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SUMMA f i Y

A turfy i :; conuuc ced ;.c dOte rm : ne the t'eri i b i l i ty of us i np a t wo-

microphone, r • ur,i.)m-excitation technique for the mer .,urement. of acoustic

Impedance. Equations are developed, iriclu,iin t; the effect of mean flow,

^l which show that acoustic impedance is related to the pressure ratio
.T

and phase di fferenee between two point:; in a duct carrying plane waves

only. Tt , :As are conducted to determine the feasibility of this approach.

The impedance of a honeycomb ceramic specimen and a Helmholtz resonator

are measured and compared with the impedance of theee specimen:; obtained

using the conventional standing-wave method. Agreement between the

two methods is genet-ally good but some systematic differences exist. A

:.ensitivity ar cil,y^i:; is performed to pinpoint •in ssible error sources and

recommvndat.ions are made for future study. The twf)-microphone approach

evaluated in this study appears to have some advantages over other

impedance measuring; techniques. Possible advantages inc:_ude: application

to problems where flow noise is dominant, better resolution of experimental

data and :; i gni f' [cant reduction of time required for testing; with poten-

tial for near real time _mpedance measurements.



INTRODUCTION

KB OW l t'dge of 10t	 t. 1 t - i rtrpedrint• t• in important fo r opt imizi ng

11011le 'C •	 :oil -f ftooustic ab:4orber •! ; for tur• bomat • hinor •y duct.".	 i3t'Ct1ll:;e

moot pract ioa l absorbers used for ,tuot treatments do not lend themsel ve:;

to m.Lthemati, • !Ll modeling, acoustic irrpedrLnee mutt be measur"•i. The objective
IL	

of thi: -udy was to font the feasibility of it new impedance measuring

techni,lue by , • ompar i ng tht- r,-:;ut is with those obtained using the convt'n-

tional :standing wave method. A narrow band and bro!idband absorber wt-re

used as test specimens.

In the last several yearr a number of new impedance measuring methods

halve been proposed. Those based on :stationary microphone system:, wi l 1 be

briet'ly reviewed. (lately and Cohen 1	 used a gated sine wtve to determine

the irntedatice of : ,,mall aco=tit• t'i1tear• :; rl:;ed with ret'r• ir ,,crat,fon eompr4,,sor:;.

Iiy u:;ing :t lonN tube upotresun of the acou:;ti. • filters, they Wet-t- able to

:;epsrate the incident and reflected :;ound w!tv":;. 'Phis ex perimental nrrnnge-

merit, allowed lhers to Merl:;urt' the int-ltie'nt 'lrl,i e ' '''lected wave tLCl plitudt':;,

a: 1 well as the pha:;e ohi Ct, b"t.ween the wrtve:,. 	 h • tunikit Zuni J,thn:;ton^ ^ u:;eti

^t l , :lir of closely spaced rni, • rophones to merL Sure the rt•t'lection coefficienu

of Orifices. However, they had pr •oblern:; in deter •rnining phase angle and

therefore did not mea:,ure acoustic impedance. McIIirlr, [31 IlstA a "two-

microphone" method tj moasure the acoust it impedance of perforates. :lingh

(11]
a.nd l\'Lt,r'L	 u,ea rl pul:;e techni1ple to measure th-' ret'lection eoet't'ieient.

of :mall acoustic f i l tees . Li're Gatel y and Cohen, they u:;cti a long tube

to separate the incident and t-flected waves.

",bunbers in br • it-kets refer to I ist of citcti references at the end of th's
report.
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hong tube lengths needed for techniques proposed by Gately and Cokv!rl I1 )

and Singh rind Knt ru	 may result In unwrtrit.ed dissipation.  On the other hand,

discrete frequency techniques, rich as used by Schmidt and Johnston, are

time con:,uming, and m-ty not be well :,uited for practical acoustical testing.

