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SUNNARY

A wind tunnel investigation was conducted to determine the

reduction in drag which could be obtained by using certain

Q

forward, underbody and rear streamlining on tractor-trailer

vehicles. Tests were conducted at yaw angles (relative wind) of

O, 5, 10, 20, and 30 degrees and Reynolds numbers of 3.58 x 105

to 6.12 x 105 based upon the equivalent diameter of the vehicles.

The significant results were:

1. The forward streamlining of the tractor and the
enclosing of the gap between the tractor and trailer
decreased the drag 40.2% of configuration 1 for zero
wind. With side winds the average decrease was 33%.

2. The lower panels reduced the drag 8.7% of con-
figuration 1 for zero wind. With side winds
the average decrease was 19%.

3. The rear streamlining reduced the drag 4.8% of the
configuration 1 for zero wind. With side winds the
average decrease was 10_.

4. The aerodynamic drag of the final configuration was
40.4Z of the baseline vehicle drag for zero wind.
With side winds the average drag was 33_ of the
baaellne vehicle drag.

Xi
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J

I. INTRODUCTION _,

-

A number of wind tunnel tests have been made on tractor.- ?

trailer vehicles with various add-on devices to reduce aerody_lamic

drag. Sherwood I tested a large number of devices. Some of

• these produced very favorable results. Pot_er 2 in 1956 patented

an "Inflatable Streamlining Apparatus for Vehicle Bodies"•

Unfortunately, the trucking industry did "not believe that the

devices suggested were pr,_ccical for use". The current fuel oil

and energy outlook should make the aerodynamic drag of practical

concern. Montoya and Steers 3 conducted full-scale tests in 1974

of a number of add-on devices around the tractor cab area. The

maximum drag reduction was approximately 24Z. Some

devices provided only minor changes. These data were all for

zero wind conditions. Also, during 1974 the drag of several mf_l|;_N_n_4
be:c-shaped vehicle configurations was determined by Saltzn_n, l,'_,_.",._'*

a.,_
Meyer and Lux _ by a coast down method. Nlnd tunnel tests were |_

conducted during 1975 and 1976 on one-tenth scale models of the

Saltzman, _teyerand Lux conflguratlons 5 and additional configurations

at various wind angles. The significant results of these tests

indicated that:

I. Rounding the front corners 19.9Z of the effectivew

diameter of the frontal area reduced the drag approximately
58_.

• 2. A boat tail with a radius equal to the equivalent diameter
of the frontal area reduced the drag about 20Z.

3. A smooth bottom decreased the drag about I0%.
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_j Subsequently, wind tunnel tests have been conducted at the

University of Kansas upon a one-twenty-fifth scale model of the

_ basic tractor trailer vehicle used by Nontoya and Steers 3. Then,

a series of modlflcatlons were made to the baseline model to _

improve the air flow over the front, the rear and the underbody . [_

of the vehicle. These modifications include and extend those of

reference 7. Tests were made at five different wind angles.

2. APPARATUS AND PROCEDURE

2.1 Models
]

_ The full-scale vehicle is shotm in Fisure 2.1.1, and its
-_ characteristics are contained in Table 1. Figure 2.1.2 shows the

a

_ baseline full-scale tractor trailer vehicle together with a

i vehicle with forward streamlining. Forward streamlining detailsare shown in Figure 2.1.3.

4
='_ The baseline wlnd tunnel model, conf:'_uratlon I, was constructed

from a commercially available one-twenty-flfth scale plastic model
4

klt. This klt closel_ simulated the important geometric features

of the tractor though the trailer had to be lengthened somewhat

wlth balsa-wood to conform Co the scaled dimensions of the full-

scale trailer. For subsequent configurations, balsa streamlining

was added to the basellnemodel in three steps as indicated in

Figure 2.1.4 to form configurations 2, 3 and 4. Configuration 5

was constructed by adding balsa lower side panels which extended

below the tractor and trailer of the model to within 1.6 cm.

(.63") of the ground. Configuration 6 was made by adding a boat

tail, to the model, Figure 2.1.4, which had a radius of 13.7 cm.

