V_{r} is the magnitude of the particle velocity relative to the air around it and S is a characteristic area associated with the particle, commonly taken to be its frontal area. As stated before, the drag coefficient is a function of the Reynolds number of the particle, given as

$$
\operatorname{Re}=\frac{V_{r} d}{\nu}
$$

where d is a characteristic linear dimension of the particle. Above, ρ_{a} and ν are the density and kinematic viscosity of the air, respectively.

With this approach, then, the actual particle shape and its random nature is important only to the extent that it affects the drag coefficient relation and hence is completely independent of the size of the particle. Therefore, any convenient and consistent method for sizing the particles is acceptable. The approach taken here is one proposed by Garrett and Brooker (1965). The particle size is determined by considering a sphere which has the same volume as the particle in question and using the corresponding diameter of that sphere as the characteristic linear dimension. The characteristic area then is simply the cross-sectional area of the same sphere. The drag coefficient, measured by any of several methods described in the literature (the most common being a measurement of the terminal velocity of the particle), then corresponds to a Reynolds number calculated
using the diameter of an equal volume sphere. Thus, a drag relation can be constructed by a statistical analysis of the data.

A least squares method was used to fit a general relation of the form

$$
\begin{equation*}
C_{D}=A R e+B / R e+C \tag{1}
\end{equation*}
$$

to the data and the results are shown in Figures 1-3. This relation was taken to be the mean, or expected value, for the drag relation. A log-normal distrıbution function was used to describe the random variation of C_{D} about this mean. This distribution has two primary properties: First, if a random variable X is lognormal, then In X is normal, or gaussian. Second, the function goes to zero as X approaches zero and is undefined for X less than zero. We should not expect any particles to have drag coefficients less than zero.

In addition, this distribution, like the gaussian distribution, is completely characterized by its mean value and its variance. The small amount and large scatter of the data for the variance makes any attempt at curve fitting questionable, however a least squares fit of a cubic

$$
\begin{equation*}
{ }^{\sigma} \mathrm{C}_{\mathrm{D}}=\mathrm{DRe}{ }^{3}+E \mathrm{Re}^{2}+\mathrm{FRe}+G \tag{2}
\end{equation*}
$$

was made. The results are presented in Figures 4-6.
The particle size, as determined by the diameter of an equal volume sphere, was aliso held to be described by a lognormal distribution. However, the analysis was of a more straightforward nature and the results are

Figure 1. Drag Relation for Wheat

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. Drag Relation for Corn

Figure 3. Drag Relation for Oats

Figure 4. Standard Deviation for Wheat

Figure 5. Standard Deviation for Corn

Figure 6. Standard Deviation for Oats
tabulated in Table I. It was found that the density of these particles did not vary significantly from specimen to specimen (probably for biological reasons) and so it is safe to assume the density to be a deterministic quantity. The values used are also presented in Table 1. In the calculation of the standard deviation of the drag coefficient, each point on the graph represents at least six data points, as it was necessary to group neighboring points on the drag curve in order to obtain a standard deviation for a particular range of Reynolds number.

Table 1
Physical Characteristics

	Diameter (microns)		
	Mean	Standard Deviation	Density ($\mathrm{g} / \mathrm{cm}^{3}$)
Oats	3594	426	1.369
Corn	8133	338	1.234
Wheat	3573	189	1.320

III. TRAJECTORY EQUATIONS

Each particle, as it is ejected from the aircraft, becomes a free projectile and is subject to Newton's second law of motion. The equation of motion, in vector form, describing the trajectory is

$$
\begin{equation*}
m \frac{d \vec{V}_{p}}{d t}+\vec{D}+\vec{L}+m \vec{g}=0 \tag{3}
\end{equation*}
$$

where L refers to the lift force generated by the particle. Since the particles studied here are irregular in nature (in particular, oats have a flattened profile), they will, in general, produce a force perpendicular to the direction of motion, as well as one opposite the direction of motion. These forces are termed lift and drag, respectively. Though, as shown in the preceding section, there is information regarding the drag experienced by these particles, predicting and representing the lift forces is a more complex matter. It is felt that, by ignoring the lift force, the subsequent simplification will be of such a degree as to offset the relatively small loss of accuracy.

With this simplification, then, the single vector equation can be written more revealingly as three scalar equations, with the component of the drag force in the i th direction being

$$
D_{i}=|\vec{D}| \frac{U_{i p}-U_{i a}}{\left|\vec{V}_{r}\right|}
$$

so that the drag acts in the opposite direction to the velocity vector

$$
\begin{equation*}
\operatorname{m} \frac{\mathrm{du}}{\mathrm{~d}} \mathrm{p}+\mathrm{D}_{\mathrm{x}}=0 \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \quad \frac{d v_{p}}{d t}+D_{y}=\text { ORIGINAL PAGE IS }^{d t} \tag{5}\\
& m \frac{d w_{p}}{d t}+D_{z}-m g=0
\end{align*}
$$

It is apparent, however, from the work of Bragg (1977), that the motion of the particle remains predominantly in a plane perpendicular to the direction of motion of the aircraft (the x-direction) and since the distribution is dependent only on the motion in this plane, a two dimensional model will be used for this study.

Rewriting the y and z equations of motion with the three fundamental particle characteristics explicitly shown, gives, after dividing through by the particle mass

$$
\begin{align*}
& \frac{d v_{p}}{d t}+\frac{3}{4} \frac{\rho_{a}}{\rho_{p}} \frac{\left(v_{p}-v_{a}\right)}{d} c_{D} \sqrt{\left(v_{p}-v_{a}\right)^{2}+\left(w_{p}-w_{a}\right)^{2}}=0 \tag{7}\\
& \frac{d w_{p}}{d t}-g+\frac{3}{4} \frac{\rho_{a}}{\rho_{p}} \frac{\left(w_{p}-w_{a}\right)}{d} c_{D} \sqrt{\left(v_{p}-v_{a}\right)^{2}+\left(w_{p}-w_{a}\right)^{2}}=0 . \tag{8}
\end{align*}
$$

Since the wake system of the aircraft is dependent primarily on the aircraft geometry and velocity, the nondimensionalization was carried out with respect to the aircraft fiight speed U and the wing semi-span, b. The equations then become

$$
\begin{align*}
& \frac{d v}{d \tau}+\frac{3}{4} \frac{\rho_{a}}{\rho_{p}} \frac{(v-\eta)}{\delta} c_{D} \sqrt{(v-\eta)^{2}+(w-\zeta)^{2}}=0 \tag{9}\\
& \frac{d w}{d \tau}-g *+\frac{3}{4} \frac{\rho_{a}}{\rho_{p}} \frac{(w-\zeta)}{\delta} c_{D} \sqrt{(v-\eta)^{2}+(w-\zeta)^{2}}=0 \tag{10}
\end{align*}
$$

where the nondimensional variables are defined in Table 2.

Table 2

Nondimensionalization

$$
\begin{aligned}
v, w & =\frac{v_{p}}{U}, \frac{{ }_{p}}{U} \\
\eta, \zeta & =\frac{v_{a}}{U}, \frac{W_{a}}{U} \\
\tau & =\frac{t U}{b} \\
\delta & =\frac{d}{b} \\
g * & =\frac{g b}{U^{2}}
\end{aligned}
$$

Detailed numerical studies of the above system have been carried out by Reed (1953) and Bragg with respect to liquid droplets. Although the trajectories predicted in both cases seemed to indicate good agreement with experiment, these analyses could only yield dustributions by the time consuming and costly method of a numerical compilation of trajectories calculated using a matrix of initial conditions and particle parameters. It seemed desirable to construct an approximate solution to the above system which would offer a simple method of constructing the distributions while preserving some of the accuracy of the previous analyses.

Returning to equations (9) and (10), one of the most striking aspects revealed there is the fact that the particle-dependent parameters can be grouped into a single variable, and it is this variable alone which affects the solution of the system. This parameter bears a close resemblance to the ballistic coefficient, which is used in the study of projectile motion, and so it can be referred to as the ballistic parameter, β, where

$$
\beta=\frac{3}{4} \frac{\rho_{a}}{\rho_{p}} \frac{C_{D}}{\delta}
$$

Because of the presence of the drag coefficient, the ballistic parameter is a function of the particle Reynolds number. However, extensive simplification of the entire system can be achieved by observing that a simple drag relation of the form

$$
\begin{equation*}
C_{D}=K / \operatorname{Re} \tag{11}
\end{equation*}
$$

offers nearly as good a fit to the data as equation (1).
Substitution and further manipulation with this result yields the following system:

$$
\begin{align*}
& \frac{d v}{d \tau}+\alpha(v-\eta)=0 \tag{12}\\
& \frac{d w}{d \tau}-g^{*}+\alpha(w-\zeta)=0 \tag{13}
\end{align*}
$$

where a modified form of the ballistic parameter, α, has been used

$$
\begin{equation*}
\alpha=\frac{3}{4} \frac{\nu}{\mathrm{Ub}} \frac{\rho_{\mathrm{a}}}{\rho_{\mathrm{p}}} \frac{\mathrm{~K}}{\delta^{2}}=c \frac{\mathrm{~K}}{\delta^{2}} \tag{14}
\end{equation*}
$$

Although it appears that much simplification has been achieved, this system still requires numerical solution due to the complex nature of the dependence of η and ζ on position.

