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EARLY STAGES OF THE OZTDATI:OW OF MILL SURFACES

Photoemission cross sections have been calculated for

the ZnO 6 cluster using the Self-Consistent -Xa-Scattered

Wave {SCF-Xa SW} theory which display the main features

of the ultraviolet and X-ray  photoemission data from ZnO.

A solid model is suggested for an absolute photoemission

intensity comparison resulting in Xa intensities which are

roughly 7,06 of the experimental values. Together with

the experimental data, the calculations allow a complete

determination of the electronic structure of a ZnO surface.
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CHAPTER ONE

INTRODUCTION

Surface studies have increased dramatically in the

past few years, especially in the areas of adsorption and

chemisorption on metallic surfaces. An understanding of

the geometric and electronic structure of surfaces is of

paramount importance in the study of catalytic processes,

corrosion, passivity, and oxidation.

In solid state physics, the bulk characteristics of

metals have been successfully studied by assuming a geo-

metry from X-ray scattering and then calculating a co-

hesive energy. Gases have b ,xen studied by rotational spec-

troscopy (infrared) to obtain their geometrical arrangement.

However, the study of gases adsorbed on metal surfaces is

much more complicated because the molecules do not rotate

freely on surfaces, and the metal electrons screen the

electric field of the incident light.I

Low energy electron diffraction {LEER} has provided

the most extensive geometric information concerning sur-

faces. In LEER, electrons with wavelengths comparable to

the lattice spacing are scattered by the ion cores of the

periodic crystal. This corresponds to an energy range of s,
10 eV to 500 eV, where the electrons have a mean free path

:.w	 ,
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of 3-20 A. Thus virtually all the scattering is within

the surface region. However, difficulty arises due to

multiple scatterings.

Photoelectron spectroscopy  (photoemission) has proven

to be the most promising technique for the determination

of the energy levels. The incident light is in the ultra-

violet or soft X-ray region, and the current of photoemit-

ted electrons is measured as a function of their kinetic

energy. Then the binding energy is given by

Eb W -hw - E 	 (1.1)

where fiw is the energy of the incident light and Ek is the

kinetic energy of the photoemitted electron. This method

is surface sensitive even though the light penetrates into_

the solid because the photoemitted electrons.have a short

mean free path. It is important to remember that the peaks

in the measured spectrum correspond to the various states

of the ion whereas the neutral system is of direct interest.

However, in most cases the states of the ion can be correla-

ted with those of the neutral system so that the spectrum

gives::a:.picture of the energy levels of the neutral system.

Most of the experimental work in photoelectron spec-

troscopy has involved measuring the binding energies using
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However, with the use of synchrotron radiation the contin-

uous range from the infrared to the X-ray region is now

available.

A further advance has been to measure the photoelec-

tron spectrum as a function of tale off angle for the

emitted e1e;tron and as a function of the angle of incidence

for the incoming light. With the use of highly polarized

and tunable light, measurements can be made as a function

of photon energy with angular dependences as swell. if

a gaseous molecule adsorbed on a solid surface has a

definite orientation, distinctive angular patterns can be

observed which would not be present-for the random orien-

tations of the gas phase.' These patterns are not simply

related to any physical property of the system but are gi-

ven by the matrix element of the photoemission Hamiltonian

between initial and final (continuum) states. Thus it is

essential to have a theory of photoemission in order to

extxact useful physical information.

our photoemission calculations were performed using

the Self-Consistent-Field-xa--Scattered Wave (SCF-xc-SW)

method. This method yields quite good ionization potentials

and charge densities yet is sufficiently economical to be

applied to relatively large systems. The multiple scat-

tering method has been developed over the years, both in
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nuclear physics  to compute nuclear cross sections, and in

solid state physics  to compute the electronic structure

of solids. More recently the method has been applied to

molecular physics by Johnson and coworkers 6,7 to calculate

bound state eigenvalues. These eigenfunctions serve as

the initial state in the matrix element of photoemission.

The final states are calculated by the extension of the

multiple scattering method developed by Dill and Dehmer8

to treat unbound states. Finally, the multiple scattering

theory has been applied to surface physics by Davenport 

to calculate matrix elements of photoemission cross sec-

tions.

For the case of semiconductors, photoemission is

generally considered to be a "local." process. Thus it is

quite reasonable to expect the cluster approach to provide

a better description than that of band theory, which

depends on long range order and periodicity. Indeed, photo-

emission cross section calculations have been performed

on the CO molecule using the SCF-Xa-SW cluster model which

for the first time place theory and experiment in reason-

able-agreement. 11 These calculations were able to deter-

mine the orientation of undissociated CO molecules on a

solid surface. 10 In this case the subtrate can be

neglected in the calculation because the energy levels of
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the adsorbate are relatively unperturbed upon adsorption.

Thus these calculations can provide only geometrical

arrangement of the surface but do not provide any informa-

tion on the electronic structure of the "adsorptive"~bonds.

The next step is to calculate cross sections for the

more complicated case of adsorption whereupon the adsorbing

molecule does dissociate and thus the substrate cannot be

neglected. This is the more general case of chemisorption
x

and can provide information on both the geometric and
}electronic structure.

r	
In this dissertation we discuss our SCF--xu-SW photo-

.
t
	 emission cross section calculations for the case of ad-

	

sorption of a dissociated molecular species on a metallic	 j

surface. We have chosen to use a zinc surface since it is

representative of a nontransition metal and also because

f

	

	 of its technological importance concerning catalytic pro-

cesses. We have chosen to use oxygen as the adsorbing

gas because of its importance involving corrosion. The

ZnO system is a good choice since both ultraviolet (UV) and

X-ray experimental photoemission data is available for

comparison. Differential cross sections were not calculated

for ZnO since no experimental data has been published.

The structure-of,the remainder of this dissertation

is as follows. In Chapter 2 we discuss the theory of photo
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CHAPTER TWO

PHOTOEMISSION

The differential photoemission cross section is de-.

fined as the number of electrons leaving the sample which

flow into a given solid angle per unit time divided by

the number of photons incident on the sample per unit area

and per unit time:

da _ Nelectrons
—a

dA Nphotons/Area

The total cross section (also called angle averaged cross

section) is obtained by integrating over all solid angles

and is usually in the range of 1-20 megabarns, where

1 Mb = 10-1$cm2.

The Hamiltonian for photoemission can be written

H = Ho me	 1 2mc V	 + 2m2 Ipl2
	 (2.1)

which is just the one electron Hamiltonian for a molecule

	

in the presence of the field p -r p + e , 	 We will consider

a nonquantized radiation field which is valid for arbitrary

light intensities involving induced emission processes.

The last term in Eq. 2 .1 is the diamagnetic term which is

small and will be neglected. We will make the dipole ap-

proxim iti=, i.e., neglect .the spatial variation of the

J

4	 '
^..u..-a.r.._ r—.,,	 __..	 ._..^_....+`esx._...^i1:=.tsn__..r..w.:....^s:s v.-+-.•.-._s ..r._..^,.^.. 	 ry ^	 -,
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vector potential ^ within the matrix element, which is rea-

sonable when the incident radiation wavelengths are large

compared to the atomic dimensions. Then the term in
b

will be zero, and the Hamiltonian consists of

H=Ho + c A - Y

where Ho = 
2

2m + V(r} and me A - P can be considered as a

perturbation term. A is the unit vector in the direction

of 1.

The transition probability between eigenfunctions

I i> and If> of Ho is obtained from Fermi' s Golden rule 

dt"I k E a(C f-ri-,hw) I<f1p-" 'A
k

The matrix element is correct only to first order since ii> and

If> are eigenfunctions of Ho and not of the perturbation

term. In actual calculations however, Ii> is a numerical

solution to an approximated Ho and represents a bound state

whereas If> is a function of the wave vector k of the

photoemitted electron and represents a continuum state.

The search for an appropriate form of: -the final .state

If> has been the aim of past photoemission calculations.

Bethe and Salpeter3 have calculated cross sections-of hydro-

genic levels using plane wave final states. They show that

41 --^_

E'
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the plane wave results never approach the correct value,

except for s states and then only in the high frequency

limit ti 500 eV. The final state we will use obeys a

Coulomb potential and it's general form is given by 

-+ _*	 -Ar

^ f (r) = eik or +  f (r) e r

which is the asymptotic form of an incident Coulomb wave

plus an incoming spherical wave (see Chapter 3). Then

integrating over the delta function in Ferni's Golden rule

gives the usual density of states factor

1 mk
= (- 2 ) 47

Using the unit of length to be the Bohr radius and the unit

of energy to be the Rydberg results in

dR _<fjA•ji>}2ao 2

where w is expressed in Rydbergs. Also it is convenient

to use the commutation relation [H,P3 = i-hvv resulting

in
da	 a k	 1j<f jA•vvji>j2a 2	 (2.2)
dA - rw (Ef-Ei )	 o

whi ch can be viewed as the one-electron limit  of the qua-

dratic response of a system to an external probe. A first

principles approach to this problem has been given by
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Schaich and Ashcroft 4 and by Caroli et al.'

