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This report  describes the  resu l t s  of an investigation of the 

infrared spectra  of analogs of lunar s o i l s .  The purpose of the 

investigation was t o  further the  development of methodology for  

in terpreta t ion of remotely measured infrared spectra of the lunar 

surface. To t h i s  end we have (1) obtained the op t ica l  constants 

of dunite, bytownite, augite, ilmenite, and a mare glass analog, 

(2) measured the infrared emittance spectra  of powdered minerals, 

and (3) compared these with spectra calculated by our reflectance 

theory using our catalogue of op t ica l  constants. The resu l t s  

indicate t h a t  the predictions of the the  'V closely simulate the 

experimental measurements i f  the  op t ica l  constants a re  properly 

derived. 
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I. INTRODUCTION 

Remote measurements of the  in f ra red  emittance spec t ra  of planetary 

surfaces  have t h e  po ten t i a l  f o r  mapping the  mineral composition of those 

surfaces. This has been evident f o r  many years as the  molecular and 

l a t t i c e  v ibra t ions  which make up the  inf rared spectrum provide charac- 
3. 

teristic signatures of mineral composition. However, emittance o r  

ref lec tance  signatures are c h a r a c t e r i s t i c  not only of the  mineralogy 

but  of various physical parameters of t h e  surface  such a s  p a r t i c l e  s i z e ,  

shape, and packing density. These physical parameters a r e  s o  important 

t h a t  the  same material  may have e i t h e r  a s p e c t r a l  peak o r  trough a t  the  

same frequency depending on p a r t i c l e  subdivision f o r  example. This 

apparent indeterminancy together with the  great  number of poss ib le  min- 

eral species  poses a ser ious  d i f f i c u l t y  i n  the u t i l i z a t i o n  of remote 

inf rared spectroscopy as an ana ly t i ca l  too l .  

To remedy t h i s  problem we developed a theory of the s p e c t r a l  ref lec-  

tance and emittance of pa r t i cu la te  surfaces  3 '4 '5  t h a t  is capable of pre- 

d i c t i n g  t h e i r  s ignatures.  The theory was developed and t e s ted  using 

r e l a t i v e l y  few model minerals s ince  o p t i c a l  constants  were not avai lable  

f o r  a wide number of mineral species. In  order t o  use the  theory to- 

gether  with inf rared measurementstointerpret the  spectrum of the  lunar 

surface ,  the  o p t i c a l  constants of relevant  mineral types need t o  be 

obtained. The more deta i led  the  catalogue of o p t i c a l  constants  is made, 

t h e  more s u b t l e  the in te rp re ta t ion  of the  composition of planetary sur-  

face  is possible.  

The in f ra red  spec t ra  of minerals can be considered t o  be a combi- 

na t ion  of t h e  e f f e c t s  of s t r u c t u r a l  type (o l iv ines ,  pyroxenes, fe ldspars ,  

etc.)  and va r ia t ions  caused by cat ion composition within homologous 

series. Eetep et a16'7 have shown the  kind of s u b t l e  d i s t inc t ions  

poss ib le  when lunar  samples a r e  avai lable  i n  the  laboratory,  a s  the  

e f f e c t s  of t h e  physical parameters refer red  t o  above can be circumvented 

by sample preparation. Whether some of the  sub t l e  e f f e c t s  can be 

measured i n  remote data,  however, remains t o  be demonstrated. 
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The wealth of  information inherently present i n  the  middle and f a r  

in f ra red  s p e c t r a l  regions when compared t o  the  complementary near inf ra-  

red and v i s i b l e  regions already succeasfully exploited by Adam, McCord, 
8 Pieters ,  and coworkers suggests t h a t  a s ign i f i can t  e f f o r t  i n  t h i s  

region w i l l  lead t o  valuable resu l t s .  

Our work during t h i s  contract  has been focussed on two pr inc ipa l  

tasks.  The f i r s t  was t o  obtain o p t i c a l  constants fo r  s u i t a b l e  lunar 

analogs s o  a s  t o  prepare f o r  eventual in te rp re ta t ion  of remotely 

obtained lunar spectra.  The second t ask  was t o  use these op t i ca l  con- 

s t a n t s  together with our theory t o  simulate the signatures expected 

from p a r t i c u l a t e  samples and t o  compare these predict ions with labor- 

a tory  measurements on powders of t h e  analog materials.  The purpose of 

t h i s  t a sk  was t o  asce r ta in  the  degree t o  which lunar spect ra  could 

presently be in terpre ted  and t o  suggest areas  where fu r the r  theore t i ca l  

improvements need t o  be made. 

Arthur D little. Inc 
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11. ANALOG SAMPLES 

The choice of  analogs t o  s tudy i n  t h i s  program was g r e a t l y  f a c i l i -  

t a t e d  by many d i s c u s s i o n s w i t h o u r  co-invest igator ,  Dr .  David S. McKay 

of t h e  Johnson Space Center,  and h i s  col leagues.  I n  add i t i on  Dr .  McKay 

obtained a n a l y t i c a l  information a s  t o  t h e  chemistry of ou r  samples, 

provided many of  them inc luding  the  powders t h a t  we s t u d i e d ,  and had 

some measurements of p a r t i c l e  s i z e  d i s t r i b u t i o n s  made f o r  us. 

