
JPL PUBLICATION 77-26, REVISION -2

A Parameter Estimation
Subroutine Package

G. J. Bierman
M. W. Nead

(NASA-CR-157766) A PARAMETER ESTIMATION
SUBROUTINE PACKAGE (Jet Propulsion Lab.)

IC A07/NF A01 CSCL 09B

' r/1

V78-33789

Unclas
33807

October 1-5, 1978

National Aeronautics and
Space Administration.

Jet Propulsion :Laboratory
California Ipstitute of Technology
Pasadena, California

REPRODUCED
BV

NATIONAL TECHNICAL
INFORMATION SERVICE

I U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

https://ntrs.nasa.gov/search.jsp?R=19780025846 2020-03-22T01:46:52+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

JPL PUBLICATION 77-26, REVISION 2

A Parameter Estimation
Subroutine Package

G. J. Bierman
M. W. Nead

October 15, 1978

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under NASA Contract No NAS7-100

PREFACE

The work described in this report was performed by the Systems

Division of the Jet Propulsion Laboratory.

iii

ACKNOWLEDGEMENT

The construction of this Estimation Subroutine Package (ESP) was

motivated by an involvement with a particular problem; construction of

fast, efficient and simple least squares data processing algorithms

to be used for determining ephemeris corrections. Discussion with

T. C. Duxbury led to the proposal of a subroutine strategy which would

have great flexibility. The general utility of such a subroutine package

was made evident by H. M. Koble and N. A. Mottinger who had a different

but related problem that involved combining estimates from different

missions. Thanks and credit are also due to our colleagues for experi

menting with this package of subroutines and letting us benefit from their

experience.

iv

ABSTRACT

Linear least squares estimation and regression analyses continue to

play a major role in orbit determination and related areas. In this report

we document a library of FORTRAN subroutines that have been developed to

facilitate analyses of a variety of estimation problems. Our purpose is to

present an easy to use, multi-purpose set of algorithms that are reasonably

efficient and which use a minimal amount of computer storage. Subroutine

inputs, outputs, usage and listings are given, along with examples of how

these routines can be used. The following outline indicates the scope of

this report: Section I, introduction with reference to background material;

Section II, examples and applications; Section III, a subroutine directory

summary; Section IV, the subroutine directory user description with input,

output and usage explained; and Section V, subroutine FORTRAN listings.

The routines are compact and efficient and are far superior to the normal

equation and Kalman filter data processing algorithms that are often used

for least squares analyses.

v

CONTENTS

I. Introduction 1

II. Applications and Examples 4

III. Subroutine Directory Summary 23

IV. Subroutine Directory User Description 38

V. References 84

VI. FORTRAN Subroutine Listings 85

Ig -page, blankW

vii

I. Introduction

Techniques related to least squares parameter estimation play a

prominent role in orbit determination and related analyses. Numerical

and algorithmic aspects of least squares computation are documented

in the excellent reference work by Lawson and Hanson, Ref. [1]. Their

algorithms, available from the JPL subroutine library, Ref. [2], are

very reliable and general. Experience has, however, shown that in

reasonably well posed problems one can streamline the least squares

algorithm codes and reduce both storage and computer times. In this

report, we document a collection of subroutines most of which we have

written that can be used to solve a variety of parameter estimation

problems.

The algorithms for the most part involve triangular and/or

symmetric matrices and to reduce storage requirements these are stored

in vector form, e.g., an upper triangular matrix U is written as

Ul11 u12 Ul13 U14 U(1) U(2) U(4) U(7)

U22 22U232 24etc. = U(3) U(5) U(8)etc.
U24

U33 U34 .U(6)
 U(9)

U(10)
0 44

Thus, the element from row i and column j of U, i < j, is stored in

vector component j(j-l)/2 + i. We hasten to point out that the engineer,

with few exceptions, need have no direct contact with the vector sub

scripting. By this we mean that the vector subscript related operations

are internal to the subroutines, vector arrays transmitted from one

1

subroutine to another are compatible,- and vector arrays dispTayed

using the print subroutine TWOMAT appear in a triangular matrix format.

Aside: The most notable exception is that matrix problems are generally

formulated using doubly subscripted arrays. Transforming a double

subscripted symmetric or upper triangular matrix A(-,-) to a vector

stored form, U(-) is quite simply accomplished in FORTRAN via

IJ = 0

DO 1 J = 1,N

DO I I = 1,J

IJ = IJ+l

1 U(IJ) = A(I,J)

Similarly, transforming an initial vector D(') of diagonal positions of

a vector stored form, U('), is accomplished using

JJ = 0 JJ = N*(N+l)/2

DO 1 J = 1,N or DO 1 J = N,l,rl

JJ = JJ+J U(JJ) = D(J)

1 u(JJ) = D(J) 1 JJ = JJ-J

The conversion on the right has the modest advantage that D and U can

share common storage (i.e., U can overwrite D). These conversions

are too brief to be efficiently used as subroutines. It seems that when

such conversions are needed one can readily include them as in-line code.

End of Aside

This package of subroutines is designed,in the main,for the analysis

of parameter estimation problems. One can, however, use it to solve problems

that involve process noise and to map (time propagate) covariance or infor

mation matrix factors. In the case of mapping the storage savings associated

with the use of vector stored triangular matrices is, to some extent, lost.

2

Mathematical background regarding Householder orthogonal trans

formations for least squares analyses and U-D matrix factorization

for covariance matrix analyses are discussed in references [1] and [3].

Our plan is to illustrate, in Section II, with examples,how one can

use the basic algorithms and matrix manipulation to solve a variety

of important problems. The subroutines which comprise our estimation

subroutine package are described in Section III, and detailed input/

output descriptions are presented in Section IV.

Section V contains FORTRAN listings of the subroutines. There are

several reasons for including such listings. Making these listings

available to the engineer analyst allows him to assess algorithm

complexity for himself; and to appreciate the simplicity of the

routines he tends otherwise to use as a black box. The routines use

only FORTRAN IV and are therefore reasonably portable (except possibly

for routines which involve alphanumeric inputs). When estimation problems

arise to which our package does not directly apply (or which can be made

to apply by an awkward concatenation of the routines) one may be able to

modify the codes and widen still further the class of problems that can be

efficiently solved.

3

II. APPLICATIONS AND EXAMPLES

Our purpose in this section is to illustrate, with a number of examples,

some of the problems that can be solved using this ESP. The examples, in

addition, serve to catalogue certain estimation techniques that are quite

useful.

To begin, let us catalogue the subroutines that comprise the ESP:

1) A2Al (A to A one)

2) COMBO .(combo)

3) COVRHO, (coy rho)

4) COV2RI (coy to RI)

5) COV2UD (cov to U-D)

6) C2C (C to C)

7) INF2R (inf to R)

8) HEPOST (HR POST)

9) PERMUT (permut)

10) PHIU (PHI*U)

11) RA (R*A)

12) RANKl (rank 1)

13) RCOLRD (R colored)

14) RINCON (rin-con)

15) RI2COV (R1 to cov)

16) R2A (R to A)

17) R2RA (R to RA)

18) RUDR (rudder)

19) SFU (S F U)

20) TDHHT (T D H H T)

21) THH (T H H)

22) TTHH (T T H H)

23) TWOMAT (two mat)

Matrix A to matrix Al

Combine R and A namelists

Covariance to correlation matrix, RHO

Covariance to R inverse

Covariance to U-D covariance factors

Permute the rows and columns of matrix C

Information matrix to (triangular) R factor

Householder triangularization by post multiplication

Permute the columns of matrix A

Multiplies a rectangular PHI matrix by the vector

stored U matrix that has implicitly defined unit

diagonal entries.

R(upper triangular, vector stored)*A (rectangular)

Updated U-D factors of a rank-l modified matrix

(SRIF)R colored noise time-update

R inverse along with a condition number bounding

estimate

R inverse to covariance

Triangular R to (rectangular stored) matrix A

Transfer to triangular block of (vector stored) R

to a triangular (vector stored) RA

(SRIF)R to U-D covariance factors, or vice-versa

Sparse F matrix * vector stored U matrix with

implicitly defined unit diagonal entries

Two dimensional Householder matrix triangularization

Triangular vector stored Householder data processing

algorithm

Orthogonal triangularization of two triangular

matrices

Two dimensional labeled display of a vector stored

triangular matrix

4

24) TZERO (T zero) Zero a horizontal segment of a vector

stored triangular matrix

25) UDCOL (U-D colored) U-D covariance factor colored noise update

26) UDMEAS (U-D measurement) U-D covariance factor measurement update

27) UD2COV (U-D to cov) U-D factors to covariance

28) UD2SIG (U-D to sig) U-D factors to sigmas

29) UTINV (U T inverse) Upper triangular matrix inverse

30) UTIROW Upper triangular inverse, inverting only

the upper rows

31) WGS (W G-S) U-D covariance factorization using a weighted

Gram-Schmidt reduction

These routines are described in succeedingly more detail in sections III,

IV, and V. The examples to follow are chosen to demonstrate how these

various subroutines can be used to solve orbit determination and other

parameter estimation problems. It is important to keep in mind that these

examples are not by any means all inclusive, and that this package of

subroutines has a wide scope of applicability.

II.1 Simple Least Squares

Given data in the form of an overdetermined system of linear

equations one may want a) the least squares solution; b) the estimate

error covariance, assuming that the data has normalized errors; and

c) the sum of squares of the residuals. The solution to this problem,

using the ESP can be symbolically depicted as

* A:z]---[R:z], e

Remarks: The array [A:z] corresponds to the equations Ax = z-V, 'sN(O,I);

the array [R:z] corresponds to the triangular data equation Bx = z-v,

xwN(O,I) and e = Hz-AxI!
A A^ UTINV ^l A

Remark: x = K z

* [R:z- -[R :x]

5

One may be concerned with the integrity of the computed inyerse

and the estimate. If one uses subroutine RINCON instead of UTINY then

in addition one obtains an estimate (lower and upper bounds) for the

condition number R, If this condition number estimate is large the

computed inverse and estimate are to be regarded with suspicion. By

large, we mean considerable with respect to the machine accuracy (viz.

on an 18 decimal digit machine numbers larger than 1015). Note that the

condition number estimate is obtained with negligible additional compu

tation and storage.

Al R12COVIC,

-l A-T

Remarks: C = R R = estimate error covariance. Some computation can

be avoided in RI2COV if only some (or all) of the standard deviations

are wanted.

11.2 Least Squares With A Priori

If a priori information is given, it can be included as additional

equations (in the A array) or used to initialize the R array in subroutine

THH (see the subroutine argument description given in section IV). One is

sometimes interested in seeing how the estimate and/or the formal

statistics change corresponding to the use of different a priori

AA

conditions. In this case one should compute [R;z] as in case II.1, and

then include the a priori [R :z] using either subroutine THH, or

subroutine TTHH when the a priori is diagonal or triangular, e.g.,

A^^

[R:z] *

-
R:z])

The new result overwrites the old. OS

6 O0YkU

It is often good practice to process the data and form [R:z] before

including the a priori effects. When this is done one can analyze

the effect of different a priori, [Ro:Zn] without reprocessing the data.

If a priori is given in the form of an information matrix, A,

(as for example would be the case if the problem is being initialized

with data processed using normal equation data accumulation) then one

can obtain R from A using INF2R;

00 A INF2R R

If there were a normal equation estimate term, z=ATb, then z = R-Tz.

0 0

11.3 Batch Sequential Data Processing

Prime reasons for batch sequential data processing are that many

problems are too large to fit in core, are too expensive in terms of core

cost, and for certain problems it is desirable to be able to incorporate

new data as it becomes available. Subroutines THE and UDMEAS are specially

designed for this kind of problem. Both of these subroutines overwrite

the a priori with the result which then acts as a priori for the next

batch of data. If the data is stored on a file or tape as A1 , Zl, A2, z2,.".

then the sequential process can be represented as follows:

SRIF Processing**

a) Initialize [R:z] with a priori values or zero

b) Read the next [A:z] from the file

i.e., solving Ax = b-v with normal equations, A Ax = b; A = TA

is the information matrix.

The acronym SRIF represents Square Root Information Filter. The SRIF is

discussed at length in the book by Bierman, ref. [3].

A GE 1$OF
oIGo QUJALITY

c) [R:z]) L -. -

[A:z]

d) If there is more data go back to b)

e) Compute estimates and/or covariances using UTINV and R12COV

(as in example II.1)

U-D** Processing

a') Initialize [U-D:x] with a priori U-D covariance factors and the

initial estimate

b) Read the next [A:z] scalar measurement from the file

c') [U-D:x] UM
UD E S[U-D: X]I

[A:Z]}x

d') If there is more data go back to b')

e') Compute standard deviations or covariances using UD2SIG or

UD2COV.

Note that subroutine THH is best (most efficiently) used with

data batches of substantial size (say 5 or more) and that UDMEAS processes

measurement vectors one component at a time. If the dimension of the

state is small the cost of using either method is generally negligible.

The UDMEAS subroutine is best used in problems where estimates are

wanted with great frequency or where one wishes to monitor the effects

of each update. In a given application one might choose to process

data in batches fora while and during critical periods it may be

The new result overwrites the old.

U-D processing is a numerically stable algorithmic formulation of the Kalman
filter measurement update algorithm, cf reference [3]. The estimate error
covariance is used in its UDUT factored form, where U is unit upper triangular
and D is diagonal.

8

desirable to monitor the updating process on a point by point basis.

In cases such as this, one may use RUDR to convert a SRIF array to U-D

form or vice-versa.

Remarks: Another case where an R to U-D conversion can be useful occurs

in large order problems (with say 100 or more parameters) where after

data has been SRIF processed one wants to examine estimate and/or

covariance sensitivity to the a priori variances of only a few of the

variables. Here it may be more convenient to update using the UDEAS

subroutine.

11.4 	 Reduced State Estimates and/or Covariances From a SRIF Array

Suppose, for example, that data has been processed and that we have a

AA
triangular SRIF array [R:z] corresponding to the 14 parameter names, ar' ax,

ay, x, y, z, vx, Vy, Vz GM, CU41, L041, CU43, L043 (constant spacecraft

accelerations, position.and velocity, target body gravitational constant,

and spin axis and longitude station location errors).

Let us ask first what would the computed error covariance be of

a model containing only the first 10 variables, i.e., by ignoring the

effect of the station location errors. One would apply UTINV and RI2COV

just as in example 11.1, except here we would use N (the dimension of

the filter) = 10, instead of N=14.

Next, suppose that we want the solution and associated covariance

of the model without the 3 acceleration errors. One ESP solution is to

use

9

^ R2A
*[R:z] -. [A]

NAME ORDER OF A

X Y5 Z VX) Vy IVZ

GM, CU41, L041, CU43, L043,

RHS , a, a a,

Remark: One could also have used subroutine COMBO, with the desired
namelist as simply ar, ax, a . This would achieve the same A matrix

form.

* [A] T-HH- [R]

Remark: 	 R here can replace the original R and z.

0 [R] UTINV jR7- est] R12C0V [COV:Xest]

Remarks: Here, use only N=11, i.e., 11 variables and the RHS. xest is

the 11 state estimate based on a model that does not contain acceleration

errors ar, a , or a

Note how triangularizing the rearranged R matrix produces the

desired lower dimensional SRIF array; and this is the same result one

would obtain if the original data had been fit using the 11 state model.

As the last subcase 	 of this example suppose that one is only

interested in the SRIF array corresponding to the position and velocity

variables. The difference between this example and the one above is

that here we want to include the effects due to the other variables.

*
z is often given the label RHS (right hand side)

10

One might want this sub-array to combine with a position-velocity SRIF

array obtained from, say, optical data. One method to use would be,

^ ̂ Rz
• [R~ zR2RA ,[RA RA:A-- :ZA]

INPUT NAMES: OUTPUT NAMES:

ar , a x , ay, x, y, z, v x , vy, vz, GM x, y, z, v, v , v z , GM

CU41, L041, CU43, L043, RHS CU41, L041, CU43, L043, RHS

Remark: The lower triangle starting with x is copied into RA
* [RA:zA] -- A [A :zA] (Reordering)

NAMES: GM, CU41, L041, CU43, L043,

x, y, z, vx, vy, vz, RHS

^

THH '

* [A :zA] - [RA :zA (Triangularizing)

* [RA:ZI R2RA [R :z] (Shifting array)

NAMES: x, y, z, vx, vy, v z , RHS

Remark: The lower right triangle starting with x is copied into R
 .

x

We note that one could have elected to use COMBO in place of the first

R2RA usage and R2A; this would have involved slightly more storage, but

a lesser number of inputs. The sequence of operations is in this case,

*[R:z] -O'B[A:z]

ORIGINAL NAMES DESIRED NAMES: x, y, z, v, vy, vz, RBS
Ay

z

Remark: By using COMBO the columns of [R:z],are ordered corresponding to

the names ar, ax, a ,GM, CU41, L041, CU43, and L043, followed by'the

desired names list.

11

0 [A:z]----ER~z]

Remark: The [R:z] array that is output from this procedure is

equivalent but different from the [R:z] array that we began with.

R2RA

* [R:z]- [IRx:z]

Remark: As before, the lower right triangle starting with x is copied

into R

x

To delete the last k parameters from a SIlF array, it is not

necessary to use subroutines R2A and THH. The first N - k = N columns

of the array already correspond to a square root information matrix of

the reduced system. If estimates are involved one can simply move the

z column left using:

I R (N*(N + 1)/2 + i) = R(N*(N +1)/2 + i), i = 1,...,k.

Remark: We mention in passing that if one is only interested in estimates

and/or covariances corresponding to the last k parameters then one can use

R2RA to transform the lower right triangle of the SRIF array to an upper

left triangle after which UTINV and RI2COV can be applied.

11.5 	 Sensitivity, Perturbation, Computed Covariance and Consider

Covariance Matrix Computation

Suppose that one is given a SRIF array

N 	 N 1x

12

in which the NY variables are to be considered. (One can, of course, using

subroutines R2A and THH reorder and retriangularize an arbitrarily arranged

SRIF array so that a given set of variables fall at the end.) For various

reasons one may choose to ignore the y variables in the equation

x
Rx + R = Zx - V I VxSN(O,I) (II.5b)

and take as the estimate x = R71 z . It then follows that
C x x

-I
-RK yR v (I1.5c)x - x = -71R y - R71 ,I.c

c x xy x x

and from this one obtains

Sen (X-X) -R R (II.5d)
Dy x xy

(sensitivity of the estimate error to the unmodeled y parameters)

Pert = Sen * Diag (1),. ,y (Ny)) (II.5e)

where y(l),...,y (N y) are a priori y parameter uncertainties.

(The perturbations are a measure of how much the estimate error could be

expected to change due to the unmodeled y parameters.)

P = R71 R - T + Sen P SenT (II.5f)
con x x y

= P + (Pert)(Pert) T if P is diagonalt
e y

where P is the estimate error covariance of the reduced model.
c

An easy way to compute Pc, Pert and Pcon is as follows: Use subroutine

R2RA to place the y variable a priori [y(O) into the lower right

Pert = Sen Pk

y

the a priori estimate y of consider parameters is generally zero.

13

corner of (II.5a), replacing Ry and zy, i.e.,

y YO 0y y Y

p2() Y o[P-1 (0) A]

Now apply subroutine UTIROW to this system (with a -l set in the lower right

corner*)

-
R R z R 1 Pert x

x xy X X C

0 9i0A UTIROW P Ay P() YO 0 P(0) Yo

o a -1 0 0 -1

Note that the lower portion of the matrix is left unaltered, i.e., the purpose

of UTIROW is to invert a triangular matrix, given that the lower rows have

already been inverted. From this array one can, using subroutine RI2COV,

get both P and P

C con

x R12COV
[R-] P I computed covariance
[K c

[R7 1 : Pert] R2COV_ [Po] consider covariance
x con

Suppose now that one is dealing with a U-D factored Kalman filter for

mulation. In this case estimate error sensitivities can be sequentially

To have estimates from the triangular inversion routines one sets a -1 in the

last column (below the right hand side).

Strictly speaking this is not what we call the perturbation unless Py(0) is

diagonal.

14
 ORIGINAL PAGE IS

OF POOR QUALITY

T ,I

dalculated as each scalar measurement (z = a x + aTy + v) is processed.

+ a)Sen. 	 = Sen_ - K.(a Sen
a j-1 j3 x i-I 3

where Sen _1 is the sensitivity prior to processing this (j-th) measurement,

and K is the-Kalman gain vector.
j

In this formulation one computes P in a manner analogous to that des
con

cribed in section 11.7;

Let U1 = Uj Di D (filter U-D factors)

[Sl 	 ... = Sen. (estimate error sensitivities)

then 	 recursively compute

2 SRANK

Uk-bk ' 'k' 'k Uk+l Dk+l

For 	 the final -flwe have

con con

j+
 n
 J+2
 n 1

 2+

if P (0) = U D UT , instead of P (0) = Diag (l2), then in the

y y yy y1R

U-D recursion one should replace the Sen. columns by those of Sen.*U and

2

a. should be replaced by the corresponding diagonal elements of D

j 	 Y

11.6 	 Combining Various Data Sets

In this example we collect several related problems involving data sets

with different parameter lists.

Suppose that the parameter namelist of the current data does not

correspond to that of the a priori SRIF array. If the new data involves

a permutation or a subset of the SRIF namelist, then an application of

tK = 	 g/a where g and a are quantities computed in subroutine UDMEAS.

15

subroutine PEEHUT will create the desired data rearrangement. If the data

involves parameters not present in the SRIF namelist then one could use

subroutine R2A to modify the SRIF array to include the new names and then

if necessary use PERMUT on the data, to rearrange it compatibly.

Suppose now that two data sets are to be combined and that each

contains parameters peculiar to it (and of course there are common para

meters). For example let data set 1 contain names ABC and data set 2

contain names DEB. One could handle such a problem by noting that the list

ABCDE contains both name lists. Thus one could use subroutine PER2UT

on each data set comparing it to the master list, ABCDE, and then the

results could be combined using subroutine THH. An alternative automated

method for handling this problem is to use subroutine COMBO with data

set 1 (assuming it is in triangular form) and namelist 2. The result

would be data set 1 in double subscripted form and arranged to the name

list ACDEB (names A and C are peculiar to data set 1 and are put first).

Having determined the namelist one could apply subroutine PERMUT to data

set 2 and give it a compatible namelist ordering.

The process of increasing the namelist size to accommodate new

variables can lead to problems with excessively long namelists, i.e.,

with high dimension. If it is known that a certain set of variables

will not occur in future data sets then these variables can be eliminated

and the problem dimension reduced. To eliminate a vector y from a SRIF

array, first use subroutine R2A to put the y names first in the namelist;

then use subroutine THH to retriangularize and finally use subroutine R2RA

to put the y independent subarray in position for further use; viz.

16

[R] R2A [A] JHfl R{ Y 	 RA [R
:]:j
0 Rx zx

The rows [Ry:Ryx :zy] can be used to recover a y estimate (and its covariance)

when an estimate for x (and its covariance) are determined. (See example

11.4).

Still another application related to the combining of data sets involves

the combining of SRIF triangular data arrays. One might encounter such prob

lems when combining data from different space missions (that involve common

parameters) or one might choose to process data of each type* or tracking.

station separately and then combine the resulting SRIF arrays. Triangular

arrays can be combined using subroutine TTHH, assuming that subroutines

R2A, THH and R2RA have been used previously to formulate a common parameter

set for each of the sub problems.

11.7 Batch Sequential White Noise

It is not uncommon to have a problem where each data set contains a

set of parameters that Apply only to that set and not to any other, viz.

the data is of the form

A.x 	 + B.y. = z. - v. j= ,...,N

J J 3 1 :

where there is generally a priori information on the vector y. variables.

Rather than form a concatenated state vector composed of x, y1,... 'YN

which might create a problem involving exhorbitant amounts of storage and

computation we solve the problem as follows. Apply subroutine THIt to

[BI:A1:z1], with the corresponding R initialized with the y1 a priori. The

resulting SRIF array is of the form

*viz. range, doppler, optical, etc. 0U

O roOR
17

x
N{Yl [YYl

.0 Rx zi

Copy the top N rows if one will later want an estimate or covariance of

Yl

the y1 parameters. Apply subroutine TZERO to zero the top N rows and

using subroutine R2RA set in the y2 a priori . This SRIF array is now

ready to be combined with the second set of data [B2:A2 :z2] and the procedure

repeated.

A somewhat analogous situation is represented by the class of problems

that involve noisy model variations, i.e., the state at step J+l satisfies

xj+ 1 =.
 + G. w.

where matrix G is defined so that wj is independent of x and w eN(0,Q

Models of this type are used to reflect that the problem at hand is not

truly one of parameter estimation, and that some (or all) of the components

vary in 'a random (or at least unknown) manner that is statistically

bounded. To solve this problem in a SRIF formulation suppose that a priori

for x. and w. are written in data equation form (cf ref. [3]),
J J

R.x. = z. - v. ; v.sN(O,I)JJ 3 3 3

Q2 w.o - (w) Vw)EN(O)3j In

w

where is a Cholesky factor of Q. that is obtainable from COV2RI. Combining

whr

these two equations with the one for xj+ gives

In this example it is assumed that all of the Yj variables have the same

dimension. This assumption, though not essential, simplifies our description

of the procedure.

18

L-j~jQj R.J [.J [[+iJ
where Qw. = w.. This is the equation to be triangularized with subroutine

THH, i.e.,

-R.G.Q R.
Dim w Dimx zV1 R

When the problem is arranged so that Q. is diagonal one can reduce storage

and computation. Incidentally, the form of this algorithm allows one to use

singular Qj matrices.

Di Diww
When the a priori for x and givenare in U-l factored form,

one can obtain the U-fl factors for x.j+1 as follows:

Let Qj - U(q) D(q) (ul(q))T (use GOV2UD if necessary)
Di3+1

w
U

)Set C = G. TJ) - [gl'.'',
0w

gn] , HHD -) Diag(d 1 ,...,dn

Apply subroutine RANKin times, with UO = IU. = D.w
 n0

(UDk 6 k' gk -(UDk+l

i.e. (UkDkk + dkgkgk = Uk+lDk+lUk+l)

Thenfl* I Un ' Dj+ 1 =Dn

19

Certain filtering problems involve dynamic models of the form

Xj+l
 j'3x"+ G.iwj

Given an estimate for x., x., the predicted estimate for x.~1, denoted

ij+I is simply

j+l ci c

The U-D factors of the estimate error corresponding to the estimate EJ+ l

can be obtained using the weighted Gram-Schmidt triangularization subroutine

(q))[0 U.j : G]; Diag (D jD W G S ~(~-Djl)c3 3 (1+1 -1+1

Subroutine PHIU can be used to construct #.*U.. Note that this matrix multi

plication updates the estimate too, because it is placed as an addended column

to the U matrix.

When the w and associated x terms correspond to a colored noise model,

=mpj + wj, then it is easier and more efficient to use the colored noise

update subroutine UDCOL. Note that here too the estimate is updated by the

subroutine calculation because the estimate is an addended column of U.

11.8 Miscellaneous Uses of the Various ESP Subroutines

In certain parameter analyses we may want to reprocess a set of data

suppressing different subsets of variables. In this case the original data

should be left unaltered and subroutine A2Al usdd to copy A into A1 , which

then can be modified as dictated by the analysis.

Covariance analysis sometimes are initialized using a covariance

matrix from a different problem (or a different phase of the same problem).

In such cases it may be necessary to permute, delete or insert rows and

columns into the covariance matrix; and that can be achieved using sub

routine C2C.