Seybert ,ind Ross 	 used a two-microphone, random-excitation tech-

nique to study acoustic impedance of automotive mufflers. They rhowed

that for a plrir:e wave sound field, the incident and reflcc^ed waves could

be :,eparated by measuring the cross-spectrum between two microphones

located at f i xed positions in the duct. Thu:, in addition to measuring

acoustic impedance, this method can also determine the incident rind

r,?flected sound power in a duct. Recently, Blaser and Chung [61 have

usel thic method to evaluate internal combustion engine exhaust systems.

The remainder of this report discusses the application of the

tw)-microphone technique of Seybert and Ross to measurement problems in

duct acoustics. `Phis work was carrid out during a ten-week period

during, which the t'irst author was supported by a fellowship provided

by NASA rind the American Society for Engineering Education.

't
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:, YM IRMS

amplitude of incident wave, dynes/cm`

'I 	H complox amplitude of r •efle-et.ed wave, dyneo/orr`
f

C sound speed, cm/sec

i

I' frequency,	 iiz

^.	 T i irnagitt•ir•y	 unit

K free :space wave	 c•rn-i

K. incident wave number, -in-1
r

!	 K ru fled ed wive number,	 !Tr
r

M flow mneh number

Pi incident acoustic pressure dynes/cm`

P refleote.i acoustic pressure	 (complex)
2

dynes/cmr

P12
pressure ratio between	 X 1 and	 X2

R

1

ref l oction factor (complex)

R reflection coefficient

v flow velocity, cm/3ec

K nxinl coordinate, cm

X I , X 2 microphone positi )ns, cm

L acoustic	 irnpedarice,	 nortn:ilizel	 by pe

Zm mF^asur•ed axial	 impedance,	 normalized by pe

Zr resorvit.or	 impedance, normalized by pc

7,t termination	 impedance,	 nor• rtnl ized by pe

w angular frequency, ?'Rf

angle between Pi and P V ,	 radian-

t3 acoustic resistance, normalized by pc

X woustic reactance', nortwil.ized	 by arc

E
3

den:;ity of air,	 gm/cm
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THEORL'PICA:, CONS TDFIRATfOV,

i i_ a ii:tr ,,r:un showing a rigid tube containing an acoustic

mediirr: that is excited by a vibrating; piston or other acoustic sourc(.

The tube is terminated at the coordinate origin by an acoustic system

wi t h unkn')wn acoustic impedance MO.  A:,:,um ingr, only a plane-wave sound

field in the tube, the incident and re 'lected sound pressure waves earl

be expressed by:

P h l
t) = Aei(wt-Kik)	

(1)

= i3	 i(r:t + t,x
Pr(xlt)	

e	 r. ;	 (2)

where	 K	 K	 w e _ vKi	 1 + %11Kr.	 1 - fit , K - c , i

an4 where v is the mean flaw speed and	 is the speed of sound.

The total acoustic pressure at any point in the tube is the sum

of the incident and reflected pressure waves. The ratio of the sound

pressure between two points x  and x, is:

i	

- E
	

e	

-i.Ki 
X  + TIe

i Krxl	

(^1P2 - 1.2 - 12	
1^. = Ae ^iX2 

+ 
Be' r. 

r 
x2

F



mpiex reflection coef_'ici- - , 	 R -it. x = 0 is defile"d

R = Heil	
A

►rd R is rela t ed to the impedance Z( f) by

R	
4: (t'	 - 1

Z(f) + 1

•• h i n i ng equations 1 through 5 -urd solving for Z(t) yields;

(tom--iK i x l - rV rx I) - P12 ( c,-iK i X^ -, . ik*x,)

11 12(e-iKix" +'
.iK r•x 2) - (,-- iK

i x l +e-
 
iKIxl)

&Egr.ration 6 gives a potentially useful way to calcuiate the acoustic

impedance from measured values of pressure ratio Plp and phase angle

1?
botween two points in a one-dimensional acoustic field.

Although equation 6 was derived assuning a harmonic sound pressure

field, reference 5 generalizes the technique to include a random round

field.