The potential in Equation 2.2 is a one-electron

potential. Hermann and Skillman 6 have determined self-

consistent potentials which have been used to calculate

atomic photoionization cross sections using Hydrogenic

wavefunctions . 7 The results have been found to predict

the main trends in cross section versus photon e-oergy.

See reference 8 for a review of experimental results on

atomic cross sections. Also, Hartree -Fork calculations

have been performed on some atoms giving cross sections

which agree reasonably well with experimental results.9

But in these early calculations the one electron potential

used was that of the ground state. The response of the

remaining electrons to the removal of an electron has

been neglected. This is valid only in the adiabatic

approximation (i.e., the electron is removed slowly) as

then the system remains in the ground state and the out-

going electron carries the relaxation energy of the system

as kinetic energy. However, if the electron is removed

suddenly the ion may be left in various excited states.

Discrete states are called shake up lines; shake off sa-

tellites are states which include another electron in

the continuum. 10 Also core holes may relax by Auger

processes or by auto ionization, i.e., the Coulomb repulsion

t
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of electrons'acts to de- excite the ion by simultaneously
k	

filling the core hole and ejecting a second electron.11

In the case of molecules added complications arise

;.	 due to the vibrational and rotational, motions. The rota-

U-

	

	 tional levels are neglected because their spacing is

about .01 eV 12 and cannot be resolved. The vibrational
effects are important only when the Born Oppenheimer

approximation (treat the nuclei as fixed and obtain a set

of eigenfunctions for fixed nuclei with little coupling

betwen the sets) is no longer valid. The coupling becomes

important near level crossings. 13 In this case the matrix
element contains both an electron and vibrational term.
The Franck-Condon principle14 states that the initial
sta;.e vibrational function is sharply peaked about the
equilibrium value, so that the electronic term is nearly

constant over the integral and the cross section is pro-
portional to the product of the electronic term and

the Franck-Condon factor, which is the overlap integral

between the initial and final state vibrational functions.
We will be dealing with the sum over all final vibrational
states sxo that, if the Franck-Condon principle is valid,.

all reference to vibrational states drops out. if it is

not valid, the cross section represents an average over

the initial vibrationl state. (Rotational effects are	 -.
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neglected in our calculations.)

Molecular calculations using plane wave final states

have been reported by Ellison and coworkers. 15 Their

results do not agree with experimental data for photon

energies less than 40 eV. Other calculations reported

are those of Schweig and Thiel and coworkers 16, and

others. 17 Tuckwell 18 has gone beyond the plane wave

results and calculated cross sectios for N2 and 02 using a 2

center approximation based on the separability of the

Schrodinger equation for a diatomic in prolate spherical

coordinates. Similar calculations have been performed

on H2 by Flannery and Opik19 and on H2+ by Bates and Opik.20

In general, for atoms and molecules it has been found that

Eq. 2.2 gives cross sections which ordinarily agree: with

the data to within a factor of 2, except when final states

are approximated by a plane wave and then errors an order

of magnitude result.

For the case of solids, reviews have been given by

Eastman 21 and by Smith22 who use essentially one electron

theories. The short mean free path of electrons far above

the Fermi surface limits the photoemission to the surface

region. Since it is the electron--electron interactions

(inelastic scattering between electrons) which causes the

short free path, many body effects should be included from

f".	 ^	 ^	 ^	 - ^	 .:.-a-	 ,«ti.^-f''r... .: .\•,:. a^-linwa^h ".4i..W^^v .^ 	 - . Tas.... o-r .^^h.-u<..e .-...v......, ...... .. ..... ... ..	 _	 -.	 ..	 .,^..	 --	 ...^...
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the start. However, in practice most calculations for

solids use the one electron band structure for the bulk and

neglect surface and many body effects. The initial and

final states are Bloch wavess ^ k (i). Liebsch23 has developed

a one electron theory which treats a semi-infinite solid,

and includes the multiple scattering by the ion cores both

for initial and final states. Gadzuk 24 has used multiple

scattering theory to treat photoemission from simple mole-

cules adsorbed on solid surfaces which are treated in the

tight finding approximation. Strong angular dependences

were observed.

For a molecule near a metal surface, screening effects

due to the other electrons are particularly pronounced.25

This may cause substantial local field corrections to the

vef'_or potential A of the incident photon 2 , thus decreasing

the validity of our neglecting the spatial variation of A

and V A term in the Hamiltonian (Eq. 2.1). However,

the most dramatic effects on the cross sections are due to

the matrix elements themselves, which is what we will

calculate in this thesis.

R^^
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CHAPTER THREE

The SCF- a-SW METHOD

. In the SCF-xa-SW formalism we are concerned with

solving the one electron Schrodinger equation (in Ryd-

berg units)

72 + V (_)	 (_) w E (r)	 (3.1)

for a local potential function

V(r) =• V  (r) + 
Vxa 

(r)	 (3.2)

which includes the coulomb contribution Vc(r) and the Xa

statistical density-functional approximation

Vxa (r) = -6m[(3/87r) p (r) a 1/3
	

(3.3)

to the exchange effects and removes the electron self-

interactionl where p(r) is the electronic charge density.

Setting a = 1 gives the exchange potential derived by

Slater2 in 1951, and setting a = 2/3 yields the exchange

approximation derived independently by Gaspar 3 and by Kohn

and Sham4 . However, a value for a chosen systematically

between these two limits generally yields more reliable

results. Schwarz has systematically determined atomic

values of a by matching the Xa total energy of the atom

lt+.,.	 .^'<-	 -... -	 -	 --	 ^ s-,. ..: ^^. • 7.-r--': 	 hY^ -_'^'P.l` {^\i .s._. ^r. .-^.-, ,..G	 r44a^_	 ^1 .^;'lv .._	 .. ...- _-.. .,^	 -- _.	 ..	 _	 .. .. 	 C
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to the Hartree-Fock total energy.

To solve equation 3.1 L'or a molecule, one first geome-

trically partitions the space of the molecule into regions

of sufficiently high symmetry such that one dimensional

Ilb-1	 integrals are solutions in each region. The simplest

such regions are spheres, centered on each atom with con-

stant potential regions between spheres. This results in

three fundamental types of regions:

I. Atomic: regions within touching spheres centered

on the constituent atoms

II. Interatomic: . regions between the atomic spheres

and an outer sphere which surrounds the entire

molecule

III. Extramolecular: region exterior to the outer

sphere.

The potential Vc (r) + Vxa (r) (eq. 3.2) is then spheri--

cally averaged inside each atomic region I and also for

region III; it is assumed to be constant throughout region
4.

II, equal to the volume average of Vc (r) + Vxa (r) over this

region. A simple superposition of atomic charge densities

is ,substituted into Poisson's equation to obtain the

initial molecular potentials. Because we have partitioned

matter into local regions of spherically averaged and

volume averaged potentials, we can use a rapidly convergent
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Partial-wave representation for the solutions of Equation

3.1. We begin by writing down the most general form

of these solutions within each region and then match

these functions and their derivatives at the sphere boun-

daries. Once a solution is obtained we must calculate a -

new potential and iterate to self-consistency.

3.1. Solutions for Region I

For region I, inside each atomic sphere j the wave-

functions can be expanded as

• 2 (r) _ (L) C 3R3 (e , r) Y (r)3	 L z	 L (3.4)

where L = (9,,m) is the partial, wave angular momentum index.

The YL (r)'s are the spherical harmonics, the CL3 coeffici-

ents are to be determined, and the Rk 3 (E,r) ' are the solu-

tions of the radical Schrodinger equation

dr rZ dr + (	
+ V3 (r) --C3 RQ (E,r) = 0	 (3.5)

The potential near the origin r = 0 will be dominated by

the coulomb attraction at the nucleus which is given by

V (r) = - 2z/r

r+0

where z is the atomic number. The solutions in this region

will then be the regular coulomb functions. They must be 	
<1

'a'
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finite at the origir_ and are generated by outward numerical

integration of equation (3.5) for each partial wave com-

ponent and each trial energy. This form applies for

both bound and continuum states.

3.2. Solutions for Region III

In the extramolecular region III, we must allow for

both the regular and irregular solutions so that

III(r) = £ (L) [CL Ro(e,r) + BL go (r) IYL ( r) .	 (3.6)

For bound states (e<O) we choose C o = 0 and then go is

the linear combination of coulomb functions which decays

exponentially for large r, satisfying the potential for

large r which is also coulombic. For the unbound states

Ro (e,r) and g0 (r) are proportional to the regular and

irregular coulomb wave functions which are solutions to

the differential, equation

[02 + k2 - 
2-yk ^ Er) = 0	 (3.7)

where k 7 = s and Y = 11-11,  For an electron z

The most general form of the solution is

4-	 yQ (r)	 --
(r) =	

r	
YL (r) .