If a priori for the problem at hand is given as a covariance matrix

then one can compute the corresponding SRIF or U-D initialization using

In statistical notation that is commonly used, one writes

x(j+llj) = . x(jlj)

20

subroutines COV2RI or COV2UD. Of course, if the covariance is diagonal

the appropriate R and U-D factors can be obtained more simply. To

convert a priori given in the form of an information matrix to a corres

ponding SRIF matrix one applies subroutine INF2R. To display covariance

results corresponding to the SRIF or U-D filter one can use subroutines

UTINV, RI2COV and UD2COV. The vector stored covariance results can be

displayed in a triangular format using subroutine TWOMAT.

Parameter estimation does not, in the main, involve matrix multipli

cation. Certain applications, such as coordinate transformations and time

propagation are important enough to warrant inclusion in the ESP. For that

reason we have included RA (to post multiply a square root information

matrix) and PHIU to premultiply a U-covariance factor). Certain time propa

gation problems involve sparse transition matrices, and for this we have

included the subroutine SFU. Other special matrix products involving tri

angular matrices were not included because we have had no need for other

products (to date), and they are generally not lengthy or complicated to

construct. We illustrate this point by showing how to compute z Rx where

R is a triangular vector stored matrix and x is an N vector,

II=0

DO 2 I=,N

SUM=O. @SUM is Double Precision

11=II+I @IT=(I,T)

IK=II

Do 1 K=I,N

SUM=SU+R(IK)*x(K) @IK=(I,K)

1 IK=IK+K

2 z(I)=SUM @z can overwrite x if desired

21

Note that the II and IK incremental recursions are used to circumvent

the N(N+I)/2 calculations of IK=K(K-l)/2+I.

22

III. SUBROUTINE DIRECTORY SUMMARY

1. A2Al - (A to Al)

Reorders the columns of a rectangular matrix A, storing the

result in matrix Al. Columns can be deleted and new-columns added.

Zero columns are inserted which correspond to new column name entries.

Matrices A and Al cannot share common storage.

Example III.1

a B C B F G C H

1 5 9 5 0 0 9 0

2 6 10 A2Al 6 0 0 10 0

3 7 11 7 0 0 11 0

-4 8 12 8 0 0 12 0

A Al

The new namelist (BFGCH) contains F, G and H as new columns and deletes

the column corresponding to name a.

Exampla 111.2

Suppose one is given an observation data file with regression

coefficients corresponding to a state vector with components say,

X, 3, Zy Vx, Vy, vz and station location errors. Suppose further,

* i tthat the vector being estimated has components ar a ay
, ,

x, y, z, vx, v y, vz, GM and station location errors. A2AI can be used

to reorder the matrix of regression coefficients to correspond to the

state being estimated. Zero coefficients are set in place for the

accelerations and GM which are not present in the original file.

i1.
in track and cross
 track accelerations

23

2. 	 COMBO - (combine R and A namelists)

The upper triangular vector stored matrix R has its columns

permuted and is copied into matrix A. The names associated with R

are to be combined with a second namelist.

The namelist for A is arranged so that R names not contained in

the second list appear first (left most). These are then followed by

the second list. Names in the second list that do not appear in the

R namelist have columns of zeros associated with them.

Example 111.3

NAM2 	list

a B C D C B E a F D
1 2 4 7 4 2 0 1 0 7

0 3 5 8 5 3 0 0 0 8

0 0 6 9 6 0 0 0 0 9

0 0 0 10 0 0 0 0 0 i0

R-Vector stored A-Double subscripted

A principal application of this subroutine is to the problem of

combining equation sets containing different variables, and automating

the process of combining name lists.

3. 	 COVRHO - (covariance to correlation matrix)

A vector stored correlation matrix, RHO, is computed from an

input positive semi-definite vector stored matrix, P. Correlations

corresponding to zero diagonal covariance elements are zero. To econo

mize on storage the output RHO matrix can overwrite the input P matrix.

The principal function of correlation matrices is to expose strong

pairwise component correlations (IRHO(IJ)I.LE.l, and near unity in magni

tude). It is sometimes erroneously assumed that numerical ill-conditioning

24

of the covariance matrix can be determined by inspecting the correlation

matrix entries. While it is true that RHO is better conditioned than is

the covariance matrix, it is not true that inspection of RHO is sufficient

to detect numerical ill-conditioning. For example, it is not at all

obvious that the following correlation matrix has a negative eigenvalue.

1. 0.50001 0.50001

RHO = 1. -0.50001

1.

4. COV2RI - (Covariance to R inverse)

An input positive semi-definite vector stored matrix P is replaced

T
by its upper triangular vector stored Cholesky factor S, P = SS . The name

.RI is used because when the input covariance is positive definite, S R71

5. COV2UD - (Covariance to U-D factors)

An input positive semi-definite vector stored matrix P is replaced

by its upper triangular vector stored U-D factors. P=UDJ

6. C2C - (C to C)

Reorders the rows and columns of a square (double subscripted)

matrix C and stores the result back in C. Rows and columns of zeros

are added when new column entries are added.

Example 111.4

A B r r P B Q

A 1 4 7 r 9 0 6 0]

B 2 5 C2C P 0 0 0 0

r 6 B 8 0 5 0

Q 0 0 0 0

Names P and Q have been added and name A deleted. An important appli

cation of this subroutine is to the rearranging of covariance matrices.

25

7. INF2R - (Information matrix to R)

Replaces a vector stored positive semi-definite information matrix

A by its lower triangular Cholesky factor RT; A = RTR. The upper tri

angular matrix R 	 is in the form utilized by the SRIF algorithms. The

algorithm is designed to handle singular matrices because it is a

common practice to omit a priori information on parameters that are

either poorly known or which will be well determined by the data.

8. 	 MPOST - (Householder orthogonal triangularization by post

multiplication)

The input, double subscripted, rectangular matrix W(N,N) (M.LE.N)

is triangularized, and overwritten, by post-multiplying it by an implicitly

defined orthogonal transformation, i.e.

[W IT -- [0 N..S]

This subroutine is used, in the main, to retriangularize a mapped covari

ance square root and to include in the effects of process noise (i.e.

W = [D *p1/2 B 1I/2]) and to compute consider covariance matrix square

1Senpl/2]).roots (i.e. W = 	 [pl/2
computed" y

9. PERMUT

Reorders the columns of matrix A, storing the result back in A.

This routine differs from A2Al principally in that here the result over

writes A. PERMUT is especially useful in applications where storage is

at a premium or where the problem is of a recursive nature.

10. PHIU - (PHI (rectangular) * U(unit upper triangular))

[PHI] I [PHIU I

The matrices PHI and PHIU are double subscripted, and U is vector sub

scripted with implicitly defined unit diagonal elements. It is not

26

necessary to include trailing columns of zeros in the PHI matrix; they

are accounted for implicitly. To economize on storage the output PHIU

matrix can overwrite the input PHI matrix. For problems involving sparse

PHI matrices it is more efficient to use the sparse matrix multiplication

subroutine, SFU. When the last column of U contains the estimate, x, the

last column of W represents the mapped elements of PHI*x. The principal

use of this subroutine is the mapping of covariance U factors, where P= UDUT

and estimates.

11. 	 RA - (R(triangular) *A(rectangular))

Square root information matrix mapping involves matrix multipli

cation of the form indicated in the figure, i.e. with the bottom portion

of A only implicitly defined as a partial identity matrix. Features of

this subroutine are that the resulting RA matrix can overwrite the input

A, and one can compute RA based on a trapezoidal input R matrix (i.e. only

compute part of R*A).

12. 	 RANKl - (U-D covariance factor rank 1 modification)

Computes updated U-D factors corresponding to a rank 1 matrix

modification; 	 i.e., given U-D, a scalar c, and vector v, U and f are

1 T
computed so that U 	 TU= U D UT + c v v . Both c and v are destroyed during

the computation, and the resultant (vector stored) U-D array replaces

the original one. Uses for this routine include (a) adding process

noise 	 effects to a U-D factored Kalman filter; (b) computing consider

covariances (cf Section 11.5); (c) computing "actual" covariance

factors resulting from the use of suboptimal Kalman filter gains; and

(d) adding measurements to a U-D factored information matrix.

27

13. 	 RCOLRD - (colored noise inclusion into the SRIF)

Includes colored noise time updating into the square root infor

mation matrix. It is assumed that the deterministic portion of the time

update has been completed, and that only the colored noise effects are

being incorporated by this subroutine. The algorithm used is Bierman's

colored noise one-component-at-a-time update, cf ref. [3], and updates the

SRIF array corresponding to the model

x 1-1 0 0- x 1 0

P 0 X 0 p", + wj l

x2 j 0 0 1 x 2 0

M is diagonal and w. EN(O,Q). Auxiliary quantities, useful for fixed interval

1

smoothing, are also generated.

14. RINCON - (R inverse with condition number bound, CNB)

Computes the inverse of an upper triangular vector stored matrix R

using back substitution. To economize on storage the output result can

overwrite the input matrix. A Frobenius bound (CNB) for the condition

number of R is computed too. This bound acts as both an upper and a

lower bound, because CNB/N fcondition number CNB. When this bound is

within several orders of magnitude of the machine accuracy the computed

inverse is not to be trusted, (viz if CNB 1015 on an 18 decimal digit

machine R is ill-conditioned).

15. RI2COV - (RI to covariance)

This subroutine computes sigmas (standard deviations) and/or the

covariance of a vector stored upper triangular square root covariance

matrix, RINV (SRIF inverse). The result, stored in COVOUT (covariance

output) is also vector stored. To economize on storage, COVOUT can over

write RINV.

9A

16. R2A - (R to A)

The columns of a vector stored upper triangular matrix R are per

muted and variables are added and/or deleted. The result is stored in

the double subscripted matrix A. In other respects the subroutine is

like A2Al.

Example 111.5

a B C D E E F C B

2 4 8 14 22 22 0 8 4

0 6 10 16 24 24 0 10 6

0 0 12 18 26 R2A 26 0 12 0

0 0 0 20 28 28 0 0 0

0 0 0 0 30 30 0 0 0

R A

R is vector stored as R = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)

with namelist (c,B,C,D,E) associated with it. Names a and D are

not included in matrix A, and a column of zeros corresponding to name

F is added.

One trivial, but perhaps useful, application is to convert a

vector stored matrix to a double subscripted formS R2A is use4 most

often when one wants to rearrange the columns of a SRIF array so that

reduced order estimates, sensitivities, etc. can be obtained; or so that

data sets containing different parameters can be combined.

t

see also the aside in the introduction

29

17. R2RA - (Triangular block of R to triangular block of RA)

A triangular portion of the vector stored upper triangular matrix R

is put into a triangular portion of the vector stored matrix RA. The

names corresponding to the relocated block are also moved. R can coin

cide with RA.

Examples 111.6

Q Z Q z

R RA

or

A F A F

.I I
I I

I I

R RA

Note that an upper left triangular submatrix can slide to any lower

position along the diagonal, but that a submatrix moving up must go

to the upper leftmost corner. Upper shifting is used when one is

interested in that subsystem; and the lower shifting is used, for

example, when inserting a priori information for consider analyses.

0gIC'INAL vwBZ

OS
30

18. RjDR - (SRIF R converted to U-D form or vice versa)

A vector stored SRIF array is replaced by a vector stored U-D

form or conversely. A point to be noted is that when data is involved

the right side of the SRIF data equation transforms to the estimate in

the U-D array.

19. SFU - (Sparse F* U(Unit upper triangular))

[Sparse F] = [U I

A sparse F matrix, with only its nonzero elements recorded, multiplies

U which is vector stored with implicit unit diagonal entries. When the

input F is sparse this routine is very efficient in tens of storage and

computation. When the last column of U contains the estimate, x, the last

column of FU represents elements of the mapped estimate F *x.

20. TDHHT - (Two dimensional Householder Triangularization)

Implicitly defined Householder orthogonal transformations are used

to triangularize an input two dimensional rectangular array, S(M,N).

Computation can be reduced if S starts partially triangular;

JSTART

Further, the algorithm implementation is such that (a) maximum trian

gularization is achievable

when M.LT.N
][

31

when M.GT.N S o

and finally when an intermediate form is desired

JSTOP

This subroutine can be used to compress overdetermined linear systems of

equations to triangular form (for use in least squares analyses). The

chief application, that we have in mind, of this subroutine, is to the

matrix triangularization of a "mapped" square root information matrix.

This subroutine overlaps to a large extent the subroutine THH which

utilizes vector stored, single subscripted, matrices. This latter rou

tine when applicable is more efficient. The triangularization is adapted

from ref. [1].

21. THH - (Triangular Householder data packing)

An upper triangular vector stored matrix R is combined with a

rectangular doubly subscripted matrix A by means of Householder orthogonal

transformations. The result overwrites R, and A is destroyed in the process.

This subroutine is a key component of the square root information sequential

filter, cf ref. [3].

T TH-It

The elements are not explicitly set to zero.

32

22. 	 TTHH - (Two triangular arrays are combined using Householder

orthogonal transformations)

This subroutine combines two single subscripted upper triangular

SRIF arrays, R and RA using Householder orthogonal transformations. The

result overwrites R.

T TTHH

23. TWOMAT - (Two dimensional print of a triangular matrix)

Prints a vector stored upper triangular matrix, using a matrix

format.

Example 111.7

R(10) = (2,4,6,8,10,12,14,16,18,20) with associated namelist

(A,B,C,D) is printed as

A B C D

A 2 4 8 14

B 6 10 16

C 12 18

D 20

(The numbers are printed as 7 columns of 8 significant

floating point digits or 12 columns of 5 significant floating

point digits.)

To appreciate the importance of this subroutine compare the vector

R(10) with the double subscript representation.

iThe elements are not explicitly set to zero.

33

24. 	 TZERO - (Zero a horizontal segment of a vector stored upper

triangular matrix)

Upper triangular vector stored matrix R has its rows between ISTART

and IFINAL set to zero.

Example 111.8

To zero rows 2 and 3 of R(15) of example 111.5

R(15) = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30) is transformed to

R(15) = (2,4,0,8,0,0,14,0,0,20,22,0,0,28,30) i.e.,

2 4 8 14 22 2 4 8 14 22

0 6 10 16 24 0 0 0 0 0

0 0 12 18 26 TZERO 0 0 0 0 0

0 0 0 20 28 0 0 0 20 28

0 0 0 0 30 0 0 0 0 30

R-vector stored 	 R-vector stored

25. 	 UDCOL - (U-D covariance factor colored noise update)

This subroutine updates the U-D covariance factors corresponding

to 	 the model

x, 1 0 0- x 1 0

x2 0 M0 I +2 W0

2_ j+l 2- i-

where M is diagonal and w. SN(0,Q). The special structure of the transi-

J

tion and process noise covariance matrices is exploited, cf Bierman, [3].

34

26. 	 UDMEAS - (U-D Measurement Update)

Given the U-D factors of the a priori estimate error covariance

and the measurement, z = Ax + V this routine computes the updated estimate

and U-D covariance factors, the predicted residual, the predicted residual

variance, and the normalized Kalman gain. This is Bierman's U-D measure

ment 	 update algorithm, cf [3].

27. 	 UD2COV - (U-D factors to covariance)

The input vector stored U-D matrix (diagonal D elements are stored

as the diagonal entries of U) is replaced by the covariance P, also vector

stored, P = UDUT. P can overwrite U to economize on storage.

28. 	 UD2SIG - (U-D factors to sigmas)

Standard deviations corresponding to the diagonal elements of the

covariance are computed from the U-D factors. This subroutine, a restricted

version of UD2COV can print out the resulting sigmas and a title. The

input U-D matrix is unaltered.

29. 	 UTINV - (Upper triangular matrix inversion)

An upper triangular vector stored matrix RIN (R in) is inverted

and the result, vector stored, is put in ROUT (R out). ROUT can overwrite

RIN to economize on storage. If a right hand side is included and the

bottommost tip of RIN has a -1 set in then ROUT will have the solution in

the place of the right hand side.

35

30. UTIROW - (Upper triangular inversion, inverting only the upper rows)

INPUT OUTPUT

Rx RRxyx Rx -R7x Rxy RiY

-------- UTIROW -- - - - - - - -
- -I n -9 . 0 R j

An input vector stored R matrix with its lower left triangle assumed to

have been already inverted is used to construct the upper rows of the

matrix inverse of the result, The result, vector stored, can overwrite

the input to economize on storage.

If the columns comprising R represent consider terms then taking
xy

R7I as the identity gives the sensitivity on the upper right portion of

y

the result. If R71 = Diag(oy,...,) then the upper right portion of
n

y y

the result represents the perturbation. Note that if z (the right hand

side of the data equation) is included in R then taking the corres
xy

ponding R71 diagonal as -1 results in the filter estimate appearing

y

as the corresponding column of the output array. When n is zero this

5

subroutine is algebraically equivalent to UTINV. The subroutines differ

when a zero diagonal is encountered. UTINV gives the correct inverse

for the columns to the left of the zero element, whereas UTIROW gives

the correct inverse for the rows below the zero element.

36

ORIGINAL PAGE IS

OF POOR QUALITY

31. WGS - (Weighted Gram-Schmidt U-D matrix triangularization)

An input rectangular (possibly square) matrix W and a diagonal

weight matrix, Dw , are transformed to (U-D) form; i.e.,

ww sn wT- = T

where U is unit upper triangular and D is diagonal. The weights D are

w

assumed nonnegative, and this characteristic is inherited by the

resulting D.

37

IV. 	 SUBROUTINE DIRECTORY USER DESCRIPTION

I. 	 A2Al (A to Al)

Purpose

To rearrange the columns of a namelist indexed matrix to

conform to a desired namelist.

I CALL A2AI(A,IA,IR,LA,NAMA,Al,IAl,LAI,NAMAl)

Argument Definitions

A(IR,LA) Input rectangular matrix

IA Row dimension of A, IA.GE.IR

IR 	 Number of rows of A that are to be

arranged

LA 	 Number of columns in A; this also

represents the number of parameter

names associated with A

NAMA(LA) 	 Parameter names associated with A

A1(IR,LAl) Output rectangular matrix

IAl Row dimension of Al, IAl.GE.IR

LAl 	 Number of columns in Al; this also

represents the number of-parameter

names associated with Al

NAMAl(LAl) Input list of parameter names to be

associated with the output matrix Al

Remarks and Restrictions

Al cannot overwrite A. This subroutine can be used to add

on columns corresponding to new names and/or to delete variables

from an array.

Functional Description

The 	columns of A are copied into Al in an order corresponding

to the NAMAl parameter namelist. Columns of zeros are inserted

in those Al columns which do not correspond to names in the input

parameter namelist NAMA.

38

http:IAl.GE.IR
http:IA.GE.IR

-
(Combine parameter namelists)

0AGSIGV PG IS
2. COMBO

Purpose

To rearrange a vector stored triangular matrix and store

the result in matrix A. The difference between this subroutine

and R2A is that there the namelist for A is input; here it is

determined by combining the list for R with a list of desired names.

CALL COMBO (R,L1,NAM1,L2,NAM2,A,IA,LA,NAMA)

Argument Definitions

R(Ll*(Ll+l)/2) Input vector stored upper triangular matrix

Li No. of parameters in R (and in NAMI)

NAMI(LI) Names associated with R

L2 No. of parameters in NAM2

NAM2 (L2) Parameter names that are to be combined
with R (NAMI list); these names may or
may not be in NAMI

A(LI,LA) Output array containing the rearranged

R matrix Ll.LE.IA

IA Row dimension of A

LA No. of parameter names in NAMA, and the
column dimension of A. LA= Ll+ L2 -
No. names common to NAMI and NAM2; LA
is computed and output

NAMA(LA) Parameter names associated with the out
put A matrix ; consists of names in NAMI
which are not in NAM2, followed by NAM2

Remarks and Restrictions

The column dimension of A is a result of this subroutine.

To avoid having A overwrite neighboring arrays one can bound the

column dimension of A by LI +L2.

39

http:Ll.LE.IA

Functional Description

First the NAM and NAM2 lists are compared and the names

appearing in NAMI only have their- corresponding R column entries

stored in A (e.g. if NAMI(2) and NAMI(6) are the only names not

appearing in the NAM2 list then columns 2 and 6 of R are copied

into columns I and 2 of A). The remaining columns of A are

labeled with NAN2. The A namelist is recorded in NAMA. The

NAM list is compared with NAN2 and matching names have their R

column entries copied into the appropriate columns of A. NAM2

entries not appearing in NAMl have columns of zero placed in A.

40

Purpose

3. 	 COVRHO (Covariance to correlation matrix, RHO)po~QIMYL
To compute the correlation matrix RHO from an input covariance

matrix COV. Both matrices are upper triangular, vector stored and

the output can overwrite the input.

[CALL COVRHO(COV,N,RHO,V)

Argument Definitions

COV(N*(N+l)/2) Input vector stored positive semi-definite
covariance matrix

N Model dimension, N.GE.1

RHO(N*(N+)/2) Output vector stored correlation matrix

V(N) Work vector

Remarks

No test for non-negativity of the input matrix is made.

Correlations corresponding to negative or zero diagonal entries

are set to zero, as is the diagonal output entry.

Functional Description

V(I). = 1/ COV(lI) if COV(I,I).GT.O and 0. otherwise

RH(I,J) = COV(I,J)*V(I)*V(J)

The subroutine employs, however, vector stored COy and RHO matrices.

41

4. 	 COV2RI (Covariance to Cholesky Square Root, RI)

Purpose

To construct the upper triangular Cholesky factor of a positive

semi-definite matrix. Both the input covariance and the output

Cholesky factor (square root) are vector stored. The output

overwrites the input. Covariance (input) = (CF)*(CF)**T

(output CF = Rinverse). If the input covariance is singular, the

output factor has zero columns.

ICALL COV2RI(CF,N)

Argument Definitions

CF(N*(N+)/2) 	 Contains the input vector stored

covariance matrix (assumed positive

definite) and on output it contains

the upper triangular Cholesky factor

N 	 Dimension of the matrices involved, N.GE.2

Remarks and Restrictions

No check is made that the input matrix is positive semi-definite.

Singular factors (with zero columns) are obtained if the input is

(a) in fact singular, (b) ill-conditioned, or (c) in fact indefinite;

and the latter two situations are cause for alarm. Case (c) and

possibly (b) can be identified by using RI2COV to reconstruct the

input matrix.

Functional Description

An upper triangular Cholesky reduction of the input matrix is

implemented using a geometric algorithm described in Ref. [3].

T

CF(input) = CF(output)*CF(output)

At each step of the reduction diagonal testing is used and negative

terms are set to zero.

42

5. COV2UD (Covariance to UD factors)

To obtain the U-D factors of a positive semi-definite matrix.

The input vector stored matrix is overwritten by the output U-D

factors which are also vector stored.

ICALL CoV2lmQJ,N)

Argument Definitions

U(N*(N+l)/2) 	 Contains the input vector stored covari

ance matrix; on output it contains the

vector stored U-D covariance factors.

N 	 Matrix dimension, N,GE,2

Remarks and Restrictions

No checks are made in this routine to test that the input U matrix

is positive semi-definite. Singular results (with zero columns) are

(a) in fact singular, (b) ill-conditioned,
obtained if the input is

or (c) in fact indefinite; and the latter two situations are cause for

alarm. Case (c) and possibly case (b) can be identified by using UD2-

Note that although indefinite
COV to reconstruct the input matrix.

matrices have U-D factorizations, the algorithm here applies only to

matrices with non-negative eigenvalues.

Functional Description

An upper triangular U-D Cholesky factorization of the input matrix

is implemented using a geometric algorithm described in Ref. [3].

U(input) = U*D*U , U-D overwrites the input U

at each step of the reduction diagonal testing is used to zero negative

terms.

43

6. 	 C2C (C to C)

Purpose

To rearrange the rows and columns of C, from NAMI order to NAM2

order. Zero rows and columns are associated with output defined names

that are not contained in NAMI.

CALL C2C(CIC,L1,NAM1,L2,NAX2) 1

Argument Definitions

C(Ll,Ll) Input matrix

IC Row dimension of C

IC.GE.L = MAX(Ll,L2)

Li No. of parameter names associated with

the input C

NAMI(L) Parameter names associated with C on input.

(Only the first Ll entries apply to the

input C)

L2 No. of parameter names associated with the

output C

NAM2(L2) Parameter names associated with the output C

Remarks and Restrictions

The NAM2 list need not contain all the original NAMI names and

Li can be .GE. or .LE. L2. The NAMi list is used for scratch and

appears permuted on output. If L2.GT.Ll the user must be sure that

NAMI has L2 entries available for scratch purposes.

Functional Description

The rows and columns of C and NAMl are permuted pairwise to get

the names common to NAMI and NAM2 to coalesce. Then the remaining rows

and columns of C(L2,L2) are set to zero.

Ah

http:L2.GT.Ll

ORIGINAL PAGE IS
OF POOR QUALITY

7. HHPOST (Householder Post Multiplication Triangularization)

Purpose

To employ Householder orthogonal transformations to triangularize

an input rectangular 	 W matrix by post multiplication, i.e.

JT [[\<S][W

This algorithm is employed in various covariance square root updates.

ICALL HHPOST(S ,W,MROW,NROW,NCOL ,V)

Argument Definitions

S(NROW*(NROW+l)/2) 	 Output upper triangular vector stored

square root matrix

W(NROW,NCOL) 	 Input rectangular square root covariance

matrix (W is destroyed by computations)

MROW Maximum row dimension of W

NROW Number of rows of W to be triangularized
and the dimension of S (NROW.GE.2)

NCOL Number of column of W (NCOL.GE.NROW)

V(NCOL) 	 Work vector

Functional Description

Elementary Householder transformations are applied to the rows of W

in much the same way as they are applied to obtain subroutine THH. The

orthogonolization process is discussed at length in the books by Lawson

and Hanson [11 and Bierman [3].

45

8. 	 INF2R (Information matrix to R)

Purpose

To compute a lower triangular Cholesky factorization of an

input positive semi-definite matrix. The result transposed, is

vector stored; this is the form of an upper triangular SRIF matrix.

I CALL INF2RR,N)

Argument Definitions

R(N*(N+I)/2) Input vector stored positive semi

definite (information) matrix; on output

it represents the transposed lower

triangular Cholesky factor (i.e. the SRIF

R matrix)

N Matrix dimension, N,GE,2

Remarks and Restrictions

No checks are made on the input matrix to guard against negative

eigenvalues of the input, or to detect ill-conditioning. Singular

output matrices have one or more rows of zeros.

Functional Description

A Cholesky type lower triangular factorization of the input matrix

is implemented using the geometric formulation described in Ref. [3].

R(input) = [R(output)] T * [R(output)]

At each step of the factorization diagonal testing is used to zero columns

corresponding to negative entries. The result is vector stored in the

form of a square root information matrix as it would be used for SRIF

analyses.

46

ORIGINAL PAGE IS
OF POOR QUALITY

9. 	 PERMIJT (Permute A)

Purpose

To 	 rearrange the columns of a namelist indexed matrix to conform

to a desired namelist. The resulting matrix is to overwrite the input.

[CALL PERMUT(A,IA,IR,Ll,NAMlL2,NAM2

Argument Definitions

A(IR,L) Input rectangular matrix, L=max(Ll,L2)

IA Row dimension of A, IA.GE.IR

IR Number of rows of A that are to be

rearranged

Ll Number of paiameter names associated with

the input A matrix

NAMl(L) Parameter names associated with A on input

(only the first Li entries apply to the

input A)

L2 Number of parameter names associated with

the output A matrix

NAM2 Parameter names associated with the output A

Remarks and Restrictions

This subroutine is similar to A2AI; but because the output matrix

in this case overwrites the input there are several differences. The

NAMI vector is used for scratch, and on output it contains a permuta

tion of the input NAMI list. The user must allocate L max(Li,L2)

elements of storage to NAMl. The extra entries, when L2> Ll, are

used for scratch.