EXPFRIMENTAL SETUP

A aerie; of tests was condu •-ted to determine the feasibility of

using; equation 6 to calculate acoustic impedance. Two acoustic system.3

V

7.(f)

(14)

(5)

(6)
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were used for the evaluation: ,t Helmholt z. , resonator with a resonant

Creduency of approximately 1.0 k!i: : ► nd it sample of a cer;unio honeycomb

material. T(. evaluate the two-microphone method (TMM), it comparison

was made with impedance data obt fined using the standing-wave method 181

r	 (:,WM) . For the TMM both pure tone rind broad-band random excitation

W1 re u:ed buL the :;W`•1 data were ba:;ed on pure-tone excitation. Tests

without flow were conducted with the resonator in a n r)rrnal and grazing,

`	 incidence or i entrit i on . but the cer • ► rni c :spec tmen was evaluated only in

a normal incidence orientation (in a grazing incidence orientation the

area of the ceramic spe men was sufficiently large to violate the

asoumption of a lumped parameter system). A final set of tests was

conducted with the Helmholtz resonator in the presence of a mean flew

with Mach numbers of 0.02;• and 0.10.

Figure 2 shows a schematic _)f the instrumentation used for the 'IM

tests. Figures 2a and 2b :shows the instrumentation used with the puro--

tone and broad band random excitation respectively. For all the tests

the microphones were mounted flush in the tube wall and were separated

`	 by a distance of 2.54 cm (1.00 in.). In the no-flow impedance tube (tined

for th( . normal i; • idence tests) the microphones were located at distances

of 21.24 cm (8.36 :n.) and 23.78 cm (9.36 in.) from the end of the tuba

where the test specimen wits located. In the flow impedance tube the
I

1
microphones wf^re located 53.34 cm (21.00 in.) !uzd 55.88 cm (22.00 in.)

from the specirnoii (In the flow impedance tube the specimen is a .A de-

branch system in parallel with the tube termination impedance).

.T



TEST RESULTS

Vigures 3a arid 3b show the resistance and rea,7trarioe (normalized

by 0c) of the cer%mlo specimen in the no-flew tube as determined fr'>m

both the SWM and the T'MM. Both pare-Lone exo i tat Ion (6-21-7 8) rand

broad-band random excitation (6-27-713) were used with the TMM. In
►-

^.^	 general, there is good agreement between the results of the 'I'MM •and the

SW4. A discussion of the detailed differences between the re:;ult: will

be pre3ented lator in this report.

Figure 4 shows the measured pressure- ratio and phrase angle (i .e. ,

complex pressure ratio between miss 1 arid 2) used to calculate the acoustic

impedance of ti,e ceramic specimen for broad-band excitation. The details

of these curves depend not only on the : ,esonator properties but also on

the geometry of the experimental setup (i.e., x i , x,1 and (x2 - x I ). For

ex•arnple the f'requenc i es whe re (P12 I = 1(0 dB) and where (r12 is maximum

indicate that a null in the standing wave pattern lies between the two

microphone positions. Also the onset of higher order modes can be

observed near 3500 iiz.

Figure 5 shows the auto-spectra of the two microphones for the test

case using the cer:uuic specimen excited by bread-band random noise. These

spectra are similar but are dit't'erent in detail. The small scale fluc-

tuations in the spectra result from the changing standing; wave structure

as f'requericy changes.

Figure 6 :how ,.; the sound pressure auto-spectrum (I,p) measured by

a probe tube near the face of the ceramic sample and the spectrum of the

I
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input voltage ( I . v ) to the acoustic driver. Tests eont'irmed (rig. 4) that

the impedance, of the eerrulic specimen arty linear o%.-r ► raitee of sound

ire;;:;ure lev-1 at thl- specimen t'it- "i-m 90 to 110 111; there Fore it

w- ►s not neee.,sary f.)r the sound pre:,s , re spectrum at the face of the

pecimen to be I-1-it. On the other hared. it flat spectrum i:; required

. s when testing u :specimen with it ri)n-linear ;mil k. •dance. This topic will

be discussed in t'urther ieti ► i i - ► t another location in this report.