Inserting this solution into equation 3.7 yields
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Cd
z	 2 - Yr + k	 2rk - ^^ { z	 Y. (r) = 0	 (3.8)

The solutions are the regular solution FQ (y, p) and the

irregular soltuion GY.
(y,p) where p = kr.

Thus the solutions R0 (e,r) and g0 (r) given above are equal

FQ (Y,P)	 Gd (Y,P)to	 kr and. -	 kr	 respectively. The asymptotic

forms of these functions are

F^( y i p ) = sin Ekr - 2 ykn2kr + a
r-^m

	G^(Y, p ) = cos [kr --	 Ykn2kr + a^^
r^O*

where a Y, is the phase shift defined by

a t = Arg I' (Z + 1 +

and -6^a full expansion of the coulomb wave is

c {r} _ E (L) 4 ri e±Ya Q 
17^ (Y, P) YL (r) YL* (k)	 (3.9)

(See ref. 6).

3.3 Solutions for Region II.

For the intersphere region II, the Schradinger equa-

tion becomes

( Q2 + e — VII) ^ I '(r} = a

where VII is the volume average of Vc (r) + Vxa (r) over that
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region. The solutions are linear combinations of spherical

Bessel functions obtained by substitution of Green's

function (defined by (V 2 + k 2 ) G{r,r' ) = S (r-r' )) into

Green's theorem. Employing the spherical harmonic expan-

sion of Green's function

4. 4.

G (r, r ` ) = Cos I r-r _ -k E j^ (kr j ) n ^ (kr ? ) YL* (r? YL (r' )
L

where r y and r. are thy: greater and lesser of r and r'

(see ref 6,7) results in

III (r) = E (L} i^ ALj^ (ikro} YL (r o)

- ^ (j) E (L) i- QAL3 h k(1) (ikr j ) YL (r j )

for < V 	 for e a V asII

(3.20)

*II (r) = Z (L) ALjQ (kro ) YL (ro ) + E (j) E (L) AL3nt (kr j ) YL (rj ) (3.11)

where j A, Ukr0) is a spherical Bessel function, hz{1}(ikrj)

i6 a spherical Hankel function of the first kind, and nQ(krj)

is a spherical Neumann function. The - first term in expres-

sions 3.10 and 3.11 may be thought of as a superposition

of "incoming" spherical, waves, which have been scattered

by the potential of region 112. The second term may be
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t r ^ G.:1

N 1`
•kti:

interpreted as a superposition of "outgoing" spherical

waves, which have been scattered by the potential of the

atomic regions I.

3.4. Total Solutions

Next we match these functions and their derivatives

at each sphere boundary. This can be accomplished by

transforming products of spherical Bessel functions and

spherical harmonics from one site to another by use of the

general theorems

hL (kr) YL (r) =

	

	
E	

4Tri^ +£
	 I(L,L',L")

L' ,L
(3.12)

h^, (kr,) j L „ (kr c ) YL' (r1 ) YL' 1 (r2 }

where r = r  + r 2 and r> and r. the greater and lesser

of these two. h. is any spherical Bessel function and I

is the Gaunt integral given by

L', W) = YY*(r)YL , (r)YL ,t (r) dA	 (3.13)

It can also be written. as

	

x(20+1) (2V"+l)	 C(^',^:,I z; m' m„,m)
4^ (2^ + 1)	 (3.14)

C(O x "l; 0 Q U)

^^ =. ......:. . ...:.	 ..'W!.:	 .,, _.. -...	 ... ^^... ....	 --	 ^1`:	 ....	 -•	 S-:-.:.=:fir-,<-l;^ •: ^;:Q6 -.. t.^1ra. ..f....!.	 311

:}	 s

Isa.
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where the C's are the Clesbsch-Gordon coefficients.9

The resulting set of equations can be written as 

R
E(j)(L') GLL, AL' = 19 Q ,n	 CL 6 i	 (3.15)

^ Q

For bound states CL = 0 and we have a homogeneous system

of equations in N x L unknowns, where N is the number of

spheres and L the number of partial waves per sphere.

For the continuum states we have an inhomogeneous system

since any energy is allowed. The solution to the inhomo-

geneous system is a linear combination of the corresponding

homogeneous solution and any inhomogeneous solution. To

find an inhomogeneous solution we must solve the multiple

scattering Equations (3.15) with CL = S LA . This defines

the rows of the real symmetric K matrix, which is diagonal

for spherical potentials. Rewriting the solution of the

homogeneous system to incorporate the K matrix gives,

^ (r) = R^ (ro ) Y A (ro ) + E (L) KAL gQ (ro ) YL (ro ) .
-f

We may then take the general solution to be

(r) = E (A) a  ^A (r) or using asymptotic

forms	 )

E A E L a	 n -	
^(r)	 ( )	 6	 sine	 ik c

( ) A^ AL	 Q,	 AL 
os@^]YL (r^ (3.16)

i



i	 _
where 	LL' = A (1-ik) LA AAL'

A

3.5. Matrix Elements
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where

9 i = kr -Qnf2 - Yin 2kr + Q91.

`Matching the outgoing wave part of Equation 3.16 with that

of the coulomb wave (Eq. 3.9) results in

eaA = E (L) 41ri z a
-1Cr9.

YL {k) (1-ik) L-	 (3.17)

Then for the outer sphere we may write

* (r) = E (L) E (L') 47ri^e
-

i^21
 
y  (k) YL ' (r)	 (1-ik ) LL" k' (r)

(3.18)

^ ( 1 ik)LL19y (r)
t	 .

where(1-.k ) LL' 	 E (1-ik)A 	 ALA SAL'

For the atoms sphere we have

(ri ) = E {L) E (L`) 4ai^e
-iQ 2 YL(k)YLs 

(^i ) (^. ak ) LL' f ,^ (ri)
(3.19)

In order to calculate the matrix elements for the
i	

photiAonization process, consider- an. atomic sphere for which	 '±
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the initial state can be written (Eq. 4)

j (r) = Z(L) CL3R^ (r7) YL (z}

and the final state is given above (eq. 3-.19).

The interaction is proportional to

Â° 4V = •^^ aV/ar

but

A•er

	

	
3 Y^v (A) Y^v (r}	 (3.20)

v

so for an atomic sphere j the matrix element is

Miz	 (43) 2 ( _i) eiffY' (
likk ) LL' ^ L (k}

v LL' ;, L"

Yov (A) R3 r Q n I (L' , ov, , L")	 (3.21)

Here I is the Gaunt integral and

R I t it= (sphere rjdrj fR^ (rj) ar. fps, (rj)
7

Equation 3.21 .can be rewritten as

M3 = F. (L) (v) 3 Yo4A)E3 (L,V)YL (k) ,	 (3.22)

The outer sphere matrix element has the same form as Eq.

3.22, the intersphere region with ar = A makes no

contribution, and thus the full matrix element is given

by

Ye^.^	 ^..	 ..	 r.^r.	 ..	 _. __ e, _ ^. .... -._. •, 	 x<: c,_.=^F_::c. t^+.-.;.i.^-^ic^..._ ., _,._ . .t:.n_,».. 	 _.,_t^_,	 k ^_^....^, _.,. 	 _	 .,	 s	 .	 ..	 . ..	 .	 .... ...	 ..	 . ...	 s
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M = Z (L) (v)	 Yov (^) F (Ls v)YL (c)	 (3.23)

t'	 which defines F.

For the total cross section values the matrix

element must be aysxaged over all orientations. Thus

we take the absolute square of M (Eq. 3.23) and integrate

over all k and average over all directions A. (See

Ref. 7). This results in

	

a = a k	 1	 47r	 EIF(L,v)1 2 	 ,3.24)

	

7r W (e
	

)2	 9	 L,v

which is the angle averaged or total cross section for

photoemi.ssion measurements (done without angular resolu-

tion) .

n

A

'	 TL
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CHAPTER FOUR

PREVIOUS ZNO STUDIES

4.1. Photoemission

Both Xray and UST photoemission (XPS and UPS) measure-

ments on semiconductor ZnO have been reported in the li-

terature. In general, the experiment consists of ir-

radiating the sample (single crystals are used to avoid
gain boundary problems) with moncenergetic radiation (law)

and measuring the kinetic energies (E k) of the photo-

emitted electrons. Then using the relation

Ek = tw - Eb	 (Eq. 1.

the }winding energies (Eb) of the emitted electrons can

be determined. These binding energies correspond to the

electronic states of the solid. The number of electrons

leaving the solid with a given kinetic energy is a
measure of the cross section of that particular state

at the given photon energy. in the more familiar case

of gases, the states are usually sufficiently far apart
in energy such that a cross section peak can be resolved

for each state. For solids, the energy levels are closely

spaced in bands permitting resolution of only a few
peaks which represent cross section contributions from
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all the different states.

