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EARLY STAGES OF THE OXIDATION OF METAY. SURFACES

Photoemission cross sections have been calculated for
the Zn04_6 cluster using the Self-Consistent-yo~Scattered
Wave (SCF-yo-SW) theory which display the main features
of the ultraviolet and E~ray photoemission data from ZnO.
A solid model is suggested for an absolute photoemission
intensity comparison resulting in )\d intensities which are
roughly #0% of the experimental values. Together with
the experimental data, the calculations allow a complete

determination of the electronic structure of a Zn0 surface.
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' CHAPTER ONE

INTRODUCTION

—

Surface studies have increased dramatically in the
past few years, especially in the areas of adsorption and
chemisorption on metallic surfaces. An understanding of
the geometric and electronic structure of surfaces is of
paramount importance in the study of catalytic processes,
corrosion, passivity, and oxidation.

In solid state physics, the bulk characteristics of
metals have been successfully studied by assuming a geo-
metry from X-ray scattering and then calculating a co-
hesive energy. Gases have bien studied by rotational spec-
troscopy (infrared) to obtain their geometrital arrangement.
However, the study of gases adsorbed on metal surfaces is
much more complicated because the molecules do not rotate
freely on surfaces, and the metal electrons screen the
electric field of the incident light.l

Low energy electron diffraction (LEEI)).2 has provided
the most extensive geometric information c¢oncerning sur-
faces. 1In LEED, electrons with wavelengths comparable'to
the lattice spacing are scattered by the ion cores of the
periocdic crystal. This corresponds to an energy range of

10 eV to 500 eV, where the electrons have a mean free path

b At
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~of 3-20 A. Thus virtually all the scattering is within

the surface region. However, difficulty arises due to
multiple scatterings.

Photoelectron spectroscopy3 (photoemission) has proven
to be the most promising teéhnique for the determination
of the energy levels. The incident 1ight is in the ultra-
violet or soft X-fay region, and the current of photoemit-
ted electrons is measured as a function of their kinetic
energy. Then the binding energy is given by

)
where hiw is the energy of the incident light and EL is the
kinetic energy of the photoemitted electron. This method
is surface sensitive even though the light penetrates into.
the so0lid because the photoemitted electrons have a short
mean free path. It is important to remember that the peaks
in the measured spectrum correspond to the various states
of the ion whereas the neutral system is of direct interest.
However, in most cases the states of the ion can be correla-
ted with those of the neutral system so that the spectrum
gives: &= picture of the energy levels of the neutral system.

Most of the experimental work in photoelectron spec-—
troscopy has involved measuring the binding energies using

either He I(21.2 eV) or He II{40.8 eV) résonanCe lamps.
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% However, with the use of synchrotron radiation the contin-
| uous range from the infrared to the X-ray region is now
available. ‘

A further a&vance has-been to measure the photoelec-
tron spectrum as a function of take off anglé for the
emitted elexztron and as a function of the angle of incidence
for the iacoming light. With the use of highly polarized -
and tunable light, measurements can be made.as a function
of photon energy with angular dependences as well. If
A a gaseous molecule adsorbed on a solid surface has a
i - definite orientation, distinctive angular patterns can be

observed Which would not be present. for the random orien-
tétions of the gas phase. These patterné are not simply
related to any physical property of the system but are gi-
ven by the matrix element of the photoemission Hamiltonian |
between initial and final (continuum) states. Thus it is
eésential to héve a theory of photoemission in order to
extract useful physical information.

Our photoemission calculations were performed using
the Self-Consistent-Field—-ya—Scattered Wave (SCF-yq=SW)
ﬁethod. This method yields quite good ionization potentials
and charge densities yet is sufficiently economical to be
applied to relatively large systems. The multiple scat-

tering method has been developed over the years, bBth in




i
%
;

PN AR e b < WA s e opnin £ e

ot omb 2 i

10.

nuclear phyﬂics4 to compute nuclear cross sections, and in
solid state physics5 to compute the electronic structure
of solids. More recently the method has been applied to

6.7 +to calculate

molecular physics by Johnson and coworkers
hound state eigenvalues. These'eigenfunctions serve as
the initial state in the matrix element of photoemission.
The final states are calculated by the extension of the
multiple scattering method developed by Dill and Dehmer8
to treat unbound states. Finally, the multiple scattering
theory has begen applied to surface physics by Davenport9

to calculate matrix élements of photoemission cross sec-
tions. .

For the case of semiconductors, photoemission is
generally considered to be a "local" process. Thus it is
quite reasonable to expect the cluster appfoach to provide
a better description than that of band theory, which
depends on long range order and periodicity. indeed, photo4
emission cross section calculations have been performed
on the CO moleéule using the SCF-yxa—SW cluster model which
for the first time place theory and experiment in reason-
able~agreement.l} These calculations were able to deter-
mine the orientation of undissociated CO molecules on a

10

solid surface. In this caseé the subtrate can be

neglected in the calculation because the energy levels of
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the adsorbate are relatively unperturbed upon adsorption.
Thus these calculations can provide only geumetrical

arrangement of the surface but do not provide any informa-

tion on the electronic structure of the "adsorptive" bonds.

The next step is to calculate cross sections for the
more complicated case of adsorptipn whereupon the adsorbing
molecule does diséociate and thus the substrate cannot be
neglected. This is the more general case of chemisorption
and can provide information on both the geometric¢ and
electronic structure.

In this dissertation we discuss our SCF~-ya~SW photo-
emission cross section calculations for the case of ad-

sorption of a dissociated molecular species on a metallic

surface. We have chosen to use a zinc surface since it is
representative of a nontransition metal and also because

of its technological importance concerning catalytic pro—
cesses. We have chosen to use oxygen as the adsorbing_

gas because of its importance involving corrosion. The

2n0 system is a good choice since both ultraviolet (UV) and

X-ray experimental photoemission data is available for

comparison. Differential cross sections were not calculated

for Zn0 since no experimental data has been published,

The structure of the remainder of this dissertation

is as follows. 1In Chapter 2 we discuss the theory of photo-




'em1551on and brlk ' I lew previous calculations in the

'llterature.' In Chap-v:?ﬁ'we develop'the'formaliem-fdrf'

the SCF—xa“SW method photoemlsSLQn. 'Chapter'4 is a
brlef summary of - ghc___m_SSLOn experlmental methods and

of relevant surfacv.q,y xES done prev1ously on the the Zno

T

PAGE 1§
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,system. CIn Chapter 5 we present our results and conclu510ns.

B g
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CHAPTER TWO

PHOTOEMISSION

The differential photoemission cross section is de-.
fined as the number of electrons leaving the sample which
fiow into a given solid angle per unit time divided by
the number of phoions incident on the sample per unit area
and per unit time:

do _ Nelectrons

da Nphotons/Area

The total cross secéion {also called angle averaged Cross
section) is obtained by integrating over all solid angles
and is usually in the range of 1—20.megabarns, where

1 b = 10" 8.

The Hamiltonian for photoemission can be written

_ e . eh = e? 2
H_HO-‘“IEEK.-ﬁ lzmc? K+WIKI (2.1)

which is just the one electron Hamiltonian for a molecule
in the presence of the field 5 > 3 + % R. We will consider
a nonquantized radiation field which is wvalid for arbitrary
light intensities involving induced emission processes.1
The last term in Eqg. 2.1lis the diamagnetic term which is
small and will be neglected. We will make the dipole ap-

proximutisn, i.e., neglect .the spatial variation of the

L e s e St A Sa? g 1+ = e we e 1

e e, NP e R NITE TS o - R e b A

e dgegs -




At

e T T

AT A A A b s, vt e+ o

ST AL

Y

15.

vector potential X within the matrix element, which is rea-
sonable when the incident radiation wavelengths are large
compared to the'gtomic dimensions.~ Then the term in V-X
will be zero, and the Hamiltonian consists of

A-B

= e
B = Ho + mc

where H = ii + V(?) and S A.3 can be considered as a
(o) 2m me
perturbation term. A is the unit vector in the direction
of Z.
The transition probability between eigenfunctions

|i> and [£> of H_ is obtained from Fermi's Golden rule?

.

dw =

Tl I 8(ege ~hw) |<£|V-E[1i>]2
z |

The matrix element is correct only to first order since |i> and
|£> are eigenfunctions of H, and not of the perturbation

term. In actual calculations however, [i> is a numerical
solution to an approximated H° and represents a bound state
whereas |f£> is a function of the wave vector X of the
photoemitted electron and represents a continuum state.

The search for an appropriate form of:-the final state - -

[£> has been the aim of past photoemission calculations.