The range of values assumed by a for the grains studied in this report necessitated the use of two approximate solutions to this system. The first is to consıder a to be vanishingly small. This corresponds to the case where the particle is quite large and dense, or the medium through which it travels is quite rarified and the drag coefficient low. This results in the classical case of a body in free fall in a constant gravitational field. The solution for the trajectory is simply

$$
\begin{align*}
& y=y_{0}+v_{0} \tau \tag{15}\\
& z=z_{0}+w_{0} \tau-g * \frac{\tau^{2}}{2} . \tag{16}
\end{align*}
$$

The lateral position at which the particle strikes the ground can be calculated by letting $z=0$ and solving equation (16) for τ, and substituting into equation (15). The result is

$$
\begin{equation*}
y_{G}=y_{o}+\frac{v_{0}}{g^{*}}\left(w_{o}+\sqrt{w_{0}^{2}+z z_{0} g^{*}}\right) . \tag{17}
\end{equation*}
$$

Comparison of this result with a numerical integration of equation (12-13) showed excellent agreement for values of α up through about . 20 corresponding to a diameter of about 3500 microns, as shown in Figure 7.

The second approximation was arrived at by considering inftially the case of a particle falling through still air, that is, neglecting the aircraft wake. A study of this system revealed that the smaller particles (larger α) tended to be carried further outboard and also have a significantly lower flight time in the numerical computation than in this approximation. It is apparent that the effect of the wake behind the aircraft is to draw the particles downward and outward from the aircraft fuselage. This effect is primarily due to the pair of vortices which are shed from each wing tip as a result of the lifting action of the wing and which cause the air in the vicinity of the vortices to rotate in the manner shown in Figure 8.

In accordance with these observations, a modification to the stillair model was made which extended the range of validity to cover the grains being studied. This modification consists of adding a constant air velocity whose magnitude and direction is consistent with those found in an aircraft wake and which result in the best agreement with the numerical calculation. The adjusted equations then become

$$
\begin{align*}
& \frac{d v}{d \tau}+\alpha v-\alpha \eta=0 \tag{18}\\
& \frac{d w}{d \tau}-g^{*}+\alpha w-\alpha \zeta=0 \tag{19}
\end{align*}
$$

where η and ζ are constants. The solution for the trajectory is simply

$$
\begin{equation*}
y=y_{0}+\eta \tau+\frac{v_{0}-\eta}{\alpha}\left(1-e^{-\alpha \tau}\right) \tag{20}
\end{equation*}
$$

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 7. Approximate Solutions

Figure 8. Wake Structure

$$
\begin{equation*}
z=z_{0}+\left(\zeta-\frac{g^{*}}{\alpha}\right) \tau+\frac{w_{0}-\zeta+\frac{g^{*}}{\alpha}}{\alpha}\left(i-e^{-\alpha T}\right) \tag{21}
\end{equation*}
$$

Sample comparisons between the trajectories calculated with equations (15-16) and (20-21) and those arrived at numerically are shown in Figures 9-14. Since the cases with larger α had longer flight times, an expression for the lateral position of the ground intersection can be derived by assuming

$$
\mathrm{e}^{-\alpha T_{G}} \approx 0
$$

resulting in the expression

$$
\begin{equation*}
y_{G}=y_{0}+\frac{v_{0}}{\alpha}+\frac{\eta}{\alpha}\left(\frac{z_{0} \alpha+w_{0}}{\frac{g^{*}}{\alpha}-\zeta}\right) \tag{22}
\end{equation*}
$$

Comparison of this result with the numerical calculation is also shown in Figure 7. It will be seen later that this extensive approximation is necessary in order to conduct the probability analysis.

Figure 9. Trajectories for $\alpha=9.810$ ($d \approx 500$ microns)

Figure 10. Trajectories for $\alpha=2.453$ ($\alpha \approx 1000$ microns)

Figure 11. Trajectories for $\alpha=0.613$ ($\alpha \approx 2000$ microns)

Figure 12. Trajectories for $\alpha=0.273$ ($d \approx 3000$ microns)

Figure 13. Trajectories for $\alpha=0.153$ ($d \approx 4000$ microns)

Figure 14. Trajectories for $\alpha=0.098$ ($d \approx 5000$ microns)

As stated earlier, this model makes use of results from basic probability theory.

In general, the ground intersection point, Y_{G}, of a particle which is ejected from an aircraft is a function of the initial conditions of its trajectory, its particle parameters, the aircraft geometry and flight conditions. For the system defined here, with the appropriate nondimensionalizations, this can be written as

$$
\begin{equation*}
y_{G}=F\left(y_{0}, z_{0}, v_{0}, w_{0}, \alpha, C_{L}\right) \tag{23}
\end{equation*}
$$

where C_{L}, the aircraft lift coefficient, is a measure of the magnitude of the wake velocities induced by the tip vortices. In the sense that these variables can assume a range of possible values for any given type of particle and aircraft/distributor system, they can be thought of as random variables. As such, they will possess a joint probability density function (PDF) characterizing their random nature of the form

$$
P_{Y_{0}}, Z_{0}, V_{0}, W_{0}, A, C_{L}\left(Y_{0}, z_{0}, v_{0}, w_{0}, \alpha_{1} C_{L}\right)
$$

This is the most general representation of the probabilistic system in that the individual PDF's can be derived from it by first fixing the values of the other variables, then multiplying by the probability that each will assume that fixed value, and finally integrating over all possible values of the fixed variables, so that, for instance,

$$
\begin{gathered}
\text { ORIGNAL PAGE IS } \\
\text { OF POOR QUAIMY }
\end{gathered}
$$

or more simply

$$
\begin{array}{r}
P_{Y_{0}}\left(y_{0}\right)=\int_{z_{0} \bar{v}_{0} w_{0} d C_{L}} P_{Y_{0}, Z_{0}, W_{0}, A, C_{L}\left(y_{0}, z_{0}, w_{0}, w_{0}, a_{,} E_{L}\right)} \\
x d z_{0} d v_{0} d w_{0} d a d C_{L} .
\end{array}
$$

Further, since it is known that if a function of a tandom variable defines a one to one mapping onto another random variable, the PDF for the second variable is defined as

$$
p_{Y}(y)=\left.p_{X}(x)\right|_{d y} ^{d x} \mid
$$

so that by again fixing all the variables in equation (23), an expression for the PDF of y_{G} can be derived. Wricing first

$$
\begin{aligned}
& P_{Y_{G}} \mid z_{o}, \nabla_{O}, W_{O}, A, C_{L}\left(Y_{G} \mid z_{o}, V_{O}, W_{o}, x_{1} C_{L}\right) \\
& =p_{Y_{0}}\left|z_{0}, V_{0}, W_{0}, A, C_{L}\left(y_{0} \mid z_{0}, V_{0}, w_{o}, \alpha, C_{L}\right) \cdot \frac{d y_{O}}{d y_{G}}\right|
\end{aligned}
$$

then multiplying through and integrating as before, the result is

$$
\begin{align*}
& \times\left\{\frac{d y_{o}}{d y_{G}}\right\} d z_{0} d v_{o} d w_{o} d \operatorname{dod} C_{L} . \tag{24}
\end{align*}
$$

Considering that many particles go to make up a single deposition, the probability density function will give a good representation of the actual deposition shape. Note also that the same result can be arrived at by fixing any combination of the variables and integrating over those. In addition, since it can be assumed that the particle ballistic parameter is independent of the initial conditions, that is, the particle characteristics do not depend on the distributor geometry, the joint PDF can be split and equation (24) can be rewritten as

$$
\begin{gather*}
P_{Y_{G}}\left(y_{G}\right)=\int_{z_{0}, v_{0}, w_{0}, \alpha, C_{L}} p_{Y_{0}, z_{0}, v_{0}, W_{0}, C_{L}\left(y_{0}, z_{0}, v_{0}, w_{0}, c_{L}\right)} \\
\left.\quad x p_{A}(\alpha)\right|_{\frac{d y_{0}}{}} ^{d y_{G}} d z_{0} d v_{0} d w_{0} d \alpha d C_{L} . \tag{25}
\end{gather*}
$$

This, then, is the general equation describing the ground distribution. The necessity of an analytical expression for y_{G} in terms of the other parameters is apparent due to the presence of the term $d y_{o} / d_{G}$.