Implicit in Eq. 1.1 is the assumption that all

electrons leaving a particular orbital arrive at the

detector with the same kinetic energy, obviously not the

case for a real solid. Other factors arise to complicate

the picture. One of the largest and most complicating

factors is the energy loss of the emitted electrons on

their way out of the solid due to inelastic scattering.

Also the relaxation effects of the system due to the

absence of the emitted electron, the natural line broa-

dening due to the lifetime of the ionized state, and

thermal broadening produce an uncertainty in the deduced

value of the binding energy, Eb.

4.1.1. Experimental Uncertainties

Of course other uncertainties are introduced by the

actual experimental setup and procedure used. Some un-

certainties are common to all photoemission spectrometers.

The resolution of the spectrometer is defined as the smal-

lest energy difference between two groups of electrons

that wi:12 . result in separate phot,)electron bands in the
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exhibit considerable random fluctuations and statistical

noise due to the low electron count rates. Thus the

intensities have an uncertainty equal to the square root

of the total number of electrons counted at a given

`

	

	 voltage. Also, photoemission band intensities are a

function of the intensity of the incident radiation,

slit widths, the type of energy analyzer, and surface

charges on the walls of the analyzer chamber and slits.

For a given spectrometer, these parameters cdn be kept

more or less constant; however, comparisons of spectra

from different experimL_^tal setups should be made with

caution. Even for a given spectrometer, large dis-

tortions of the intensities may arise due to the discrimin-

ation of the analyzer for electrons of different energy.1

The sum of the contributions to the uncertainty tend to

broaden structure seen in the measured spectra and shift

it to lower energies. 11

4.1.2. Spectrometer Transmission and Broadening

In order to extract meaningful cross section values

from recorded spectra, it is necessary to understand

the transmission and broadening characteristics of the

spectrometer. A spectrometer's broadening function is

equivalent to the energy distribution curve (EDC) that
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would be measured if the true distribution were a delta

function of monoenergetic electrons. of course the

shape of the broadening or response funct-ion can drily

be guessed. Its width can be estimated from the

total of the contributions to resolution errors due to

the experimental equipment. A measure of the response

function width can be obtained from an EDC of a metal,

since theoretically in the absence of broadening, the

high energy cutoff is determined by the Fermi distribution

function. Also depending on the type of energy analyzer

used, the width of the response function nay or may not

be constant.

The broadening effect of the spectrometer on-the

measured EDC can be expressed by the relation

O (E'•) =f R (E-E' ) I (E) dE
	

(4.1)

where O (E' ) is the recorded EDC, R (E-E` ) is the instru-

mental response function, and I(E) is the true spectrum

seen by the detector.

The transmission characteristics of the spectrometer

determine the measured intensity of the EDC.. To obtain
i	

an-absolute or normalized EDC, the ordinate must be

scaled properly. Since the ordinate (intensity) of an

EDC is given in terms of electrons per absorbed photon 	 -^
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per eV, it is necessary to know the quantum yield, i.e.,

the efficiency with which the incident photons produce

photoelectrons. The absolute quantuFr yield is defined

as the ratio of-the number of electrons emitted to the

number of absorbed photons. The number of absorbed

photons is determined by the incident photon flux, the

transmission of any windows and/or grids the light must

go through, and by the reflectivity of the sample. These

values must be determined from separate measurements.

4.1.3. Work Function and Threshold

The work function and photoelectric threshold

generally do not coincide for a semiconductor. The photo-

electrice threshold is defined as the energy from the

valence band maximum (top of the valence band) to the

vacuum level or equivalently the energy gap plus the

electron affinity. Several factors make the determination

of the threshold from yield data difficult. First, band

.structure effects and optical selection rules often

appear to play an important part in photoemission from

semiconductors. Another complexity is that produced

by band bending, which complicates the curve near thres-

hold.- A third factor is the poss`_bility of photoemission

from impurities in the forbidden gap as well as from

surface states.
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The photoelectric threshold is important in deter-

mining the Fermi level of the sample.

EF- 0E- Ea= oc- V 
CPO 

-Ea	(4.2)	 i
S

where P. is the work function of the sample, X  is that

of the collector can, Ea is the electron affinity of

the sample and Vcpo is the contact potential between.the

collector and emitter. If the band-bending region is

small compared to the escape depth of the electrons, the

value of E  obtained will apply to bands in the bulk.

If the region is larger compared to the escape depth,

"

	

	 the value of EF obtained will correspond to bands at the

surface. If the region is comparable to the escape

depth, EF might appear to be a function of the photon

energy and will not be well defined. 2 In order to cir-

cumvent this problem, measurements are given with re-

spect to the valence band maximum (VBM).

4.1.4. Ultra High Vacuum Requirements

The "zero of potential" to which the electron energy

is referred is actually the work function of the collector

can. - It is important to carry out photoemission measure--

ments in ultra high vacuum because contaminated surfaces



42.

usually have a wide variation in work function. if

the work function of the sample holder or that of the

sides of the sample is higher than the sample work function,

fringing emitter fields produce a potential barrier in

f=ont of the emitter which distorts the low energy part

of the EDC such that it is shifted to Lower energies and

E	 broadened.10 Nonuniformity of the work function on the
I

actual emitting surface also distorts the low energyi
part of the EDC.

4.2. Zn0 Photoemission Experimental Studies

The most complete UV photoemission study of ZnO has

been reported by Powell, et al. 3 . Measurements

were made for photon energies between 7.8 and 11.6 eV

at pressures less than 10 -10 Torr employing the ac

retarding method. Additional measurements were made for

11.6 to 21.2 eV in pressures of about 10 -4 Torr. The

ultra high vacuum curves are reproduced in Chapter Five

for comparison with results from this work. Since the

experimentalists were able to normalize their EDC's,

an intensity comparison between the theoretical and

experimental results is made in Section 5.6. Important

features reported, deduced from the EDC's are the

location of the Zn3d band at 7.5 + 0.2 eV below the VBM



and the width of the upper valence band, which appears

to be about. 5 eV. Also, with respect to the top of the

valence band, maxima in the conduction band density of

states were found at 8.5 + 0.2 eV and 10.4 + 0.2 eV,

while two valence band maxima were found at -1.6 + 0.2

M	 and -2.8 + 0.2 eV.

X-ray photoemission measurements have been done by

Ley et al. 4 . The Atka photon source of 1486.6 eV
was used in pressures of about 10_

8
 Torr. These curves

are reproduced in Chapter Five for comparison to our

curves. lmportant.band features deduced from the measure-

ments are the location and width of the 3d band 8.8 eV

below the VBM and 2 eV, respectively. The upper valence

band width is reported about 7 eV and the 02s nonbonding

peak is at -20.7 with respect to the VBM. All values

are reported with uncertainties of + 0.1 eV.

Earlier W and X-ray measurements reported by Vesely

et al. 5 placed the Zn3d location at

8.5 + 0.4 eV and 8.6 + 0.2 eV below the VBM. All these

values are summarized and compared to our calculated

values in Table 5.1. (See Chapter Five). However, we are

mainly concerned with a comparison between the XPS results

of Ley at al., 4 the UPS results of Powell et al., 3 and

our results. We present the others in Table 5.1 as evidence
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of the reproducibility of the experimental results.

4.3. Optical Experimental Studies	 ;a

Also electron energy loss and ultraviolet reflec-

tivity spectra of ZnO have been reported by Hengehold et

al. 6 These spectra are shown in Figures 4.2(a)

and 4.2(b). The reflectivity measurements (which show

strong peaks near regions of i.nterband transitions) exhibit

structure at 3.3, 5.0, 7.3 and 8.4 eV and in the

11-16 eV region. If we assume this last structure is due

to the transition of electrons in the valence band to the

conduction band maxima at 8.5 + 0.2 eV and 10.4 + 0.2 eV

above the VBM (UPS results), this leads to a valence

band of approximately 4.6 eV. The energy loss curve on

the other hand exhibits a large peak at the plasma exci-

tation energy-while the interband transitions are con-

siderably diminished in size. The energy loss measure-

ments yielded peaks at 3.8, 5.5 1 9.5, 13.5, 18.8 and

35.5 eV. The dominant peak is the 18.E eV one and has

been attributed to a plasma excitation. This plasmon

excitation is seen in the XPS data in Section 5.5.

4.4 Theoretical Studies

Rossler7 has used the Korringa-Kohn-Rostoker

;t
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Figure 4.2(a). Energy-loss s pectrum of a typical
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(KKR) method to calculate a band structure for zinc oxide.

The resultant band structure is shown in Figure 4.3(a).

This method involves the use of an ad hoc potential

with only a single parameter which is adjusted to obtain

the correct band gap. From Figure 4.3(a) it can be seen

that Zna exhibits a broad free electron-like lowest

conduction band about 1.6 eV wide, Zn3d levels lying

closely below the upper valence bands and p-antibonding

conduction band states 17 eV above the top of the valence

band. The KKR calculation is in good agreement with the

experimental photoemission results except for the location

of the Zn3d state and the width of the upper valence band.