There were s e v e r a l  problems a s soc i a t ed  wi th  choice of samples f o r  

t h i s  program. We ob ta in  t h e  o p t i c a l  cons t an t s  ( t h e  r e a l  and imaginary 

components of  t h e  complex index of  r e f r a c t i o n )  by f i t t i n g  the  r e f l e c t -  

ance spectrum of a pol ished sample using c l a s s i c a l  d i spers ion  theory 

(Lorentz l i n e s )  a s  previously described.' For t h i s  purpose we need a 
2 

pol i shed  sample of s e v e r a l  c m  a r ea  and homogeneous composition. I d e a l l y  

n s i n g l e  c r y s t a l  of known o r i e n t a t i o n  should be measured. For b i a x i a l  

c r y s t a l s ,  t h r ee  sets of o p t i c a l  cons tan ts  e x i s t ,  so t h a t  t h r e e  s e p a r a t e  

measurements need t o  be made using polar ized  r ad ia t ion .  Monoclinic and 

t r i c l i n i c  c r y s t a l s  do not  have a set o f  o p t i c  axes t h a t  are independent 

of  wavelength s o  t h a t  t h e  problem is very complicated. On a p r a c t i c a l  

l e v e l ,  ob t a in ing  l a r g e  enough s i n g l e  c r y s t a l s  s o  t h a t  t h e  t h r e e  measure- 

ments could be made f o r  samples of l una r  composition is a l s o  formidable. 

At t he  same time we need t o  have s u f f i c i e n t  sample s o  t h a t  powders can 

be produced of s p e c i f i e d  p a r t i c l e  s i z e  d i s t r i b u t i o n s  f o r  each sample of 

i n t e r e s t .  

Severa l  of t h e s e  problems might be ameliorated by using randomly 

o r i en t ed  p o l y c r y s t a l l i n e  samples and t r e a t i n g  them a s  homogeneous i so -  

t r o p i c  samples. However, such a procedure is not  r igorous f o r  s e v e r a l  

reasons. F i r s t ,  such a sample w i l l  i nva r i ab ly  produce some s c a t t e r i n g  

owing t o  microcracks and i n t e r f a c e s  between c r y s t a l s .  Second, t h e  

assumption of  random d i s t r i b u t  ion  is always i n  quest  ion. Another draw- 

back is t h a t  using t h e  Fresne l  equat ions t o  f3.t t h e  spectrum assumes a 

f a c e t  model of t h e  su r f ace ,  and t h e  quan t i t y  being averaged by t h e  
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measurement is t h e  reflectance.  Subsequent der iva t ion  of the  o p t i c a l  

constants  from the  averaged ref lec tances  of the  f ace t s  produces a s e t  

o f  o p t i c a l  constants  t h a t  a r e  required t o  be appropriate i n  the  calcu- 

l a t i o n s  of our  p a r t i c u l a t e  theory (where cross-sections a r e  the  quan- 

t i t ies  t o  be  averaged). This requirement would not appear t o  be met 

f o r  mixtures of d i f f e r e n t  minerals where, f o r  instance,  +he t r u e  

r e f r a c t i v e  indices  of d i f f e r e n t  substances may a t  some frequency be 

disposed above and below unity. The derived o p t i c a l  constants would 

appropr ia te ly  represent  t h e  coherent surface  (Fresnel) ref lec tance  of 

t h e  p a r t i c l e s  i n  t h e  mixture but  not necessar i ly  the  r e f rac t ive  pa r t  of 

t h e  sca t t e r ing .  It is easy t o  see t h a t  averaging of the  individual  

o p t i c a l  constants  themselves would f a i l  a s  i t  would be possible t o  con- 

s t r u c t  a case  based on averaged o p t i c a l  constants  where l i t t l e  ref lec-  

tance o r  s c a t t e r i n g  would be predicted t o  occur (ii - 1)  even though 

both components were good re f l ec to r s .  A t  any r a t e  the  r e f r a c t i v e  

s c a t t e r i n g  contr ibutfons t o  the  p a r t i c l e  cross sec t ions  i n  our theory 

would not seem t o  be  appropriate owing t o  the  averaging process inherent  

i n  deriving the  o p t i c a l  constants.  The extent  t o  which t h i s  problem is  

important w i l l  be examined i n  t h i s  work by a comparison of spec t ra  

predicted by our  theory f o r  quartz p a r t i c l e s  using both the  o p t i c a l  

constants  of quartz1o and those derived here in  f o r  quar tz i te .  

The samples s tudied  on t h i s  program were: 

1. Mare g lass  analog 

This  sample was prepared by D r .  J. F. Wosinski of Corning 

Glass Works, Coning,  New York. It was prepared under reducing 

conditions (charcoal) i n  order  t o  simulate lunar conditions. The 

chemical composition determined by X-ray fluorescence by M. Rhodes 

and K. Rodgers is a s  follows: 

Si02 44.65 MgO 7.38 

Ti02 6.59 CaO 12.25 

A1203 13.42 NapO c0.05 

Cr203 0.14 K2° 0.02 

FeO 13.95 '2'5 0.02 

MnO 0.14 S 0.02 

Tota l  98.58 

Arthur I> Littlelnc 



Ferrous i r o n  was a l s o  determined by wet chemistry t o  be  13.29. 

This  i n d i c a t e s  t h a t ,  w i th in  a n a l y t i c a l  e r r o r ,  a l l  of t h e  Fe is 

present  a s  FeO. The g l a s s  proved t o  be s l i g h t l y  inhomogeneous when 

analyzed wi th  t h e  probe, but  no t  enough t o  matter.  The chemical 

composition is f a i r l y  c lo se  t o  t h a t  of Apollo 15  s o i l  10084. 

2. Dunite 

The dun i t e  sample is Ward's #44 from Jackson County, North 

Carol ina.  It was analyzed wi th  t h e  energy d i spe r s ive  X-ray spec- 

t rometer  using o the r  o l i v i n e  minerals  a s  s tandards.  It is Fogl. 