V. SOME DISTRIBUTIONS

In the interest of demonstrating the applicability of the model derived in this study, only two parameters were considered to have a random nature, y_{o} and α. The other parameters were represented as functions of these, or as constants. Extension to the more general case is straightforward and merely requires additional integration. Specifically, z_{0} and C_{L} were held as constants, and v_{o} and w_{o} are represented by

$$
\begin{aligned}
& v_{0}=K_{v} y_{0} \\
& w_{0}=w_{0}(\alpha) .
\end{aligned}
$$

The resulting simplified expression for the PDF of y_{G} is

$$
\begin{equation*}
p_{Y_{G}}\left(y_{G}\right)=\left.\int_{\alpha} p_{Y_{0}}\left(y_{o}\right) p_{A}(\alpha)\right|_{d y_{G}} ^{d y_{o}} \mid d \alpha \tag{26}
\end{equation*}
$$

where

$$
\left|\frac{d y_{o}}{d y_{G}}\right|=\left\{\begin{array}{cc}
\frac{1}{1+\frac{K v}{\bar{g}}\left(w_{o}+\sqrt{w_{o}^{2}+2 z_{0} g^{*}}\right)} & 0 \leq \alpha \leq \cdot 20 \tag{27}\\
\frac{1}{1+\frac{K v}{\alpha}} & \alpha>.20
\end{array}\right.
$$

and the PDF for α can be derived as follows. Equation (14) can be rewritten as

$$
\begin{equation*}
\ln \alpha=\ln c+\ln k-2 \ln \delta . \tag{28}
\end{equation*}
$$

A basic result of probability theory is that the sum of any number of gaussian random variables is also gaussian. It can then be concluded
that, since $\ln K$ and $\ln \delta$ are gaussian, $\ln \alpha$ is gaussian. The effect of the constant is merely to shift the mean. Finally, since $\ln \alpha$ is gaussian, α is lognormal. Its mean and variance are computed as follows. Let

$$
\begin{aligned}
Z & =\ln \alpha \\
Y & =\ln K \\
X & =\ln \delta \\
C * & =\ln C
\end{aligned}
$$

Then

$$
Z=C^{*}+Y-2 X
$$

and the expected value of Z, or the mean, written as $E[Z]$, is simply

$$
E[Z]=C^{*}+E[Y]-2 E[Z],
$$

a more common notation for the mean is μ, so that

$$
\begin{equation*}
\mu_{Z}=C *+\mu_{Y}-2 \mu_{X} \tag{29}
\end{equation*}
$$

The variance, written as $E\left[\left(Z-\mu_{Z}\right)^{2}\right]$ is simply

$$
E\left[\left(Z-\mu_{Z}\right)^{2}\right]=\sigma_{Z}^{2}
$$

or

$$
E\left[\left(z^{2}-2 Z \mu_{Z}+\mu_{Z}^{2}\right)\right]=E\left[z^{2}\right]-2 E[Z] \mu_{Z}+\mu_{Z}^{2}=E\left[z^{2}\right]-\mu_{Z}^{2}
$$

Substituting for Z and expanding as above

$$
\sigma_{Z}^{2}=E\left[Y^{2}\right]+4 E\left[X^{2}\right]+C *^{2}+2 C * E[Y]-4 C * E[X]-4 E[Y] E[X]-\mu_{Z}^{2}
$$

Further substitution gives

$$
\sigma_{Z}^{2}=\sigma_{Y}^{2}+4 \sigma_{X}^{2}+\left(C *-2 \mu_{X}+\mu_{Y}\right)^{2}-\mu_{Z}^{2}
$$

or

$$
\begin{equation*}
\sigma_{\mathrm{Z}}^{2}={\sigma_{\mathrm{Y}}}^{2}+4{\sigma_{\mathrm{X}}}^{2} \tag{30}
\end{equation*}
$$

The general formula for the lognormal PDF is

$$
\begin{equation*}
P_{t}(t)=\frac{1}{\sigma t \sqrt{2 \pi}} \exp \left[\frac{(\ln t-\mu)^{2}}{2 \sigma^{2}}\right] \quad t \geq 0 \tag{31}
\end{equation*}
$$

where the values for σ and μ are those used above. The actual expected value of t is given by

$$
E[t]=\int_{0}^{\infty} t \cdot p_{t}(t) d t
$$

which results in

$$
\begin{equation*}
\mu_{t}=E[t]=e^{\mu+\frac{\sigma^{2}}{2}} \tag{32}
\end{equation*}
$$

and the variance of $t, \sigma_{t}{ }^{2}$ is given by

$$
\sigma_{t}^{2}=E\left[\left(t-\mu_{t}\right)^{2}\right]=\int_{0}^{\infty} t^{2} p_{t}(t) d t-\mu_{t}^{2}
$$

and the result is

$$
\begin{equation*}
\sigma_{t}^{2}=\mu_{t}^{2}\left(e^{\sigma^{2}}-1\right) \tag{33}
\end{equation*}
$$

Equation (32) and (33) furnish relations between the actual mean and standard deviations of a random variable $t\left(\mu_{t}\right.$ and σ_{t}) and those values used in the lognormal PDF (μ and σ). With these results, then, the PDF for α can be written as

$$
\begin{equation*}
P_{\alpha}(\alpha)=\frac{1}{\sigma \alpha \sqrt{2 \pi}} \exp \left[\frac{(\ln \alpha-\mu)^{2}}{2 \sigma^{2}}\right] \tag{34}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu=\ln C+\mu_{1}-2 \mu_{2} \\
& \sigma^{2}=\sigma_{1}^{2}+4 \sigma_{2}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma_{1}^{2}=\ln \left[1+\left(\frac{\sigma_{K}}{\mu_{K}}\right)^{2}\right] \\
& \sigma_{2}^{2}=\ln \left[1+\left(\frac{\sigma_{\delta}}{\mu_{\delta}}\right)^{2}\right] \\
& \mu_{1}=\ln \mu_{K}-\frac{\sigma_{1}^{2}}{2} \\
& \mu_{2}=\ln \mu_{\delta}-\frac{\sigma_{2}^{2}}{2}
\end{aligned}
$$

A computer program was written to numerically integrate equation (26), applying the above results. It is called DEP and a listing is provided in the Appendix. The variation of y_{0} is provided in the form of FUNCTION subroutines PYOF and PYOG which can be easily modified to account for any type of variation of $y_{0^{\circ}}$. For the case in which y_{0} is a constant, that is, there is a single orifice or nozzle, the resulting distribution for wheat is shown in Figure 15.

For the case in which the PDF of y_{0} is constant across a given width, results are shown in Figures $16-20$ in which the type of material, then the width of the distributor is varied.

Figure 15. Wheat, $.05 \leq y_{0} \leq .06$

Figure 16. Wheat, $0 \leq y_{0} \leq 0.1$

Figure 17. Wheat, $0 \leq y_{0} \leq 0.2$

Figure 18. Wheat, $0 \leq y_{0} \leq 0.3$

Figure 19. Corn, $0 \leq y_{0} \leq 0.2$

Figure 20. Oats, $0 \leq y_{0} \leq 0.2$

VI. SCALING CONSIDERATIONS

In order to facilitate experimental verification of these results and also to aid in obtaining viable results from test programs where scale model aircraft are used, it would be useful to investigate the effect of scaling the entire system on the probabilistic aspects of the problem. Specifically, it would be desirable to be able to predict probability density functions for the scaled values of the parameters in a given test which would result in distributions which are geometrically similar to those in a corresponding full scale system or a test of a different scale. The problem of obtaining proper scaling for a deterministic system has been addressed by Ormsbee and Bragg (1978) and the derivation will not be presented here. Instead, a heuristic argument will be presented in order to gain insight into the nature of the probability problem, and then a formal approach will be undertaken.

Consider a collection of particles which are to be ejected from an aircraft. If two individual specimens are singled out, one possessing the mean diameter of the collection and the other possessing a diameter which is smaller by one standard deviation, and the trajectories of these particles are mapped, they would appear similar to those in Figure 21(a). In this argument, all other factors (i.e., the drag relation, the initial conditions and the density) are held to be deterministic. In order to obtain trajectories which are geometrically similar to each of these from a scale model test, it wouid be necessary to obtain two specimens from a collection of a different type of particle such that the requirements for scaling are met. These particles would describe trajectories similar to those shown in Figure 21 (b).

Figure 21(a). Full scale

Figure 21(b). Scaled

It seems to follow that if the second collection of particles possesses mean and standard deviation values corresponding to the diameters of the specimens chosen, scaling of the distribution will have been achieved if the nondimensional lateral ground positions indicated in Figure 21 are identical. This presupposes that the shape of the probability density function has not changed so that it is sufficient only to insure that its width (a measure of which is the variance) has remained the same. This can be shown to be true if the scaling laws are observed.

More formally, proper scaling of the distribution will obtain if the probability density function for the modified ballistic parameter, α, remains identical. The only other possible inputs to the system are the geometry and the wake system and these have been accounted for by the deterministic scaling laws. A probability density function is completely determined by the values of its moments, the i th moment about the mean being given by

$$
\mu_{i}=\int_{x}\left(x-\mu_{1}\right)^{i} p_{x}(x) d x
$$

Since there are an infinite number of moments associated with a PDF, in general it is not possible to insure complete similarity. However, for the special case of the gaussian distribution (from which the lognormal is derived), all of the moments are not independent and, in fact, all the higher order moments can be written in terms of the first two: the mean and the variance. Thus the problem of distribution scaling is reduced to the question of maintaining the mean and standard deviation of the ballistic parameter.