3

Bethe and Salpeter™ have calculated cross sections -of hydro-

genic levels using plane wave final states. They show that




16.

the plane wave results never approach the correct value,
except for s states and then only in the high frequency
limit ~ 500 eV. The final state we will use obeys a

Coulomb potential and it's general form is given by2

L =-ikr
_. Jiker ~ e
wf(r) = e' + £(r) -

r-+m
which is the asymptotic form of an incident Coulomb wave
plus an incoming spherical wave (see Chapter 3). Then
integraﬁing over the delta function in Fermi's Golden rule

gives the usual density of states factor

_ 1 nk
PE Tams A7 -

Using the unit of length to be the Bohr radius and the unit

of energy to be the Rydberg results in

-d-..g-z E. }E. h. 3 2 2
=3 - |<£]a §11>| a,

where w is expressed in Rydbergs. Alsc it is convenient
to use the comﬁutation relation [H,P] = ikwov resulting
in

do 1

i e LA R S ES (2.2)
£ "1 '

2 of the qua-

wlk*ch can be viewed as the one-electron limit
dratic response of a system to an external probe. A first

principles approach to this problem has bsen given by

e e W A

e s b ey g
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Schaich and ashcroft? ana by Caroli et g;.s

The potential in Equation 2.2 is a one-electren
potential. Hermann and Skillman6 have determined self-
consistent potentials which have been used to calculate
atomic photoionization cross sections using Hydrogenic

7 The results have been found to predict

wavefunctions.

the main trends in cross section versus photon erergy.

See reference 8 for a review of experimental results on

atomic cross sections. Also, Hartree-Fock calculations

have been performed on some atoms giving cross sections

which agree reasonably well with experimental results.9

But in these early calculations the one electron potential
- used was that of the ground state. The response of the

remaining electrons to the removal of an electron has

been neglected. This is valid only in the adiabatic

approximation (i.e., the electron is removed slowly) as

then the system remains in the ground state and the out-

going electron carries the relaxation energy of the system
as kinetic energy. However, if the electron is removed

suddenly the ion may be left in various excited states.

B S I Tt b e O R L PR

Discrete states are called shake up lines; shake off sa-

tellites are states which include another electron in

the continuum.lo~ Also core holes may relax by Auger

processes or by auto jonization, i.e., the Coulomb repulsion
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of electrons acts to de~excite the ion by simultaneously
filling the core hole and ejecting a second electron.ll
In the case of molecules added complications arise
due'to the vibrational and rotational motions. The rota-
tional levels are n=glected because their spacing is '

about .01 evi?

and cannot be resolved. The vibrational
effects are important only when the Born Oppenheimer
approximation (treat the nuclei as fixed and obtain a set
of eigenfunctions for fixed nuclei with little coupling
betwen the sets) is no longer valid. The coupling becomes

13

important near level crossings. In this case the matrix

element contains both an electron and vibrational term.

14 states that the initial

The Franck-Condon principle
staze vibrational function is sharply peaked about the
equilibrium value, so that the electronic term is nearly
constant over the integral and the cross section is pro-
portional to the product of the electronic term and

the Franck-Condon factor, which is the overlap integral
between the initial and final state vibrational functions.
We will be dealing with the sum over all final vibrational
states so that, if the Franck-Condoun principle is wvalid,.
all reference to vibrational states drops out. If it is

not valid, the cross section represents an average over

the initial vibrationl state. (Rotational effects are

R Ayt S TS —
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neglected in our calculations.)

Molecular calculations using plane wave final states

15

have been reported by Ellison and coworkers. Their

—

results do not agree with experimental data for photon
energies less than 40 ev. Other calculations reported
are those of Schweig ané Thiel and coworkersls, and

17

others. Tuckwell18 has gone beyond the plane wave

results and calculated cross sectios for N, and 02 using a 2

,
?
|
[
;
i

i center approximation based on the separability of the

.
i

Schrodinger equation for a diatomic in prolate spherical

coordinates. Similar calculations have been performed

19 20

on H, by Flannery and abik and on Hz+ by Bates and Opik.

e
.

In general, for atoms and molecules it has been found that
! : ' Eq. 2.2 gives cross sections which ordinarily agree with

the data to within a factor of 2, except when final states
' are approximated b¥ a plane wave and then errors an order

of magnitude result.

For the case of solids, reviews have been given by

o ]
Eastman®l and by smith~2 who use essentially one electron

theories. The short mean free path of elsctrons far above

SN

the Fermi surface limits the photoemission to the surface
region. Since it is the electron~electron interactions
(inelastic scattering between .electrons) which causes the

short free path, many body effects should be included from

R A o S D LT MBI T 4
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" due to the other electrons are particularly pronounced.

20.
the start. However, in practice most calculations for
solids use the one electron band structure for the bulk and
neglect surface and many body effects. The initial and

23 has developed

final states are Bloch waves; wi(?). Liebsch
a one electron theory which treats a semi-infinite solid.
and includes the multiple scattering by the ion cores both

24 has used multiple

for initial and final states. Gadzuk
scattering theory to treat photoemission from simple mole-
cules adsorbed on solid surfaces which are treated in the
tight finding approximation. Strong angular dependences
were observed.

For a molecule near a metal surface, screening effects

25

This may cause substantial local field corrections to the

26, thus decreasing

ver’ or potential A of the incident photon
the validity of our neglecting the spatial variation of &
and V » A term in the Hamiltonian (Eq. 2.1). However,

the most dramatic effects on the cross sections are due to

the matrix elements themselves, which is what we will

calculate in this thesis.
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CHAPTER THREE

The SCF-ya=SW METHOD

o

%= . In the SCF-yxa—-SW formalism we are concerned with

-l solving the one electron Schrdédinger equation (in Ryd-

v

berg units)

[Tv2 + V(D)] (@) = By (D) (3.1)
for a local potential function

V(Z) = vc(i") + vxa(“f) (3.2)

which includes the coulomb contribution Vé(r) and the xa

statistical density-functional approkimation

. .1/3
an(§) = =6al(3/871) o ()] / _ (3.3)

to the exchange effects and removes the electron self-
interactidn} where p(¥) is the electronic charge density.
Setting o« = 1 gives the exchange potential derived by
Sla.ter2 in 1951, and setting o = 2/3 fields the exchange
approximation derived independently by Gaspar3 and by Xohn

and Sﬁﬁm4. However, a value for o chosen systematically

T T T T e oo

between these two limits generally vields more reliable

results. Schwarz has systematically determined atomic

values of a by matching the xa total energy of the atom
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to the Hartree-Fock total energy.

To solve equation 3.1 Jor a molecule, one first geome-

trically partitions the space of.the molecule into regions
of sufficiently high symmeﬁry such that one dimensional
integrals are solutions in each region. The'simplest
such regions are spheres, centered on each atom with con-
stant potential regions between spheres. This results in
three fundamental types of regions:
I. Atomic: regions within touching spheres centered
~on the constituent atoms
II. Interatomic: regions between the atomic spheres
and an outer sphere which surrounds the entire
molécule .
IXI. Extramolecular: regibn exterior to the outer

sphere.

The potent;al Vﬁ(r) + an(g) (eg. 3.2) is then spheri-
cally averaged inside each atomic region I and also for
region III; it is assumed to be constant throughout region
II, equal to the volume average of Vé(g) + an(g) over this
rggion. A simple superposition of atomic charge densities
is substituted into Poisson's eguation to obtain the
initial molecular potentials. Because we have partitioned
matter into local regions of spherically averaged and

volume averaged potentials, we canr use a rapidly convergent

T b b AT TR L
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partial-wave representation for the solutions of Egquation
3.1. We begin by writing down the most general form

of these solutions within each region and then match

these functions and their derivatives at the sphere boun-
daries. Once a solution islobtained we must calculate a"

new potential and iterate to self-consistency.

3.1. Solutions for Region I

For region I, inside each atomic sphere j the wave-

functions can be expanded as
¥ (F) = I(D) Cg JRg(e,r} YL(E) (3.4)

where L = (g,m) is the partial wave angular momentum index.

The YL(r)'s are the spherical harmonics, the C J coeffici-

L
ents are to be determined, and the le(e,r)'are the solu-
tions of the radical Schrodinger equation
l 4 s d 2 (241 i 3
[- 2 ar r ar + -—-(-i-:'z'-)" + VJ (r)-e] Rg’ (e,x) =0 {3.5)

The potential near the origin r = 0 will be dominated by

the coulomb attraction at the nucleus which is given by

V(r} = - 2z/r
x>0

where 2z is the atomic number. The solutions in this region

will then be the regular coulomb functions. They must be




PPt |

27.

finite at the origir and are generated by outward numerical
iptegration of equation (3.5) for each partial wave com-
ponent and each trial energy. This form applies for

both bound and continuum states.

3.2. Solutions for Region IIX

In the extramolecular region III, we must allow for

both the regular and irregular solutions so that

o @ =z [e® Bten + BY oS () 1y (x). (3.6)

For bound states (e<0) we choose C° = 0 and then gi is
the linear combination of coulomb functions which decays
exponentially for large r, satisfying the potential for
large r which is aliso coulombic. ZFor the unbound states
Rz(s,r) and gz(r) ara proportional to the regular and
irregular coulomb wave functions which are solutions %o

the differential equation

[v2 + k2 - 3%-]5] ¥(E) =0 (3.7)
where k2 = ¢ and v = Eﬁgl. For an electron z = -1,
The most general form of the solution is

¥y (x) N

- YL(r).