Helmholtz Resonator

A second test w: ► :, e.>nducted in which the test srecimer, was a

Helmholtz r,^sonrltor. The resonator had a cylindrical cavity 5.08 em

(".00 in.) long and 3.81 cm (1.50 in.) in diameter. The csonator opening

(oriented perpendicul., ► r to the impedance tube axis) was it slit. parallel

to the axis of t.tle cylinder, 5.08 cm (x.00 in.) lone and 0.25 em

(0.10 in.) wide. The thickness of the resonator neck was 0.0127 cm

(0.0050 in.). The resonator wss tested in a normal incidence orienta-

tion and it grazinj , incidence orientation (no flaw) using both the `1'01

rind the SW4. For the grazing incidence tests th •, resonator impedance

w, ►s computed a:;sutnirnt; the resort, ►tor was a lumped impedance, Z , 	 in

parallel with thy tube termination impedance, Z t :	 ,

^	 1	 1
-- + —

71m "r z 

(7)

9
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Therefore the mt • :e•.itre-mont of :'. R^ and Z 	 permit Z 	 to be calculated.

In this experiment Zt was estimated to be 1 corrP:;i,eu:dirig to a nur,-

r-oflective trrmina`.ion.

Figure 7 shows data comparing the y resonator impedanc•^ using both

the :NN : e e ►d ",'dM. The reactance datu sh , )ws good agreeme^t between the
.. s

two techniques; each technique reveals • c :;hilt In the resonance fre-

quency of the resonator.* The cause ;f the large discrepancy betwe•e•n

the reaiotance data in the grszing incidence test is not clear. Pure

tone .'+e'M tests inlioatvd however that the resonator was highly nonlinear

^kh,ve 90 dB SPI_ at the :,lit. For random excitation the spectrum level

was ad,!usted to 90 dB it the resonator resonance frequency but exceeded

90 _iA at other frequencies which may have been a contributing factor in

the 1: ► rge discrepane•y.

Tests with Flew

Figure N shows the reactance of the Helmholtz re -senator for , Mach

numbers, of' 0.0, 0.025, and 0.10 as measured by the TMM. This data is

qualitatively consistent with acoustic theory and other experimental

^ta showing that grazing flow decreases the mass reactance of a

resonator, thereby increasing the resonant, frequency.

DISCUOSION OF RESULTS

In general, the .agreement between the T" .1 ar,d the SWM is good. On

the other land, some detailed discrepancies do exist. It was found, for

*'Phis :;hif f h, resonance is believed to be due to it change in the radiation
impedance of the resonator. Ingar-11 7 1 has studied the radiation loading
in resonators in a normal incidence orientation, but there is no similar
study for grazing incidence.

10



example, that difficulty in aeeurntely measuring; phna- :tnele using the

.experimental :setup it. figure 2a r-rsulted in som e - :4eatter of the data,

(note the resistance data in figuro 7 for the " I u", • -ton-' excitation).

An - e rror rtria1Ysie of equation 6 showed that th '- r ►cour:!ey -f the resis-

tance is strongly influenced by accurate phase measuroment.i. The repent i-
r . s-

^► -	 bi 1 it.y and accurnoy of phase measurements tlsinf; Ili- 33360 ( fig. ?b) is

bett e r than that obtained using the urut: ,; phase meter. A.- 	 be

expected, phase • tngle accuracy is very important when the trur- phaso

{le approaches 0 or tt.

Figures 9 t.sough 13 show the rerults of u sensitivity stuffy u. inq

the ceratric specimen data (fig:;. 3a and ib). Figures 9a and 9b show

the sensitivity of the impedance to small errors in phase angle mea-

surement ( +2°). The largest effect is noted in the resistance at low

t're luencles ( 1;00 - 700 Itz) where the phase angle i 	 sm:tl l (see eig.. 4) .

An error in phase angle measurement also seems to aft' -ct the reaet.ari' e

-Lt "requencies where the absolute value of the reactance is 1nrge

(see fi t;. Qb).