This  duni te  conta ins  minor s p i n e l  inc lus ions .  

3. Pyroxenite 

The pyroxeni te  sample was obtained from t h e  Harvard Universi ty  

c o l l e c t i o n  through t h e  courtesy of  Prof.  C l i f fo rd  Frondel. It was 

a f i n e  grained sample and was analyzed by e l e c t r o n  probe. Its 

p a r t i a l  composition is as follows ( th ree  po in t s )  : 

CaO FeQ MgO 

22.14 9.70 12.33 
20.86 11.41 12.06 
21.52 9.85 12.42 

The mol percent  of pyroxene end members corresponding t o  t hese  

t h r e e  poin ts  is wo 47, Fs16i W0459 En36¶ Fslgi '0~69 En37,Fs17* 
This  is roughly a d iops ide  composition ( ac tua l ly  a salite). 

I n  add i t i on  t h e  sample contains  minor ( ~ 5 % )  pigeoni te .  One 

analyzed poin t  gave No2, Ens7, F S ~ ~ .  This  is a hypersthene compo- 

s i t i o n .  

4. Bytomite- 

The bytownite sample is Ward's a277 from Crys t a l  Bay, Minnesota. 

Its composition is An76Ab240r0. It has l e s s  than 0.1% FeO and K20. 

5. I lmeni te  

A l a r g e  grained p o l y c r y s t a l l i n e  i lmeni te  sample was obtained 

from Ward's Natural  Science Establishment Inc. It came from Baie 

S t .  Paul ,  Quebec. It conta ins  some lamellae which a r e  t i tanomegnet i te .  

Arthur D 1-ittle Inc 
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6. Augite 

Prof. Frondel supplied us with a polycrys ta l l ine  augi te  sample 

(W116154) from Oaxaca, Oaxaca, Mexico. Its composition was found 

t o  be W O ~ ~ , ~  En40. 6 F S ~ . ~ ,  which is actual ly  a diopside. The probe 

analys is  r e s u l t s  a r e  : 

Si02 50.04 MnO (6.24 

Ti02 0.29 MgO 13.43 

M2°3 7.49 CaO 24.03 

Cr203 0. '3 Na20 0.36 

FeO 4.10 

7. Quar tz i t e  

We obtained a pink quar tz i t e  sample from Dell Rapids, South 

Dakota, from Ward's National Science Establishment. Prof. Frondel 

examined it and f e l t  it was a s  pure a s  we were l i k e l y  t o  find. H e  

indicated t h a t  the pink color represents  about 0.05% iron. EDX 

analys is  showed no observable peaks so  the  sample is pure t o  l e s s  

than 0.5% 

8. Dunite 

A sample from Ward's labeled pyroxenite a43 (Harzburgite) from 

Nye, Montana, turned out  t o  consis t  primarily of ol ivine.  The com- 

posi t ion  of t h e  o l iv ine  is Pog7. Oxide weight percents a r e  a s  fo l -  

lows : 

Mi30 46.56 

Si02 39.84 

CaO 0.07 

FeO 12.14 

Tota l  98.61 
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111. QPTICAL CONSTANTS 

As mentioned previously we obtained the  o p t i c a l  constants  of our 

samples a s  described i n  reference 4 with the  exception t h a t  a l l  of the  

samples measured i n  t h i s  work were measured r e l a t i v e  t o  a gold mirror  

on ou t  Perkin-Elmer 521 Spectraphotometer a t  a 30' angle of incidence. 

A Perkin-Elmer w i r e  gr id  polarizerl '  was used t o  measure the  ins t ru-  

mental polar iza t ion .  The pyroxenite o p t i c a l  constants  were measured 

previously. 
9 

The Lorentz l i n e  parameters and t h e i r  cs t innted  standard deviat ions.  

f o r  our samp1.e~ ore:  

TABLE I - MARE G M S  ANALOG coD = 2.6759 (0.226) 

TABLE I1 - DUNITE em a 2.4177 (.0945) 

Arthur 11 Little Inc 
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TABLE I11 - BYTOWNITE - 2.1414 (.0536) 

TABLE IV - ILMENITE E- = 6.0789 ( . 0 4 9 2 )  

TABLE V - AUGITE E- = 2.4505 (.0703) 
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TABLE VI - QUARTZITE em = 2.4079 (.0599) 

The range of a p p l i c a b i l i t y  f o r  these o s c i l l a t o r  parameters is between 

300 cm-' and 1500 cm-l. 

Comparison of the  da ta  f o r  our  bytownite sample (An76Ab24) with 

t h a t  previously obtained f o r  anorthoaite  (An47Ab500r3, according t o  
- 

elec t ron probe analys is )  indica tes  a general pa t t e rn  s i m i l a r i t y  a s  

might be expected from ~ y o n ' s l ~  transmit tance data. While there  a r e  

some di f ferences  il i  minor fea tures ,  there  seems t o  be a c l e a r  corre- 

spondence between the  following fea tures  f o r  the  two feldspars:  

Data f o r  a t h i r d  composition would be required t o  e s t a b l i s h  a t rend 

with ca t ion  composition such a s  t h a t  suggested by Angino13 f o r  the  f a r  

in f ra red  spectrum. 

In   he same way a comparison between t h e  "augite" ( W O ~ ~ E ~ ~ ~ F ~ ~ )  

data  obtained during t h i s  work and the  "diopsidic" pyroxenite 

Arthur D Little Inc 



9 ( W O ~ ~ ~ ~ ~ F ~ ~ ~ )  p rev iowly  s tudied ind ica tes  an even c lose r  correspon- 

dence undoubtedly owing t o  the  smaller  discrepancy i n  ca t ion ra t ios .  

Unlike t h e  case of  the  feldspars above, t h e  small cat ion differences i n  

these pyroxenes are unlikely t o  be d i s t i n c t i v e  enough to be measured 

remotely. 

The o s c i l l a t o r  parameters are used t o  generate the  o p t i c a l  con- 

s t a n t s  by using t h e  equation: 

where m is the  frequency dependent complex index of  ref rac t ion,  m = n-ik, 

S is t h e  l i n e  s t rength ,  v f t s  frequency, and yj t h e  damping f o r  each 3 j 
resonance j. coo 1s the  high frequency d i e l e c t r i c  constant. 

Figures 1 - 6 show the  f i t s  obtained between the  experimental 

measurements of t h e  polished samples and t h e  spect ra  calculated from 

t h e  o p t i c a l  constants  derived from the  Lorentz l i n e  parameters given i n  

t h e  tables .  Somewhat b e t t e r  f i t s  might be obtained by d i g i t i z i n g  many 

more points  f o r  each spectrum. The apparent e x t r a  resonance i n  q u a r t z i t e  

near 450 em-' would have required considerably more e f f o r t  t o  remedy 

than the  data  appears t o  warrant. 

Arthur I2 Littlolnc E 
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A s  mentioned previously a very important p r a c t i c a l  considerat ion is 

t h e  degree t o  which o p t i c a l  constants  obtained from polished polycrystal-  

l i n e  samples con be used t o  f i t  the  spec t ra  of powders. A r e l a t i v e l y  

simple experiment t o  shed l i g h t  on t h i s  problem was conducted by obtain- 

i n g  the  o p t i c a l  constants  of a f a i r l y  pure q u a r t z i t e  sample i n  our usual  

manner. The constants  were then used together  with our theory t o  p red ic t  

t h e  ref lec tance  of powdered quartz. Figure 7 shows the calculated re- 

f lec tance  spec t ra  of quartz f o r  20 vm and 60 Dm p a r t i c l e s  using the  opt i -  

c a l  constants  derived from our  q u a r t z i t e  sample and those derived by 

Spi tzer  and ICleinmanl0 for  pure quartz. This comparison circumvents any 

problems associated with theory i t s e l f  and s o  should indica te  what we 

wish t o  know about the  o p t i c a l  constants  alone. 

The f i r s t  and most obvious conclusions a r e  t h a t  the  ca lcula ted  

spec t ra  resemble each o ther  moderately wel l  but t h a t  the ref lec tance  

l e v e l  ca lcula ted  using the pseudo o p t i c a l  constants  (quar t z i t e )  is q u i t e  

cox~sfs tent ly  below t h a t  ca lcula ted  from the  "true" values. This is 

l i k e l y  t o  be  due t o  the  s c a t t e r i n g  from d i scon t inu i t i e s  i n  the  surface  

of the  polished q u a r t z i t e  sample which would reduce t h e  measured ref lec-  

tance i n  s p e c t r a l  regions where quartz is opaque owing t o  t h e  surface  

microcracks, pores, and gra in  boundaries which would s c a t t e r  some radi- 

a t i o n  out  of the  "specular" angle meas\-*ed by the  spectrometer. In 

regions where quartz is r e l a t i v e l y  transparent  t h i s  e f f e c t  is l i k e l y  t o  

be overwhelmed by addi t ional  energy sca t t e red  by underlying surfaces of 

t h e  c r y s t a l l i t e s  i n t o  t h e  measured beam. 

For the  purposes of t h i s  discussion w e  should iden t i fy  t h e  r e s t -  

s t r a h l e n  bands of quartz a s  those regions where quartz is q u i t e  opaque. 

These a r e  the  bands between 350 cm-' and 550 cml ,  the  doublet near 

800 cmml,and the  bands between about 1075 em-' and 1250 cm-l. The bands 

near  650 cml ,  730 em-', and 900 cm-I represent regions of high trans- 

parency f o r  quartz and, a s  with the  da ta  i n  the  highest  frequency regions 

shown i n  the  spect ra ,  give higher ref lec tances  for  small  p a r t i c l c  s i z e s  

owing t o  add i t iona l  s c a t t e r i n g  by the g rea te r  number of in te r fzces  

encountered before t h e  r ad ia t ion  can be absorbed. 

Arthur I3 l~ttlelnc 
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The latter bands i n  p a r t i c u l a r  a r e  much more not iceable  i n  t h e  

spectrum calcula ted  from the  t r u e  o p t i c a l  constants,and the  reason is 

made apparent by the  following comparison of values of the  absorption 

index, k for  the  two o r i en ta t ions  of  quartz with the  q u a r t z i t e  value. 

The l a r g e  values of k obtained f o r  q u a r t z i t e  a r i s e  from an apparent 

inc rease  i n  t h e  specular  ref lec tance  i n  these regions caused by s c a t t e r -  

i n g  from underlying d i scon t inu i t i e s .  I n  der iv ing the  o p t i c a l  constants  

t h i s  enhanced ref lec tance  has been in te rp re ted  a s  an increase i n  t h e  

Fresnel  r e f l ec tance  of  the polished surface.  This i n  tu rn  has led  t o  

a spuriously high value of k. 

Experimental da ta  f o r  60 pm powder from our  previous work4 is 

included i n  Figure 7,  and t h e  calculated spectrum from the  t r u e  o p t i c a l  

constants  can be seen t o  represent  these fea tures  more accurately while 

the r e s u l t s  are somewhat more mixed f o r  the  r e s t s t r a h l e n  bands. A com- 

parison of the  da ta  f o r  our whole s e r i e s  of experimental quartz powders 4 

(20 vm samples were not  run) shows t h a t  these  non-reststrahlen bands do 

become much more important a s  p a r t i c l e  s i z e  is diminished and must be 

w e l l  represented f o r  such s i z e s .  



QRIGINAL PAGE 1s 
OF PWR QUALITY 

IV. SPECTRA OF ANALOG POWDERS 

The spec t ra  of our powdered samples have been run i n  emission 

w i n g  o u r  Mkhelson Interferometer  Spectrometer System as previously 

d e ~ c r i b e d . ~  The d a t a  are shown as ref lec tance  (R = 1-L) t o  f a c i l i t a t e  

t h e o r e t i c a l  comperiscrns. 

Figure 8 shows a comparison of t h e  measured spectrum of the  mare 

g lass  and the  ca lcu la ted  t h e o r e t i c a l  spectrum. In  order  t o  simulate 

t h e  memured p a r t i c l e  s i z e  d i s t r i b u t i o n  given us by Dr .  McKay f o r  the  

g lass  powder sample we  used t h e  following values : 

Measured Dis t r ibut ion  Calculation Values 

0.5-Pnm 6.0% 
0.25-0.5m 8.2 300ym 22.9% 
150-25Opm 8.7 
90-15Opm 11.7 lOOpm 16.1 
75-90vm 4.4 
45-75pm 13.1 SOpm 24.0 
30-45pm 10.9 
20-30pm 10.0 
15.6-20pm 5.7 15 pm 31.0 
7.8-15.6pm 15.3 
3.9-7.8pm Sum 6.0 
2.0-3.9pm 0.7 

We have previously found t h a t  such s impl i f ica t ion  i n  the  d i s t r i -  

bution is s u f f i c i e n t l y  accurate especia l ly  a t  the  l a rge r  p a r t i c l e  

s i zes .  The measured p a r t i c l e  s i z e  d i s t r i b u t i o n  resul ted  from s iev ing  

and recombination by Dr.  M a y  and h i s  a s soc ia tes  f o r  p a r t i c l e  s i z e s  

g rea te r  than 30 pm. Below t h a t  value an est imate was made based on h i s  

experience with grinding operations. The packing f rac t ion  was taken t o  

be  0.54 from measurements of t h e  bulk g lass  dens i ty  and she densi ty of 

the powder. The experimental measurements were made under a ni trogen 

atmosphere at  ambient pressure. This resul ted  i n  a temperature grad- 

i e n t  through the  powder of about 6'/cm. These conditions r e s u l t  i n  a 

r a t h e r  good f i t  of  t h e  ca lcula ted  and measured spec t ra  between 350 and 

1200 cmol. Beyond these  l i m i t s  the  f i t  de te r io ra tes  owing probably t o  

t h e  limits of t h e  spectrum measured on the  bulk sample f o r  the  o p t i c a l  

Arthur D little Inc 
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constants.  The da ta  show very modest s p e c t r a l  cont ras t  a s  was expected 

from r e s u l t s  on o the r  g lass  samples. 

We obtained t h e  o p t i c a l  constants  of duni te  during t h i s  work a s  

those measured by vincent15 were believed t o  be f o r  a p re fe ren t i a l ly  

or iented  sample. Data on the  o p t i c a l  constants  of pure s ing le  c r y s t a l  
16 f o r s t e r i t e  are a l s o  avai lable ,  but  we  were uncertain a s  t o  the  mag- 

ni tude of band s h i f t s  t h a t  might occur owing t o  the  replacement of Mg+l- 

ions by F e w  i n  dunite. A comparison of theore t i ca l  spect ra  f o r  60 ym 

powder using Vincent's o p t i c a l  constants ,  those of servoin16 f o r  fo r s t -  

erite (assuming a randomized mixture of the  th ree  poss ib le  o r i en ta t ions  

of  the  c r y s t a l l i t e s ) , a n d  our  new values is shown i n  Figure 9. The spec- 

trum from our o p t i c a l  constants  is q u i t e  s i m i l a r  t o  t h a t  produced by 

Vincent's o p t i c a l  constants  but  gives more s t r u c t u r e  especia l ly  i n  t h e  

low frequency region. This s t r u c t u r e  is shown t o  be r e a l  by the  cont- 

parison of our  da ta  with t h a t  f o r  pure f o r s t e r i t e .  The noticeable 

discrepancy when olir da ta  is compared with the  pure f o r s t e r i t e  da ta  a t  

t h e  high frequency end is believed t o  be explained by the  same defect  

i n  t h e  o p t i c a l  constants  discussed i n  t h e  previotm sec t ion  f o r  quartzite, 

Examination of t h i s  da ta  together with transmission data  given by Lyon 12 

suggests poss ib le  co r re la t ions  between the  Fe-l-t contents and the  bands 
7 near 980 and 610 cm-l. The cor re la t ion  mentioned by Estep near  418 cm-' 

is not c l e a r l y  shown but may be present i n  our data. 

I n  Figure 10a w e  show the  measured spec t ra  of 150-250 um dunite ,  

0-30 urn dunite ,  and a simulated lunar  mixture of p a r t i c l e  s i z e s  of 

duni te  according t o  the  same d i s t r i b u t i o n  given f o r  t h e  glass.  As t h i s  

repor t  was  i n  t h e  f i n a l  s tages ,  we received the  0-30 ym p a r t i c l e  s i z e  

counts f o r  the  pyroxenite, dunite ,  and bytownite samples. These counts 

i n d i c a t e  t h a t  a somewhat b e t t e r  simulation would have weighted the m a l l  

p a r t i c l e s  more heavily (i .e. ,  15 pm, 26%; and 5 ym, 11%), but such a 

change is  not  expected t o  have much e f fec t .  The packing f rac t ions  

given i n  t h e  f igure  r e s u l t  from measurements of the  densities of t h e  

powders and the  known dens i ty  of the  mineral. 

Arthur D Little, lnc 
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Figure lob shows t h e  ca lcula ted  spec t ra  of 200 pm, 10 pm, and 2 urn 
dunite. The l a t t e r  two runs were made i n  order t o  represent t h e  l e s s  

than 30pmsample a s  we  were uncertain of the  measured d i s t r ibu t ion  below 

30 prn a t  t h e  time. Together they we11 represent t h e  observed spectrum 

and we bel ieve  t h e  proper d i s t r ibu t ion  would also. The 200 um sample 

is a good f i t  t o  t h e  experimental da ta  except t h a t  t h e  general s p e c t r a l  

level f o r  t h e  ca lcula ted  spectrum is a b i t  too low, probably t h e  r e s u l t  of 

s c a t t e r t n g  l o s s  i n  the  measurements which l e d  t o  t h e  o p t i c a l  constants  

as described in t h e  last sect ion.  The spectrum of t h e  p a r t i c l e  s i z e  

mix is q u i t e  dominated by t h e  0-30 pm sample a s  shown i n  Figure 10a. 

Several runs of  t h e  Foa7 dunite were a l s o  made and a r ~ ?  shown i n  

Figure 10a. They have s imi la r  band pa t t e rns  with some differences from 

our  Pogl d m i t e .  We do no t  f e e l  these  differences a r e  s ign i f i can t  with 

respect  t o  t h e  Fel+ content. 

Figure l l a  shows t h e  experimental spec t ra  obtained fo r  250-500 pm, 

0-30 pm, andasimulated  lunar  p a r t i c l e  s i z e  mixture of bytownite. Theo- 

retical runs are shown in  Figure l l b .  The 250-500 Um byeownite data 

were simulated by a 350 ym theore t i ca l  run with excel lent  r e su l t s .  As 

before, t h e  experimental spectrum has a higher ref lec tance  l e v e l  than 

t h e  theore t i ca l  s imulat ion probably owing t o  the  s c a t t e r i n g  l o s s  sus- 

tained i n  t h e  measurements of t h e  o p t i c a l  constants. When the  0-30 pm 

spectrum was run, a band near 820 cm-l appeared t h a t  t h e  theore t i ca l  

run (5 pm) does no t  produce. We f i r s t  associated the  presence of t h i s  

unexplained band with t h e  presence of some impurity i n  the  sample, but  

a magnetic separat ion of dark p a r t i c l e s  and rerun of the  pur i f ied  sam- 

p l e  showed the  offending band t o  have been essen t i a l ly  unaffected. 

For t h e  0-30 ~ I E  sample, t h e  rise i n  reflectance observed experimentally 

at  frequencies j u s t  higher than the  Christiansen frequency is a l s o  not  

w e l l  f i t .  The simulated lunar  mix strongly resemblestheo-30 pm sample 

ind ica t ing  a s  w e  have noted before4 t h a t  i t  is common fo r  a r e l a t i v e l y  

small amount of f i n e  p a r t i c l e s  t o  exer t  a disproport ionate e f f e c t  on 

t h e  spectrum of a polydisperse sample. The poor f i t  a t  high frequencies 

and near 820 cmol appear simultaneously, and we postula te  t h a t  they a r e  

Arthur D Little Inc 
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due t o  the  same cause. As previously discussed, i f  t h e  calculated value 

o f  t h e  absorption index is not s u f f i c i e n t l y  small,  bands created by 

s c a t t e r i n g  of  r e l a t i v e l y  transparent  p a r t i c l e s  w i l l  not  be produced i n  

t h e  t h e o r e t i c a l  spectrum. As can be seen i n  ~ ~ o n ' s l ~  transmittance 

spec t ra ,  t h e  region o f  t h e  offending band is indeed r e l a t i v e l y  trans-  

parent  i n  a l l  feldspars.  Our ca lcula ted  value of t h e  absorption index 

shows a l o c a l  minimum of 0.241 a t  805 ccl. This would not  be low 

enough t o  produce t h e  band required, but  another f a c t o r  of f i v e  would 

undoubtedly have a good chance of s o  doing. Such e r r o r s  i n  the  absorp- 

t i o n  index were shown i n  the  experiment with quar t z i t e .  I f  t h i s  expla- 

na t ion  is va l id ,  we would expect t h e  band t o  disappear i n  the  spectrum 

of a mixture of minerals a s  absorption by o the r  minerals would destroy 

t h i s  type of band. 

Figure 12a shows the  spec t ra  of 90 pm - 1 nun, 0-30 pm,and a simu- 

l a t e d  lunar  p a r t i c l e  s i z e  mix of the  diopsidicpyroxenite  sample. We 

r an  the  wide d i s t r i b u t i o n  of c o a r s e p a r t i c l e s  a s  we did not have enough 

sample t o  run smaller  p a r t i c l e  s i z e  cuts .  Both the  0-30 vm and the  

mixture d a t a  show small tilts i n  t h e  o v e r a l l  spectrum. These a r e  due t o  

an  experimental e r r o r  t h a t  occurs occasionally,  but  w e  have not y e t  

located i ts  o r ig in .  Figure 12b shows our  theore t i ca l  simulations of 

these  spect ra .  As with our  o the r  minerals,  the  f i t  of t h e  coarse spec- 

trum t o  t h e  da ta  is  q u i t e  good except f o r  the absolute s p e c t r a l  l e v e l .  

However, the  0-30 pm spectrum shows the  poorest f i t  we have ever seen 

wi th  our present  theory. The spectrum of the  mixture, however, is f i t -  

t e d  much b e t t e r  p a r t i c u l a r l y  by an 8 pm calcula t ion  r a t h e r  than t h a t  

f o r  the  simulated mixture. The mixture s i z e  parameters involved a lim- 

i t e d  s e t  of measurements of t h e  0-30 pm f rac t ion  ra the r  than the  numbers 

given us by Dr .  McKay. For t h i s  case only we used: 

Calculation Values 

500 urn 34 X 
60 pm 29% 
20 pm 2 8% 
5 tJm 9 % 

jt 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

The improved f i t  by the  8 urn ca lcula t ion  together  with t h e  q u a r t z i t e  

and b y t o m i t e  results suggests the  l i k e l y  explanation. The p r inc ipa l  

d i f f i c u l t y  with t h e  8 um f i t  t o  the  mixture data occurs a t  the  high f re-  

quency end of the  spectrum where our ca lcula ted  value of k is not  a s  

small  a s  it should be. Such d i f f i c u l t i e s  a r e  amplified when the  calcu- 

l a t i o n  is made f o r  a mixture of s i z e s  and a r e  compounded by d i f f i c u l t i e s  

i n  the  800 and 450 cm-I regions. As before,  these a r e  regions of re la-  

t i v e  transparency i n  diopside12 and show l o c a l  minim i n  our  values of 

k. As t h e  bands t h a t  w e  a r e  lacking i n  the  calculatj .ons a r e  maximized 

f o r  r e l a t i v e l y  f i n e  powders (they disappear again i n  powders s o  small 

as t o  be w e l l  i n t o  t h e  region of  the  f i n e  p a r t i c l e  theory),  the  8 Dm 

ca lcu la t ion  a f fo rds  a b e t t e r  chance t o  show them than the  ca lcula t ion  

f o r  the  t r u e  mix. Once again the  importance of correc t  values of k f o r  

t h e  "transparent" regions is emphaeized. With t h i s  hypothesis i n  mind 

w e  can go on t o  an attempt: t o  r a t iona l i ze  the  t rouble  with our 0-30 pm 

f i t .  The d i f f i c u l t i e s  can now be observed (compare the  4 pm t h e o r e t i c a l  

run) t o  be s t i l l  fu r the r  exacerbated i n  the  regions mentioned above and 

now t o  include the  region around 1030 cm-I a s  well.  This region is 

shown by lyon's  data12 and our  values of k t o  have a s i m i l a r  character  

t o  the  regions discussed though quant i ta t ive ly  l e s s  s i g n i f i c a n t .  The 

extremely poor f i t  shown here was evidently caused by the  same d i f f i -  

cu l ty  a s  above (k not ca lcula ted  s u f f i c i e n t l y  low i n  c e r t a i n  s p e c t r a l  

regions) bu t  exacerbated by t h e  lack of r e l a t i v e l y  l a rge  p a r t i c l e s  (as 

i n  the  mix) where individual  p a r t i c l e  absorption by the  l a rge  p a r t i c l e s  

present  i n  the  mix ameliorated the  d i f f i c u l t y .  

It should be noted t h a t  the  seriousness of t h i s  problem of p rec i se  

values f o r  the  o p t i c a l  constants  w i l l  be somewhat lessened i n  mixtures 

a s  the  problem pr incipal ly  occurs when a spec t ra l  region is encountered 

where s i g n i f i c a n t  p a r t i c l e  s c a t t e r i n g  without at tendant  absorption is 

found. This is much l e s s  l i k e l y  t o  occur for  mixtures of minerals than 

f o r  any pure substance. Nonetheless i t  i s  very important tha t  improved 

o p t i c a l  constants  be obtained i n  fu ture  work. 
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In Figure 1 3  we  have p lo t t ed  our experimental and t h e o r e t i c a l  

r e s u l t s  f o r  a lunar  analog mixture made up t o  approximate the  lunar 

s o i l  12063. The f i t  between theory and experiment shows d i f f i c u l t i e s  

st the  high frequency end, i n  t h e  region around 800 cmW1 and t o  a smal- 

ler degree near  450 cm-l. These occur due t o  the  previously mentioned 

problem wi th  the  pyroxenite which dominates the  mixture. It should be 

noted t h a t  t h e  800 cmW1 fea tu re  of f i n e  bytownite cannot be observed i n  

t h e  mixture spectrum as predicted. The l e v e l  observed is excel lent ,  

and we f e e l  confident t h a t  t h e  o r ig in  of the  problem is well  understood 

and would be remedied by improved o p t i c a l  constants.  The high frequency 

region is very poorly f i t  a s  a l l  the  components a r e  r e l a t i v e l y  trans-  

parent  the re ,  and s o  do not ameliorate the  problem f o r  each other .  We 

include  i n  t h e  f igure  t h e  experimental spectrum of the  same sample 

taken under a p a r t i a l  vacuum of about 0.14 Torr. While t h i s  is not  a 

low enough pressure t o  s imulate the  lunar  vacuum and hence lunar ther- 

mal gradients  ( the  po la r i ty  is incorrec t  f o r  lunar daytime experiments), 

t h e  comparison does se rve  t o  show t h a t  a grea t ly  increased temperature 

gradient  i n  t h e  sample (32 O / c m  vs. 6.3 O/cm as estimated by our d i f fe r -  
4 e n t i a l  thermocouple technique ) does not  se r ious ly  a l t e r  the  s p e c t r a l  