Py (Z)

Inserting this solution into equation 3.7 yields

e e AEIAE e e e
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2 2 '
[%E“ + k2 - _%E - Eiéélljyz(r) = 0 (3.8)

The solutions are the regqular solution Fz(y,p) and the
irregular soltuion Gz(ygp) where p = kr.
Thus the solutions Rz(e,r) and gz(r) given above are equal

to E&L%%EL and - E&é%;&l respectively. The asymptotic

forms of these functions are

F,(y,p) = sin [kr - 3% yon2kr + o,]
AL )
G, (v,p) = cos [kxr - %} yen2kr + o ]

' v 9

where oF) is the phasé shift defined by

O, = Arg T (2 + 1 + ivy) .

and tue full expansion of the coulomb wave is

+.
y i) = o) dnitt O %ﬂl ¥ () ¥ * (k) (3.9)
(See ref. 6).

3.3 Solutions for Region II.

o

For the intersphere region II, the Schrodinger equa-

tion becomes

(V2 +e=- T o7 5@ =0

-

where ﬁ}I is the volume average of vV (r) + an(r) over that
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region. The solutions are linear combinations of spherical
Bessel functions obtained by substitution of Green's

function (defined by (v2 + k2) G(g;f') = a(f-f'))into

Green's theorem. Employing the spherical harmonic expan-

sion of Green's function

> >,
G(%,2') = $%§%$T£_[= ~k T 3, (ke )n, (ke )Y ¥ (E) v (E)
L

where r_ and r_ are the greater and lesser of r and r'

(see ref 6,7) results in

II -
pri(r) = p(@yi~? Agjztikro) Y (x,)
_ (3.10)
I =2 3. (1),
£(3) ()i A ’h, (lkrj) YL(rj)

for e < VII and for e > ViI as

Iz - 0. . 3
() Q(L)Asz(kro)YL(ro)+ I(3) (LA, ng(krj)YL(rj) (3.11)

where jz(ikro) is a spherical Bessel function, hz(l)(ikrj)

is a spherical Hankel function of the first kind, and ng(krj)
is a spherical Neumann function. The first term in expres-
sions 3.10 and 3.11 may be thought of as a superposition

of "incoming" spherical waves, which have been scattered

by the potential of region III. The second term may be

TN L ST U - AT T sy 2
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interpreted as a superposition of "outgoing” spherical
waves, which have been scattered by the potential of the

atomic regions I.

3.4. Total Solutions

Next we match these functions and their derivatives
at each sphere boundary. This can be accomplished by
transforming products of spherical Bessel functions and
sphericial harmonics from one site to another by use of the

! general theorem8

o+ L LTHL"-
hz(kr) YL(r) = I 471

L' 'Lll'

I(L,%',L")
(3.12)

Ryo(kr,) 3,0 (kT )Y (F)) Ypu (T))

where r = ry + r, and r, and r, the greater and lesser
of these two. hm is any spherical Bessel function and I
is the Gaunt integral given by

I(L,L',L") = fY{(?)YL.(?)YL“(§) aa ) (3.13)

It can also be written as

2'41) (224"+1) ]35

4m (2% + 1) Cle' 2% 2im', m",m)

I(L,n',1" = [{2
| (3.14)

c(g'a¥g; 0 0 0)
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where the C's are the Clesbsch-Gordon coefficients.9

The resulting set of equations can be written-as7

- s @ o, ad, e o

. (3.15)
gg,n2 L %io

For bound states Cg = 0 and we have a homogeneous system
of equations in N x L unknowns, where N is the number of
séheres and L the number of partial waves per sphere.
For the continuum states we have an inhomogeneous system
i since any energy is allowed. The solution to the inhomo-
' geneous system is a linear combination of the corresponding
homoageneous solution and any inhomogeneous solution. To
find an inhomogeneous sclution we must solve the multiple
scattering Equations (3.15) with Cg = 8p,- This defines
the rows of the real symmetric K matrix, which is diagonal
for spherical potentials. Rewriting the solution of the

homogeneous system to incorporate the K matrix gives7
ol o O ~ o] A
¥ (0) = Ry(x)) Y, (x,) + L(L)K, gg‘(ro) YL(ro).
We may then take the general solution to be

w{T) = ):(A)uA ¢A(f) or using asymptotic

forms

W(F) ~ T () E(L)a,[s,; sine, - ikALcoseg]YL('i') (3.16)

]
|
i
!
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where

8. = kr ~31/2 - yn 2kr + ¢

3 '

“Matching the outgoing wave part of Equation 3.16 with that

of the coulomb wave.(Eq. 3.9) results in
- . & ""iUﬂ. *® - s -1
¢A = E(L) 47i” e ¥y (ky (1 :Lk)LA (3.17)
Then for the outer sphere we may write

o = sz arite ™ v Ry (D) (g ppefgr (0

1 (3.18)
+(T:IK)LL'92.(r)]

-

~1

na

where (Igiﬁ)LL, = Z{1l-ik)

A AL

For the atomic sphere we have

| i

- ' L =ig * - v A
$(ry) = B(L) I(L') 4ri"e 772 Y (K)Y, ' (r) (T35t pp B (7))
(3.19)
al

- Lyl L1
whera (l lk}LL. i(l 1k)LA AAL‘

3.5. Matrix Elements

In oxrder to calculate the matrix elements for the

.photbionization process, consider:an.atomic sphere for which
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the initial state can be written (Eg. 4)

- _ . j j >
1pj (r) = 2(1) ¢ Rz (rj)YL(r}

ahd the final state is given above (eg. 3.19).

The interaction is proportional to

Reyv = .ﬁ-é_,__ 3V/3r
but

- (r) ‘ (3.20)

e ~ 4 A
. = Y* A
Ae Logm B Yoy

so for an atomic sphere j the matrix element is

5 _ (4m? ,_..% _ic, A3 i o 0
R £ 3 S AL A
v BIRG . WILT, ov, M) (3.21)

Here I is the Gaunt integral and

= f

J 2 3 LA N
Rz'z" sphere rjdrj fl'(rj) Brj fau (rj)
Egquation 3.21 can be rewritten as
w Ar J* Ayvpd o~
M” = I (L) (v) 3 Yo\;A)E (L)Y (K). (3.22)

The outer sphere‘matrix element has the same form as Eq.

3.22, the intersphere region with oy - ? makes no

axr
contribution, and thus the full matrix element is given

by




M= 2 (L)(v) = Y;v (K) F(L, V)Y (K) (3.23)

which defines F.

For the total cross section values the matrix-
element must be ave:aged over all orientations. Thus
we take the absolute square of M (Eg. 3.23) and integrate
over all K and éverage over all directions A. (See
Ref. 7). This results in

0 === c—=— == I|F({L,WN]|? {3.24)
(sf-e.}z L,V

which is the angle averaged or total cross section for
photoemission measurements (done without angular resclu-

tion).
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CHAPTER FOUR

PREVIQUS ZENO STUDIES

3 4.1. Photoemission

Both Xray and UV photoemission (XPS and UPS) measure-

ments on semiconductor ZnO have been reported in the 1li-

o

terature. In general, the experiment consists of ir-

LR SN

; radiating the sample (single crystals are used to avoid

e

: | gain boundary problems) with monoenergetic radiation (ﬁw)
and measuring the kinetic energies (E;) of the photo-

emitted electrons. Then using the relation

the binding energies (Eb) of the emitted electrons can

be determined.. These binding energies correspond to the

electronic states of the solid. The number of electrons

leaving the solid with a given kinetic energy is a

measure of the cross section of that particular state

at the given photon energy. In the more familiar case

of gases, the states are usually sufficiently far apart

in energy such that a cross section peak can be resolved

for each state. For solids, the energy levels are closely
g spaced in bands permitting resolution of only a féw

{ peaks which represent cross section contributions from
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all the different states.