Figures 10a and 10b show the -f'fect on impedance of small var:•ttions

in the level of the measured pre y.-ure ratio (+ 0.1 dl;). An accuracy

wit.htn 0.1 dB Is achievable uL;irtg standurd laboratory sound measuring

equipment because the Absolute accuracy of the soun,i pressure is not

important.. One microphone was amplitude and phase calibr•tted relative-

to the other by flush mountirrt; in a smooth rigid piston which was

installed in the -tarldirig wave g ibe so thrtt p.l•uY • w:tvr:'. were nor •rnVii ly

L



incident on the r;urfri, • e. The microphone-; we - -t- , ;ym o—triritIIy located

with respect to the ploton rixi.i.	 Th,-r4•,.;rv, it wn: n:;.;runc •d that both

ni-rophones would ,-xperien, • e pha:;e coherent. pressure f'1 ictuations.

':ii , -:;e caIIbrrttion drita we , re uned to correct the measure,i phase tit ig1eB

an,i rr-,ssure ratios for each :,pec i men ^ .

h'igure:; 11n and llb show the vnrintlon of impe , innee with tempera.-

tu.e in the tube. A higher temperature rippears to shift the reBlstance

toward lower frequencies. A higher tempt , rature affects the reactance by

decreasing its value ner tr the rinti-resonance frequency (2000 Hz).

The dincrepnncies noted in figures 3n and 3b are probably due to,

in part, -in °nrecurate knowledge of the true temperriture in the tube

wher; the measurements were made. When these tests were made the- tempf,ra-

ture in the tu`	 ras as^umeu to be the Brune a:: t he room temperature.

hater, thi^ a:nirnption was found to be false, and in subse ,luent test.,

' ne 6ube temperaturf- writ, meanured.

Figure:; 12 and 12b show the effect of :.1 fight error:-, in th e- aib!;olute

posi tion %)f the microphone, while ''figures 13a and 13b show the effect of

small variation:- in the microphone spacing. The microphone locations can

be determined to an accuracy of less than 0.1 cm usir,, 5 the microphone

positioning system of the impedance tube, and the microphone spacing can

be controlled to within 0.01 cm. However, the data in figure 13a and 131)

raise the question: Is the acoustical spacing between the microphones

equ;1	 the distance between the microphone centerlines? If these

distances are different, using the centerline distance will generate

errors i.n calculating the impedance.
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Grazing in — i ik•nce tests. - Fi ,! the grazing in( • idence testae the specimen

write assumed to be a side bran-A in parallel with the tube termination, and

the specimen imped:enee, Z r , wits C11lCU1rtt.ed urinY equation 7 ass uming Z t = 1.

k	 fiowevcr, when the specimen re3_'.stanct- i:r quite small an-1/or the :,pecirnen
I

r`	 reactance is 1 •rrge tiny deviation of Zt from the• ar surm•d vrtlue of 1 mrey

'' t

	

	 cause orrors in calculating the specimen impedances. Some of the scatter

in the datr ► in flviure-L; 7 arul 8 rnrty be lue to this effect.

Broad-ban,i :- , vi^iom exc i trttion i:: well suited for acoustic testing

be • krause the dat,:e earn be processed rapidly (if Lhe appropriate hardware

it available) and because the data is a continuous, rather than discrete,

function of frequency. However, some problems associated with random

excitation are revealed in the tests conducted as a part of thin study.

A uniform spectr^el densiLy r.t the face of a specimen could not be

generated with available equipment during this study. As suggested

previously, a uni t'orm spectral density might have produced better regro -

ment with the pure tone SWd resirtance because of nonlinear properties

at the resonate	 above 90 dB.	 It is no', clear wiry the computed resi:,t.ance

%s a minimun: near- 1000 11z (the resonator resonance) and is maximurn near

i00 and 1200 liz for the case where random excitation, was used. A

sound pressure measurement at the face of the ,pecirnen revealed that the

--)und pressure spectrum had ;imil:er characteristics. However, the resonator

nunlinearity is sensitive to particle velocity which is relatively large

rat the resonant frequency.