In order to retain as much generality as possible, the earlier assumption that the density is deterministic will be removed and it will be assumed to have a lognormal PDF. Equation (28) can be rewritten to include this change as

$$
\begin{equation*}
\ln a=\ln c^{\prime}+\ln K-\ln \rho-2 \ln \delta \tag{35}
\end{equation*}
$$

where p is a nondimensional density obtained by dividing the particle density by the density of air. Letting

$$
r=\ln \rho
$$

and proceeding as before, the mean and variance of α can be determined, resulting in

$$
\begin{align*}
& \mu_{\alpha}=e^{\mu+\frac{\sigma^{2}}{2}} \tag{36}\\
& \sigma_{\alpha}^{2}=\mu_{\alpha}^{2}\left(e^{\sigma^{2}}-1\right) \tag{37}
\end{align*}
$$

where

$$
\begin{aligned}
& \mu=\ln c^{\prime}+\mu_{y}-\mu_{r}-2 \mu_{x} \\
& \sigma^{2}=\sigma_{y}^{2}+\sigma_{r}^{2}+4 \sigma_{x}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma_{y}^{2}=\ln \left[1+\left(\frac{\sigma_{\mathrm{K}}}{\mu_{\mathrm{K}}}\right)^{2}\right] \\
& \sigma_{\mathrm{x}}^{2}=\ln \left[1+\left(\frac{\sigma_{\delta}}{\mu_{\delta}}\right)^{2}\right] \\
& \sigma_{\mathrm{r}}^{2}=\ln \left[1+\left(\frac{\sigma_{\rho}}{\mu_{\rho}}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{y}=\ln \mu_{K}-\frac{\sigma_{y}^{2}}{2} \\
& \mu_{x}=\ln \mu_{\delta}-\frac{\sigma_{x}^{2}}{2} \\
& \mu_{r}=\ln \mu_{p}-\frac{\sigma_{r}^{2}}{2} .
\end{aligned}
$$

Thus scaling will be achieved if the values of the mean and variance as given by equations (36) and (37) are the same for the scaled system as for the full scale.

In the case of a general drag law, the deterministic values for the particle diameter and density necessary to insure scaling, if the aircraft is reduced in size by a factor of s, are as follows:

$$
\begin{aligned}
& d_{s}=d_{f} \sqrt{s} \\
& \rho_{p_{s}}=\rho_{p_{f}} s^{-\frac{3}{2}} .
\end{aligned}
$$

The corresponding nondimensional variables will have the following values:

$$
\begin{aligned}
& \delta_{s}=\delta_{f} s^{\frac{3}{2}} \\
& \rho_{s}=o_{f} s^{-\frac{3}{2}}
\end{aligned}
$$

For this case it is necessary for the scaled particle to retain the same Reynolds number as the full scale and for the drag law to remain identical. The values required for the mean and variance of the scaled diameter and density which will insure scaling can be derived in the manner below. However, since both transformations are of the form

ORIGINAL PAGE IS

OF POOR QUALITY

$$
x_{s}=x_{f} s
$$

it will suffice to carry through the derivation for just the diameter. First, observe that

$$
\ln \delta_{s}=\ln \delta_{f}+\frac{3}{2} \ln s
$$

Since $\ln \delta_{f}$ is gaussian, this demonstrates that $\ln \delta_{s}$ must be gaussian and, consequently, δ_{s} must be lognormal. Letting

$$
\begin{aligned}
& \mathrm{Z}=\ln \delta_{\mathrm{S}} \\
& \mathrm{X}=\ln \delta_{\mathrm{f}} \\
& \mathrm{C}=\frac{3}{2} \ln \mathrm{~s}
\end{aligned}
$$

and rewriting

$$
z=x+c
$$

The mean and variance of Z can be computed as before, giving

$$
\begin{aligned}
& \mu_{z}=\mu_{x}+C \\
& \sigma_{z}^{2}=\sigma_{x}^{2}
\end{aligned}
$$

and, since δ_{s} is lognormal

$$
\begin{aligned}
\mu_{\delta_{s}} & =e^{\mu_{z}+\frac{\sigma_{z}^{2}}{2}} \\
& =e^{\mu_{x}+c+\frac{\sigma_{x}}{2}} \\
& =e^{c} \mu_{\delta_{f}}
\end{aligned}
$$

or

$$
\mu_{\delta_{s}}=s^{3 / 2} \mu_{\delta_{f}}
$$

Likewise

$$
\begin{aligned}
\sigma_{\delta_{s}}^{2} & =\mu_{\delta_{s}}^{2}\left(e^{\sigma_{z}}-1\right) \\
& =s^{3} \mu_{\delta_{f}}^{2}\left(e^{\sigma_{x}^{2}}-1\right) \\
& =s^{3} \sigma_{f}^{2}
\end{aligned}
$$

or

$$
\sigma_{\delta_{s}}=s^{3 / 2} \sigma_{\delta_{f}}
$$

The derivation for the density proceeds identically, and results in

$$
\begin{aligned}
& \mu_{\rho_{s}}=s^{-3 / 2} \mu_{\rho_{f}} \\
& \sigma_{\rho_{s}}=s^{-3 / 2} \sigma_{\rho_{f}} .
\end{aligned}
$$

Substitution back into equations (36) and (37) will verify the scaling since

$$
\begin{gathered}
c_{s}^{\prime}=s^{3 / 2} c_{f}^{\prime} \\
\sigma_{s}^{2}=\sigma_{f}^{2} \\
\mu_{s}=\ln C^{\prime}+\frac{3}{2} \ln s+\mu_{y}-\mu_{r_{f}}+\frac{3}{2} \ln s-2 \mu_{x_{f}}-3 \ln s \\
=\mu_{f} .
\end{gathered}
$$

If the analysis is restricted to the case where a simpler drag relation of the form

$$
c_{D}=\frac{K}{R e}
$$

is used (as in this study), a different result is obtained. As discussed by Ormsbee and Bragg, an approximation such as this frees the investigator from the separate requirements on density, diameter and drag relation and allows him instead to consider only their combination in the ballistic parameter. Similarly, in the probabilistic situation, it is not necessary to meet the requirements in the analysis immediately preceding, but only the more general ones defined by equations (36-37). Thus, as long as the PDF's for the density, diameter and drag relation are lognormal, any combination of means and variances for these parameters which satisfy equations (36-37) could be used in a scale test and still preserve the shape of the distribution.

ORIGINAL PAGE IS
OF POOR QUALITY

VII. CONCLUSIONS

For granular particles which are larger than approximately 2500 microns in diameter, considerable simplification of the trajectory equations can be achieved due to the limited influence of the aircraft wake. The use of an approximate drag relation, which allowed further simplification, does not restrict the applicability as much as would at first appear, since numerical calculations show that the particle Reynolds number is maintained near the value associated with its terminal velocity for the *
entire time span of the trajectory, except for an initial acceleration which is of short duration. Thus the drag relation used need only approximate a small part of the drag curve in the range of the terminal Reynolds number.

In the case of smaller particles (below 2500 microns) the probability analysis could still be used if an empirical relation of the form

$$
y_{G}=f\left(y_{0}, \alpha\right)
$$

is used instead of the algebraic expressions derived here. It is only necessary to compute the Jacobian of the transformation, $\frac{d y_{0}}{d y_{G}}$, and to be able to write the above expression in a form

$$
y_{o}=g\left(y_{G}, \alpha\right)
$$

so that the distribution of y_{G} can be calculated.
The usefulness of this analysis can be demonstrated by noting that a distribution can be calculated by a single integration, whereas a compilation of trajectories would require one integration for each
trajectory. Moreover, if more than one initial condition is allowed to vary, the cost of producing a distribution by this method will increase by a factor equal to the number of initial conditions varied. On the other hand, the cost associated with a compilation of trajectories will increase by the power of the number used $-\infty$ a geometric, rather than an arithmetic, increase.

It was shown that the shape of the distribution for a scale model test will be similar to that of a full scale test if, in the most general case, the mean values and variances of the particle parameters are scaled just as the deterministic values would be. Moreover, it was shown that if a drag relation of the form

$$
C_{D}=\frac{K}{R e}
$$

is used instead of a more general one, similarity could be maintained in any number of ways simply by observing a restriction on a combination of the means and variances of the particle parameters, rather than requiring separate concurrence with the scaling laws. This simplification offers a greater freedom in the choice of particles to be used in tests verifying these results and in any further work in which scale models are used. In view of the fact that particles meeting the requirements of the more general set of scaling laws have proved to be rather difficult to locate and/or implement, the simplified procedure for scaling offers a versatility which, hopefully, will more than offset any inaccuracies involved.

REFERENCES

1. Henry, James E. "Study of Distributors for Applying Dry Materials by Airplane," Ohio Agricultural Experiment Station Research Bulletin 906, May 1962.
2. Yates, W. E., et al. "Dispersal of Granular Materials in the Wake of Agricultural Aircraft," ASAE Paper \# 70-659, Dec. 1970.
3. Garrett, R. E. and Brooker, D. B. "Aerodynamic Drag of Farm Grains," Transactions of the ASAE, 8:1, August 1965, p. 49.
4. Bilanski, et al. "Aerodynamic Properties of Seed Grains," Agricultural Engineering, April 1962.
5. Mennel, R. M. and Reece, A. R. "The Theory of the Centrifugal Distributor (Part III: Particle Trajectories), "Journal of Agricultural Engineering Research, 8:1, Jan. 1963, p. 78.
6. Bilanski, W. K. "Aerodynamic Properties of Agricultural Products Research, Past and Present," ASAE Paper 非 71-846, Dec. 1971.
7. West, Niel L. "Aerodynamic Force Predictions," Transactions of the ASAE, $15: 3$, March 1972, p. 584.
8. Law, S. E. and Collier, J. A. "Aerodynamic Resistance Coefficients of Agricultural Particulates Determined by Elutriation," Transactions of the ASAE, 16:5, May 1973, p. 918.
9. Mohsenin, N. N. Physical Properties of Plant and Animal Materials, Vol. I. New York: Gordon and Breach, 1970.
10. Bragg, M. B. "The Trajectory of a Liquid Droplet Injected Into the Wake of an Aircraft in Ground Effect," University of Illinois Technical Report AAE 77-7, May 1977.
11. Reed, Wilmer H., III. "An Analytical Study of the Effect of Airplane Wake on the Lateral Dispersion of Aerial Sprays," NACA Report 1196, 1953.
12. Ormsbee, A. I. and Bragg, M. B. "Trajectory Scaling Laws for a Particle Injected into the Wake of an Aircraft, " University of Illinois Aviation Research Laboratory Report ARL 78-1, June 1978.