Functional Description

The columns of A are rearranged, a pair at a time, to match the

NAM2 parameter namelist. The NAMI entries are permuted along with the

columns, and this is why dim (NAMI) must be larger than Li (when L2>Ll).

Columns of zeroes are inserted in A which correspond to output names

that do not appear in NAMl.

47

http:IA.GE.IR

10. PHIU (PHT-rectangu1lar*U-unit upper triangular)

Purpose

To multiply a rectangular two dimensional matrix PHI by a unit

upper triangular vector stored matrix U, and store the result in

PHIU. The PHIU natrix can overwrite PHI to economize on storage.

[PHI]7 = [PHIU]

[CALL PHIU(PHI,MAXPHI,IRPHI,JCPHI,U,N,PIU,MPHIU)

Argument Definitions

PHI(IRPHI,JCPHI) Input rectangular matrix IRPHI.LE I4AXPHI

MAXPHI Row dimension of PHI

IRPHI number of rows of PHI

JCPHI number of columns of PHI

U(N*(N+I)/2) unit upper triangular vector stored matrix

N U-matrix dimenstion, JCPHI.LE.N

PHIU(IRPHI,N) output result PHI*U,PHIU can overwrite PHI

MPHIU row dimension of PHIU

Remarks and Restrictions

If JCPHI.LT.N it is assumed that there are implicitly defined

trailing columns of zeros in PHI. The unit diagonal entries of U

are implicit, i.e. the diagonal U entries are not explicitly used.

Functional Description

PHIU = PHI*U

48

http:IRPHI.LE

ORIGINAL PAGE IS
OF POOR QUALITY

1. 	 RA (R-upper triangular*A-rectangular)

Purpose

To post multiply a vector stored triangular matrix, R, by a

rectangular matrix A, and if desired to store the result in A.

CALL 	 RA(R,N,A,MAXA,IA,JA,RA,MAXRA,IRA)

Argument Definitions

R(N*(N+l)/2) upper triangular, vector stored input

N 	 order of R

A(IA,JA) Input rectangular right multiplier matrix

MAXA Row dimension of input A matrix

IA Number of rows of A that are input

JA Number of columns of A

RA(IRA,JA) Output resulting rectangular matrix

RA can overwrite A

MAXRA Row dimension of RA

IRA Number of rows in the output result

(IRA.LE.MAXRA)

Functional Description

The first IRA rows of the product R*A are computed using the

vector stored input matrix R, and the output can, if desired,

overwrite the input A matrix. When N.GT.IA (i.e. there are more

columns of R than rows of A) then it is assumed that the bottom

N-IA rows of A are implicitly defined as a partial identity matrix, i.e.

A= _(Inpu t)] }IA

0" 1 }N-IA

49

12. 	 RANKI (Stable U-D rank one update)

Purpose

+ CW T

To compute the (updated) U-D factors of

UDU T

CALL RANKl(UIN,UOUT,N,C,V)

Argument Definitions

UIN(N*(N+1)/2) Input vector stored positive semi

definite U-D array (with the D entries

stored on the diagonal of U)

UOUT(N*(N+I)/2) Output vector stored positive (possibly)

semi-definite U-D result, UOUT=UIN is

allowed.

N Matrix dimension, N.GE.2

C Input scalar, which should be non-negative.

C is destroyed by the algorithm.

V(N) Input vector for the rank one modification.

V is destroyed by the algorithm.

Remarks and Restrictions

If C negative is used the algorithm is numerically unstable,

and the result may be numerically unreliable. Singular U matrices

are allowed, and these can result in singular output U Matrices.

The code switches from a 1-multiply to a 2-multiply mode at a key

place, based upon a 1/16 comparison of input to output D values.

Also, there is provision made to supply a machine accuracy epsilon

when single precision is specified.

Functional Description

This rank one modification is based on a result published by

Agee and Turner (1972), White Sands Missile Range Tech. Report

No. 38 and improved on using a numerical stabilization idea due

to Gentlemen (1973). The algorithm is derived in the chapter,

50

ORIGINAL PAGE IS

OF POOR QUALITY

"DMU T Covariance Factorization For Kalman Filtering," C. L. Thornton,

G. J. Bierman, Vol. XVI of Advances in Control of Dynamic Systems,

Academiic Press, to appear 1979.

51

13. RCOLRD (Colored noise time update of the SRIF R matrix)

Purpose

To include colored noise time updating into the square root

information matrix. It is assumed that the deterministic portion

of the time update 	 has been completed, and that only the colored

noise effects are being incorporated by this subroutine.

CALL RCOLRD(S,MAXS,IRS,JCS,NPSTRT,NP,E4,RW,ZWVSSTAR)

Argument Definitions

S(IRS,JCS) 	 Input rectangular portion of the square

root information matrix corresponding to

the nonconstant paramters. It is assumed

that estimates are included, i.e. the last

column represents the "right hand side",Z,

(but see JCS description). S also houses the

time updated array, and if there is smoothing

there are NP extra 	 rows adjoined to S.

MAXS 	 Row dimension of S. If smoothing calculations

are to be included then MAXS.GE.IRS+NP.

IRS 	 The number of rows of S, i.e. the number of

nonconstant parameters (including colored

noise variables). IRS.GE.2

JCS 	 The number of columns of S. If the vector

ZW is zero, then the right hand side of

transformed estimates need not be included.

NPSTRT 	 Location of the first colored process noise

variable.

NP 	 The number of colored noise variables

contiguous to and following the first.

EM(NP) Vector of exponential colored noise multipliers
(EM = exp (-DT/TAU))

RW(NP) 	 Vector of positive reciprocal colored process

noise standard deviations, i.e.

pjtl = exp(rDTT)* pi + wj, Rw = I/crw

52

ORIGINAL PAGE 1S
OF POOR QUAL

ZW(NP) Vector of normalized process noise a priori

estimates. ZW is generally zero.

V(IRS) Work vector.

SGSTAR(NP) Vector of smoothing coefficients.
only if smoothing is to be done.

Needed

Remarks and Restrictions

There are three lines of code associated with smoothing, and

these are commented out of the nominal case. Therefore, if smoothing

is contemplated the comments must be removed. The vector SGSTAR is

involved only with smoothing. Last note, for smoothing, be sure

that S has NP extra rows to house the smoothing coefficients.

The ZW vector is generally zero. If ZW = 0 one has the option

of doing covariance only analyses and the last column of S (the

right hand side of normalized estimates) can be omitted.

Because of the large number of arguments appearing in this

subroutine, and because almost all of them are constant (i.e. with

succeeding calls only S, and possible EM, RW, ZW and SGSTAR change)

for a given problem, it is suggested that one a) introduce COMMON,

b) use this as an internal subroutine, or c) write in-line code.

Functional Description

The model is

0 0 11+1 01]NSR-

-j+l 0 1 Lx 2J 0J

where M is diagonal, with NP non-negative entries and w.3 is a white

- T
noise process with w. EN(w, Q), Q = R 1 R- The algorithm is based

o w w
on Bierman's one component-at-a-time SRIF time update which economizes

S1

on storage and computation (see Bierman-Factorization Methods for

Discrete Sequential Estimation, Academic Press 1977).

When smoothing is contemplated, there is output a vector c*(NP)

and a matrix S*(NP,N+l); S* occupies the bottom RP rows of the

output S matrix. Smoothed estimates of the p terms can be obtained

from the a* and S* terms as follows:

Let X* be the previously computed estimates of the N filter

parameters, then for d NP, NP-I,...1 recursively compute

N

X*(NSTRT + J-l):= (S*(J, N+I) - L S*(J,K)X*(K))/a*(J)

K=1

Note that the symbol ":=" means is replaced by, so that the old

values of X*, on the right side, are over-written by the new

smoothed colored noise estimates. Smoothed covariances can be

obtained from the S* and o* terms as well, but we do not go into

detail here; the reader is directed to chapter 10 of the Bierman

reference.

54

ORIGINAL FAGt;

OF POOR QUALITY
14. 	 RINCON (R inverse with condition number bound)

Purpose

To compute the inverse of an upper triangular vector stored

triangular matrix, and an estimate of its condition number.

ICALL RINCON(RIN,N,ROUT, CNB)

Argument Definitions

RIN(N*(N+1)/2) Input vector stored upper triangular matrix

N Matrix dimension, N.GE.2

ROUT(N*(N+l)/2) Output vector stored matrix inverse

(RIN=ROUT is permitted)

CNB Condition number bound. If K is the

condition number of RIN, then

CNB/N.LE.K.LE CNB

Remarks and Restrictions

The condition number bound, CNB serves as an estimate of the actual

condition number. When it is large the problem is ill-conditioned.

Functional Descriptio

The matrix inversion is carried out using a triangular back

substitution. If any diagonal element of the input R matrix is

zero the condition number computation is aborted. When the first

zero occurs at diagonal k the matrix inversion is carried out only

on the first k-l columns. The condition number bound is domputed

as follows:

NTOT

F.NORM R = R(J) 2

J=l

NTOT
2

F.NORM R-1 = R-1 (J)

J=l

55

http:CNB/N.LE.K.LE

where NTOT = N*(N+l)/2 is the number of elements in the vector stored

triangular matrix. The condition number bound, CNB, is given by

CNB = (F.NORM R * F.NORM R71) 1 / 2

F.NORM is the Brobenius norm, squared. The inequality

CNB/N condition number R CNB

is a simple consequence of the Frobenius norm inequalities given in

Lawson-Hanson "Solving Least Squares," page 234.

56

ORIGINAL PAGE IS
OF POOR QUALITY

15. 	 RI2COV (RI Triangular to covariance)

Purpose

To compute the standard deviations, and if desired, the

covariance matrix of a vector stored upper triangular square root

covariance matrix. The output covariance matrix, also vector

stored, can overwrite the input.

CALL RI2COV(RINV,N,SIG,COVOUT,KROW,KCOL)

Argument Definitions

RINVCN*(N+I)/2 Input vector stored upper triangular

covariance square root (RINV=Rinverse

is the inverse of the SRIF matrix).

N Dimension of the RINV matrix

SIG(N) Output vector of standard deviations

COVOUT(N*(N+l)/2) Output vector stored covariance matrix

(COVOUT = RINV is allowed)

.GT.0 Computes the covariance and sigmas

corresponding to the first KROW variables

of the RINV matrix

KROW .LT.O Computes only the sigmas of the first

(KROW) variables of the RINV matrix.

.EQ.0 No covariance, but all sigmas (e.g. use

all N rows of RINV)

KCOL Number of columns of COVOUT that are

computed, If KCOL.LE.0, then KCOL = KROW.

Remarks and Restrictions

Replacing N by IKROWI corresponds to computing the covariance

of a lower dimensional system.

Functional Description

COVOUT=RINV*RINV**T

57

16. 	 R2A (R to A)

Purpose

To place the upper triangular vector stored matrix R into the

matrix A and to arrange the columns to match the desired NAMA para

meter list. Names in the NAMA list that do not correspond to any

name in NAMR have zero entries in the corresponding A columns.

CALL R2A(R,LR,NAMR,A,IALA,NAMA)]

Argument Definitions

R(LR*(LR+I)/2) Input upper triangular vector stored array

LR No. of parameters associated with R

NAMR(LR) Parameter names associated with R

A(LR,LA) Matrix to house the rearranged R matrix

IA Row dimension of A, IA.GE.LR.

LA No, of parameter names associated with the

output A matrix.

NAMA(LA) Parameter names for the output A matrix.

Functional Description

The matrix A is set to zero and then the columns of R are copied

into A.

58

http:IA.GE.LR

17. 	 R2RA (Permute a subportion RA of a vector stored triangular matrix)

Purpose

To copy the upper left (lower right) portion of a vector stored

upper triangular matrix R into the lower right (upper left) portion of

a vector stored triangular matrix RA.

CALL 	 R2RA(R,NR,NAM,RA,NRA,NAMA)

Argument Definitions

R(NR*(NR+l)/2) Input vector stored upper triangular matrix

NR Dimension-of vector stored R matrixt

NAM(NR) 	 Names associated with R.

RA(NRA*(NRA+I)/2) 	 Output vector stored upper triangular matrix

NRA 	 If NRA= 0 on input, then NAMA(l) should have

the first name of the output namelist. In

this case the number of names in NAMA, NRA,

will be computed. Th6 lower right block of

R will be the upper left block of RA.

If NRA= last name of the upper left block

that is to be moved then this upper block

is to be moved to the lower right corner

of RA. When used in this mode NRA=NR on

outputt

NAMA(NRA) 	 Names associated with RA. Note that NRA

used here denotes the output value of NRA.

Remarks and Restrictions

=
RA and NAMA can overwrite R and NAM. The meaning of the NEA 0

option is clarified by the following example:

A B C D E C D E INPUT
- NR =5

2 4 8 14 22 12 18 26 NAM= 'A','B,'C','D',YET
NRA =0

6 10 16 24 20 28 NAMA(l) = 'C'
R

112 18 26 30 OUTPUT
20 2 NAMA = 'C', WD, E'
20 28

I o

R

tsee the concluding paragraph of Remarks and Restrictions

59

'C'we are asking that the lower triangular
When-NRA = 0 and NAHA(l) =

portion of R. beginning at the column labeled C, be moved to form the

first (in this case 3) columns of RA, Incidently, RA could have

additional columns; these columns and their names would be unaltered

by the subroutine.

The meaning of the other NRA option is illustrated by the following

example;

INPUT

A B CID E-I A B A B C" NR=5
NA = 'A', 'B','C','D','E'

2 4 8 14 22 2 4 8 14 22 NRA = 'C'
R

6 10 116 24

12118 26 ___

6 10 16

4

24

8
OUTPUT
NRA = 5
NAMA(3-5) = 'A,'B','CT

20 28 6 10 RA

30 I 12

R R

When NRA = 'C'we are asking that the upper left block of R, up to the

column labeled C, be moved to the lower tight poriton of RA and the cor

responding names be moved too. If RA overwrites R, as in the example,

then the first two rows of R remain unchanged and since NAMA overwrites

NAM, the labels of the first two columns remain unaltered.

The remark that NRA=NR on output means, in this example, that the

column with name C in R is moved over to column 5. If one wanted to

slide the upper left triangle corresponding to names ABC of R to columns

7-9 of an RA matrix (of unspecified dimension, > 9), then one should set

NR=9 in the subroutine call. Thus NR, when used in this sliding down

the diagonal mode, does not represent the dimension of R; but indicates

how far the slide will be.

60

ORIGINAL PAGE IS
18. RUDR (R to U-D or U-D to R)

OF pOR Q 1ALITY
Purpose

To transform an upper triangular vector stored SRIF array to U-D

form or vice versa.

CALL RUDR(RIN,N,ROUTIS)

Argument Definitions

RIN(NBAR*(NBAR+)/2) Input upper triangular vector stored SRIF

or U-D array; NBAR = ABS(N) + 1

ROUT(NBAR*(NBAR+I)/2) Output upper triangular vector stored

U-D or SRIF array (RIN = ROUT is
permitted)

N 	 Matrix dimension, N.GT.O represents an

R to U-D conversion and N.LT.O represents

a U-D to R conversion. ABS(N).GE.2

iS 	 If IS = 0 the input array is assumed not
to contain a right side (or an estimate),
and IS = 1 means an appropriate additional
column is included. In-the IS = 0 case
the last column of RIN is ignored and
NBAR = ABS(N) is used.

Subroutine used: RINCON

Functional Description

Consider the N>0 case. RIN= R is transformed to ROUT = R inverse

using subroutine RINCON with dimension N+ IS. If IS= 1 the subroutine

sets RIN((N+1)(N+2))/2)=-1, so that the N+lst column of ROUT will be

2
the X estimate followed by -1. R = UD so that the diagonals

are square root scaled U 	 columns. This information is used to con

struct the U-D array which is written in ROUT.

If N<O the input is assumed to be a U-D array. This array is

converted to ROUT= UDI /2 and then using RINCON, R is computed and stored

in ROUT. If IS= 1 the U-D matrix is assumed augmented by X (estimate),

and on output the right side term of the SRIF array is obtained. When

IS = 1, the initial value of RIN((N+I)(N+2)/2) is restored before exiting

the subroutine.

61

19. 	 SFU (Sparse F * unit upper triangular U)

Purpose

To efficiently form the product F*U so that only the nonzero

elements of F are employed and so that the structure of the U

matrix is utilized (upper triangular with implicit unit diag

onal elements). When F is sparse there are significant savings

in storage and computaton. Note that since we deal only with

the nonzero elements of F we are saved the time associated with

computing unnecessary F matrix element addresses.

CALL 	 SFU(FEL,IROW,JCOL,NF,U,N,FU,MAXFU,IFU,JDIAG)

Argument Definitions

FEL(NF) Valuea of the non-zero elements of the F matrix

IROWCNF) Row indices of the F elements

JCOL(NF) Column indices of the F elements

F(IROW(K), JCOL(K)) = FEL(K)

NF The number of non-zero elements of the F matrix

U(N*(N+I)/2) Upper triangular, vector stored matrix with
implicity defined unit diagonal elements. Note
that UCJJI terms are not, in fact, unity.

N Dimension of the U matrix

FU(IFU,N) The output result

MAXFU Row dimension of the FU matrix

IFU Number of rows in FU. IFU.LE.MAXFU, and IFU.GE.

Max (IROW(K), K=l,...,NF); i.e. FU must have at

least as many rows as does F. Additional rows of

FU could correspond to ,zero rows of F.

JDIAG(N) Diagonal element indices of a vector stored upper

triangular matrix, i.e. JDIAG(K)=K*(K+I)/2=JDIAG(K-l)+K.

62

ORIGINALOF POOR QUAIJTYPAGE 'S

Examplie:

F(3,12) with: F(1,l) = .9, F(2,2) = .8, F(3,3) = 1.1,

F(1,7) = 1.7, F(2,8) =-2.8 and F(3,11) = 3.11.

In this case F has NF = 6 (nonzero elements); and one may

take

IROW(1) = 1 JCOL(1) = 1 FEL(1) = .9

IROW(2) = 2 JCOL(2) = 2 FEL(2) = .8

IROW(3) = 3 JCOL(3) = 3 FEL(3) -1.1

IROW(4) = 1 JCOL(4) = 7 FEL(4) = 1.7

IROW(5) = 2 JCOL(5) = 8 FEL(5) =-2.8

IROW(6) = 3 JCOL(6) = 11 FEL(6) = 3.11

Remarks andiRestrictions

Comments regarding increased efficiency are included in the code.

Functional Description

We write

F = F
 e. eT

i 3J
i,j

where e. is the i-th unit vector. Then

F(e U)

The code is based on this equation.

63

20. TDHIIHT (Two dimensional Householder triangularization)

Purpose

To transform a two dimensional rectangular matrix to a

triangular, or partially triangular form by Householder orthogonal

matrix pre-multiplication. This subroutine can be used to compress

overdetermined linear systems to triangular (double subscripted

form) in much the same way as does the subroutine THE (which outputs

a vector subscripted triangular result). For recursive applications

THH is computationally more efficient and requires less storage.

The chief application, that we have in mind, for this subroutine

is to the matrix triangularization of "mapped" square root

information matrices of the form S(m,n) with m less than n.

CALL TDHHT(S,MAXS,IRS,JCS,JSTART,JSTOP,V)

Argument Definitions

S(IRS,JCS) 	 Input (possibly partially) triangular

matrix. The output (possibly partially)

triangular result overwrites the input.

MAXS 	 Row dimension of S matrix

IRS 	 Number of rows in S (IRS.LE.MAXS), and

IRS.GE.2.

JCS 	 Number of columns in S

JSTART 	 Index of first column to be triangularized.

If JSTART.LT.1 then it is assumed that the

triangularization starts at column 1.

JSTOP 	 Index of last column to be triangularized.

When JSTOP is not between max(l,JSTART)

and JCS then the triangularization is

carried out as far as possible (i.e. to IRS

if S has less rows than columns, or to JCS

if it has more rows than columns).

V(IRS) 	 Work vector

64

Remarks and Restrictions

The indices JSTART and JSTOP are input for efficiency purposes.

When it is known that the input matrix is partially triangular one

can by-pass the corresponding (initial) Householder reduction steps.

Further, for certain applications it is not necessary to totally

triangularize the input array. For example if S(m,n) and m is

less than n, the system is in triangular form after only m elementary

Householder reduction steps, i.e

n m

T s 0

n

The code is set up so that it defaults to the largest possible

upper triangularization.

Functional Description

JCS

fJ IRS

Input S

The dotted portion of the matrix and the block of zeros are not

employed at all in the computations. The input matrix is trans

formed to (possibly partially) triangular form by premultiplication

by a sequence of elementary Householder orthogonal transformations.

JCS

S-_ - 0 IRS

JSTART

JSTOP 65

The method is described fully in the books by Lawson and Hanson -

Solving Least Squares Problems, and in Bierman - Factorization

Methods for Discrete Sequential Estimation.

66

21. THH (Triangular Householder Orthogonalization)

Purpose

To compute [R:z] such that

T - orthogonal

] =

This is the key algorithm used in the square root information batch

sequential filter.

ICALL THH(R,N,A,IA,M,RSOS,NSTRT)i

Argument Definitions

R(N*(N+3)/2) 	 Input upper triangular vector stored

square root information matrix. If

estimates are involved RSOS.GE.O and R

is augmented with the right hand side

(stored in the last N locations of R).

If RSOS.LT.O only the first N*(N+l)/2
locations of R are used. The result
of the subroutine overwrites the input R

N 	 Number of parameters

A(M,N+I) 	 Input measurement matrix. The N+lst

column is only used if RSOS.GE.O, in

which case it represents 	 the right side

of the equation v +AX = 	 z. A is

destroyed by the algorithm, but it is

not explicitly set to zero.

TA 	 Row dimension of A

M 	 The number of rows of A that are to be

combined with R (M.LE.IA)

RSOS 	 Accumulated residual root sum of squares
corresponding to the data processed
prior to this time. On exit RSOS repre
sents the updated root sum of squares
of the residuals fz -AAX 112 1/2

i estII'
summed over the old and new data. It

also includes the a priori term

67

IP 12

IRO Xest -z 1 Because RSOS cannot

be used if data, z, is not included

we use RSOS.LT.0 to indicate when data

is not included.

NSTART 	 First column of the input A matrix

that has a nonzero entry. In certain

problems, especially those involving

the inclusion of a priori statistics,

it is known that the first NSTRT-1

columns of A all have zero entries.

This knowledge can be used to reduce

computation. If nothing is known

about A, then NSTRT.LE.1 gives a

default value of 1, i.e. it is assumed

that A may have nonzero entries in the

very first column.

Remarks and Restrictions

It is trivial to arrange the code so that R output need not over

write the input P. This was not done because, in the author's opinion,

there are too few times when one desires to have ROUT# RIN.

Functional Description

Assume for simplicity that NSTRT= 1. Then at step j, j= ,...,N

(or N+l if data is present) the algorithm implicitly determines an

elementary Householder orthogonal transformation which updates row j

of R and all the columns of A to the right of the jth. At the

completion of this step column j of A is in theory zero, but it is

not explicitly set to zero. The orthogonalization process is discussed

at length in the books by Lawson and Hanson - Solving Least Squares

Problems and Bierman-Factorization Methods for Discrete Sequential

Estimation.

68

ORIGINAL PAGE IS
22. 	 TTHH (Two triangular matrix Householder reduction) OF POOR QUALITY

Purpose

To combine two vector stored upper triangular matrices, R and RA

by applying Householder orthogonal transformations. The result over

writes R.

T 	 TTHH

ICALL 	 TTHH (R,RAN)

Argument Definitions

R(N*(N+1)/2) 	 Input vector stored upper triangular

matrix, which also houses the result

RA(N*(N+I)/2) 	 Second input vector stored upper

triangular matrix. This matrix is

destroyed by the computation.

N 	 Matrix dimension
N less than zero is used to indicate
that R and RA have right sides
(INI+l columns) and have dimension
[NI*(INI+3)/2).

Remarks and Restrictions

RA is theoretically zero on output, but is not set to zero.

69

23. 	 TWOMAT (Triangular matrix print)

Purpose

To display a vector upper triangular matrix in a two

dimensional triangular format. Precision output corresponds to a

7 column 8 digit, double precision format. Compact output corres

ponds to a 12 column, 5 digit single precision format.

I CALL TWOMAT(A,N,LEN,CAR,TEXT,NCHAR,NAMES)

Argument Definitions

A(N*N+l)/2) 	 Vector stored upper triangular matrix (DP)

N 	 Dimension of A

LEN 	 Column format (7 or 12 columns). When LEN

is different from 7 or 12 the print defaults

to 12 columns.

CAR(N) 	 Parameter names (alphanumeric) associated

with A. When NAMES is false, CAR is not

used.

TEXT(NCHAR) 	 An array of field data characters to be

printed as a title preceding the matrix

NCHAR 	 Number of characters (including spaces) that

are to be printed in text()

ABS(NCHAR).LE.114. If NCHAR is negative there is

no page eject before printing. NCHAR positive

results in a page eject so that the print

starts on a fresh page.

NAMES 	 A logical flag. If true then the names of

the parameters are 	 used as labels for the

rows and columns. If false the output labels

default to numerical values.

Remarks and Restrictions

Using 	 NCHAR nonnegative, and starting the print at the top of a

new page makes it 	 easier to locate the printed result and is

70

especially recommended when dealing with large dimensioned arrays.

Page economy can, however, be achieved using the NCHAR negative

option. In this case the print begins on the next line. The

alphanumerics in this routine make it machine dependent; it is

arranged for implementation on a UNIVAC 1108.

71

24. 	 TZERO (Triangular matrix zero)

Purpose

To zero out rows IS(Istart) to IF(Ifinal) of the.vector-stored

upper triangular matrix R.

ICALL TZEROKR,N,IS,IF)

Argument Definition

R(N*(N+l)/2) Input vector stored upper triangular

matrix

N 	 Row dimension of vector stored matrix

IS 	 First row of R that is to be set to zero

IF 	 Last row of R that is to be set to zero

Functional Description

0
IF

R(input) 	 R(output)

72

25. 	 UDCOL (U-D covariance factor colored noise time update)

Purpose

To time update the U-D covariance factors so as to include

the effects of colored noise variables.

[CALL 	 UDCOL(U,N,KS,NCOLOR,V,EM,Q)

Argument Definitions

U(N*(N+)/2) 	 Input vector stored U-D covariance factors.

The updated result resides here on output.

N 	 Filter matrix dimension. If the last column

of U houses the filter estimates, then

N = number filter variables + 1.

KS Location of the first colored noise variable

(KS.GE.l.AND.KS.LE.N)

NCOLOR 	 The number of colored noise variables

contiguous to the first, including the

first. (NCOLOR.GE.l)

V(KS-I+NCOLOR) 	 Work vector ((KS-I+NCOLOR).LE.N)

EM(NCOLOR) Input vector of colored noise mapping terms

(unaltered by program)

Q(NCOLOR) Input vector of process noise variances

(unaltered by program)

Remarks and Restrictions

When estimates are involved they are appended as an additional

column to the U-D matrix. When the subroutine is applied to the

augmented matrix the estimates are correctly updated. When the

colored noise terms are not contiguously located one can fill in

the gaps with unit EM terms and corresponding zero Q elements.

It is preferable, however, to apply the subroutine repeatedly to

the individual contiguous groups.