1978025501-011



(5.39'*). A smooth balsa bottom was added to configuration 6 to

form configuration 7.

Configurations were assembled according to Figure 2.i.4.

Photographs of the models are shown in Figure 2.1.5.

2.2 Mounting

The wind tunnel mounting system for the models, Figure 2.2.1,

was the same system that had been used on the previous tests of

the box-shaped vehicles 5. The ground board enclosed the balance

mounting strut and mounting plate. The model was held to the

mounting plate by six adjustable rods attached to the tractor and

traiter frames and running through the wheels. The model was

adjusted vertically on the rods to position the modei to the

correct height above the ground board. The bottom of the wheels

were sanded off so that they did not touch the ground board duriiig

l the tests. The ground board contained three circular slots to

allow the model to be rotated thirty degrees in each direction.

. During the tests the slots were covered except for a small
m

clearance a_ound each mounting rod.

= The horizontal pressure gradient on the ground board was

zero. The board was tufted to check for flow separation. The

front of the ground board was rounded slightly to eliminate a

smali flow separation at the leading edge.
w

2.3 Tes_s

• The tests were conducted in the University of Kansas, .91

by 1.29 meter wind tunnel at Reynolds numbers of 3.58 x 105 to

6.12 x 105 based upon the equivalent diameter of the vehicles or

18.64 x 105 to 32.00 x 105 based upon the length of the basic

test model, configuration 1. The Reynolds number was controlled

3
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by adjusting the wind tunnel airspeed from 164.2 to 289.8 kilometers

per hour (102.0 to 180.1 mph). Tests were made aL yaw (relative wind)

angles of Oe, 5 °. lO °, 20 ° , and 30" on all configurations at four

different Reynolds numbers. Force and moment data were obtained

from a six component strain-gaged balance. Base pressures were
4

measured by an alcohol _3nometer. For configurations 6 and 7 the

base pressure orifice was located at the boattail apex.

3. RESULTS AND DISCUSSIO_i

3.1 Drag

Drag coefficients were computed from the force acting on

the wind tunnel model along the model axl_. These coefficients

were plotted as a function of Reynolds number at each yaw angle.

Figure 3.1.1 shows the values for configuration 1 which has been

used as the baseline configuration. A Reynolds number of 6 x 10 5

(based upon equivalent diameter) was selected to compare the drag

data of the various configurations, Table II. Figure 3.1.2 shows

the variation of the drag coefficient with yaw (relative wind)

angle at this Reynolds number. Figure 3.1.3 compares the drag

¢oetficients of the seven configurations tested at the various

yaw angles for a Reynolds number of 6 x lO s . These drag

coefficle_ts were normalized by dividing each drag coefficient "k

by the baseline coefficient at each yaw angle.

_._| The drag data included herein and observations made duringT

"._| the tests indicated the following:

' ?_ 1. The effect of Reyno!ds number on drag waq small. _

% ¥--
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2. Rounding the cab nose, configuration 2, produced a
moderate decrease of approximately 4.8% in drag at zero

_ wind relative to configuration I. With side winds the
average decrease was 7%.

_ 3. Adding the cab top, configuration 3, provided an

additional decrease of 15.7% in drag at zero wind relative

to configuration 2. With side winds the average decrease
was only 9%.

* 4. Adding the gap enclosure, configuration 4, decreased the

drag an additional 19.7% relative to configuration 3 at
zero wind. Thus, the complete front modification produced
a total decrease of 40.2% for zero wind. With side winds

the average decrease for the gap enclosure was 17% for an
accumulative total of 33%.

5. The lower side panels added to reduce the gap between the

underbody and the ground reduced the drag by 8.7% relative

to configuration 4 with zero wind. With side winds the
average decrease was 19%.

6. The rear boat-tall streamlining reduced the drag by 4.8%

relative to configuration 5, for zero wind. With side
winds the average decrease was I0%.

7. The smooth bottom, configuration 7, provided a 5.9%

decrease in drag relative to configuration 6 at zero wind.
With side winds the average decrease was 5%.

8. The total accumulative decrease in drag of configuration
7 was 59.6% at zero wind, and with side winds the average

decrease was 67% relative to configuration i.