APPENDIX

The computer code DEPOSIT was written to calculate the distributions by numerical integration using a FORTUOI catalog subroutine entitled GQU3Z. The input, where dimensions are required, can be done in any consistent system of units, due to the fact that all values are nondimensionalized within the program, except the particle diameter, which must be input as the nondimensional δ, where

$$
\delta=\frac{d}{b}
$$

A sample printout is shown, depicting the form of the output. By manipulating the variables RES and $S C$, the code can deliver any resolution of the distribution and can extend the range of calculation to cover any length of the lateral ground coordinate, y_{G}. Various types of distributor geometries can be analyzed by modification of the FUNCTION subprograms PYOF and PYOG. PYOF covers the approximation that

```
                                    \alpha\tau>>1
```

while PYOF assumes that
$\alpha \ll 1$.

```
    PROGRAM DEPOSIT(INPUT,OUTPUT)
    REAL NU,MD,MK,MA,MD1,MK1,MA1,KV
    EXTERNAL AUX
    COMMON/COM1/ YG,MA1,SA1,PI,MA
    COMMON/COM2/ ETA,XI,KV,WO,ZO,G,YI,YF
    READ2,MARK
    PRINT4,MARK
    PRINT5
    READ3,U,B,ZO,NU,RA
    PRINTG,U,B,ZO,NU,RA
    READ3,RP,MD,MK,SD,SK
    PRINT7,RP,MD,MK,SD,SK
    READ3,YI,YF,KV,WO SC
    PRINT8,YI,YF,KV,WO,SC
    READ3,UP,H,RES,ETA,XI
    PRINT80,UP,H,RES,ETA,XI
    PRINT9
    PI=3.14159265
    G=9.808*B/(U*U)
    C=0.75*NU*RA/(U*B*RP)
    SD1=SQRT(ALOG(1.0+(SD/MD)**2))
    SK1=SQRT(ALOG'(1.0+(SK/MK)**2))
    MD1=ALOG(MD)-SD1*SD1/2
    MK1=ALOG(MK)-SK1*SK1/2
    PRINT10,C,SD1,SK1,MD1,MK1
    SA1=SQRT(4*SD1*SD1+SK1*SK1)
    MA1=ALOG(C)+MK1-2.*MD1
    MA=EXP(MA1+SA1*SA1/2 )
    SA=SQRT(MA*MA*(EXP(SA1#
    PRINT11,SA1,MA1,SA,MA
    PRINT12
    FYG=0.0EO
    NRES=IFIX(RES)+1
    D01 I=1,NRES
    YG=(I-1)*SC/RES
    CALL GQU3Z(O.OEO,UP,AUX,H,PYG)
    FYG=FYG+PYG*SC/RES
    PRINT13,I,YG,PYG,FYG
1 CONTINUE
    STOP
2 FORMAT(A10)
3 FORMAT(5E10.4)
4 FORMAT("1",///10X,"GROUND DEPOSITION OF ",A10)
5 FORMAT(//13X,"INPUT PARAMETERS")
6 FORMAT(/"UU =",F5.1,9X,"B =",F5.2,9X,"ZO=",F5.3,9X,"NU=",E12.6,2X,"
&RA=",E12.6)
7 FORMAT(/"RP=",E12.6,2X,"MD=",E12.6,2X,"MK=",E12 6 2X,"SD=",E12.6,2
&X,"SK=",E12.6)
8 FORMAT(/"YI=",F5.3,9X,"YF=",F5.3,9X,"KV=",F7.5,7X,"HO=",F8.5,6X,"S
    &C=",F5.3)
80 FORMAT(/"UP=",F6.3,8X,"H =",F7.3,7X,"RE=",F7.3,7X,"ET=",E12.6,2X,"
```

```
    &XI=",E12.6)
    9 FORMAT(//,11X,"CALCULATED PARAMETERS")
10 FORMAT(/" C =",E12:6,2X,"SD1=",E12.6,2X,"SK1=",E12.6,2X "MD1=",E12
    &.6,2X, "MK1=",E12.6)
11 FORMAT(/"SA1=",E12.6,2X,"MA1=",E12.6,2X,"SA =",E12.6,2X,"MA =",E12
    &.6)
12 FORMAT("1",///3X," I ",6X," YG ",9X,"PYG(YG)",8X,"FYG(YG)")
13 FORMAT(3X,I3,3X,E12.6,3X,E12.6,3X,E12.6)
    END
    SUBROUTINE AUX(A,PY)
    REAL MA1,MA,KV
    COMMON/COM1/ YG,MA1,SA1,PI,MA
    COMMON/COM2/ ETA,XI,KV,HO,ZO G,YI,YF
    IF(A.LT.O.230) GOTO 1
    DYDG=1./(1.+KV/A)
    PYO=PYOF(YG,A)
    GO TO 2
1 DYDG=1./(1.+KV*(WO+SQRT(WO*WO+2*ZO*G))/G)
    PYO=PYOG(YG,A)
2 PEX=(ALOG(A)-MA1)**2/(2*SA1*SA1)
    IF(PEX GT.600.) GOTO 21
    PA=EXP(-PEX)/(SA1*A*SQRT(2*PI))
    GOTO 22
21 PA=0.0EO
22 CONTINUE
    PY=DYDG*PYO*PA
    RETURN
    END
    FUNCTION PYOF(YG,A)
    REAL KV
    COMMON/COM2/ ETA,XI,KV,HO ZO,G,YI,YF
    YO=(YG-ETA* (ZO*A+HO)/(A* (G/A-XI)))/(1.+KV/A)
    IF(YO.LT.YI) GOTO 1
    IF(YO.GT.YF) GOTO 1
    PYOF=1./(YF-YI)
    GOTO 2
1 PYOF=0.OEO
2 RETURN
    END
    FUNCTION PYOG(YG,A)
    REAL KV
    COMMON/COMZ/ ETA,XI,KV,WO,ZO,G,YI,YF
    YO=YG/(1.+XV*(WO+SQRT(WO*WO+2*ZO*G))/G)
    IF(YO.LT.YI) GOTO 1
    IF(YO.GT.YF) GOTO 1
    PYOG=1./(YF-YI)
    GOTO 2
    1 PYOG=0.0EO
2 RETURN
    END
```

GROUND DEPOSITION OF WHEAT

INPUT PARAMETERS

$\mathrm{U}=30.5$	$\mathrm{~B}=6.77$	$\mathrm{ZO}=.500$	$\mathrm{NU}=.146700 \mathrm{E}-04$	$\mathrm{RA}=.122500 \mathrm{E}-02$
$\mathrm{RP}=.132040 \mathrm{E}+01$	$\mathrm{MD}=.528100 \mathrm{E}-03$	$\mathrm{MK}=.127400 \mathrm{E}+04$	$\mathrm{SD}=279200 \mathrm{E}-04$	$\mathrm{SK}=.226500 \mathrm{E}+03$
$\mathrm{YI}=0.000$	$\mathrm{YF}=300$	$\mathrm{KV}=1.00000$	$\mathrm{WO}=.10000$	$\mathrm{SC}=2.000$
$\mathrm{UP}=2.000$	$\mathrm{H}=48.000$	$\mathrm{RE}=100.000$	$\mathrm{ET}=.160000 \mathrm{E}-01$	$\mathrm{XI}=-180000 \mathrm{E}-01$
CALCULATED PARAMETERS				
$\mathrm{C}=.494673 \mathrm{E}-10$	$\mathrm{SD} 1=.528319 \mathrm{E}-01$	$\mathrm{SK} 1=.176405 \mathrm{E}+00$	$\mathrm{MD} 1=-.754762 \mathrm{E}+01$	$\mathrm{MK} 1=.713436 \mathrm{E}+01$
$\mathrm{SA} 1=.205630 \mathrm{E}+00$	$\mathrm{MA} 1=-.150011 \mathrm{E}+01$	$\mathrm{SA}=.473571 \mathrm{E}-01$	$\mathrm{MA}=.227873 \mathrm{E}+00$	

$\left.\begin{array}{cccc}\text { I } & \text { YG } & \text { PYG(YG) } & \text { FYG(YG) } \\ 1 & 0 . & & .290713 \mathrm{E}+00\end{array}\right) .581426 \mathrm{E}-02$