73

Functional Description

The model equation corresponding to the time update of this

subroutine is

[= B 0 [

where M is diagonal, with NP terms, and w. EN(O,Q) where Q is

J

diagonal with NP terms. The output U-D array associated with this

time update equation satisfies

T + BQBT

4'IDuTY(D
UDUT(output) =

where 4Dand B are as above. The algorithm for obtaining U-D

(output) is the Bierman-Thornton one-component-at-a-time update

described in Bierman - Factorization Methods for Discrete

Sequential Estimation", Academic Press (1977), pp-147-148.

74

26. 	 UDMEAS (U-D measurement update)

Purpose

Kalman filter measurement updating using Bierman's U-D measure

ment update algorithm, cf 1975 CONF. DEC. CONTROL paper. A scalar

measurement z = ATx + v is processed, the covariance U-D factors

and estimate (when included) are updated, and the Kalman gain and

innovations variance are computed.

ICALL 	 UMEAS(UN,R,A, F, G, ALPHA)

Argument Definitions

INPUTS

U(N*(N+1)/2) 	 Upper triangular vector stored input matrix.

D elements are stored on the diagonal. The

U vector corresponds to an a priori covariance.

If state estimates are involved the last column

of U contains X. In this case Din U = (N+I)*(N+2)/2

and on output (U(N+l)*(N+2)/2= z-A**T*X(a priori est).

N 	 Dimension of state vector, N.GE.2

R 	 Measurement variance

A(N) 	 Vector of Measurement coefficients; if data

then A(N+l) = z

F(N) 	 Input work vector. To economize on storage F

can overwrite A

ALPHA 	 If ALPHA.LT.zero no estimates are computed

(and X and z need not be included).

OUTPUTS

U 	 Updated vector stored U-D factors. When

ALPHA (input) is nonnegative the (N+l)st

column contains the updated estimate and

the predicted residual.

ALPHA 	 Innovations variance of the measurement

residual.

F 	 Contains U**T*A(input) and when ALPHA(input)

is nonnegative F(N+l) =(z-A**T*X(a priori est))/ALPHA.

75

G(N) Vector of unweighted Kalman gains,

K = G/ALPHA

Remarks and Restrictions

One can use this algorithm with R negative to delete a

previously processed data point. One should, however, note that

data deletion is numerically unstable and sometimes introduces

numerical errors.

The algorithms holds for R = 0 (a perfect measurement) and

the code has been arranged to include this case. Such situations

arise when there are linear constraints and in the generation of

certain error "budgets".

Functional Description

The algorithm updates the columns of the U-D matrix, from

left to right, using Bierman's algorithm, see Bierman's

"Factorization Methods for Discrete Sequential Estimation,"

Academic Press (1977) pp 76-81 and 100-101.

76

ORIGINAL PAGE IS

OF POOR QUALITY

27. UD2COV (U-D factor to covariance)

Purpose

To obtain a covariance from its U-D factorization. Both matrices

are vector stored and the output covariance can overwrite the input

U-D array. U-D and P are related via P = UDUT.

CALL UD2COV(UIN,POUT,N)

Argument Definitions

UIN(N*(N+l)/2) 	 Input vector stored U-D factors, with D

entries stored on the diagonal.

POUT(N*(N+)/2) Output vector stored covariance matrix

(POUT = UIN is permitted).

N 	 Dimension of the matrices involved (N.GE.2)

77

28. UD2SIG (U-D factors to sigmas)

Purpose

To compute variances from the U-D-factors of a matrix.

GALL UD2SIO(U,N,SIG,TEXT,NCT)

Argument Definitions

U(N*(N+l)/2) Input vector stored array containing
the U-D factors. The D (diagonal)
elements are stored on the diagonal
of U.

N 	 Dimension of the U matrix (N.GE.2)

SIG(N) 	 Output vector of standard deviations

TEXT () 	 Output label of field data characters,
which precedes the printed vector of
standard deviations.

NCT 	 Number of characters of text,

O.LE.NCT.LE.126. If NCT = 0, no

sigmas are printed, i.e. nothing is

printed.

Remarks and Restrictions

The user is cautioned that the text related portion of this subroutine

may not be compatible with other computers. The changes that may be

involved are, however, very modest.

Functional Description

If U and D are represented as doubly subscripted matrices then

N

SIG(J) = (D(JJ) + >N D(KK)[U(JK)] 2)

K=J+l

If NCT.GT.0 a title is printed, followed by the sigmas.

78

29. 	 UTINV (Upper triangular matrix inverse)

Purpose

To invert an upper triangular vector stored matrix and store

the result in vector form. The algorithm is so arranged that the

result can overwrite the input.

CALL UTINV(RINN,ROUT

Argument Definitions

RIN(N*(N+I)/2) Input vector stored upper triangular

matrix

N Matrix dimension

ROUT(N*(N+I)/2) Output vector stored upper triangular

matrix inverse (ROUT = RIN is permitted)

Remarks and Restrictions

Ill conditioning is not tested, but for nonsingular systems the

result is as accurate as is the full rank Euclidean scaled

singular value decompostiion inverse. Singularity occurs if a

diagonal is zero. The subroutine terminates when it reaches a

zero diagonal. The columns to the left of the zero diagonal are,

however, inverted and the result stored in ROUT.

This routine can also be used to produce the solution to RX = Z.

Place Z in column N+l(viz. RIN(N*(N+I)/2+) = Z(1), etc.), define

RIN((N+I)(N+2)/2) = -1 and call the subroutine using N+l instead

of N. On return the first N entries of column N+l contain the

solution (e.g. ROUT(N*(N+l)/2+) = X(l), etc.). When only the

estimate is needed, then it is more efficient to use the code

described in section to 11.8 to obtain X, directly.

79

Because matrix inversion is numerically sensitive we recommend

using this subroutine only in double precision.

Functional Description

The matrix inversion is accomplished using the standard back

substitution method for inverting triangular matrices, cf. the book

references by Lawson and Hanson, [1] or Bierman [3].

80

PAGE ISORIGINALOF POOR QUALITY

30. UTIROW (Upper triangular inverse, inverting only the upper rows)

Purpose

To compute the inverse of a vector stored upper triangular

matrix, when the lower right corner triangular inverse is given.

I CALL UTIROW (RIN,N,ROUT,NRY)

Argument Definitions

RIN(N*(N+l)/2) 	 Input vector stored upper triangular

matrix. Only the first N - NRY rows

are altered by the algorithm.

N 	 Matrix dimension.

ROUT(N*(N+I)/2) Output vector stored upper triangular

matrix inverse. On input the lower

NRY dimensional right corner contains

the given (known) inverse. This lower

right corner matrix is left unchanged.

(ROUT = BIN is permitted.)

NRY 	 Number of rows, starting at the bottom,

that are assumed already inverted.

Remarks and Restrictions

The purpose of this subroutine is to complete the coiputation

of an upper triangular matrix inverse, given that the lower right

corner has already been inverted. Part of the input, the rows to

be inverted, are inserted via the matrix RIN. The portion of the

matrix that has already been inverted is entered via the matrix ROUT.

It may seem odd that part of the input matrix is put into RIN and

part into ROUT. The reasoning behind this decision is that IN

represents the input matrix to be inverted Cit just happens that

we do not make use of the lower right triangular entries); ROUT

represents the inversion 	 result, and therefore that portion of the

inversion that is given should be entered in this array.

81

Ill conditioning is not tested, but for nonsingular systems the

result is accurate. Singularity halts the algorithm if any of the

first N-NRY diagonal elements is zero. If the first zero encountered

moving up the diagonal (starting at N-NRY) is at diagonal j then the

rows below this element will be correctly represented in ROUT.

To generate estimates do the following: put N+l into the matrix

dimension argument; in the first N-NRY rows of the last column of

RIN put the right hand side elements of the equation Rxx + Rxy = zx

(i.e., Rx, Rxy, and z make up the first N-NRY rows of RIN); in the

next NRY entries of ROUT, beginning in the (N-NRY+1)st element, put

Yest (i.e., Ry and yest make up rows N-NRY+I,...,N of ROUT); and

ROUT((N+l)(N+2)/2) = -1. On output, the last column of ROUT will

contain xest, Yest and -1.

When NRY = 0 this algorithm is equivalent to subroutine UTINV.

Functional Description

The matrix inversion is accomplished using the standard back

substitution method. The computations are arranged,row-wise, starting

at the bottom (from row N-NRY, since it is assumed that the last NRY

rows have already been inverted).

82

31. 	 WGS (Weighted Gram-Schmidt matrix triangularization) ORIGINIAL PAGE IS

OF POOR QUALITYPurpose

To compute a vector stored U-D array from an input rectangular

matrix W, and a diagonal matrix D so that W D WT = UDUT.
w w

CALL WGS(w,IMAXW,IW,JW,DW,UV)

Argument Definitions

W(IW,JW) 	 Input rectangular matrix, destroyed by

the computations

IMAXW 	 Row dimension of input W matrix,

IMAXW.GE.IW

lW 	 Number of rows of W matrix, dimension 	 of U

JW 	 Number of columns of U matrix

DW(JW) 	 Diagonal dnput matrix; the entries are

assumed to be nonnegative. This vector

is unaltered by the computations

U(IW*(IW+I)/2) Vector stored output U-D array

V(JW) Work vector in the computation

Remarks and Restrictions

The algorithm is not numerically stable when negative DW weights

are used; negative weights are, however, allowed. If JW is less than

IW (more rows than columns), the output U-D array is singular; with

IW-JW zero diagonal entries in the output U array.

Functional Description

A Dw-orthogonal set of row vectors, i' 2'"' 4IW' are con-

T
structed from the input rows of the W matrix, i.e., W = U 4, , 4DwT = D.

The construction is accomplished using the modified Gram-Schmidt

orthogonal construction (see refs. [1] or [3]). This algorithm is

reputed to have excellent numerical properties. Note that the 4

vectors are not of interest in this routine, and they are overwritten;

The V vector used in the program houses vector IW-j+l of 4 at step j of

algorithm. The fact that the computed 0 vectors may not be D orthogonal

is of no import in regard to the U and D computed results.

83

References

[1] 	 Lawson, C. L. Hanson, R. J., Solving Least Squares Problems,

Prentice Hall, Englewood Cliffs, N. J. (1974).

[2] 	 JPL FORTRAN V Subprogram Directory, JPL Internal Document 1845-23,

Rev. A., Feb. 1, 1975.

[3] 	 Bierman, G. J., Factorization Methods for Discrete Sequential

Estimation, Academic Press, New York (1977).

84

V. FORTRAN Subroutine Listings

The subroutines use only FORTRAN IV, and are therefore essentially

portable. The one notable exception is subroutine TWOMAT, which prints

triangular, vector stored matrices. It employs FORTRAN V FORMAT state

ments and six character UNIVAC alphanumeric wordlength, and thus is UNIVAC

dependent. Subroutine UD2SIG also involves text, and it too is therefore

to some extent machine dependent. Comment statements appear occasionally

to the right of the FORTRAN code, and are preceded by a "@" symbol. The

subroutine user can, if necessary, transfer or remove such program

commentary.

All of the subroutines employ "implicit double precision" statements.

They are, however, constructed so as to operate in single precision, and

the user has only to omit or comment out the implicit statements. If the

subroutines are to be used in double precision on a machine that does not

have the implicit FORTRAN option one should explicitly declare all of the

non-integer variable names appearing in the programs as double precision

variables.

If these subroutines are to be used in production code and computa

tional efficiency is of major concern one should replace the somewhat

lengthy subroutine argument lists by introducing COMMON, and including

those terms in the COMMON that are redundantly computed with each sub

routine call.

85

SUBROUTINE A2AI (APIAuIRLAPNAMA.AIPIA1,LAIPNAMA) 	 A2AIO010
C
 APA1O020

C SUBROUTINE TO REARRANGE THE COLUMNS OF A(IR'LA). IN NAMA ORDER A2A10030

C AND PUT THE RESULT IN AI(IR#LA1) IN NAMA1 ORDER, ZERO COLUMNS A2AIO0O4

C ARE INSERTED IN AT CORRESPONDING TO THE NEWLY DEFINED NAMPS, A2AI050

C
 A2AI0060

C A(IRtLA)
 INPUT RECTANGULAR MATRIX A2A10070

C IA
 ROW DIMENSION OF A. IR.LE.IA A2A100BO

C IR
 NO. OF ROWS OF A THAT ARE TO BE REARPANGED A2A10090

C LA
 NO. COLUMNS IN A' ALSO THE A2AOIOO

C
 NO. OF PARAMETER NAMES ASSOCIATED WITH A A2AI0110

C NAMA(LA)
 PARAMETER NAMES ASSOCIATED WITH A A2AI0120

C At(IR.LAI)
 OUTPUT RECTANGULAR MATRIx A2A10130

C
 A AND Al CANNOT SHARE COMMON STORAGE 	 A2A1014O

C IAI
 ROW DIMENSION OF Ale IR.LE.IAl A2AI0150

C LA1
 NO. COLUMNS IN Alt ALSO THE A2A10160

C
 NO. OF PARAMETER NAMES ASSOCIATED WITH Al A2AI0170

C NAMAI(LA1)
 INPUT LIST OF PARAMETER NAMES TO BE ASSOCIATED A2AI0180

C
 WITH THE OUTPUT MATRIX At
 A2AIOI9O

C
 A2A10200

C COGNIZANT PERSONS: GJ.BIERMAN/M.WNEAD (JPLP SEPT, 1976) A2AI0210

C
 A2A10220

DIMENSION A(IAI), NAMA(I), AI(IAII),NAMAI(l) 	 A2AI0230

IMPLICIT DOUBLE PRECISION (A-HPO-Z) A2A10240

C
 A2AI0250

ZERO=D.
 A2AI0260

DO 100 J=IPLAI
 A2A10270

DO 60 I=.LA
 A2A10280

IF (NAMA(I),EQNAMAI(J)) GO TO 80 A2A10290

60 CONTINUE
 A2AIO05

DO 70 K=I.IR
 A2A10310

70 AI(KJ)=ZERO
 Q ZERO COL. CORRES. TO NEW NAME 	 A2A10320

GO To 100
 A2A10330

80 00 9o K1I,IR
 A2A10340

90 AI(KJ)ZA(KI)
 M COPY COL. ASSOC. WITH OLD NAME 	 A2A10350

1o CONTINUE
 A2A10360

C
 A2AI0370

RETURN
 A2A10380

END
 A2A10390

86

http:IR.LE.IA

OFORIGINALPOOR QUALITYPAGE IS

SUBROUTINE COMBO (RpL1PNAMIPL2NAM2pAIAPLANAMA) 	 COMBODGO

C

C TO REARRANGE A VECTOR STORED TRIANGULAR MATRIX AND STORE COmBOOlO

C THE RESULT IN MATRIX A. THE DIFFERENCE BETWEEN THIS SUR- COMRO020

C ROUTINE AND R2A IS THAT THERE THE NAMELIST COR A IS INPUT, COMBOO30

C HERE IT IS DETERMINED BY COMRINING THE LIST FOR R WITH COMBOn40

COMBOOS50
C A LIST OF DESIRED NAMES.

COMBon60
C

C R(L1*(Li+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX COMBOO70

C LI NO. OF PARAMETERS IN R (AND IN NAMI) COMBOO80

C NAMI{Li) NAMES ASSOCIATED WITH R COMBO09O

C L2 NO. OF PARAMETERS IN NAM2 COMBOo
C NAM2(L2) PARAMETER NAMES THAT ARE TO RE COMBINED WITH P COMP0110
C (NAMI LIST). THESE NAMES MAY OR MAY NOT RE IN COMB0120

C NAMI, COMBO330
OUTPUT ARRAY CONTAINING THE REARRANGED COMBOI40
C A(LIPLA)

C R MATRIX, LILE.IA, COMBO150

ROW DIMENSION OF A COMBO160
C IA

C LA NO. OF PARAMETER NAMES IN NAMAP AND THE COMB0170

C COLUMN DIMENSION OF A. LA=LI+L2"NO, NAMrS COMBO180

C COMMON TO NAMI AND NAM2. LA IS COMPUTED AND COMsO1gO

C OUTPUT. COMBO200

C NAMA(LA) PARAMETER NAMES ASSOCIATED WITH THE OUTPUT A COMB0210

C MATRIX. CONSISTS OF NAMES IN NAMl WHICH ARE COMB0220

C NOT IN NAM2 FOLLOWED BY NAM2. COMB0230

C
 COMB0240

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL SEPT. 1976) COMR0250

C COMB0260

IMPLICIT DOUBLE PRECISION (A-HO-7) 	 COMB0270

DIMENSION R(i)t A(TAPI)oNAMI(IP NAM2(1), NAMA(1) 	 COMB0280

C0MB0290
C

COMB0300
ZERO=0.O

COMBO310
K=1

COME0320
DO 100 I=1,L1

DO 50 J=lPL2
 COMB0330

IF (NAMI(I).EQ.NAM2(J)) GO TO 1O0 COMB0340

COMB0350
50 CONTINUE

COMB0360
NAMA(K)=NAMI(t)

Jd:I*(I-1)/2 	 COMB0370

DO 60 L1II 	 COM0380

COMBS0390
60 A(LK)=R(JJ+L)

COM80400
IF (I.EO.L1) GO To SO

IP1 = 1+1 COMBO41O

DO 70 L=PIPL1 COMBO420

70 A(LpK) = ZERO COMBO430

80 K=K+1 COMB0440

100 CONTINUE COMB0450

D NAMES UNIQUE TO NAMI ARE NOW IN NAMA COMB0460

DO 200 J=ltL2 	 coMBO 7n

DO 150 I±It LL COMB048O

IF (NAM2(J),EONAMI(I)) GO TO 170 COMBOS490

ISO CONTINUE COMBOSO

NAMA(K)=NAM2(J) COM80510

DO 160 L=1L1 COMBO52

160 A(LK)=ZERO 	 CoMB0530

87

C NAMES UNIQUE TO MAM2 ARE NOW IN NAMA COMB0540

GO To 190 COMB0550

170 NAMA(K)=NAM2(J) COMBS0560

C LOCATE DIAGONAL OF PRECEDING COLUMN COMBso0

JJ=I*(I-)/2 COMBOSO

DO 180 L=II COMB0590

18O A(LPK)=R(JJ+L) COMB0600

IF (I.EQLi) GO TO 190 COMB0610

IPlrI+l COMB0620

DO 185 L=IPI,L1 COMB0630

185 'A(LK)=ZERO COMBOS6O

190 K=K+I COMB0650

200 CONTINUE COMB0660

LA=K-1 COMB0670

C NAMES MUTUAL TO NAMi AND NAM2 ARE NOW IN NAMA COMB0680.

RETURN COMBS0690

END COMBO700

88

ORIGINAL PAGE IS
OF PooR QUALITY

COVRH010

SUBROUTINE COVRHO(COVrNpRHOV)
 COVRH020
C

TO COMPUTE THE CORRELATION MATRIX RHO. FROM AN INPUT COVARIANCE
 COVRHO30
C 	

MATRIX COV, BOTH MATRICES ARE'UPPER TRIANGULAR VECTOR STORED, COVRHO4O

C

OVERWRITE THE INPUT COVAPTANCE COVRHO50
C 	 THE CORRELATION MATRIX RESULT CAN

INPUT 	 VECTOR STORED POSITIVE SPMI-DFFINITE COVRHO60

C 	 COV(N*(N+1)/2)

COVRH070
C 	 COVARIANCE MATRIX
 COVRHO80
NUMBER OF PARAMETERS? N.GE.I
C 	 N

C 	 OUTPUT VECTOR STORED CORRELATION MATRIX,
	 COVRHO90

RHO(N(N+I)/2)
 COVRHIO0

RHO(IJ)ZCOV(TJ)/(SIGMA(!)*SIGMA(J))
C
 COVRHI I

C 	 VCN) 	 WORK VECTOR

COVRHI20

C

C COGNIZANT PERSONS: G.J.BIERMAN/MW.NEAD (JPLPEB.1978) 	 COVRHI30

COVRHI40

C 	 COVRH150
C

COVRHI60
IMPLICIT DOUBLE PRECISION (A-HPO-Z)
 COVRHi70

DIMENSION COV(j)t RHO(1)p V(1) 	 COVRH180

C 	 COVRHI9O
ONE=tDO

COVRH200

ZtO.DO
 COVRH210

C

COVRH220
JJ=o

COVRH230

DO 10 	 j=IN

COVRH240
JJjj+J

COVRH25O
V(J)=Z

COVRH260
IF (COV(JJ).GT,Z) V(J)=ONE/ SQRT(COV(JJ))
 COVRH270

C
SOME MACHINES REGUIRE DSORT FOR DOUBLE PRFrCISION

COVRH280

C 	 ****

C 	 COVRH290

COVRH300

10 CONTINUE
 COVRH310

C

COVRH320
IJ=O
 COVRH330
DO 20 	 J=IPN

COVRH340
S=V(J)

COVRH350
DO 20 	 I=1,J

COVRH360
IJ=IJ+1

COVRH37O
20 RHO(IJ)ZCOV(IJ)*S*V(I)

RETURN COVRH380

COVRH390
END

89

SUBROUTINE COV2RI(UN) COV2RO10

C COV2R02O

C TO CONSTRUCT THE UPPER TRIANGULAR CHOLESKY FACTOR OF A COV2RO30

C POSITIVE SEMI-DEFINITE MATRIX. BOTH THE INPUT COVARIANCE COV2RO4O

C AND THE OUTPUT CHOLESKY FACTOR (SQUARE ROOT) ARE VECTOR COV2RO50

C STORED. THE OUTPUT OVERWRITES THE INPUT. COV2R060

C COVARIANCE(INPUT)=U*U**T (U IS OUTPUT). COV2R070

C COV2Rn8O

C IF THE INPUT COVARIANCE IS SINGULAR THE OUTPUT FACTOR HAq COV2RO9O

C ZERO COLUMNS.
 COV2RI00

C
 COV2RIlO

C U(N*(N+1)/2)
 CONTAINS THE INPUT VECTOR STORED COVARIANCE COV2R120

C
 MATRIX (ASSUMED POSITIVE DEFINITE) AND ON OUTPUT COV2RI30

C
 IT CONTAINS THE UPPER TRIANGULAR SQUARE ROOT COV2RI40

C
 FACTOR. COV2R150

C N
 DIMENSION oF THE MATRICES INVOLVED COV2RI6O

C
 COV2RI7O

C COGNIZANT PERSONS! G.J.BIERMAN/MW.,EAD (JPLF FEB. 1977) COV2R1BO

C COV2R190

IMPLICIT DOUBLE PRECISION (A-HPO-Z) COV2R200

DIMENSION U(I) C0V2R210

C COV2R220

ZERO=OO COV2R230

ONE=i. COV2R240

JJ=N*(N+1)/2 COV2RP5O

C COV2R260

DO 5 J=N,2,-i COV2R26O

IF (U(JJ)*LT.ZERO) U(JJ)'ZERO COV2R2BO

U(JJ)= SQRT(U(JJ)) COV2R290

ALPHA=ZERO COV2R300

IF (U(JJ).GT.ZERO) ALPHA=ONE/U(JJ) COV2R310

C COV2R320

KK=O COV2R330

JJN=JJ-J 0 NEXT DIAGONAL COV2R340

JMI=J- l COV2R350

DO 4 K=1,JMI COV2R360

U(JJN+K)=ALPHA*U(JJN+K) Q JJN+K=(KtJ) COV2R370

S=U(JJN+K) COV2R380

DO 3 I=I'K COV2R390

3- U(KK+I)=U(KK+I)-S*U(JJN+I) Q KK+I=(IK) COV2R400

4 KK=KK+K COV2R410

5 JJ=JJN COVPR420

IF (U(1),LT*ZERO) U(1)=ZERO COV2R430

U(1)= sORT(U(1)) COV2R440

C COV2RQ5O

RETURN COV2R460

END COV2R470

90

ORIGINAL PAGE IS

OF POOR QUAXEYl

SUBROUTINE COV2UO (uIeN)

C

TO OBTAIN THE U-D FACTORS OF A POSITIVE SEMI-DEFINITE
MATRIX.

C
THE INPUT VECTOR STORED MATRIX IS OVERWRITTEN BY THE

OUTPUT

C

U-D FACTORS WHICH ARE ALSO VECTOR STORED.
C

C
C U(N*(N+I)/2)
C
C
CC N

CONTAINS INPUT VECTOR STORED COVARIANCE MATRIXo

ON OUTPUT IT CONTAINS THE VECTOR STORED U-0

COVARIANCE FACTORS.