The problem of a non-uniform :;pectral di-n 1ty also affects the

computation of the specim.^n reactance (see fig. 7) when the :;pecirnen is a

Ii
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: ► n,t tlhat. the twi t -11;i,'rophont` mt , t.h,t-i	 i: ;	itl 't 1)r•t'I; 
ill 

irl:try :;t'lr;t` t) t' tit 'Vt'f,tlttlivilt.

,% , fit ltlllt • ti ,tt • Vt • lok"norlt and altlti i oat lon of tilt, twit-nlirrofthono toolitll,lllt , 1:;

rt • t • ,trntn, • n,it`,t t'or tilt , ful I ow i ti t ,, r• ra:;ttn:; :

1 .	 'I'll, , ro i .	 t net•tt for a,t,t i t. i,tn:t 1 way:, to tnra:,urt` at`ou-,t i r

irnf , t,,innl• t`. f • rlrt.irul:lrly in .:itu:ttion:; whrr • ,• it. i:, nrcrra;l!•y to

ootlt ' i rm i mla t tinnoe dat.rt by two or mart' int.`asuromt`nt method.;.

Thore • Ilt''' . ; , tmt` cal1CS where the twi t tnl, • t• , t l`II, t tlt • ttlt • t.hod IIL• ly II:IVt`

'ill :l , tVailt tll.;t , over otilet- inlpo,i-moc t mt':l:;llrini- teollni (It r:;.	 '1'ht`

two 1!llt`rophono met hod fl:i:; tilt- l , ,ttent it11 to 14 , t t xtell ittti to mor•,t

,t 1 t't'1( • II I t	 1:11ltt,tianl• t` motll .,ur ill; ., l t ll:ltl, t rl'	 stroll :1:; thtt !Ill`a:;ill'l`-

moat of impt•,innt't , at. low int.em-.it.y an,t hi l-h Mnoli numttt • rs u:;intt

a .I l x!11:11	 t • 0llt`1't 1 nr!C` ;ll';"' t'h'I1 to 4 , 1111-. 111 00 the at`ttll:;t I t	 .; l gzlal .

i.	 Mt`a^llr eTilt ` iit titre? i :; I .0duc• t,,t by at It`a:lt rin ttr(Jr`r of ITIZI .rni t.u(it,

by u.; l tlr' tht` twit-mit• rophorit` mothod W i th br o.-itt-haiid r.,intiom

e y o i t.at i ,)!I .	 'flit • Loolltl l que i ttiltt:;	 i t ;at, i l' t • t1:; I I y t t) aut ,mvi t i on

llslnl' :ill on-i itlt` , • , t11puter to f t r000:;;; till` tint .n.

I t .	 'No two m i r• rophone ine t.hod i .' :l till i que wtty ,t t' exalli l it i my t.ht` Wivo

.;t rut, t.ul •„ , , t' ,ill aooll:;t.ir` CiitId.	 'I'hf:	 alt}tt• olu'II ,.oil Iki be exi,Ioited

1 t,



to 'evelt)p other idea, related t,) duct acouo ti .,, -Well ets the
10 	 '9	 .

aeparat. ion of i ne iAe'nt and re t'l t'At`ki :.mind power i n : irl :tootint is
+.	 •

?told.

'"he t wo-microphone method is still inde• r development. and it tvimbor of

item: :-hould be ad, lreo:l ,ni to improve tht , reliability of the technique.

.,ome ; uggcsted topics of study :tre:

1. ctht.imiz!it.ion of the t.w- -in icrophone method. - A stimy of this

type would determine the bes;t. location of the microphones and

the optimum microph . me :;pacing. The study would also determine

the importance of mic •c.)phone size on bias error in measuring

the pre y oure rat to and ph:i:,e shift between the microphones.

2. Error An:,ly:,is 01' t110 two)-microphor ►e method. - This would be

ctmposed ,)t' t.wo part.-s:	 an error analy:--is o f the Impedance rt^lation

(eel. 6) in which all the relevant experimental parameter.", would

be ex-mined, and a stat-istical ::turfy to determine the effect on

impedance calculation- 01' data prc'cesaing parameters; such :to

bandwidth and data win,i,)w. The result. of this, study would be

the development of error bounds and confidence levels tc) establi:-h

the validity of i mpedarice data.