All incremental and accumulative drag coefficient decreases are

expressed as a percentage of the baseline drag coefficient at the

respective relative wind (yaw) angle. A summary of the incremental

and the accumulative drag changes as the individual changes were made

to the model is contained in Table III. The incremental and the

accumulative changes are shown both for the zero wind conditions and,

" where labeled as average, the average of values representing side

winds providing yaw angles from 0 degrees to 20 degrees.

Table IV presents a comparison between the comparable data

points obtained at the NASA Dryden Flight Research Center on the

full-scale vehicle and the University of Kansas on the wind tunnel
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model. It cannot be determined to what extent Reynolds number is

+_ a factor in the difference between full scale and model results; small

geometric differences in the models tested may also be a factor.

It will be noted that the percentage decrease in drag of model

configuration 4 over the baseline model (40.2%) is nearly the same

as the decrease in the full-scale front enclosure vehicle over the

full-scale baseline (36.7%). The ACD decreases are respectively

.398 and .43.

Figure 3.1.4 shows the flow over the rounded front of the

vehicle at zero yaw angle. The streamlines are traced by neutrally

bouyant helium bubbles. Flow over the rear boat-tail streamliner

is shown in Figure 3.1.5. Figure 3.1.6 illustrates the large vortex

created at a yaw angle (relative wind) of 30°.

The variation of the base pressure coefficients with Reynolds

number for configuration I is shown in Figure 3.1.7. The variation

with yaw angle for a Reynolds number of 6 x lOs is sho_ in Figure

3.1.8. Table V contains the base pressure coefficients for all

configurations at a Reynolds number of 6 x 105 . A comparison of

the normalized base pressure coefficients for the seven configurations

is contalncd in Figure 3.1.9. The base pressure coefficients of the

baseline model at each yaw angle were used as normalizing factors.

The base pressure coefficients follow the same general comparison

pattern as did the drag coefficients.

The power required to overcome t e aerodynamic drag for a

full-scale vehlcle, configuration i, at 88.5 kilometers per hour

(55 mph) ground speed was calculated using wind speeds of 0, 18,

and 36 kilometers per hour (0, 11.2 and 22.4 mph). Wind angles
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of 0° through 180 ° relatlve to the vehicle path were used, Figure

3.1.10. The corresponding values for configuration 7 are given in

Figure 3.1.11. The power required for aerodynamic drag at 88.5 kilometers

per hour (55 mph) ground speed and no wind was reduced from 78.6 kw

(105.4 hp) for configuration 1 to 31.8 kw (42.6 hp) for configuration 7.

" At a wind speed of 18 kilometers per hour (11.2 mph) and B=45° the power

required was 127.0 kw (170.3 hp) for configuration i and 43.3 kw

(58.1 hp) for configuration 7. For a wind speed of 36 kilometers per

hour (22.4 mph) and B=45° the values were 204.0 kw (273.6 hp) and 58.5

kw (78.4 hp) respectively.

The power required for the other configurations, exclusive of

mechanical losses, may be found from the comparison graph, Figure 3.1.3

and Figure 3.1.10 as illustrated in the appendix.

Th= approximate fuel and cost savings provided by the decrease in

aerodynamic drag of configurations 4 and 7 over configuration 1 are

illustrated for two conditions. A normal brake specific fuel consumption

of 2.129 x 10-4 kg of fuel per watt hour6 (.35 pounds of fuel per

horsepower hour) has been used. The savings are as follows for a ground

speed of 88.5 kilometers per hour (55 mph) and assumed cost for fuel

of 13.2 cents per liter (50 cents per gallon):

Wind, 8=45 ° Config. Fuel " Cost Savings

. km/hr. (mph) liters/hr. I gal./hr S/hr. S/hr.

I 19.7 5.20 2.60 ---

no wind 4 11.8 3.11 1.55 1.05

7 8.0 2.10 1.05 1.55

I 1 I 31.8 8.40 4.20 ---
18 (11.2) 4 22.0 5.82 2.91 1.29

..... 7 _ 19.8 . 2.86 .. _'A_ 2.77

Conflg. --- $/hr.
Assumed average, day-to-day, 4 --- I.i0
savings, 7 --- 2.00

?
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For 160,900 km. (100,000 ml.) of highway driving per year, the

assummed average annual savings project to about $2,000 per year and

$3,600 per year for configurations 4 and 7 respectively.