26	. $500000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $294968 \mathrm{E}+00$
27	.520000E+00	. $603464 \mathrm{E}+00$. $307037 \mathrm{E}+00$
28	. $540000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $319107 \mathrm{E}+00$
29	. $560000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $331176 \mathrm{E}+00$
30	. $580000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $343245 \mathrm{E}+00$
31	. 600000E+00	. $603464 \mathrm{E}+00$. $355315 \mathrm{E}+00$
32	. $620000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $367384 \mathrm{E}+00$
33	. $640000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $379453 \mathrm{E}+00$
34	. $660000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. 391522E+00
35	. $680000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $403592 \mathrm{E}+00$
36	.700000E+00	. $603464 \mathrm{E}+00$. $415661 \mathrm{E}+00$
37	. $720000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $427730 \mathrm{E}+00$
38	. $740000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $439800 \mathrm{E}+00$
39	. $760000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $451869 \mathrm{E}+00$
40	.780000E+00	. $603464 \mathrm{E}+00$. $463938 \mathrm{E}+00$
41	. $800000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $476007 \mathrm{E}+00$
42	. $820000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $488077 \mathrm{E}+00$
43	. $840000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $500146 \mathrm{E}+00$
44	. $860000 \mathrm{E}+00$. $603464 \mathrm{E}+00$. $512215 \mathrm{E}+00$
45	. $880000 \mathrm{E}+00$. $603463 \mathrm{E}+00$. $524285 \mathrm{E}+00$
46	.900000E+00	. $603461 \mathrm{E}+00$. $536354 \mathrm{E}+00$
47	. $920000 \mathrm{E}+00$. $603457 \mathrm{E}+00$. $548423 \mathrm{E}+00$
48	. $940000 \mathrm{E}+00$. $603448 \mathrm{E}+00$. $560492 \mathrm{E}+00$
49	.960000E +00	. $603429 \mathrm{E}+00$. $572560 \mathrm{E}+00$
50	.980000E+00	. $603392 \mathrm{E}+00$. $584628 \mathrm{E}+00$
51	. 100000E+01	. $603329 \mathrm{E}+00$. $596695 \mathrm{E}+00$
52	. 102000E+01	. $603217 \mathrm{E}+00$. $608759 \mathrm{E}+00$
53	. 104000E+01	. $603032 \mathrm{E}+00$.620820E+00
54	. 106000E+01	. $602748 \mathrm{E}+00$. $632875 \mathrm{E}+00$
55	. $108000 \mathrm{E}+01$. $602319 \mathrm{E}+00$. $644921 \mathrm{E}+00$
56	. $110000 \mathrm{E}+01$. $601672 \mathrm{E}+00$. $656955 \mathrm{E}+00$
57	$.112000 \mathrm{E}+01$. $600782 \mathrm{E}+00$. $668970 \mathrm{E}+00$
58	. $114000 \mathrm{E}+01$. $599501 \mathrm{E}+00$. $680960 \mathrm{E}+00$
59	.116000E+01	. $597838 \mathrm{E}+00$. $692917 \mathrm{E}+00$
60	. $118000 \mathrm{E}+01$. $595683 \mathrm{E}+00$. $704831 \mathrm{E}+00$
61	. $120000 \mathrm{E}+01$. $592904 \mathrm{E}+00$.716689E+00
62	. $122000 \mathrm{E}+01$. $589319 \mathrm{E}+00$. $728475 \mathrm{E}+00$
63	. $124000 \mathrm{E}+01$. $584761 \mathrm{E}+00$.740170E+00
64	. 126000E+01	. $579571 \mathrm{E}+00$.751762E+00
65	. $128000 \mathrm{E}+01$. $573285 \mathrm{E}+00$.763227E+00
66	. $130000 \mathrm{E}+01$. $566227 \mathrm{E}+00$. $774552 \mathrm{E}+00$
67	. 132000E+01	. $557848 \mathrm{E}+00$	$.785709 \mathrm{E}+00$
68	. $134000 \mathrm{E}+01$. $548213 \mathrm{E}+00$.796673E+00
69	. $136000 \mathrm{E}+01$. $536765 \mathrm{E}+00$. $807409 \mathrm{E}+00$
70	. $138000 \mathrm{E}+01$. $525223 \mathrm{E}+00$. $817913 \mathrm{E}+00$
71	. $140000 \mathrm{E}+01$. $512360 \mathrm{E}+00$. $828160 \mathrm{E}+00$
72	. $142000 \mathrm{E}+01$. $498569 \mathrm{E}+00$. $838132 \mathrm{E}+00$
73	. $144000 \mathrm{E}+01$. $482121 \mathrm{E}+00$. $847774 \mathrm{E}+00$
74	. $146000 \mathrm{E}+01$. $467171 \mathrm{E}+00$. $857117 \mathrm{E}+00$
75	. $148000 \mathrm{E}+01$. $451056 \mathrm{E}+00$.866139E+00
76	.150000E+01	. $432445 E+00$. $874787 \mathrm{E}+00$

77	$.152000 \mathrm{E}+01$	$.415287 \mathrm{E}+00$	$.883093 \mathrm{E}+00$	
78	$.154000 \mathrm{E}+01$	$. .396127 \mathrm{E}+00$	$.891016 \mathrm{E}+00$	
79	$.156000 \mathrm{E}+01$	$.377620 \mathrm{E}+00$	$.898568 \mathrm{E}+00$	
80	$.158000 \mathrm{E}+01$	$.358334 \mathrm{E}+00$	$.905735 \mathrm{E}+00$	ORIGINAL PAGE IS
81	$.160000 \mathrm{E}+01$	$.339880 \mathrm{E}+00$	$.912532 \mathrm{E}+00$	OF POOR QUALTTY
82	$.162000 \mathrm{E}+01$	$.318155 \mathrm{E}+00$	$.918895 \mathrm{E}+00$	
83	$.164000 \mathrm{E}+01$	$.301217 \mathrm{E}+00$	$.924920 \mathrm{E}+00$	
84	$.166000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.930734 \mathrm{E}+00$	
85	$.168000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.936548 \mathrm{E}+00$	
86	$.170000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.942363 \mathrm{E}+00$	
87	$.172000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.948177 \mathrm{E}+00$	
88	$.174000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.953991 \mathrm{E}+00$	
89	$.176000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.959805 \mathrm{E}+00$	
90	$.178000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.965620 \mathrm{E}+00$	
91	$.180000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.971434 \mathrm{E}+00$	
92	$.182000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.977248 \mathrm{E}+00$	
93	$.184000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.983062 \mathrm{E}+00$	
94	$.186000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.988877 \mathrm{E}+00$	
95	$.188000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.994691 \mathrm{E}+00$	
96	$.190000 \mathrm{E}+01$	$.290713 \mathrm{E}+00$	$.100051 \mathrm{E}+01$	
97	$.192000 \mathrm{E}+01$	0.	$.100051 \mathrm{E}+01$	
98	$.194000 \mathrm{E}+01$	0.	$.100051 \mathrm{E}+01$	
99	$.196000 \mathrm{E}+01$	0.	$.100051 \mathrm{E}+01$	
100	$.198000 \mathrm{E}+01$	0.	$.100051 \mathrm{E}+01$	
101	$.200000 \mathrm{E}+01$	0.	$.100051 \mathrm{E}+01$	

Technical Report Number	Title
AAE 62-1	An Introduction to Viscoelastic Analysis
AAE 62-2	A Method of Characteristics Analysis of Detonation Stability
AAE 63-1	On Non-Stationary White Noise
AAE 63-2	Formulation and Evaluation of Approximate Analogies for Transient Temperature Dependent Linear Viscoelastic Medra
AAE 63-3	Free Vibrations of Continuous Skin- Stringer Panels with Non-Uniform Stringer Spacing and Panel Thickness
AAE 64-1	Random Vibrations of a Myklestad Beam
AAE 64-2	On Detonation Initiation
AAE 64-3	A Theoretical Investigation of a Restric- tive Model for Detonation Initiation

Author
H. H. Hilton
R. A. Strehlow
Y. K. Lin
H. H. Hilton and
J. R. Clements
Y. K. Lin,
T. J. McDaniel,
B. K. Donaldson,
C. F. Vail and
W. J. Dwyer
Y. K. Lin
R. A. Strehlow
R. B. Gilbert

Journal Publication
Engineering Design for Plastics, Reinhold publ. Corp., N.Y., 199-276 (1964).
J. Acoust. Soc: Amer. 36:82-84 (1964).

Proc. Conf. on Thermal
Loading and Creep, Inst.
Mech. Eng., London, 6.17-6.24(1964).

AFML-TR-64-347, Wright-
Patterson AFB (1965).

AIAA J., 2:1448-1451 (1964).
AIAA J., 2: 783-784 (1964).
AIAA J., 4:1777-1783 (1966).