Implicit in Eg. 1.1 is the assumption that all
electrons leaving a particular orbital arrive at the
detector with the same kinetic energy, obviously not t@g
cése for a real solid. Other factors arise to complicate
the picture. One of the largest and most complicating
factors is the'energy loss of the emitted electrons on
their way out of the solid due to inelastic scattering.
Also the relaxation effects of the system due to the
absence of the emitted electron, the natural line broa-
dening due to the Iifetime of the ionized state, and
thermal broadening produce an uncertainty in the deduced

value of the binding energy, Ey-

4.1.1. Experimental Uncertainties

Of course other uncertainties are introduced by the
actual experimental setup and procedure used. Some un-
certainties are common to all photoemission spectrometers.
The resolution of the spectrometer is defined as the smal-~-
lest energy aiffe:ence between two groups of electrons
that will result in separate photuelectron bands in the
spectrum. This is usually estimated by using the full
width at half maximum intensity (FWHM) recorded when

the true line shape is theoretically known. The spectra
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exhibit considerable random fluctuations and statistical
noise due to the low electron count rates. Thus the
intensities have an uncertainty equal to the square root
of the total nuﬁber of electrons counted at a given
voltage. Also, photcemission band intensities are a
function of the intensity of the incident radiation,

slit widths, the type of energy analyzer, and surface

% — charges on the walls of the analyzer chamber and slits.

| For a given spectrometer, these parameters cdn be kept
more or less constant; however, comparisons of spectra
from different expe;imgital setups should be made with
caution. Even for a given spectrometer, large dis-
£ortions of the intensities may arise due to the discrimin-
ation of the analyzer for electrons of different energy.l
The sum of the contributions to the uncertainty tend to
broaden structure seen in the measured spectra and shift

it to lower energies.ll

? 4.1.2. Spectrometer Transmission and Broadening

In order to extract meaningful cross section values
from recorded spectra, it is neceésary to understand
the transmission and broadening characteristics of the
spectrometer. A spectrometer's broadening function is

equivalent to the energy distribution curve (EDC) that
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would be measured if the true distributiom were a delta
function of moncenergetic electrons. Of course the
shape of the broadening or response function can only
be guessed. Its width can be estimated from the

total of the contributions to resolution errors dnes to
the experimental equipment. Almeasure of the response

function width can be obtained from an EDC of a metal,

'since theoretically in the absence of broadening, the

high energy cutoff is determined by the Fermi distribution
function. Also depending on the type of snergy énalyzer
used, the width of the response function may or may not
be constant.

The broadening effect of the spectrometer on the

measured EDC can be expressed by the relation
O(E*)=S R(E-E') I(E) dE : (4.1)

where O(E') is the recorded EDC, R(E-E') is the instru-
mental response function, and I(E) is the trué spectrum
seen by the detector.

The transmission characteristics of the spectrometer
determine the measured intensity of the EDC. To obtain
an"absclute or normélized EDC, the ordinzte must be
scaled properly. Since the ordinate (intsnsity) of an

EDC is given in terms of electrons per absorbed photon
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per ev, iﬁ is necessary to know the guantum yield, i.e.,
the efficiency with which the incident photons produce
photoelectrons. The absolute quantum yield is defined

as the rati6 S6f -the number of electrons emitted to the
number of absorbed pﬁatan. The number of absorbed
photons is determined by the incident photon flux, the
transmission of any windows and/or grids the light musg
go through, and by the reflectivity of the sample. These

values must be determined from separate measurements.

4.1.3. Work Function and Threshold

The work function and photoelectric threshold
generally do not cdincide for a semiconductor. The photo=-
electrice threshold is defined as the energy from the
valence band maximum (top 6f the valence band) to the
vacuum level or equivalently the enerwgy gap plus the
electron affinity. Several factors make the determination
of the threshold from yield data difficult. First, band
_structure effects and optical selection rules often
appear to play an important part in photoemission from
semiconductors. Another complexity is that produced
by band bending, which complicates the curve near thres-
hold.. A third factor is the possibility of photoemission
from impurities in the forbidden gap as well as from

surface states. -
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The photoelectric threshold is important in deter-

mining the FPermi level of the sample.
EF = ﬁE ~-E_=f#g -V - B (4.2)

where f, is the work function of the sample, #, is that

c
of the collector can, E, is the electron affinity of

the sample and Vc is the contact potential between the

po
collector and emitter. If the band-bending region is
small compared to the escape depth of the electrons, the
value of EF obtained will apply to bands in the bulk.

If the region is larger compared to the escape depth,
the value of EF obtained will correspon& to bands at the
surface. If the region is comparable to the escape
depth, Ep might appear to be a function of the photon
energy and will not be well defined.? In order to cir-

cumvent this problem, measurements are given with re-

spect to the valence band maximum (VBM).

4.1.4. Ultra High Vacuum Regquirements

The "zero of potential” to which the electron energy
is referred is actually the work function of the collector
can. ~ It is important to carry ou* photoemission measure-

ments in ultra high vacuum because contaminated surfaces

oyt oy
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usually have a wide variation in work function. If

the work function of the sample holder or that of the

sides of the sample is higher than the sample work function,

fringing emitter fields produce a potential barrier in
front of the emitter which distorts the low energy part
of the EDC such that it is shifted to lower energies and

10 Nonuniformity of the work function on the

broadened.
actual emitting surface also distorts the low energy

part of the EDC,

4.2. 2n0 Photoemission Experimental Studies

The most complete UV photoemission study of Zno has
been reported by Powell, et 25.3. Measurements
were made for photon energies between 7.8 and 11.6 eV

10

at pressures less than 10~ Torr employing the ac

retarding method. Additional measurements were made for

11.6 to 21.2 eV in pressures of about 18 ~

Torx. The
ultra high vacuum curves are reproduced in Chapter Five
for comparison with results from this work. Since the
experimentalists were able to normalize their EDC's,

an intensity comparison between the theoretical and
experimental results is made in Section 5.6. Important

features reported, deduced from the EDC's are the

location of the Zn3d band at 7.5 + 0.2 eV below the VBM
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and the width of the upper valence band, which appears
to be about 5 eV. Also, with respect to the top of the
valence band, maxima in the coﬁduction band density of
states were found at 8.5 + 0.2 eV and 10.4 + 0.2 eV,  ~
while two valence band maxima were found at -1.6 + 0.2
and -2.8 + 0.2 eV.

X-ray photoemission measurements have been done by
Ley et 5&.4. The Aftko photon source of 1486.6 eV
was used in pressures of about 10‘_B Torr. These curves
are reproduced in Chapter Five for comparison to our
curves. Important band features deduced from the measure-
ments are the location and width of the 3d band 8.8 eV
below the VBM and 2 eV, respectively. The upper valence
band width is reported about 7 eV and the 025 nonbonding
peak is at -20.7 with respect to the VBM. All values
are reported with uncertainties of + 0.1 eV.

Earlier dv and X-ray measurements reported by Vesely
et El.s placed the Zn3d location at
8.5 + 0.4 eV and 8.6 + 0.2 eV below the VBM. All these
values are summarized and compared to our calculated
.values in Table 5.1. (See Chapter Five). However, we are
mainly concerned with a comparison between the XPS results
of Ley et gl.,4 the UPS results of Powell et 3&.,3 and

our results. We present the others in Table 5.1 as evidence
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of the reproducibility of the experimental results.

4.3. Optical Experimental Studies

Also electron energy less and ultraviolet reflec-
tivity spectra of ZnO have been reported by Hengehold et
gl.e These spectra are shown in Figures 4.2(a}
and 4.2(b). The reflectivity measurements (which show
strong peaks near regions of interband transitions) exhibit
structure at 3.3, 5.0, 7.3 and 8.4 &V and in the
11-16 eV region. If we assume this last structure is due
to the transition of- electrons in the valence band to the
conduction band maxima at 8.5 + 0.2 eV and 10.4 + 0.2 eV
above the VBM (UPS resulis), this leads to a ;alence
band of approximately 4.6 eV. ‘The energy loss curve on
the other hand exhibits a large peak at the plasma exci-
tation energy-while the interband transitions are con-
siderably diminished in size. The energy loss measure-
ments yielded peaks at 3.8, 5.5, 9.5, 13.5, 18.8 and
35.5 eV. The dominant peak is the 18.f eV one and has
been attributed to a plasma excitation. This plasmon

excitation is seen in the XPS data in Section 5.5.

4.4 Theoretical Studies

7

RSssler has used the Korringa-XKohn-Rostoker
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(KXKR) method to calculate a band structure for zinc oxide.
The resultant band structure is shown in Figure 4.3(a).

This method involves the use of an ad hoc potential

with only a single parameter which is adjusted to obtain
the correct band gap. From Figure 4.3(a) it can be seen
that Zn0 exhibits a broad free electron-like lowest
conduction band about 1.6 eV wide, Zn3d levels lying
closely below the upper valence—Lands and p-antibonding
conduction band states 17 eV above the top of the valence
band. The KKR calculation is in good agreement with the
experimental photoemission results except for the location
of the Zn3d state and the width of ﬁhe upper valence band.

The calculation predicts 4 eV and 3.5 eV respectively,

while experimentally the values are in the ranges of 7.5

| to 8.5 eV and 5.0 eV.