The calculation predicts 4 eV and 3.5 eV respectively,

while experimentally the values are in the ranges of 7.5

to 8.5 eV and 5.0 eV.

A pseudopotential band structure calculation has been

carried out by Bloom and Ortenburger. 8 In

pseudopotential theory, a local repulsive potential is

constructed that cancels the crystal potential in the

core region resulting in a smooth pseudopotential. Such

a calculation does not include the Zn3d bands at

all, which may be justifiable if these bands lie deep

enough such that their effect on the valence bands is

negligible. As . with the KKR calculation, the pseudo-

u
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potential calculation seems to be in general agreement

with the experimentally determined values. The bend
F:< diagram is shown in Figure 4.3(b).

SCF-Ya-SW calculations have been carried out on ZnO

by Tossel.^	 The MO diagram for the cluster model
_k

used (ZnO 6 ) is shown in Figure 4.4. 	 The diagram shows

a set 02s nonbonding orbitals (5a, 4t 2 ), two Zn4s, 4p-02p

bonding orbitals (6a 1 , 6t2 ), a set of Zn3d-02p bonding
s

orbitals (le, 5t2 ) and a set of essentially nonbonding

02	 orbitals {2e, It , 7t ).	 The lowest empty orbitalP	 1	 2	 P Y

t is the 7a1 level of the conductive bands, of Zn-02p

antibonding character.	 Thus the Zn3d orbitals are pre-

dicted to be about 4 eV below the top of the valence

band, some 3.5 eV higher than that predicted by the UPS.

However, a transition state calculation was performed

on the Zn3d-like level (le). This consists of removing

one-half of an electron from the particular level and

then solving the one electron Schrcdinger equation until

self consistency is obtained. The idea behind the

transition state concept is to represent the initial

state and the one-electron potential in the photoemission

process more realistically, i.e., include relaxation

effects, than with the ground state. in the transition

state calculation the le energy is lowered :y 3.2 eV,
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bringing it into much better agreement with the UPS

results. This large shift in energy is reasonable since

the Zn3d level is localized and the removal of one-half

of an electron represents a large relaxation effect on

that level. Thus the transition state calculations of

the cluster approach represent the photoemi.ssion initial

states much more accurately than the band calculations.

.i
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Figure 4.4. Molecular Orbital diagram of hexagonal
Zn0, SCF-Xa--SW method. Ref. 9.
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L	
CHAPTFR FIVE

PRESENT STUDY

5.1. Choice of Parameters

Photoemission cross section calculations were carried

out for the ground state orbitals of wurtzite ZnO. The

model used was four oxygen ions in the tetrahedral coordin-

ation with a zinc atom in the center. Each oxygen ion

carried 9.5 electrons, resulting in the oxyanion ZnO 46.

In consideration of the surface sensitivity of photoemission,

this cluster was chosen since it represents a "building

block" of a ZnO surface, which like the bulk, has the

wurtzite structure (see Figure 5.1).

For the calculations the surface Zn-O bonding distance
D

of 1.99A was used, and the nonoverlapping sphere radii

used were as follows.

r(OUT) = 5.40 a.u. (atomic units)

r (Zn) = 2.12 a.u.

r(OXY) = 1.54 a.u.

the statistical scaling parameter a was chosen to be

.74447 in the oxygen spheres, .70577 in the zinc sphere,

and .72623 in the intersphere and outer sphere regions.

ti'
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These values were taken. from Schwarz.2

In calculating the photoemission cross sections,

the highest energy occupied level (7t2) was used to

represent the top of the valence band. The ionization

_	 potential for this level was set to 5.0 eV (assuming a

collector work function of 5.0 eV reported by UPS)and

the rest were scaled accordingly.

5.2. Orbital Structure of ZnO

The calculated SCF-Xa-SW molecular orbital (MO)

diagram for the ground state of the ZnO^ s cluster is shown

in Figure 5.2. Our results are in good agreement with

Tossels` Xa calculations (see Section 4.4) using somewhat

different sphere radii. Figure 5.2 shows a set of 02s non-

bonding orbitals (5a, 4t2), a set of Zn3d-02p bonding or-

bitals (le, 5t2), two Zn4s, 4p--02p bonding orbitals (6a 1 , 6t2) ,

and a set of nonbonding 02p orbitals (2e, ltl, 7t2).

Since our final goal is to compare the calculated

photoemiss:ton cross sections with the experimental data,

it is important to understand the differences between the

calculated structure and that deduced experimentally, and

even more important to understand the role of the orbital

structure in dictating the observed spectra. In comparing

the calculated structure-.with the experimental structure,

ti
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one must remember that the MO diagram represents the ground

state, whereas the experimental data represents a perturbed

state. While it is not clear exactly how to describe this

1, x-	 perturbed state, it is probably somewhere between the

ground state and the transition state.

in the remainder of this section we will compare

our calculated structure with the experimental observations.

At the end of this section we present a summary of these

findings in Table 5.1.

5.2.1. Comparison of Theoretical and Experimental

Orbital Structure

Quite often in the comparison of theoretical orbital

structure with experimental data, an empirical attempt

is made to broaden the calculated discrete levels into

the observed bands. This procedure may be thought of as

simulating the effect of adding more shells of atoms

to the cluster in order to compensate for the finite size

	

	 -s
•i

of the cluster. The usual procedure is to center a
t

Gaussian on each of the discrete levels, whose height.is

equal to the occupancy of that state and the broadening

factor is an adjustable parameter. 3 While the occupancy

of the initial state is a factor in the calculation of
	 -s

the intensity, the matrix element for the probability of a

r

61
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transition is by far the most dominant factor, thus this

empirical broadening technique cannot account at all

for the observed intensities. However, a correlation

between the calculated energy levels and the experimental

	

P4	
band energies may be possible enabling identification of

the initial states responsible for a given observed band.

	

i

	 An examination of our calculated energy levels

(Figure 5.2) shows four groups of levels, and indeed the

XPS (see Section 4.2) results resolves four peaks. However,

closer examination of the first two groups which compromise
i

the upper valence band (states 7t2, ltl, 2e, 6t2, and Gal)

reveals a band width of 2.3 eV, while both the UPS and XPS

results give higher values, approximately 5 and 7 eV re-

spectively. From Table 5.1 it can be seen that this same

discrepancy holds for the widths of the Zn3e levels and the

02s levels, so that our predicted band widths are too

small.

Using the VBM as our reference zero, comparison of

the locations of the UPS peaks and the XPS peaks in Table

5.1 generally results in nonagreement between the two

values. one explanation for the e°perimental discrepancies

is the extreme instrumental sensitivity to stray surface

charges and impurities in determining the zero reference

as discussed in Sections 4.13 and 4.14. However, a

.-.. _.«....^.^. 	v-l'F.4 ^^3.w^^.t-ti.'=1 ^'G-. ^^- S"l.xrx..
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the deeper lying band structure more closely resembles

that deduced from the XPS results. our calculated

O2p-Zn4s separation of 1.5 eV lies within the uncertainty

4,	 range of the UPS value, while the XPS value at 3.0 eV is

twice as large. On the other hand, the Xa Zn4s-Zn3d se-

paration is 2.3 eV, the XPS value is 2.9 + 0.2 eV, and the

UPS value of 4.7 + 0.4 eV is •almost twice as large. The

calculated Zn3d-O2s separation is 11.0 eV, and the XPS

result gives 11.9 + 0.2 eV (no UPS results available).

Comparison of the total energy spread from the VBM to

the O2s levels for the Xa model (15.2 eV) with the XPS

results (20.7 + 0.1) and consideration of the Xa small

band widths discussed above lead to the conclusion that

the Xa cluster model represents a "compressed" version of

the experimental picture.

In the above discussion we did not consider the

broadening effects of the spectrometer on the observed

spectra. We will do so in the cross section results

we present next.

-A
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Table 5 . 1. Comparison of experimental and calculated
values for orbital features. All values
in eV with respect to the VHM.

PRESENT STUDY	 UPS(REF. 4)	 XPS (REF. 5)	 OTHER 

--2.01 -1.6 + 0.2 -2.9 + 0:1

-3.5 -2.8 + 0.2• --5.9	 +	 0.1

2.3 ti 5 ti 7 5-68

-5.8 -7.5 + 0.2 --8.8 + 0.1 7.87,	 8.56

.08 ti 2 27

-16.8 -- -20.7 + 0.1 ti208

.2 ti3 ti 48

aSuperscript refers to the reference at the end of Chapter Five.

bThe energy value at the center of the energy spread (for a
given set of levels representing the particular state) is
the value used for the location of that state.

r	 ^
p

O2p location 

Zn4s location

valence band
width

Zn3d location

Zn3d width

O2s location

O2s width
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	5.3 . Geni---. _ 	• :	 a Photoemiss ion Spectra

	Calculations	 ig the SCF-xa-SW method result in

cross section val--_s for the individual molecular

orbitals. This value represents the height of a delta

	

function centerer:	 the given molecular orbital. Ex-

perimentally however, the distributions of photoemitted

electrons from the orbitals are not detected as delta

functions but are instead spread out into bands.