MATRIX DIMENSIONt N.GE,2

COV2UOIO

COV2UO2O

COV2UO30

COV2UO4O

COV2UOSO

COV2U06O

COV2U070

COV2UO7O

COV2UoBO

COV2UO90

COV2UlO

C SINGULAR INPUT COVARIANCES RESULT IN OLTPUT MATRICES WITH
ZERO COV2U120

COV2UJ30

C COLUMNS
 COV2UI3O

C
 CoV2U150

C

COV2U160

C COGNIZANT PERSONS: GoJ.BIERMAN/R.A.JACOBSON (JPLr FEB* 1977) COV2UlTO

c

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

C

DIMENSION U(I)

C

Z=O.DO

ONE=l.DO

NONE=

C

JJ=N*(N+I)/2

NP2=N+2

DO 50 L=2PN

J=NP2-L

ALPHA=Z

IF (U(JJ).GE.Z) GO TO 10

WRITE (6100) JpU(JJ)

U(JJ)=Z

10 	 IF (U(JJ).GT.Z) ALPHA=ONE/U(JJ)

JJ=Jj-J
KK=O

KJ=JJ

JMl=J-1

DO 4o K:iJM1

KJ=KJ+1

BETA=U(KJ)

U(KJ)=ALPHA*U(KJ)

IJJJ

IK=KK

DO 50 I=IFK

IK=IK+i
iJ=IJ+l

30 U(IK)=U(IK)-BETA*U(IJ)

40 KK=KK+K

50 CONTINUE

IF (U(i).GE.Z) GO TO 60

WRITE (6.100) NONEP U(1)

U(1)=Z

60 RETURN

91

COV2UI8O

COV2UI9O

COV2U200

COV2U210

COV2Uf2O

COV2U23O
COV2U24O

COV2U250

COV2U260

COV2U270

COV2U270

COV2U290

COV2U30O

COV2USOO

COV2U20

COV2U330

COV2U34O

COV2U350
COV2U360

COV2U370

COV2U3B0

COV2U3BO

COV2U9O0

COV2U10

COV2U420

COV2U430

COV2U440

COV2U450

COV2U460

COV2U470

COV2U480

COV2UI90

COV2U4O0

COV2USO

COV2Us20

COV2US20

COV2U50

COV2U550

http:ONE=l.DO

100 	 FORMAT (IHO#20XP' AT STEP't14ttDIAGONAL ENTRY PE12.4) CoV2U560

END
 CoV2U570

92

PAGE 18ORIGGhiALOF pooR QUALITY

SUBROUTINE C2C (CPICPL1PNAMIPL2pNAM2) C2Coooo

C C2COOO o

C SUBROUTINE TO REARRANGE THE ROWS AND COLUMNS OF MATRIX C2C00020

C C(L1.L1) IN NAMI ORDER AND PUT THE RESULT IN C2C00030

C C(LaL2) IN NAM2 ORDER. ZERO COLUMNS AND ROWS ARE C2COOO40

C ASSOCIATED WITH OUTPUT DEFINED NAMES THAT ARE NOT CONTAINED C2C00050

C IN NAMI, CPCO0060

C C2Coon70

C C(Li,L1) INPUT MATRIX C2C00080

C IC ROW DIMENSION OF C, IC,GF.L=MAX(L1,L2) C2C00090

C LI NO. oF PARAMETER NAMES AqSOCIATED WITH THE INPUT C C2CO0100

C NAMI(L) PARAMETER NAMES ASSOCIATED WTTH C ON INPUT. (ONLY C2CO0110

C THE FIRST LI ENTRIES APPLY TO THE INPUT C) C2CO0120

C L2 NO. oF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT CC2C00130

C NAM2(L2) PARAMETER NAMES ASSOCIATED WITH THE OUTPUT C C2C0014O

C C2C00150

C COGNIZANT PERSONS: G.J.RIERMAN/M.W.NEAD (JPLP SEPT. 19763 C2C00160

C C2C00170

IMPLICIT DOUBLE PRECISION (A-HeO-Z) C2CO01BO

DIMENSION CCIC,1)u NAMI(i)P NAM2(1) C2COOI9g

C C2Co0P00

ZERO=O. C2C00210

L=MAX(LIPL2) C2Co0220

IF (L.LE.L1) GO TO 5 C2CO0230

NM=L+1 CC00240

DO 1 K=NMPL C2C00250

1 NAM1(K)= ZERO 9 ZERO REMAINING NAMI LOCNS C2C00260

5 DO 90 j=lrL2 C2C00270

DO 10 I=lL C2C00280

IF (NAMI(I).EQ.NAM2(J)) GO TO 30 C2C00290

10 CONTINUE C2C00300

GO TO 90 C2COO31O

30 IF (I.EQ.J) GO TO 90 C2C00320

DO 40 K=IL CPC00330

H=C(KJ) M INTERCHANGE COLUMNS I AND J CCO0340

C(KJ)=C(KI) C2C00350

40 C(KPI)=H C2C00360

DO 80 K=leL C2C00370

H=C(JK) 0 INTERCHANGF ROWS I AND J C2C00380

C(jpK)=C(IPK) C2C00390

80 C(IPK)=H CPC00400

NM=NAM1(I) 9 INTERCHANGE LAIELS I AND J CPC00IO

NAMI(I)=NAMI(J) C2Cn0420

NAMI(J)=NM CPC0O430

90 CONTINUE CPC00440

C C2C00450

C FIND NAM2 NAMES NOT IN NAMI AND SET CORPESPONDING ROWS AND C2C00460

C COLUMNS TO ZERO CPC00470

C CCO0480

DO 120 J=lPL2 C2C00490

DO lo0 IZIL C2C00500

IF (NAMI).EQNAM2(J)) GO TO 120 CpC00910
100 CONTINUE CPCO0520

DO 110 K=L2 CPC00t30
C(J'K)=ZERO CPC004

93

110 C(KFJ):ZERO CPCO0550

120 CONTINUE
 C2C00560

C2C00970

RETURN c2c0o580

END C2COO590

C

94

ORIGINAL PAGE IS

OF POOR QUALIYY

SUBROUTINE HHPOST(SpWPMROWpNPOWUNCOLPV)

C

C TRIANGULARIZES RECTANGULAR W BY POST MULTIPLYING TT BY AN

C ORTHOGONAL TRANSFORMATION T. THE RESULT IS IN S

C

C S(NROW*(NROW+I)/2) OUTPUT UPPER TRIANGULAR VECTOR STORED SORT

C COVARIANCE MATRIX

C W(NROWPNCOL) INPUT RECTANGULAR SORT COVARTANCE MATRIX

C (W IS DESTROYED Sy COMPUTATIONS)

C MROW ROW DIMENSION OF W

C NROW NUMBER OF ROWS OF W TO BE TRIANGULARIZED

C AND THE DIMENSION OF S (NROW.GT.t)

C NCOL NUMBER OF COLUMNS OF W (NCOLGE,NROW)

C V(NCOL) WORK VECTOR

C

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLF Nov.1q77)

C

IMPLICIT DOUBLE PRECISION (A-HPO-Z)

DOUBLE PRECISION SUMtBETA

DIMENSION S(1)W(MROWNCOL)PV(NCOL)

C

ZERO=O.DO

ONE=.DO

C

JCOL=NcOL

NSYM=NROW*(NROW+I)/2

JC=NROW+2

DO 150 L=2tNROW

IROW=JC-L

SUM=ZERO

DO 100 K=IPJCOL

V(K)=W(IROWPK)

too SUM=SUM+V(K)**2

SUM=DSGRT(SUM)

IF (V(JCOL).GT.ZERO) SUM=-SUM 9 DTAGONAL ENTRY (JCOL#JCOL)

C

S(NSYM)=SUM

NSYM=NSYM-IROW

V(JCoL)=V(JCOL)-SUM

IF (sUM.NE.ZERO) BETA=-ONE/(SUM*V(JCOL))

C 	 T(oRTHOG. TRANS,)=I-BETA*V*V**T
IROWM1=IROW-1

JCOLMI=JCOL-1

DO 140 I=1?IROWM1

SUM=ZERO

DO 110 KZ1PJCOL

110 	 SUM=SUM+V(K)*W(I#K)

sUM=BETA*SUM

DO 120 K=lvJCOLMI

120 W(I#K)=W(IPK)-SUM*V(K)

140 S(NSYM+I)=W(IFIROW)-SUM*V(IROW)

150 JCOL=JCOLM1

C

JC=NCOL-NROW+l

95
SUM=ZERO

HHPOSnlO

HHPOSn2O

HHPOSn3O

HHPOSnO4

HPOS0500

HHPOS060

HHPOS07 0

HHPOSO

HHPOSn9O

HHPOS100

HHPOSIn

HHPOS120

0
HHPOS13

HHPOS140

HHPOS150

HHPOSI6O

HHPOS170

HHPOSI80

HHPOS190

HHPOS20 0

HHPOS210

HHPOS220

HHPOS?30

HHPOSP4O

HHPOSP50

HHPOS260

HHPOS270

HHPOS980

HHPOS290

HHPOS5lO

HHPOS310

HHPOS32n

HHPOSS30

HHPOS34O

HHPOS350

HHPOS360

HHPOS370

HHPOS380

HHPOS390

HHPOS400

HHPOS410
HHPOS420

HHPOS430

HHPOS44O

HHPOS450

HHPOS460

HHPOS470

HHPOS480

HHPOS490

HHPOSSO0

HHPOS510

HHPOSS20

HHPOSS30

HHPOS940

HHPOS50

http:ZERO=O.DO

C

160
0 160 J=I'JC
SUM=sUM W(IPJ)**2

S(1)=DsQRT(SUM)

HHPOS560
HHPOS970
HHPOS580HHPOS590

RETURN
END

HHPOS600
HHPOS610

96

ORIGINAL PAGE Is

OF POOR QUALITY

INF2RO
C
 TNF2R020

SUBROUTINE INF2R (RpN)
C 	 INF2RO30

INF2RO3O
TO CHOLESKY FACTOR AN INFORMATION MATRIX
C

C CAIINF2R050

COMPUTES A LOWER TRIANGULAR VECTOR STORED CHOLESKY FACTORIZATION INF2RO60

C

OF A POSITIVE SEMI-DEFINITE MATRIX. R=R(**T)Rp
R UPPER TRIANSULAR.INF2RO7O

C

BOTH MATRICES ARE VECTOR STORED AND THE RESULT

OVERWRITES INF2ROBO

C
 1NF2R090

C THE INPUT

C INF2RIO

INF2RI10
ON INPUT THIS IS A POSITIVE SFMI-OEFIKITTE
C R(N*(N+1)/2)

C (INFORMATION) MATRIX, AND ON OUTPUT IT IS THE INF2R20

C TRANSPOSED LOWER TRIANGULAR CHOLESKY FACTOR. IF THE INF2RI30

C INPUT MATRIX IS SINGULAR THE OUTPUT MATRIX WILL

C HAVE ZERO DIAGONAL ENTRIES

DIMENSION OF MATRICES INVOLVED, N.GE.2
N
CC

C COGNIZANT PERSON: G.JBIERMAN/M.W.NEPO {JPLPFEB.1977)

C

IMPLICIT DOUBLE PRECISION A-HO-Z)

C

DIMENSION R(1)
c

Z=O.0

ONE=I.DO

JJ=O

NN=N*(N+I)/2

NMI=N-1

00 10 J=INMI

JJ=Jj+J

IF (RCJJ).GE.Z) GO TO 5

WRITE (6,20) JPRCJJ)

R(JJ)=Z

5 R(JJ)= SQRT(R(JJ))

C

0 JJ=(JtJ}

PRECISIONC ** SOME MACHINES REQUIRE DSORT FOR DOUBLE
C

ALPHA=Z

IF (R(JJ).GT.Z) ALPHA=ONE/R(JJ)

JK=NN+J

JPl=J+l

JIS=JK

NPJPX=N+JPI

DO 10 L=JPIN

K=NPJP1-L

JK=JK-K

j
JK=(j#K)

0 JIS={JPT) START

SNF2R430

R(JK)=ALPHA*R(JK}

RETA=R(JK)

KI=NN+K

JI=JIS

NPK=N+K

DO 10 M=KN

I=NPK-M

KI=KI-I

Jl=JI-I

97

INF2R140

INF2R150

INF2R160

INF2RI6O

INF2RI80
INF2RI90

INF2R200

INF2R210

INF2R220

INF2R230

INF2R230

INF2R250

INF2R260

INF2R2PO

INF2R280

rNF2R280

INF2R300

INF2R310

INF2R32O

INF2R33O

INF2R340

INF2R350

IMF2R360
TIF2R370

1NF2R580

1NF2R590

INF2R400

MF2R41O

INF2R420

INF2R430

INF2R450

INF2R460

INF2R47O

INF2R48O

INF2R490

1MF2R490

INF2RSO

INF2R520

TKIF2R530

INF2RS40

INF2RS50

http:ONE=I.DO

10 RJKI-)-ZR-(K-I-)-R(JI)*BETA - INF2R560
c INF2R570

IF (R(NN).GE.Z) GO TO 15 IMF2RS8O
WRITE (6P20) NR(NN) INF2R590
R(NN)=Z INF2R600

15 R(NN)= SQRT(R(NN)) TNIF2R610
RETURN INF2R620

C INF2R630
20 FORMAT (1IHO020XP AT STEP',I14t'DIAGONAL ENTRY =''E12.4, INF2R640

I '
END

IT IS RESET To ZERO') !NF2R650
IF2R660

98

PAGE ISORIGINALOF pOOR QUALITY

SUBROUTINE PERMUT (AIAuIRpL1#NAMJpL2 #NAM2) PFRMUOIO

C PERMU020
C SUBROUTINE TO REARRANGE PARAMETERS OF A(TRFLI)p NAMI ORDER PERMU030

C TO A(IRUL2)t NAM2 ORDER. ZERO COLUMNS ARE ISERTED 	 PERMUo40

C CORRESPONDING TO THE NEWLY DEFINED NAMES. PFRMUO50

C PERMUn60

C A(IRrL) INPUT RECTANGULAR MATRIX, L=MAX(LIPL2) PERMUn70

C IA ROW DIMENSION OF At IA.GE.IR PERMUOB

C IR NUMBER OF ROWS OF A THAT ARE TO BE REARRANGED PERMU090

C LI NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE INPUT PERMUIOO

C A MATRIX PERMUIIO

C NAM1(L) PARAMETER NAMES ASSOCIATED WITH A ON INPUT PERMU120

C (ONLY THE FIRST Li ENTRIES APPLY TO THE INPUT A) PERMU130

C NAM1 IS DESTROYED RY PFRMUT PERMU140

C L2 NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT'PERMUSO

C A MATRIX PERMU60

C NAM2 PARAMETER NAMES ASSOCIATED WITH THE OUTPUT A PERMUt7O

C PERMUIO

C COGNIZANT PERSONS: G.J.AIERMAN/M.W.NEAD (JPL' sEPT.'1976) PERMUIgO

C PERMUPOO

IMPLICIT DOUBLE PRECISION (A-HPO-Z) PFRMU210

DIMENSION ACIAp1), NAMi(1), NAM2(1) PERMU220

C 	 PERMU230

ZERO=O* PERMU240

L MAX(LIPL2) PERMU2SO

IF (L.LE.LI) GO TO 50 PERMU260

NM=Li+I 	 PFRMU270

-DO 40 K=NM9L PERMU280

40 NAM1(K)=O 9 ZERO REMAINING NAMI LOCS PFRMU29O

50 DO 100 J=I.L2 PrRMIJ500

DO 60 I=IPL PERMU3IO

IF (NAM1().EO.NAM2(J)) GO TO 65 PERMU320

60 CONTINUE PERMU330

GO TO 100 PERMU340

65 CONTINUE PERMU350

IF (IEQ.J) GO TO 100 PERMU360

DO 70 K=itIR f INTERCHANGE COLS I AND J PERMU370

W=A(KJ) PERMU380

A(K#J)±A(KpI) PERMU3qO

70 	 A(KtI)=W PERMU400

NM=NAM1(I) f INTERCHANGE I AND J COL. LABELS PERMU4IO

NAM1(I)=NAM1(J) 'PERMU420

NAMI(J)=NM PERMU430

100 CONTINUE PERMU440

C REPEAT TO FILL NEW COLS PERMU450

DO 200 J=IPL2 PFRMU460

DO 160 I=1L PERMU470

IF (NAMI(I).EO.NAM2(J)) GO TO 200 PERMU4BO

160 CONTINUE PERMUUOO

DO 170 	K=lplR PERMU500

170 A(KPJ)=ZERO PERMU910

200 CONTINUE PERMU520

C 	 PERMU530

RETURN PERMU540

END PERMU550

99

http:IA.GE.IR

PHIU00n
,SUBROUTINE PHIU(PHIPMAXPHItIRPHIPICPHIPUNFPHTUPMPH!U)
C ATTPHIUOn30

IS A RECTANGULAR MATRIXPHIUOO3O
C THIS SUBROUTINE COMPUTES W=PHT*U WHERE OHI

C WITH IMPLICITLY DEFINED COLUMNS OF TRAILING ZEROS AND U IS A

C VECTOR STORED UPPER TRIANGULAR MATRIX

C

C PHI(IRpHIPICPHI)

C MAXPHI

C IRPHM

C ICPHI

C U(N*(N+I)/2)

C N

C PHIU(IRPHIiN)

C

C MPHIU

C

INPUT RECTANGULAR MATRIX. TRPHT.LE.MAXPHI

ROW DIMENSION OF PHI

NO. ROWS OF PHI

NO. COLS OF PHI

UPPER TRIANGULAR VECTOR STORED MATRIX

DIMENSION OF U MATRIX (ICPHI.LE.N)

OUTPUTP RESULT OF'PHI*Up PHIU CAN

OVERWRITE PHI

ROW DIMENSION OF PHIU

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD

C 1PHIU1tBO

,IMPLICIT DOUBLE PRECISION (A-HPO-Z)

'DIMENSION PHI(MAXPHIP1)U(1)PHTU(MPHIU,1)

DOUBLE PRECISION SUM

C - IPHIUO220

,DO 10 I:ItIRPHI
10 PHIU(Iti) PHI(II)

C

NP2=N+2

KJS=N*(N+I)/2

0040 L=2PN

J=NP2-L

KJS=KJS-J

JMItJ-1

-.DO 30 I=IIRPHI

'SUM=PHI(I'J)

.IF (J.LE.ICPHI) 60 TO 15

SUM=O.DO

JMl=ICpHI

15 DO-20 KZIPJMI

20 SUM=SUM+PHI(I#K)*U(KJS+K)

30 PHIU(I,J)=SUM

,40 CONTINUE

C

RETURN

END

(JPL' FEB.1978)

PRiuon40

PHIUO050

PHIUOnn6

7
PHIUOnO

PHIUOORO

PHIU~nf 0

PwIUoiln

PHIUOiIO

PmIU0120

PHTUO130

PHIU0140

PHIU10SO

PHIUOI6O

PHIU017 0

PHIUO19 0

PHIUOPOD

"PHIUO210

PHIU0230
PHIU0240

PHIU0250

PHTU0260

PHIU0270

PHIU0280

PHIU029 0

PHIU0300

PHIU0310

PHIU032 0

PHIU0330

PHIU0340

PHIU0350

PHITUO60

PHIU037O

PHIU0380

PHIU0390

PHIU040 0

PHIU0410

PHIU0420

'PHIUO430

100

http:SUM=O.DO

ORIGIA PAGE IS
or POOR QT

SUBROUTINE RA (RtNA.MAXAtIAtJAPRAPMAXRA.NRA) RAO00010

C
 RAO00020

C TO COMPUTE RA=R*A RADO00030

C
 RAO00004

C WHERE R IS UPPER TRIANGULAR VECTOR SUBSCRIPTED AND OF DIMENSION NRAOOOO5O

C A HAS JA COLUMNS AND IA ROWS. IF IA.LT.JA THEN THE BOTTOM JA-IA RAO00060

C ROWS OF A ARE ASSUMED TO BE IMPLICITLY DEFINED AS THE RAnOon70

C BOTTOM JA-IA ROWS OF THE JA DIMENSION IDENTITY MATRIX. RAOO080

C ONLY NRA ROWS OF THE PRODUCT R*A ARE COMPUTED. RAO00090

C RAO00100

C -1'R(N* (N+I)/2) UPPER TRIANGULAR VECTOR STORED INPUT MATRIX RADOO110

C N DIMENSION OF R RADO00120

C A(IAPJA) INPUT RECTANGULAR MATRIX RAO00130

C MAXA ROW DIMENSION OF A RAOO014O

C IA NUMBER OF ROWS IN THE A MATRIX (IA.LE.MAXA) RADO0150

C JA NUMBER OF COLUMNS IN THE A MATRIX RAoOO16O

C RA(NRApN) OUTPUT RESULTING RECTANGULAR MATRIX, RA000170

C RA=A IS ALLOWED RAO00180

C MAXRA ROW DIMENSION OF RA RADO0190

C NRA NUMBER OF ROWS OF THE PRODUCT R*A THAT ARE COMPUTED RA00020
0

C (NRA.LE.MAXRA) RAO00210

C
 RA000220

C COGNIZANT PERSONS: GJ.BIERMAN/M,W.NEAD (JPLv FER.1978) RAO00230

C
 RA000240

IMPLICIT DOUBLE PRECISION (A-HrO-Z) RA000250

DIMENSION R(1)PA(MAXA,1)PRA(MAXPAPI) RA000260

DOUBLE PRECISION SUM RAOOO27O

C
 RA00280

IJ=IA*(IA+I)/2 r IJ=JJ(IA) RAO0090

RAO00300
C

RAO00310
DO 30 j=luJA

II=O 0 TO RE REMOVED IF JJ(I) IS USED RA000320

DO 20 I=tNRA
 RAO00330

II=II+I P II=(IFI)=JJ(I) RA000340

C IT IS MORE EFFICIENT TO USE A PRESTORED VECTOR OF DIA(ONALS RAO00350

C WITH JJ(I)=I*(I+1)/2p AND TO SET II=JJ(I) AND IJ=JJ(J) RA000360

'RA000370
C

RAO00080

RA000390

SUM=O.DO

IF (I.GT.IA) GO TO 15

RADO00O40 0

IK=II

DO 10 K=IeIA
 RAOOO41O

RA000420
SUM=SUM+R(IK)*A(KPJ)

RAOO0430
10 IK=IK+K

15 IF (J.GT.IA.AND.ILE.J) tJM=SUM+R(IJ+I) RAO00440

RAOOO450
C

*20 RA(IJ)=SUM RAODOU60

30 IF (J.GTIA) IJ=IJ+J 2 IJ=JJ(J) RAO00470

RAOOO48O
C

RETURN - RAn00490

'RAOOOS00END

101

http:SUM=O.DO
http:IA.LT.JA

SUBROUTINE RANKi (UINPUOUTPNPCvV)
C
C STABLE U-D FACTOR RANK I UPDATE
C
C (UOUT)*DOUT*(UOUT)**TZ(UIN)*DIN*(UIN)**T+C*V*V**T
C
C UIN(N*(N+1)/2) INPUT VECTOR STORED POSITIVE SEMI-DEFINITE U.D
C ARRAY, WITH D ELEMENTS STORED ON THE DIAGONAL
C UOUT(N*(N+I)/2) OUTPUT VECTOR STORED POSITIVE (POSSIBLY) SEMI-
C DEFINITE U-D RESULT. UOUT=UIN TS PERMITTED
C N MATRIX DIMENSIONP N.GE.2
C C INPUT SCALAR. SHOULD BE NON-NFGATIVF
C C IS DESTROYED DUPING THE PROCESS
C V(N) INPUT VECTOR FOR RANK ONE MODIFICATTON.
C V IS DESTROYED DURING THE PROCESS
C
C COGNIZANT PERSONS: GJ.BIERMAN/M.W.NEAD (JPLtSEPT.1977)
C

IMPLICIT DOUBLE PRECISION (A-HO-Z)
DIMENSION UIN(1)p UOUT(1)t V(1)
DOUBLE PRECISION ALPHA, BETA' St Dp EPS TST

C
DATA EPS/ODO/u TST/.O62SDo/

C IN SINGLE PRECISION EPSILON IS MACHINE ACCURACY
C
C TST=l/16 IS USED FOR RANKI ALGORITHM SWITCHING
C

Z=ODO
JJ=N*(N+1)/2
IF (C.eT.Z) GO TO 4
DO 1 J=lJJ

1 UOUT(J):UIN(J)
RETURN

C
4 NP2=N+2

00 70 L=2,N
J=NP2-L
S=V(j)
BETA=C*S
D=UIN(JJ)+BETA*S
IF (D.GT.EPS) GO TO 30
IF (D.GE.Z) GO TO 10

5 WRITE (6,o0)
RETURN

10 JJ=JJ-J
WRITE (6p110)
DO 20 K=IJ

20 UOUT(JJ+KI=Z
GO To 70

30 BETA=BETA/D
ALPHA=UIN(JJ)/D
C=ALPHA*C
UOUT(JJ)=D
JJ=Jj-J
JMI=J-1 102

RANKI010

RANKI020

RANK1030

RANK1040

RANKIo50

RANK1060

RANKI070

RANK1OBO

RANKI090

RANKlIO0

RANKliIO

RANK1120

RANKII30

RANK1140

RANKISO

RANK1160

RANKIYO

RANK1180

RANK1i90

RANKI200

RANK1210

RANK1220

RANK1230

RANK124O

RANK1250

RANK1260

RANKI270

RANK1280

RANK1290

RANK1300

RANK1310

RANK1320

RANK1330

RANK134O

RANK135O

RANK1360

RANK1370

RANK1380

RANKI39O

RANK1400

RANK1410

RANK1420

RANKI430

RANK1440

RANK1450

RANKI460

RANKI470

'RANK1480

RANKI490

RANK1500

RANK1SI0

RANK1520

RANK1530

RANKIS1O

RANK1550

,ittGINA1,PL G 8

IF (ALPHA.LT.TST) GO TO 50 RANK1560
DO 4o I=IPJMI RANKIS7O

V(x)=VCI)-S*UIN(JJ+I) RANK158O
40 UOUT(JJ+I)=BETA*V(I)+UIN(JJ+I) RANK1590

GO To 70 RANKIO0
50 DO 60 Iz1PJM1 RANK1610

D=V()-S*UINJJ+I) RANK1620
UOUT(JJ+I)=ALPHA*UIN(JJ+I)+BETA*V(I) RANK1630

60 V(I)D RANK1640
70 CONTINUE RANK1650

C RANK1660
UOUT(1)=UIN(1)+C*V(j)**2 RANK1670
RETURN RANK1680

C RANK169O
100 FORMAT (1HO,10X,'* * * ERROR RETURN DUE TO A COMPUTFD NEGATIVE COMRANK1700

iPUTED DIAGONAL IN RANKI * * *1) RANK1710
110 FORMAT (1HOeOX,'* * * NOTE: U-D RESULT IS SINGULAR * * *') RANK1720

END RANK1730

103

SUBROUTINE PCOLRD(SPMAXSPIRSPJCSNPSTRTNPFMRWPZWPVPSGSTAR) RCOLRO1O

C
 RCOLRO20

C TO ADD IN PROCESS NOISE EFFECTS INTO THE SQUARE ROOT RCOLRO3O

C INFORMATION FILTERP AND TO GENERATE WEIGHTING COEFFICIENTS RCOLRO4O

C FOR SMOOTHING, IT IS ASSUMED THAT VARIABLES X(NPSTRT)p RCOLRO50

C X(NPSTRT+I),...,X(NPSTRT+NP-t) ARE COLORED NOISE AND THAT RCOLRO60

C EACH COMPONENT SATISFIES A MODEL EQUATION OF THE FORM RCOLRO70

C X(sUB)(J+1)=EM*X(SUB)(J)+W(SUP)(J). FOR DETAILS, SEE RCOLRO80

C 'FACTORIZATION METHODS FOR DISCRETE SEQUENTIAL FSTIMATION', RCOLRO90

C G.J.BIERMAN, ACADEMIC PRESS (1977) RCOLRIO0

C FOR SMOOTHING. REMOVE THE COMMENT STATEMENTS ON THE 3 LINES RCOLRIIO

t
C OF 'SMOOTHING ONLY CODE. THE SIGNIFICANCE OF THE SMOOTHING RCOLR120

C MATRIX IS EXPLAINED IN THE FUNCTIONAL DESCRIPTION. RCOLR130

C RCOLRI4O

C S(IRSPJCS) INPUT SQUARE ROOT INFORMATION ARRAY; OUTPUT COLOPED RCOLR150

C NOISE ARRAY HOUSED HERE Too. IF THERE IS SMOOTHING, RCOLRI60

C NR ADDITIONAL ROWS ARE INCLUDED IN S RCOLR170

C MAXS ROW DIMENSION OF S. IF THERE ARE SMOOTHING COMPUTA- RCOLR180

C TIONS IT IS NECESSARY THAT MAXS.GE.IRS+NP BECAUSE RCOLRI90

C THE BOTTOM NP ROWS OF S HOUSE THE SMOOTHING RCOLR200

C INFORMATION RCOLR210

C IRS NUMBER OF ROWS oF S (.LE' NUMBER OF FILTER VARIARLES) RCOLR220

C (IRS.GE,2) RCOLR230

C JCS NUMBER OF COLUMNS OF S (EQUALS NUMBER OF FILTER RCOLR240

C VARIABLES + POSSIBLY A RIGHT SIDE)p WHICH CONTAINS RCOLR25O

C THE DATA EQUATION NORMALIZED ESTIMATE (JCS.GE.1) RCOLR260

C NPSTRT LOCATION OF THE FIRST COLORED NOISE VARIABLE RCOLR27O

C (1.LE.NPSTRT.LE.JCS) RCOLR2BO

C NP NUMBER oF CONTIGUOUS COLORED NOISE VARIABLES (NP,GE.1)RCOLR290

C EM(NP) COLORED NOISE MAPPING COEFFICIENTS RCOLR300

C (OF EXPONENTIAL FORM, EM=EXP(-DT/TAU)) RCOLR310

C RW(NP) RECIPROCAL PROCESS NOISE STANDARD DEVIATIONS RCOLR320

C (MUST BE POSITIVE) RCOLR330

C ZW(NP) ZW=RW*W-ESTIMATE (PROCESS NOISE ESTIMATES ARE RCOLR34O

C GENERALLY ZERO MEAN). WHEN 7W=O ONE CAN OMIT THE RCOLR35O

C RIGHT HAND SIDE COLUMN. RCOLR360

C V(IRS) WORK VECTOR RCOLR370

C SGSTAR(NP) VECTOR OF SMOOTHING COEFFICIENTS. WHEN THE SMOOTHING RCOLR380

C CODE IS COMMENTED OUT SGSTAR IS NOT USED. RCOLR390

C RCOLR400

C COGNIZANT PERSONS: GJ.BIERMAN/MW.NEAD (JPL, FEB.1978) RCOLR4IO

C RCOLR420

IMPLICIT DOUBLE PRECISION (A-HPO-Z) RCOLR430

DIMENSION S(MAXSPJCS)PEM(NP).RW(NP)PZW(NP), V(IRS)PSGSTAR(1) RCOLR4O

DOUBLE PRECISION ALpHASIGMAPBETAGAMMA RCOLR450

C RCOLR460

ZERO=O.DO RCOLR47O

ONE=I.DO RCOLR4BO

NPCOL=NPSTRT I COL NO OF COLORED NOISE TERM TO BE OPERATED ON RCOLR490

C RCOLRSOO

DO 70 JCOLRD=lPNP RCOLR510

ALPHA=-RW(JCOLRD)*EM(JCOLRD) RCOLR520

SIGMA=ALPHA**P RCOLR530

DO 10 K=PIRS RCOLR94O

V(K)=S(K.NPCOL) 9 FIRST IRS ELEMENTS OF HOUSEHOLDER RCOLR5SO

104

http:ONE=I.DO
http:ZERO=O.DO

@RQ~ LPAGE IS
0X p a QUAIXfy

C TRANSFORMATION VECTOR RCOLRS6O

10 SIGMA=SIGMA+V(K)**2 RCOLR570

RCOLR580
SIGMA=DSQRT(SIGMA)

ALPHA=ALPHA-SIGMA r LAST ELEMENT OF HOUSEHOLDER RCOLR59O

C TRANSFORMATION VECTOR RCOLR600

C * * * * * * RCbLR61O

C SGsTAR(JCOLRD)=SIGMA I USED FOR SMOOTHING ONLY RCOLR620

C * * * * ** RCOLR630

BETA=ONE/(SIGMA*ALPHA) 0 HOUSEHOLDER=I+BETA*V*V**T RCOLR640

C HOUSEHOLDER TRANSFORMATION DEFINED, NOW APPLY IT TO St y.E.6O LOOPRCOLR650

DO 6o KOL=1,JCS RCOLR660

IF (KOLoNE.NPCOL) GO TO 30 RCOLR67O

GAMMA= RW(JCOLRD)*ALPHA*RETA RCOLR680

C * * * * ** RCOLR690

C S(IRS+JCOLRDPNPCOL)=RW(JCOLRD)+GAMMA*ALPHA W SMOOTHING ONLY RCOLR700

C * * * * * * RCOLR71O

DO 20 K=lIRS RCOLR720

20 s(KPNPCOL)=GAMMA*V(K) RCOLR730

60 TO 60 RCOLR740

30 GAMMA=ZERO RCOLRT50

IF (KOL.EQJCS) GAMMA=ZW(JCOLRD)*ALPHA RCOLR760

C
 RCOLR77O

C IF ZW ALWAYS ZERO' COMMENT OUT THE ABOVE IF TEST RCOLR780

C
 RCOLR790

DO 40 K=MPIRS RCOLRBO0

40 GAMMA=GAMMA+S(KPKOL)*V(K) RCOLR810

GAMMA= GAMMA*BETA
 RCOLR820

DO 50 K=lPIRS
 RCOLRB30

50 S(KoKOL)=S(KPKOL)+GAMMA*V(K) RCOLR840

C * * * * * RCOLR850

C S(IRS+JCOLRDPKOL)=GAMMA*ALPHA 0 FOP SMOOTHTNG ONLY RCOLRS60

C ** * ***
 RCOLRP7O

60 CONTINUE RCOLRSBO

C * * * * * *RCOLRA90

C S(IRS+JCOLRDPJCS)=S(IRS+JCOLRDPJCS)+ZW(JCOLRD) RCOLR900
C THE ABOVE IS FOR SMOOTHING ONLY RCOLRgO
C IF ZW IS ALWAYS ZERO, CO"MENT OUT THE ABOVE STATEMENT RCOLRg20
C * * * * *RCOLRq3

70 NPCOL=NPCOL+1 RCOLRg40

C RCOLRq5O

RETURN RCOLR960

RCOLRq70
END

105

ISUBROUTINE RINCON (RINPNrROUTsCNB)

C

C 	 TO COMPUTE THE INVERSE OF THE UPPER TRIANGULAR VECTOR STOREn

INPUT MATRIX RINAND STORE THE RESULT IN ROUT.
 (RIN=ROUT IS
C

C PERMITTED) AND TO COMPUTE A'CONDITION NUMBER ESTIMATE.

I) ,

C CNB=FRoB.NORM(R)*FROBNORM(R**-

C THE FRoPENIUS NORM IS THE SQUARE RooT OF THE SUM OF SQUARES

C OF THE ELEMENTS. THIS CONDITION NUMBER BOUND IS USED AS

C AN UPPER BOUND AND IT ACTS AS A LOWER BOUND ON THE ACTUAL

C CONDITION NUMBER OF THE PROBLEM. (SEE THE BOOK 'SOLVING LEAST

C SQUARES'# BY LAWSON AND HANSON)

C

C 	 IF RIN IS SINGULAR, RINCON COMPUTES THE INVERSE TO THE LEFT OF

THE FIRST ZERO DIAGONAL. A MESSAGE IS PRINTED AND THE CONDITION
C

C NUMBER BOUND COMPUTATION IS ABORTED.

C

C RIN(N*(N+I)/2) INPUT VECTOR STORED UPPER TPIANGULAR MATRIX

C N DIMENSION OF R MATRICES, N.GE.2

C ROUT(N*(N+1)/2) OUTPUT VECTOR STORED UPPER TRIANGULAR MATRIX

C INVERSE (RIN=ROUT IS PERMITTED)

C CNB CONDITION NUMBER ROUND. IF C IS THE CONDITION

C NUMBER OF RINP THEN CNB/N.LF.C;LE.CNB

C

C COGNIZANT PERSONS: G.J.BIERMAN/M.WoiEAD (JPLPFEB.1978)

C

C

IMPLICIT DOUBLE PRECISION (A-HPO-Z)

DOUBLE PRECISION RNMDINVPSUMtRNMOUT

DIMENSION RINWi)' ROUT(l)

C

Z=O.DO

ONE=I.DO

NTOT=N*(N+I)/2

C

RNM=Z

DO 10 J=PNTOT

10 RNM=RNM+RIN(J)**2

C

C REPLACE CALL UTINV (RINNpROUT) BY UTINV CODE

C

IF (RIN(1).NE.Z) GO TO 20
J=j

WRITE (6#100) J.J

RETURN

C

20 ROUT(1)=ONE/RIN(1)

C

JJ=1
DO 50 j=2,N

JJOLD=JJ

JJ=Jj+J

IF (RIN(JJ).NE.Z) GO TO 30

WRITE (6,100) JvJ

RETURN

C 	 106

RTNC001

RINCO020

RINCO030

RTNCOO4O

RINCO050

RINCOn60

RINCOOTO

RINCO080

RTNCO090

RINCO100

RINCOIlO

RINCO120

RTNCO130

RINCO140

RINCO150

RINC0160

RTNCO17O

RINCO180

RINCO190

RINC0200

RINC02I0

RTNC0220

RTNCO230

RINCo240

RINC0250
RINC0260
RTNCO27O
RINC0280

RTNC029 0

RINC0300

RINC0310

RINC0320

RTNC0330

RINCO34O

RINC0350

RINC0360

RTNC0370

RINC0380

RINCO39O

RTNC0400

RINC041O
RTNC0420

RTNC0430

RTNCO44O
RTNC0450

RINCO460

RTNC0470

RINC048n

RINC049n

RINCO500

RINCO510

RINCO520

RINCO530

RINCO940

RINC0550

http:ONE=I.DO

RINC0560
30 DINV=ONE/RIN(JJ)

RINC0570
ROUT(JJ)=DINV

RYNC080
II=0
 0
RTNC059
IKZI

RINCO600
JM1ZJ-1

DO 50 IfIJM1
 RTNCO610

RTNC0620

RTNC0630

IIzIi+I

IK=II

RINC0640
SUM=Z

RINCOS5O
DO 40 K=ItJM1

sUM=SUM+ROUT(K)*RTN(JJOLD+K) RINC0660

RTNC0670
40 IK=IK+K

RINC0680
50 ROUT(JJOLD+I)r-StIM*DINV

RTNC0690
C

RTNCO700

C

RINCOIO
C

RINCO720
RNMOUT=Z

RTNC0730
DO 60 J=IFNTOT

RINCO74O
60 RNMOUT=RNMOUT+ROUT(J)**2

RINCO?50
c

RINCO760
RNM=DSQRT(RNM*RNMOUT)

RINC0770
CNB=RNM

RINCO780
C

RINCO790
WRITE (6,110) RNM

RINCOGO0
RETURN

RINCO810
C

100 FORMAT (IHOFlOXP'* * * MATRIX INVERSE COMPUTED ONLY UP TO BUT NOT RINCO820

lINCLUDING COLUMNI#14p' * * * MATRIX DIAGONAL ',IT4' IS ZERO * * *'RINC0830
RINCO840
2)

110 FORMAT(1IHOBXe'CONDITION NUMBER ROUND='pD18,1p2Xt'CNB/N.LE.CONDITRINCOS50

RINCO860
lION NUMBER.LE*CNB't/)

RINCO87O
END

107

SUBROUTINE RI2COV (RINVeNPSIGPCOVOUT'KROWKCOL) RT2CO010

C R72CO020

C TO COMPUTE THE COVARIANCE MATRIX AND/OR THE STANDAPD DEVIATIONSRI2CO03O

C - OF A VECTOR STORED UPPER TRIANGULAR SQUARE ROOT COVARIANCF RT2CO040
C MATRIX. THE OUTPUT eOVARIANCE MATRIX IS ALSO VECTOR STORED. R12CO050
C R12CO60
C RINV(N*(N+I)/2) INPUT VFCTOR STORED UPPER TRIANGULAR R12CO070
C COVARIANCE SQUARE ROOT. (RINV=RINVERSE RI2COOSO
C IS THE INVERSE OF THE SRIF MATRIX) RI2CO090
C N DIMENSION OF THE RINV MATRIX* N.GE,2 RT2CO1O0
C SIG(N) OUTPUT VECTOR oF STANDARD DEVIATIONS RI2CO11O
C COVoUT(N*(N+I)/2) OUTPUT VECTOR STORED COVAPTANCF MATRIX RT2COt20
C (COVOUT = RINV IS ALLOWED) RT2CO130
C KROW .GT.o COMPUTES THE COVARTANCE AND SIGMAS R12C0140
C CORRESPONDING TO THE FIRST KROW VARIABLES R12CO150
C OF THE RINV MATRIX. RT2CO160
c- LT*O COMPUTES ONLY THE SIGMAS OF THE FIRST KROW R12CO170
C VARIABLES OF THE RINV MATRIX. RT2CO1SO
C .: RINV. RT2CO190
C EG*O NO COVARIANCF, BUT ALL SIGMAS (F.G. USE RT2C0200
C N ROWS OF RINV). R12C0220
C. . - KCOL NO. OF COLUMNS OF COVOIrT THAT ARE COMPUTED RI2CO220
C IF KCOL.LE.O THEN KCOL=KROW. IF KROW.LE.O R12C0230
C THIS INPUT IS IGNORED. R12C0240
C- I R12C0250
C- COGNIZANT PERSONS: G.J,RIERMAN/M.W.NEAD (JPL# MARCH 19T) R12C0260
C- -R12C0270

- IMPLICIT DOUBLE PRECISION (A-HO-Z) - R12CO280
- DOUBLE PRECISION SUM RI2CO29O
* DIMENSION RINV(I), SIG(1), COVOUT(I) R12C0300

C R!2CO310

ZERO=O*DO RT2C0320

LIM=N R12C0330

KKOL=KcOL RT2C0340

IF (KKoL.LE.O) KKOL=KROW RT2C0350

IF (KROW.NE.O) LIM=IABS(KRow) RT2C0360

C *** COMPUTE SIGMAS R12C0370

IKS=O RI2C0380

DO 2 J=IPLIM RT2C0390

IKS=IKS+J RT2CO400

SUM=ZERO RT2C0410

IKzIKS R12C0420

DO 1 K=JN RI2CO430

SUM=SUM+RINV(1K)**2 RT2C0440

1 IK=IK+K RI2COU50

2 SIG(J)=DSGRT(SUM) R12C0460

C RT2C0470
IF (KRoW.LE.O) RETURN R12C0480

C *** COMPUTE COVARIANCE RT2C0490
JJ=O R12CO050

NMI=LIM RT2C0510

IF (KROW.EQ.N) NMI=N-1 RT2C0520

DO 10 J=flNM1 RT2CO530

JJ=Jj+J R12C0540

COVOUTCJJ)=SIG(J)**2 RT2C0950

108

ORIGINAL PAGE IS

OF POOR QUALITY

IJS=JJ+J RT2C0560
JPI=J+I R12C0570

DO 10 I=JP1,KKOL RT2CO580
IK:IJS RT2C0590
IMJ=I-J R12C0600
SUM=ZERO RT2C061 0

00 5 K=I#N R12C0620
IJK:IK+IMJ R!2C0630
SUM2SUM+RINV(K)*RINV(IJK) R12C0640

5 IKZIK+K RT2C0650
COVOUT(IJS)ZSUM R12C0660

10 !Js=lJS+I RT2C0670

C
IF (KRoWoEQ*N) COVOUT(JJ+N)=SIG(N)**2 RT2C0680

R12CO69O
RETURN R12C0700

END RT2CO71O

109

SUBROUTINE R2A(RpLRpNAMRApIAPLANAMA)

C

C TO PLACE THE TRIANGULAR VFCTOR STORED MATRIX R INTO THE

C
 MATRIX A AND TO ARRANGE THE COLUMNS TO MATCH THE DESIRED

C NAMA PARAMETER LIST. NAMES IN THE NAMA LIST THAT DO NOT

C CORRESPOND TO ANY NAME IN NAMR HAVE 7ERO ENTRIES IN THE

C CORRESPONDING A COLUMN.

C

C R(LR*(LR+I)/2) INPUT UPPER TRIANGULAR VECTOR STORED ARRAY

C LR DIMENSION OF R

C NAMR(L) PARAMETER NAMES ASSOCIATED WITH R

C A(LRtLA) MATRIX TO HOUSE THE REARRANGED R MATRIX

C IA ROW DIMENSION OF A, TA.GE.LR

C LA NO. OF PARAMETER NAMES ASSOCIATED WITH THE

C OUTPUT A MATRIX

C ,NAMA(LA) PARAMETER NAMES FOR THE OUTPUT A MATRIX

C

C COGNIZANT PERSONS: G.J.RIERMAN/M.W.NEAD (JPL, SEPT. 1976)

C

IMPLICIT DOUBLE PRECISION (A-HrO-Z)

DIMENSION R(1)pNAMR(I)pA(IApI),NAMA(1)

C

ZERO=O.

DO 5 J=ItLA

DO 5 K=IPLR

5 A(KPJ)=ZERO 1 ZERO A(LRLA)

DO 40 J=IPLA

DO 10 I=ILR

IF (NAMR(I).E.NAMA(J)) GO TO 20

10 CONTINUE

GO To 40

20 JJ=I*(I-1)/2

Do 30 K=II

30 A(KJ)=R(JJ+K)

40 CONTINUE

C

RETURN

END

R2AO00I

R2AO0020

R2AO0030

RPA0040

R2AO0050

R2AOfl60

R2AO0070

R2AO0080

R2AO0090

R2AOOIOO

R2AO0110

RPAOIO20

R2A00130

R2AO0140

R2A00150

RPAO0160

R2AO017O

R2A00180

RAO0190
RPAO0200

RA00210

RPA00220

R2AO0230

R2A00240

R2AO0250

R2AO0260

R2AO0270

R2A00280

R2AO0290

R2AO0300

R2AO0310

R2AOO32n

R2AO0330

R2A00340

R2AO0350

R2AO0360

R2A00370

R2A00380

110

http:TA.GE.LR

ORIGINAL PAGE IS

OF POOR QUALITY

R2PAOnlO
SUBROUTINE R2RA (RpNRNAMPRAPNPANAMA)

R2RAOn2O
C

TO COPY THE UPPER LEFT (LOWER RIGHT) PORTION OF A VECTOR
 R'RAO030
C

RPRA0040
C STORED UPPER TRIANGULAR MATRIX R INTO THE LOWER RIGHT

C (UPPER LEFT) PORTION OF A VECTOR STORED TRIANGULAR
 R2RAOOSO

R2RAO060
C MATRIX RA.

R2RAnO7n
C

INPUT VECTOR STORED UPPER TRIANGULAR MATRIX
 RPRAIGO
C R(NR*(NR+I)/2)

R2RAOO9O
C NR
	 DIMENSION OF R

R2RAOIOO
C NAM(NR)
	 NAMES ASSOCIATED WITH R

THIS INPUT NAMELIST IS DESTROYED
 R2RAO110

c

C RA(NRA*(NRA+I)/2) OUTPUT VECTOR STORED UPPER TRIANGULAR MATRIX R2RA0120

IF NRA=O ON INPUTP THEN NAMA(1) SHOULD HAVE R2RA0130
C
 NRA

C THE FIRST NAME OF THE OUTPUT NAMELIST. R2RAO140

IN THIS CASE THE NUMBER OF 	NAMES IN MAMA AND R2RAn150
C

C
 NRA WILL RE COMPUTED. THE LOWER RIGHT FLOCK RPRA0160

OF R WILL RE THE UPPER LEFT BLOCK OF RA, R2RA017O
C

R2RA0180
C 	 IF NRA=LAST NAME OF THE UPPER LEFT BLOC

THAT IS TO BE MOVEDP THEN THIS UPPER R2PA0190
C

BLOCK IS TO BE MOVED TO THE LOWER RIGHT R2RA0200
C

CORNER OF RA. WHEN USED IN 	THIS MODE NRA=NR R2RA0210
C

C ON OUTPUT.
 R2PA0220

C NAMA(NRA) NAMES ASSOCIATED WITH RA R2RA0230

R RAODP40
C

IF NRA=O ON INPUT. THEN NAMA(1) SHOULD HAVE THE FIRST NAME OF THE R2RA025
0

C

C

C
C

C
C

OUTPUT NAMELIST AND THE NUMBER OF NAMES IN MAMA IS COMPUTED.

THE LOWER RIGHT BLOCK OF R WILL BE THE UPPER LEFT BLOCK OF RA.

IF NRA=LAST NAME OF THE UPPER LEFT BLOCK THAT IS TO BE MOVEnp

THEN THE UPPER BLOCK IS TO BE MOVED TO THE LOWER RIGHT POSITION.

R2RAo260

R2RA027O

R2RAO2BO

RPRA0290

R2RA0300

C WHEN USED IN THIS MODE NRA=NR ON OUTPUT. RPRA0310

C R2RA0320

C
C

THE NAMES OF THE RELOCATED BLOCK ARE ALSO MOVED*
CAN COINCIDE WITH R AND MAMA WITH NAN

THE RESULT R2RAO330

R2RA0340

C
 R2RA0340

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLP SEPT. 1976) R2RA0360

C RPRA0370

IMPLICIT DOUBLE PRECISION (A-HO-Z) R2RA0380

DIMENSION
LOGICAL

R(1)eRA(1)i NAM(1)
IS

NAMA(1) R2RA0390

R2RA0390

C R2RA0410

IS=.FALSE.
 R2RA0420

C
LOCN=NAMA(1)

IS=FALSE CORRESPONDS TO MOVING UPPER LFT. CORNER OF R TO

R2RA0430

R2RAO440

C LOWER RT. CORNER OF RA
 R2RA0450

C

IF (NRA.EQ.0) GO TO I

LOCN=NRA
IS=.TRuE,

IS=TRUE CORRESPONDS TO MOVING LOWER LFT. CORNER OF R TO

R2RA0460

RRA046O

R2RAO4BO

R2RAO490

C UPPER RT. CORNER OF RA R2RA0500

1 00 3 I=IeNR
 R2RA0510

IF (NAM(I).EQ,LOCN) GO TO 4

3 CONTINUE

R2RAO52O

R2RAO530

WRITE (6.100)
100 FORMAT (1HOP2OXP'NAMA(1) NOT IN NAMELIST OF R MATRIX)

R2RA0540

R2RA0550

ill

RETURN

C

4 K=I

KM1=K-1

IF (IS) GO TO 15

C

IJS=K*(K+1)/2-1

NRA=NR-K+1

IJA=O

KOLA=O

DO 10 KOL=KrNR

KOLA=KOLA+1

NNMA(KOL-KMI)=NAM(KOL)

DO 5 IR=lPKOLA

IJA=IJA+1

5 RA(IJA)=R(IJS+IR)

10 IJS=IJS+KOL
RETURN

C

15 	 IJ=K*(K+1)/2

IJA=NR*(NR+I)/2

L=NR-KMI

KOL=K

DO '25 KOLA=NRpL-4

!Js=IJA

NAMA(KOLA)=NAM(KOL)

DO 20' IR=KOLA,L,-i

RA(IJS)=R(IJ)

-IJS=ijs'l,

20 IJ=IJ-1

IJA=IJA-KOLA,

-25 KOL=KOL-1

NRA=NR

C

RETURN

END

R2RA036n

R2RA0570

R2RAO980

R2RA0590

R2RA0600

R2RA06IO

RPRA0620

R2RA0630

R2RA0640

R2RA0650

R2RA066O

R2RA0670

R2RA0680

R2RA0690

R2RAO700

R2RA0710

R2RA0720
R2RAO?30

R2RAO?40

R2RAO750

R2RA0760

R2RAO77O

R2RAO780

R2RAO790

R2RA0800

R2RA0810

R2RAO820

R2RA0830

R2RAO840

R2RAO850

R2RAO860,

R2RAO87O

RPRA0880

R2RAOR90

R2RA0900

R2RA0910

112

pOOR QUALTYO&
ODRIGINAL PAGE IS

SUBROUTINE RUDR(RINN,ROUTIS)

C

C FOR N.GTO THIS SUBROUTINE TRANSFORMS AN UPPER TRIANGULAR VECTOR

STORED SRIF MATRIX TO U-D FORMP AND WHEN N.LT.O THE U-D VECTOR
C

C STORED ARRAY IS TRANSFORMED TO A VECTOR STORED SRIF ARRAY

C

C RIN((N+1)*(N+2)/2)
 INPUT VECTOR STORED SRIF OR U-0 ARRAY

C ROUT((N+1)*(N+2)/2)
 OUTPUT IS THE CORRESPONDING U-0 OR SRIF

C
 ARRAY (RIN=ROUT IS PERMITTED)

C N
 ABS(N)= MATRIX DIMENSION .GE.2

C N.GT.O
 THE (INPUT) SRIF ARRAY IS (OUTPUT)

C
	 IN U-D FORM

C N.LTO
 THE (INPUT) U-D ARRAY IS tOUTPUT)

C
 IN SRIF FORM

C IS =
 THERE IS NO RT. SIDE OR ESTIMATE STORED IN

C
 COLUMN N+lp AND RIN NEED HAVE ONLY

C
 N COLUMNS, I.E. RIN(N*(N+I)/2)

C IS = 1
 THERE IS A RT. SIDE INPUT TO THE SRIF AND

C
 AN ESTIMATE FOR THF U-D ARRAY. THESE RESIDE

C
 IN COLUMN N+I.