A pseudopotential band structure calculation has been
carried out by Bloom and Ortenburger.8 Iﬁ
pseudopotential theory, a local repulsive potential is
constructed that cancels the crystal potential in the
core region rgsulting in a smooth pseudopotential. Such

a calculation does not include the Zn3d bands at

R R

all, which may be justifiable if these bands lie deep

enough such that their effect on the wvalence bands is

e S TR SN

negligible. As with the KKR calculation, the pseudo-
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potential calculation seems to be in general agreement
with the experimentally determined values. The band
diagram is shown in Figure 4.3(b). |

SCF-vya—-SW calculations have been carried out on ZnO

by Tossel.9 The MO diagram for the cluster model

used {Zneza) is shown in Figure 4.4. The diagram shows

A S =
HECRes

et e A T N

B s el ~Er i LS A EER L

a set 0,55 nonbonding orbitals (5a, 4tg), two Znds, 4p-02p
bonding orbitals (6aj, Gtz), a set of Zn3d-02p bonding
orbitals (le, 5t;) and a set of essentially nonbonding
02p orbitals (2e, 1ltj;, 7tj). The lowest empty orbital
is the 7al level of the conductive bands, of Zn-02p
antibonding character. Thus the 2Zn3d orbitals are pre-—
dicted to be about 4 eV below the top of the valence
band, some 3.5 eV higher than that'predicted by the UPS.
However, a transition state calculation was performed

on the Zn3d-like level (le). This consists of removing
one-half of an electron from the particular level and
then solving the one electron Schr&dinger equation untilr
self consistency is obtained. The idea behind the

; transition state concept is to represent the initial

state and the one-electron potential in the photoemission

i o = Pt e,

process more realistically, i.e., include relaxation

effects, than with the ground state. In the transition

O s

state calculation the le energy is lowered !y 3.2 eV,

L e e e
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bringing it into much better agreement with the UPS
results. This large shift in energy is reasonable since
the Zn3d level is localized and the removal of one~half
of an electron represents a large relaxation effect on
that level. Thus the transition state calculations of
the cluster approach represent the photoemission initial

states much more accurately than the band caleculations.
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Molecular Orbital diagram of hexagonal
Zn0, SCF-yu~SW method. Ref. 9.
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CHAPTFR FIVE

PRESENT STUDY

5.1. Choice of Parameters

Photoemission cross section calculations were carried

out for the ground state orbitals of wurtzite Zn0O. The
model used was four oxygen ions in the tetrahedral coordin-
ation with a zinc atom in the center. Each oﬁ&gen ion
carried 9.5 electrons, resulting in the oxyanion ZnOZG.
In consideration 6f Ehe surface sensitivity of photoemission,
this cluster was chosen since it represents a "building
block" of a Zn0 surface, which like the bulk, has the
wartzite structure (see Figure 5.1).

For the calculations the surface 2Zn-0 bonding distance

of 1.992 was used, and the nonoverlapping sphere radii

used were as follows:

r(OUT) = 5.40 a.u. (atomic units)

r{zZn) 2.12 a.u.

r (OXY)

l.64 a.u.

the statistical scaling parameter o was chosen +o be
.74447 in the oxygen spheres, .70677 in the zinc sphere,

and .72623 in the intersphere and outer sphere regions.
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These values were taken from Schwarz.2

In calculating the photoemission cross sections,

the highest energy occupied level (7t2) was used to

represent the top of the valence band. The ionization
¥ .

potential for this level was set to 5.0 eV (assuming a

collector work function of 5.0 eV reported by UPS) and

the rest were scaled accordingly.

5.2. Orbital Structure of Zno

The calculated SCF-yu-SW molecular orbital (MO)
diagram for the ground state of the Znoz6 cluster is shown
in Figure 5.2. Our results are in good agreement with
Tossels' xo calculations (see Section 4.4) using somewhat
different sphere radii. Figure 5.2 shows a set of Ojzg non-

bonding orbitals (5a, 4t3), a set of Zn3d-02p bonding or-
bitals (le, 5t2), two Znds, 4p-02p bonding orbitals (6a,,6t2) .,
and a set of nonbonding 02p orbitals (2e, 1tj, 7t2).

Since our final goal is to compare the calculated
photoemission cross sections with the experimental data,
it is important to understand the differences between the
calculated structure and that déduced experimentally, and
even more important to understand the role of the orbital
structure in dictating the observed spectra.

In comparing
the calculated structure-with the experimental structure,
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Molecular orbital diagram for ground
state energies of Zn036. Energies

are in eV and given with respect

to the vBM. We have lined up our
first state {7t") with +hat of the UPs
results. (See Table 5.1)

0 -
— 1t
- 2e
- 6t2
-4 1 — Gal
- le
T 5t2
-8 +
12 T
~16 <+
4t
- 2
Sal .




56.

one must remember that.the MO diagram represents the ground
state, whereas the experimental data represents a perturbed
state. While it is not clear exactly how to describe this
perturbed state, it is probably somewhere between the
ground state and the transition state.

In the remainder of this section we will compare
our calculated structure with the experim=ntal observations.
At the end of this section we present a summary of these

findings in Table 5.1.

5.2.1. Comparison of Theoretical and Experimental

Orbital Structure

Quite often in the comparison of thzoretical orbital

structure with experimental data, an empiriéal attempt

is made to broaden the calculated discrets levels into
the observed bands. This procedure may bz thought of as
. simulating the effect of adding more shells of.atoms

to the cluster in order to compensate for the finite size
of the cluétef. The usual procedure is to center a
Gaussian on each of the discrete levels, whose height is
equal to the occupancy of that state and the broadening
factor is an adjustable parameter.3 Whila the occupancy
of the initial state is a factor in the calculation of

the intensity, the matrix element for the probability of a
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transition is by far the most dominant factor, thus this
empirical broadening technigue cannot account at all

for the observed intensities. However, a correlation
between the calculated energy levels and the experimental
band energies may be possible enabling identification‘of.
the initial states responsible for a given observed band.

An examination of our calculated energy levels
(Figure 5.2) shows four groups of levels, and indeed the
XPS (see Section 4.2) results resolves four peaks. However,
closer examination of the first two groups which compromise
the upper wvalence baﬁd (states 7t2, 1lti, 2e, 6tz, and 6al)
reveals a band width of 2.3 eV, while both the UPS and XPS
results give higher values, approximately 5 and 7 eV re-~
spectively. From Table 5.1 it can be seen that this same
discrepancy holds for the widths of the Zn3d levels and the
O, levels, so that our predicted band widths are too
small.

Using the VBM as our reference zero, comparison of
the locations of the UPS peaks and the XPS peaks in Table
5.1 generally results in nonagreement between the two
values. One explanation for the evperimental discrepancies
is the extreme instrumental sensitivity to stray surface
charges and impurities in determining the zero reference

as discussed in Sections 4.13 and 4.14. However, a
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the deeper lying band structure more closely resembles
that deduced from the XPS results. Our calculated
02p-Zn4s separation of 1.5 eV lies within the uncertainty
= range of the UPS value, while the XPS value at 3.0 eV is
twice as large. On the othér hand, the ya 2Zn4s-Zn3d se-’
paration is 2.3 eV, the XPS value is 2.9 + 0.2 eV, and the
UPS value of 4.7.3 0.4 eV is‘alméét twice as large. The
calculated Zn3d-025 separation is 11.0 eV, and the XPS
result gives 11.9 + 0.2 eV (no UPS results available).
Comparison of the total energy spread from the VBM to
the O2g levels for the yo model (15.2 eV) with the XPS
results (20.7 + 0.1} and consideration of the yg small
band widths discussed above lead to the conclusion that
the xo cluster model repfesents a "compressed" version of
the experimental picture.
In the above discussion we did not consider the
broadening effects of the spectrometer on the observed
spectra. We will do so in the cross section results

we present next.
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02p locationb
Znds location

valence band
width

Zn3d location
Zn3d width
Opg locacion

Table 5.1. Comparison of experimental and calculated
values for orbital features. All values
in eV with respect to the VBM.

PRESENT STUDY UPS (REF. 4) XPS (REF. 5) OTHER®
-2.01 ~1.6 + 0.2 ~2.9 + 0.1 _
—3-5 "2.8 i 0-2’ "5.9 i'. Oll m———
2.3 N5 a7 5-68
| . 7 6
'-5.8 _7.5 i 002 ""8-8 i 0-1 7-8 r 8.5
.08 - v 2 27
~16.8 C— ~20.7 + 0.1 ~208
.2 — v3 n 48

aSuperscript refers to the reference at the end of Chapter Five.

bThe energy value at the center of the energy spread (for a

given set of levels representing the particular state) is

the value used for the location of that state.
[ 4
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5.3. Genc.....- i yg Photoemission Spectra

Calculations wv ag the SCF-yg-SW method result in
cross section valuws for the individual molecular
orbitals. This valqe represents the height of a delta
function centeret q&lthe given molecular orbital. Ex-
perimentally howéve;, the distributions of photoemitted
electrons from the orbitals are not detected as delta
functions but are instead spread out into bands.