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (continued)

Technical Report Number	Title	Author	Journal Publication
AAE 64-4	Transfer Matrix Representation of Flexible Airplanes in Gust Response Study	Y. K. Lin	$\frac{\text { J. of Aircraft, }}{(1965)}, 2: 116-121$
AAE 64-5	Dynamic Characteristics of Continuous SkinStringer Panels	Y. K. Lin	$\begin{aligned} & \text { Acoustical Fatigue in } \\ & \hline \text { Aerospace Structures, } \\ & \hline \text { Syracuse Univ. Press, } \\ & 163-184(1965) . \end{aligned}$
AAE 64-6	Experimental Study of the Growth of Transverse Waves in Detonations	R. Liaugminas	See AAE 66-3
AAE 64-7	Nonstationary Excitation and Response in Linear Systems Treated as Sequences of Random Pulses	Y. K. Lin	$\begin{aligned} & \text { Journal of the Acoustical } \\ & \frac{\text { Society of America, } 38:}{453-460 \text { (1965). }} \end{aligned}$
AAE 65-1	Transverse Waves in Detonations	R. A. Strehlow and F. Dan Fernandes	$\frac{\text { Combustion and Flame, }}{9: 109-119(1965) .}$
AAE 65-2	A Summary of Linear Viscoelastic Stress Analysis	H. H. Hilton	$\frac{\text { Solid Rocket Structural }}{\frac{\text { Integrity Abstracts, }}{1-56(1965)}, \frac{2:}{}}$
AAE 65-3	Approximate Correlation Function and Spectral Density of the Random Vibration of an Oscillator with Non-Linear Damping	Y. K, Lin	$\cdot \frac{\text { AFMK-TR-66-62 }}{\text { Patterson AFB }} \text {, Wright }$
AAE 65-4	Investigation of the Flow Properties Downstream of a Shock Wave Propagating into a Convergent Duct	R. E. Cusey	See AAE 65-6

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (continued)

Technical Report Number	Title	Author	Journal Publication
AAE 65-5	A Method for the Determination of the Matrix of Impulse Response Functions with Special Reference to Applications in Random Vibration Problems	Y. K. Lin	AFFDL-TR-66-80, Wright Patterson AFB, 743-751 (1966).
NAE 65-6	Convergent Channel Shock Tube for Detonation Initiation Studies	A. J. Crooker	'Detonation and Initiation Behind an Accelerating Shock Wave" by R. A. Strehlow, A. J. Crooker, R. E. Cusey, Comb and Flame, 11:339-351 (1967).
AAE 66-1	A Comparison of Experimental and Theoretical Transverse Wave Spacings in Detonation	R. H. Watson	See AAE 66-3
AAE 66-2	A Simple Model for the Mechanism of Detonation	J. R. Eyman	See AAE 66-3
AAE 66-3	Transverse Wave Structure in Detonations	R. A. Strehlow, R. Liaugminas, R. H. Watson and J. R. Eyman	11th. Symposium (Intertional) on Combustion, Mono Book Corp. Baltimore, Md., (1967).
AAE 66-4	A Real Gas Analysis Using an Acoustic Model for the Transverse Wave Spacing in Detonations	R. E. Maurer	
AAE 67-1	Shock Tube Studies in Exothermic Systems	R. A. Strehlow	$\frac{\text { Phys. Fluids, }}{\text { (1969). }} \text { 12: 96-100, }$

RECENT AERONAUTICAL AND ASTRONAUTICAL LENGINEERING DEPAR'TMENT TECIINICAL REPORT'S (contınued)

Technical Report Number	Title Author	Journal Publication
AAE 67-2	Shock Tube Chemistry R. A. Strehlow	$\frac{\text { Progress in High Temperature }}{\text { Physics and Chemistry, }}$
AAE 67-3	Structural Failure Criteria for - A. R. Zak Solid Propellants Under Multiaxial Stresses	J. Spacecraft, 5: 265-269 (1968)
AAE 67-4	Structural Analysis of Realistic A. R. Zak Solid Propellant Materials	J. Spacecraft, 5: 270-275 (1968).
AAE 67-5	Characteristics of Transverse Waves C. D. Engel in Detonations of $\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and CH_{4} - Oxygen Mixtures	AIAA Journal, 7: 492-496 (1969).
AAE 68-1	A Review of Shock Tube Chemistry R. A. Strehlow	Progress in High Temperature Physics and Chemistry, Pergamon Press, N.Y., 2: 1-146 (1969).
AAE 68-2	On the Interpretation of Molecular A. Klavins Beam Data	A. K1avins and L. H. Sentman Rev. Sci. Instr., 41: 1560-1567 (1970).
AAE 68-3	Detonative Mach Stems R. A. Strehiow H. $\mathrm{O}_{\text {\& }}$ Barthel	- 9
AAE 68-4	On the Strength of Transverse J. R. Biller Waves and Geometrical Detonation Cell Model for Gas Phase Detonations	R. A. Strehlow and J. R. Biller Comb, and Flame, 13: 577-582, (1970).
AAE 68-5	The MISTRESS User Manual H. H. Hilton	$\begin{aligned} & 8 \\ & \hline 8 \\ & 8 \end{aligned}$
AAE 69-1	The Chemical Shock Tube - R. A. Strehlow Implications of Flow Non- R. L: Belford Idealities	䑁

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (continued)

Report Number	Title	Author	Journal Publication
AAE 69-2	Phenomenological Investigation of Low Mode'Marginal Planar Detonations	A. J. Crooker	$\frac{\text { Acta Astronautica, }}{1: 303-315(1974)}$
AAE 69-3	Multi-Dimensional Detonation Wave Structure	R. A. Strehlow	$\frac{\text { Astronautica Acta, }}{15: 345-358(1970)}$
AAE 69-4	An Experimental and Analytical Investigation of a TwoDimensionally Stiffened Panel	A. R. Zak C. E. French	$\frac{\text { AFML-TR-68-390 }}{\text { Patterson AFB, }} \text {, Wright- }$
AAE 69-5	On the Kinetic Equations for a Dilute, Short Range Gas	T. J. Forster L. H. Sentman	with A.D. Grimm, Proc. Ninth International Symposium on Rarefied Gas Dynamics, A3.1-3.8 (1974).
AAE 69-6	The Sawtooth Column of the Supersonic Electric Arc in Sulfur Hexafluoride	C. E. Bond	$\text { AIAA J., } 9: 510-512$
AAE 69-7	Theoretical and Experimental Analysis of Stiffened Panels Under Dynamic Conditions	A. R. Zak R. N. Yurkovich J. H. Schmidt	$\frac{\text { J. of Aircraft, }}{155(1971) .} \text { 3: } 149-$
AAE 70-1	On the Interaction Between Chemical Xinetics and GasDymamics in the Flow Behind a Cylindrical Detonation Front	S. Rajan	
AAE 70-2	Preliminary Studies on the Engineering Applications of Finite Difference Solutions of the Navier-Stokes Equations	W. F. Van Tassell	
AAE 70-3	Some Aspects of the Surface Boundary Condition in Kinetic Theory	A. Klavins	Proc. of International Symposium on Rarefied Gas Dynamics, Pisa, Italy (1970).

RECENT AERONAUTICAL AND ASTRQNAUI'TCAL ENGINABRING DEPARTMLNT TECINICAL REPORTS (continued)

Tecinical Report Number	Title	Author	Journal Publication
AAE 70-4	A Study of the Transient Behavior of Fuel Droplets during Combustion: Theoretical Considerations for Acrodynamic Stripping	H. Krier	
AAE 70-5	On the Solid Body Model for an Accelerating Electric Arc	F. Klett	
AAE 71-1 UILU-ENG 710501	Detonative Mach Stems	R. A. Strehlow H. O. BartheI	
AAE 71-2 UILU-ENG 710502	An Investigation of Transient Phenomena in Detonations	R. J. Stiles	with R. A. Strehlow, A. A. Adamczyk, Astronautica Acta,
AAE 71-3 UILU-ENG 710503	On the Role of Tangential Velocity Changes in the Scattering of a Molecular Beam from A Solid Surface	C. C. Chrisman L. H. Sentman	Chemical Physics Letters, 26:407-413(1974
AAE 72-1 UILU-ENG 720501	Unconfined Vapor Cloud. Explosions - An Overview	R. A. Strehlow	$\frac{\text { Fourteenth Symposium }}{\frac{\text { on Combustion, }}{1200(1973) \cdot}}$
AAE 72-2 UILU-ENG 720502	Application of Illiac IV Computer to Numerical Solutions of Structural Problems	H. H. Hilton A. R. Zak J. J. Kessier P. C. Rockenbach	
AAE 72-3 UILU-ENG 720503	On the Measurement of Energy Release Rates In Vapor Cloud Explosions	R. A. Strehlow L. D. Savage G. M. Vance	Combustion Science $\frac{\text { and Technology, }}{307-312(1972)}$.