C

C THIS SUBROUTINE USES SUBROUTINE RINCON

C

C COGIZANT PERSONS G.J.BIERMAN/M.W.tEAD CJPL. FEP.197R)

C

IMPLICIT DOUBLE PRECISION (A-HO-Z)

DIMENSION RIN(1), ROUT()

C

ONE= 1.DO

NPI= IS + IABS(N)

JJ=l
 0 INITIALIZE DIAGONAL INDEX

IDIMR= NPI*(NP1 +1)/2
IF (IS.EQ.O) Go TO 5

RNN=RIN(IDIMR)

RIN(IDTMR)=-ONE

C

S 	 IF (N.LT.0) GO TO 30

CALL RINCON(RINNP1,ROUTCNR)

ROUT(1)= ROUT(1)**2

DO 20 J=2,N

S=ONE/ROUT(JJ+J)

=
 ROUT(JJ+J) ROUT(JJ+J)**2

JMI=J.-

DO 10 I=IJM1

=
 10 ROUT(JJ+I) ROUT(JJ±T)*S

20 JjJJ+ J

GO TO 70

C

30 NN=-N 	 R NN=NEGATIVE N

=
 ROUT(1) SORT(RIN(1))

C

SOME MACHINES REQUIRE DSQRT FOR DOURLE PRECISION
C ***

C

00 50 J=2PNN

ROUT(JJ+J)= SQRT(RIN(JJ+J))

113

RUDR0010

RUDROo20°

RUDRO03 0

RUDRO04C

RUDRO0C

RUDRO060

RUDRO07O

RUDR0080

RUDROO90

RUDR0100

RUDR0110

RUDR012 0

RUDROI30

RUDR0140O

RUDR0150

RUDR0160

RUDR0170

RUDRO180

RUDR0190

RUDR0200

RUDR0210

RUDR0220

RUDR0230

RUDR02#O

RUDR0250

RUDR0260

RUDR02?O

RUDRO280

RUDR0290

RUDR0300

RUDR0310

RUDR0320
RUDR0330

RIIDRO3fO

RUDR0350

RLIDR0360

RUDR0370

RUDR0380

RUDR0390
RUDR0400

RIDR0410

RIIDR0420

RUDR0430

RUDRO440

RUDRO450

RUDRO460

RUDR0470
RUDR0480

RUDRO490

RUDROSO

RUDROSIO

RIJDRO52n

RIJDRO530

RUDR0540

RUDRO550

S-ROUT(JJ+J)

JMIZJ-1

DO 	 40 I1,JM1

40 ROUTJJ+I): RIN(JJ+I)*S

50 JJrJJ+J

60 	 CALL RINCON(ROU~tNP1PROUTPCNB)

C
70 	 IF (IS.EQ.1) RIN(IDIMR)=RNN

RETURN

END

RtbR09560

RUDR057n

RtLDR0580
RUDRO590
RUDR0600

RUDR0610
RUDR0620
Rt1DR0630

RUDR0640
RtlDR0650

114

ORIGINAL PAGE IS

OF POOR QUALITY

SUBROUTINE SFU(FELPIROWPJCOLPNFPUPNFUPMAXFUpIFUJDhAG) SFUOOOIO

C SFUO0020

C TO COMPUTE FU(IFUtN)F*U WHERE F IS SPARSE AND ONLY THE SFU00030

C NON-ZERO ELEMENTS ARE DEFINED AND U IS VECTOR STORED. SFUOOO4O

C UPPER TRIANGULAR WITH IMPLICITLY DEFINED UNIT DIAGONAL SFUO0050

C ELEMENTS

C FEL(NF)

C IROW(NF)

C JCOL(NF)

C

C NF

C U(N*(N+I)/2)

C

C

C N

C FU(IFUpN)

C MAXFU

C IFU

C

C

C

C

C JDIAG(N)

C

C

C

SFUOO60

VALUES OF THE NON-ZERO ELEMENTS nr THE F MATRIX SFUOOO70

ROW INDICES OF THE F ELEMFNTS SFU00080

COLUMN INDICES OF THE F ELEMENTS SFUOOO90

F(IROW(K)vJCOL(K))=FEL(K) SFUO0100

NUMBER OF NON-ZERO ELEMENTS OF THE F MATRIX SPUnoilO

UPPER TRIANGULAR, VECTOR STORED MATRIX WITH SPUO0120

IMPLICITLY DEFINED UNIT DIAGONAL ELEMFNTS SFUO0130

(U(JJ) ARE NOT. IN PACT, UNITY) SFUOOi4O

DIMENSION OF U MATRIX SFUOO50

OUTPUT RESULT SFU00160

ROW DIMENSION OF FU MATRIX SFUO0170

NUMBER OF ROWS IN PU. SFUO0180

(TFU.LE.MAXFU.AND.IFU.GE.MAX(IROW(K))p K=lp..., NF. 	 SPUO0190

I.E. FU MUST HAVE AT LEAST AS MANY ROWS AS DOFS F. SFUOO200

ADDITIONAL ROWS OF FU COULD CORRESPOND To ZERO SFU00210

ROWS oF F, SFU00220

DIAGONAL ELEMENT INDICES OF A VECTOR STORED SFU00230

UPPER TRIANGULAR MATRIX, SFUO0240

I.E. 	 JDIAG(K)=K*(K+I)/2=JDIAG(K-1)+K SFU00250

SFUO0260

C COGNIZANT PERSONS: G.J,RIERMAN/M.W.NEAD (JPL, FEB,19 7 8) SFUO0270

C SrUOO280

IMPLICIT DOUBLE PRECISION (A-HO-Z) SFUO0290

DIMENSION FEL(NF)pu(1).FU(MAXFJPN),IROW(NF)hJCOL(NF),JDIAG(N) SFUO0300

C SFUO0310

ZERO=O,DO SFU00320

C * * * * INITIALIZE FU SFUO0330
DO 10 J1.tN 	 SFUO0340

DO 10 I=I.IFU 	 SFU00350

10 FU(IPJ)=ZERO SFUO0360

C IF MAXFU=IFU, IT IS MORE EFFICIENT TO REPLACE THIS LOOP BY SFUOO37O

C SUC0380

C DO 10 IJ=IPFUN 0 IPUNI=IFU*N SFUO0390

C 10 FU(IJ,1)=ZERO SFUO0400

C SFUO041O

DO 30 NEL=IPNF SFU00420

C NEL REPRESENTS THE ELEMENT NUMBERR Or THE F MATRIX SFUOO430

I=IRoW(NEL) SFUO00O44

J=JCOL(NEL) SFU00450
FIJ=FEL(NEL) SFU00460
FU(I,J)=FU(IJ)+FIJ SFUO047n

C THIS ACCOUNTS FOR THE IMPLICIT UNIT DIAGONAL UlMATRIX SFUO0480
C ELEMENTS. WHEN NON-UNIT DIAGONALS ARE USED0 DELETE SFU00490
C THE ABOVE LINE AND USE J INSTEAD OF JPI BELOW SFUO500
C SrUO0510

IF (J.EQ.N) GO TO 30 SFU00520
C WHEN IT IS KNOWN THAT THE LAST COLUMN OF F IS ZERO SrUO0530
C THIS 'IF, TEST MAY BE OMITTED SFU0054O

JPI=J+1 SFUOOr50

115

IKJDIAG(J)+J SFU00560
DO 20 KUJP1,N SFUO0570

FU(I,K)ZFU(I,K)+FIJ*U(IK) SFUO0580
20 IK:IK+K SF1100990
30 CONTINUE SFIi00600

C SP00610
RETURN SFU00620
END SFU00630

116

OCR1GINL -PAGE 1S

OFp pooR QUM'LTT

SUBROUTINE TDHHT(SMAXSDIRSJCSPJSTARTJSTOPV) TDHHTOIO

C TnHHT020

C TDHHT TRANSFORMS A RECTANGULAR DOUBLE SUBSCRIPTED MATRIX S TDHHTn30

C TO AN UPPER TRIANGULAR OR PARTIALLY UPPER TRIANGULAR FORM TDHHTO4O

C BY THE APPLICATION OF HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS. TDHHT050

C IT IS ASSUMED THAT THE FIRST *JSTARTt-1 COLUMNS OF S ARE TDHHTOSn
C ALREADY TRIANGULARIZED. THE ALGORITHM IS DFSCRIBED IN TDHHT70
C 'FACTORIZATION METHODS FOR DISCRETE SEQUENTIAL ESTIMATION' TMHHTOBO
C BY G.J.BIERMANP ACADEMIC PRESS, 1977 TDHHTO90
C TDHHTI0
C S(IRSrJCS) INPUT (POSSIBLY PARTIALLY) TRIANGULAR MATRIX. THE TnHHTIIO
C OUTPUT (POSSIBLY PARTIALLY) TRIANGULAR RESULT TDHHT120
C OVERWRITES THE INPUT. TDHHT130
C MAXS ROW DIMENSION OF S TDHHT140
C IRS NUMBER OF ROWS IN S (IRS.LE.MAXS.AND.IRS.GE.2) TDHHTI5O
C JCS NUMBER OF COLUMNS IN S TDHHT160
C JSTART INDEX OF THE FIRST COLUMN TO BE TRIANGULARIZED, IF TDHHT170
C JSTART.LT.1 IT IS ASSUMED THAT JSTART=1 I.E. TnHHTISO
C START TRIANGULARIZATION AT COLUMN 1. TDHHT190
C JSTOP INDEX OF LAST COLUMN TO BE TRIANGULARIZED. TDHHT200
C IF JSTOP.LT.JSTART.OR.JSTOPGT.JCS THEN TDHHT210
C IF IRS.LEJCS JSTOP IS SET EQUAL TO IRS-1 THHT220
C IF IRS.GTJCS JSTOP IS SET EQUAL TO JCS TDHHT230
C I.E. THE TRIANGULARIZATION IS COMPLETED AS FAR TDHHT24O
C AS POSSIBLE TnHHT250
C V(IRS) WORK VECTOR TDHHT260
C TDHHT27O
C COGNIZANT PERSONS: G.J.SIERMAN/M.W.NEAD (JPLP FEB.1978) TDHHT2BO
C TnHHTP9O

IMPLICIT DOUBLE PRECISION (A-HPO-Z) TnHHT300
DIMENSION S(MAXSJCS)e V(IRS) TnHHT310
DOUBLE PRECISION SUM' DELTA TDHHT320

C TDHHT330
ONE=ID 0 TrHHT140
ZERO=ODO TnHHT350
JSTT=JSTART
JSTP=JsTOP

TnHHT360
TDHHT170

IF (JSTT.LT.1) JSTT=1 TnHHT380
IF (JSTPGEJSTT.AND.JSTPLE.JCS) GO TO 5 TDHHT39O
IF (IRSLE.JCS) JSTP=IRS-1 TnHHT400
IF (IRs.GT.JCS) JSTP=JCS TDHHTUIO

C TnHHT420
5 DO 40 J=JSTTJSTP TDHHTU30

SUM=ZERO TnHHT4QO
DO 10 I=JPIRS TnHHT45n
V(I)=S(IIJ) TnHHT460
S(IJ)=ZERO TDHHT470

10 SUM=SUM+V(I)**2 TDHHT480

C
IF (SUM.LE.ZERO) 60 TO 40

IF SUM=ZEROe COLUMN J IS ZERO AND THIS qTE P OF THE
TDHHT49O
TnHHT0O

C ALGORITHM IS OMITTED TnHHTcMO
SUM=DSQRT(SUM) TDHHTS20
IF (V(J),GT.ZERO) SUM=-SUM TnHHT530
S(Jtj)=SUM TPHHT540
V(J)=V(J)-SUM TnHHTh50

117

SUM=ONE/(SUM*V(J))
C THE HOUSEOLDER TRANSFORMATION TS T=I-SUM*V*V**T

JPI=J+1
IF (JPI.GT.JCS) Go TO 40
DO 30 K=JPiJCS

DELTA=ZERO
DO 20 I=JPIRS

20 DELTA=DELTA+S(IK)*V(I)
DELTA=DELTA*SUM
DO 30 IJPIRS

30 S(IeK)=S(IDK)+DELTA*V(I)
40 CONTINUE

C
RETURN
END

ThHHT560

TDHHT57O

TDHHT58

TnHHT59O

TDHHT600

TDHHT610

TDHHT620

TDHHT630

TOHHT640

TDHHT650

TDHHT660

TDHHT67O

TDHHT680

TDHHT6SO

TDHHT7OO

118

SUBROUTINE THH(RpNvApIApMpSOSeNSTPT) THHOOUIO

C THHOO020

C THIS SUBROUTINE PERFORMS A TRIANGULAR!ZATION OF A RECTANGULAR THHOOn3O

C MATRIX INTO A SINGLY-SUBSCRIPTED ARRAY BY APPLICATION OF THHO0040

C HOUSEHOLDER ORTHONORMAL TRANSFORMATIONS. THHOOO50

C THHO0060

C R(N*(N+3)/2) VECTOR STORED SQUARE ROOT INFORMATION MATRIX THHOno07

C
 (LAST N LOCATIONS MAY CONTAIN A RIGHT HAND SIDE) THHOOO8O

C N
 DIMENSION OF R MATRIX THHOO090

C A(MPN+I)
 MEASUREMENT MATRIX THHO01O0

C IA
 ROW DIMENSION OF A THHOOtIO

C M
 NUMBER oF ROWS OF A THAT ARE TO RE COMBINED WITH R THHO012O

C
 (MLEIA) THHO0130

C SOS
 ACCUMULATED ROOT SUM OF SQUARES oF THE RESIDUALS THHOO140

C
 SQRT(Z-A*X(EST)**2)t INCLUDES A PRIORI THHOO150

C
 SOS MUST BE INPUT AS A VARIARLEI NOT AS A THHO0060

C
 NUMERICAL VALUE. IF INPUT SOS.LT.,Op NO SOS THHOOI7O

C
 COMPUTATION OCCURS. THHOO180

C NSTRT
 FIRST COL OF THE INPUT A MATRIX THAT HAS A NONZERO THHOO190

C
 ENTRY, IF NSTRT.LE1,t IT IS SET TO 1. THIS OPTION THHOO200

C
 IS CONVENIENT WHEN PACKING A PRIORI RY BATCHES AND THHOO?O

C
 THE A MATRIX HAS LEADING COLUMNS OF ZEROS. THHOO220

C
 THHO0230

C
 THHOO24n

C ON ENTRY R CONTAINS A PRIORI SQUARE ROOT INFORMATION FILTER (SRIF)THHOO?5O

C ARRAYP AND ON EXIT IT CONTAINS THE A POSTERIORI (PACKED) ARRAY.THHOO260

C ON ENTRY A CONTAINS OBSERVATIONS WHICH ARE DESTROYED BY THE THHO0270

C INTERNAL COMPUTATIONS. THHOO280

C ON ENTRY IF SOS IS *LT. ZERO pPROGRAM WILL ASSUME THERE IS NO THHOO290

C RIGHT HAND SIDE DATA AND WILL NOT ALTER SOS OR USE LAST N THHO0300

C LOCATIONS OF VECTOR R, THHOO310

C THHO0320

C COGNIZANT PERSONS G.J.BIERMAN/N.HAMATA (JPLP MARCH 1978) THHOO330

C THHO0340

IMPLICIT DOUBLE PRECISION (A-HO-7) THHOO350

DIMENSION A(IAP,)R(1) THHOO360

DOUBLE PRECISION SUM' ONEP BETAP DELTA THHO0370

C THHO0380

EPS=-ID-200 M MACHINE DEPENDENT ACCURACY TERM THHO0390

ZERO=O*DO
 THHOO400

ONE=1lDO
 THHO041l

NSTART=NSTRT
 THH00420

C THHOO430

IF (NSTART.LE.O) NSTART=r
 THHOO4O

NP1=N+1
 0 NO. COLUMNS OF R THH00450

IF(SOS.LT.ZERO) NPI=N
 0 NO COLS, = N IF SOS.LT.O THHO046O

KK=NSTART*(NSTART-1)/2
 THH00470

DO 100 J=NSTARTPN
 9 J-TH STEP OF HOUSEHOLDER REDUCTION THHO0480

KK=KK+J
 THHO0490

SUM=ZERO
 THHOO500

DO 20 I=1PM
 THHOO510

20 SUM=SUM+A(IPJ)**2
 THHO0920

IF(SUMLE.ZERO) GO TO 100 0 IF J-TH COL. OF A;Eo.O GO TO STEP J+ITHHOO530

SUM=SUM+R(KK)**2 THHOO54O

SUM=DSoRT(SUM) THHOO950

119

IF(R(KK).GT.ZERO) SUM=-SUm THHOO96

DELTA=R(KK)-SUM
R(KK)=SUM

THHOO570
THHOO580

JP=J+I. THHOO990
IF (JP1.GT.NPI) GO TO 105
BETA=SUM*DELTA

THHO0600
THHO061n

IF (BETA.GT.EPS) GO TO 100
BETA=ONE/BETA
JJ=KK

THHOO620
THO0630
THHO064O

L=J THHO0650
C ** READY TO APPLY J-TH HOUSEHOLDER TRANS. THHO0660

nO 40 K=JPlPNP1 THHO0670
JJ=JJ+L THHOO680
L=L+1 THHO0690
SUM=DELTA*R(JJ) THHOO700
00 30 I=luM THHO710

30 SUM=SUM+A(IJ)*A(IK)
IF(SUM.EQ.ZERO) GO TO 40

THHO0720
THH0730

SUM=SUM*BETA THHOO74O
C BETA DIVIDE USED HERE TO AVOID OVERFLOW IN THHO0750
C PROBLEMS WITH NEAR COLUMN COLLINEAPITY. IN THAT CASE THHO0760
C COMMENT OUT LINE 630 AND CHANGE * TO / IN LINE 740 THHO077O

R(JJ)R(JJ)+SUM*DELTA
DO 35 IeIM

THHO0780
THHO0790'

35 A(IPK)=A(IFK)+SUM*A(IJ) THHOOOO
40 CONTINUE THHOO810

100 CONTINUE THHOOR20

C
105 IF(SOSLT.ZERO) RETURN THHO0830

THHOO840
C CALCULATE SOS THHOO850
C THHOO860

SUMZZERO THHOORTO
DO 110 I=1M THHO0880

110 SUM=SUM+A(INP1)**2 THHOO890
SOS=DSQRT(SOS**2+SUM) THHOO900

C THHO0910
RETURN THHOO920
END THHOOq3

120

ORIGINAL PAGE IS
OF POOR QUALITY

C

SUBROUTINE TTHH(RRA#N) TTHHOO1O

TTHHO020

C THIS SUBROUTINE COMBINES TWO SINGLE SUBSCRIPTED SRTF ARRAYS TTHHO030

C USING HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS TTHHO040

C
 TTHHOO50

C
C

R(N*(N+1)/2)
 INPUT VECTOR STORED UPPER TRIANGULAR MATRIX,
RESULT IS IN R

TTHHOO60

TTHHO070

C
C

RA(N*(N+I)/2)
 THE SECOND INPUT VECTOR STORED UPPER TRIANGULAR TTHHOO80

MATRIX. THIS MATRIX IS DESTROYED BY THE TTHHOO9O

C
 COMPUTATION TTHHIOO

C N
 DIMENSION OF THE ESTIMATED PARAMETER VECTOR, TTHHOIIO

C
 A NEGATIVE VALUE FOR N IS USED TO NOTE THAT TTHHO120

C
 R AND RA HAVE RT. HAND SIDES INCLUDED AND TTHHOI30

C
 HAVE DIM=AS(N)*(ABS(N)+3)/2 TTHH014

C
 TTHHO15O

C ON EXIT RA IS CHANGED AND R CONTAINS THE RESULTING SRIF ARRAY 	 TTHH0160

C
 TTHH0170

C
C

COGNIZANT PERSONS G.J.BERMAN/M.W.NEAD (JPL' JAN.1976) TTHHO180

TTHHO190

C

IMPLICIT DOUBLE PRECISION(A-HO-Z)
DIMENSION RAP) R()

DOUBLE PRECISION SUM 9 FOR USE IN SINGLE PRECISION VERSION

TTHH0200

TTHH0210

TTHH0220

C
 TTHH0230

ZERO=O.
 TTHH0240

ONE=l,

NPI=N

TTHH02SO

TTHHO260

IF (N.GT.0) GO TO 10

N=-N

TTHHO7

TTHH0280

10
NPIN+j

IJS=1
KK=O

Q IJ(START)
TTHH0290

TTHHO300

TTHH0310

DO 100 J=1,N
KK=KK+J

Q J-TH STEP OF HOUSEHOLDER REDUCTION TTHH0320

TTHH0330

SUM=R(KK)**2

DO 20 I=IJSuKK

TTHH0340

TTHH0350

20 SUM=SuM+RA(I)**2
IF (SUM.LE.ZERO) GO TO 100

SUM=SQRT(SUM)
IF (R(KK).GTZERO) SUM=-SUM
DELTA=R(KK)-SUM

R(KK)=SUM

BETA=ONE/(SUM*DELTA)

JJ=KK

TTHHO36O

TTHH0370

TTHHO3BO

TTHHO39O

TTHHO400

TTHHO41O

TTHHO420

TTHHO430

L=J
 TTHH0440

JPI=J+1
 TTHH0450

IKS=KK+1
 TTHHO460

C * * * J-TH HOUSEHOLDER TRANS. DEFINED
 TTHHO470

C 40 LOOP APPLIES TRANSFORM. TO COLS. J+I TO NPX TTHH0480

DO 40 K=JPIvNPI
 TTHH0490

JJ=JJ+L
 TTHHO500

L=L+1

IK=IKS

TTHHOS1O

TTHHO52n

SUM=DELTA*R(JJ)

DO 30 I=IJSKK

TTHH0530

TTHHOS40

SUM=SUM+RA(IK)*RA(I) TTHH0550

121

30 	 IK=IK+I

IF (SuM;EOZERO) GO TO 40

SUM=SUM*BETA

R(JJ)=R(JJ)+SUM*DELTA

IK=IKS

DO 35 IZIJStKK

RA(IK)ZRA(K)+SUJM*RA(I)

35 IK=IK+I

40 IKS=IKS+K

100 IJS=KK+1

C

RETURN

END

TTHH0560

TTHH0970

TTHHn9BO

TTHH0590

TTHH0600

TTHH0610

TTHH0620

TTHH0630

TTHH0640

TTHH0650

TTHH0660

TTHH067O

TTHHO680

122

ORIGINAL PAGE IS

OF POOR QUALITYI

SUBROUTINE TWOMAT (ANLENrCARTEXTNCHARNAMES) TWOMO010

C TWOM0020
C TO DISPLAY A VECTOR STORED UPPER TRIANGULAR MATRIX IN A TWOMO030

C TWO-DIMENSIONAL TRIANGULAR FORMAT TWOMO40
c TWOMOOS

C
C

A(N*(N+I)/2) VECTOR CONTAINING UPPER TRIANGULAR MATRIX
N DIMENSION OF MATRIX

CDP)
(I)

TWOMO060
TWOMOO7O

C LEN NUMBER OF COLUMNS TO BE PRINTEOP 7 OR 12 (1) TWOMOO8O
C
C
c

CAR(N)
TEXT()

PARAMETER NAMES
AN ARRAY OF FIFLATA CHARACTERS TO RE PRINTF
A TITLE PRECEDING THE MATRIX

(I)
AS

TWOMOO9
TWOM0100
TWOMOIlO

C NCHAR NUMBER OF CHARACTERS, INCLUDING SPArESp THAT TWOMOI2O
C ARE TO BE PRINTED IN TEXT(I TWOMOI30
C
C

ABS(NCHAR).LE.114. NCHAP NEGATIVE IS USED
TO AVOID SKIPPING TO A NEW PAGE TO START

TWOMOI0O
TWOMO150

C PRINTING TWOMOI60

C NAMES TRUE TO PRINT PARAMFTER NAMES TWOMOI7O
C TWOMOI80
C COGNIZANT PERSON: M.W.NEAD (JPL' OCT.1977) TWOMOI90

C
PARAMETER J12=12' d7=7

TWOM0200
TWOM0210

DOUBLE PRECISION A(N)
INTEGER CAR(N)p TEXT(1)p L(JI2)t LIST(JIP)

TWOM0220
TWOMO230

LOGICAL NAMES TWOM0240
INTEGER V(4),VFMT(JI2)'V7MT(J7) V12MT(J12)
DATA V/1(2XuI,,A61Xte# pt'E1O,5)'/p(V12MT(I),I=l,12)
1 /'12',OIOX1l', '2OXplOtpt3OX.9',,O4OXP,8r'fSOXu7'p
2 06OX,6', '070X,5ptOOX,4','090X,3'''lnOXu2tpl Oxl'/,

TWOM0250
TWOM0260
TWOM0270
TWOM0280

C

1 V7MT/,7',pO17X,6tt034Xp5'p'O51X,4PtO68X,3'p'O85XP2','102XIlt/
DATA KoN7/'D17.8'/p KON12/tEIO5)'/

TWOM0290
TWOM0300
TWOM0310

C
C

MlpM2
NIPM2

ROW LIMITS FOR EACH PRINT SEQUENCE
COL LIMITS FOR EACH LINE OF PRINT

TWOM0320
TWOM0330

C L(I) LOC OF EACH COLUMN IN A ROW TWOM0340
C KT ROW COUNTER TWOMO950
C TWOM0360
C * * * * * INITIALIZE COUNTERS TWOM0370
C TWOM0380

IF
IF

(LEN.EQ.JO) GO TO 5
(LEN.EG7) GO TO I

TWOM0390
TWOM0400

IF (LEN.EQ,12) GO TO 2 TWOM0410

WRITE (6p230) LEN
LEN=12

TWOM0420
TWOM0430

GO TO 2 TWOM0440

I V()=KoN7; JO=7; JOMI=JD-I; JOPI=JO+I;
1 REPEAT I=1.JO; VFMT(I)=V7MT(I)
GO TO 5

TWOM0450
TWOMO460
TWOMO470

2 V14)=KON12; JO=12; JOM1=JO-I; JOP=JO+I; TWOMO480

I REPEAT I=lJO; VFMT(I)=V12MT(I)
5 MI=1

M2=JO

TWOMO490
TWOM0500
TWOM0510

NI=l "TWOM0520

KTZO TWOM0530
V(2)='A61Xt
IF (.NoT.NAMES) V(2)='IS.2X'

TWOMO540
TWOM0550

123

C

NC=IABS(NCHAR)/6

IF (MOD(NCHAR#6).NE.0) NC=NC+1

IF (NCHAR.GE.O) WRITE (6v2Q0) (TEXT()pIF=IPNC)

IF (NCHAR.LT.0) WRITE (6,205) (TEXT(I),r=lPwC)

10 	 IF (M2.GT.N) M2=N

IF (.NOT.NAMES) GO TO 20

IF (LEN.EQ.7) WRITE (6,210) (CAR(I),I=NIM2)

IF (LEN.EQ.12) WRITE (6,211) (CAR(T),I=N1M2)

GO TO 40

20 	 M=NI

L2=M2-N1+1

DO 30 I=lL2

LISTCI)=M

30 M=M+1

IF (LEN.EQ.7) WRITE (6,220) (LIST(I)TIz1tL2)

IF (LEN.EQ.12) WRITE (6P221) (LIST(I),I=I,L2)

40 	 CONTINUE

C * * * **

DO 190 IC=M1PM2
K=l
IF 	 (IC.LE.(KT*JO)) GO TO 60

J.J=O

DO 50 J=ipIC

50 JJzJJ+J

L(K)=JJ

Il=IC-KT*JO

IF (Il.EO.JO) GO TO 90

GO To 70

60 CONTINUE

C

I1=l

L(K)=L(K)+1

70 CONTINUE

DO 80 I:I1,JoMl

K=K+1

II=I+KT*JO

80 L(K)=L(K-)+II 0 OBTAIN COL INDEX FOR ROW

'90 CONTINUE

C

I2=MINO(J0P1,(M2+1-KT*Jo))-Il

V(3)=VFMT(I1)

IF (.NOT.NAMES) GO TO 180

WRITE (6vV) CAR(IC),(A(L(I)) ,Il,12)

GO To 190

180 WRITE (6,V) ICP(A(L(I))}I=1PI2)

190 CONTINUE

IF (M2.EQ.N) RETURN

Ni=M2+1

M2=M2+JO

KT=KT+m

IF (NCHAR.GE.0 WRITE (6,201) (TEXT(I),I=I,NC)

IF INCHAR.LT.0) WRITE (6P206) (TEXT(I),InI,NC)

GO TO 10

C

200 FORMAT (IH1.2X,21A6) 0 TITLE

205 FORMAT (IHOp2Xp21A6) 9 TITLE

124

TWOM0S60

TWOM057n

TWOMO580

TWOM090

TWOM0600

TWOM0610

TWOM0620

TWOM0630

TWOM0640

TWOM0650

TWOM0660

TWOM0670

TWOM068

TWOM0690

TWOM0700

TWOM0710

TWOM0720

TWOM0730

TWOM0740

TWOM0750

TWOM0760

TWOM0770

TWOM0780

TWOM0790

TWOMO800

TWOMOSI

TWOM0820

TWOM0830

TWOMO40

TWOMO85

TWOM0860

TWOM0870

TWOMO8O

TWOMO8O

TWOMOO0

TWOM0910

TWOMOq2O

TWOMO3O

TWOMO940

TWOMOq5O

TWOM0960

TWOM0970

TWOM0O80

TWOMOq9O

TWOM0n

TWOMIOIO

TWOM1020

TWOMI030

TWOM1040

TWOM1050

TWOM1060

TWOMI070

TWOMIO80

TWOMI090

TWOMIlOn

TWOM1110

TWOM1120

http:Il.EO.JO
http:LEN.EQ.12
http:LEN.EQ.12

OF POOR QUALIYoR.IGIA PAGE IS

TWOMI30
0 TITLE
'.196)
201 FORMAT (HlP2X#'(CONTINUE)
 TWOMI4O
0 TITLE
'919A6)
206 FORMAT (IHOp2X,'(CONTINUE)
 TWOM1150
0 HORIZONTAL NAMES
 210 FORMAT (1HOSXp7(1iXA6))
 TWOM1160

220 FORMAT (1HO3Xt7{11XPI6))
 TWOM117O
0 HORIZONTAL NAMES
 211 FORMAT (1HOp5XP12(4XA6)) TWOMI80

221 FORMAT (1HO3XP12(4X9I6))
 TWOM1IO
=' 13),

230 FORMAT (1HO,20XutTWOMAT CALLED WITH

LENGTH

TWOMIPO0

C TWOM1210

END

125

SUBROUTINE TZERO (RPNPISuIF) TZEROOOO
C TZEROO10
C TO ZERO OUT ROWS IS (ISTART) TO IF IFINAL) OF A VECTOR TZEROO20
C STORED UPPER TRIANGULAR MATRIX TZERO03O
C TZERO0O4
C R(N*(N+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX TZEROSO
C N DIMENSION OF R TZERO060
C IS FIRST ROW OF R THAT IS TO BE SET TO ZERO TZERO070
C IR LAST ROW OF R THAT IS TO BE SET TO ZERO TZEROO80
C TZERO090
C COGNIZANT PERSONS: G.JBIERMAN/C.F.PETERS (JPLp NOV, 1975) TZER0100
C TZER0110

IMPLICIT DOUBLE PRECISION (A-HPO-Z) TZER0120
DIMENSION R(t) TZER0130

C TZERO14O
ZERO=O.DO TZER0150

IJS=IS*(IS-1)/2 TZEROI60
DO 10 I=ISeIF TZEROI7O
IJS=IJS+I TZERO10
IJ=IJS TZER0190
DO lo J=IPN TZER0200
R(IJ)=ZERO TZERO2IO
IJ=IJ+J TZER0220