Assuming conservation of electrons, the calculated

cross section value (the ratio of the number of electrons/

photon/area) must be proportional to the area under an

appropriate electron energy distribution curve. Since

we are concerned here only with relative intensity com-

parions, we have set the calculated cross section value

equal to the area under the curve. (Also see Section 5.6)

The sum of the contributions from all the broadening

effects (see Section 4.1) to this distribution curve

can only be estimated. we have chosen a Gaussian distri-

bution with a FWHM of .32 eV (which corresponds to the

typically used value of a = .Ol Rydberg to represent the

true energy distribution from each molecular orbital.

The sum of all these Gaussians then represents the true

line intensity r(E) that is input to the detector. This

?IF-GP- 
is

^ a008, aim`"
(P#

a
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true curve I(E) is related to the recorded spectra

0 (E') by

Q (E') = f R(E - E') I (E) dE 	 (Eq. 4.1)

where R(E - E') is the instrumental response function.

We have used Eq. 4.1 to computer generate Xa photo-

emission spectra which we present in Sections 5.4 and

5.5 for comparison to the experimental curves. The

FWHM values used for the instrumental response function

were those reported in the literature. For the XPS

results we have used a Gaussian instrumental response

function with a height of one and a constant FWHM value

of .55 eV. For the UPS results we have also used a

Gaussian instrumental response function of height one

but with a FWHM value which is directly proportional

to the kinetic energy of the electrons. The FWHM value

used was 0.2 eV for a kinetic energy of 7.5 eV above the

VBM.

5.4. LTV Photoemission Cross Sections	 J

5.4.1. Upper Valence Band	 1

in Figure 5.3 we present our UV cross section results. I

We have plotted them as intensity versus kinetic energy

for easy comparison to the experimental data, which is
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ENERGY ABOVE VALENCE BANO MAXIMUM lov)

Figure 5.4(a). Normalized energy distributions of the
photoemitted electrons. 8.8 < -fiw <
10.4 eV. The dashed curves rearesent
contributions to the ADC's from the
uncleaved-sample sides. Ref. 4.

Zn0
?	 p"la *Tort

	

f J	 `^-

	

I[// 	 PAGE IS

7	 8	 4	 '0	 11	 12	 -
ENERGY ABOVE VALENCE eAN-D MAXIMUM (LV)

Figure 5.4(b). Normalized energy distributions of
the photoemitted electrons.
10.8 < fiw < 11.6 eV. S1 is attributed
to coEduction band structure. Ref. 4.
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shown in Figures 5.4(a) and 5.4(b). The most outstanding

features of the experimental curves are the overall

growth with increasing incident photon energy. Notice

also that not only has the intensity of the EDC's increased

with increasing photon energy but also the energy range

of emitted electrons has increased from

ti 1.7 eV (hw = 8.8 eV) to ti 4.5 eV (hw = 11.6 eV) , and more

importantly the FWHM value has increased. In simple

terms,. E  = -hw - E  (Eq. 1.1) so that • if -fiw is increased

by 0.4 eV, the E  is also increased by that same amount.

However, from the experimental EDC's one can see that

s
	

for a photon increment of 0.4 eV, the peak is seen to

shift approximately 0.2 eV.

All of these observations lead to the conclusion

that the increase in intensity and energy distribution

of electrons and the observed shift seen in the EDC's

are due to contributions from the increasing number of

accessible states as the photon energy probes deeper

into the ,valence band. By -nw = 11.68 all valence band

states have been reached and the peak has stopped

growing. This conclusion is further supported by our

calculations. In Figures 5.5(a)--(e) we present the

calculated cross section values as a function of photon

energy for the individual molecular orbitals which comprise

1a
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Figure 5.5(a). xa calculated cross section as a function of energy
for molecular orbital. 7t2.
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Figure 5.5(b). xa calculated cross sebtion for molecular
orbital. lt1.
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Figure 5.5(c). xa calculated cross section for the 2e orbital.
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Figure 5.5(d). Xa calculated cross section for the 6t 2 orbital.
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Figure 5.5(e). Xa calculated cross section for the gal orbital.
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the upper valence band. From Figures 5.5(a) - (e) it can

be seen that all of the individual cross section values actually

show a decreasing trend with increasing energy; thus an

increase in the number of accessible states is the most

logical reason for the observed growth.

Our calculated EDC's presented in Figure 5.3 display

the main trends of the experimental curves. Notice however,

that the Xa EDC's do not grow as rapidly with increasing

photon energy. Closer examination of.the role of the

valence band with in determining the EDC: reveals that

even for our lowest photon energy calculation Mw = 9.28 eV)

our entire valence band contributes to the curve. Thus

as we increase the photon energy in our calculations, the

same five states, and only these five states contribute

to the EDC. (Notice our FWHM is constant'at 1.6 eV for

all these curves.) In fact, from the decreasing trends

in the cross sections in Figures 5.5(a)  - (e) ' ora would

expect the intensity of the X a EDC's in Figure 5.3 to

decrease with increasing photon energy. This is not

seen because we have included the effects of the ac

retarding spectrometer. Since with this spectrometer

the FWHM of the detector window increases with increasing

electron energy, the high energy side of the. curve

is recorded larger than it really is. The magnitude of
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the broadening effect can be seen in Figure 5.3. The

low energy curve (9.28 eV) has an energy range of

1, 4.4 eV, while the high energy curve (11.58 eV) has a

range of 4.7 eV. Without the spectrometer broadening
P. 	

these energy ranges would be equivalent in

our calculations.

Our calculated peaks shift by an amount equivalent

to the photon energy shift whereas in the experimental

curves (Figures 5.4(a) and 5.4(b)) the peaks are seen

to shift more slowly than the corresponding photon

energy increase. The additional valence states accessible

to the higher photon energies lie deeper in energy and

thereby contribute electrons on the low end of the energy

scale. This results in a peak which shi-fts more slowly

to the right than the corresponding photon change.

One other small point to mention is that our Gaussian

broadening ignores the electron affinity of the ZnO surface,

so that electrons can be predicted to leave the sample

with kinetic energies less than the experimental threshold

energy 7.8 eV. This can be seen in the 9.28 eV photon

curve of Figure 5.3, where the electrons are predicted

to escape with energies of 6.8 eV above the VBM. This

effect was not more pronounced because our valence band

width was small.



Comparison of the Xa curves with the experimental

EDC's shows our 11.68 eV ct,rve to be in excellent agree-

ment with the data, while the 10.08 eV peak is at least

0.2 eV too low, and the 9.28 peak is at least 0.8 eV too

low. This is completely reasonable since our 10.08 and

9.28 curves incorrectly contain contributions from all the

valence levels, due to the inability of the ground state

calculation to correctly predict the Zn0 orbital spacings

especially from such a small cluster. Imagin-e the 9.28

and 10.08 curves without the Gaussian contributions from

the deeper lying valence states, i.e., with some of the

left side of their curves cut away. This would cause

the peaks to shift to the right (higher energies), in

closer agreement with the experimental data. From this

we conclude that the 11.68 eV curve is a good represen-

tation of the Zn0 valence band structure. It may be

noted though the FWHM is 1.6 eV in the Xa curve, as

opposed to 2.3 eV in the experimental EDC. This again

is due to the incorrect spacing Qf the molecular orbitals.

5.4.2. Zn3d Band

The UPS study reports the location of the Zn3d

band at 7.6 eV below the VBM. Thus the d bands were not

accessible to the photon energies discussed in Section
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Figure 5.5(f). xa calculated cross section for molecular
orbital le.
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Figure 5.5(g). Xa calculated cross section for the St 2 orbital.
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5.4.1. However, the Xa ground state calculation predicted

the location of the Zn3d level to be at -5.8 below the

VBM so that our 3d band was accessible to even the

9.28 eV photons. (Recall that the transition state

calculations (Section 4.4) of the Xa method were able to

predict the location of the 3d levels much more accurately.)

The cross section values calculated for bath of the Zn3d-

like states (le, 5t2) are presented in Fi gures 5.'5 (f) - (g) .

Note that the intensities are typical of those of the

valence band, as expected. While the UPS study did

measure photoemission from the 3d bands, a direct compari-

son to our results is not possible since the photon energy

and hence the electron energy was much hither than ours.