Assuming conservation of electrons, the calculated

cross section value (the ratio of the number of electrons/

photon/area) must be proportional to the area under an
appropriate electron energy distribution curve. Since
we are concerned here only with relative intensity com-

parions, we have set the calculated cross section value

equal to the area under the curve. (Also see Section 5.6)

The sum of the contributions from all the broadening
effects (see Section 4.1) to this distribution curve

can only be estimated. We have chosen a Gaussian distri-
bution with a FWHEM of .32 eV (which corresponds to the
typically used value of ¢ = .01 Rydberg to represent the
true energy distribution from each molecular orbital.

The sum of all these Gaussians then represents the true

line intensity I(E) that is input to the detector. This
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true curve I(E) is related to the recorded spectra

O(E') by

O(E') = J R(E-E') I(E)AE (Eg. 4.1)

where R(E - B') is the instrumental response function.
We have used Eg. 4.1 to computer generate yo photo-
emission spectra which we'present in Sections 5.4 and
5.5 for comparison to the experimental curves. The
FWHM Yalues used for the instrumental response function
were those repo;ted in the literature. For the XPS
results we have used a Gaussian instrumental response
function with a height of one and a constant FWHM value
of .55 &V. For the UPS results we have also used a
Gaussian instrumental response function of height cne
but with a FWHM value which is directly proportional
to the kinetic energy of the electrons. The FWHEM value
used was 0.2 ev fdr a kinetic energy of 7.5 eV above the

VBM.

5.4. UV Photoemission Cross Sections

5.4.1. Upper Valence Band

In Figure 5.3 we present our UV cross section results.
We have plotted them as intensity versus kinetic energy

for easy comparison to the experimental data, which is
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Figure 5.3. xa generated EDC's for Zno"'6 cluster; intensity
is in arbitrary units.
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Normalized energy distributions of the

photoemitted electrons.

8.8 < Aiw <

10.4 eV. The dashed curves répresent
contributions to the EDC's from the
uncleaved-sample sides. Ref. 4.
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Normalized energy distributions of
the photoemitted electrons.

10.8 < Aiw < 11.6 eV. SI is attributed
to conduction band structure. Ref. 4.
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shown in Figures 5.4(a) and 5.4(b). The most outstanding
features of the experimeqtal curves are the overall
growth with increasing incident photon energy. Notice
also that not only has the intensity of the EDC's increased
with increasing photon energy but also the energy range
of emitted electrons has increased from
v 1.7 eV {hw = 8.8 eV) tov4.5 ev(hw = 11.€ eV), and more
importantly the FWHM value has increased. In simple
terms,. Ek = fiw - Ey (Bg. 1.1) so that if fiw is increased
by 0.4 eV, the Ep is also increased by that same amount.
However, from the experimental EDC's one can see that
for a photon increment of 0.4 eV, the peak is seen to
shift approximately 0.2 eV. -

All of these observations lead to the conclusion
that the increase in intensity and energy distribution
of electrons and the observed shift seen in the EDC's
are due to contributions from the increasing number of
accessible states as the photon energy probes deeper
into the.valence band. By ¥iw=11.68 all walance band
states have been reached and the peak has stopped
growing. This conclusion is further supported by our
calculations. Iﬁ Figures 5.5(a)~{e) we present the
calculated cross section values as a function of photon

energy for the individual molecular orbitals which comprise
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Figure 5.5(a). xa calculated cross section as a function of energy
for molecular orbital 7t2.
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Figure 5.5(b). xa calculated cross section for molecular
' orbital ltl.
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Figure 5.5(c). yxo calculated cross section for the 2e orbital.
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Figure 5.5(d). xo calculated cross section for the'6t2 orbital.
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the upper valence band. From Figures 5.5(a) - (e) it can

be seen that all of the individual cross section values actually

show a decreasing trend with increasing energy: thus an
increase in the number of accessible states 1s the most
logical reason for the observed growth.

Our calculated EDC's presented in Figure 5.3 display
the main trends of the exéerimental curves. Notice however,
that the yo EDC's do not grow as rapidly with increasing
photon energy. Closer examination of the role of the
valence band with in determining the EDC reveals that
even for our lowest photon energy calculation (Bw = 9.28 eV)
our entire valence band contributes to the curve. Thus
as we increase the photon energy in our calculations, the
same five states, and only these five states contribute
to the EDC. (Notice our FWHM is constant at 1.6 eV for
all these curves.) In fact, from the decreasing trends
in the cross sections in Figures 5.5(a) - (e) orz would
expect the intensity of the ya EDC's in Figure 5.3 to
decrease with increasing photon energy. This is not
seen because we have included the effects of the ac
retarding spectrometer. Since with this spectrometef
the FWHM of the detector window increases with increasing
electron energy, the high enerqgy side of the curve

~ is recorded larger than it really is. The magnitude of

At ey g o e S,
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the broadening effect can be seen in Figure 5.3. The
low energy curve (9.28 eV) has an energy range of

v 4.4 eV, while the high energy curve (l1.68 eV) has a
range of 4.7 eV. Without the spectrometer broadening
these energy ranges would be equivalent in

our calculations.

Our calculated peaks shift by an amount equivalent
to the photon energy shift whereas in the experimental
curves (Figures 5.4(a) and 5.4(b)} the peaks are seen
to shift more slowly than the corresponding photon
energy increase. The additional valence states accessible
to the higher photon energies lie deeper in energy and
thereby contribute electrons on the low end of the energy
scale. This results in a peak which shifts more slowly
to the right than the corresponding photen change.

One other small point to mention is that our Gaussian
broadening ignores the electron affinity of the Zno surface,
so that electrons can be predicted to leave the sample
with kinetic energies less than the experimental threshold
energy 7.8 ev. This can be seen in the 3.28 eV photon
curve of Figure 5.3, where the electrons are predicted
to escape with energies of 6.8 eV above the VBM. This
effect was not more pronounced because our valence band

width was small.
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Comparison cf the yg curves with the experimental -
EDC's shows our 11.68 eV curve tc ke in excellent agree-
ment with the data, while the 16.08 eV peak is at least
0.2 eV too low, and the 9.28 peak is at least 0.8 eV too
low. This is completely reasonable since our 10.08 and
9.28 curves incorrectly contain contributions from all the
valence levels, due to the inability of the ground state
calculation to correctly predict the Zn0O orbital spacings
especially from sucﬁ a small cluster. Immagine the 9.28
and 10.08 curves without the Gaussian contributions from
the deeper lying valence states, i.e., with some of the
left side of their curves cut away. This would cause
the peaks to shift to the right (higher energies), in
closer agreement with the experimental data. From this
we conclude that the 11.68 eV curve is a good represen-
tation of the ZnO valence band structure. It may be
noted though the FWHM is 1.6 eV in the Xa curve, as
opposed to 2.3 eV in the experimental EDC. This again

is due to the incorrect spacing of the molecular orbitals.
5.4.2. Zn3d Band

The UPS study reports the location of the Zn3d
band at 7.5 eV below the VBM. Thus the d bands were not

accessible to the photon energies discussed in Section
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Figure 5.5(g). xo calculated cross section for the St2 orbital.
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5.4.1. However, the ya ground state calculation predicted
the location of the 2Zn3d level to be at -5.8 below the
VBM so that our 34 band waé accessible to even the
9.28 eV photons. (Recall that the transition state
calculations (Section 4.4) of the yo methed were able to
predict the location of the 34 levels much more accurately.)
The cross section values calculated for both of the Zn3d-
like states (le, 5t3) are presented in Figures 5.5(f)-(g).
Note that the intensities are typical of those of the
valence band, as expected. While the UPS study did
measure photoemission from the 3d bands, a direct compari-
son to our results is not possible since the photon energy

and hence the electron energy was much hicher than ours.

5.5. X-ray Photoemission Crcss Sections

In Figure 5.6 we present our X-ray cross section re-
sults. The correspbnding experimental results.are shown
in Figures 5.7(a) and 5.7(b). Figure 5.7(a) is the "raw"
X-ray spectra. Here the most prominent feature is the
intense Zn3d spike centered about 12 eV balow the Fermi
level. At binding energies from 4 eV to 9 eV below the
Fermi level lie two valence band peaks, ind some 10 eV
and 17 eV below the Zn3d level lie two more peaks. Much

of this deeper lying structure has been attributed to a
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! FPigure 5.6. xo generated X~ray spectra for the Zno-ﬁcluster. Intensity
is in arbitrary units. The valence haﬁd and 3d peaks
i are also shown reduced by a factor of 12.
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plasmon excitation.9 The yo¢ spectrum shown in Figure 5.6
appears to reproduce the basic feapures of the XPS
results. Comparison of the area under the 3d spike and that
under the totalvupper valence band structure in Figure
5.7(a) shows the 3d peak to be roughly six times larger.
The corresponding measurement on our generated X-ray curve
resulted in a 3d/valence band ratio of 7.8. Figure 5.7(b)
shows the corrected experimental spectra. The 3d level
lies at -8.8 + 0l. eV, the O2p peak at -2.9 + 0.1 eV, the
Zn4s at -5.9 + 0.1 eV, and the Q025 peak at -20.7 + 0.1 eV,
all with respect to the VBM.