10 CONTINUE TZER0230
C TZER0240O

RETURN TZER0250
END TZER0260

126

ORIGINAL PAGE IS

OF POOR QUALITY

SUBROUTINE UDCOL(UNPKStNCOLORPVEMQ) UnCOLlO

C UPCOL020

C COLORED NOISE UPDATING OF THF U-D COVARTANCE FACTORS, I.E. UPCOLn3O

C U*D*(U**T)-OUTPUT=PHI*U*D*(U**T)*(PHI**T)+Q UrDCOLn4O

C PHI=DIAGO(KS-I)PEM(1)h....EM(NCOLOR)PO(N-(KS-1+NCOLOR))) unCOLn5O

C L=DIAG(O(KS-I),Q(),...eo(NCOLOR),O(N-(KS-I+NCOLOR))) UnCOLn6O

C O(K) IS A VECTOR OF ZEROS UDCOLO7O

C UDCOLBO

C THE ALGORITHM USED IS THE BIERMAN-THORNTON ONE COMPONENT UDCOLO90

C AT-A-TIME UPDATE. CF.BIERMAN UFACTORIZATION METHOD UnCOLO00

C FOR DISCRETE SEQUENTIAL ESTIMATIONu, ACADEMIC PRESS (1977) UDCOL110

C PP.147-148 UDCOL120

C UDCOLt3O

C U(N*(N+1)/2) INPUT U-D VECTOR STORED COVARIANCr FACTORS. UDCOL14O

C
 THF COLORED NOISE UPDATE RESULT RESIDES UnCOL19S

C
 IN U ON OUTPUT UnCOLI60

C N
 FILTER DIMENSION. IF THE LAST COLUMN OF U IJDCOLI7O

C
 HOUSES THE FILTER ESTIMATES. THEN UnCOLISO

C
 N=NUMBER FILTER VARIABLES + I UDCOL190

C KS
 THE LOCATION OF THE FIRST COLORED NOISE TERM UnCOL200

C
 (KS.GE.1.AND.KS.LE.N) UDCOL21O

C NCOLOR
 THE NUMBER OF COLORED NOISE TERMS (NCOLOR.GE.1) UDCOL220

C V(KS-1+NCOLOR)
 WORK VECTOR UDCOL230

C EM(NCOLOR)
 INPUT VECTOR OF toLORFD NOISE MAPPING TERMS UOCOL240

C
 (UNALTERED BY PROGRAM) UDCOL250

C Q(NCOLoR)
 INPUT VECTOR OF PROCESS NOISE VARIANCES UDCOL260

C
 (UNALTERED BY PROGRAM) UDCOL270

C
 UDCOL280

C SUBROUTINE REQUIRED! RANKI 	 UnCOL290

C 	 UDCOL300

C COGNIZANT PERSON: G.J.RIERMAN (JPL. JAN. 197A) UnCOL310

DOUBLE PRECISION TMpPS UnCOL320

IMPLICIT DOUBLE PRECISION (A-HPO-Z) UDCOL330

DIMENSION U(,)pV(1),EM(1),Q(1) UJDCOL340

C 	 UDCOL350

C * * 	 * * * * INITIALIZATION UDCOL160

NMI=N-j UDCOL370
KSMI=KS-1 UDCOL38

JJOLD=KS*KSM1/2 UDCOL390

KOL=KSMI UDCOL400

C *UDCOL410

C UDCOL420

DO 50 K=1lNCOLOR UDCOL430

KOLM1=KOL UDCOL440

KOL=KOL+1 UOCOL450

JJ=JJOLD+KOL UDCOL46n

TMP=U(JJ)*EM(K) UDCOL47O

C=G(K)*U(JJ) UDCOL4BO

S=TMp*EM(K)+o(K) QD(J) UPDATE UDCOLg9O

U(JJ)=S UnCOL500

C UDCOL510

IF (KOL.GE.N) 60 TO 20 UDCOL520

IJJU UDCOL530

DO 10 J=KOLNM1 UDCOLS4O

IJ=IJ+J UDCOL550

10 U(IJ)U(IJ)*EM(K) P UPDATING ROW KOL ENTRIES UnCOL5S60

C UDCOL570

20 IF (JJ.EQ.1) GO TO 50 P (WHEN KSrIu Ntl) LDCOL580

IF (S.LE.O.DO) GO TO 30 UDCOLS90

TMP=TMP/S 9 TMP=EM(K)*D(KOL)-OLD/D(KOL)-NEW UDCOL600

C=C/S Q C=Q(K)*D(KOL)-OLD/D(KOLT-NEW UDCOL610

-50 DO 4o I=IKOLMI UDCOL620

V(1)=U(JJOLD+I) UDCOL630

40 U(JJOLD+I)=TMP*V(I) UDCOL640

IF (KOLMX.GT.1) GO TO 45 UDCOL650

U(1}=U(1)+C*V(1]**2 UDCOL660

GO TO 50 UDCOL67O

45 CALL RANK1(UeUtKOLMlpCpV) UDCOL680

50 JJoLD=JJ UDCOL690

UDCOL700

RETURN UDCOL7IO

END
 UDCOL720

128

http:S.LE.O.DO

OIGINAL PAGE IS

O0 POOR QUALITY

SUBROUTINE UDMEAS (UpNrRpApFrGpALPHA) UDMEADI

C UDMEA020

C COMPUTES ESTIMATE AND U-D MEASUREMENT UPDATED UDMEA030

C COVARIANCEP P=U*D*U**T
 UDMEA040

C
 UDMEAO50
C *** INPUTS *** UDMEAO60
C
 UDMEAO70

C U UPPER TRIANGULAR MATRIX, WITH D ELEMENTS STORED AS THE UDMEAO80

C DIAGONAL, U IS VECTOR STORED AND CORRESPONDS TO THE UDMEAOg9

C A PRIORI COVARIANCE. IF STATE ESTIMATES ARE COMPUTED# UDMEADO0

C THE LAST COLUMN OF U CONTAINS X. UDMEAllO

C N DIMENSION OF THE STATE ESTIMATE. N.GT8'
 UDMEA120

C R MEASUREMENT VARIANCE
 UDMEA130

C A VECTOR OF MEASUREMENT COEFFICIENTS, IF DATA THEN A(N+I)=ZUDMEA140

C ALPHA IF ALPHA LESS THAN ZERO NO ESTIMATES ARE COMPUTED UDMEAISO

C (AND X AND 7 NEED NOT BE INCLUDED) UDMEA160

C
 UDMEA17O
C *** OUTPUTS *** UDMEA180
C
 UDMEA1gO

C U
 UPDATED# VECTOR STORED FACTORS AND ESTIMATE AND UDMEA20P

C U((N+I)(N+2)/2) CONTAINS (Z-A**T*X) UDMEA210

C
 UDMEA220

C ALPHA INNOVATIONS VARIANCE OF THE MFASUREMENT RESIDUAL
 UDMEA230

C G VECTOR OF UNWEIGHTED KALMAN GAINS. THE KALMAN UDMEA24O

C GAIN K IS FOUAL TO G/ALPHA UDMEA250

C F CONTAINS tJ**T*A AND (Z-A**T*X)/ALPHA UDMEA260

C ONE CAN HAVE F OVPWRITE A TO SAVE STORAGE UDMEA270

C
 UDMEA2B0

C COGNIZANT PERSONS: G.J. BIERMAN/M.W. NFAD (JPL, FEB.1978) UDMEA290

C
 UDMEA300

IMPLICIT DOUBLE PRECISION (A-HO-Z) UDMEA310

DIMENSION U(1)p A(1), F(I), G(1) UDMEA320

DOUBLE PRECISION SUMPBETAGAMMA UDMEA330

LOGICAL TEST
 UDMEA34O

C UDMEA350

ZERO=O.DO
 UDMEA360

IEST=.FALSE. UDMEA370

ONE=IDO
 UDMEA3SO

NPI=N+l
 UDMEA390

NP2=N+2
 UDMEA400

NTOT=N*NP1/2
 UDMEA410

IF (ALPHA.LT.ZEPO) GO TO 3
 UDMEA420

SUM=A(NPI)
 UDMEA430

Do I J=IPN
 UDMEA440

1 SUM=SUM-A(J)*U(NTOT+J)
 UDMEA450

U(NTOT+NPI)=SUM 9 Z=Z-A**T*X
 UDMEA460

IEST=.TRUE,
 UDMEA470

C
 UDMEA480

3 JJN=NToT
 UnMEA490

DO 10 L=2tN
 UDMEASO0

J=NP2-L
 UDMEA510

JJ=JJN-J
 UDMEA520

=
SUM A(J) UDMEA530

JM1=J-1
 UDMEA540

DO 5 K=,JMt UnMEA550

http:ZERO=O.DO

5 SUM=SUM+U(JJ+K)*A(K) UnMEA560
F(iJ)-=SUM -- UDMEA570

G(J)ZSUM*U(JJN) UDMEA580
10 JJN=JJ UDMEA590

F(I)=A(i)-,G(1)=U(1)*F(l) UnMEA600UDMEA610
!,C F=u**T*A AND G=D*(U**T*A) UDMEA62O
C UDMEA630

SUM=R+G(1)*F(1) 0 SUM(l) UDMEA640
GAMMA=o Q FOR R=O CASE UDMEA650
IF (SUM.GTZERO) GAMMA=ONE/SUM @ FOR R=O CASE UDMEA660
IF (F(1)NE.ZERO) U(1)=U(1)*R*GAMMA 9 D(1) UDMEA670

C I - IUDMEA680
KJ=2 UrMEA690
DO 20 J=2,N UDMEA700

RETA=SUM 9 BETA=SUM(J-1) UDMEA710
TEMP= G(J) UDMEA720
SUM=SUM+TEMP*F(J) 9 SUM(J) UDMEA730
P=-F(J)*GAMMA
JMj= J-1

9 P=-F(J)*(t/SUM(J-1)) EQN(21) UnMEA740
UDMEA750

DO 15 K=lJM1 UrIMEA760'
SzU(KJ) UDMEA770
u(KJ)=S+P*G[K) 9 EON(22) UDMEA780
G(K)=G(K)+TEMP*S 9 EON(23) UDMFA790

15
IF

KJ=KJ+I.
(TEMP.EQOZERO) Go TO 20 9 FOR R=O CASE

UnMEA800
UnMEABO

GAMMA=ONE/SUM 9 GAMMA=I/SUM(J) UPMEAR20
U(KJ)=U(KJ)*BETA*GAMMA

20 KJ=KJ+j
ALPHA=sUM

p D(J), E0N(19) UnMEA830
UDMEAR40
UDMEAR50

C UDMEAs60
C EQN. NOS. REFER TO BIERMAN'S 1975 CDC PAPERP PP. 337-346, UDMEAB6D
C IJnMEA880

IF (*NOT.IEST) RETURN UDMEAA9O
F(NP1)=U(NTOT+NPI)*GAMMA UrMEA900
00 30 j=IN UnMEA910

C
30 U(NToT+J)=U(NTOT+J)+G(J)*F(NP1)

RETURN

UJDMEAq2O
UnMEAq30
UDMEA940

END UDMEA9BO

130

ORIGINAL PAGE IS

OF POOR QUALITY

SUBROUTINE UD2COV (UINPPOUTN) Unacoolo
C UD2CO020
C To OBTAIN A COVARIANCE FROM ITS U-D FACTORIZATION. ROTH MATPICES UD2CO030
C ARE VECTOR STORED AND THE OUTPUT COVARIANCE CAN OVERWRITE THF UD2CO040
C INPUT u-D ARRAY. UIN=IJ-D IS RELATED TO POUT VIA POUT=UDU(**T) UO2COO5O
C UD2CO60
C UIN(N*(N+1)/2) INPUT U-0 FACTORS, VECTOR STORFD WITH THE D UD2CO07O
C ENTRIES STORED ON THE DIAGONAL OF UIN UD2COnBO
C POUT(N*(N+I)/2) OUTPUT COVARTANCEP VECTOR STORD. UD2COO90
C (POUT:UIN IS PERMITTED) UD2COIDO
c N DIMENSION OF THE MATRICES INVOLVED, N.GT.1 UD2COIIO
C UD2COI20
C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JpL, FEB. 1977) UD2CO130
C UD2CO140

IMPLICIT DOUBLE PRECISION (A-HO-Z) UD2COI5O
C UD2C0160

DIMENSION UIN(1)p POUT(1) UD2CO170
C UD2COI80

POUT(1)=UIN(1) UD2COIQO
JJ=l UD2CO200
DO 20 J=2pN
JJL=jJ 1 (J-IJ-1)

Un2C0210
UD2C0220

Jd:Jj+J UD2C0230
POUT(JJ)ZUIN(JJ) UD2CO240
S=POUT(JJ) Uf2CO250
II=O UD2C0260
JMI=J-1 UD2C0270
DO 20 I=lJM1 UD2CO28O

II:II+I UD2Co29O
ALPHA=S*UIN(JJL+I) P JJL+IZ(I,J) U02C0300
IK=II U02C0310
DO 10 K:IJM1 U2C0320
POUT(IK)}POUT(IK)+ALPHA*UIN(JJL+K) 0 JJL+Kr(K,J) UD2C0330

10 IK:IK+K UD2C0340
20 POUT(JJL+I)=ALPHA UD2CO35O

C UtP2C0360
RETURN UD2CO370
END UD2C0380

131

SUBROUTINE UD2SIG(UpNSIG.TEXTPNCT) UD2SIOIO
C U02ST020
C COMPUTE STANDARD DEVIATIONS (SIGMAS) FROM U-D COVARIANCE FACTORS UD2SI030
C UD2S1040
C U(N*(N+I)/2) INPUT VECTOR STORED ARRAY CONTAINING THE U-D UD2SIO50
C FACTORS. THF D (DIAGONAL) ELEMENTS ARE STORED U02SIO6O
C ON THE DIAGONAL Uf2SIf70
C N U MATRIX DIMENSION, N.GT.1 UD2SIoBO
C SIG(N) VECTOR OF OUTPUT STANDARD DEVIATIONS UD2SIO90
C TEXT(3 ARRAY OF FTELDATA CHARACTERS TO BE PRINTED UD2STlO0
C PRECEDING THE VECTOR oF SIGMAS UD2SI1IO
C NCT NUMBER OF CHARACTERS IN TFXTP O.LE.NCT.LE.126 UD2SII20
C IF NCT=Op NO SIGMAS ARE PRINTED UD2ST130
C UD2ST140
C COGNIZANT PERSONS: 6.J.BIERMAN/M.W.NEAD (JPLp FEB. 1977) U02ST150
C UD2SIt60

IMPLICIT DOUBLE PRECISION (A-HPO-Z) UD2SI 17
INTEGER TEXT(l) UD2SI180
DIMENSION U(1)p SIGC1) UD2SI190

C UD2SI200
JJ=l UD2SI210
SIG(I)=U(1) UD2ST220
D 10 j=2tN UD2SI23n

JJL=JJ
JJ=Jj+J

G (J-1,J-1) UD2ST240
UD2SI25n

S=U(jJ)
SIG(J)=S

UD2ST26 0

UD2S1270
.JMi=j- UD2SI?80
"DO i0 I=ItJM1 UD2S1290

i0 SIG(I)5SIG(I)+S*U(JJL+I)**2 UD2SI300
C UD2ST310
C WE NOW HAVE VARIANCES UD2SI320
C U02ST33 0

DO 20 J=ItN UD2S1340
20 SIG(J)=SQRT(SIG(J)) UD2SI350

IF (NCT.EQ.O) GO TO 30 Uf2SI360
.NC=NCT/6 UD2S370
IF (MOD(NCP6),NE.0) NC=NC+1 UD2SI380
WRITE (6t40) (TEXT()PIfltNC) UD2S1390
WRITE (6#50) (SIG(I).I=tN) UD2sr400

30 RETURN UD2S1410
C UD2S1420

40 FORMAT (IHO,2X#21A6) UD2ST430
50 FORMAT (IHOP(6018.io)) U02S1440

END UD2S1450

132

ORIGINAL PAGE IS

OF POOR QUALITY

SUBROUTINE UTINV(RINtNPROUT) UTINVOIO
C UTINVO20
C TO INVERT AN UPPER TRIANGULAR VECTOR STORED MATRIX AND STORE UTINVn3O
C THE RESULT IN VECTOR FORM. THE ALGORITHM IS SO ARRANGED THAT UTINVn40
C THE RESULT CAN OVERWRITE THE INPUT. UTINVO50
C IN ADDITION TO SOLVE RX=Zo SET RIN(N*(N+)/2+1)=Z(1), ETC., UTINVO60
C AND SET RIN((N+1)*(N+2)/2)=-I, CALL THE SUBROUTINE USING N 1 UTINV070
C INSTEAD OF N. ON RETURN THE FIRST N rNTRTES OF COLUMN N+1 UTINVnBO
C WILL CONTAIN X, UTINVO9O
C UTINVI00
C RIN(N*(N+I)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX UTINVIlO
C N MATRIX DIMENSION UTINVI20
C ROUT(N*(N+1)/2) OUTPUT VECTOR STORED UPPER TRIANGULAR MATRIX UTINVI30
C INVERSE UTINVI40
C UTINV150
C COGNIZANT PERSONS? 6,J,BIERMAN/M.W.NEAD (JPLP JAN.1978) UTINVI60
C UTINV17O

DOUBLE PRECISION RIN(l)p ROUT(1)v ZEROP DINVi ONE. SUM UTINVI80
C UTINVI90

ZEROO.00 UTINV200
ONE=,O UTINV210

C UTINV220
IF (RIN(1).NEZERO) GO TO 5 UTINV230
J=I UTINV240
WRITE (61OD) JJ UTTNV290
RETURN UTINV260

C UTINV27O
5 ROUT(I)=ONE/RIN(1) UTINV280

C UJTINVP9O
JJ=1 UTINV300
DO 20 J=2pN UTINV31O

JJOLD=JJ UTINV320
JJ=Jj+J UTINV330
IF (RIN(JJ).NE.ZERO) GO TO 10
WRITE (6.100) JJ

UTTNV340
LITTNV9SO

RETURN UTINV36n
C IJTINV370

10 DINV=ONE/RIN(JJ) UTINV980
ROUT(JJ)=DINV UTINV590
II=O UTINV40n
IK=1 UTINV41O
JMl=j-1
DO 20 I=IJM1

UTINV42O
UT NV430

IT=TI+I ITINV440
IK=II UTINV45n
SUM=ZERO UTINV460
DO 15 K=IJMI UTTNV47n
SUM=SUM+ROUT(IK)*RIN(JJOLD+K) UTINV4RO

15 IK=IK+K UTINV49O
20 ROUT(JJOLD+I)=-SUM*DIHtV UTINV90n

C UTINVq O
RETURN UTINVq2n

C (ITINV530
100 FORMAT (1HOIOXP* * * MATRIX INVERSE COMPUTED ONLY UP TO BUT NOT UTINVS4n

IINCLUDING COLUMN'tI4p' * * * MATRIX DIAGONAL 'T14p' IS ZERO * * *tUTINVg50

133

2) UTINV560

C UT!NV570

END UTINV580

134

ORIGINAL PAGE ISOF POOR QUAITYIr

C UTIPO000

SUBROUTINE UTIPOW (RINrNrROUTPNRY) UTiRonio

C
 UTIROn20

C To COMPUTE THE INVERSE OF AN UPPER TRIANGULAR (VECTOR STOREP) UTIRO03D

C MATRIX'WHEN THE LOWrR PORTION OF THF INVERSE IS GIVFN UTIROn4O
C UTTROn50

C ON INPUT: UTIRO06O
C UTTROO70
C RX RXY * * RY RXY UTIROn8O
C RIN= ROUT= WHERE R= UTIROO9O
C * * 0 pY**-j 0 RY UTYROGO0
C UTIROtlO
C ON OUTPUT: RIN IS UNCHANGED AND ROUT=R**-i UTIROl20
C THE RESULT CAN OVER-WRITE THE INPUT (I.E. RIN=ROUT) UTIRO130
C

C RIN(N*(N+1)/2)

C

C N

C ROUT(N*(N+1)/2)

C

C

C NRY

C

C

C

C COGNIZANT PERSONS:

C

DOUBLE PRECISION

UTIR0140O

INPUT VECTOR STORED TRIANGULAR MATRIX UTIRO150

THE BOTTOM NRY ROWS ARE IGNORED UTIR0160

MATRIX DIMENSION UTIROI70

OUTPUT VECTOR STORED MATRIX. ON INPUT THE UTIROI80

BOTTOM NRY ROWS CONTAIN THE LOWER PORTION UTIRO190

OF R**-I. ON OUTPUT ROUT=R**-1 UTIRO200

DIMENSION OF LOWER (ALREADY INVERTED) UTIROP1O

TRIANGULAR R. IF NRY=O, ORDINARY MATRIX UTIRO220

INVERSION RESULTS. UTIRO230

UTIR024O

6.J.BIERMAN/M.W.NEAD (JPL MARCH 1977) UTIRO250

UTIRO?60

RIN(1AP ROUT(1), SUMP ZEROt ONEP DINV UTTRO270

DATA ONE/1.DO/' ZERO/O.DO/ UTIR0280

C
C
C

INITIALIZATION

NR=N*(N+I)/2
ISTRT=N-NRY
IRLST=ISTRT+1
II=ISTRT*IRLST/2
DO 40 IROW=ISTRTPIP-I

UTIRO2QO

TTR0300

UTIRO310

0 NO. ELEMENTS IN R UTIR0320O

@ FIRST ROW TO BE INVERTED UTIR0330

G IRLST=PREVIOUS IROW INDEX UTIPO340

f II=DIAGONAL UTIR0350

UTIR0360

IF (RIN(IIh.NEZERO) GO TO 10 UTIR037O
WRITE (6P50) IROW UTIRO38n
RETURN UTIR0390

10 DINV=ONE/RIN(II) UTIRO400
ROUT(II)=DINV UTIR0410
KJS=NR+IROW @ KJ(START) UTIR0420

C
IKS=II+IROW @ IK(START) UTIRO430

UTIR044O
IF (IRLST.GT.N) GO TO 35 UTIR04SO
DO 30 J=NNIRLST,-1 UTIR0460
KJs=KJS-J UTIR0470
SUM=ZERO UTIR0480
IK=IKS UTIR0490
KJ=KJS UT1RO500

C UTIR051O
DO 20 K=IRLSTeiJ UTIRO920
KJ=KJ+I UTIR0530
SUM=SUM+RIN(IK)*ROUT(KJ) 135 UTIRO54O

http:ZERO/O.DO
http:ONE/1.DO

20 IK=IK+K UTIRO550
C UTIRO560

30 ROUT(KJS)=-SUM*DINV. UTIRO57O
35 IRLSTZIROW UTIRO580
40 III-IROW UTIR0590

RETURN UTIR0600
50 FORMAT (1HOPIOXe'RIN DIAGONAL'I14,TS ZFRO t) UTIR0610

END UTTR0620

136

QRIGINAL PAGE IS

OF POOR QUALITY

T
2
E

SUBROUTINE WGS (WIMAXWuIWJWtDWPUPV) 	 W1SO0010

MODIFIED GRAMM-SCHMIDT ALGORITHM FOR REDUCING WDW(**T) TO UOI(**T)WGSO0020
C

C FORM WHERE U IS A VECTOR STORED TRIANGULAR MATRIX WITH THE WGSOO030

WGSOl040
C RESULTING D ELEMENTS STORE ON THE DIAGONAL

WGSO0050
C

C W(IWpJw) 	 INPUT MATRIX TO BE REDUCED TO TRIANGULAR FORM. WGSO0060

THIS MATRIX IS DESTROYED BY THE CALCULATION WGSOOO7
C

C IW.LE.IMAXW.AND.IW.GT.1
 WGSOD080

ROW DIMENSION OF W MATRIX
	 WGSOO00O
C IMAXW

C IW NO. ROWS OF W MATRIX# DIMENSION OF U WGSODIOO

C Jw NO. COLS oF W MATRIX WGSOOII

C DW(JW) 	 VECTOR OF NON-NEGATIVE WEIGHTS FOR THE WGSOO120

WGSOO130
C ORTHoGONALIZATION PROCESS. THE D'S ARE UNCHANGED

C BY THE CALCULATION. WGSO0140

C U(IW*(IW+1)/2) OUTPUT UPPER TRIANGULAR VECTOR STORED OUTPUT WGSO0150

C V(JW) WORK VECTOR 	 WGSOO16D

WGSo170
C

(SEE BOOK: 	 WGS0018O
C

WGSO019n
C * FACTORIZATION METHODS FOR DISCRETF SEnJENTIAL ESTIMATION 'p

C BY G.J.BIERMAN) WGS00200
WS00210
C ESTIMATION

WGS00220
C

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLt FEB.1978) WGSO0230

WGS00240
C

IMPLICIT DOUBLE PRECISION (A-HPO-Z)
 WGS00250

WGS00260
DOUBLE PRECISION SUMZ.DNV

DIMENSION W(IMAXWul)l DW(1), U(I)p V(I) WGS00270

WGS00290
Z=O.DO

WGSO0300
ONE=Z.DO

WGS00310
IWP2=Iw+2

WGS00320
DO 100 Lr2,IW

WGSC0330
J=WP2-L

WGSO0340
SUM=Z

WGSO0350
DO 40 K=IJW

WGSO0360
V(K)=W(JtK)

rU HEPE IS USED AS A 	 WORK VECTORWGSO0370
U(K)=DW(K)*V(K)

WGS00380
40 SUM2V(K)*U(K)+SUM

WGSO0390
W(Jpj)=SUM 	 0 EG.(4.9) OF BOOK' NEW DwCJ)

WGS00400
DINV=SUM

WGS00410
JM1=J-1

WGSO0420
IF (sUM.GT.Z) GO To 45

C W(J,.)=O. WHEN nINV=O (DINV=NORM(W(Jp.)**2)) WGS00430

WGS00440
DO 44 K=IPJMI

WGSO0450
44 W(JK)=Z

WGs0460
GO To 100

WGS00470
45 Do 7 0 K=1,JM1

WGSO0480
SUM=Z

WGSO0490
DO 50 I=lJW

WGSO0500
50 SUM=W(K'I)*U(I)+SUM

WGSOOSlO
SUM=SUM/DINV

C DIVIDE HERE (IN PLACF OF RECIPROCAL MULTIPLY) TO AVOID WGS00520

137

http:ONE=Z.DO

C
C

C
C
C

60
70

100

105

POSSIBLE OVERFLOW

00 60 I:1PJW
w(KPI)ZW(KI)-SUM*V(I)

W(JPK)=SUM P Eeh(4.10) OP BOOK

CONTINUE r U(KJ) STORED IN W(J.K)

THE LOWER PART OF W IS U TRANSPOSE

SUM=Z
00 105 K=IPJW

SUMZDW(K)*W(1#K)**2+SUM
U(l)=SuM
IJ=l

WGS00530

WGS00540

WGSO0550
WGS00560
wGSOo970
WGSOO5O
WGS00990
WGSOO600

WGSO0610
WGSO0620
WGSO0630
WGSOO640
WGSO0650
WGS00660

DO 110 J=2'IW WGSO0670

DO 110 I=IJ
iD1IJ+l

WGSO0680
WGSO0690

110
C

U(IJ)=W(JpI)

RETURN
END

Wr7SO0700
WGS00710
WGS00720
WGSOO730

A , Co fNASA-JPL- C al,138

77-26,-,REVisi-bN2*-- -PUBLICATION