3.2 Slde Force

The side force coefficients were computed from the forces

o

acting on the wind tunnel model perpendicular to the modet axis.

These coefficients were plotted as a function of Reynolds number

as illustrated in Figure 3.2.1 for configuration 1. Figure 3.2.2

shows the variation of side force coefficient for configuration i

with yaw angle at a Reynolds number of 6 x tO5. The side force

coefficients for a Reynolds number of 6 x tO5 corrected for wind

tunnel flow angularity error are contained in Table VI for all

configurations. A comparison of all configurations is given in

Figure 3.2.3.

The data indicated the following:

i. The effect of Reynolds number on side force was small.

2. Rounding the cab nose increased the side force

approximately IZ relative to configuration I. Adding
streamlining to the top of the cab increased the side

force about 3Z relative to configuration 2.

3. The average increase in side force by enclosing the gap
between the tractor and trailer was 13Z. The total front

modification produced a total average increase of 17Z

in side force relative to configuration i.

4. The lower side panels increased the side force an average

of 32% relative to configuration 4.

5. The rear boat-tail streamlining decreased the side force

approximately IZ from configuration 5.

6. The smooth bottom caused negligible change in side force

relative to configuration 6. The accumulative average
increase in side force of configuration 7 over configuration

1 was 48Z.

8
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A summary of the incremental side force changes as individual

changes were made to the model is contained in Table VII. The

power required to overcome the side force induced tire-frictional

drag effects are negllgble (reference 5).

3.3 Lift
Q

The variation of the lift coefficient with Reynolds number

is shown in Figure 3.3.1 for model configuration 1. The effect

of yaw angle is given in Figure 3.3.2. The lift coefficients of

all of the configurations (_= 6 x 105) are given in Table VIII. I

The llft force contributes to the vehicle rolling frictional i,|
!
!

drag through either increasing or decreasing the weight on the [
!

tires• This effect is negligible on the power required• 5 [

i
3.4 PitchinK Moment II

The pitching mement coefficients of model configuration I I
I
i

about a lateral axis 27.9 cm (ii.0") from the front of the vehicle ]

and 5.7 cm (&2_5'9above the ground plane are shown in Figure 3.4.1.

The reference area used was the projected frontal area A; the

reference length c was the vehicle length. The variation of pitching

moment coefficient with yaw angle for configuration i is shown in

Figure 3.4.2. The pitching moment coefficients of all of the

cunfigurations are given in Table IX (RN= 6 x 105).

3,5 Rollin6 Moment

The rolling moment coefficients of model configuration I

about d central longitudinal axis 5.7 cm (2.23')above the ground

plane are shown in Figure 3.5.1. The reference area was the

|

I
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projected area A; the reference length c was the vehicle width.

The variation of rolling moment coefficient with yaw angle for

configuration 1 is shown in Figure 3.5.2. The rolling moment

coefflclelts for all configurations corrected for flow angularity

error (see Figures 3.5.1 and 3.5.2) are given in Table X

(RN: 6 x 105).

3.6 Yawing Moment

The yawing momeut coefficients for the model of configuration

I about a central vertical axis 27.9 cm (11.0") from the front of

the vehicle are shown in Figure 3.6.1. The reference area used

was the projected frontal area A; the reference length c was the

vehicle width. The variation of the yawing moment with yaw angle

for configuration 1 is shown in Figure 3.6.2. The yawing moment

coefficients for all of the configurations corrected for flow

angularlty error (see Figures 3.6.1 and 3.6.2) are given in

Table XI (RN= 6 x I05).

4. CONCLUSIONS AND RECOMMENDATIONS

The significant concluslons were:

I. The streamlining of the front of the vehicle and the
enclosing of the gap between the tractor and the trailer

• (configuration 4) decreased the drag 40.2% of configuration

1 for zero wind. With side winds the average decrease
was 33Z.