In the corrected spectra the Zn3d band has been sub-
fracted along with the contribution from inelastically
scattered electrons (including those attributed to the
plasmon excitation). The ratio of the area under the 02g
peak (labelled III in Figure 5.7(b)) to the valence band
structure (labelled I and II) is approximately 1.5, while
the corresponding ratio from our calculations is 4.4.
Since the theoretical and evperimental ratios of the
$n3d peak area to the area of the valence band structure
are in reasonable agreement, we conclude that the yo model

predicts the O35 feature to be roughly three times smaller

than that attributed to it in Pigure 5.7(b).

Comparison of the overall XPS picture with our generated
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spectra again shows our MO levels to be spaced too closely.
Because of the compressed walence band in the yo model,
only one valence band pedk is resolved in our generated
spectra. Also the peak separation between the calculated
3d band and the 034 band is 10.9 eV, while the experimental
values is 11.9 eV. |

Notice that the energy scale in the theoretical spec-
tra does not coincide with that of the X-ray spectra.

Our yo spectra was generated by placing the highest
occupied orbital, 7t,, -1.6 eV below the VBM, i.e., a
Gaussian distribﬁtiqn of electrons assumed for that state
was centered at -1.6 eV, the location of the 7t5; level pre-
dicted from the UPS results. Our X-ray calculations

show that our one valence band peak is due mainly to the
7ty level, so that it corresponds to the first peak in the
XPS curve, which the experimentalists place =-2.9 eV below
the VBM. Thus there is a discrepancy of about 1.3 eV in
the location of the VBM between the UPS and XPS data.

In order to compare our results with those of XPS, we
need to to shift our spectra about 1.3 eV to the left
(deeper energy) to line up the first peakXs of both spectra.
Then our resultant peaks lie at -7.1 (34}, -2.9 eV (valence
band), and -18.0 eV (02s) with respect to the XPS VBM.

One other interesting point to mention is that while
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our yalence band consists of five states, our X-ray cal-
culations predict the entire valence band structura is
due mainly to states 7ty and 2e, with a contribution ratio
of approximately 3/1. If we equate the 7t,; level with
the peak I in Figure 5.7(b) and the 2e level with peak II,
then XPS predicts an orbital separation of 3.0 eV. We
will come back to this idea in Section 5.7.

In Chapter 2 it was pointed out that the xo method
uses the dipole approximation, which is valid when the
incident wavelengths are large compared to atomic dimen-

sions. Mathematically, the dipole apprcximation consists

of expanding the function e-lkr in a power series and then
dropping all terms but the first. Since e **T can be
expanded as

~ikr . 4_si. _ (kr}? . (kr)?® (kr)*_ . (kr)S

e = J«ikr - + i 3 + 57 1355 + . . .

this appreximation is valid if kr < 1. For the X-ray

energy of 1486.6 eV, k = .75§_l, so that at our outer-

Qo
sphere boundary (rO = 2.70A) the approximation is not

ut
a
valid. However, within the atomic spheres (rzinc = 1.1A4,
r = .Sﬁ) it is valid. For each initial state, at

oxy
teast 83% of the charge density was contained within the

outersphere, and the majority of it in the atomic spheres,

with the exception of the 6a; and 6t levels, which contained

T N A A Y
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only 5% in the atomic regions, and 94% and 80% in the

intersphere regions, respectively.

5.5.1. Modulating Effects

It was pointed out earlier (Section 5.2.1.) that XPS
and UPS measure somewhat different quantities. The basis
for this argument stems from the modulating effects im-
portant at different energies. At UV energies, both the
initial and final state density modulation is important,
along with the actual cross section modulation. At
XPS energies, final state densities are fairly constant
since the transition energy far exceeds the variations
in the crystal potential energy of the valence electrons.10

Cross section modulation can be understood in terms
of the sensitivity of photons of differing energyll, UV
photons are more sensitive to the outer portion of the wave-
function, i.e., far from the nucleus, while XPS senses

the wavefunction near the nucleus. This effect can be

seen from the form of the photoemission matrix element:

|<£]|Z]i>|2. wWhenever the curvature of-the initial state
radial wavefunction matches that corresponding to the final
state wavefunction, the cross section value will be highest.

An example of this effect is shown in Figure 5.8. for the

e L A R e e
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28 and 2p radial wavefunctions of carbon.

5.6. UV Intensity Comparison

Up to this point we have been concerned with comparing
the experimental and theoretical cross section peaks on a
relative basis. In this section we present the Xo "abso-
lute" cross section intenéities.in the UV range for which
experimental results are available. (See Appendix 3.)

The problem we are concerned with here is to compare
the theoretical cross section values for a cluster of
five atoms to the experimental results for the microscopic
solid. The yu photoemission computer program calculates
the cross section from the probability of an absorbed photon
to cause an electron to be emitted from z particular orbital.
The contributions from all the orbitals then gives the
total cross section for the cluster. The cross section
values are given iﬁ units of area,the area representing
the effective size of the orbital to that particular
photon energy.

The experimentalists report their results for a
particular photon energy in units of the ratio of the num-
ber of emitted électrons to the number of photons, a
dimensionless quantity. Thus.in order te compare results,

we must convert our results to the ratic 9f +the number of
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electrons to the number of photdns. This we did on a
relative basis in order to generate the yg spectra in
Sections 5.4 and 5.5 (See Section 5.3). But now

to get a normalized spectrum we must construct a solid
out of our microscopic cluster. We can assume that this
s01id consists of some multiple of clusters, the number
depending upon the effective size of the experimental
sample, which in turn depends upon the photon attenuation
and the electron escape depth.

The electron escape depth is the limiting factor
here, but unfortunately no values for Zn0 have been re-
ported in the literature. However, Lindau and Spicer12
have published a plot of electron escape depths
{Figure 5.9) for several different materials. From
Figure 5.9 it appears that most material seem to lie on
or near a "universal" curve. If we assume that ZnO also
lies on or near the curve, the expected escape depths
would be somewhere in the range of 1—403 for electrons
of kinetic energies in theirange of 7-12 eV above the VBM.
Using the concepts of electron escape depth and photon
attenuation depth, we have developed a solid model from

clusters to represent the effective experimental sample.
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5.6.1. B8olid Model from Clusters

Let us define a scattering center equal to one
ZNOEG cluster. The spacing between scattering centers
is 2.29£, leading to a number density n of .0825
centers/g3. Assuming an exponential attenuation of

photons, then the total number of electrons emitted from

an elemental thickness dz at depth z is

Ne(z)dz = I(z)no dz (5.1}

where I(z) = I_ e %% is the photon intensity at depth

o

z, 0 is the cross section (calculated by the ya method)
and T is the escape depth of the electrons. The total

number of electfons at depth z times the average proba-
bility of electron escape gives the number of electrons
escaping from elemental thickness dz at depth z. Thus,

to get the total number of electrons escaping from the

solid, we musc then integrate over z:

Ntot = [ az Ne(z} S dA(e,g) f£(e,z,t)/fdA(e,9). (5.2}

The integral [dAAf(9,z,1)/SdA {5.3)

is the average probability of escape, depending still

upon T and z. The function £(8,z,7t) is the probability of

an electron escaping from the solid with angle &, éscape
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depth T, and from a depth of z. We choose to represent

this function by the exponential

£(8,2,1) = e 2/TCOS® (5.4)

i
joh

fpr 0 < 8 < 1/2, otherwise defined as zero. z/cosé@
is the distance the electron must travel to escape
(See Figure 5.10). It may be noted that £(8, z, T) = e~d/T
becomes 1l/e when t=d, i.e., when the electrons travel
one escape depth their probability of escape has been
reduced to l/e.
The next step is to set limits for the integrals in

Eg. 5.2. The integrél fdA is overall angles and is
just 4m. The integral SdA £(8,z,T) is overall angles,
but note that while £(8,2z,T) is defined as zero for
T/2<8 < 27, the angle @ is taken overall 27 angles,
so that the integral may be taken egquivalently over the
upper hemisphere. Thus we are saying that those electrons
emitted in the direction downward from the surface never
escape. The integral over z may be taken from 0 to
for mathematical convenience, since the contributions
from large z are negligible due to the exponential nature
of the scattering depth t. Then Eq¢..5.2 becomes

N, . = Iynofg & 7°% dz f e 2/T°088 4p an  (5.5)

vpper
hemisphere
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Diagram of electron escape
from our solid model.
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We solve this equation in Appendix A. The resulting

equation is

Ntot

i

pot=

2n(1+ncr)}
not

-

Notice that Eg. A.4 is approximately equal to

N 2
Lot o 1 (1 T(R2272)} ~ 1/4 a (for small a) (5.6)
(o}
where a = not. It is reassuring that Ntot/Io is

approximately linear in a since that is the assumption
we made when we compared the relative sizes of our generated
spectra to those of t@e experimentalists.