3. Exten ^ion of twee-microphone method to handle flow not sc

contamination. - 'Phis effort would involve modit'ying the sir,oril

proce.sinK procedures to utilize signal coherence technitples to

enhance an acoustic signal buried in flow noise. Such it procedure

would be uset'ut for measuring the impedance of nonlinear systems,

at low :itt,i medium intensities: when flow noise i s present.

16



,>>t 61S.kL TM F. 
TS

U^ ?wit Q1, e^1•rrY

14 .	 lret,tiijg of lion-_1.	 ! CII 1-urldom_exci t.a 1 A ,.)n. - The

probl om of the I IV— ..: 	 ,duce A flat spectrum at the face

of the :specimen trill be handled ir l two ways. One methol is to

gerrerat o t he random signal digitally, using digital filtering

teehni.ques to shape thr. r;pectrum of the driver voltage to yield
r	

a flat ,lpectrlun at the face of the specimen. A hecc,nd method

ignores the shape of the .spectrum enti rely but the spectrum

Level for each frequency band is recorded and stored in computer

t

memory at the time the tv-st is conducted. This procedure is

I
repented for several tz-sts ut different inten s ity levels,

generating a three cflmc^nsional array (impedance, frequency,

i

	

	 intensity). To determine t}.- Impedance at a certain intensity

the array would be scanned at each frequency to find the

appropriate impedance corresponding to the specified intensity

(in certain cases interpolation may be necessary).

1
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uĉ
v

v
ct t2

9

4

xl(cm)

-23.68

-23. 78

-23.88

x.,(cm)

-21.1n

-21.24

-21.34

Ot

0
	

4	 B	 12	 16	 20	 24	 29

FREQUENCY (Hz x 102)

Figure 12a. - Resistance sensitivity to variations in microphone
location with microphone spacing held constant (2.54 cm).

;1,

36



i
I

i	
tt

,,	 1

	

^ 1 (cm)	 x2(cm)

l^

	

O -23.68	 -21.14

	

p -23.78	 -21.24

	

-23.88	 -' 1 .34

c

^,	 Q

S^
U
C
ro

u
ro
at
Q

-4

-8

-12M 1111111IIIIIIIIIIIIIIIIllll:

0	 4	 6	 12

Figure 12h. - Reactance sensitivity to variations in microphone

location with microphone spacing held constant (2.54 cm).

4

x

Ell I I I 1 11 I I I I I I l 1^ I I I I 1 I 1 LEU111h] t 1 [11 Luh_LWlI
16	 20	 24	 28	 32	 36

FREQUENCY (Ht x 102)



0
	

4	 8	 12	 16	 20	 24	 28	 32	 36

FREQUENCY (Hz x 102)

Figure 13a. - Resistance sensitivity to variations in microphone

spacing with x2 held constant.

36



III
IL

k

W

ev

4)
eo
1

_y

_12t

U

—8

8

4

x 
	 - x21

7 2.4 .1 cm

2.54 cm

J 2.6

lit
4 8	 12	 16	 20	 24	 28	 32

FREQUENCY (Hz x 102)

Figure 13h. - Reactance sensitivity to variations in microphone
spacing with x 2 held constant.

37

if

36

N



	

C
,
	

o;
0

	

v
	

^L)
ZLM

	

o
	

:3

	

O
	

O

	

N
	

UELuC
L

	

o
	

^
'

0

	

o
	

^O
N
	

4
J

S^ 1
	c

O
r
 
L

U
	

4--

C
)
 
W

	

C:) 	
ro

d
 o

c
r
	

cLQ
!
U
^C
J

	

O
	

C

C
D

O4
-Ow

O
	

r
—CL

C
D
	

EbXLil

O
	

i
ON

C
n

LL.

O

i

r.IL
I

I

c
o

ON

a
 
mz
/

)u

h
 
_
	

w
	

Y


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf

