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Abstract
 

This study is concerned with the structure of pulsar magneto­

spheres and the acceleration mechanism for charged particles in the
 

magnetosphere. We follow the pulsar model developed by P. A. Sturrock
 

(1971) and assume that charged particles are accelerated from each
 

polar cap of a pulsar. These particles produce gamma rays via curvature
 

radiation which in turn produce electron-positron pairs which are
 

ultimately responsible for the observed radio emission. This model
 

requires large acceleration of the particles near the surface of the
 

star.
 

The required acceleration has not been produced in earlier pulsar
 

models. We have developed a theorem which shows that particle accelera­

tion cannot be expected when the angle between the magnetic field lines
 

and the rotation axis is constant (e.g. radial field lines). If this
 

angle is not constant, however, acceleration must occur.
 

We have investigated the more realistic model of an axisymmetric
 

neutron star with a strong dipole magnetic field aligned with the
 

rotation axis. In this case acceleration occurs at large distances
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from the surface of the star. The magnitude of the current can be
 

determined from this model and is found to be the same as estimated by
 

Sturrock (1971). In the case of non-axisymmetric systems the accelera­

tion is expected to occur nearer the surface of the star.
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Chapter I
 

INTRODUCTION
 

1.1 DISCOVERY AND EARLY THEORIES
 

The discovery of the pulsars by Professor Hewish and Miss
 
Jocelyn Bell in 1967 ranks with the discovery of quasars and
 
of the universal microwave background radiation as one of the 
major advances in modern astronomy. 

F.G. Smith,Pulsars,p. xi 

The discovery of pulsars aroused immediate and intense interest not
 

only among astrophysicists and astronomers but the public as well. A
 

number of attempts were quickly put forward to explain these remarkable
 

objects. Perhaps the most popular with the general public was the so
 

called "LGM" (Little Green Men) theory, which suggested that the pulses
 

were signals from an advanced extra-terrestrial civilization. This
 

theory, however, was quickly discounted; the signals were too regular;
 

since the periods were unmodulated they carried no information and it
 

was therefore highly unlikely that any little green men were using them
 

as communications beacons. It was still possible that pulsars were some
 

sort of galactic lighthouses but it was clear that astrophysicists would
 

do well to look for a more natural (though less exciting) explanation.
 

The most immediately attractive idea was that pulsars were related to
 

white dwarf stars and several theories were developed along these lines
 

(e.g. Ginzburg et al. 1968; Black, 1969). At the same time, however,
 

some work was being done on the possiblility that pulsars were related
 

to neutron stars (Gold,1968; Pacini, 1968). In fact, even before the
 

first pulsar was discovered Pacini (1967) had suggested that a
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magnetized rotating neutron star was responsible for the energy budget
 

of the Crab Nebula. The controversy did not last long and was finally
 

settled by the discovery of the Vela pulsar (Large, Vaughan and Mills,
 

1968) and the Crab pulsar (Staelin and Reifenstein, 1968), which had
 

much shorter periods than previously discovered pulsars. The white
 

dwarf theories were now running into serious difficulties, which are
 

summarized in table 1 below. In the first place, it was clear that
 

white dwarf stars could not be rotating with periods any faster than
 

approximately 8 sec. (This is the period for which the gravitational
 

force equals the centrifugal force at the surface of a white dwarf).
 

Vibrational modes of a white dwarf could al-so be rejected. Since
 

vibrational periods are approximately given by
 

-
P C (Gp) 12 , (1.1.1)
 

the expected pulsation period for white dwarfs is of the order of 1 sec,
 

which fits reasonably well with the first discovered pulsars but is
 

difficult to reconcile with the Crab or Vela periods. In addition, it
 

is difficult to understand why only one mode is observed and why the
 

mode is so stable.. Furthermore, as a white dwarf ages it cools and
 

contracts slightly. Thus the density increases and the vibrational
 

period would be expected to decrease; instead pulsar periods are
 

observed to increase, which is what one expects of a rotating system.
 

Since white dwarf rotations must be rejected, we are left with neutron
 

star rotations. Thus, with the discovery of the Vela and Crab pulsars,
 

white dwarf models were no longer tenable and it was clear that neutron
 

stars had finally been observed.
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TABLE 1
 

Neutron Star vs. White Dwarf Models
 

NS WD 

1. Period in range 0.03 to 3.7 s V X 

2. Period stable to one part in 109 N/ 

3. Period increases N/ X? 

4. No optical photospheric radiation / X 

5. Two pulsars in supernova remnants V X 

Having determined that the pulses were due to the rotation of a
 

neutron star it was now necessary to develop a more detailed model for
 

the emission mechanism.
 

In a recent book of the subject of pulsars, Manchester and Taylor
 

(1977) remark:
 

One of the least understood aspects of pulsars is the
 
mechanism by which rotational energy is converted into pulses
 
we observe. Although numerous theoretical models for the
 
emission mechanism have been proposed, no single model has
 
been generally accepted.
 

'It is clear that the emission mechanism must be a coherent one. The
 

brightness temperature at a given frequency is defined by
 

z
 
I(v)c
 

Tb(v) =- (1.1.2)

2
 

2kv
 

For typical pulsar parameters this gives brightness temperatures in the
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= 
range of 1023 K to as high as Tb 1030 K. For incoherent processes
 

this implies particle energies of the order of kTb 102c eV. It is
 

difficult to imagine an acceleration mechanism which will produce
 

particles of such enormous energies and even if such such highly
 

energetic particles were produced, they would radiate most of their
 

energy in the frequency band around 5.8 x 10 Tb 5.8 X 1040 Hz. Such
 

energies have never been observed and 4e may therefore reject incoherent
 

processes as the source of the radio emission. There have been many
 

suggestions for the coherent mechanism, but none has been completely
 

satisfying and I will have little more to say on this subject in this
 

dissertation.
 

A second question must also be considered in relation to the radio
 

emission. Where is the radiation produced? There are two main schools
 

of thought on this question. The first (e.g. Gold, 1969) advocates the
 

"light cylinder" model, in which plasma follows field lines out to the
 

light cylinder. At the light cylinder, the plasma is highly
 

relativistic and radiation is beamed in the forward direction. Light
 

cylinder models were refined by F.G Smith (1971 and 1973) but little
 

recent theoretical work has been done to develop detailed pulsar models
 

with emission at the light cylinder. The alternate model was initially
 

presented by Radhakrishnan and Cooke (1969). In their model, the
 

emission region is near the surface of the neutron star, in the region
 

above the magnetic polar caps. The radiation is assumed to be beamed
 

into a cone (known as the emission cone) and thus acts rather like a
 

lighthouse beacon. The relative merits of these two pictures is still a
 

subject of some controversy, but a partial summation is given in table 2
 

below.
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TABLE 2
 

Light Cylinder vs. Polar Cap Models
 

Light Cylinder Models - Merits
 

1. Natural 	beaming process
 

2. 	Rapid, asymmetric changes in polarization within subpulses
 

Light Cylinder Models - Deficiencies
 

1. 	The strength of the magnetic field at the light cylinder
 
depends on the pulsar period. Thus pulses from slow
 
pulsars might be expected to be very different from
 
pulses of fast pulsars. This is not observed.
 

2. 	The emission region is small compared to the light
 
cylinder radius. A mechanism must be found continuously
 
to supply particles to the emission region while
 
maintaining the coherence of the process.
 

3. 	The stability of the pulse shapes indicates that the
 
emission takes place in a region of strong magnetic
 
fields where the particles co-rotate with the star.
 
This is unlikely near the light cylinder.
 

Polar Cap Models - Merits 

1. 	Simple explanation of the stability of even very complex
 

pulse profiles.
 

2. 	The emission region would be expected to be small
 
compared to the entire stellar surface thus producing
 
pulses with widths of the order of 100 of longitude (as
 
observed).
 

3. Strength 	of the magnetic field in the emission region is
 
independent of the period and hence pulse
 
characteristics would be expected to be relatively
 
insensitive to period.
 

Polar Cap Models - Deficiencies
 

1. 	The simplest polar-cap models predict a pulse width that
 
is smaller than observed.
 

2. 	Particles must be accelerated to highly relativistic
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energies in order to produce and beam the radiation.
 
But the charge density in the magnetosphere may be
 
expected to adjust to decrease the acceleration (if
 
possible).
 

3. 	The relation between energy loss and angular momentum
 
loss suggests that the primary processes (energy and
 
angular momentum loss) affecting the star must occur at
 
the 	light cylinder (C.f. Holloway, 1977).
 

The one truly outstanding problem with polar-cap models is the source
 

of the acceleration, which is required to produce coherent radio
 

emission near the stellar surface. This dissertation is primarily
 

devoted to an attempt to deal with that problem. In Chapter II, section
 

1 I will present the basic model in more detail, while section 2 will
 

deal with an analysis of the problem of particle acceleration in polar­

cap models. In Chapter III I present a new approach to the acceleration
 

problem using a more realistic magnetic field structure than in previous
 

work. Finally, in Chapter IV I discuss the results of this research.
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Chapter II
 

THE MAGNETOSPHERE PROBLEM
 

2.1 THE PCLC AND PFB MODELS
 

Before turning to the main body of this thesis it is necessary to
 

define in more detail the salient features of the Stanford pulsar
 

models, which form the basis of the current work. The original model
 

was developed by P.A. Sturrock (1970,1971a,1971b) and has formed the
 

basis of all subsequent development of pulsar models at Stanford. In
 

1969, P. Goldreich and W.H. Julian published a paper of fundamental
 

importance to the pulsar problem. In this paper they demonstrated that
 

"in spite of its intense surface gravity, the star must possess a dense
 

magnetosphere." The plasma in the magnetosphere has essentially
 

infinite conductivity and hence obeys the "frozen-in-flux" condition.
 

The magnetic field lines may be viewed as being firmly attached to the
 

surface of the neutron star and, as the star rotates, the plasma in the
 

magnetosphere is forced to rotate along with it. This cannot, of
 

course, be true if the plasma would be forced to move faster than the
 

speed of light and hence at the light cylinder the "frozen-in-flux"
 

condition requires that magnetic field lines be pulled out and wrapped
 

around the star. The basic picture is shown in Figure 1 below.
 

The distance, Ry , is the radius of the "Y-type neutral point" and it
 

defines the field line which separates field lines that are closed
 

within the co-rotating magnetosphere from lines that are (in some sense)
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kRy -r 

Figure 1: 	 Basic picture of the magnetosphere of an axisymmetric
 

rotating magnetic neutron star
 

open, and connect to the interstellar medium surrounding the star. In 

the Goldreich-Julian model (hereafter referred to as the G-J model) the 

radius RL is the light cylinder radius defined by 

Ry = RL = c/l = cP/2r, (2.1.1) 

where n is the angular frequency and P is the pulsar period. It is then 

(i.e.
assumed that particles flow freely along magnetic field lines 
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EB 0). This determines a charge density in the magnetosphere given
 

by
 

a , B 

S-2tc i (o sin2,] (2.1.2) 

The model developed by Sturrock (referred to as the Polar Cap light
 

Cylinder model) (1970,1971a,1971b) is basically an extension of the work
 

of Goidreich and Julian in which the condition that E-B = 0 everywhere
 

is relaxed. Specifically, the condition does not apply to the open
 

field lines. Thus, on open field lines, particles can be accelerated to
 

very large energies.
 

The polar cap is defined by the condition that the magnetic field
 

line which leaves the edge of the cap be the last closed field line.
 

Thus all field lines emanating from the polar-cap region are open field
 

lines and particles may be accelerated along these field lines. The
 

equation defining a dipole field line is
 

sin 29/r = const. (2.1.3)
 

The polar cap angle 6p is then defined by
 

sinZOp = R*/RL (2.1.4)
 

The rotation of the star induces a potential difference between the
 

center of the polar cap and the edge. In the simple case of an aligned
 

rotator,the potential on the surface of the star is then given by
 

* 2 
S 2c Cos 9(2.1.5) 

where B. is the strength of the magnetic field at the pole and R. is the
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radius of the star. Then, from equations (2.1.4) and (2.1.5) we find
 

that the potential difference from the center of the polar cap to the
 

edge is
 

2 3 
2ccCsin2G 2 RL (2.1.6)&@- p c .16 

For typical pulsar parameters this gives a potential difference of the
 

order of 1016 Volts. Thus in this model we may expect charged particles
 

to be rapidly accelerated to highly relativistic energies. In this
 

model, each polar cap produces two current streams. In particular, if
 

p1 > 0 electrons are accelerated from the central portion of the pol'ar
 

cap and ions are accelerated from an annulus around the central area.
 

The two zones are referred to as the "electron polar zone" (EPZ) and the
 

"ion polar zone" (IPZ) respectively.
 

Because the particles follow curved field lines, they emit photons of
 

energies
 

9
(2.1.7)
6(ev) = lO 3' -A- 3E3R'1 


2 6 
where A is the mass in a.m.u. (A=10"3 . for electrons), E is the energy
 

of the charged particle (in eV) and Rc is the radius of curvature of the
 

field line. As the photons cross magnetic field lines, they "see" a
 

changing, transverse magnetic field with which they can interact,
 

producing electron-positron pairs (Erber, 1966; Daugherty and Lerche,
 

1976). In this model, the pair production process is necessary for the
 

production of coherent radio emission. Clearly, for this mechanism to
 

work, the initial gamma rays must have energies above the pair­

production threshold, which in turn requires that the energy of the
 

initial particles be 'above some threshold energy (dependent on the
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curvature of the field lines). This then gives a natural explanation of
 

the "turn-off" condition for pulsars. This condition has been further
 

investigated by Sturrock,Baker and Turk (1976) and has been generalized
 

to include radiation reaction and distorted magnetic fields.
 

This model (like most polar-cap models) 'predicted a defini'te 

relationship between the pulse width and pulsar period given by 

1 '2 (2.1.8)W p 

As can-be seen, from figure 2, the PCLC model does not fit this
 

distribution at all well. In addition, tile PCLC model (along with most
 

polar-cap models) predicts that the braking index defined by
 

= (J/2(2.1.9) 

have the value n=3. It is very difficult to determine the braking
 

index, but for the Crab pulsar the current best value is n=2.215±.005
 

(Groth, 1975).
 

This led D.H. Roberts and P.A. Sturrock (1972a,1972b,1973) to modify
 

the PCLC model by changing the "Y-type neutral point" from the light
 

cylinder radius, RL to the "force balance radius", RFB, which is the
, 


radius at which the co-rotation velocity is the Keplerian velocity for a
 

circular orbit (Roberts and Sturrock, 1972a, 1972b, 1973).
 

= 
RFB (GM) i/3SPZ/ 3 (2.1.10) 

In this model (called the PCFB model), the polar cap angle, Op is given 

by 

-i/ 3  
Op 101-5M,-1/GR1/ZP (2.1.11)
 

and hence the pulse width is proportional to Pz/3. As can be seen from
 

figure 2, the fit is much better. In the region r(RFB the magnetic
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field is assumed to vary as r-3 while in the region beyond RFB the
 

magnetic field varies as r-2 . This change in the magnetic field
 

structure changes the torque and the braking index is then given by
 

n=2.33, which is in better agreement with the observed value for the
 

Crab pulsar.
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2.2 	 SELF-CONSISTENT MAGNETOSPHERES
 

The first comment that needs to be made on the subject of self­

consistent magnetospheres is the limited use, of the term "self­

consistent." To be truly self-consistent, a model of pulsar
 

magnetospheres would have to include a) the effects of currents in the
 

magnetosphere on the magnetic field structure, b) the effects of
 

particle masses on the currents which develop, and c) the effects (via
 

the plasma) of radiation produced in the magnetosphere on its structure
 

(e.g.. radiation reaction, self absorption, scattering, etc.). That
 

detailed a model is well beyond the scope of this thesis. By "self­

consistent" we shall mean models which satisfy the appropriate equations
 

without inducing large scale changes in the original conditions.
 

In 1974 N.J. Holloway published an important paper which illuminated
 

some severe problems with the PCLC, PCFB, and similar pulsar models
 

(e.g. Hinata, 1973; Hinata and Jackson, 1973). Holloway pointed out
 

that there was a fundamental inconsistency in these models. Consider a
 

cylindrical "gaussian pill-box" at the polar cap. The flux through the
 

bottom surface is zero (space-charge limited flow), the flux through the
 

top is nearly zero provided the "pill box" is extended far enough up to
 

get it out of the accelerating region, and the flux through the sides is
 

given by the co-rotation electric field (vxB). The charge enclosed is
 

therefore approximately
 

Q -MlB/21rc)Tr 2 h 
p 

(2.2.1) 

where rp is the radius of the polar cap and h is the height of the 

"pill-box". However, the currents from the EPZ and IPZ are expected to
 

be comparable and the net charge enclosed should be approximately zero.
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It is interesting to note, however, that the charge density is
 

consistent with the current flow if only one sign of charge is
 

accelerated. This suggests that instead of having currents of opposite
 

charges both flowing out from the star, we may instead have a current
 

loop, with the return current being. outside of the polar-cap region.
 

It is possible that the large numbers of e+-e" pairs produced may
 

adjust their distribution so as to satisfy equation (2.2.1) while the
 

two currents flpw through the pair plasma. The objection to such a
 

model was well stated by Holloway:
 

. . . in the positive particle acceleration zone of such a
 
system, there would have to be an electric field which
 
accelerated the positive particles to high energies, while
 
leaving the negative particles essentially unmoved, a
 
situation which, while perhaps not demonstrably impossible,
 
(one could postulate a situation in which some form of plasma
 
streaming instability counteracted the systematic fields)
 
seems at least implausible. Furthermore, in the regions above
 
the accelerating zones, the required coexistence of a
 
relativistic, high density, stream of particles, with a static
 
corotational charge density of the opposite sign, would seem
 
to present great difficulties for this model.
 

M.A. Ruderman and P.G-. Sutherland developed (1975) a new pulsar model
 

which used a very clever idea.A fundamental point of the problem is the
 

assumption that the accelerating electric field is zero on the stellar
 

surface. Ruderman and Sutherland pointed out that if the work function
 

of ions were high enough they could not be removed from the stellar
 

surface. Thus, in the case that £.B ( 0, so that ions must 6e removed
 

from the central region of the polar cap, a vacuum region will develop
 

(called the "polar gap") and a large accelerating electric field will
 

form at the surface of the star (and in the entire "gap" region). In
 

this model the accelerated particles come from the static breakdown of
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the vacuum. Since this model relies on the work function for ions being 

very large, it requires that all pulsars have ShB < 0 (neutron stars 

with flAB > 0 would not accelerate particles and hence would not produce 

coherent radiation). The reason for the large work function for ions is 

that in a strong magnetic field (101Z gauss) the ions form long chains 

and the gravitational binding of the chain is large. Recently, Flowers
 

and his co-workers (including Sutherland) (Flowers, et al. 1977) have
 

recalculated the work function and found that the work function used in
 

the Ruderman-Sutherland pulsar model had been over-estimated by
 

approximately an order of magnitude. With the new work-function
 

estimate, the polar gap does not develop, and the net result is (in
 

Sutherland's own words1 ) that "the model is dead."
 

Both F. Curtis Michel and E.A. Jackson have developed pulsar models
 

which avoid Holloway's criticisms. They also, unfortunately, produce
 

very little acceleration and provide no mechanism for the observed
 

radiation. Michel's model (1975) utilizes currents of a single sign
 

moving on radial field lines (see Chapter 3, section 1) and thus simply
 

matches the G-J charge density. In the simplest form of the model
 

(where particle inertia is ignored) no acceleration takes place at all.
 

When the particle masses are taken into account there is acceleration
 

until the particles become relativistic, at which point the acceleration
 

ceases. Even in this case, the acceleration is not sufficient to
 

provide a mechanism for the observed radiation. Typical values of the
 

tPrivate communication made to the author at the eighth Texas Symposium
 
of Relativistic Astrophysics, Boston, MA., Dec. 19.76.
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relativity parameter I are of the order of 10, compared to 1010 for the
 

PCLe model.
 

Jackson's model (1976) abandons the requirement of space-charge
 

limited flow and substitutes field emission (at T - 0 K) at the surface.
 

The current is then related to the accelerating electric field by
 

7
j,= [6.2xlO- 6EC(/)/ 2 /(+)]exp[-6.8X0 3/2 /E,I (2.2.2)
 

where E11is in volts/cm, 0 is the work function in eV, and p is the Fermi
 

energy relative to the bottom of the conduction band. This model also
 

features complete current loops, so the requirement of zero net current
 

leaving the star can be dropped (since no current at all leaves the
 

star). The difficulty is, again, that-there is very little acceleration
 

and no reasonable radiation mechanism.
 

O7IG­
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MATHEMATICAL FORMULATION
 

3.1 BASIC EQUATIONS
 

3.1.1 	 The Basic Model and Acceleration Theorem
 

The pulsar model presented here is a development of the polar-cap
 

models of Sturrock and Roberts and Sturrock (see Chapter II, section 1).
 

Fundamental to this model is the fact that currents flow from the polar
 

cap along magnetic field lines. That this is true can be demonstrated
 

by comparing the gyroradius of the particles with the radius of the
 

polar cap. The gyroradius is given by
 

rs 	= po/eB t t (3.1.1)C/eB a&/B 

If we take the maximum 0 that we can get (equation 2.1.6) ue find 

23 B* (3.1.2)2R 

rg = 2c 
 B 

Near the polar cap B tB, and the polar cap radius is given by
 

R3/2 3/2 1/2
R Q2 (3.1.3)
 
p = R1/2 c1/2
 

L
 

and hence the ratio of rg/rp is
 

r g l P R\ 3/ 2 11 Iv s\ , _ 3 1 43/ 2 1 
= 	\ _ = s ~1o-6 (3.1.4) 

p
 

where vs is the rotational velocity of the stellar surface. We note, 

however, that as r * RLI r. - RL. We can also estimate whether the 

magnetic fied controls the current flow or whether the current flow 
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controls the structure of the magnetic field. For this we simply
 

compare the energy density due to the kinetic energy of the particles to
 

the energy density of the magnetic field. The particle number density
 

is given by
 

n = p/e f2B/(2Tce) (3.1.5) 

For the energy we again use eAf. Thus the ratio of kinetic to magnetic 

energies is estimated to be 

o3* _ 12 (3.1.6) 
-= 2 X 

B2 -8C 3 B 

Near the polar cap the ratio is very small (-10 - 12) and the magnetic 

field controls the particle flow. When r grows to the order of RL 

however, the ratio approaches unity and in that region we may expect the 

magnetic field to be distorted by the particle flow. 

We assume that the plasma is completely charge separated, which means
 

that the pair production process is not taken into account in
 

investigating the acceleration mechanism. This treatment would also be
 

valid provided the net current due to pairs is small compared to the
 

primary current from the polar cap. If the acceleration is large this
 

will clearly not be the case and in the region of large pair production
 

the model will break down (see Chapter IV). Since the particles are
 

tied to magnetic field lines, the current density is proportional to the
 

magnetic field strength. Thus, along a field line we may write
 

j(s) = j(O)[B(s)/B(O)] (3.1.7)
 

where s is a co-ordinate along the field line and s=0 refers to the
 

surface of the neutron star. Since the particles are relativistic (as
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will be -demonstrated in section 2), the charge density is given by
 

j, B 
p (3.1.8) 

c B, 

The G-J charge density (equation 2.1.2), which is required for E-B=O
 

(i.e. no acceleration), is proportional to 9lB. Thus, if the angle
 

between S1and B is constant along a field line then equation (3.1.8) is
 

compatible with (2.1.2) (in the non-relativistic limit) and it is
 

therefore possible to have steady current flow with no acceleration.
 

If, however, field lines curve then acceleration (or deceleration) must
 

take place. This theorem has been independently derived by Arons,
 

Fawley and Scharlemann (1978) by transforming to a rotating reference
 

frame 2 . In the frame rotating with the star, there is an electric field
 

perpendicular to the magnetic field, given by (in the non-relativistic
 

limit)
 

Erot [5R x r) x B]/c (3.1.9) 

If we assume that B is approximately curl free (i.e. the magnetic field 

of the star is much larger than the field generated by currents in the 

magnetosphere), then the charge density of Ero.t is given by the G-J 

charge density (equation 2.1.2). We may then divide the electric field 

into two parts, the rotational part given by equation (3.1.9) and the
 

non-rotational part which may accelerate particles. Thus only the
 

difference between the rotational charge density and the true charge
 

tTademaru (1974) proved a restricted version of the theorem, too. He
 
showed that for an axisymmetric rotating system with a polar-cap region
 
bounded by radial (i.e. monopole like) field lines, the component of E
 
parallel to the magnetic field lines must be exactly zero.
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density is a source of acceleration (Michel, 1975). When the angle
 

between fl and B is constant we can find a current flow such that the
 

non-rotational charge density is zero everywhere. When the angle is not
 

constant, however, that is no longer possible and hence a non-rotational
 

electric field must develop. We are thus motivated to look at a pulsar
 

model in which the field lines are curved. The simplest physically
 

realistic example is a pure dipole field.
 

3.1.2 Dipole co-ordinates
 

In order to study the dipole field case we first introduce a co­

ordinate system based on the dipole field lines. The potential of a
 

magnetic dipole oriented along the z axis is given by q cos S /rZ .
 

The equation of a field line is sinZl/r = const. Thus for our co­

ordinates we may take
 

= Joos6/r and 7n sinO/Jr (3.1.10) 

The third cc-ordinate is the azimuthal angle s but we shall usually 

assume azimuthal symmetry and thus reduce the problem to two dimensions. 

The Laplacian for dipole co-ordinates can be written as 

(3.1.11)
(i- 37r 2) r~ ' t ++ (3 Mb\1r6 a 
r L 

Unfortunately, the values of r and A cannot be expressed explicitly in
 

terms of e and 7), so the Laplacian cannot be written simply in terms of
 

the dipole co-ordinates.
 

The polar-cap region is defined as the region of open field lines.
 

The bounding field line is determined by the value of Ry, the "Y-type
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neutral point" (see equation 2.1.11). Thus we can define a maximum
 

value for the co-ordinate i by
 

=
 mx RYI/ 2 (3.1.12)
 

Since we are assuming a charge separated plasma, the current density is
 

given by
 

j(r) = p(r)v(r) (3.1.13) 

Since the particles are tied to field lines, j can be separated into two 

components, the motion along the field line and the motion due to the 

rotation of the star. However, motion due to rotation is small compared 

to that along field lines if r << RL (the light cylinder). We shall 

therefore neglect the rotation part of the current density, in which 

case equation (3.1.13) becomes a scalar equation. Combining it with 

equation (3.1.7) we then have 

p(-, (3.1.14)
j-


v(gl) IB(g*,4)
 

where , is the value of f on the surface of the star (t. I/R,) and v
 

is the velocity of the particles. Since the field is dipolar, we can
 

write B(7,) as
 

(3.1. 15)

2g 3 )1/ 

Ir3 


where g is the dipole moment and r is implicitly determined by and 7.
 

Combining equationsj(3.1.14) and (3.1.15) we then have
 

j*(T ) 7 2 - 1/2 (3.1.16)[: 
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For many purposes we can ignore the r7)2 dependence entirely. Since
 

rn2 1 1 we can make the expansion
 

2
(.- r 12)'/ 3-412 (3.1. 17)
 

and even at the extreme value of r7)2 (0 = u/2) we make an error of 

no more than 25%. 

3.1.3 Boundary Conditions
 

We must now consider the boundary conditions appropriate to the
 

problem. One boundary condition is clear: the bounding closed field
 

line satisfies the condition EtB = 0 and hence the potential along the
 

field line must be a constant, which we may take to be zero. In terms
 

of dipole co-ordinates we therefore have
 

0) x) = 0. (3.1.18) 

(Unless otherwise stated, refers to the electric potential.) The
.k 


surface of a neutron star is a good conductor and therefore the Lorentz
 

force on a charged particle on the rotating surface must be zero. Hence
 

the electric field parallel to the stellar surface must be the rotation
 

electric field (equation 3.1.9). If we assume that B is the gradient of
 

a potential with azimuthal symmetry, we can write
 

(os
V C 9
P~cs~(3.1. 19) 

-_z r
 

for the magnetic potential, where g is the moment associated with the
 

i-pole. Thus 4, the electric potential can be determined on the
 

conductor surface by
 

= -Rf[C(fxr)xV4M]dB (3.1.20) 
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If the rotation axis is aligned with the symmetry axis of the magnetic
 

field this is easy to integrate. Since the velocity of the surface is
 

entirely in the 0 direction we need only consider the radial derivative
 

of the magnetic potential. We then find that the electric potential is
 

gi.ven by
 

1/ Pp 1 (Cos e) - PPi(Cos 9) 
(3.1.21)


= qFR/2.E - r R7 

In the case of a pure dipole magnetic field this becomes
 

2
4 = -fB.Rz(cos29 - cosz p)/2c. (3.1.22)
 

In terms of the dipole co-ordinates we may rewrite this as
 

IMa 2 (3.1.23)
 
E 2c 2Ma
 

The remaining boundary condition is more difficult to determine.
 

Typically, the remaining boundary condition would be at infinity (r=-).
 

In the case of dipole field lines, however, the field lines do not
 

=
extend to infinity. Nevertheless, at r m it is true that =O but is
 

also zero at G=T/2. The dipole field structure must breakdown at the
 

light cylinder (or perhaps at some Ry < RL ) and the "frozen-in-flux"
 

condition also breaks down when E 1 B, a condition we may again expect
 

near the "Y-type neutral point." This indicates that we should be
 

looking for a boundary condition which applies at the point r=Ry. If
 

the "frozen-in-flux" condition breaks down at Ry it is no longer
 

reasonable to assume E1 -v/c xj. In addition, since B - r 3 ,up to
 

the radius Ry, B(Ry)<<B,. Therefore (as pointed out at the beginning of
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this chapter), the gyroradius is comparable to Ry and particles can
 

cross field lines, effectively shorting out tle circuit. Hence we may
 

consider the approximation that E" - 0 at Ry and therefore the electric
 

potential is approximately constant at Ry. Since this surface
 

intersects wi-th the bounding field lines, on which the potential is zero
 

we must have
 

f(Ry,S) 0 (3.1.24)
 

which then provides a complete set of Dirichlet boundary conditions.
 

There is one additional condition, however, that we may be able to
 

apply. At the surface of the star (where particle flow is not
 

relativistic) a region of charge may develop which then decreases the
 

electric field normal to the surface. This phenomenon is well known
 

from vacuum tube technology and is known as "space-charge limited flow".
 

If the accelerating field were non-zero at the surface we would expect
 

the current flow to be increased (a stronger electric field would pull
 

out more particles) and hence the charge density would increase. Steady
 

flow is achieved when the current flow is just sufficient to keep the
 

accelerating field zero at the point of particle emission. Space-charge
 

limited flow is an important feature of the PCLC and PCFB models and has
 

also been invoked by many other investigators (though not all, e.g.
 

Jackson,1976). Thus as an additional constraint on the problem we will
 

consider the case of space-charge limited flow, which implies that the
 

accelerating electric field at the surface must be zero.
 

= 
/ , 0 (3.1.25)
 

We how have an overdetermined problem and we are no longer free to
 

choose the initial current density at the surface of the star. The
 

equations and boundary conditions are collected in table 3.
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TABLE 3
 

Equations and Boundary Conditions
 

3F 3 / 

( ' a) o(3. .18) 

§(Rro) o (3.1.24) 

2Xl1qmax (2 - /1ax (3.1.23) 

0 	 (3.1.25) 

3.2 ANALYTIC AND NUMERICAL SOLUTIONS
 

3.2.1 	 The Non-linear Problem 

We will first show that the particles from the polar cap are quickly 

accelerated to relativistic velocities. In this analysis we will
 

consider a one-dimensional model (that is, assume the divergence of E
 

across field lines can be neglected with respect to the divergence along
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the field lines) and a small angle approximation. Poisson's equation is
 

non-linear in this case because the velocity in equation (3.1.16) is
 

dependent on the potential. Rather than work with the potential we
 

shall work directly with the particle energy.
 

C = rmoc Z = moc z - ep + const. (3.2.1) 

so 

Vzf = -(mocZ/e)VZV (3.2.2) 

The velocity can be expressed in terms of I as 

(2 i)/2 

V - 1 c (3.2.3) 

Y 

and hence Poisson's equation reduces to 

72Y . ire j*(>)3 [I~ r(3.2.4)

2 ]2 y -1)1
 

0 L 

We now assume that (at least until the motion becomes relativistic) the
 

divergence of the electric field along the magnetic field lines is much
 

greater than the divergence of the electric field perpendicular to the
 

magnetic field lines. Thus 7i derivatives can be ignored. We also make
 

z
a small angle approximation and ignore r,) terms. Equation (3.2.4) then
 

becomes
 

r3I ddr (r3 dY ) m-2 c- ((T)i2(325dr 4ite j* (R*) (3.2.5) 
r m0C (y L2)l 

where the dipole nature of the field lines is reflected by the r


dependence. Equation (3.2.5) cannot be solved analytically and so
 

additional approximations must be made. The necessary approximation is
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to assume a cylindrical model for the structure of the magnetic field
 

lines near the surface. Thus equation (3.2.4) becomes
 

dY e jx R*3 Y (3.2.6)
 
2 2 c (2 _1)1/2


dr m0Cc r 

This can be integrated once by multiplying both sides of Poisson's
 

equation by dr/dr giving us
 

R*3/2
&e 


2_11/4 (3.2.7)
 

FY 

dY I J*i/ /f_(\ 

This may then be integrated in terms of elliptic integrals. ie first 

make the substitution 

cosh y = 'Y (3.2.8) 

Then the solution to equation (3.2.7) is given (implicitly) by
 

2(sinh cosh y + F- 2E ( 
1+ sinh y Flp Q2 -j 

(3.2.9)
 

=2 [2/ R ____ 

where F and E are ellipti'c integrals of the first and second kind
 

respectively, and
 

- siuh y(3.2.10) 
= arccos (T+ sinh y)= aracos 6 )2 

We must remember, however, that this equation is valid only for r R,
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Rather than
 
so that the divergence of the field lines could be ignored. 


it is easier to consider the

working with the full analytic result, 


additional approximation that v- 1 (i.e. non-relativistic motion). We
 

therefore write
 

(3.2.11)r'1+S 


and keep only terms to first order in S. Equation (3.2.7) then becomes
 

d6~ rej*7/,H32(..2 
r i~~(+ 21/4 61/4 (-.2 

Integrating, we find
 

4 3/4 	 R8~ej*12 . (3.2.13)5/ 	 3/2 


R. we can further approximate the right hand side
and since we know r ­

to get
 

1r8ej.
4 63/4 F/4 /2 

where r 	= R*+ Sr and Sr << R*. Finally, we can solve for S to get 

(3.2.15)
 
_ 34/3 	 Lre * (r) 4/3 

mcj/
213 

101? esu/cm2-sec.
Typical estimates for the current are of the order of 


Thus, we write equation (3.2.15) in the form
 

(3.2.16)
- .56j2/3 (6r)", 3 


and whete

where we have assumed the particles are electrons 
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=
Jlz j, X 10-12 and Gr is measured in centimeters. In the non­

relativistic limit, 6 = 10z and hence when 6 = i the particles have 

velocity v c and the non-relativistic approximation is no longer 

valid. It is clear from equation (3.2.16) that the particle becomes 

relativistic within a few centimeters to a few meters (depending on the 

magitude of j,). We can also estimate the distance over which the 

divergence of the field lines becomes significant. From the approximate
 

solution (equation 3.2.15) we find that
 

dO 6 (6 2/3 (3.2.17)
3

­

dr 

For typical pulsar parameters, Poisson's equation now can be written 

approximately as 

d2 0.3 (Or) - 2 / 3 2- X 10-6 (Or) 2 / 3 
2 (3.2.18) 

dr 

where the second term on the right hand side had previously been
 

ignored. The second term becomes comparable to the first when
 

Sr = 7XI04 cm. Thus it is valid to ignore the divergence of the field
 

lines in the non-relativistic limit.
 

Having confirmed that the particles quickly become relativistic, it
 

is now possible to deal with a linear partial differential equation by
 

simply replacing v with c in Poisson's equation, which now becomes (in
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dipole co-ordinates)
 

I q 2 

(3.2.19)
 

1/
34rj *(I 
 1 I 

3.2.2 One Dimensional Solution
 

As a first approach to the linear Poisson equation we again consider
 

a one-dimensional approximation; that is we wish to consider the case
 

where the divergence of E perpendicular to the field lines is small
 

compared to the divergence of A along field lines. 

.(3.2.20)
IV Vl 


We recall (equation 2.1.2) that the charge density for the case of E1 = 0
 

(no acceleration) is proportional to flB. This suggests that we look
 

at the perpendicular rotator, for which case = 0B0. In this case, 
 a
 

significant departure from j, = 0 must indicate an accelerating electric
 

field. We note that the one-dimensional model must be treated as an
 

initial value problem rather than a boundary value problem. Before
 

proceeding we also note that because the co-rotation charge density is
 

approximately zero near the polar cap, any charge density due to the
 

emitted current supports the accelerating field rather than the co­

rotation field. This would tend to indicate that the acceleration
 

probably occurs closer to the star surface in this case than is the
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general rule. Equation (3.2.19) now reduces-to
 

L 211/r
(1- rT ) 	 4lIt* %* 

~ ~ ( A .R{J (3.2.21) 

Simplifying this equation we then find 

4I*R* -1/2 
b Cj .3 /2 (cos o) (1 r ) C3.2.22)( 

This can be integrated once exactly by integrating along a field line.
 

Since = 00 on the surface, we have
 

1 4 j R_ i rc(Cos )1/2 (1 - 3r 2)1/2 '(3.2.23) 

c(1. - 3. R_), 12) /f 

From the definitions of e and n,we may write the differentials
 

O
sin
r.O
r{ dr - 2r-1_s)dO2 r 2rx/s­

(3.2.24)
 

dr cosO
 

d3 	 sin/ dr + C dO
 

2r32r1/
 

We know d7) 0 along a field line, and we can therefore express dO in
 

terms of dr to give us
 

dg(1 	 -) . r3 2. 5 
r 2(cos 	o)3/2 
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Thus equation (3.2.23)'becomes
 

r - 3 2)1/2 
1 f 7 ) dr (3.2.26) 

coso
 

where
 

R3
47j* 

1 /2
K =- (3.2.27)
 

c(i - g Rx ' ) 

Along the field line cos S : (1-riz)' / z so we then have
 

2 1/23 
-- I ( 
 dr (3.2.28)
 

and hence
 

f 3 2 1 /2 2)1/2
 

- ) (I -rI) 

log r T 2)(1-( r - (- r2)] 2 .(3.2.29) 

1 - 3r 12 

7 R *
 

This is not, -however, a particularly useful form. Since we cannot
 

expect the one-dimensional approximation to be valid for large r (and
 

hence large 8) it is more useful to return to equation (3.2.28) and
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expand to second order in e (i.e. r72 ). We then have
 

1=. 
r

1KC230 
Kj( + 1 r T2) dr -K r - R*) + ((r - (3.2.30) 

.
It is now easy to do the next integration to order 02 We note that
 

dc= -dr/r z + (94) (3.2.31)
 

and
 

1(1 - 1 2 (3.2.32) 

Thus
 

(3.2.33) 

To zero order in 12 we then have 

E 2 3 (3.2.34)
 

It is interesting to note that the electric field has a maximum at
 

r 1.5R,, which suggests that the maximum particle acceleration may
 

occur at distances of the order of a stellar radius above the polar cap
 

rather than at distances of the order of the polar cap radius as in most
 

previous models. We further note that this form for Ell is due to the
 

dipole nature of the field lines and is not found in cases where the
 

field lines are not curved.
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3.2.3 Numerical Solution to the non-linear 1-D Problem
 

We now turn to a numerical solution to the non-linear one-dimensional
 

model. The equation we wish to solve numerically is
 

S(3.2.35)
 

1ftcej* (R* 1 r 

2 

1)2
3 :2f (y 

This equation can be solved easily using standard differential equation
 

solving programs (in this case the program ODE, developed by Shampine
 

and Gordon - see Appendix B - was used) provided accurate starting
 

values can be determined. The infinity at v=l must be avoided by
 

starting the integration at a position slightly above the stellar
 

surface, where 7=1+6. The results of the first section are used to
 

determine the starting values. The second order equation must first be
 

decomposed into a pair of first order coupled equations.
 

Y1 = Y
 

dY1
 

(3.2.36)
d 2 


3
dy ej* R* r 2 1 Y2 

2
~ ~r~r2)/
~ (+R~A" - 3+ 2 (411/2 
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We now rewrite the system in numerical terms.
 

dY1
 
- = Yd 2
 

dy' 2.45 X 017 J 3 r 3 92 y (3.2.37) 
2 j 2 6Y 

- .75 x o6 [ - .7 r 2-)1/2 

lO - 6
where iJz = jix lz and R,6= Rx1 . To simulate the fact that no 

acceleration takes place on the bounding field line (CW7=ma.) we shall 

replace Jlz by ji(l-nZ/n%8 x) so that only a portion of the current 

causes acceleration. 

The results of the integration are shown in figures 3 - 6 We note that 

the exact numerical results are completely consistent with the analytic 

approximate results. The initial behavior of S with respect to Sr is 

correct and there is, indeed, a maximum in the electric field at 

approximately 1.5R,. 
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3.2.4 Two Dimensional Solution
 

We must now consider the two dimensional problem. It is certainly
 

true that the time and 9 dependence can be eliminated in the axi­

symmetric case, but it is probably a good approximation to use a two
 

dimensional model even in the non-axisymmetric case. The two­

dimensional problem is, however, much more difficult to work with than
 

the one-dimensional case. In this section we will consider two
 

different approaches to the problem. In the first method we shall
 

assume a form for the transverse behavior of the electric potential and
 

use a perturbation expansion in the co-ordinate 7. The alternate
 

approach is to assume that the current has the same 7 dependence as the
 

potential and use a separation of variables technique.
 

3.2.4.1 	 Perturbation Method
 

We first analyse the two dimensional problem from the perturbation
 

expansion approach. We know that the 'potential for the aligned rotator
 

must be an even function of 7 so we expand it in a power series in z.
 

7(,))= aiC()7)zi/12 i 	 (3.2.38)
 
max 

We 	also know that at the surface of the star the potential has the form
 

,(1-72/ 2 ) which thus forms the boundary condition that the 

coeffiecients of all terms of order 74 and higher must go to zero at the 

surface of the star, while a, must go to 1 (we may set ao=1 without loss 

of generality). Finally, the condition that 4 = 0 at fmax requires 
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Sai(4) 1 (3.2.39)
 

i=1
 

The basic assumption we need for a perturbation expansion is that
 

Iail<jai-1[. Even -with this assumption the problem involves a great
 

deal of messy algebra. In working with the perturbation expansion, we
 

Z
 
nust also expand j, as a power series in f) .
 

We now look at the problem to zeroth order in 7). The potential must
 

.
be expressed to first order and the current to zeroth order in n2 We
 

therefore set
 

I! (3.2.40)
()Cfl-'fl~mza 


we find (to order
Substituting equation (3.2.40) into equation (3.2.19) 


2/2 \ 4g- 3 2 

r Ma Max (3.2.41) 

2)j3 [IR*\r2+ R 2
 

The zeroth order equation is then
 

-~R 3 
32 cL0 (3.2.42) 

r %ax 

A particular solution to the inhomogeneous equation (3.2.42) is
 

= 42 Max (3.2.43) 
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The homogeneous equation may be written as
 

b2 
 C*3.2.44)
 

%t1
Max
 

To solve this equation we make the substitutions
 

u = ei/z a6d '('=)uZY(u) (3.2.45)
 

Equation (3.2.44) then becomes
 

dy+ 1 dyF1 4 16 I 
du- + Ld- - 4+ 16 Y 0= 
 (3.2.46)
 
du 
 [U. IMaxi
 

This is the modified Bessels's equation of order 2 and parameter 4/7max.
 

The solution to equation (3.2.42) is then given by
 

jo32(32.7 
\'fMax +C 2\IMax/ R ax 3.47
 

The boundary conditions at r = Ry and r = R, now determine the values of
 

the constants. If Ry >> R, it is simpler to make the approximation that 

f 0 at the outer boundary. Then the Iz term goes to zero and the 

remaining two terms must cancel. As x - 0, Kz(x) - 2/x2 and we 

therefore find that 

02 2 +J 0 3 2 

Max WR R Max o (3.2.48) 

and hence
 

8:Jo R3 
C (3.2.49)

2 4
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0B. R3
 

**2 

= - 2c %ax (3.2.50) 

1

Since 4f'/2/71max.>1, we can use the asymptotic expansions of z and Kz
 

to simplify equation (3.2.47) at the steliar surface.
 

2 and K2 I jT-) 1 e (3.2.51) 

(2nC) 

where
 

=41/7)max (3.2.52)
 

Combining equations (3.2.49), (3.2.51), and (3.2.51) we then find 

cI - R* 12ax + 10 R 2 82J0 / e-C 

2 -moR *"Max 28*f-

(3.2.53)
 

Finally, we require space-charge limited flow, which determines jo. We
 

write d'/-d in terms of (as defined by equation 3.2.52)
 

C 1 8c2 [7I 2 

2 dC Ir '%axK2\%Jj (3.2.54)dS 1 c1- a 2 W 


%1Max 
 N1IMax
 

We also note that
 

and 2(C)] = - C2 K1 (C) (3.2.55)1 = 

Hence, at e]we have
 

d-- 21 * £(C*) - C* K(C*) = 0 (3.2.56) 
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and, combining equations (3.2.56) and (3.2.49) with the asymptotic
 

?xpansions (equation 3.2.51), we get
 

2
 

cI ==3Te 2 -c R e *(3.2.57) 

inaily, combining (3.2.57) and (3.2.53), we have
 

C 1/2
 

(f.-)Ma Qe(3.2.58) x 

[l6it - (2C)1/2eC R* 'Max] 

which is the value of j, originally estimated by Sturrock (1971) and the
 

value of j which gives the G-J charge density at the surface.
 

One of the original motives for analyzing dipole field lines was to 

get large acceleration near the stellar surface. However, the zeroth 

order solution for the aligned rotator does not produce significant 

acceleration. Actually, this is to be expected, since at this order we 

have only included corrections of order gz and we have simply recovered 

the G-J charged density in a region where the field lines are very 

nearly straight (see the theorem described in section 1.1 of this 

chapter). We must therefore extend the analysis to second order in 7) in 

order to determine what acceleration (if any) is produced near the 

surface. We set 

1
[22 2 2 .
 
-g 2(g)  
= (') -1Max +a2

( ) / ax M/ax] 

(3.2.59)
 

0 (1 + iNa2) 

and we note that az is a function of g but b is a constant. 

Substituting into equation (3.2.19) we now find the zeroth order 
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equation is
 

Tf "a 2 2 2 2 c 
!2[b~ Q ± 	 4Q 1 410 0 R' 

9 _222J2 	 (3.2. 60) 
%axM %
'Max
 

while the second order equation is
 

-2
,2 


+ 	 2G1 1 _ (3 8 
"%ax e Max g ]Max (3.2.61) 

247JiR3[ 


We note 	that the zeroth order equation has been modified from equation
 

(3.2.42) but we are assumming that az << 1 so to solve these equations
 

we first set az = 0 in equation (3.2.60) (thus recovering the original
 

zeroth order solutions equation (3.2.47)) and then use that solution in
 

equation (3.2.61) to eliminate the T dependence. To solve equation
 

(3.2.61), we first define a new variable
 

D = Taz/' (3.2.62)
 

With this definition and using equation (3.2.60), equation (3.2.61) can
 

be rewritten as
 

2 	 2 2 3 8 ) 

(3.2.63)
 

2~I~, 1 0* 3 +3 R*+ b 

Max -IMax]L 
- 46 ­



4e again change the independent variable to u2=9 and find
 

(3.2.64)
 

c + R. + 	 +82 	 %axa + 2ie
81Max1 Max Max 

The boundary condition for 3 at the surface is clearly g(u,)=O. (Since 

az=O at the surface.) At the outer surface the condition becomes 

1u2 -. 0 as u -* 0. This is true as long as az does not blow up at t=0. 

While this leave's B undetermined on the outer boundary, we shall require 

the stronger condition 3=0 at u=O. The condition of space-charge 

limited flow requires 

d 0d0+=.PI -2d 
 0 (3.2.65)
 

Since 0 itself is also 0 at u = u, we then have dB/du = 0 at u,.
 

We can immediately determine the constant "b" in equation (3.2.59)..
 

At u, equation (3.2.64) reduces to
 

-(b + 1) + 
 0 
 (3.2.66)
c 	 2 

'Imax
 

and thus "b" is given by
 

b 	 2 _ c (3.2.67) 
2]Max 4itj0 

3 

Substituting from equations (3.2.58) and (3.2.50), we immediately find
 

that b=O. Thus there is no second order correction to the current. To
 

solve equation (3.2.64) we use a Green function approach. The Green
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unction for this equation (Bessel's equation) is given by (see Appendix
 

for details)
 

G(u,u') 	 -Jc(u<) J(Xu>) + aNc(u] (3.2.68) 
2a 

there
 

a = 4F28 (3.2.69)
 

ind
 

X = 8IV)mQx (3.2.70)
 

a = -J(Lu,)/N(Lu.) (3.2.71)
 

Thus the solution to equation (3.2.64), with 0=0 on the boundaries, is
 

given by
 
u*	 F(u,u')(U)R* %ax 3 + 3+ 	 du' (3.2.72) 

(u) 	 32 J uRu 

0 u% 1Max t MaxJL 
Explicitly substituting (3.2.68) into this equation we find the formal
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solution
 

c 1cTa
x
 

C u
 

U
U* 

.(XUJ .(Xu')du'

[J(SU J (Xn')du' + a N 


0 
 0
 

U-X
 

+J(XU)JN(Xu')du' 

U
 

u (3.2.73)
uX 


3 [j, ?Lu~ff' j (xi')
 

-[(xu f ,a~ du' + a N (Xu) ,2 du'
 

0 
 0
 

U
 

* X f N (Xu 
U
 

U* 
 U 

'
 + * L Xu 2)j (Xu')du' + a (Xu u12)N(Xu')du
"%}a I fx
 

U
0 


U
 

+ a N (xu) *(u/2)j(Xu')du']
 

0 
 j 
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3.2.4.2 Separation of Variables Method
 

In this method we look for solutions to equation (3.2.19) in which 

the , dependence of 4'is the same as that of j,. We further assume that 

and j. can be written as
 

1,Q,,)) T( )H(7) (3.2.74) 

j,(7)) joH(71) (3.2.75)
 

4e note, however, that equation (3.2.19) is clearly not separable in
 

these co-brdinates and we must therefore approximate it in order to
 

render it separable. We write equation (3.2.19) to lowest order in n to 

get 

2j + ­ c 
 (3.2.76)
 

We now substitute equations (3.2.74) and (3.2.75) into (3.2.76).
 

1- + 0 3 (3.2.77) 

Dividing by TlH and regrouping terms gives us
 

+t4,njo R3 iH 

0 * (3.2.78 

The left hand side of equation (3.2.78) is a function of e only, while
 

the right hand side is a function of 77 only. We therefore have the two
 

equations
 

c (3.2.79)
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and
 

+H -- +a 2 = 0 (3.2.80) 

The solution to equation (3.2.80) is then given by the JO Bessel
 

function.
 

H(7) = Jo(c) (3.2.81)
 

Equation (3.2.79) will be recognized as identical in form to equation
 

(3.2.42) and we can therefore immediately write down the solution to
 

equation (3.2.79) as
 

*W= cjvI (czVr)+ 02 Ki (airk) + 2joR' (3.2.82) 

The boundary condition on closed field lines requires
 

Jo(amax) = 0 (3.2.83)
 

Thus the separation constant a is determined by the zeros of Jo.
 

The only remaining task is to evaluate constants. The potential may
 

now be expressed in the following form:
 

=~IlMax) +% ~ x ax)2 2 

(3.2.84)
 

+ - 21 J+ 3 21 (3R JMax] )
O (Xi "Max
Xi c
 

th 

where xi is the i zero of Jo. Following the same lines as in the 

perturbation method (see equations (3.2.49) - (3.2.58)) and using the 

orthogonality properties of the Bessel functions, we find that the 
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32i j R 
(3.2.85) 

cxi 

C 3 2 * e IMax (3.2.86) 
Xi c 

2 

The requirement of space-charge limited flow then determines the Ji's.
 

B* (3.2.87)
 

Ji ICxi J(xi ) 

and the total current is given by 

(_ "B* 0 (3.2.88) 

i=1 Xi Jl(xi) 
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Chapter IV
 

DISCUSSION AND CONCLUSION
 

I.1 THE ACCELERATION PROBLEM
 

1.1.1 The charge separated model
 

As is clear from the preceding chapter, the exact mechanism by which
 

charged particles are accelerated is still a problem. Fundamentally
 

this is due to our lack of knowledge about conditions in the outer
 

magnetosphere (near the- light cylinder, or perhaps near RFB). We know
 

that at the light cylinder, the field lines must "slip" through the
 

plasma or be highly distorted. If this were not true no EMF could be
 

generated. An additional complication comes from the requirement that
 

acceleration take place near the surface of the star (this is required
 

in polar-cap emission models) and that of space-charge limited flow.
 

The space-charge limited flow produces zero acceleration at the surface
 

and the slow change'of the angle between f and P means that only a very
 

small accelerating electric field can develop near the surface. In the
 

context of a model with dipole field lines, it seems that we must either
 

abandon space-charge limited flow or the requirement that acceleration
 

take place near the surface. Larger acceleration will occur near the
 

stellar surface, however, if the magnetic field lines near the surface
 

curve more rapidly than in the dipole case.
 

The latter of these two choices is the more attractive. Referring
 

again to figure 2 in Chapter II we note that the data indicate that the
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polar cap is larger than estimated in the PCLC models. In the PCFB
 

model, the polar cap was made large by moving the point Ry from the
 

light cylinder to the force balance radius. An alternate approach,
 

however, would be to move the radiation producing region out from the
 

stellar surface. The fanning out of the magnetic f-ield lines would then
 

produce a wider beam. If this is the correct solution, the data suggest
 

that the emission region is at a significantly larger distance from the
 

surface than previously suggested in polar-cap models.
 

A'simple linear least-squares fit to the data shown in figure 2 gives
 

the following formula for the pulse width for a given period:
 

log( ) = 1.43 + 0.7Oxlog(P) (4.1.1) 

where W is measured in milliseconds and P in seconds. It is impossible 

to confirm the slope, however, since there is a range of slopes which 

give a good fit provided the constant term is chosen right. In 

comparing the fit for a slope of i (PCLC) with the fit for a slope of 

2/3 (PCFB), we find there is no significant improvement. The least­

squares fit for a slope of 1 gives a constant term of 1.40. The width
 

of the emission cone (in seconds) for emission occurring at a distance
 

re from the center is given by
 

1/2
 

W = 3 (4.1.2) 

The least-squares fit then suggests that the emission region is located
 

approximately at re - 50R,.
 

Another difficulty in analyzing the acceleration mechanism is due to
 

the nature of the curved field lines. We know that we must have curved
 

field lines in order to get acceleration, but the most realistic case
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(dipole field) is very difficult to work with because Laplace's equation
 

is not separable. Small angle approximations are possible (as was done
 

in the final section of Chapter III), but the method is not valid for
 

large distances, which appears to be an important region for the physics
 

of the problem. A possible solution to this difficulty is to use some
 

co-ordinate system which is separable and still mimics the general
 

morphology of the dipo1"e field lines. One such co-ordinate system is
 

that of "toroidal" co-ordinates. Laplace's equation is separable
 

(although the Helmholz equation is not) and the "field lines" in this
 

system would curve in the same direction as the dipole field lines,
 

meeting the equatorial plane at right angles to the plane (as do dipole
 

field lines). The radius of curvature is, however, much shorter than
 

the dipole case which would probably produce excessively high
 

acceleration. The method might be useful, nevertheless, as an
 

indication of when acceleration can be expected and perhaps might serve
 

as an upper bound on how much acceleration can be expected.
 

4.1.2 The effects of pair production
 

As noted at the beginning of Chapter III, it is important that the
 

plasma be charge separated. Thus, either pair production must not take
 

place, or the effects of pair production must be negligible in order for
 

the equations to be valid. If pair production does take place, there
 

are several effects on the equations. First, the current is no longer
 

tied to the magnetic field lines, since a particle may produce a gamma
 

ray via the curvature radiation mechanism, which then crosses field
 

lines until it produces an electron-positron pair on a new field line.
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Thus current can be transported across field lines even if individual
 

articles are firmly attached to the field lines. A second effect is
 

hat the charge density may no longer be simply related to the current
 

ensity. Indeed, once pair production takes place, the number of pairs
 

xpected is large, so in order for the charge-separated equations to
 

till be valid, the velocity difference between electrons and positrons
 

lust be extremely small. Since, however, the electrons and positrons
 

ill be accelerated in opposite directions (if the accelerating field
 

is non-zero), it is unreasonable to expect the velocity difference to
 

remain small even if the initial difference is negligible. We would
 

then expect the electron-positron plasma to distribute itself so as to
 

shield the particles from the accelerating field. Thus, once pairs are
 

produced, the acceleration will be sharply reduced. This might not
 

affect the radio emission process (in fact it.may be the source of the
 

radio emission mechanism, e.g. the beam-plasma instability postulated in
 

the Ruderman-Sutherland model), but the decreased acceleration makes it
 

difficult to account for the high-energy gamma rays that have been
 

observed from the Crab pulsar (Ogelman, et al. 1976).
 

4.1.3 The effects of particle inertia
 

One of the results of the acceleration theorem presented in Chapter
 

III is to suggest that the effect of particle mass is even more
 

important that previously realized. It has long been suggested that the
 

accelerated particles would tend to wrap up the magnetic field lines
 

when inertial effects became important compared to electro-magnetic
 

effects. Since it is now clear that such distortions of the magnetic
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field are accompanied by accelerating electric fields, it is important
 

to consider the particle masses in explaining the acceleration
 

mechanism. The analysis of the problem with particle masses included is
 

extremely complicated and will probably require detailed computer
 

modeling in order to solve the equations.
 

4.1.4 Return currents: Is a pulsar charged?
 

In the polar-cap region, particles of only one sign are accelerated,
 

and the same particles are accelerated from both poles. It is clear
 

that the accelerated particles cannot be accelerated indefinitely and
 

removed from the pulsar, or the pulsar would quickly develop a charge
 

sufficient to turn off the current. Either particles of both signs must
 

be removed from the surface (an unlikely situation except in the
 

orthogonal rotator case, see Chapter II - Holloway's analysis) or there
 

must be a deceleration region in which the particles are slowed down and
 

transported to other field lines in the closed field region and returned
 

to the star. One would suspect that particles cross field lines when
 

IEj > 11B. if the star has a net charge, Q, and we ignore the co­

rotation E field, the particles would be expected to cross field lines
 

when
 

QT C4.1.3)

r 

If we then demand that particles cross field lines at RL we can solve 

for Q to find 

Q - 9BR3/c (4.1.4) 

In fact, this large a charge on the star itself would be sufficient to 
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stop the acceleration of particles entirely and ultimately leave a
 

vacuum around the pulsar (Jackson, 1976). Presumably then a smaller net
 

-harge appropriately distributed in the magnetosphere, along with the
 

rotational electric field is sufficient to make the accelerated
 

'articles cross field lines. By dealing with a vacuum "inagnetosphere",
 

Jackson (1976) has estimated the charge on the star to be a third of the
 

above value. In fact, if the charge imbalance is distributed near the
 

"Y-type neutral point" rather than on the star itself (as is likely),
 

the charge imbalance may be significantly less than either estimate. In
 

any case, it is quite likely that a charge imbalance is present and that
 

it'forces the accelerated,particles to cross magnetic field lines and
 

return to the neutron star along the closed field lines.
 

4.2 THE RADIATION PROBLEM
 

While the radio emission of pulsars seems to fit a fairly simple
 

conceptual model (although the details of the emission mechanism are not
 

well understood), the other forms of radiation present a bewildering
 

variety of properties. Two pulsars, the Crab and the Vela pulsars, have
 

been detected optically. The Crab pulsar has also been detected in the
 

infrared and the x-ray region (Cocke, et al. 1969; Wallace, et al.
 

1977). Gamma radiation has been detected from four pulsars
 

(PSR-0532[the Crab], PSR-0833[the Vela], PSR-1747, and
 

PSR-1818)(Thompson, et al. 1975; Buccheri, et al. 1976; Ogelman, et al.
 

1976). In the case of the Crab pulsar the gamma ray energies are known 

to exceed I Gev. All the pulsed radiation of the Crab pulsar (except to 

extremely high-energy gamma rays - 101 z eV) is in phase with the 
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)rincipal radio pulses. In the case of the Vela pulsar, there is only
 

)ne radio pulse, but two optical pulses and two gamma ray pulses, none
 

)f which is in phase with any of the others. For PSR-1747 and PSR-1818.
 

there is one radio pulse and one gamma ray pulse but in neither case are
 

the two in phase. Table 4 summarizes the situation and the relative
 

3hases.
 

TABLE 4
 

Relative Phases of Radio, Optical, X-Ray, and GammRay Pulses for four
 
pulsars.
 

Phase
 

very energetic

Pulsar radio optical x-ray gamma ray gamma rays
 

0532 (Crab) -20' 
00 

1430 

(precursor) 
(main pulse) 
(interpulse) 

00 
1430 

00 
1430 

00 
1430 

variable 

0833 (Vela) 0 1000 600 

1960 2230 

1747-46 00 570
 

1818-04 00 2630
 

It is unlikely that any simple model can explain such a diversity.of
 

facts. The fact that radiation occurs at phases other than those which
 

we would ascribe to the polar caps (i.e. the phase of the radio pulse),
 

indicates that some of the radiation occurs elsewhere in the
 

magnetosphere. This is also supported by the fact that high-energy
 

gamma rays produced at the polar cap would be eliminated by the pair­

production process. The Crab pulsar then appears to be anomalous in the
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fact that pulses at all wavelengths are in phase. It is quite possible
 

hat the Crab pulsar is the one pulsar in which we observe radio
 

mission from the light cylinder (or force balance) region. In that
 

ase, all the radiation from the Crab is produced in one area in the
 

uter magnetosphere with the possible exbeition of the precursor. In
 

act, the precursor may be the polar-cap radio pulse that we observe in
 

11 	other pulsars. The fact that two pulses symmetrically arranged
 

bout a center phase are observed in both the Crab and the Vela pulsars
 

(for both optical and gamma ray radiation) suggests that this radiation
 

is occuring in the outer magnetosphere where the opening angle of the
 

open field line region is large. If this is the case, the resultant
 

radiation pattern is closer to a "fan beam" than to a "pencil beam",
 

thus explaining why we see both pulses in both the Vela and Crab
 

pulsars.
 

4.3 	 CONCLUSION
 

To paraphrase (and invert) Voltaire's famous aphorism about God, if
 

pulsars did not exist, it would not be necessary to invent them.
 

Indeed, based on our current theoretical understanding of pulsars, the
 

fact of their existence seems quite remarkable. Nevertheless, we can
 

come to a few conclusions:
 

1. If the magnetic field lines are curved (as they will be in any
 

realistic model), particle acceleration (or deceleration) must
 

occur.
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2. 	If we assume space-charge limited flow, the acceleration does
 

not occur near the surface of the star, but rather it occurs
 

at distances of the order of a few to hundreds of star radii
 

from the surface.
 

3. 	It is likely that the star-magnetosphere system has a net
 

charge, the effect of which is to force particles emitted from
 

the polar-cap region to cross magnetic field lines and
 

eventually return to the star. Thus closed current loops are
 

present and the system is in a (quasi) steady state.
 

There is clearly much work yet to be done to establish a clear
 

understanding of pulsars. Primarily we need to understand the structure
 

of the magnetosphere near the light cylinder where particle inertia
 

becomes important. Once we finally understand the magnetosphere, it
 

will be possible to construct believable radiation emission mechanisms.
 

Once the plasma processes are understood we will finally be able to make
 

a strict comparison between the theoretical models and the observed
 

radiation.
 

It is implicit in the nature of an astrophysicist to be optimistic
 

about the possibilities of understanding the distant and mysterious
 

objects in the heavens. So the work on pulsar models will go on and
 

better models will be produced. The task remains a difficult one and it
 

is perhaps unfortunate that the LGM theory had to be dispensed with.
 

Viewed in the light of what we know today it had many attractive
 

features.
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Appendix A
 

MATHEMATICAL DETAILS
 

i.1 GREEN FUNCTION FOR THE SECOND ORDER PERTURBATION
 

The Green function for equation (3.2.64) can be easily expressed in 

:erms of the solutions to the homogeneous equation. The equation is 

Bessel's equation of order a = ,28 and parameter X = 8 /max- We wish to 

form a Green function for the interval Ouiu, satisfying homogeneous 

boundary conditions. For u<u' we want G(0,u')=0. For u)u' we need 

G(u,,u')=0. We therefore write G as follows: 

G(u,u') = c JJ(Xu<)[J(X$) + a N Xu>) (A. 1) 

where u< = min(u,u') and u> = max(u,u'). At the point u=u' there is a
 

discontinuity in the first derivative given by
 

dG(u,u') = C)L. A. 2) 
du + du u
 

but we also know that the derivative discontinuity is given by
 

CaXW(Ja,NCt) (A.3)
 

where W is the Wronskian of J% and Na evaluated at the point u. The
 

Wronskian is given by (Cf. Stegun and Abramowitz, eqn. 9.1.16)
 

W(J,Na) = 2/(TAu) (A.4)
 

It immediately follows that the normalization constant 'C' is given by
 

C = x/2a (A.5)
 

Finally, the value of 'a' is determined by the boundary condition
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;(u,,u')=O, which implies 

a = -J(ku,)/NaCAu,) (A.6) 

k.2 	 EXACT INTEGRATION OF THE NON-LINEAR PROBLEM
 

We start from equation (3.2.7) (repeated here for convenience)
 

CA.7)3 ( (Y2_) 

We now make the substitution cosh y = V. Equation (A.7) then can be 

written as 

sinh y K (sinh y)1/2 	 (A.8) 

where
 

83e*1/2 

K = (A.9) 

and we may therefore integrate both sides to find
 

Y 	 r 

f~snh /)/2 dy 3/2fr-3/2 d, (A.10)
 

0 
 R
 

The right hand side is trivial in integrate; the left hand side can be
 

found in Gradshten and Ryzhik (1965) [equation 2.464.5 pg. 115] with the
 

result given in equation (3.2.9).
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Appendix B
 

COMPUTER LISTINGS
 

The following are listings of the programs and subroutines that were
 

d in the numerical solution to the non-linear one-dimensional
 

ation (see Chapter III, section 2.3). The subroutine "ODE" and its
 

support routine "DE" were written by Shampine and Gordon. All routines
 

except one are written in IBM Fortran IV (level H). The one exception,
 

the subroutine "INVRT" was written in the IBM 370 assembly language.
 

C 
C PROGRAM TO SOLVE THE NON-LINEAR ONE-DIMENSIONAL DIFFERENTIAL EQUATION 
C WHICH DESCRIBES THE ACCELERATION OF CHARGED PARTICLES FROM THE POLAR CAP OF A 
C 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 GAM(2),WORK(150) 
INTEGER IWORK(5) 
COMMON ZKAPPA,ETA,ETA2 
EXTERNAL F 

C 
C VARIABLES USED: 
C P = PERIOD 
C B = SURFACE MAGNETIC FIELD 
C RSTAR RADIUS OF THE STAR IN CM 
C ETAMAX = MAXIMUM VALUE OF THE CO-ORDINATE ETA 
C ETAMX2 r ETAMAX**2 
C GAM(1) = RELATIVISTIC GAMMA 
C GAM(2) = D(OAMMA)/D(XI) 
C XJSTAR = CURRENT DENSITY*I.OE-12*(.-ETA**2/ETAMX2) 
C EPSI = ACCELERATING ELECTRIC FIELD*I.OE-6 
C 
C 
C ASSUME P=1 SEC 
C B=10**12 GAUSS 
C 

RSTAR=I.OD+6 
ETAMX2=2.O*3.1415927/3.OD+1O 
DETAZETAMX2/129. 
ZKAPO=2.459D17 
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DO 10 I=1,129,32
 
ETA2=(I-1)*DETA
 
ETA=DSQRT(ETA2)
 
ZKAPPA=ZKAPO/DSQRT(1.0DO-.75D6*ETA2)*(1.ODO-ETA2/ETAMX2)
 
XJSTAR=1.ODO-ETA2/ETAMX2
 
OAM(1)=l.ODO+2.SD-6*XJSTAR**(2.0DO/3.ODO)
 
GAM(2)=-1.6D+9*(1.0DO+2.0D-1O)*XJSTAR**(2.ODO/3.0DO)
 
PSID=DSQRT(DSQRT(1.0DO-1.0D6*ETA2))*I.OD-6
 
WRITE(6,110)ETA,ZKAPPA,XJSTAR
 

110 FORMAT('IINTEGRATION FOR ETA = ',F12.6,1OX,'KAPPA ='
 
E,1P020.12,5X,'JSTAR =',F1O.6/SX,'PSI',12X,'RADIUS',9X,'DELTA-R'
 
@,SX,'GAMMA', lOX,
 
*'DGAMMA',7X,'LOG(GAMMA)',7X, 'E-RSI',7X,'IFLAG'/)
 

PSINAX=.25*PSIO
 
PSTEP=(PSIMAX-PSIO)*1.0D-9
 
PSMAX=(PSIMAX-PSIO)/50.DO
 
CALL INVRT(PSIO,ETA,R,SN,CSN)
 
DR=I.0
 
GLOG=DLOGIO(GAM(1))
 
DELTA=1.0D-4/RSTAR
 

GDELT=GAM(1)-i.0DO
 
EPSI=-851.67D-6*DSQRT(1.0DO+3.ODD*CSN)/R**3/PSIO*GAM(2)
 
WRITE(6,100)PSIO,DR,DELTA,GAM(1),GDELT,GLOG,EPSI
 
WRITE(9,103)DR,GAM(1)
 
WRITE(10,103)DR,EPSI
 
WRITE(11,103)DELTA,GDELT
 

103 FORMAT(IX,2020.12)
 
100 FORMAT(IP7D15.7,5X,15)
 

POUT=PSIO
 
PSI=PSIO
 
IFLAG=I
 
DO 15 J=1,1000
 
POUT=PSI+PSTEP
 
CALL ODE(F,2,GAM,PSI,POUT,RELERR,ABSERR,IFLAG,FORK,IWORK)
 
GLOG=DLOG10(GAM(1))
 
GDELT=GAM(1)-i.000
 
IF(IFLAG.LT.O)GO TO 16
 
CALL INVRT(PSI,ETA,R,SN,CSN)
 

DR=R/RSTAR
 
DELTA=(R-RSTAR)/RSTAR
 
EPSI=-851.67D-6 M DSQRT(1.ODO+3.0DO*CSN)/R *3/PSI*GAM(2)
 
WRITE(G,100)PSI,DRDELTA,GAM(1),GDELT,GLOG,EPSI,IFLAG
 
WRITE(9,103)DR,GAM(1)
 
WRITE(IO, 103)DR,EPSI
 
WRITE(i, 103)DELTA,GDELT
 
G0 TO 18
 

16 WRITE(6, 101)IFLAG,PSI,POUT
 
101 FORMAT(C'0**ERROR: IFLAG=',14,IOX,1P2D20.12)
 

STOP
 
18 IFCPSMAX.LE.PSTEP)PSTEP=PSTEP+PSTEP
 

IF(PSI.LT.PSIMAX)GO TO 11
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http:IFLAG=',14,IOX,1P2D20.12
http:FORMAT(IX,2020.12
http:PSMAX=(PSIMAX-PSIO)/50.DO


15 CONTINUE
 

OUTPUT DATA FOR LATER PLOTTING USING 'TOP DRAWER'
 

11 WRITE(9,104)
 
WRITE(10, 104)
 
WRITE(11,104)
 

104 FORMAT(1X,'JOIN')
 
10 CONTINUE
 

STOP
 
END
 
SUBROUTINE F(PSI,GAM,DGAM)
 

THIS SUBROUTINE IS USED BY ODE
 
IT DEFINES THE DIFFERENTIAL EQUATION TO BE INTEGRATED
 

IMPLICIT 	REAL*8(A-H,O-Z)
 
REAL4 8 GAM(2),DGAM(2)
 
COMMON ZKAPPA,ETA,ETA2
 
DGAM(1)=GAM(2)
 
CALL INVRT(PSI,ETA,R,SN,CSN)
 
DGAM(2)=ZKAPPA*R**3*PSI**2/DSQRT(1.0D0-.75DO*R*ETA2)*GAM(1)/
 

SDSQRT(GAM(1)**2-1.ODO)+GAM(2)/PSI
 
RETURN
 
END
 

Subroutine "INVRT" is used to convert values of n and e to values of 

r and 0. It uses Newton's method to solve first for the value of r and 

then determines sin 2 (C) and cos 2 () from the definitions of 7) and . 

*SUBROUTINE INVRT(PSI,ETA,R,SN,CSN)
 

INVRT 	 START
 
USING *,15
 
B START
 
DOC X'5',CL7'INVRT
 

SAV 	 DS 18F
 

START 	 EQU
 
STM 14,12,12(13) SAV REGS
 
ST 13,SAV+4 SAVE ADDRESS OM MY SAV AREA
 

- 66 ­



ORIGINAL PAGE 18 
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LA 12,SAV LOAD ADDRESS OF MY SAVE AREA
 
ST 12,8(13) STORE IN CALLING SAVE AREA
 
LR 13,12 MAKE 13 THE BASE REG.
 
DROP 15
 
USING SAV,13
 
LM 2,6,0(1) LOAD ARGUMENT ADRESSES
 
LD 0,0(3) LOAD ETA
 
LTDR 0,0 TEST ETA
 
BZ ZERO IF 0 0 TO ZERO
 
MDR 0,0 SQUARE ETA
 
STD O,ETA SAVE ETA**2
 
LD 2,0(2) LOAD PSI
 
STD 2,PSI SAVE IT
 
LH 2,PSI LOAD UPPER HALF OF PSI
 
SM 2,ETA SUBTRACT UPPER HALF OF ETA
 
BNP SKIPI IF NOT POSITIVE THEN SKIP OVER DIVIDE STEP
 
LD 0,=D'1.0 LOAD 1.0
 
DDR 0,2 1.0/PSI IN FREG 0
 
B SKIP2 SKIP AROUND THE LOAD RSAVE
 

SKIPI LD 0,RSAVE LOAD LAST VALUE OF R
 
SKIP2 MDR 2,0 MULTIPLY R*PSI
 

LDR 4,2 LOAD R*PSI INTO FREG 4
 
MDR 4,2 (R*PSI)**2
 
MDR 4,2 (R*PSI)**3
 
LDR 6,4 SAVE R*PSI**3 IN FREG 6
 
MDR 4,2 (R*PSI)**4
 
MD 4,=0'3.0' 3.*(PSI*R)**4
 
AD 4,=D'1.O 3.*(R*PSI)**4+1.0
 
MD 6,=D'4.0 4*(R*PSI)**3
 
MD 6,PSI 4*(R*PSI)**3*PSI
 
AD 6,ETA 4*(R*PSI)**3*PSI+ETA**2
 
DDR 4,6 DIVIDE TO GET NEW R
 

SDR 0,4 	 RSAVE-R
 
LPDR 0,0 DABS(RSAVE-R)
 
STD 0OTEMP1 SAVE TEMPI (RSAVE-R)
 
STD 4,TEMP2 SAVE TEMP2 (R)
 
LH 8,TEMP2 LOAD UPPER PART OF TEMP2
 
SH 8,TEMP1 SUBTRACT UPPER PART OF TEMPI
 
CH 8,=XOBO' COMPARE WITH EXPONENT =11
 
BH ROK IF TEMP2-TEMP>OBOO OK TO GO ON
 
LDR 0,4 LOAD NEW GUESS FOR R INTO FREG 0
 
LD 2,PSI LOAD PSI INTO REG 2
 
B SKIP2 LOOP AGAIN
 

ROK 	 STD 4,RSAVE SAVE R
 
STD 4,0(4) RETURN R TO CALLING PROGRAM
 
MD 4,ETA R*ETA**2
 
STD 4,0(5) RETURN SIN**2
 
SD 4,=D'1.0' SUBTRACT 1.0
 
LPDR 4,4 LOAD POSITIVE TO GET COS**2
 
STD 4,0(6) RETURN CSN
 

*RETURN TO CALLING PROGRAM
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RETURN L 13,SAV+4 LOAD ADDRESS OF SAVE AREA 
LM 14,12,12(13) RESTORE REGS 
MVI 12(13),X'FF' NORMAL RETURN 
BR 14 RETURN 

*IF ETA=O THEN R=I/PSI,CSN=1,SN=O
 

ZERO 	 LB O,=D'1.0'
 
DO 0,0(2) DIVIDE BY PSI
 
STD 0,RSAVE SAVE R
 
STD 0,0(4) RETURN R
 
SDR 0,0 ZERO FREG 0
 
STD 0,0(5) RETURN SN=O
 
LD O,=D'1.O LOAD 1.0
 
STD 0,0(6) RETURN CSN=1.0
 
B RETURN RETURN TO CALLING PROG
 

*STORAGE
 

DS OD
 
RSAVE DC D'0.O'
 
PSI DS D
 
ETA DS D
 
TEMPI DS D
 
TEMP2 DS D
 

END
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