2. The lowez side panels decreased the drag 8.7Z of

configuration 1 for zero wind. With side winds the average
_i decrease was 19%.

3. The rear streamlining decreased the drag 4.8Z of configuration

1 for zero wind. With side winds the average decrease was
i0%.

!

10
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4. The smooth bottom decreased the drag 5.9% for zero wind.

_ With side winds the average decrease was 5%.

5. The aerodynamic drag of configuration 7 was 40.4% of that
of configuration 1 for zero wind. With side winds the
average value of dra$ £or configur_t_on 7 was 33g o£ the

_ drag for configuration 1.

It is recommended that:

1. A program be initiated to road test in an operational fleet s_--
configurations 1 and 7 under as nearly identical conditions _"
as possible to evaluate actual savings that would occur in |_

, normal usage of a vehicle.

2. State laws be revised to permit the added length at the rear

of the vehicle needed for streamlining the rear. This

additional length would be for the installation of an inflatable
or removable device such as patented by Potter 2. This would

permit the savings on highway operation and the shorter normal
length in city areas in which the added length is undesirable.

11
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(b) Three-quarter front view.

Figure 2.1.1 Full-scale Basic Vehicle of references 3 and 7.

13
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Figure 2.1.4 Hodel Configuration Chart
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(d) Configuration 4

Figure 2.1.5 Photographs of Wind Tunnel Model Configurations
(continued)
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1
Table I Full-scale basic vehicle characteristics _

4

'_ Trac tor:

Make ................. White Freightltner

Year ........................ 1974Type ............ Cab over englne(wlth sleeper)

1 Number of axles ................... i0 O0 2_
Tire size ..................... -

Engine -
_" Type .............. 350 Cummings Turbocharged "

Model ...................... NTC-350
' in 3 855Displacement, ...................

Morsepower at 2100 rpm ................ 310
Transmission -

Type .................. Fuller Roadranger
Model ...................... RT0-9513

Trailer:

Make ....................... Strick
Year ........................ 1972
_ength, ft ...................... 45
Type . . ............. , .... Smooth sidewall
Number of axles ..................... 2
Tire size .................... 10.00-22

; Table II Drag coefficients, RN = 6 x 105
!

Configuration Yaw angles, 9

No. 0 o 5o I0" 20" 30"

1 0.990 1.110 1.362 1.677 l.gAo
2 0.942 1,031 1.236 1.580 1.684
3 0.7,_7 0,890 1.157 1.560 1.579
4 O. 592 O. 750 O. 960 1 • 204 1. 080
5 0.506 0.560 0.646 0.730 .....
6 0.458 0,470 0.515 0.420 0.290
7 0.400 0.407 0.420 0.420 0.270

44



.. _. I. ,,, ....... " .."_

• .... -_

ORIGINAL PAGE I_ -_

Table III Influence on the drag coefficient OF POOR QU_ITY

by configuration changes and relative wind angle ..i_
5

CONFIGURATION DRAG , _t

,I Part No. Zero wind Zero wind ACD at 1 Average 2 Average 2 _ _!

. added incremental accumulative "---RN6xlO5 incremental accu_. .__,!;
- decrease decrease CD1 decrease decrease _

. nose 1 -_ 2 4.8% 4.8% -9.3% 7% 7g • _;:
-

Cab -1.2g .I._,'*,

. top 2 -_3 15.7% 20.5% -15.7% _}Z 16% lil_"V_.Gap 3 �419.7% 40.2 -12.6% _

enclosure 17% 33Z |_I"!_(Top b sides) -21.2g
•,_, .._

Lower 4 _ 5 8.7% 48.9 -8 7Z 19g 52% _ ::_"
• 'i

side -28.3g :,; _.

Rear 5 �64,8% 53.7 -4.8% lO_I 62X
-18.5%

Bottom 6 _ 7 5.9% 59.6g O.OI 5% 67%
(Cab b trailer) . -7.OX

1. Kange of relative wlnd effects from Table II. (fop _ • 0O to _ • 20°).

2. Qualitative - relative winds fro_ _ - 0" to _ - 20".
m m I i ' i i i • I' J ' INJ .....m.. ,._ = I

Table IV Comparison of tests run at Dryden Flight Research Center and the
University of Kansas, for 8 = O.

DFRCI KU2 CD,DFRC CD,KU Difference
Rg - 6 x 105 %

Basellne 1 1.17 0.990 15.4Z
2 0.942

Rounded front _3 0.787
and ga$

, enclosure .74 3 O. 592_ 20.0%
0.506

6 0.458
7 0.400

1. DFRC Configurations rm_ at Dryden Flight Research Center
frog References 3 and 7

?. gO Configurations run at the Unlversity of Kansas

3. DFRC Incremental decrease, _CD = .43, 36.7Z of baseline

4. . KU Incre_ntal decrease, 6C!)_= .398, 40.2Z of baseline

45
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Table V Base pressure coefficients, {

• Configuration Yaw angles, 0 ";_i

.__ NO. O" 5" I0" 20* 30" ""
1 -0.216 -0.315 °0.390 -0.500 -0.532 k'

i_ 2 -0.222 -0.306 -0.390 -0.457 -0.515 :

3 -0.240 -0.297 -0. 357 -0.469 -0.518 "
4 -0.243 -0.295 -0.363 -0.427 -0.494 _ ":_,

_ 5 -0.228 -0.239 -0.279 -0.396 -0.492 ;_

6 -0084 -0085 -0087 -008g -0181 _7 -0.058 -0.058 -0.019 -0.032 -0.120 "_

7_

".)

Table VI Side force coefficients, -'_

RN = 6 x 105 _;!

Configuration Yaw angles, 0 i/ii

.-o

No. 0 ° 5° I0" 20" 30" , .

1 0.000 0.520 1.220 2.860 4.150

2 0.000 0.530 1.260 2.940 4.050 !3 0.000 0.560 1.250 2.940 4.290
4 0.000 0.620 1.440 3.170 4.900
5 O.000 0.730 1.720 3.990 7.180
6 0.000 0.710 1.740 3.880 7.320
7 0.000 0.690 1.690 4.040 7.450 "-.

j-

.i
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Table VII Influence on the side force

coefficient by configuration changes

CONFIGURATION SIDE FORCE

A C¥ Average Average
Part added No. + RN - 6xlO 5

CYl incremental accumulative
- change change

j Cab nose 1 �2- 2.4g + 3.3Z + IZ ]Z

Cab top 2 _ 3 - 0.8g + 5.8g +3Z 4Z

Gap enclosure3 _ 4 OZ + 14.7Z +13Z 17Z
(Top & sides)
Lower panels 4 _ 5 OZ + 56.9_ +32Z 49Z
(Tractor & trailer)

Rear 5 _ 6 - 3.8 �+3.4g - IZ 48Z

Bottom 6 _ 7 -4.1X �+5.6% - 0- 48%

Table VIII Lift coefficients, RN ffi6 x 105

Ccnfiguration Yaw angles,

No. 0 ° 5 ° 10° 20 ° 30 °

1 0.215 0.359 0.710 1.370 2.152

2 0.220 0.395 0.729 1.485 2.258

3 0.040 0.141 0.420 1.285 2.145
4 0.020 0.121 0.397 1.240 2.363
5 0.]37 0.349 0.787 2.280 3.450
6 0.240 0.460 0.940 2.460 3.300

7 Q.135 0.310 0.740 2.015 2.815
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+_ Table IX Pitching moment coefficients,
P,_ - 6 x 10 5

Configuration Yaw angles,

No. 0 ° 5 o 10 ° 20 o 30 ° _

1 0.078 0.045 0,043 0.238 0..510 , "
2 0.147 0.094 0.004 0.196 0.448
3 0.018 0.010 0.084 0.291 0.428
4 O.010 O.025 O. 087 O. 326 O. 390 t

.. 5 0.011 O.020 O.I01 O.334 O.398
6 0.063 0.105 0,194 0.391 0.260
7 0,071 0,079 0.115 0,290 0.147

Table X Rolllng moment coefflclents,

RN - 6 x 105

ConflguraClon Yaw angles,

; No. 0° 5 o 10° 200 30°

1 0.000 0.081 0,030 -0,411 -0.800
2 O.000 O.089 O.139 -0.390 -0.739
3 0.000 0.060 -0.043 -0.330 -0.501
4 0.000 0.045 -0.093 -0.363 -0.663
5 0.000 0.061 -0.071 -0.540 -I.040
6 0.000 -0.044 -0.172 -0.555 -0.605
7 0.000 -0.026 -0.125 -0.486 -0.585

: 48

7
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Table XI Yawing moment coefficients,
- 6 x 10 5

4 '
Configuration Yaw angles,

No. 0° 5° 10° 20° 30°

m - I 0.000 0.690 1.120 1.830 2.710
- 2 0.000 0.540 0.705 1.610 2.510

3 0.000 0.450 0.380 1.400 2.050

4 0.000 0.080 0.195 0.180 0.980
5 0.000 0.062 1.240 2.030 0.390

6 0.000 0.998 1.660 2.170 1.070
7 0.000 1.230 1.790 2.470 1.320

l

I

i

I
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l

7. ArPm)_x

i

PONERREQUIRED t
I

The model data for configuration 1 were applied to the full v

size prototype vehicle at road speed of 88.5 km/hr. (55 mph). The

wind component was rotated from 0° to 180 ° B. Wind speeds used were

' [j O, lgkm/hr. (11.2 mph), 36 km/hr. (22.4 mph). t

1

-. !
]v1

\ / !:

V = Relative wind speed I
"! !

"! VI = Ground speed i

W = Actual wind velocity
_._

i_ V2 = Side wind velocity component :_
B ffi Wind angle relative to the vehicle path }_

•_ _ ffiRelative wind angle •

50
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7.1 Power to Overcome Aerodynamic Drag - configuration 1

The power required is: _-_

p = D vI .;._
100---Okw (Multiply by 1.341 = hp) ._j;m

where .N

D = 1/2 O V2 CDA >,-->_:_

# A = 8.724 m2 (94 ft 2) :__i
p = 1.226 kg/m 3 (.002378 slugs/ft 3) e_

CD is taken from Figure 3.1.2 for configuration I at _

approximate values of _. ._.

'_,

Example: !_!_
VI = 88.5 kin/hr, or 24.58 m/sec. (55 mph) ,:_,

W = 18 kin/hr, or 5.0 m/sec (11.2 mph) ::_
_-

13 = 15° _.

= 2.52 ° _i_

0_,;,From Figure 3, 1,2 : ._

CDI = 1.033 "_

Then: "_

D = 1/2 x 1.226 x (29.42)2 (1.033) (8.724) _:;_

"_:_
D = 4781.5 N(1074.9 lb.) .....

,._

-':%

P = (47.81.,5).,. (24.58) - ].17.5 kw '._,
. I000 _-_:

P • 117.5 kw (157,6 hp) (plotted In Figure 3,1,10) ._-
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7.2 Power Required for Other Confi,_urations

To find the power required for any other configuration:

1. Determine relative wind speed V and the relative wind

angle $.

• !

2. Go to Figure 3.1.3. Find the percentage of CDx this

configuration has of CDl. t

,I
3. Go to the power graph, Figure 3.1.10, and locate the

power required for configuration 1 at the wind angle 8.

4. Multiply this value of power with CDx / CD 1 and the power
required for this configuration X is obtained.

, _ Example:
i. Configuration 7

'_. i_ Wind speed W ffi18 km/hr. (11.2 mph) .,

Wind angle 8 = 15 ° _:

• _,: Relative wind angle O:
-_

_2_ _ = T W sin B i_:
_]_ -an'l V1 + W cos 8 "

i'::

= Tan -I 18 km/hr, sin 15° __
-.',

88.5 km/hr. + 18 km/hr, cos 15 ° ''_'

= 2"520 _'i
!.

From Figure 3. I.3: I__

CD7 P7 i-:'_

ffi 38.9% ='_"1 '_ _

From Figure 3.I. i0 : !':i

PI " 117.5 kw (157.6 hp) and P7 " 45.7 kw (61.3 hp) ' :':"

C_,t

.;¢:. _,".°

,_ _"-:_
ORIGINAL PAGE 18 :
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