5.5. X-ray Photoemission C=3s Sections

In Figure 5.6 we present our X--ray cross section re-

sults. The corresponding experimental results-are shown

in Figures 5.7 (a) and 5.7 (b) . Figure 5.7 (a) is the "raw"

X-ray spectra.. Here the most prominent feature is the

intense Zn3d spike centered about 12 eV below the Fermi

level. At binding energies from 4 eV to 9 eV below the

Fermi level lie two valence band peaks, and some 10 eV

and 17 eV below the Zn3d level lie two rrnre peaks. Much

of this deeper lying structure has been attributed to a

^^A	 . .5 ^..	 _. ^'.>.^	 .^-f`	 •..1..,•..-.•-.a.,...._... ^i ^^.n^-t—^. _.»__.rl t_^. ^•_r ^-.. ^r_a._-...,—. .___.._-. _^._.^...^. -.._ _. 	 _	 _	 -	 _.. __	 .. -+mow	 _^



Figure 5.6.

	

	 Xa generated X-ray spectra for the ZnO-6 cluster. Intensity
is in arbitrary units. The valence baAd and 3d peaks
are also shown reduced by ja factor of 12.
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Figure 5.7(e). X-ray photoelectron
spectra ZnO. Ref. 5.

Binding energy (eV)

Figure 5.7(b). Corrected valence-band spectrma
I'(E) of ZnO. Binding energies
are given with respect to the
VBM. Ref. S.
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plasmon excitation . 9 The Xa spectrum shown in Figure 5.6

appears to reproduce the basic features of the XPS

results. Comparison of the area under the 3d spike and that

under the total upper valence band structure in Figure

5.7(a) shows the 3d peak to be roughly six times larger.

The corresponding measurement on our generated X-ray curve

resulted in a 3d/valence band ratio of 7.8. Figure 5.7(b)

shows the corrected experimental spectra. The 3d level

lies at -8.8 + 01. eV, the 02p peak at -2.9 +'0.1 eV, the

Zn4s at -5.9 + 0.1 eV, and the 02s peak at -20.7 + 0.1 eV,

all with respect to 'the VBM.

In the corrected spectra the Zn3d band has been sub-

tracted along with the contribution from inelastically

scattered electrons (including .those attributed to the

plasmon excitation). The ratio of the area under the 02s

peak (labelled III in Figure 5.7(b)) to the valence band

structure (labelled I and II) is approximately 1.5, while

the corresponding ratio from our calculations is 4.4.

Since the theoretical and e-Perimental ratios of the

Zn3d peak area to the area of the valence band structure

are in reasonable agreement, we conclude that the Xa model

predicts the 02s feature to be roughly three times smaller

than that attributed to it in Figure 5.7(b).

Comparison of the overall XPS picture with our generated

a'<

^: a
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spectra again shows our MO levels to be spaced too closely.
=I

{

	

	 Because of the compressed valence band in. the Xa model,

only one valence band eak is resolved in our^ 	 YgeneratedP	 g

spectra. Also the peak separation between the calculated

3d band and the 02s band is 10 . 9 eV, while the experimental
k	 F^

values is 11.9 eV.

Notice that the energy scale in the theoretical spec-

tra does not coincide with that of the X--ray spectra.

Our Xa spectra was generated by placing the highest

occupied orbital, 7t2 , -1,6 eV below the VBM, i.e., a

Gaussian distribution of electrons assumed for that state

was centered at -1.6 eV, the location of the 7t2 level pre-

dicted from the UPS results. Our X-ray calculations

show that our one valence band peak is due mainly to the

7t2 level, so that it corresponds to the first peak in the

XPS curve, which the experimentalists place -2.9 eV below

the VBM. Thus there is a discrepancy of about 1.3 eV in

the location of the VBM between the UPS and XPS data.

In order to compare our results with those of XPS, we

need to to shift our spectra about 1.3 eV to the left

` (deeper energy) to line up the first peaks of both spectra.

Then our resultant peaks lie at -7.1 (3d), -2.9 eV (valence

band), and -18.0 eV(02S) with respect to the XPS VBM.

One other interesting roint to mention i q that whiles
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our valence band consists of five states, our X-ray cal-

culations predict the entire valence band structure is

due mainly to states 7t2 and 2e, with a contribution ratio

of approximately 3/1. If we equate the 7t 2 level with

.yam the peak I in Figure 5.7(b) and the 2e level with peak Ii,

then XPS predicts an orbital separation of 3.0 eV. We

will come back to this idea in Section 5.7.

In Chapter 2 it was pointed out that the Xa method

uses the dipole approximation, which is valid when the

incident wavelengths are large compared to atomic dimen-

sons. Mathematically, the dipole approximation consists

of expanding the function a-ikr in a power series and then

dropping all terms but the first. Since a-ikr can be

expanded as

-ikr	 (kr) z	 (kr) s	 (kr) 4	 (kr) S
e	 = 1-ikr - 2 + i 6 + 24 i 120 +	 .

this approximation is valid if kr < 1. For the X--ray

energy of 1486.6 eV, k z .75A 1 , so that at our outer-
6

sphere boundary (rout - 2.70A) the approximation is not
O

valid. However, within the atomic spheres (r zinc

roxy = .8A) it is valid. For each initial state, at

least 83% of the charge density was contained within the

outersphere, and the majority of it in the atomic spheres,

with the exception of the Gal and 6t2 levels, which contained
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J

only 5% in the atomic regions, and 94% and 80% in the

intersphere regions, respectively.

5.5.1. Modulating Effects

It was pointed out earlier (Section 5.2.1.) that XPS

and UPS measure somewhat different quantities. The basis

for this argument stems from the modulating effects im-

portant at different energies. At UV energies, both the

initial and final state density modulation is important,

along with the actual cross section modulation. At

XPS energies, final state densities are fairly constant

since the transition energy far exceeds the variations

in the crystal potential energy of the valence electrons. 10

Cross section modulation can be understood in terms

of the sensitivity of photons of differing energy 11 1 UV

photons are more sensitive to the outer portion of the wave-

function, i.e., far from the nucleus, while XPS senses

the wavefunction near the nucleus. This effect can be

seen from the form of the photoemission matrix element:

<f(r(i>^^. whenever the curvature of-the initial state

radial wavefunction matches that corresponding to the final

state wavefunction, the cross section value will be highest.

An example of this effect is shown in Figure 5.8."for the

I4_
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2s and 2p radial wavefunctions of carbon..

5.6. UV Intensity Comparison

Up to this point we have been concerned with comparing
M^

the experimental and theoretical cross section peaks on a

relative basis. in this section we present the Xa "abso-

lute" cross section intensities•in the UV range for which

experimental results are available. (See Appendix 3.)

The problem we are concerned with here is to compare

the theoretical, cross section values for a cluster of

five atoms to the experimental, results for the microscopic

solid. -The xa photoemission computer program calculates

the cross section from the probability of an absorbed photon

to cause an electron to be emitted from a particular orbital.

The contributions from all the orbitals then gives the

total cross section for the cluster. The cross section

values are given in units of area,the area representing

the effective size of the orbital to that particular

photon energy.

The experimentalists report their results for a

particular photon energy in units of the ratio of the num-

ber of emitted electrons to the number of photons, a

dimensionless quantity. Thus in order to compare results,

we must convert our results to the ratio of the number of
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, -t

electrons to the number of photons. This we did on a

relative basis in order to generate the Xa spectra in

Sections 5.4 and 5.5 (See Section 5.3). But now

to get a normalized spectrum we must construct a solid

out of our microscopic cluster. We can assume that this

solid consists of some multiple of clusters, the number

depending upon the effective size of the experimental

sample, which in turn depends upon the photon attenuation

and the electron escape depth.

The electron escape depth is the limiting factor

here, but unfortunately no values for Zna have been re-

ported in the literature. However, Lindau and Spicer 12

have published a plot of electron escape depths

(Figure 5.9) for several different materials. From

Figure 5.9 it appears that most material seem to lie on

or near a "universal" curve. If we assume that ZnO also

lies on or near the curve, the expected escape depths
0

would be somewhere in the range of 1-40A for electrons

of kinetic energies in the range of 7-12 eV above the VBM.

Using the concepts of electron escape depth and photon

attenuation depth, we have developed a solid model from

clusters to represent the effective experimental sample.
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5.6.1. Solid Model from Clusters

Let us define a scattering center equal to one

ZNO-6 cluster. The'spacing between scattering centers
0

is 2,29A, leading to a number density n of .0825

centers/A3 . Assuming an exponential attenuation of

photons, then the total, number of Electrons emitted from

an elemental thickness dz at depth z is

Ne Wdz = I(z)nc dz	 (5.1)

where I(z) = 1  a-n6z is the photon intensity at depth

z, a is the cross section (calculated by the Xa method)

and T is the escape depth of the electrons. The total

number of electrons at depth z times the average proba-

bility of electron escape gives the number of electrons

escaping from elemental thickness dz at depth z. Thus,

to get the total number of electrons escaping from the

solid, we muss then integrate over zs

Ntot ^ I dz Ne (z) I dA0,0) f( 9 ,z,T)/IdA(9,0) .	 (5.2)

The integral .fdAf (9,a,T) /IdA 	(5.3)

is the average probability of escape, depending still

upon T and Z. TI,e fUnc:tion f (6, z, -c) is the probability of

an electron escaping from the solid with angle 9, escape
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depth T, and from a depth of z. We choose to represent

this function by the exponential.

f(9,z,T) = e-Z/Tcose
	

(5.4)

fpr 0 < e < v/2, otherwise defined as zero. z/cose = d

is the distance the electron must travel to escape

(See Figure 5.14). it may be noted that f(e, z, T) 
= e-d/T

becomes 1/e when T= d, i.e., when the electrons travel

one escape depth their probability of escape has been

reduced to 1/e.

The next step is to set limits for the integrals in

Eq. 5.2. The integral MA is overall angles and is

just 47. The integral IdA f(e,z,T) is overall angles,

but note that :chile f (e,z,T) is defined as zero for

Tr/2 <f) < 27r, the angle 0 is taken overall 21r angles,

so that the integral may be taken equivalently over the

upper hemisphere. Thus we are saying that those electrons

emitted in the direction downward from the surface never

escape. The integral over z may be taken from 0 to C*

for mathematical convenience, since the contributions

from large z are negligible due to the exponential nature

of the scattering depth T. Then Eq.__.5..2 becomes

Ntot - T.o ncfo a-	
cnz dz f	 e-z/TCOSe dA/4w (5.5)

upper
hemisphere

4

.3s



surface

dz at

z

H.

FIGURE 5.10. Diagram of electron escape
from our solid model.

aeptn z



89.

We solve this equation in Appendix A. The resulting

equation is

Ntat = 1 { 1 _ In (1+nQT) }	 (A. 4)
1 	 2	 ncT

Notice that Eq. A.4 is approximately equal to

Ntot ^ 1 {1 -(a 	 a/2^ ^ ^ 1/4 a (for small a) (5.6)
O

where a = n6T. It is reassuring that Ntot/io is

approximately linear in a since that is the assumption

we made when we compared the relative sizes of our generated

spectra to those of the experimentalists.

Notice also that we are making the approximation that

T is constant, and we are completely neglecting electron-

electron scattering, i.e., either the electron makes it

out of the solid with all its energy or else it does not

make it out at all. From the form of Eq. A.4 we realize

that while c and n are set values, we are free to choose

a value of T such that we obtain the desired value of

N tot /Io	 The obvious restriction being that T is physi-

cally reasonable. Just as crucial in this curve fitting

process is the choosers value of the FWHM to use for

Gaussian broadenings of each of the individual N tot /Io 's

(wh.Lch correspond to the orginal Q's) which sum to the true

';, --
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integrated line intensity. Ile point out that a Fti^-
0

value of O.I. eV and a T of 15A resulted in an intensity

five times too large, while a FWFM value of

.32 eV and a T of 8A gave intensities within 70%.

Thus we see that this curve fitting process is somewhat

arbitrary unless one of these parameters is known accurately.

5.6.2. Solid Model Cross Sections

Since only our 11.68 eV curve correctly *represents

cross section contributions from all the valence levels,

we present our normalized 11.68 eV EDC in Figure 5.11.

The figure was generated by calculating Ntot/lo for each

of the five contributing orbitals, assuming a•Gaussian

distribution function whose area equals the value of

N tot /10 and a FWHM of .32 eV, and finally summing the

Gaussians and multiplying by the detector response function

and then integrating with respect to the Energy. A direct

comparison between the theoretical and experimental curves

is shown in Figure 5.12. From the figures we see that

our model predicts reasonable intensities with a FWHM

value of .32 eV and a T of 8A. However, we feel that

while .32 eV is probably a reasonable broadening value,

the true value for T may be slightly Larger, so that our

model predicts absolute intensities too large. This is

a



Figure 5.11. Normalized EDC employing the solid model
from clusters for the hw = 11.68 eV curve.
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Figure 5.12. Direct comparison of theoretical. 11.68 eV curve
(dotted Line) and the experimental EDC (solid line).
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reasonable since our model does not account for those

electrons inelastically scattered such that they have

insufficient energy to escape the ZnO electron affinity,

nor does it consider Auger or phonon processes.

5.7. Conclusion

The basis for photoelectron spectroscopy serving as

a tool in the determination of electronic structures lies

in the fact that cross sections change as a function of

energy, enabling identification of the molecular orbitals.

Any theory capable of predicting these changes would

certainly represent a reasonably accurate model of the

molecular bonding.

The xa generated spectra has shown the basic trends

in both the UPS and XPS results; however due to the "com-

pressed" xa MO structure we could not resolve two peaks

in our X-ray valence band structure, nor obtain the

growing effect of increasing contributing states as seen

in the UPS results.

Armed now with the relative intensities of the

carious molecular orbitals, we can construct a MO struc-

ture from the experimental results with the correct

spacing. Let us assume our ordering in Figure 5.2 is

correct. Since our cross section calculations show large

:
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intensities for tha 7t2 level in both the UV and X-ray

energies, we can use this tirst peak to "line up" the

X-ray and UV spectra. We will use the UPS VBM since the

 structure seen at 0-2 eV in the XPS data (Figure 5.7(b))

probably represents photoemission from surface states.

From Table 5.1 we see that the UPS results show a second

peak at -2.8 + 0.2 eV, and our UV calculations (Figures

5.5(a)-(e)) show that only one other state besides the

7t2 has considerable intensity, that is the rt1 state.

Thus we assign this location to the lt I levels (See

Figure 5.13). Looking back to the XPS results we see

a second peak at 3.0 + 0.2 eV below their first peak.

Our X-ray calculations tell us that only one other state

besides the 7t2 state has considerable intensity: the

2e state. Thus we assign this experimental X-ray peak

at 4.6 + 0.2 eV (below the UPS VBM) to the 2e state. From

the corrected X-ray spectra in Figure 5.7(b) we see that

the valence band essentially ends 1.1 + 0.1 eV below

the second peak, or according to our scale at 5:7 + 0.2 eV

below the VBM. Thus this can be set as the upper limit

on the width of the valence band. If however the valence

band structure (left end of feature) seen in the XPS

corrected spectra is due to say electron-electron scattering

and the 6t2 and Gal states are actually very close to the
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Figure 5.13. MO diagram for Zn0 predicted
from our calculated orbital inten-
sities and the experimental data.
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2e level, then the valence band width becomes 4.6 + 0.3 eV,

which serves as the lower limit of the VB width. Finally,

the UPS results place the Zn3d level at 7.5 + 0.2 eV below

the VBM; the XPS results place it at 8.8 + 0.1 eV below

their VBM which also corresponds to 7.5 4. 0.2 eV below. the UPS

VBM. Thus with a knowledge of the cross section relative

intensities one can deduce the orbital structure from the

photoemission data. We show this cross section-determined

MO diagram for ZnO in Figure 5.13.

5.8. Summary

With a knowledge of the photoemission cross sections,

X-ray and UV photoelectron spectroscopy are seen to com-

plem,;^nt each other in providing information on the orbital

spacings of ZnO. Together with the Xa model of bonding,

the cross section values allow a complete determination

of the electronic structure of ZnO. However, more cal-

culations need to be carried out to verify the "univer-

sality" of this method in determining electronic structures

of other metallic compounds. Also more work needs to be

done to establish a criterion for choosing a cluster

size.
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Appendix A^

We are concerned with solving Eq. 5.5:

Ntot = Ionalo a-anzdz fuPPer e-z/Tcos$dA /47r.

hemisphere
Integrating with respect to 0 and using the substitutition

-d cos 6 = sin  d-8 we obtain:

Ntot _ 10a 
2 

(-I) I
o/2 d (cos @) IQdz a-z (anTTcos9 ) -

(A.1)
—co

The dz integral is equivalent to I0 du e+u so that

- z anT
N	 =	 o	 ITr /2

 d(cose) cos 9	 (A.2)tot 2 0	 1+ a cos 9

where a =	 anT.	 Now let u = cos 8 and then 9,b

-z anT 0
02Ntot - Il	 du i+—au . This reduces to

+I anT
Nt_	 o { a - 3 Znll  + au l	 ©}	 (A.3)©t

+IonaT. 1 _
which is equal to Ntot -	 2	 {a

1a Qnll + all.

Dividing both sides of this equation by In to obtain

the same quantity as the experimentalists results in:

"tot =	 2 {1 - Qn (l++naT)
(A.4)Io n T

::	 a
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P..PPEND2X B

Using the solid model discussed in Section 5.6.1.

we have calculated absolute cross section intensities

for the Xray range. However, no absolute intensities

for the Xray range have been published in the literature.

Generating the spectra by assuming Gaussian line

shapes discussed in Section 5.3. resulted in a

normalized curve like that in Figure 5.6 with an 0(2s)

peak intensity of 1.1 x 10-6 , Zn(3d) peak intensity of

3.6 x 10-5 , and O(2p) peak intensity of 4.1 x 10 '6 , all

in units of number of electrons emitted per absorbed

photon. The scattering depth T assumed was 20A.

n	 _

r

i
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