s ignature  of t h e  sample. We had a l s o  reached t h i s  conclusion i n  our 

previous work.17 It should be noted t h a t  f o r  the  high gradient  sample 

our  usual methods of defining t h e  surface  temperature by e i t h e r  the  

thermometry4 o r  the  Chris c iansen frequency technique4 a r e  inval id  s o  

t h a t  t h i s  spectrum has been a r b i t r a r i l y  s e t  a t  a l e v e l  where i ts emit- 

tance  is t h e  same a s  t h e  nearly isothermal sample i n  t h e  p r inc ipa l  

r e s t s t r a h l e n  region. This involves an 8' e r r o r  i n  the  thermometry but 

bas ica l ly  represents  only a l e v e l  e f f e c t  and does not s i g n i f i c a n t l y  

a f f e c t  the signature.  

Figure 14 shows the same kind of f i t  between theory and experiment 

f o r  a simu1ac.d mature s o i l  made up of the  sample of Figure 13 and an 

equal amount: of the  Mare g lass  sample. The f i t  here is somewhat b e t t e r  

than i n  Figure 1 3  owing t o  t h e  reduced e f f e c t s  of the  t rouble  inherent  

i n  t h e  pyroxenite ca lcula t ions .  The general  conclusion t h a t  mature 

and immature s o i l s  can be  dist inguished even i f  they have s imi la r  
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chemistries is shown i n  a comparison of the results of  these two experi- 

ments i n  Figure 15 where the level  change in  the reststrahlen bands can 

be seen i n  both theory and experiment. This was predictable a priori 

from the knowledge that glass spectra generally show less  contrast than 

crystal spectra. 
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V. SMALL METALLIC INCLUSIONS 

I n  our  ea r ly  discussione with D r .  McKoy w e  became acquainted with 

a problem which w i l l  be most important f o r  r e a l  lunar  samples and con- 

cerns the  s i g n i f i c a n t  observed amounts of small i ron  p a r t i c l e s  found 

throughout many samples. D r .  McKay expressed considerable pessimism 

concerning t h e  p o s s i b i l i t y  of preparing an  analog of lunar aggla~t  ina tes  

because of these  I ron  p a r t i c l e s  (SO-100A diameter). However, our theo- 

r e t i c a l  treatment f o r  small p a r t i c l e s  shows tha t  we can e a s i l y  simulate 

t h e  e f f e c t  of such p a r t i c l e s ,  a s  t h e i r  extremely small s i z e  precludes 

t h e i r  contr ibut ing s i g n i f i c a n t  s c a t t e r i n g  i n  the  inf rared region. Their 

absorption can e a s i l y  be incorporated i n t o  our theore t i ca l  program 

knowing only t h e i r  concentration and o p t i c a l  constants. It is worth 

noting t h a t  t h e  c ross  sec t ion  f o r  absorption owing t o  these  p a r t i c l e s  

i s  l i k e l y  t o  be s i g n i f i c a n t l y  l e s s  i n  the  inf rared region than i n  the  

v i s i b l e  region, where they a r e  thought t o  contribute t o  the  low albedo 

observed. 

We have found 18'19 a dispersion equation fo r  use i n  our program 

f o r  small i ron  p a r t i c l e s ,  viz:  

where = 1.15 
C 

We have coded an option t o  use t h i s  equation i n  our program when r e a l  

lunar  samples a r e  obtained. 
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VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The r e s u l t s  of our s t u d i e s  of the  emittance of analogs of lunar 

minerals ind ica te  t h a t ,  a s  expected, our  theory of p a r t i c u l a t e  s c a t t e r -  

i n g  is a valuable t o o l  f o r  in te rp re t ing  t h e  remote in f ra red  spec t ra  o f  

planetary surfaces .  The most important s i n g l e  r e s u l t  of  t h i s  work has 

been t h e  evidence t h a t  t h e  goodness of f i t  between theory and experi- 

ment is c r i t i c a l l y  dependent on the  accuracy of t h e  catalogue of ~ p t f -  

cal constants  of t h e  re levant  minerals. I n  p a r t i c u l a r  t h e  values of  

t h e  absorption index, k, i n  regions of r e l a t i v e l y  high transparency 

must be properly ca lcula ted  t o  avoid e r r o r s  i n  band shapes f o r  s o i l s  

t h a t  conta in  s i g n i f i c a n t  amounts of small p a r t i c l e s  (c50pm). The tech- 

nique used i n  th iswork f a i l s  t o  properly represent k i n  t ransparent  

regions when the  samples a r e  polished polycrys ta l l ine  minerals. Im- 

pmved measurements of the  o p t i c a l  constants  a r e  very important, and 

assuming t h e  so lu t ion  of the  o p t i c a l  constant  problem, t h e  method of 

remote sens ing of planetary surface  composition discussed i n  t h i s  

r epor t  appears w e l l  feas ib le .  We suggest t h a t :  

1, Similar  experiments be made on r e a l  lunar s o i l s  and t h e o r e t i c a l  

s&mulations be compared with t h e  experimental data.  

2. The e f f e c t s  of small me ta l l i c  p a r t i c l e s  modeled during t h i s  

work should be t e s t e d  on r e a l  luna r  s o i l s .  

3. Further  t h e o r e t i c a l  and experimental work on the  quan t i t a t ive  

e f f e c t s  of thermal gradients  should be ca r r i ed  out. 

4. Improved methods be explored f o r  improving the  o p t i c a l  con- 

s t a n t s  of the  catalogued minerals. 

5. The o p t i c a l  constants  of more lunar  analog minerals be 

obtained. 
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