Notice also thét we are making the approximation that
T is constant, and we are completely neglecting electron-
electron scattering, i.e., either the electron makes it
out of the solid with all its energy or else it does not
make it out at all. From the form of Eg. A.4 we realize
that while ¢ and n are set values, we are free to choose
a value of T such that we obtain the desired value of
Ntot/Io . The obvious restriction being that t is physi-
cally reasonable. Just as crucial in this curve fitting
process is the choosen value of the FWHM to use for
Gaussian broadenings of each of the individual N

[ ]
tot’To 'S

{wh.ich correspond to the orginal o's) which sum to the true
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integrated line intensity. We point out that a FWHM
value of 0.1 eV and a 1 of 153 resulted in an intensity
five times too large, while a FWHM value of

.32 eV and a T of si gave intensities within 70%.

Thus we see that this curve fitting process is somewhat

arbitrary unless one of these parameters is known accurately.

5.6.2. 8Solid Model Cross Sections

Since only our 11.68 eV curve correctly ‘represeats
cross section contributions from all the valence levels,
we present our normalized 11.68 eV EDC in Figure 5.11.
The figure was generated by calculating Ntot/Io for each
6f the five contributing orbitals, assuming a-Gaussian
distribution function whose area equals the value of
Ntot/Io and a FWHM of .32 eV, and finally summing the
Gaussians and multiplying by the detector response function
and then inteérating with respect to the energy. A direct
comparison between the theoretical and experimental curves
is shown in Figure 5.12. From the figures we see that
our model predicts reasonable intensities with a FWHM
value of .32 eV and a T of 8&. However, we feel that
while .32 eV is probably a reasonable broadening value,

the true value for T may be slightly larger, so that our

model predicts absolute intensities too large. This is

T L A AR AT B < M b 7 =
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reasonable since our model does not account for thcese
electrons inelastically scattered such that they have
insufficient energy to escape the ZnO electron affinity,

nor does it consider Auger or phonon processes.

5.7. Conclusion

The basis for photoelectron spectroscopy serving as
a tool in the determination of electronic structures lies
in the fact that cross sections change as a function of
energy, enabling identification of the molecular orbitals.
Any theory capable of predicting these changes would
certainly represent a reasonably accurate model of the
molecular bonding.

The xo generated spectra has shown the.basic trends
in both the UPS and XPS results; however due to the "com=-
pressed” yo MO structure we could not resolve two peaks
in our ¥X-ray valence band structure, nor obtain the
growing effect of increasing contributing states as seen
in the UPS résults.

Armed now with the relative intensities of the
various molecular orbitals, we can construct a MO struc-
ture from the experimental results with the correct
spacing. Let us assume our ordering in Figure 5.2 is

correct. Since our cross section calculations show large

R e S I PN E L ERRWE T E SR S et
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intensities for ths 7ty level in both the UV and X-ray
energies, we can use this tirst peak to "line up" the
X-ray and UV spectra. We will use the UPS VBM since the
structure seen ét 0-2 eV in the XPS data (Figure 5.7(b))
probably reprgsents photoemission from surface states.
From Table 5.1 we see that the UPS results show a second
peak at -2.8 + 0.2 eV, and our UV calculations (Figures
5.5(a)-(e)) show that only one other state besides the
7to has considerable intensity, that is the Itl state.
Thus we assign this location to the 1ty levels (See
Figure 5.13). Looking back to the XPS results we see
a second peak at 3.0 + 0.2 eV below their first peak.
6ur X-ray calculations tell us that only one other state
besides the 7t, state has considerable intensity: the
2e state. Thus we assign this experimental X-réy peak
at 4.6 + 0.2 eV (below the UPS VBM) to the 2e state. From
the corrected Xfray spectra in>Figure 5.7(b) we see that
the valence band essentially ends 1.1 + 0.1 eV below
the second peak, or according to our scale at 5.7 + 0.2 eV
below the VBM. Thus this can be set as the upper limit
on the width of the valence band. If however the valence
band structure (left end of feature) seen in the XPS
corrected spectra is due to say electron-electron scattering

and the 6t, and Gal states are actually very close to the

s [ e o e v s
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13. MO diagram for ZnO predicted
from our calculated orbital inten-
sities and the experimental data.
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2e level, then thle vaience band width becomes 4.6 + 0.3 eV,
which serves as the lower limit of the VB width. Finally,

the UPS results place the Zn3d level at 7.5 + 0.2 eV below
the VBM; the XPS results place it at 8.8 + 0.1 eV below

their VBM which also corresponds to 7.5 # 0.2 eV below the UPS
VBM. Thus with a knowledge of the cross section relative
intensities one can deduce the orbital structure from the
photoemission data. We show this cross section-determined

MO diagram for ZnO in Figure 3.13.
5.8. Summar

With a knowledge of the photoemission cross sections,
X-ray and UV photoelectron spectroscopy are seen to com-
plemant each other in providing information on the orbital
spacings of ZnO. Together with the ya model of bonding,
the cross section values allow a complete determination
of the electronic structure of ZnO. However, more cal-
culations need to be carried out to verify the "univer-
sality" of this method in determining electronic structures
of other metallic compounds. Also more work needs to be
done to establish a criterion for choosing a cluster

size.

e L b R e L o Y Y A e o £ g b

,;




S
Lo
S
oo
O

97.

CHAPTER FIVE i 'U~OES

1'
2.

10.

11.

12.

W.N. Unertl and Iiy' Blakely, Surf. Sci. 69, 23 (1977).
K. Schwarz, }hys; Rev. B 3, 2466 (1972).

R.P. Messmer, ©.%. Knudson, K.H. Johnson, J.B. Diamond,
and C.Y. Yang, Phys. Rev. B 13, 1396 (1976).

R.A. Powell, W.E. Spicer, and J.C. McMenamin,

Phys. Rev. B 6, 3036 (1972}.

L. Ley, R.A. Pollak, F.R. McFeely, S.P. Kowalczyk,

and D.A. Shirley, Phys. Rev. B 9, 600 (1974).

C.J. Vesely, R.L. Hengehold, and D.W. Langer,

Phys. Rev. B 5, 2296 (1972).

D.W. Langer and C.J. Vesely, Phys. Rev. B 2, 4885
{(1970) .

L. Fiermans, E. Arijs, J. Venaik and W. Maenhout-van
der Vorst, Surf. Sci. 339, 357 (1873).

R.A. Pollak, 4. Ley, F.R. McFeely, S.P. Kowalczyk,

and D.A. Shirley, J. Electr. Spectrosc. 3, 38l (1974).
D.E. Eastman and W.D. Gubman, Phys. Rev. Lett. 28,

1327 (1972).

W.C. Price, A.W. Potts, and D.G. Streets, in Electron

Spectroscopy, ed. by D.A. Shirley (North-Holland,

Amsterdam, 1972).
I. Lindau and W.E. Spicer, J. Electr. Spectrosc.

3, 409 (1974). -

i B S T TR My S LS L e ks T A =

A G b e Bt Tt £z id o] g e & A ar e




98.

Appendix A

We are concerned with solving Eq. 5.3:

-0nz -z/Tcos8
dz J.uppex: e dh/4m,

hemisphere

I nof>
Ntot = i nol, €

Integrating with respect to § and using the substitutition

-d cos 8 = sin 9' 48 we obtain:

T on(~1) ‘ 1
_. O T/2 © -z {Unte————)
Ntot = ) d{cos €) fodz e Tcos8’ .
{(A.1)
The dz integral is equivalent to fochle so that
N = o0RT m/2 giiocey COS 8 (2.2)
tot 2 o 1l + a cos 8 =

where a = onrt. Now let u = cos 8 and then

- IOO‘n’f: [a)

= =2 — :
Ntot = > fl dun Traa® This reduces to
+I _ont
- _© e _ 1 1
Neow = > 3~ o Zn|l + au] o} (A.3)
. +I N0T 1 1
which is equal to N__, = 3 - n|l + afl.

Dividing both sides of this equation by I, to obtain

the same guantity as the experimentalists results in:

- :
tot _ 1. _ in(l+not)

@)
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APPENDIX B

Using the solid model discussed in Section 5.6.1.
we have calculated absolute cross section intensities
for the Xray range. However,.no absolute intensities
for the Xray range have been published in the literature.
Generating'the spectra by assuming Gaussian line
shapes discussed in Section 5.3. resulted in a
normalized curve like that in Figure 5.6 with an O(2s)

peak intensity of 1.1 x 107°, zn(3d) peak intensity of

5, and 0(2p) peak intensity of 4.1 x 10“6, all

3.6 x 10°
in units of number of electrons emitted per absorbed

photon. The scattering depth T assumed was 20A.
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