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (continued)

	Technical Report Number	Title	Author	Journal Publication
	AAE 72-4 UILU-ENG 720504	A Performance Comparison of Several Numerical Minimization Algorithms	J. E. Prussing	
	AAE 73-1 UILU-ENG 730501	Stresses and Damping in the Matrix of a Composite Material	A. R. Zak	
	AAE 73-2 UILU-ENG 730502	Early Burning Anomalies in the XM 645 Flechette Cartridge	H. Krier D. R. Hall	$\frac{\text { BRL Rept. No. } 104}{(1973)}$
	AAE 73-3 UILU-ENG 730503	Equivalent Explosive Yield of the Explosion in the Alton Southern Gateway Yard, East St. Louis, I11., January 22, 1972	R. A. Strehlow	
	AAE 73-4 UILU-ENG 730504	Failure Studies of Gaseous Detonations	R. J. Salm	$\frac{\text { Acta Astronautica }}{(\text { in press). }}$
	AAE 73-5 UILU-ENG 730505	An Investigation of Hydrogen-Oxygen-Argon Detonations	J. R. Biller	
	AAE 73-6 UILU-ENG 730506	Interior Ballistic Predictions Using Data From Closed and Variable-Volume Simulators	H. Krier S. A. Shimpi M. J. Adams	$\frac{\text { Proc. 11th JANNAF }}{\frac{\text { Combustion Meeting, CPI }}{\text { Publ. } 261: 17-30(1974) .}}$
	AAE 73-7 UILU-ENG 730507 AAE 73-8	Theory of Rotationally Symmetric Laminar Premixed Flames Burning of Fuel Droplets at Elevated	G. M. Vance H. Krier J. H. Rush	$\frac{\text { Comb, and Flame J, }}{\text { 22: }}$ 365-375 (1974).
	UILU-ENG 730508 AAE 73-9 UILU-ENG 730509	Pressures An Impact Ignition Model for Solid Propeliants	H. Krier H. Krier H. H. Hilton O. Olorunsola D. L. Reuss	$\frac{\text { Comb. and Flame J., }}{\text { 22: } 377-382(1974) .}$ $\frac{\text { BRL Rept. No. } 1707}{(1974) .}$

reicint alironautical nnd astronautical lenginiering dippartment technical report's (continued)

1			
Report			Journal
Number	Title	Author	Publication
NAE 73-10 UILU-ENG 730510	Optimal Multiple-Impulse Direct Ascent Fixed-Tine Rendezvous	J. E. Prussing L. R. Gross	$\frac{\text { AIAA J. }}{885-889}, \frac{12}{(1974) .}$
UILU-ENG 730510			
AAE 73-11	The Structure and Stability of	R. A. Strehlow	
UILU-ENG 730511	Detonation Waves		
AAE 74-1UILU-ENG740501	Model of Flame Spreading and Combustion Through Packed Beds of Propellant Grains	H. Krier	
		W. F. Van Tassell	BRL Report No. 147
		S. Rajan	(1974). Int. J. Heat-Mass
		J. T. Ver Shaw	Transfer, 1377-86 (1975).
AAE 74-2	On the Nature of Non-Ideal Blast Waves	R. A. Strehlow	WSS/CI Paper
UILU-ENG 740502		A. A. Adamczyk	$\frac{\text { No. 74-12, Puliman, Wash. }}{(1974) .}$
AAE 74-3	Viscous Incompressible Flow in Spiral Channels	W. F. Vantassell	
UILU-ENG 740503			
AAE 74-4	Frequency Response Functions of a Disordered Periodic Beam	J. N. Yang	J. Sound and Vibration
UILU-ENG 740504		Y. K. Lin	38: 317-340 (1975).
AAE 74-5 UILU-ENG 740505	Predicting Uniform Gun Interior Ballistics: Part I. An Analysis of Closed Bomb Testing	H. Krier	Comb, and Flame J.
		S. A. Shimpi	25: 229-240 (1975).
AAE 74-6 UILU-ENG 740506	Predicting Uniform Gun Interior Ballistics: Part II. The Interior Ballistic Code	H. Kriex	Proc. 11th Jannaf Comb.
UILU-ENG 740506		M. J. Adams	Meeting, CPIA PubI. 261:
AAE 74-7 UILU-ENG 7	Predicting Uniform Gun Interior Ballistics: Part III. The Concept and Design of the Dynagun Ballistic Simulator	H. Krier	Proc. 11th Jannaf Comb.
		J. W. Black	Meeting, CPIA Pub1. 261 : $\overline{31-43(1974) .}$
AAE 74-8	Process of Fluidization During Porous Solid Propellant Combustion	H. Krier	AIAA Paper 75-242
UILU-ENG 740508		J. T. Ver Shaw	(1975).
AAE 74-9	An Analysis of Flame Propagation Through	J. L. Krazinski	AIAA Paper 74-1111
UILU-ENG 740509	Coal Dust-Air Mixtures	H. Krier	(1974):

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (continued)

Technical Report Number	Title	Author	Journal Publication \boldsymbol{Q}
AAE 74-10	An Interior Ballistics Prediction of the M549	H. Krier	¢ 0
UILU-ENG 740510	Rocket' Assisted Projectile	S. Shimpi	0
UILU-ENG 740510	Rocket Assisted Projectile	E. Meister	9
AAE 75-1	Dynamically Induced Thermal Stresses in	A. Zak	
UILU-ENG 750501	Composite Material, Structural Panels	W. Drysdale	
AAE 75-2	Numerical Analysis of Laminated, Orthotropic	A. R. Zak	
ULLU-ENG 750502	Composite Structures		
AAE 75-3-	The Characterization and Evaluation of Accidental	R. A. Strehlow	NASA CR 134779
UILU-ENG 750503	Explosions	W. E. Baker	(June 1975). Also
AAE 75-4	Program Manual for the Eppler Airfoil Inversion		Progr. Energy \& Comb Sc. (in press).
UILU-ENG 750504	Program	W. G. Thomson	
AAE 75-5	Design of High Lift Airfoils with a Stratford		
UILU-ENG 750505	Distribution by the Eppler Method	W. G. Thomson	
AAE 75-6	Prediction of Flame Spreading and Pressure Wave	H. Krier	AIAA J. 14:
UILU-ENG 750506	Propagation in Propellant Beds		301-309 (1976)
AAE 75-7	Vigorous Ignition of Cranulated Beds by Blast-	H. Krier	Int. J. Heat-Mass
UILU-ENG 750507	Impact	S. Gokhale	$\frac{\text { Transfer }}{915-923}(19: 10)$
AAE 75-8	Solid Propellant Burning Evaluation with the	H, Krier	J. Ballistics 1:
UILU-ENG 750508	Dymagun Ballistic Simulator	T. G. Nietzke M. J. Adams	103-149 (1976)
		J, W. Black	
		E. E, Meister	
AAE 75-9	Structural Reliability $¢$ Minimum Weight Analysis	H. H. Hilton	AIAA J,
UILU-ENG 750509	for Combined Random Loads \& Strengths		(in press)

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (Continued)

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS• (Continued)

Technical Report Number	Title	Author	Journal Publication
AAE 77-6 UILU-ENG 770506	Exploratory Studies of Flame and Explosion Quenching	R. A. Strehlow L. C. Sorenson L. D. Savage H. Krier	
AnE 77-7	The Trajectory of a Liquid Droplet Injected Into the	M. B. Bragg	
UILU-ENG 770507	Wake of an Aircraft in Ground Effect		
AAE 77-8	Comparison of Viscoelastic and Structural Damping in	H. H. Hilton	
UILU-ENG 770508	Flutter		
AAE 77-9	The Blast Wave Generated by Constant Velocity Flames	R. A. Strehlow	
UILU-ENG 770509	The Blast Nave Generated	R. T. Luckritz	
UILU-ENG 770509		A. A. Adamczyk S. Shimpi	
AAE 77-10	Wind Energy: History, Economics, and the Vertical	T. R. Richards	
UILU-ENG 770510	Wind Turbine		
AAE 77-11	Final Report: Low Speed Airfoil Study	A. I. Ormsbee	
UILU-ENG 770511			
AAE 77-12	Final Report: Propeller Study, Part I, Introduction	A. I. Ormsbee	억
UILU-ENG 770512	and Overview		10 4
AAE 77-13	Final Report: Propelier Study, Part II, The Design of	C. J. Woan	O
UILU-ENG 770513	Propellers for Minimum Noise		E
AAE 77-14	Final Report: Propeiler Study, Part III, Experimental	S. A. Siddiqi	盛
UILU-ENG 770514	Determination of Thrust \& Torque on the YO-3A Aircraft	K. R. Sivier A. I. Ormsbee	54
AAE 77-15	Direct Initiation of Detonation	R. A. Strehlow	
UILU-ENG 770515		H. O. Barthel	

RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORT'S (Continucd)

Technical Report Number	Title	Author	Journal Publication
AAE 77-16	The Effects of Energy Distribution Rates and Density	R. A. Strehlow	
UILU-ENG 770516	Distribution on Blast Wave Structure	L. H. Sentman	
AAE 77-17	Modeling of Convective Mode Combustion Through Granu-	H. Krier	17th Combustion
UILU ENG 770517	lated Propellant to Predict Transition to Detonation	J. A. Kezerle	Symposium: In Press
AAE 78-1	Unsteady Internal Boundary Layer Flows with Applica-	M. J. Adams	
UILU ENG 780501	tion to Gun Barrel Heat Transfer and Erosion	H. Krier	
AAE 78-2	Extracting Burning Rates for Multiperforated Propellant	H. Krier	
UILU ENG 780502	from Closed Bomb Testing		
AAE 78-3	Lean Limit Flammability Study of Methane-Air Mixtures	J. Jarosinski	
UILU ENG 780503	in a Square Flammability Tube	R. A. Strehlow	
AAE 73-4	Interim Technical Report AFOSR 77-3336: "An	E. E. Meister	
UILU ENG 780504	Investigation of the Ignation Delay Times For		
	Propylene Oxide-Oxygen-Nıtrogen Mixtures"		
AAE 78-5	Final Report: A Distribution Model for the Aerial	S. T. Fernandes	
UILU ENG 780505	Application of Granular Agricultural Particles	A. I. Ormsbee	

