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Abstract

This study is concerned with the structure of pulsar magneto-
spheres and the acceleration mechanism for charged particles in the
magnetosphere., We follow the pulsar model developed by P. A. Sturrock
(1971) and assume that charged particles are accelerated from each
polar cap of a pulsar, These particles produce gamma rays via curvature
radiation which in turn produce electiron-positron pairs which are
ultimately responsiblie for the observed radio emission., This model
requires large acceleration of the particles near the surface of the
star.

The required acceleration has not bheen produced.in earlier pulsar
models., We have developed a theorem which shows that particle accelera-
tion cannot be expected when the angle hetween the magnetic field lines
and the rotation axis is constant (e.g. radial field lines). If this
angle is not constant, however, acceleration must occur,

We have investigated the more realistic model of an axisymmefric
neutron star with a strong dipole magnetic field aligned with the

rotation axis. In this case acceleration occurs at large distances
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from the surface of the star, The nagnitude of the current can be
determined from this model and is found to be the same as estimated by

Sturrock (1971). 1iIn the case of non-axisymmetric systems the accelera-

tion is expected to occur nearer the surface of the star.
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Chapter 1

INTRODUCTION

1.1 DISCOVERY AND EARLY THEDRIES
The discovery of the puisars by Professor Hewish and Miss
Jocelyn Bell in 1967 ranks uith the discovery of quasars and
of the universal microwave background radiation as one of the
major advances in modern asironomy.
F.6. Smith,Pulsars,p. xi
The discovery of pulsars aroused immediate and intense interest not
only among astrophysicists and astronocmers but the public as uell. A
number of attempts were quickly put forward to explain these remarkable
chjects. Perhaps the most popular with the generail public uas the so
called YLGM” (Little Green Men) theory, uhich suggested that the pulses
uere signals from an advanced extra-terrestrial civilization. This
theory, houever, wuas quickly discounted; +the signals uwere too regular;
since the periods were unmodutated they carried no information and it
was therefore highly uniikely that any 1ittle green men were using them
as communications beacons. It was still possible that pulsars were some

sort of galactic lighthouses but it was clear that asirophysicists would

do well to look for a more naturalt (though less exciting) explanation.

The most immediately attractive idea was thatl pulsars uere related to
white dwarf stars and several theories were developed along these lines
(e.g. Ginzburg et al. 1963; Black, 1969). At the same time, houever,
some work was being done on the pessiblility that pulsars uwere related
to neuiron stars (Gold,1968; Pacini, 1963). In fact, even before the
first pulsar was discovered Pacini (1967) had suggested thal a

_1_



magnetized rotating neutron =star uas responsible for the snergy budget
of the Crab MNebula. The centroversy did not last Tong and was finally
settled by the discovery of the Vela pulsar (Large, Vaughan and Mills,

1968) and the Crab pulsar (Staelin and Reifenstein, 1868), uhich had

much shorter periods than previously discovered pulsars, The white
duarf theories were now running into serious difficulties, which are
summarized in table 1 below. In the first place, it was c¢lear that

white dwarf stars could not be rotating with periods any faster than
approximately 8 sec. (This is the period for which the gravitational
force equals the centrifugal force at the surface of a uhife duarf).
Vibrational modes of a white duarf could also bhe rejected. Since
vibrational periods are approximately given by

P = (Gp)-1/2, (1.1.1
the expected pulsation period for uhite duwarfs is of the order of 1 sec,
which fits reasonably well wuith the first discovered npulgars but is
difficult to reconcile with the Crab or Vela periods. In additien, it
is difficult to understand why only one mode 1is ohserved and why the
mode is so stable. Furthermore, as a wuhite duwarf ages it cools and
contracts slightly. Thus the density increases and fﬁe vibrational
period wuwould be expected to decrease; instead pulsar periods are
observed to increase, which is what one expects of a rotating system.
Since white duarf rotations must be rejected, we are left with neutron
star rotations. Thug, with the discovery of the VYela and Crab pulsars,
white duarf models uere no longer tenable and it uwas clear that neutron

stars had finally been observed.



TABLE 1

Heutron Star vs. WHhite Dwarf Models

NS WD
1. Period in range 0.03 to 3.7 s V4 X
2. Period stable to one part in 10% v ?
3. Period increases v X?
4. No optical photospheric radiation \/ X
5. Two pulsars in supernova remnants V4 X

Having determined that the pulses wuere due 1o the rotation of a
neutron star it was now necessary to develop a more detailed model for

the emission mechanism.

In a recent book of the subject of pulsars, Manchester and Tavior

(19773 remark:

One of the Teast understood aspects of pulsars 1is the
mechanism by which rotational energy 15 converted into pulses
We observe. Although numerous theoretical models for the
emission mechanism have been proposed, noe single model has
been generally accepted.

‘It is clear that the emission mechanism must be a coherent one. The
brightness temperature at a given frequency is defined by
1{vic?
Tpiv) = ~—m (1.1.2)
2kp?

For typical pulsar parameters this gives brightness temperatures in the



range of 1022 K to as high as Ty = 1030 i, For incoherent processes
this implies particle energies of the order of kTp £ 1026 eV. It is
difficult to 1imagine an acceleration mechanism which will produce
particles of such enormous energies and even if such such highly
energetic particles were produced, they would radiate most of their
energy in the frequency band around 5.8 x 10'0Ty #« 5.8 X 1049 Hz: Such
energies have never been observed and te may therefore reject incoherent
processes as the source of the radio emissidn. There have been many
suggestions for the c¢coherent mechanism, but none has beenh completely
satisfying and I will have little more +to say on this ' subject in this

dissertation.

A second question must also be considered in relation 1o the radio
emission. MWhere is the radiation produced? There are tuwo main schools
of thought on this question. The first (e.g. Boild, 1869) advocates the

#1ight cylinder” wmodel, 1in uwhich plasma follous field lines out io the

tight c¢ylinder. At the light cylinder, the plasma 1is highly
relativistic and radiation 1is beamed in the foruard direction. Light
cylinder models were refined by F.G. Smith (1971 and 1973} but ltittle

recent theoretical work has been done to develop detailed pulsar models
uith emission at the light cylinder. The alternate model was initially
presented by Radhakrishnan anrd Cooke {(1969). In their model, the
emission region is near the surface of the neutron star, in the region
above the magnetic polar caps. The radiation is assumed +to be beamed
into a cone (knoun as the emission cone) and %hus acts rather like a
lighthouse beacon. The relative merits of these tuo pictures is still a

subject of some controversy, but a partial summation is given in tahle 2

belou.



TABLE 2

Light tylinder vs. Polar Cap Models

Light Cylinder Models = Merits

Natural beaming process

Rapid, asymmetric changes in polarization within subpulses

Light Cylinder Models - Deficiencies

The strength of the magnetic field at the Tight sylinder
depends on the pulsar period. Thus pulses from stou
pulsars might be expected to be very different from
puises of fast pulsars. This is not observed.

The emissian region 1is small compared to the 1light
cylinder radius. A mechanism must be found continuously
to supply particles to the emission region uhile
maintaining the coherence of the process.

The stabiltity of the pulse shapes indicates that the
emission takes place in a region of strong magnetie
fields where the particles co-rotate with the star.
This is uniikely near the iight cylinder.

Polar Cap HModels - Merits

Simple explanation of the stability of even very complex
pulse profiles.

The emission region wuwould be expected to be small
compared to the entire stellar surface thus producing
pulses with widths of the order of 10° of longitude (as
observed).

Strength of the magnetic field in the emission region is
independent of the period and hence pulse
characteraistics would be expected to be relatively
insensitive te period.

Polar Cap Models - Deficiencies

The simplest polar-cap models predict a pulse width that
is smaller than observed.

Particles must be accelerated to highly relativistic

- 5 -
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energies in order to produce and beam the radiation.
But the charge density in the magnetosphere may be
expected to adjust to decrease the acceleration (if
possibie).

3. The relation betueen energy loss and angular momentum
loss suggests that the primary processes (energy and
angular momentum loss) affecting the star wmust occur at
the light cylinder (C.f. Holloway, 1977).

The one %ruly outstanding problem with polar-cap models 1; the source
of the acceleration, which 1is reaquired +to produce coherent radio
emission near the stellar surface. This dissertation is primarily
devoted to an attempt to deal with that problem. 1In chapter I1I, section
11 uwill present the basic model in more detail, while section 2 will
deal with an analysis of the problem of particle acceieration in polar-
cap models. In Chapter 1II I present a neu approaéh to the acceleration
problep using a more realistic magnetic field structure than in previous

work. Finally, in Chapter IV I discuss the results of this research.



Chapter II

THE MAGNETOSPHERE PROBLEM

2.1 JHE PCLC AND PCFB MODELS

Before turning to the main body of this thesis it is necessary to
define in more detail the salient features of the Stanford pulsar
models, which form the basis of the current uwork. The original model
Has developed by P.A. Sturrock (1970,19717a,1971b) and has formed the
basis of all subsequent development of puisar models at Stanford. In
1969, ‘P. Goldreich and W.H. Julian published a pape} of fundamental
importance to the pulsar problem. in this paper they demonstrated that
in spite of its intense surface gravity, the star must possess a dense
magnetosphere.” The plasma in the magnetosphere has essentially
infinite conductivity and hence obeys the “frozen-in-flux” condition.
The magnetic field lines may be viewed as being firmiy attached to the
surface of the neutron star and, as the star rotates, the plasma in the
magnetosphere is forced to rotate along with it. This cannot, of
course, be true if the plasma uwould be forced to move faster than the
speed of light and hence at the tight cylinder the *frozen-in-flux”
condition requires that magnetic fieid lines be pulled out and wrapped
around the star. The basic picture is shown in Figure 1 below.

The distance, Ry » as the radius of the ”Y-type neutral point” and it
defines the field 1line which separates +Field lines that are closed

within the co-rotating magnetosphere from Tines that are (in some sense)
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Figure 1: Basic picture of the magnetosphere of an axisymmetric
rotating magnetic neutron star

open, and connect fo the interstellar wedium surrounding the star. In
the Goldreich-Julian model (hereafter referred to as the 6-J modell} the
radius RL is the light cylinder radius defined by

Ry = Ry = ¢/t = cP/2m, (2.1.1)

where §1 is the angular fregquency and P is the pulsar period. It is then

assumed that particles flouw freely along magnetic field lines

(i.

e.



E*B = 0. This determines a charge density in the magnetosphere given

P= 5
2ne [1— ((z_r) sinee] (2.1.2)

The model developed by Sturrock (referred +to as the Polar  gtap Light
Cylinder model) (1970,1871a,1971h) is basically an extension of the work
of Goldreich and Julian in which the condition that E-B = 0 everyuhere
is relaxed. Specifically, the condition does not apply to the open
field lines. Thus, on gpen field lines, particles can be ascelerated to

very large energies.

The polar cap is defined by the condition that the magnetic field
line which 1leaves the edge of the cap be the last closed field line.
Thus all field lines emanating from the polar-cap region are open field
lines and particles may be accelerated along these field {ines. The
equation defining a dipole field line is

sinZ8s/r = const. (2.1.3
The polar cap angle B, is then defined by

sin?8p = Ra/Ry (2.1.4)
The rotation of the star induces a potential difference between the
center of the polar cap and the edge. In the simple case of an aligned

rotator,the potential on the surface of the star is then given by

2
s L 0B Ry wosa (2.1.5)
® 7 2c

where B, is the strength of the magnetic field at the pole and R, is the

GE I8
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radius of the star. Then, from equations (2.1.4) and (2.1.5) we find

that the potential difference from the center o¢f the polar cap +to the

edge is
2 3
Q B, Ry .nae 2 B, Ry 1
A@*_=-——E§;———— si b = "5 RL o (2.1.86)

for typical pulsar parameters this gives a potential difference of the
order of 18'¢ Volts. Thus in this mode] ue may expect charged particles
to be rapidly accelerated to highly relativistic energies. In this
model, each polar cap produces tuo current streams. In particular, if
L'B. > D electrans are accelerated from the ceniral portion of the pelar
cap and ions are .accelerated from 4dn annutus around the <¢entral area.
The two zones are referred to as the "eleciron polar zone” (EPZ} and the

#ion polar zone” (IPZ) respectively,

Because the particies follouw curved field lines, they emit photons of
energies
Elev) = 10’3'-9A“3E3Ré' (2.1.7)
where A is the mass in a.m.u. (A=10"3:2% for electrons), E is the energy
of the charged particle (in eV¥) and Rc is the radius of curvature of the
field line. As the photons cross magnetic field lines, they see” a
changing., transverse magnetic field with which they ¢an interact,
praducing electron-positron pairs (Erber, 1966; Daugherty and Lerche,
1976). In this model, the pair production process is necessary for the
production of coherent radio emission. Clearty, for this mechanism to
work, the imitial gamma rays must have energies above the pair-
pro&uction threshold, which in turn requires that the energy of the

ijnitial particlies be above some threshold energy (dependent on the

- 10 -



curvature of the field lines). This then gives a natural explanatioen of
the “turn-off” condition for pulsars. This condition has been further
investigated by Sturrock,Baker and Turk (1976) and has begen generalized

to include radiation reaction and distorted magnetic fields.

This model (like most polar-cap models) 'predictéd a definite
relationship betueen the pulse uidth and pulsar period given by
We P172 (2.1.8)
As can-bhe seen from figure 2, the PCLC model does not fit this
distribution at all uell. In addition, the PCLC model {(along uith most
polar-cap models) predicts that the braking index defin;d by
n = W/l (2.1.9)
have the value n=3. 1t is very difficult +to determine the braking
index, but for +the Crab pulsar the current best value is n=2,215%.005

(6roth, 1975).

This led D.H. Roberts and P.A. Sturrock {(1972a,1972b,1973) to modify
the PCLC model by changing the ”Y-type neutral point” from the light
cylinder radius, Rps to the "force balance radius”, Rgp: which is the
radius at which the co-rotation velocity is the Keplerian velocity for a
gircular orbit (Roberts and Sturrock, 1872a, 1972b, 1873).

Rpg = (M) t/3g-2/3 €2.1.10}

In this model (called the PCFB model), the polar cap angle, 6p ,is given
by

Bp * 101.SpMrtséplrzp-ts3 (2.1.11)

and hence the pulse widih is propertional to P23, As can be seen from

figure 2, the fit is much better. In the regien r(RFB the magnetic

- 11 -



field is assumed to vary as r-3 uhile‘ in the region beyond Rpp the
magnetic field varies as r-Z, This change 1in the magnetic field
structure changes the torque and the braking index 1is then given by
n=2.33, wuwhich 1is in better agreement with the observed value for the

Crab pulsar,

- 12 -
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2.2 SELF-CONSISTENT MAGNETOSPHERES

The first comment that needs te be made on the subject of self-
consistent magnetospheres is the limited user of the term "self-
consistent:” Yo be truly self-consistent, a maodel of pulsar
magnhetospheres uould have to include a) the effects of currents 1n the
magnetosphere on the magnetic field siructure, b) the effects of
particle masses on the currents which develop, and ¢) the effects (via
the plasma) of radiation preduced in the magnetosphere on its struciure
(e.g.. radiation reaction, self ahsorption, scattering, etec.). That
detailed a model 1is well beyond the scope of this thesis. By self-
consisient” we shall mean modeis which satisfy the appropriate equations

without inducing large scale changes in the original conditions.

In 1974 N.J. Heollouway published an important paper which illuminated
some severe problems with the PCLE, PCFB, and similar pulsar models
{e.g. Hinata, 1973; Hinata and Jackson, 1973). Holloway pointed out
that there was a fundamental inconsistency in these models. Consider a
cylindrical “gaussian pili-box” at the polar cap. The flux through the
bottom sqrfaée is zero (space-charge limited flow}), the flux through the
top is nearly zerc provided the dpill boex” js extended far enocugh up to
get it out of the accelerating region, and the flux through the sides is
given by the co-rotation electric field (ng). The charge enclosed is
therefore approximately

q = “(ﬂ°B/2nc)v;;h (2.2.1)
where rp 1is the radius of the polar cap and h is the height of the
Ypill-box”. Houever, the currents from the EPZ and IPZ are expected 1o
bhe comparable and the net charge enclosed should be approximately zero,

- 14 ~



It is interesting to note. houever, that the charge density is
consistent wWith the current Flow if only one sign of <harge is
accelerated. This suggests that instead of having currents of opposite
charges both flowing out from the star, ue may‘instead have a current

loop, Hith the return current being. outside of the polar-cap region.

It is possible that the large numhers of e*-e” pairs produced may
adjust their distributien so as to satisfy equation (2.2.1) wuhile the
tuo currents flow through the pair plasma. The objection to such a
model was well stated by Holloway:

. . in the positive particle acceleration =zone of such a

system, there wouid have to be an electric field uwhich
accelerated the positive particles to high energies, uhile
leaving the negative particies essentially unmoved, a
situation which, while perhaps not demonstrably impessible,
{one could postulate a situation in which some form of plasma
streaming instability counteracted the systematic fields)
seems at least implausible. Furthermore, in the regions above
the accelerating zones, the required coexistence of a
relativistic, high density, stream of particles, with a static
corotational charge density of the opposite sign, uould seem
to present great difficuities for this model.

M.A. Ruderman and P.G. Sutheriand developed (1975) a new pulsar modal
which used a very clever idea, A fundamental point of the problem is the
assumption that the accelerating electric field is zero oh the stellar
surface. Ruderman and Sutherland pointed out that if the work function
of jons were high enough they could not be removed from the steltar
surtace, Thus, in the case that fi*B < 0, so that ions must be removed
from the central regijon of the polar cap, a vacuum regionh uill develop
(called the “polar gap”) and a large accelerating electric field will

form at the surface of the star (and 1n the entire “gap” region). In

this model the accelerated particles come from the static breakdoun of
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the vasuum. Since this model relies on the work function for ions being
very large, it requires that all pulsars have 2;2 < 0 f{neutron stars
uith‘gzg > 0 would not accelerate particles and hence would not produce
coherent radiation). The reason for the large work function for ions is
that in a strong magnetic field (~10!'Z gauss) the jons form long chains
and the gravitational binding of the chain 1s large. Recently, Flouers
and his co~uworkers (including Sutherland) (Flowers, et al. 1977) have
recalculated the uwork function and found that the work function used in
the Ruderman-Sutherland pulsar model had been ov;r—estimated by
approximately ‘an order of magnitude. With the new work-function
estimate, the polar gap does not develop, and the net result is (in

Sutherland’s oun words!) that ”the model is dead.”

Both F. Curtis Michel and E.A. Jackson have developed pulsar models
which avoid Hollouay’s eriticisms. They alse, unfortunately, produce
very 1little acceleration and provide noe mechanism for the observed
radiation. Michel’s model (1978) wutilizes currents of a single sign
moving on radial field tines (see Chapter 3, section 1) and thus simply
matches the 6-J charge density. In the simplest form of the model
(where particle inertia is ignored} no acceleration takes place at all.
ihen the particle masses are taken inte account there 1is acceleration
until the particles become relativistic, at which peint the acceleration
ceases. Even 1in this c¢ase, the acceleration is not sufficient to

provide a mechanism for the observed radiation. Typical values of the

T T o e ey et g Yo e ey e g T P

!private communication made to the author at the eighth Texas Symposium
of Relativistic Astrophysics, Boston, MA., Dec. 1976.

- 16 -



retativity parameter ¥ are of the order of 10, compared to 10'° for the

PCLC model.

Jackson’s model {(1976) abandons the requirement of space-charge
lTimited flou and substitutes field emission (at T ~ 8 K) at the surface.
The current jis then related to the accelerating electric field by

Jx= IG.ZX1U“5Eﬁ(u/¢)"2/(¢+u)]exp[~6.8x10;¢3/2/5"] (2.2.2)
where E;is in volisscm, ¢ is the work function in eV, and p is the Fermi
energy relative to the bottom of the conduction band. This model also
features complete current loops, so the requirement of zero net current
leaving the star can be dropped (since no current at all leaves the
star}. The difficulty is, again, that-there is very little acceleration

and no reasonable radiation mechanism.

A7 PAGE IS
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MATHEMATICAL FORMULATION

3.1 BASIC EQUATIONS

3.1.1 The Basic Model and Acceleration Theoremn

The pulsar model presented here is a development Ef the polar-cap
models of Sturrock and Roberts and Sturrock (see chapter 1I, section 1J}.
Fundamental to this model! is the fact that currents fliow from the polar
cap along magnetic figld lines. That this is true can be demonstrated
by comparing the‘gyroradius of the particles with the radius of the
polar cap. The gyroradius is given by

rg = pcseB % £/eB % Ad/B (3.1.1)

If we take the maximum A% that we can get (equation 2.1.6) ue find

Q" Ry By (3.1.2)
rg < 2¢ B
Near the polar cap B #B, and the polar cap radius is given by
3/2 3/2 .1/2
R R
r X * Q (3.1.3)
P R1/2 1/2
c
L
and hence the ratio of rg/rp is
R 2
o1 (OMP2 v_s3/‘2mlo-6 S (3.1.4)
r 2 c T2 \¢

b

where vg is the rotational velocity of the stellar surface. We note,
however, that as r = R, rg ~ Rp. He can also estimate whether the

magnetic field controls the current flow or whether the current flou
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controls the structure of the magnetic field. For this we simply
compare the energy density due to the kinetic energy of the particies to
the energy density of the magnetic field. The particle number density
is given by
h = pse 2 QB/(21ce) (3.1.5)
For the energy uwe again use ed$. Thus the ratio ¢f kinetic to magnetic

energies is estimated to be

3.3
20° R B,B QR
KE * * =2( *) X (__r) (3.1.6)

B /8 ) 3 e
Near the polar cap the ratio is very small (~10-12) and the magnetic
field contraols the particle flou. When r grows te the order of RL
however, the ratio approaches unity and in that region we may expect the

magnetic field to be distorted by the particle fliou.

We assume that the plasma is complietely charge separated, which means
that the pair production process is not taken into account in
investigating the acceleration mechanism. This treaiment would also he
valid provided the net current due to pairs 1is small compared to the
primary current from the polar cap. If the acceleration is large this
Will clearly not be the case and in the region of large pair production
the model will break doun (see Chapter IV). Since the particles are
tied to magnetic field lines, the current density is proportional to the
magnetic field strength. Thus, along a field line ue may urite

ifs) = J(0[B(s)/B(O)] (3.1.73
where s is a co-grdinate aleng the {ield line and s=0 refers to the

surface of the neutron star. Singe the particles are relativistic (as
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will be demonstrated in section 2), the charge density is given by

p E (3.1.8)

The 6-J charge density (equation 2.1.2), uhich is required for'5:§=ﬂ
(i.e. no acceleration), is proportional to +B. Thus, it the angle
betueen § and B is constant along a field line then equation (3.1.8) is
compatible with (2.1.2) (in the non-relativistic limit} and it is
therefore possible %o have steady current flow with no acceleration.
1f, houeve}, field lines curve then acceleration (or déceteration) must
take place. This theorem has been independently derived by Arons,
Fauley and Scharlemann (1978} by transforming to a rotating reference
frame?. 1In the frame rotating with the star, there is an eleciric field
perpendicular to the magnetic field, given by (in the non-relativistic
Timit) :

Erot # [ x rd x Bl/c (3.1.9)
If we assume that‘g is 3pproximately curl free {i.e. the magnetic field
of the star is much larger than the field generated by currents in the
magnetosphere), then the charge density of‘grot is given by the G-dJ
tharge density (equation 2.71.2). We may then divide the electric field
inte tuwo parts, the rotational part given by equatien (3.1.9) and the
non*rotgtional part which may accelerate particles. Thus oniy the

difference betueen the rotational charge density and the true charge

2Tademaru (1974) proved a restricted version of the thecrem, too. He

shoued that for an axisymmetric rotating system with a polar-cap region
bounded by radial (i.e. monopoie like) field lines, the component of E
parallel to the magnetic field lines must be exactly zero.
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density i5 a source of acceleration (Michel, 1975}, When the angle
between @ and B is constant we can find a current flow such that the
hon-rotational charge density is zero everyuhere. When the angle is not
constant, houwever, that is no Tonger possible and hence a non-rotational
electric field must develop. We are thus motivated to look at a pulsar
medel in which the ‘field lines are curved. The simplest physicéllv

realistic example is a pure dipole field.

3.1.2 Dipole Co-ordinates

In order to study the dipole field case we first introduce a co-
ordinate system based on the dipole field 1ines: The potential of a
magnetic dipole oriented along the z axis 1is given by ¢ « cos B /rZ.
The equation of a field 1line is sin%8/r = const. Thus for our co-
ordinates we may take

£ = Joosf/r  and 7 = sinfA)r (3.1.10)
The third co-ordinate is the azimuthal angle ¢ but we shall usually
assume azimuithal symmeiry and thus reduce the problem tc iwo dimensions.

The Laplacian for dipofe co-ordinates can be uritten as

(l B % 3 T}z) 8 (1 g3 £ & (3 82
o 2

Unfortunately, the values of r and 8 cannot be expressed explicitly 1n
terms of £ and %, so the Laplacian cannot be uritten simply in terms of

the dipole co-ordinates,

The polar-cap region is defined as the region of open field lines.

The bounding field line is determined by the value of Ry the ”Y-type
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neutral point” ({see equation 2.1.11). Thus we can define a maximum
value for the co~ordinate #n by ‘
Nmax = R§1/z (3.1.12)

Since we are assuming a charge separated plasma, the current density is
given by

gtr) = p(rlg(r) (3.1.13)
Since the particles are tied to field lines, j can be separated into tuo
components, the motion along the field Tine and the motion due to the
rotation of the star. However, motion due to rotation is small compared
to that along field lines if r << Ry, {the 1ight cylinder3. We shall
therefore neglect the rotation part of the current density. in which
case aguation (3.1.133 becomes a scalar equation. combining it with
equation (3.1.7) we then have

ifm)  IB(5,m)]

p(E;ﬂ) = .1
(g, 1B (3119

where £, is the vailue of ¢ on the surface ¢f the star (&£, 2 t/R,) and v
is the velocity of the particles. Since the field is dipolar, we can

urite B(k,7) as

B(g,n) = g% (1 - ff r 1}2) (3.1.15)
3.

where p is the dipole moment and r is implicitly determined by & and .

tombining equations_(3.1.14) and (3.1.15) we then have

3 o M2
e.1) - 35 (1) (fi) -5 (3.1.16)
PRE,T) = ﬁ{g,nj r 1 - E.R*HE
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For many purpeses we can ignore the rn? dependence entirely. Since

rnZ ¢ 1 uwe can make the expansion
1/2 ‘
3 2 ~ 3 2
( -2 ) 1o 3 (3.1.17)

and even at the extreme value of ry32 = 1 (8 = 7w/2) ue make an error of

no more than 25%.

3.1.3 Bouyndary Conditions

We must now vconsider the boundary conditions appropriate tec the
problem. One boundary condition is clear: the bounding closed field
line satisfies the condition E'B = 2 and hence the potential atong the
field Tine must be a constant, which we may take to be zero. In terms
of dipole co-ordinates we therefore have

F{Muax) = 0. (3.1.18)
(Unless otherwise stated, ¢ refers +to the electric potenfial,) The
surface of a neutron star is a good conductor and therefere the Lorentz
force on a charged particle on the rotating surface must be zero. Hence
the electric field parallel to the stellar surface must be the rotation
electric field (equation 3.1.9). If ue assume that B is the gradient of

a potential with azimuthal symmetry, we can urite

P (cos o)

:2: up --75;--— (3.1.19)
'%nl

for the magnetic potential, where 1 is the moment associated with the
F-poie. Thus ¢, the electric potential c¢an be determined on the

conductor surface by

& = ~R S (xr)xve, 1d6 {3.1.200
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If the rotaticn axis is aligned with the symmeiry axis of the magnetic
field this is easy to integrate. Since the velocity of the surface is
entirely in the ¢ direction we need only consider the radial derivative

of the magnetic potential. We then find that the electric potential is

given by
[=-]
. -}E: we V172 Qup o g 2%+l(cos e) - anl(cos 8) 51,215
E 24t+L c 20+1 ﬁt T
L1 *
In the case of a pure dipole magnetic field this becomes
$ = -0B,RZ(cos?f ~ cos?B;)/2c, (3.1.22
In terms of the dipole co-ordinates we mav rewrite this as
3.2
B, R 2
T (3.1.23)
E 2c 2
Niax

The remaining boundary cenditien is more difficult to determine.
Typically, the remaining beundary condition uwould be at infinity (r=e).
in the case of dipole field lines, hounever, the field lines do not
extend to infinity. Nevertheless, at r=w it is true that =0 but ¢ is
also zero at @=u/2. The dipole field structure must breakdoun at the
light cylinder (or perhaps at some Ry ¢ RL) and the "frozen-in-flux*
condition also breaks dowun when E 2 B, a condition we may again expect
near the *Y-type neutral point.” This indicates that we should be
looking for a boundary condition which app{ies at the point r=Ry. 1f
the ‘frozen-in-flux” condition breaks doun at Ry it is no longer
reasonable to assume Ey # -¥/c x B. In addition, since B ~ r-3 up to

the radius Ry, B(Ry)<<B,. Therefore (as pointed out at the beginning of
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this chapter), the gyroradius is comparable to Ry and particles can
cross field lines, effectively shorting out the circuit. Hence We may
consider the approximation that E1 # 0 at Ry and therefore the eleciric
potential is approximately constant at Ry. Since this surface
intersects with the bounding field lines, on which the potential is zero

‘ue must have

2(Ry,B8) = 0 {3.1.24)

which then provides a complete set of Dirichlet boundary conditions.

There is one additionmal condition, houever, that we may be able to
apply. At the surface of the star (uhere particle flow is not
relativistic) a region of charge may develop which then decreases the
electric tfield normal to the surface. This phenomenon is well knoun
from vacuum tube technology and is knoun as *“space-charge limifed flow”.
1f the accelerating field were non-zero at the surface we would expect
the current flow to be increased (a stronger eleciric field uoﬁ]d pull
out more particles) and hence the charge density would increase. Steady
flow is achieved when the current flow s just sufficient to lkeep the
accelerating field zero at the point of particle emission. Space-charge
limited flouw is an important feature of the PCLC and PCFB models and has
also been invoked by many other invesiigators {(though not all, e.g.
Jackson, 19786). Thus as an additional constiraint on the problem we uill
consider the case of space-charge limited +flow, which implies that the
accelerating electric field at the surface must be zero.

28/2¢ |§*= i {3.1.25)
We hox have an overdetermined problem and we are no longer free to
choose the initial current density at the surface of the star. The
equations and boundary conditions are collected in tabhle 3.
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TABLE 3

Equations and Beundary Conditions

1/2
i (o 500
p(gfn) = v g",n " 1. [3;3%1}2 eten

1 -2 )
z 8 (Ldz) g8 (3 8V N

rg
- 2.8
{8 M) = © (3.2.18)
@(Ry,o) =0 (3.1.24)
3 2
Q B, R, q
- * % Max 2,2
(e =~ g (l U /'ﬂMaX) (3.1.23)
L : Ll -0 (3.1.25)
Sx
3.2 ANALYTIC ARD NUMERICAL SOLUTIONS
3.2.1 The Nop-linear Prohlem
e will Tirst show that the pariiclies +Frem the polar cap are quickly
accelerated to relativistic velocities,. in thig analysis uwe will

consider a one~dimensional model (fhat is., assume the divergence of E

across field Tines can be negliected with regpect fo the divergence along
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the field lines) and a small angle approximation. Poisson’s equation is
non-linear in this case because the velocity in equation (3.1.16) is
dependent on the potential. Rather than uork with the potential ue
shall work directly with the particle energy.

€ = YmgeZ = mge? - ed + const. (3.2.1)

S0

LS 2

~(mgoclrelViy (3.2.2)

The velocity can be expressed in terms of ¥ as
g -1 c (3.2.3)

and hence Poisson’s equation reduces to

‘ 1/2
. 3 2
Py o e % el o T (3.2.4)
mOC 1 _E *ﬂ (Y - )

He now assume that {at Teast until the motion becomes relativistic} the
divergence of the eleciric field aleng the magnetic field lines is much
agreater than the divergence of the electric field pérpendicu]ar to the
magnetic field lines. Thus n derivatives can be ignored. Me also make
a small angle approximation and ignore rn% terms. Equation (3.2.4) then

becomes

j R
l_d—-(r3 gi)&lme fi(_fi) —_— (3.2.5)
r3 dr dar (y2—1)1/2

wuhere the dipole nature of the field lines is reflected by the r3

dependence. Equation (3.2.5) cannot be solved analytically and so

additional approximations must be made. The necessary approximation is



to assume a cylindrical model for the structure of the magnetic field

fines near the surface. Thus equation (3.2.4) becomes

d®y _ bre I (R*)3 Y . (3.2.6)
=) POl 1/2
dr2 moc2 ¢ o (YQ‘l) /

This c¢an be integrated once by multiplying both sides of Poisson’s

equation by dv/dr giving us

/2
8nej R 3/2
U (;) (2 ayt (3.2.7)
moc

This may then be integrated in terms of ellipiic integrals. We first
imake the substitution
cosh y = ¥ , (3.2.8)

Then the solution to equation (3.2.7) is given (implicitly) by

2(sinh y)1/2 cosh y FQX _;L) _ on Qx 1 )
s »

l+sinhy \’E J‘E_

/2 (3.2.9)

Bredy Y B S

m.c” VR JF

=2

where F and E are elliptic integrals of the first and second kind

respectively, qnd

5
, oo ve-1
1-sinhyl) . os ____i'i___ (3.2.10)
1+ sinh y/ ——

1 +~/Y -1

e must remember, however, that this equation is valid only for r 2 R,

¢ = arccos (
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so that the divergence of the field lines could be ignored. Rather than
working with the full analytic result, it 1is easier to consider the
additional approximation that ¥ # 1 (i.e. non-relativistic motion). We
therefore urite

‘ y=1+5% (3.2.11)

and keep onity terms to first order in 6. Equation (3,2.7) then bescomes

. L/2 3/2
as _ [ 87edx By 1k 1/4
ar "'—'3—' P 2 & (3.2.122
mc
Integrating, we find
8nej /2
b3/ 5/ | Tk 3 1 L (3.2.13)
3 moc3 * VR, VT

and since we know r = R, we can further approximate the right hand side

to get
1
b g 3/% o1/ 8xedy
3 —3 (67) (3.2.14)
m
0

uwhere r = R+ &r and 6r {{ R,. Finally, ue can sclve for & to get

. /3
g~ 3 /3 |7edx (62)*/3 (3.2.15)
1/3 3
2 moc

Typical estimates for the current are of the order of 10'2 esuscmZ-sec.
Thus, we Write equation (3.2.15) in the form
o :2/3 4,3 .
5 .55312 (6r) (3.2.162

uhere ue have assumed the particles are electrons and where

AGE 13
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J1z2 = Ja X 10712 and 8r is measured in centimeters. in the non-
relativistic timit, 5 ¢ B2 gnd hence when & % § the particles have
velocity v # ¢ and the non-relativistic approximation is no longer
valid. 1t is clear from equation (3.2.16) that {fhe particle becomes
relativistic within a few centimeters to a few meters (depending onh the
magitude of 3,3, We can also estimate the distance over which the
divergence of the field lines becomes significant. From the approximate

solution (equation 3.2.15) we find that

ab _ 4, . -2/3 2.1
o 3.5 (br) (3.2.17)

For typical pulsar parameters, Poisson’s equation now can be wuritten

approximately as

2
d
=L~ 0.3 (or)
dr

23 5 x10™ (s0)273 (3.2.18)

where the second term on the right hand side had previously been
ignored. The second term becomes comparable to the first uhen
§r = 7X10% cm. Thus it is valid te ignore the divergence of the field

lines in the non-relativistic limit.

Having confirmed that the particles quickly become relativistic, it
is now possible to deal with a linear partial differential equation by

simply replacing v uith ¢ in Poisson’s equation, wuhich now becomes (in
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dipole co-ordinates)

3.2
(l—]:r'ﬂ) 3_(}‘@)4-& é—(xj 3%
P |ElewE/ T m
1/2

Bad () (R*)?) 1 _grne

- c r 1 - g_R%ng

3.2.2 One Dimensional Sclution

As a first approach te the 1linear Poisson

a one-dimensional approximatien; that is we wish

where the divergence of E perpendicular 1o the

compared to the divergence of E along field lines.
|v-Er] << |9 Eu]

We recall (equation 2.1.2) that the charge density

(no acceleration) 1s proportional to 2;2, This

at the perpendicular rotator, for which case‘gzg 2
significant departure from j, = 0 must indicate an
field.

WHe note that the one-dimensional

mitial value problem rather than a

proceeding we aliso

model must be treated
boundary value

note that because the co-rotation

ORIGINAL PAGE IS
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(3.2.19)

equation we again consider

te consider the case
field lines 1is small
(3.2.20)

for the case of‘gn= g
suggests that uwe iook
a. In this case, =a
accelerating eleciric
as an
Before

problem.

charge density is

approximately zero near the polar cap. any charge density due to the
emitted current supports the accelerating field rather than the co-
rotation field. This wouild tend +to indicate that the acceleration
probably occurs closer to the star surface 1in this case than is the
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general rule. Equatien (3.2.19) now reduces to

3 5 3 o 1l/2
(l “r T ) B (1 %g) —~ _ Hdy (Ei)3 i_:;ﬁljljl__ (3.2.21)
ng BE \g ez c \r 1= ]-:i R, ,nz
Simplifying this equation we then find'
8 [1 & Lm‘j* R-);:)- o 1/0 3 5 -1/2
EE'(E'EE) T S L2 (cos €)% (1 - 1) (3.2.22)
(1 - i Be 1)

This can be integrated once exactly by integrating along a field line.

Since ?%/3¢ = 0 on the surface, we have

£
_ b R3 1/2
£ ?gk _ * % . I'B(COS Q)l/2 (l _ )?_ r ,]]2) dg ' (3.9.23)
E ©of o1 - 3 & ng) /2
F Ex

From the definitions of ¢ and n, we may urite the differentials

A/ cos © dr - sin © 4o

dg = -
r2 2r+/cos O
(3.2.242
sin © cos ©
— _ —_——d
df = 375 dr + T75 e
2r r

We know dn = 0 along a field tine, and we can therefore express d8 in

terms of dr to givé us

3.2

-2 )

dg = - dr (3.2.25)
12(009 9)3/2
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Thus equation (3.2.23) "becomes
p 1/2
- (1-,%rn2)
£ §E dr {3.2.26)
R, cos @
where
Bty g Ri i
K =- 12 (3.2.27)

ce(l - E-R* n2)

Along the field tine cos § = (1-r#2)1/2 50 we then have

12
T, 3 o
}_B@k__m[ (l—EI‘T]) dr 2 )
E E J (l_r,ﬂi) (3- -28
Ry
and hence
' 1/2 1/2
1 9% _ 3 2 2
EEE -K-»-(l-]l-r']’]) (l"‘r'n)
1/2 1/2 2y |*
© (3.2.29)
L o= a-e®T ca-ged)]
+ = log
6 32
l-ErTl
By
This is not, . however, a particularly useful form. Since We cannot

expect the one-dimensional approximation to be valid for large r (and

hence large 8) it is more useful 1o return to equation (3.2.28) and
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expand to second order in # (i.e. r»2). MWe then have

I

2
R R ]é-r 1£) dr =k [(r - R+ I (+© - Ri)] (3.2.30)
‘R

v
o1oﬂ
| 1

It is now easy to do the next integration to order 6%. lie note that

dg = -drsrz +  (8%) {(3.2.31
and
ga‘];-(l -Jr;-r'ﬂe) (3.2.32)
Thus
R
~ 1 1 1 7%
= ., K - = —- o —
he 2R, T (l 2r )
(3.2.33

To zero order in 7% we then have

R
Ef“r% EkK[i_g“r_;]é (3.2.34)
It is interesting to note that the electric field has ? maximum at
r 2 1.5R,, which suggests that the maximum particle acceleration may
oceur at distances of the order of a stellar radius above the polar cap
rather than at di;tances of the order of the polar cap radius as in most
previous models. We further note that this form for E, is &ue to the
dipole nature of the field Tines and is not found in cases where the

field lines are not curved.
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3.2.3 umerical Solution toc the non-linear 1-0 problem
We now turn to a numerical solution to the non-linear one-dimensional

model. The equation we wish to solve numerically is

r6g oz \g ©g
€3.2.35)
-y 37y .3 o172
:lre,j*(R*) —]II'T] v
=— =) |l —=
mo® 1- E—R*ng (¥ - 1)

This equation can be solved easily using standard differential equation
solving programs (in this case the program ODE, devaeloped by Shampine
and Gordon - see Appendix B - was used) provided accurate starting
values c¢an be determined. The infinity at =1 must be avoided by
starting the integration at a position slightly above the stellar
surface, uhere y=1+6, The resuits of the first section are used to
determine the starting values. The second order equation must first be

decomposed into a pair of first order coupled equations.

Yy =¥
avy
® "
g 2 (3.2.36)
dy hﬁej* Ri r3 §2 1 Y1 Y2
I
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He now reurite the system in numerical terms.

1 ay.
1
& e
v, 2.45 X 103‘7 J1p ‘R93+6 - g2 Yy . ':{E (3.2.37
dg 6 51172 o172 72" ¢
[1--75xlo R%ﬂ] [1-.751””] (V?_-

where Jyz = J,X10712 and Rae= RaX1676. Yo simulate the fact that no
acceleration takes place on the bounding field line {(9=9nsx) We shall
replace jiz by 512(1=n2/niax) so that only a portion of the current
causes acceleration.

The results of the integration are shouwn in figures 3 - & We note that
the exact numerical results are completely consistent with the analytic
approximate results. The initial behavior of & with respect o &r is

correct and there 1is, indeed, a maximum 1in the eleciric field at

approximately 1.5R,.
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Figure 3: ¥ vs R/R, for #/%max= 0,.48,.69,.83,.97 and j12=1. Values of
N Nmax are plotted from top to bottom.
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Figure 4: Accelerating electric field plotted vs. r/R, for
n/nma).(:[}r .48,.69,.83,..97 and j1 2"':1 .
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Figure 5: &=y-1 plotted vs. 6r/R, with N/ Nmax=0,.48,.69,.83,.97 and
jrz=1.

..39_.


http:7f)/max=O,.48

ALY
o 35
v vs R/R,

o |
100 |- ]
10° _
100 |— ]
10° Lo - _

o | | 1 [ 1 -~
0.9 1 2 3 4
R/R,

Figure 6: < plotted for various values of Ja» With co-ordinate 9=0.
The values of j42 are: 1,.52,.31,.17,.03.
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3.2.4 Juo Dimensional Solution

Ne must now consider the two dimensional problem. It is certainly
true that the time and ¢ dependence can he eliminated in the axi-
symmetric case, but it is probahiy a good approximation to use a tuo
dimensional model even in the non-axisymmetric case. The tuo-
dimensional problem is, however, much more difficult to work with than
the one-dimensional case, In this section we will consider tuo
different épproaches to the problem. In the first method we shall
assume a form for the transverse behavior of the electric potential and
use a perturbation exﬁansion in the co-ordinate =. The alternate

approach is toc assume that the current has the same 7 dependence as the

potential and use a separation of variables technique.

3.2.4.1 Perturbation Method
We first analyse the two dimensional problem from the perturbation
expansion approach. We know that the'potential for the aligned rotator

must be an even function of n» so we expand it in a pouwer series in 72,
= . 21 213
$(E,m) > ajle)n /nmax (3.2.38)

We also knou that at the surface of the star the potential has the form
%,(T-nzlﬂéax) khich thus forms the  boundary condition that the
coeffiecients of all terms of order #* and higher must go to zero at the
surface of the star, while a; must go to 1 (we may set ag=! without loss

of generaliiy). Finally, the condition that ¢ = 0 at Mnax requires
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T aj(e) = 1 (3.2.39

The basic assumption we need for a perturbation expansion is that
lajl<faj-1[. Even -with this assumption the problem involves a great
deal of messy algebra. In working with the perturbation expansion, ue

nust also expand j, as a pouer series in #n2.

We now laok at the problem to zeroth order in 7. The potentjal must
be expressed to first order and the current to zeroth order in %2. He
therefore set

- 2 2
¢ PCEY(1-7 /"max) (3.2.4M)

Substituting equation (3.2.40) into equation (3.2.19} we find (to order

1

72} ,
(1“%“72)[ 2,2 V3 (1 3\ lyer 32
b CL B T"‘m‘Maz‘i) 3 (E- Bg) T2 (l BRI )
* ] Thtax (3.2.41

hrj R\
0 * 2 2
- () g g

The zeroth order equation is then

= E—(i ;3[’—)— e S (R—*) (3.2.42)
;B_g' z \g e 32 e T

A particular solution to the inhomogeneous equation (3.2,42) is

j
0.3 .2
tp(8) = —= By Thyax (3.2.43)
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The homogeneous equation may be written as

52
&y ¥
g S =0 (32.2.44)
2 2
Bg T[Max

To sclve this equation we make the substitutions
u = ¢z and  T(g£Y = u?y(ud (3.2.4%)

Equation (3.2.44) then becomes

2
&y 14y L 16
¥ gas |2t 3 (¥="9 (3.2.46)
du u ﬂ
Max

This is the modified Bessels’s equation of order 2 and parameter 4/7%yax-

The solution to equation (3.2.42) is then given by

b VE- bvE |, Mo 3.2
¥(g) = c,E1, (ﬁ—)+ .8 K, (nMax )+ = Ry Tyax (3.2.47)

The boundary conditions at r = Ry and r = R, nou determine the values of
the constants. If Ry >> R, it 15 simpler to make the approximation that
£ £ 0§ at the outer boundary. Then the I; term goes fto zero and the
remaining ftwo terms must cancel. As x =+ 0, Kp(x) > 2/x% and ue

therefore find that

J

C
2 2 0.3.2 _
T Tax ¥ o Bx Tpax ~ © (3.2.48)
and hence
8ﬁjo Ri
Cp = = (3.2.49)
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At ¢ = 1/R, ue require

3
QB Ry ,

¥(8e) = - 55— Myax (3.2.50)

Since 48/ 2/Muax>>1, wue can use the asymptotic expansions of I, and K

to simplify equation (3.2.47) at the steliar surface.

eg o /2 -C
12 NW and K2 N(E—g) e (3.2.51)

uhere

T = 48V T/ Nnax (3.2.52)

Combining equations (3.2.49), (3.2.51), and (3.2.51) ue then find

QB 2 2 = VP
e o b ee———— i - 3 —_ e =%
6 = [ 5 B Myax © oRThyax ~ 80 (2g*)

(3.2.53)
3
R
* 1 -
x[z— (2nc,) % e ';*]
Finally, we require space-charge limited flow, which determines jg. We

urite d¥/d# in terms of ¥ (as defined by equation 3.2.52)

8e 2 8¢ 2
di 1 4 [° .2 2 d g .2
EE— T2 ag [15 Tyax I2(§)] T2 dC [1-5- Tyax K2(g)] (3.2.54
gnMax gnMaX

He also note that

Il

j—g[cgzg(g)] = C1,(0) T [ggxg(g)] - (0 3.2.59

Hence, at ¢, we have

1
(@]

C C
S = G (G - 2 G K(Eg) =

(3.2.56)
% €x
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ind, combining equations (3.2.58) and (3.2.49) with the asympiotic
:xpansions (equation 3.2.51), ue get

2
81" 5
=7 e—EQ* c —9

°1 2 T 7 T ¢

RD e 20x (3.2.57)

“inally, combining (3.2.57) and (3.2.53), ue have
1/2

(E_) QB R 7 e° Qs
55 % B Tyax * (3.2.58)

f=—

Jo = T Tex
%6ﬂ - (2“C)l/29§ Ry nia%]

which is the value of j, originally estimated by Sturrock (1971) and the

valtue of j which gives the 6-J charge density at the surface.

One of the original motives for analyzing dipeole ¥field lines uas to
get large acceleration near the stellar surface. However, the zerecth
order solution for the aligned rotator does not produce significant
acceleration. Actually, this is to be expected, since at this order wue
have only included corrections of order 8% and we have simply recovered
the 6-J4 charged density in a region where +the field 1lines are very
nearly straight {(see the theorem described in section 1.1 of this
chapter). We must therefore extend the analysis to second order in % in
order to determine what acceleration (if any} 1is produced near the

surface. HNe set

b N
@ = y(g) [l - 'ng/'lﬁax + G, (E) ngfnﬁax - Gy(8) /ﬂMax]

(3.2.59)
. . 2,2
and we note that az; is a function of & but b s a constant.

Substituting into equation (3.2.19) we now find the =zeroth order
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equatien is

g, :

N hxj R

18y Ly 2 _|__._"0™ (2.2.60)

g [?(_a) 5ot 55 }‘ c i
CACIRATA & R S v

while the second order egquation is

N ) G - &
2] 8 (1d)y 1 [ Fy oy oy b
(0 ) 2 *[g il & 2 & R
TtMax g g
. 2 5
thﬂ“e}l X5 (i 8 )I
2 8 2 2 2 2
S L S LI (3.2.61)
.03
hej R
0 * 31,3 b
R s )
Nyazx

We note that the zeroth order equation has been modified from equation
(3.2.42) but we are assumming that az <{ 1 so0 to solve these equations
we first set a; = 8 in equation (2.2.60)Y (%thus recovering the original
zeroth order solutions equation (3.2.47)) and then use fhat solution in
equation (3.2.61) to eliminate the V¥ dependence. To solve equation
(3.2.61), ue first define a neu variable

. B = ¥a, & {3.2.62)
With this definition and using equation (3.2.60), equation (3.2.61) can

be reuritten as

: 2 2 2 £ 2
Eg nMax nMax nMax
(3.2.63)
2o (1y) 2 Mo% s 5
=g E(Eég) 2 c B "8 T« B
nMax TIMax
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de again change the independent variable to u2¢=¢ and find

2 2
w B, , B, (e ag)p
d 2 du 2
4 ﬂMax
3 (3.2.64
hrnj R
0 3 3 b+ 1,2 Ly
=T T ¢ - 8 2 * S-R* * 2 nMax * 2
v Max Max

The boundary condition for B at the surface is cleariy B{u,)=0. (Since
az=0 at the surface.) At the outer surface the condition becomes
BuZ > 0 as u » 0, This is true as long as az does not hlow up at £=0.
While this leaves B undetermined on the outer boundary, ue shall require
the stronger condition B=0 at u=0. The condition of space-charge

limited flow requires

2l

d a8 B - = =
(B =erEg| =P O (3.2.65)

§* dg g * 11*

Since B itself is also 0 at u = u, ue then have dBr/du = 0 at u,.

He can immediately determine the constant “b” in equation (3.2.59).,

At u, equation (3.2.64) reduces to

_—-—c--—-—-(b'i" l) + "—é-——=0 (3.2.66)
T]Max

and thus ”b*” is given by

b, .
b = 3" 1 (3.2.67)

2 .
Myase thO Ry

Substituting from equations (3.2.58) and (3.2.50}, we immediately find
that b=0. Thus there is no secend order correction to the current. To

soive equation (3.2.64) we use a Green function approach. The Green
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“"unction for this equation (Bessel’s equation) is given by (see Appendix

, for details)

‘ Glu,u’) = E—Ja(hu<9[Ja(Ru:) + aNq(Au>J] (3.2.68)
2a )
there
@ = 428 (3.2.693
ind
A= 8/7Mmax (3.2.70)
a = -JafAu,)/Ng(Auy,) (3.2.79)

Thus the solution o equation (3.2.64), with B=0 on the boundaries, is

given by
u
. 3.2
L P v |
1 It
g(u) = - 0 Max G(u,u') _ 3 + 3 R, + + L du’ (3.2.72)
c 8u’2 8 % > 2
0 v nMax rr]Mauw:

Explicitly substituting (3.2.68) into this equaticn ue find the formal
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solution

c 2a

.3
haj R 5
plu) = - —2 = ZM3p v 2|
l TIMax

11* u

[Ja(hu)[.ra(hu’)du’ + a Na(lu)[Ja(ku’)du'

0 0

+ a Ja(?xu)f Na(?\u’)clu']

u, u (3.2.73}
I (au’) 3 ()
- % I:Ja(?\u)f a,g au’ + 2 Na(hu)j e — du’
u o u
0 0
u
*Na(lu')
- a g, 0) f —— o]
u
Uy Uy
b e ’ ‘ ” y ’
+ ng [%x(hu{/.¢(u ){x(lu Jdu’ + a %x(luij.@(u )q&(lu Ydu
Max & .

+ 2 Na(?\u)/ \p(u'E)Ja(lu')du']I
o 5
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3.2.4.2 Separation of Variables Method
In this method wuwe look for solutions to equation (3.2.19) 1in which
the # dependence of ¢ is the same as that of j,. HNe further assume that
P and i, can be uritten as
$(E,m) = VLEIH(N) : (3.2.74)
ix(03 = JegH(n) (3.2.75)
de note, houever, that equation (3.2.19) is clearly not separable in
these co-drdinates and we must therefore approximate it in order to

render it separable. We wurite equation (3.2.19) to louwest order 1n 7 to

get
- - b (M)
§2§_(£?’3)+1l_]%(n %)=‘+R§ (3.2.763

We nouw substitute equations €3.2.74) and (3.2.75) into (3.2.76).

b

it ; it 1 ’ 0.3 (3.2.77
glliH-lFH'f'\[JH-Fﬁl]fH = = CR*H
Dividing by ¥H and regrouping terms gives us
.03

" " ’-I-TEJ R 7 o
gV Yy . 0 *__ (E_+ H_) (3.2.78)

¥ Y cy H TH

The left hand side of equation (3.2.78) 1is a function of ¢ only, wuhile

the right hand side is a function of 7 only. We therefore have the tuo
equations
. 53
B , o hﬂjo R
gV -V -0y = - (3.2.79)
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and
H +%H'+C£2H=O (3.2.80)

The solution to equatgon (3.2.80} 1is then given by the Jpy Bessel
function.

H(n) = Jdolan) (3.2.81)
Equation (3.2.79) uill be recognized as identical in form to equation

{3.2.42) and wue can therefore immediately write down the seclution te

equation (3.2.79) as

( _ hnjo 3
$(g) = 81, (GJE—)+ c, § K, (och_)+ s— R, (3.2.82)

a c

The boundary condition on closed field lines requires
Jo(aNpax) = 0 (3.2.83)

Thus the separation constant « is determined by the zeros of Jsg.

The only remaining task is to evaluate constants. The potential may

now be expressed in the following form:

&(e,M) =§: c; L, (X ﬂ) + ey, EK, (Xi i)

izl 1 nMax TIMax
(3.2.84)
byj
i 3 2
_|_
X2 c R* TIMax JO (Xi n/nMax)
i 5

where ¥; 1is the ith'zero of Jg. Following the same lines as 1in the
perturbation method (see equations (3.2.49) ~ (3.2.58)) and using the

orthogonality properties of the Bessel functions, we find that the
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3
3Pr j, R
c . = - i ¥ (3.2.85)
21 X? o
1
2 3 X3 v/ 8
2 'ji Ry - _T_
i1 " — % ¢ Max (3.2.86)
Xy ©
i

The requirement of space-charge limited flou then determines the ji’s.

Q B,

G, o= - (3.2.87)
* Ty 9y Ky )
and the total current is given by
0By 21 o0ty 1Ty (3.2.88)

igln) = -
< T % &y
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Chapter IV

DISCUSSION AND CORCLUSION

11 THE ACCELERATION PROBLEM

.11 The charge separated model

As is clear from the preceding chapter, the exact mechanism by which
charged particles are accelerated is still a problem, Fundamentally
this is due to our lack of knewledge about conditions 1in the outer
magnetosphere (near the- light eylinder, or perhaps near RFB). We know
that at the 1ight cylinder, the field 1lines must “slip” +through the
plasma or be highly distorted. If this were not true no EMF could be
generated. An additjonal complication comes from the requirement that
acteleration take place near the surface of the star (this is required
in polar-cap emission models) and that of space-charge 1limited flou.
The space-charge limited flow produces zerc acceleration at the surface
and the slou change of the angle betueen @ and B means that only a very
small accelerating electric field can develop near the surface. In the
context of a model with dipole field lines, 11 seems that we must either
abandon space~charge limited flouw or the requirement that acceleration
take place near the surface. Larger acceleration will occur near the

stellar surface, houever, if the magnetic field lines near the surface

curve more rapidly than in the dipole case.

The latter of these tuo choilces is the more atiractive. Referring

again to figure 2 in Chapter I1 we note that the data indicate that the
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volar cap is larger than estimated in the PCLC models. In the PCFB
nodel, the polar cap was made large by moving the point Ry from the
1ight cylinder to the force balance radius. An alternate approach.,
houever, would be 1o move the radiation producing region out from the
stellar surface. The fanning out of the magnetic field lines would then
produce a wider beam. If this is the correct solution, the data suggest
that the emission region is at a significantly larger distance from the

surface than previously suggested in polar-cap models.

A'simple linear least-squares fit to the data shown in figure 2 gives
the following formula for the pulse width for a given period:

Tog () = 1.43 + 0.76x10g(P) (4.1.13
where W is measured in millisecends and P in seconds. It is impossihle
to confirm the slope, houwever, since there i3 a range of slopes uwhich
give a good Tit provided the constant term 1is chosen right. In
comparing the fit for a slope of I (PCLC} with the fit for a slope of
273 (PCFB), we find there is no significant improvement. The least-
squares fit for a slope of % gives a constant term of 1.40, The width
of the emission cone {in seconds) for emission occurring at a distance

re from the center is given by

12

I
w:%(R—e) % (4.1.2)
v

The least-squares fit then suggests that the emission region is located

approximately at ro ~ 50R,.

Ancther difficulty in analyzing the acceleration mechanism is due to
the nature of the curved field lines. We know that we must have curved

field lines in order to get acceleration, but the most realistic case

—54_



(dipole field) is very difficult to work with because Laplace’s equation
is not separable. Small angle approximations are possiblie (as was daone
in the final section of Chapter 111), but the method is not valid for
large distances, which appears to be an important region for the physics
of the problem. A possible solution to this difficulty 15 to use some
co~ordinate system which 1is separable and still mimics the general
morphology of the dipole fi1etd lines. Gne such co-ordinate systiem 1s
that of *toroidal” co-ordinates. Laplace’s equation 1is separable
(although the Helmholz equation is not) and the “field 1lines” in this
system would curve in the same direction as the dipole field lines,
meeting the equatorial plane at right angles to the plane (as do dipole
field lines). The radius of curvature is, houever, much shorter than
the dipole case which would probably produce excessively high
acceleration. The method might be useful, nevertheless, as an
indication of when acceleration can be expected and perhaps might serve

as an upper bound on how much acceleration can be expected.

4.1.2 The effects of pair production

As noted at the beginning of Chapter III, it is dwportant that the
plasma be charge separated. Thus, either pair production must not take
place, or the effects of pair production must be negligible in order for
the equations io be valid. If pair production does take place, there
are several effects on the equations. First, the current is no tonger
tied to the magnetic field lines, since a particle may produce a gamma
ray via the curvature radiation mechanism, which then crosses field

lines until it produces an electron-positron pair on a new field line.
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Thus current can be ftransported across field lines even if individual
articles are firmly attached to the field lines. A second effect is
hat-the charge density may ne longer be simply reiated +to the current
ensity. Indeed, once pair production takes place, the number of pairs
Xpected is large, so6 in order for the charge-separated equations to
ti11 be valid, the velocity difference betueen elecirons and positrons
wst be extremely small. Since, houever, the elecirons and positrons
i1l be accelerated 1in opposite directions (if the acgelerating field
is non-zero), it is unreasonable fto expect the velccity difference to
remain small even if the initial difference is negligible. We uould
then expect the electron-positron plasma to distribute itself so as to
éhield the particles from the accelerating field. Thug, once pairs are
produced, the acceleration will be sharply reduced. This might not
affect the radio emission process (in fact it.may be the source of the
radio emission mechanism, e.g. the beam-plasma instability postulated in
the Ruderman-Sutherland model), but the decreased acceleration makes it
difficult to account for the high-energy gamma rays that have bheen

observed from the Crab pulsar (Ogeiman, et al. 1976).

4.1.3 The effecis of particie inertia

One gf the results of the acceleration theorem presented in Chapter
II1 is to suggest that the effect of particle mass is even more
important that previousty realized. It has lorg been suggested that the
accelerated particles would tend to wrap up the magnetic field Tines
when dnertial effects became important compared to electro-magnetic

effects. Since it 1is now clear that such distortions of the magnetic
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field are accompanied by accelerating electric fields, it is important
to consider the particie masses 1in explaining the acceleration
mechanism. The analysis of the problem with particie masses included is
extremely complicated and will probably require detailed computer

modeling in order to solve the equations.

4.1.4 Return currents: Is a pulsar charged?

In the polar-cap region, particles of only one sign are accelerated,
and the same particles aré accelerated from both poles. It 1is clear
that the accelerated particltes cannot be accelerated indefinitely and
removed from the pulsar, or the pulsar would quickly develop a charge
sufficient to turn off the current. Either particles of both signs must
be removed from the surface (an unlikely situation except 1in the
orthogonal rotator case, see Chapter II - Holloway’s analysis) or there
must be a deceleration region in which the particles are sloued doun and
transported to other field lines in the closed field region and returned
to the star. One uwould suspect that particles cross field lines uhen
le] > |B]. 1f the star has‘a net charge, Q. and ue ignore the co-
rotation E field, the particles would be expecited to cross field lines

rhen

(4.1.3)

If we then demand that particles c¢ross field lines at RL we can solve

for Q to find

Q ~ QB,R3/C (4.1.49

In fact, this large a charge on the star itself uwould be sufficient to
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stop the acceleration of particles entirely and ultimately leave a
vacuum around the pulsar (Jacksen, 1976). Presumably then a smaller net
tharge appropriately distributed in the magnetosphere, along with the
rotational electric field 1is sufficient to make the accelerated
rarticlies cross field lines. By dealing with a vacuum “magretosphere’,
Jackson (1976} has estimated the charge on the star to be a third of the
above value. In fact, if the charge imbalance is distributed near the
"Y-type neutral point” rather than on the star itselif (as is likely),
the charge imbalance may be significantly Tess than either estimate. 1In
any case, it is quite likely that a charge imbalance is present and that
it‘forces the accelerated particles to c¢ross magnetic field 1ines and

return to the neutron star along the closed field lines.

4.2 THE RADIATION PROBLEM

While the radio emission of pulsars seems to fit a féirly simple
conceptual model (although the details of the emission mechanism are not
well understood), the other forms of radiation present a bewildering
variety of properties. Tuo pulsars, the Crab and the Vela pulsars, have
been detected optically. The Crab pulsar has also been detected in the
infrared and the x-ray regicn (Cocke, et al. 1969; Wallace, et al.
1877). Gamma radiation has been detected froem four pulsars
(PSR-0532[the trab], PSR-0833[the velal, PSR-1747, and
PSR~1818)(Thompson, et al. 1975; Buccheri, et al. 1976; Ogelman, et al.
i876). In the case of the Crab puisar the gamma ray energies are Kknoun
to exceed 1 Gev., All the pulsed radiation of the Crab pulsar {except to

extremely high-energy gamma ravs ~ 10'?2 eV¥) 1is 1in phase with the
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srincipal radio pulses.

e radio pulse,

In the case of the Vela pulsar,

there is only

but tuo optiecal pulses and tuo gamna ray pulses, none

>f uhich is in phase with any of the others.

for PSR-1747 and PS5R-1818.

there is one radio pulse and one gamma ray pulse but in neither case are

the tuo

shases,

in phase,. Table 4

summarizes the situation and the relative

TABLE 4

Relative Phases of Radio, Optical, X-Ray, and Gamm Ray Pulses for four

pulsars.
Phase
very energetic
Pulsar radio optical | x-ray | gamma ray ! gamma rays
0532 {Crab) ~20° (precursor) .
0° (main pulse) 0° 0° 0° variable
143° (interpulse)| 143° 143° 143°
0833 (Vela) 0° 100° 60°
196° 223°
1747-46 0° 57°
1818-04 0° 263° .

it is untikely that any simple model

facts.

we would ascribe to the polar caps (i.e.

indicates

that

magnetosphere.

gamma rays produced

production process.

This

some of the

is also

at the polar cap
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The fact that radiation oceurs at phases other than those uwhich

the phase of the radio pulsel,

supported by the fact
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elgeuhere in the
that high-energy
would he eliminated by the pair-

The Crab pulsar then appears to be anomalous in the
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fact that pulses at all wavelengths are in phase,. It is quite possibie
hat the Créb pulsar is the one pulsar in uhich we observe radio
mission from the 1ight cylinder (or force balance) region. In that .
ase, all the radiation from the Crab 1is produced in one area in the
uter magnetosphere with the possible ;xbeption of the precursor. In
act, the precursor may be the polar-cap radioc pulse that we observe in
11 other pulsars. The fact that tuo pulses symmetrically arranged
bout a center phase are observed in both the Crab and the Vela pulsars
(for both optical and gamma ray radiation) suggests that this radiation
is ococuring in the outer magnetosphere uwhere the opening angle of the
open field line region 1is large. If this is the case, the resultant
radiation pattern 1is closer to a *fan beam” than to a “pencil heam”,
thus explaining why ue see both pulses in both the Vela and Crab

pulsars.

4.3 CONCLUSIGON

To paraphrase {and invert) Veltaire’s famous aphorism about God, if
pulsars did not exist, it would not be necessary to invent them.
Indeed, based on our current theoretical understanding of pulsars, the
fact of their existence seems quite remarkable. Nevertheless, ue can

come fto a few conclusions:

1. If the magnetic field lines are curved (as they will be in any
realistic model), particle acceleration (or deceleration) must

occur.
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2. If ue assume space-charge Timited flow, the acceleration does
not occur near the surface of the star, but rather it occcurs
at distances of the order eof a few to hundreds of star radii

from the surface.

3. It 1is likely that the star-magnetosphere system has a net
charge, the effect of which is to force particlies emitted from
the polar-cap region to c¢ross magnetic +ield 1lines and
eventually return to the star. Thus closed current loops are

present and the system is in a (quasi) steady state.

There 1is clearly much uwork vyet to be done to establish a clear
understanding of pulsars. Primarily we need to understand the sitructure
of the magnetosphera near the 1light cylinder uwhere particle dinertia
becomes important. once we finally understand the magnetosphere, it
#ill be possible fto construct beljevable radiation emission mechanisms.
Once the plasma processes are understood we will finally be able tc make
a strict comparison betuween the thecoretical models and the observed

radiation.

It is implicit in the nature of an astrophysicist to be optimistic
about the.possibilities of understanding the distant and mysterious
objects in the heavens. So the work on pulsar models will go on and
better models uill be produced. The task remains a difficult Pne and it
is perhaps unfortunate that the LGM theory had to be dispensed with.
Viewed in the 1iight of what we knouw today it had many attractive

features.
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Appendix A

MATHEMATICAL DETAILS

.1 GREEN FUNCTION FOR THE SECOND ORDER PERTURBATION

The Green function for equation (3.2.64) can be easily expressed in
;arms of the solutions to the homogeneous equation. The equation is
Bessel’s equation of order a« = J28 and parameter A = 8/%nax- MWe uwish to
form a Green function for the interval 0fufu, satisfying homogeneous
boundary conditions. For uu’ we want 6(0,u”}=0. For u>u’ ue need

6(u,.u’)=0. MWe therefore urite 6 as follous:
z
o(u,u") = o 3,0 ) [7,0m) + 2 Na(?\u>)] A1)

where ug = min(u,u’} and Uy, = max{u,u’J). At the point u=u” there is a

discontinuity in the first derivative given by

ag{u,u’) { _ da(wu’) | _1_ (A.2)
du du ‘

+ - u
but we alsc know that the derivative discontinuity is given by
Cail(Jg s Ne) (R.3)
where W is the UWronskian of Jgq and Ng evaluated at the point u. The
Wronskian is given by fo. Stegun and Abramouitz, eqn. 9.1.16)
W(Jg,Ng) = 27(mau)d (A.4)
It immediately follous that the normalization constant ‘¢’ is given by

t = n/2a (A.5)

Finaltly, the value of “a’ is determined by the boundary condition
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ilu,,u’)=0, which implies

a = ~Jg(Auy)/Na(Auy) (A.5)

1.2 EXACT INTEGRATION OF THE NON-=LINEAR PROBLEM

We start from equation (3.2.7) (repeated here for convenience)

1
ay 8rej,, /2 R, 3/2 o 1/h
- = —_ - (A.7)
dr n o3 ( r ) (¥"-1)
8]
We now make the substitution cosh y = 7. Equation (A.7) then can be
written as
g 372
; y _ . (F ; 1/2 (A.8)
sinh y o =K (r ) (sinh y) .
where
)
(8ﬁ93*) (A.9)
K = .
m 03
0
and ue mway therefore i1ntegrate both sides to find
¥y r
1 - .
f(sinh y") /2 dy’ =k Ri/afr 3/2 dr (R.107
0 R,

The right hand side is trivial in 1integrate; the left hand side can be
found in Gradshten and Ryzhik (1965) lequation 2.464.5 pg. 115] uith the

result given in equation (3.2.9).
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Appendix B

COMPUTER LISTINGS

The follouwing are listings of the programs and subroutines that uere
d in the numerical solution to the non-linear one-dimensional
ation (see Chapter 1II, section 2.3). The subroutine "ODE” and its
support routine ”DE” uWere uritten by Shampine and Gordon. All routines
except one are written in IBM Fortran IV (level H). The one exception,

the subroutine ”INVRT” was written in the IBM 370 assembly language.

PROGRAM TO SOLVE THE NON-LINEAR ONE~-DIMENSIONAL DIFFERENTIAL EQUATION
WMHICH DESCRIBES THE ACCELERATION OF CHARGED PARTICLES FROM THE PGLAR CAP OF A

[~ T o I o B+

IMPLICIT REAL*3 (A-H,0-2)
REAL*3 GAM(2),HORK(150)
INTEGER IMWBRK(5)

COMMON ZKAPPA,ETA,ETA2
EXTERNAL F

VARIABLES USEDR:
P = PERIOD
B = SURFACE MAGNETIC FIELB
RSTAR = RADIUS OF THE STAR IN CM
ETAMAX MAXIMUM VALUE OF THE CO-ORDINATE ETA
ETAMX2 ETAMAX¥¥2
GAM(T) RELATIVISTIC GAMMA
GAMC(2) B(GAMMA) /D (XI)
XJSTAR CURRENT DENSITY¥*1.0E-12¥(1.-ETA¥¥2/ETAMXZ)
EPSI = ACCELERATING ELECTRIC FIELD*1.0E-6

i unon

ASSUME P=1 SEC
B=10¥¥12 GAUSS

[ I I > B I T o S o+ o B o I - BN - T o o T e T |

RSTAR=1.0D+6

ETAMX2=2.0%3, 1415927/3.0D+10
DETA=ETAMX2,129,
ZKAP0=2.459D17
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ABSERR=0.0 PAGE IS
RELERR=1.0D-6 %%I%%%QUALM

Do 10 1=1,129,32
ETAZ2=(I-1)}¥DETA
ETA=DSQRT(ETAZ) :
ZKAPPA=ZKAPO/DSART(1.0D0-.75D6*ETA2)*¥(1.0D0-ETA2/ETANX2)
XJSTAR=1.0BO-ETA2/ETAMX2
GAM{13=1.0D00+2.59D~-6%XJSTAR¥*(2_0D0/3.000)
GAM{2)=—~1.60+9%(1.0D0+2.0D-10)*¥XJSTAR®¥¥(2,000,3.0D0)
PSIO=DSQRT(DSQRT (1.0D0-1.0D6XETAZ))I*1.00-56
WRITEC(G, 1TOJETA,ZKAPPA, XJSTAR
110 FORMAT( 1INTEGRATION FOR ETA = 7,F12.6,10K%, "KAPPA =7
&, 1PD20.12,5%, “JSTAR =/,F10.6/8X,7PSI’, 12X, "RADIUS ,9X, /DELTA-R”
@, 8%, "GAMMAT, 10X,
HYBOGAMMAY , 7%, LOG (GAMMA) 7, 7X, 7E-PSI”, 7%, “IFLAG /)
PSIMAX=,25%PSI0
PSTEP={PSIMAX-PSI0}*1,0D0-9
PSMAX=(PSIMAX-PS10)/50.D0
CALL INVRT(PSIO,ETA,R,SN,CSN)
BR=1.0 -
GLOG=DLOGIC(GAM({1))
DELTA=1.00-4/RSTAR
GBELT=GAM(1)-1.0D0
EPSI=-851.67D-6%DSART(1.0D0+3, 0DOXCSN) /R¥¥3/PSIORGAM(2)
WRITE{(G, 100)PSI0,DR,DELTA,GAM(1},GDELT,GLOG, EPSI
WRITEC(S, 1033BR, GAM( 1)
MRITEC10, 103)DR,EPSI
WRITEC11,183¥DELTA,GDELT
103 FERMAT(1¥,2020.12)
160 FORMAT(IPY7B15.7,5X,15)
POUT=PSIO
PSI=PSIQ
IFLAG=1
po 15 J=1,1000
POUT=PSI+PSTEP
CALL ODE(F,2,GAM,PSI,POUT,RELERR,ABSERR, IFLAG,WORK, IWORK)
GLOG=DLOG10(GAM(1))
GBELT=GAM(1)-1.0D0
IFCIFLAG.LT.03G60 TO 16
CALL INVRT(PSI,ETA,R,SN,CSN)
DR=R/RSTAR
DELTA={R-RSTAR)/RSTAR
EPSI=-851.670-6¥DSART(1.0D0+3. ODB¥CSNI/R¥¥3/PSI¥GAM(2)
WRITE(G, T00)PSI,DR,PELTA,GAM(1},6DELT,GL06G,EPSI,IFLAG
WRITE(S, 103)DR, GAM(T)
WRITECIO0, 103)DR,EPSI
MRITECT11,103)DELTA,GDELY
Go 1O 138
16 WRITE(6, 101)IFLAG,PSI,POUT
101 FORMAT{ O®¥¥ERROR: IFLAG=",14,10X,1P2D020.12}
STOP
18 IF(PSMAX.LE.PSTERP)PSTEP=PSTEP+PSTEP
IF(PSI.LT.PSIMAXIGD TO 11
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http:IFLAG=',14,IOX,1P2D20.12
http:FORMAT(IX,2020.12
http:PSMAX=(PSIMAX-PSIO)/50.DO

i5

11

104
10

Su

r and

then

SAvY

START

CONTINUE

QUTPUT DATA FOR LATER PLOTTING USING “TOP DRAKWER”

HRITE(S, 104)

WRITE(10,104)
MRITE(11,104)

FORMATC1X, “JOIN")

EONTINUE

sSTop

END

SUBRBUTINE F(PSI,GAM,DGAM)

THIS SUBROUTINE IS USED BY ODE
IT DEFINES THE DIFFERENTIAL EQUATICON TO BE INTEGRATED

IMPLICIT REAL¥8(A-H,0-2)

REAL*8 GAM(2),DGAM(2)

COMMON ZKAPPA,ETA,ETA2

BGAM(II=GAN(2)

CALL INVRT(PSI,ETA,R,SN,CSN)
DGAM(2)=ZKAPPA¥R¥¥3IXPSI¥¥2/DSART(1.0D0~. 75D0¥R¥ETA2) ¥6AM{ 1)/
EDSQRT (GAM(1)¥%2-1,808)+6AM(2)/PSI

RETURN

END

broutine “INVRT” is used to convert values of 7 and & to values of
6. It uses Newton’s method to solve first for the value of r and

determines sin2(8) and cos2(8) from the definitions of n and &.

SUBROUTINE INVRT(PSI,ETA,R,SN,CSN)

START

USING ¥%,15

B START

BC X757,CL77INVRT

s 18F

EQu *

sTH 14,12,12013) SAV REGS

ST 13,SAV+4 SAVE ADBRESS OM MY SAV AREA
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SKIP1
SKIP2

ROK

*

¥RETURN TO CALLING PROGRAM

LA 12,SAV

ST 12,8(13)
tR 13,12
DROP 15
USING SAV,13
LM 2,6,0(1)
LD §,0(3)
LTDR .0

BZ ZERO

MOR 0,0

STh 0,ETA

LD 2,6(2)
S$Th 2,PSI

LH 2,PSI

SH 2,ETA

BNP SKIP1

LD 8,=D"1.0"
DOR 0,2

B SKIP2

LD 0,RSAVE
MDR 2,0

LDR
MOR
MBR
LDR
MDR
Mb 4,=p73.07
AD 4,=D"1.07
MB 6,=D“4.07
MD 6,PsSl

AD 6,ETA

DDR 4,6

N L S
P oL NN N

r
r
»
»
’

SDR 0,4
LPOR 0,0
STD 0, TEMP1
STD 4,TEMP2
LH 8,TEMP2
SH 8,TEMP1
CH &,=X’0B0O”
BH ROK

LBR 0,4

LD 2,PSI

B SKIP2

STD 4,RSAVE
STD 4,0(4)
MD 4,ETA

STB 4,0(5)
St 4,=p"1.07
LPDR 4,4

STD 4,0(6)

ORIGINAL PAGE IS
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LOAD ADDRESS OF MY SAVE AREA
STORE IN CALLING SAVE AREA
MAKE 13 THE BASE REG.

LOAD ARGUMENT ADRESSES
LOAD ETA

TEST ETA

IF 0 60 TO ZERO

SQUARE ETA

SAVE ETA¥¥2

LOAD PSI

SAVE IT

LOAD UPPER HALF OF PSI
SUBTRACT UPPER HALF OF ETA
IF NOT POSITIVE THEN SKIP OVER DIVIDE STEP
LOAD 1.0 )
1.0/PSI IN FREG O

SKIP AROUND THE LOUAD RSAVE
LOAD LAST VALUE OF R
MULTIPLY R¥PSI

LOAD R¥PSI INTO FREG 4
(R¥PSI)**2

(R¥PSI)¥*¥3

SAVE R¥PSI¥®¥3 IN FREG 6
(R¥PSI)*%4

3.¥(PSI#R)#%#4
3.¥(R¥PSII®¥%¥4+1.0
4¥(R¥PSI)*%3
4#{R¥PST ) ¥#IXPS]
4¥(REPSII¥XIXPSIHETA**2
DIVIBE TO GET HEW R

RSAVE-R

DABS(RSAVE-R)

SAVE TEMP1 {RSAVE-RJ

SAVE TEMPZ (R)

LOAD UPPER PART OF TEMP2
SUBTRACT UPPER PART OF TEMP1
COMPARE WITH EXPONENT =11

IF TEMP2-TEMP1>0B0O0 DK TO 6O ON
LOAD NEW GUESS FOR R INTO FREG 0
LOAD PSI INTO REG 2

LOGP AGAIN

SAVE R

RETURN R TO CALLING PROGRAM
R¥ETA¥¥2

RETURN SIN¥%2

SUBTRACT 1.0

LOAD POSITIVE TO GET COS¥*%2
RETURN CSHN
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*®

RETURN L 13,S8AV+4 LOAD ADDRESS OF SAVE AREA
LM 14,12,12(13) RESTORE REGS
MYI 12(13),X7FF/ NORMAL RETURN
BR 14 RETURN

*
* If ETA=0 THEN R=1/PSI,CSN=1,SN=0
*
ZERO Lb 0,=D71.07
BD 0,0(2) DIVIDE BY PSI
STD ©0,RSAVE SAVE R
STD 8,0(4> RETURN R
SDR 0,0 ZERD FREG O
STD 0,0(5) RETURN SN=0
LB 0,=D71.07 LOAD 1.0
STD 0,8(6) RETURN CSN=1.0
B RETURN RETURN TO CALLING PROG
*
* STORAGE
*
pS 0D
RSAVE ~ DC D’0.07
PSI DS D
ETA pS D
TEMP1 DS D
TEMPZ DS D
END
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