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SUMMARY

A numerical method for the estimation of leading-edge thrust for supersonic
wings of arbitrary planform has been developed and has been programmed as an
extension to an existing high-speed digital computer method for prediction of
wing pressure distributions. The accuracy of the method is assessed by compari-
son with linearized-theory results for a series of flat delta wings. Applica-
tion of the method to wings of arbitrary planform - both flat and cambered - is
illustrated in several examples. A simple local-sweep approximation is shown
to provide reasonable estimates of thrust for certain classes of flat wings of
arbitrary planform and to permit the design of a wing leading edge for a speci-
fied thrust distribution.

INTRODUCTION

Leading-edge thrust is an important factor in the aerodynamic performance
of wings at subsonic speeds. This force results from the upwash field ahead of
the wing and the high local velocities and accompanying low pressures which
occur as air flows around the wing leading edge to the upper surface from a stag-
nation point on the undersurface. The high aerodynamic efficiency of wings of
large aspect ratio depends directly on the presence of leading-edge thrust to
counteract the drag arising from pressure forces acting on the remainder of the
airfoil. Leading-edge thrust for subsonic speeds may be predicted by a variety
of methods including a vortex-lattice computer program (refs. 1 and 2) capable
of handling wings of complex planform with twist and camber.

At supersonic speeds, however, leading-edge thrust plays a substantially
reduced role. In relation to other forces acting on the wing, the thrust con-
tinually decreases with increasing speed until the Mach number normal to the
leading edge becomes sonic, at which point, upwash ahead of the wing leading
edge 1s reduced to zero and thrust is no longer developed. Furthermore, even
for conditions where a substantial amount of leading-edge thrust is theoreti-
cally possible, it often happens that little of the thrusting force develops
because the flow cannot remain attached to the relatively sharp airfoils often
employed for supersonic flight.

Nevertheless, thrust considerations do play a significant role in the
analysis of wings at supersonic speeds. For low supersonic speeds and for
wings with well-rounded leading edges an appreciable percentage of theoretical
leading-edge thrust may be developed. Furthermore, Polhamus (ref. 3) has shown
that when the thrust fails to develop because of detached flow the effects are
not necessarily dissipated. If the flow reattaches these effects can reappear
in an associated phenomena, the formation of a leading-edge vortex flow. For
supersonic as well as subsonic speeds, the influence of this flow breakdown on
wing lift and drag may be estimated by application of the Polhamus leading-




edge~suction analogy, which operates vectorially on the theoretical leading-
edge thrust.

Supersonic wings with straight~line leading edges may be treated analyti-
cally by use of classical linearized theory (refs. 4, 5, and 6). However, for
other wing planforms of interest (wings with cranked or curved leading edges)
theoretical methods are not available and numerical methods are required. Such
a method, described in reference 7, provided the groundwork for development of
an improved system reported in this paper. The primary advantage of the newer
method lies in elimination of the need for user examination and fairing of
program-generated pressure distributions, which accordingly provides for a much
higher degree of automation. In addition, this improved method does not require
pressure data beyond the immediate vicinity of the leading edge and thus permits
a better definition of thrust distribution for wings with a complex leading
edge.

The new method for evaluation of theoretical leading-edge thrust has been
programmed as an extension to an existing high-speed digital computer method
for prediction of wing loading distributions described in reference 8. In addi-
tion to the leading-edge thrust distributions the present modified program pro-
vides 1lift and drag estimates based either on theoretical leading-edge thrust
or on employment of the Polhamus suction analogy. An application of empirical
estimates of the percentage of leading-edge thrust actually attainable as given
in reference 9 may permit more exact predictions of wing aerodynamic performance.

Additional considerations discussed herein provide a means of designing a
wing planform to provide (within limits) a specified thrust distribution. This
capability should be useful in attempts to avoid leading-edge separation and
obtain as much of the theoretical leading-edge thrust as is practically possible.

SYMBOLS

b wing span

N average wing chord,

Cp wing drag coefficient

ACD,A drag-coefficient increment due to a separated leading-edge vortex
according to Polhamus analogy (see eq. (10))

ACD’T drag-coefficient increment due to theoretical leading-edge thrust
(see eq. (8))

CL wing 1lift coefficient

ACL,A lift-coefficient increment due to a separated leading-edge vortex

according to Polhamus analogy (see eq. (11))




lift-coefficient increment due to theoretical leading-edge thrust
(see eq. (9))

wing normal-force coefficient

lifting pressure coefficient

lifting pressure coefficient defined by numerical program
lifting pressure coefficient defined by linearized theory
leading-edge singularity parameter

limiting value of leading-edge singularity parameter at

x' =0
t
Ce section thrust coefficient, —
acg
2 rb/2
Cp wing thrust coefficient, -~ j; Cy dy
b Jo

E(k) elliptic integral of second kind with modulus k

e exponent used in definition of empirical function, F(x})

F(xg) empirical function providing for correction of numerical method
pressure coefficient location. See eguations (14) to (16) in
appendix and section entitled "Numerical Method Development."

K modulus of elliptic integral, /1 - B2 cot2 A

Ko modulus of elliptic integral for A = Ag, 'J1 - B2 cot? Ao

k1,kp,k3,ky constants used in singularity-parameter curve fit or in defini-

tion of empirical function F(x})

M Mach number

n integers designating terms in summations

q dynamic pressure

S wing area

t section leading-edge thrust

v free-stream velocity



X,¥,2 Cartesian coordinates with origin at wing apex, x measured along
wing root chord

x! distance behind leading edge at which lifting pressure is assumed
to act, in program units (see ref. 8)

Xmh distance behind leading edge of midpoint of a program element
(see ref. 8)

Yo wing span position for initiation of constant thrust design

a angle of attack, degrees

B = M2 - 1

§ angle at a cambered-wing leading edge between a tangent to surface and
angle-of-attack reference plane, tan-1 g;

A leading-edge sweep angle

Ay leading-edge sweep angle at yq

o] air density

THEORETICAL CONSIDERATIONS

The magnitude of the leading-edge thrust developed by a thin lifting wing
is dependent on the upwash Jjust ahead of the leading edge and on the airfoil
camber surface just behind the leading edge. The influence of both of these
factors is reflected in the pressure distribution in the vicinity of the leading
edge. For a lifting wing with subsonic leading edges (leading—edge sweep angle

greater than tan- VMZ - 1) the upwash given by linearized theory is infinite
at the leading edge, and the pressure at the leading edge is also infinite
unless the wing has a camber surface designed specifically to avoid such a sin-
gularity. In spite of these singularities, there is a measure of the influence
of upwash and camber effects on the leading-edge thrust; it is given by the
limiting value at the leading edge of the singularity parameter ACp x'. Hayes
in reference U4 gives an expression for leading-edge thrust per unit distance in
the spanwise direction which, when transformed to the symbols of this report,
is

TpV2 2
t = tan A \}1 - B2 cot?2 A(Acp\/ﬁ)o (1)
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A section thrust coefficient will be defined as

Cy = g 2 tan A J} - B2 cot? A(ACPJET)i (2)

where the average wing chord ¢ rather than the local chord was chosen as a
reference in order to preserve the linear nature of the thrust distribution for
delta wings.

The central problem is the evaluation of the limiting value of the singu-
larity parameter (ACPJET) . For flat wings with cranked or curved leading
edges and for cambered wings of any planform numerical methods must be employed.
The methods employed in this paper are discussed at some length in the section
entitled "Numerical Method Development." For a certain class of wings, flat
wings with straight leading edges, analytic solutions are available. These
solutions are also valuable in checking the validity of numerical methods, and
in this paper will be used for that purpose.

Through use of relationships given in reference 6, the limiting value of
the singularity parameter for a flat delta wing at a small angle of attack may
be expressed as

L sin o \y cot A

(acpfx), = 5 o (3)

where

k = J1 - B2 cot2 A

The section leading-edge thrust coefficient for a flat delta wing is then

b J?rliﬁz cotl A
-y
S [E(0)]?

Cy = sin? a

(4)

and the total thrust coefficient for the wing becomes

b/2 b2 \1 - B2 cot2 A 1 = B2 cot2 A
Ct = gj Ct dy @ 7 sin o — d =7 sin? a cot A J

o 55 [mk)]? [Ek)]?

(5)

The 1lifting force acting normal to the wing surface may be expressed in coeffi-
cient form as



cot A
E(k)

Cy = 27 sin Q

and thus the thrust force may be related to the normal force by

Cr sin a \J1 -~ B2 cot? A

Cn 2 E(k)

In figure 1, the theoretical relationships have been used to illustrate
the relative importance of the leading-edge thrust for delta wings of several
sweep angles operating over a speed range up to M = 2.5. Data for the subsonic
portion of the speed range were obtained from reference 10. The component of
the thrust opposing the drag, Cr cos @, is given as a fraction of drag compo-~
nent of the normal force, Cy sin &. At very low speeds, as would be expected,
the fraction approaches 1 as the sweep angle decreases and the aspect ratio
increases. It is interesting to note that at M = 1.0, the theory indicates
that the value of the component of thrust opposing drag is one-half the value of
the drag component of the normal force for all leading-edge sweep angles. With
increasing supersonic Mach numbers, there is a steady reduction in the theoreti-
cal thrust until the leading edge becomes supersonic, at which point the thrust
becomes and remains zero. Below a Mach number of 1 the lower sweep angles pro-
vide the highest thrust, but at supersonic speeds the more highly swept wings
provide the greater relative thrust levels. The section leading-edge thrust
coefficient of a delta wing defined by equation (4) may also be used in a "local
sweep approximation" applicable to flat wings of arbitrary planform which do not
depart drastically from a straight-line leading edge. For this purpose, A is
the local sweep angle and S and b refer to the arbitrary-planform wing.
Sketch (a) illustrates the application of the local sweep approximation to a

Sketch (a)

wing of "ogee" planform. As will be discussed later, this approximation has
been used to help verify program results for wings of arbitrary planform. The
approximation may also be useful in the design of wing leading edges to produce
a given leading-edge thrust. This capability could be useful in attempts to
avoid leading-edge separation and obtain as much of the theoretical leading-edge
thrust acting in the chord plane of the wing as is practically possible. Since,
in general, the thrust is small for inboard span positions, the design process
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will be used only outboard of some selected span position y, which has been
determined to have an acceptable thrust-level (upwash magnitude) for the reten-
tion of attached flow. The local-sweep approximation form of equation (4) may
be used to define a sweep angle A at a span position y outboard of Yo
which will keep the thrust constant. The expression used is

k Yo ko

—— - — (6)
[E]° Y [Eke)]

where k = \[1 - B2 cot? A and ko = \[1 - B2 cot? A, in which A, is the sweep
angle at y,. The required value of A must be found by iteration. When new
A-values have been found for a series of span stations from Yo to the wing
tip, the leading edge may be defined by a numerical integration of

y
x:j‘ tan A dy (7)
0

In examples of leading-edge planform design given in this paper, the iterations
were performed by a programmable handheld calculator. The following approxima-
tion for the elliptic integral was found to be useful for that purpose:

E(k) ~ 1 + G - 1>(B cot A)N

where

n = 1.226 + 0.15m(1-VBeoth)

This expression is accurate within about 0.02 percent over the full B cot A
range of 0 to 1.

For wings of arbitrary planform and surface shape, the section thrust coef-
ficient defined by equation (2) (with a numerically determined value of singu-
larity parameter) may be used to estimate the influence of thrust on wing 1lift
and drag. For theoretical leading-edge thrust the incremental lift and drag
coefficients due to thrust at a given angle of attack may be expressed as

2 rb/2

ACp, T = —S'j; Ct cos (o - §) dy (8)
2 (b/2

ACL,T = E»J; Cy sin (a - §) dy (9)



For the Polhamus leading-edge~suction analogy these increments may be approxi-
mated as .

AC 2 j;b/z c sin (o - &) (10)
= - - 4
D,A b 0 t cos A y
AG 2 \gb/2 cos (o - &) (1)
= - — S ————— d
L,A b Jg t cos A y

The thrust vector and its relationship to the wing leading edge is illustrated
in sketch (b). As can be seen, the expressions for 1lift and drag increments

Sketch (b)

based on the Polhamus analogy are applicable only for small angles of attack

and for small camber surface slopes. The section suction force vector, approxi-
mated as Cg/cos A, is assumed to be rotated to act normal to the wing surface
at the leading edge. For reattached leading-edge vortex flow, the vortex center
would actually depend on the angle of attack and in general would be downstream
of the leading edge. This downstream location is where the suction force vector
should be applied if such a position could be established. Nevertheless, for
mildly cambered wings at small angles of attack, the analysis used here should
provide reasonable estimates of the effects of separated leading-edge vortex
flow on wing lift and drag.
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NUMERICAL METHOD DEVELOPMENT

The first requirement in the development of a numerical method for estima-
tion of theoretical leading-edge thrust for wings of arbitrary planform is a
sufficiently accurate definition of 1ifting pressures in the vicinity of the
wing leading edge. These pressures are then used in determination of the limit-
ing value of the singularity parameter (ACpJ§T) . A computer program described
in reference 8 provides theoretical pressure disgributions for both flat and
cambered wings of arbitrary planf‘or'm.1 In general, the program provides a rea-
sonable description of the wing overall pressure distributions and of integrated
forces and moments. A particular shortcoming of the program, however, has been
a tendency toward oscillation of pressure values which unfortunately is accentu-
ated near the leading edge. In view of the theoretical singularity in pressure
at the leading edge, this is likely to be a characteristic of any numerical
method based on linearized theory. In this section, means of employing the
theoretical pressure distributions generated by the computer program of refer-
ence 8 to obtain leading-edge-thrust estimates of reasonable accuracy are
explored. First, a study of flat-wing characteristics is made, and then atten-
tion is given to the more general cambered-wing case.

Flat Wings

For flat wings with straight-line leading edges the theoretical 1ifting
pressure near the leading edge may be approximated by the function

1

X

in which the first term is dominant. A representative distribution of 1lifting
pressure near the leading edge is shown in sketch (c). It is assumed that for

x'—>| H—j

1 " T

TS,
1
kl \[57
. _J

x?

Sketch (e)

AC

TAn error in the program description given in reference 8, uncovered in
the. course of this study, is corrected in the appendix.




flat wings with cranked or curved leading edges, this approximation (with differ-
ent constants of course) would still be appropriate. The corresponding function
for the singularity parameter is

ACpJ;T = ki + kox!

which would appear as shown in sketch (d). Again the dominance of the first
term is apparent. The second term, however, is valuable in determination of
the limiting value of the singularity parameter if values of x' at an appre-
ciable distance from the leading edge must be employed. With the form of the
data established, a least-squares curve fit may be applied to program-generated
data (ACpJ§7 as a function of x') in order to find a representative limiting

[ ]
k1 + kzx

M%J?‘

== == ~_k,

Limiting value

Sketch (d)

value of the singularity parameter at a given span station. For the loading
approximation chosen

n n n n
zg (x)2 zg BCp(xE - ZS X2 ZS xh (Acpyx)
0 0 0 0
n n n
n 25 (x)2 - zg X4 ZS X
0 0 0

An example of the application of the simple curve-fit function to pressure
data generated by the program of reference 8 is given in figure 2. As in the
description of the program given in reference 8, the lifting pressure for a
given element is assumed to act at the element midpoint xJ}. The data cover
the first three elements directly behind the leading edge at the mid-semispan
location and at the span stations immediately inboard and outboard. These nine
data points occupy less than 8 percent of the local chord. In the ACp plot,
the program-generated pressures are seen to provide what can be regarded as a
reasonable agreement with the linearized theory. However, there are discrep-
ancies; and, as can be better seen in the singularity-parameter plot, the
program data range from about 25 percent above to about 20 percent below the

(12)

Acpﬁ" =

10



theoretical values. The least-squares curve fit of the singularity-parameter
function ACPJET = k1 + kpx' to the program data gives a limiting value of the
parameter about 8 percent too high which, since (ACPJET) is squared, trans-
lates to a 16-percent error in the local leading-edge thrust. Considerably
larger errors occurred at other stations, and thus the simple approach illus-
trated here was abandoned.

The nature of the program errors depicted in figure 2 led to a further
rather comprehensive study of these errors. Although errors in the vicinity
of the leading edge were found to be quite large, they were found to display
a remarkably organized character. As discussed in the appendix, it was found
that the errors were dependent on only two quantities, the distance behind lead-
ing edge x' and the leading-edge sweep condition, B cot A. A function F(xp)
describing the errors is presented in the appendix. An illustration of the sys-
tematic nature of the errors for the Mach number and sweep angle of the example
of figure 2 is given in figure 3. The data shown here cover the first three
elements behind the leading edge for wing span stations from 0.075b/2 (in incre-
ments of 0.025b/2) to points near the wing tip where program AC data were
invalidated by the proximity of the trailing edge and the tip Mach cone. The
data points displaying the largest departures from the general trend are for
the more inboard stations. The organized behavior of the errors appears to
improve as the span station increases and the number of elements involved in
the program solution increases. The empirical function F(x}) applicable
to this example is also shown. Small deviations between this function and the
trend line of the data occur because of compromises in fitting of the function
to the full range of B cot A values. The organized and predictable nature of
the program AC errors allows the introduction of a correction based on the
local sweep angge A and on the distance of the element midpoint behind the
leading edge xj. The correction is applied to the location of the lifting
pressure coefficient rather than to the pressure itself. The choice of the ele-
ment midpoint for the pressure location is after all only an assumption. Fur-
thermore, such a shift in location only will have little influence on the lift-
ing pressure distribution for cambered wings at or near design condition (a
topic to be discussed later). By using the assumption that AC varies
inversely with the square root of the distance behind the leading edge, a cor-
rected lifting-pressure location is found as follows: The corrected pressure
at x§ is ACp/F(xé) so that

ACy/F(xf)  DCp

and
X
' —
F(xh)?
or
X' = x4 + Ox?

11



where
1

Ax' = xf
F(x})2

An illustration of the use of the empirical function F(x}) in obtaining
a corrected pressure location is given in figure 4. As would be expected, the
correlation of the adjusted program data with the theory is much improved.

The significant point, however, is not that in this one particular instance
an improved numerical result was obtained, but that such results are representa-
tive of those obtained over a large range of Mach number/leading-edge-sweep
conditions. Although the empirical function, and the correction it affords, is
based on wings with straight-line leading edges, it is believed to be applicable
to wings with cranked or curved leading edges also. In the immediate vicinity
of a crank, the pressure distribution may not be typical of that for straight-
line leading edges; but such flow patterns should be established to an increas-
ing degree as the distance from the crank increases, and more readily for small
cranks than for large ones. A curved leading edge is treated as a succession
of cranks which must necessarily be small, and the correction should be appli-
cable here too.

The behavior of the leading-edge singularity parameter ACPJ;; for the
ad justed pressure data is illustrated in figure 5. Now a least-squares curve
fit of the function AC J;T = k9 + kpx' yields a limiting singularity parameter
within about 1 percent of the theoretical value. A further illustration of the
improvement afforded by the empirical pressure-location adjustment is given by
the spanwise thrust distribution of figure 6. Program section thrust coeffi-
cients are found by inserting limiting singularity-parameter values defined by
equation (12) into the expression for section thrust coefficient, equation (2).
Program results for which x' was defined by the empirical function follow
very closely the linearized-theory distribution line, whereas program results
obtained without the adjustment display a very erratic behavior.

The empirical function F(xj}) used to provide adjusted pressure-
coefficient locations was defined as outlined in the appendix from program
pressure data for a large range of B cot A values, 18 in all. Program thrust
coefficients for that series of B cot A values would thus be expected to cor-
relate well with the thrust given by linearized theory. In order to test the
general applicability of the numerical method, correlations of program and theo-
retical thrust distributions have been made for delta wings with other B cot A
values. A sample is given in figure 7. Only for small values of B8 cot A is
any difficulty encountered. For these small values, the entire leading edge is
represented by a small number of elements (12 for B cot A = 0.13, for example).
Total thrust coefficients for a series of flat delta wings covering a large
range of B cot A values are given in figure 8. None of the B cot A values
shown here corresponds to those used in generation of the empirical function
F(xﬁ). The numerical-method/linearized-theory correlation appears to be
acceptable over the full B cot A range.

12
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Cambered Wings

For cambered wings, wings with any departures from a perfectly flat 1ifting
surface, the numerical method just described is not completely adequate. It is
the usual practice in the design of cambered wing surfaces for supersonic speeds
(ref. 8, for instance) to define a camber surface which will produce the desired
1ift with pressure loadings having no leading-edge singularity. At the design
lift coefficient, typical lifting pressure distributions near the leading edge

may be approximated by a two-term function

ACp = k3 + kyx!

as illustrated in sketch (e). Even for camber surfaces which are not designed
in such a fashion, there is likely to be some angle of attack at which loadings
near the leading edge at a given span station display this behavior. As shown
in sketch (f), the limiting value of the leading-edge singularity parameter for
this loading is zero, and there is no leading-edge thrust.

Sketch (e)

kg yx"

ACp\ﬁ'—

Sketch (f)

At any given span station, there is only one wing angle of attack that can
produce a loading without singularities, and that angle of attack may be differ-
ent for every span station. For any other angle of attack, the loadings will be
composed of camber-design-point and flat-plate contributions, and thus singulari-
ties and leading-edge thrust will reappear. Using the two terms of both the

13



cambered and flat-plate loadings the singularity parameter function can be
expressed as

ACp\/F = k1 + kox' + k3\/;; + kqx'\/F

As will be shown subsequently, this four-term function when employed in a least-
squares fit of the program data leads to severe numerical instabilities. Thus,
as a compromise, only the first term of the flat-wing loading and the first

term of the cambered-wing loading was retained, and the singularity parameter
for a cambered wing was expressed as

ACpfx' = ki + k3x'

The leading-edge singularity parameter functions for the cambered wing are
illustrated in sketch (g). For the loading approximation chosen, the limiting

ky + kg 4/x"
ACpJ)?- /_kl

Limiting value

]

pr—

x'
Sketch (g)

value of the singularity parameter defined by a least-squares curve fit is

n n n n
25 X 250 (ACﬁJ;T>n - 250 VA zgo e (8cpl)
0
(ACpJ§1>o = T (13)
11
n 25 (xr'l)2 - V;g x4
0 0

0

An example of the application of the cambered-wing curve-fit functions
to pressure data generated by the program of reference 8 for a three-loading
cambered wing designed by a program method also described in reference 8 is
given in figure 9. The camber surface was designed to produce a 1ift coeffi-
cient of 0.125 at M = 2 for a reference angle of attack of 0°. Both the
pressure-coefficient and the singularity-parameter plots seem to indicate a
small amount of flat-plate loading at the design condition. This is possible
inasmuch as the camber surface is also designed by a numerical process which
cannot be assumed to be exact. The two-term cambered-wing curve yields a rea-
sonable value for the limiting value of the singularity parameter, but the four-
term curve does not.

1




A further examination of the program thrust results for a cambered wing at
design conditions is afforded in the thrust distribution shown in figure 10.
Results for the four-term curve-fit expression are obviously erratic. When a
least-squares curve fit is to be used for extrapolation, care must be taken in
selection of the curve-fit equation. A large number of terms will reduce the
errors at the specific data points but may easily produce curves which do not
reflect the general character of the data. Program results for the much simpler
two-term curve-fit expression are relatively well behaved. Except in the region
of the wing tip, where numerical results are affected by a diminishing number of
data points, there is a general trend of the program to asymptotically approach
a section thrust coefficient of zero (the design goal) as the span position
increases. This is to be expected, because a given amount of wing-lifting-
surface curvature is spread over a larger number of chordwise wing elements as
the spanwise distance increases. This benefits the wing design program in defi-
nition of the camber surface and evaluation program in the definition of pres-
sures. Although the program thrust coefficients do not fully meet the design
goal and are not identically zero, for the outboard portion of the wing they
are small relative to the thrust coefficients for a flat wing of the same plan-
form at an angle of attack of 1°. Perhaps of more significance, is the observa-
tion that the cambered-wing thrust is very small compared to the thrust produced
by a flat-plate wing of the same planform developing the same 1lift (the
linearized-theory curve for a flat wing at o = 49; Cp = 0.125).

The numerical method for evaluation of cambered-wing leading-edge thrust
must be capable of handling any camber surface including, as a special case, a
perfectly flat lifting surface. This consideration, in addition to the flat-
wing contribution to the loading of cambered wings at off-design conditions,
necessitates an examination of the program results for flat wings when such a
wing is treated as a cambered wing. It will be recalled that for a cambered
wing the singularity parameter function is taken as ACPJET = k1 + k3J§7
instead of the flat-wing function AC J;T = kK1 + kpx'. In figure 11 an example
is given of the program thrust distrigution for a flat wing treated as if it
were a cambered wing. Program results are seen to be only slightly poorer than
for the flat-wing treatment shown in figure 6. The correlations shown here are
typical of those over a large range of B cot A values. It would have been
possible to treat all wings, flat and cambered, using the cambered-wing curve
fit; but because of the improved results and the relatively small programming
complications, flat wings were chosen to be considered as a special class.

Program thrust distribution for the same cambered wing at several angles
of attack is shown in figure 12. The thrust at o = 0° is seen to be small
compared to the thrust for the other angles of attack. For all three angles
the program thrust is above the design goal, leading to the speculation that
at the design condition the cambered wing surface has a small amount of flat-
wing character not called for in the design. Although there are some irregu-
larities, the program results for all the angles of attack are generally linear.

Total thrust coefficient as a function of 1lift coefficient for both the
cambered wing and a flat-plate wing of the same planform is shown in figure 13.
The program results for the cambered wing show that it came reasonably close to
meeting the design thrust goals. The difference between the program-indicated
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thrust and the design goal corresponds to a lift-coefficient increment of 0.016
(or about 0.59) which is about one-eighth of the design 1ift coefficient.

PROGRAM DESCRIPTION

The numerical method for evaluation of leading-edge thrust has been incor-
porated into the program for analysis of wings at supersonic speeds described
in reference 8. Only relatively minor program changes were required. The han-
dling of program input data, the program generation of local pressure coeffi-
cients, and the integrations to obtain forces and moments (with leading-edge
thrust excluded) remain as before. The primary additions are:

(1) A short routine (12 statements) for the calculation and storage of
local leading-edge sweep angles expressed as B cot A.

(2) A more lengthy routine (153 statements) for the calculation and stor-
age of leading-edge thrust parameters as a function of angle of attack and span
position.

(3) A routine (37 statements) for the recall of thrust parameters and
program-calculated wing area and the calculation of thrust coefficients and
1ift and drag coefficients for theoretical leading-edge thrust as well as for
the Polhamus analogy.

The key new routine is the second of those listed. It calculates adjusted
pressure-coefficient locations for three elements behind the leading edge at the
span station being considered and at one station on either side (a total of nine
elements). In doing this, the routine first cycles through angles of attack
(=40 to 6° for the cambered wing and 1° for the flat wing) and the full range
of span positions to recover pressure coefficients. The adjusted pressure-
coefficient locations are given by

|
Xm
x' =

F(x4)2

where x4 1is the element midpoint and F(x}) is a function of x§ and

B cot A defined in the appendix. Data points are discarded if xj is less
than 0.1, because the adjustment becomes unreliable at small values of xjJ as
F(x}) approaches zero. Data points are discarded also if the pressure coeffi-
cients (with the program integral smoothing discussed in ref. 8) are affected by
the proximity of the wing trailing edge or the Mach line from the leading edge
of the tip chord. Under those conditions the empirical function F(xf}) is

no longer applicable. From the remaining data points leading-edge singularity
parameters ACn,/x' are then calculated and, as discussed in the section "Numer-
ical Method Development," the limiting value of the singularity parameter is
found by a least-squares fit of the equations

ACp[xT = kq + k3fx"
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for the cambered wing and

ACh\fx" & k1 + kox'

for the flat wing. Numerically these limiting values are found by application
of equation (12) for the flat wing and equation (13) for the cambered wing. A

thrust-coefficient parameter (T/8) tan AV1 - B2 cot2 A(AC J—‘)g is then calcu-
lated and stored. The thrust coefficient itself cannot be calculated at this
point in the program because the wing area is as yet unknown. If the number of
terms n in the least-squares summation is less than four, the limiting value
of the leading-edge singularity parameter and the thrust-coefficient parameter
are not calculated; instead, the thrust-coefficient parameter is determined
from a linear least-squares extrapolation of the previously calculated thrust-
coefficient parameters for the previous three inboard span stations. At the
same time the thrust-coefficient parameter is calculated, similar parameters
for later use in determination of wing 1ift and drag increments by means of
equations (8) to (11) are calculated and stored.

The other program changes do not require elaboration. All of the output
data of the previous program (for wings without leading-edge thrust) are retained.
The revised program also provides distributions of section thrust coefflclent C¢
for a cambered wing at selected angles of attack and distributions of Ct/a for
a flat wing. In addition, 1lift and drag coefficients are given for the flat wing
and the cambered wing at selected angles of attack for both theoretical leading-
edge thrust and the Polhamus leading-edge-suction analogy. Copies of the pro-
gram in the form of card decks or tapes as desired may be purchased from COSMIC,
112 Barrow Hall, the University of Georgia, Athens, GA 30602.

PROGRAM APPLICATION

A series of examples has been prepared to illustrate the application of
the program to wings with cranked and curved leading edges. For these examples
there is no applicable theory by which to judge the program results. In the
examples for flat wings, however, the local sweep approximation discussed in
the section "Theoretical Consideration™ will be of value in assessing results.

Thrust distributions for a flat wing with cranked leading edges are shown
in figures 14 and 15. 1In figure 14, the wing outer panel is more highly swept
and in figure 15 the inner panel is more highly swept. The Mach numbers were
chosen to present for each wing an all-subsonic leading-edge condition and a
mixed-subsonic-supersonic leading-edge condition.

In figure 14, the data for M = 1.75 shows an abrupt change in the thrust
coefficient at the leading-edge break with only two or three points showing an
appreciable degree of numerical instability. Outboard of the crank, the program
thrust approaches that predicted by the local sweep approximation. It is sur-
prising that the numerical results show this limit to be approached so quickly.
For a Mach number of 2.75, the inner panel has a supersonic leading edge and no
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leading-edge thrust is developed. Beyond the break point, the program thrust
approaches that given by the local sweep approximation but at a relatively slow

rate.

In figure 15, at M = 1.75, where both panels have subsonic leading edges,
numerical instabilities again appear to be restricted to two or three points in
the vieinity of the break. Outboard of the break, the expected asymptotic
approach to the local sweep approximation is observed. For a Mach number of
2.75 the program behavior is again as expected.

Program thrust distributions for a flat wing with a continuously curving
leading edge are shown in figure 16. The "ogee" planform of this wing has a
leading edge defined by

y = 0.13x + 0.715%2 - 0.52%3

Data are shown for three Mach numbers, one of which results in a mixed-subsonic-
supersonic leading-edge condition. Here the local sweep approximation can be
used only as a rough guide to aid in detection of gross program errors. Such
errors do not appear to have materialized. It should be noted that at the wing
tip, where the sweep angle is 909, the local sweep approximation gives a thrust
coefficient value of

kil b2
C :—a2 —
t 2% s

for all Mach numbers, a value which appears to be approached by the program
results.

In view of the preceding examples and others not presented in this paper,
it is believed that the numerical procedures for evaluation of flat-wing
leading-edge thrust are reasonably accurate. One somewhat surprising result of
this study is the close agreement of the very simple local sweep approximation
with the program results. This approximation appears to be reasonably accurate
unless large changes in the local swéep angle (or a high degree of leading-edge
curvature) are encountered. The approximation appears to be most accurate when
changes in the local sweep angle may be considered to be small relative to the
angular difference between the leading-edge sweep angle and the Mach-line sweep
angle. Note that for the "ogee" wing example, the approximation is poor only
for a Mach number of 2.5. Total thrust coefficients for the ogee wing are shown
in figure 17 as a function of Mach number. Over the Mach number range in which
the leading edge is everywhere subsonic, the local sweep approximation gives
good results. At the highest Mach numbers the simple approximation may be in
error by a factor of 2 or more. Where the error factors are large, however, the
actual thrust levels are relatively small.

Because leading-edge thrust is now an easily obtained byproduct of the

wing program used to evaluate pressure loadings and integrated forces for wings
of arbitrary planform, there is little need for the local sweep approximation as
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an evaluvation tool. It may, however, be useful in design of leading-edge shapes
for specified thrust distributions. Such a wing-planform design tool could be
employed in attempts to delay to higher angle of attack the onset of separation-
induced vortex flow and the associated drag penalties. Conversely, the design
tool could equally well be employed in attempts to strengthen and stabilize a
separation-induced vortex flow which tends to form at maneuver condition for
highly swept wings. Examples of wing planform design for specified thrust dis-
tribution are shown in figure 18. A delta wing with 70° sweptback leading edge
was the basic planform. For each of the three Mach numbers shown, the leading
edge was altered from the mid-semispan position outboard to maintain a constant
thrust level. Equation (6) was solved by iteration to define the required local
sweep angle and the resultant leading-edge coordinates. The trailing-edge sweep
angle was changed so as to preserve the area of the basic delta wing. Program
results for the altered planforms agree reasonably well with the design goals.
Experimentation is required to determine the practical benefits of such a design
approach.

Program thrust distribution for a cambered wing of arbitrary planform is
shown in figure 19. The wing design program of reference 8 was used to define
a camber surface for an "ogee" wing whose planform was previously described.
The surface was designed to produce a minimum drag at a Mach number of 2.0 and
at a 1ift coefficient of 0.12. The camber surface was defined by an optimum
combination of the first seven loadings of reference 8. It is seen that the
thrust level for « = 09, which corresponds to the design 1ift coefficient, is
very low. At increasing angles of attack, although the program results display
some oscillations, there is a generally smooth distribution which approaches
the flat-plate results for this planform shown in figure 16. In this case there
is no absolute way to judge program results; these results do, however, appear
to be reasonable.

The numerical method also provides data for construction of lift-drag
polars. First, this information is given for no leading-edge thrust, then data
for the case of theoretical or 100-percent thrust are listed, and finally 1ift-
drag data in which the Polhamus leading-edge-suction analogy has been applied
are provided. Typical data for an "ogee" planform wing are shown in figure 20.
Data for a flat wing, figure 20(a), show a significant reduction in drag if
theoretical leading-edge thrust could be attained. The Polhamus analogy indi-
cates higher drag values which are probably realistic estimates for such a wing
with separation-induced vortex flow at the leading edge. The Polhamus analogy
drag values are nevertheless lower than those of the upper curve for which the
assumption of no thrust and no vortex lift was made. For the cambered "ogee,"
figure 20(b), the theoretical-thrust assumption and the Polhamus analogy give
similar results for the effects of thrust at off-design conditions. Either
curve should provide a reasonable estimate of the wing aerodynamic performance.

CONCLUDING REMARKS

A numerical method for the estimation of leading-edge thrust for supersonic
wings of arbitrary planform has been developed and has been programmed as an
extension to an existing high-speed digital computer method for prediction of
wing pressure distributions. The accuracy of the method is assessed by compari-
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son with linearized-theory results for a series of flat delta wings. Applica-
tion of the method to wings of arbitrary planform - both flat and cambered - is
illustrated in several examples. A simple local sweep approximation is shown
to provide reasonable estimates of thrust for certain classes of flat wings of
arbitrary planform and to permit the design of a wing leading edge for a speci-
fied thrust distribution. The program provides section thrust distributions
and 1lift and drag for both flat and cambered wings of arbitrary planform.
Results are given for theoretical leading-edge thrust and for application of
the Polhamus leading-edge-~suction analogy.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

August 3, 1978
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APPENDIX

ANALYSIS OF ERRORS IN THE PROGRAM OF REFERENCE 8

As mentioned in the section entitled "Numerical Method Development,"
errors in lifting pressure coefficients calculated by the wing analysis program
of reference 8 were found to display a remarkably organized character. These
errors were studied by examining program ACp data for a series of delta wings.
It is the nature of the numerical method that pressure data for a given Mach
number and leading-edge sweep angle are identical (except for the factor B)
to that for all other Mach numbers and sweep angles for which the leading~edge
sweep parameter B cot A remains a constant. Thus, it was possible to treat
a very large number of Mach number/sweep-angle conditions by collecting data
for a delta wing with a given sweep angle (A = 70°) at a variety of Mach num-
bers. Because of the strong influence of local sweep conditions, this error
analysis is believed to be applicable to wings of arbitrary planform provided
the leading-edge curvature is small or that the point in question is at a suf-
ficient distance from any breaks in the leading edge.

A sample of the distribution of program ACp errors, the ratio of program
to linearized-theory pressure coefficients, as a function of the distance behind
the leading edge in program units is shown in figure 271. These representative
data for 4 of the 18 B cot A values included in the study cover program unit
span positions from 3 to the maximum permissible for a given B cot A value
(integer value of 100 B cot A for B cot A 1less than 0.5 and 50 for B cot A
greater than 0.5). Actually, because of the influence of the wing trailing edge
and the wing-tip Mach line in alteration of pressure values, data for span posi-
tions in the immediate vicinity of the tip were in many cases discarded. For
all values of B cot A, the pressure coefficient ratio ACp,p/ACp’Th appears
to approach zero with decreasing values of XJ. Because the pressure-location
adjustment discussed in the section "Numerical Method Development" depends on
the inverse square of this ratio, and because its approach to zero does not
follow a precise pattern, adjustments for small values of xj are not reliable.
Pressure data for xJ less than 0.1 are discarded in the leading-edge-thrust
evaluation process and these data are also omitted in figure 21. The very small
B cot A values (0.096, for example) were included, not because delta wings with
high sweep angles are of interest, but because high local sweep angles may be
found on some wings of arbitrary planform.

For the range of practical sweep angles for delta wings, B cot A greater
than 0.5, the program errors are relatively small (except just behind the lead-
ing edge) and damp out quickly with increasing distance from the leading edge.
At small values of the B cot A parameter the errors become quite large and
damp out much more slowly with increasing distance. However, it has been
observed that for any given B cot A value (whether large or small) the errors
follow a distinctive pattern. For the sample distributions shown here, the
errors for a given B cot A fall into a relatively narrow band which can be
approximated by an empirical function dependent only on xj.

The behavior of the pressure coefficient ratio ACp’p/AC ,Th as a function
of B cot A is shown in figure 22. Program data shown here have been obtained
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for three selected xy values from fairings of curves of ACp,P/ACp,Th as
a function of x} such as those shown in figure 21. Again, it can be seen
that although the errors become quite large, especially for small values of
8 cot A, they display an orderly and predictable behavior.

The following set of equations were found to provide an adequate repre-
sentation for an empirical function F(xj}) defining program errors to be
expected at a given x}, location for a given local sweep-angle condition
B cot A.

A

For 0.1 < x} S 0.5

X €
F(Xﬁl) = k‘]<0—5 (1}4)

where

1 -
k1 — 0.22\}1 - B cot A - 0.22(1 - B cot A)

i JB cot A

- 0.13(1 - B cot A)2

and

e = 0.32 + 0.25(B cot A

A

For 0.5 <x§ = 1.5

F(xp) = F(0.5) + kq(xh - 0.5) + ko(x} - 0.5)2 + k3(x} - 0.5)3 (15)

‘where F(0.5) is an evaluation of equation (14) for x} = 0.5
and for 0.5 £ B cot A £ 1.0

ki = 0.33 - 1.96(1 ~ B cot A) + 2.76(1 = B cot A)2
Ko = =0.49 - 0.71(1 - B cot A) - 1.42(1 - B cot A)2
k3 = 0.09 + 2.42(1 = B cot A) - 3.24(1 - B cot A)2
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APPENDIX

or for 0< B cotA s 0.5

k1

ko

k3=

0.80 - 0.76/f8 cot A/0.5

-1.80 + 0.60/f8 cot A/0.5

1.12 - 0.63/fB cot A/0.5

For 1.5< x§< 2.5

where

F(x})

= F(1.5) + ki(xg - 1.5) + kp(x - 1.5)2 + k3(xg - 1.5)3 (16)

F(1.5) is an evaluation of equation (15) for xj = 1.5

and for 0.55< B8 cotp s 1.0

or

ki @

k3=

for

kq =

ko

0.57 - 2.75(1 =8 cot A) + 8.02(1 - B cot A)2

- 9.28(1 - B cot A)3

—0.94 + 4.90(1 - B8 cot A) - 4.28(1 - B cot A)?

- 0.32(1 =B cot A)3

0.40 - 2.38(1 =8 cot A) = 1.51(1 = 8 cot A)2

+ 7.90(1 = B cot A)3
0.25 < B cot A < 0.5

0.04 - 8.88(0.5 - B cot A) + 32.42(0.5 - B cot A2

- 26.00(0.5 - 8 cot A)3

0.40 - 5.14(0.5 -~ B cot A) + 51.79(0.5 - B cot A)2

- 144.12(0.5 - B cot A)3

_0.18 + 11.05(0.5 - B cot A) - 101.30(0.5 - B cot A)2

+ 234.16(0.5 - B cot A)3
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or for 0 < B cot A < 0.25

k1 = 0.19 - 0.75/’8 cot A/0.25
Ko = 0.14 - 0.04/B cot A/0.25
k3 = -0.45 + 0.36/8 cot A/0.25

These expressions have been programmed to provide the adjusted lifting
pressure coefficient location discussed in the section "Numerical Method

Development."

In the course of this study, an error in the description of the aft-
element sensing technique for pressure-coefficient smoothing given in refer-
ence 8 was uncovered. For leading-edge elements the expression (eq. (33))

should have read:

A(L¥,N®) 1 1
1+ ‘ - ACp’a(L*,N*) + -

1 * *
- — —— | ACp b (L*,N )
2 1 + A(L*,N") 211 + a(L*,N%)

ACp(L*’N*) =

where for this purpose only, A(L¥,N*) is set equal to A(L,N) for the same
element. The error occurred in the program description and not in the program

itself.
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Figure 1.- The relative importance of leading-edge thrust at subsonic
and supersonic speeds.
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Figure 10.- Program thrust distribution for a cambered wing at design lift condition.
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Figure 19.- Program thrust distribution for a cambered "ogee" wing at M = 2,




Gh

020

016

.012

.008

.004

0

No thrust nor vortex lift
~ === Theoretical thrust
——=== Polhamus analogy

{a) Flat wing.

Figure 20.- Program lift-drag ratios for an "ogee" wing at M = 2.



9h

.020
016 |
012 |
.008 |

.004

(b) Cambered wing.

Figure 20.- Concluded.

No thrust nor vortex lift
- === Theoretical thrust
=—=—Polhamus analogy



A

AC
AC

nP

p, Th

e Pressure distribution from
program of reference 8

— Empirical function F(x} )

B cot A

Figure 22.- Errors in the program of reference 8 as a function of B cot A
for flat delta wings.



gh

AC
AC

P, Th

3 —
. B cot A
. 0.096
2 -
K 0.239
0.523 + Pressure distribution from
program of reference 8
0.932 —— Empirical function F(x'm)
o o L :
0.239
i | 1 | | J
0 .5 1.0 1.5 2.0 2.5
Xm

Figure 21.- Errors in the program of reference 8 as a function of xp
for flat delta wings.



National Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid
National Aeronautics and

Space Administration National Asronautios
Washington, D.C. NASA-451
20546

Official Business
Penalty for Private Use, $300

3 1 10,4, 092978 sS00903D53
DEPT OF THE AIR FORCE

AF WEAPONS LABORATORY

ATTN: TECHNICAL LIBRARY {SUL)
KIRTLAND AFB NM 87117

\

o
W A . \ POSTMASTER: If Undeliverable (Secﬁon 158
s Postal Manual) Do Not Return

//




