En@losure 3-1130-39-348	
Vol. I	-

BOENG

(NASA-CR-150833) LOAD AND DYNAMIC	N79-10048
ASSESSMENT OF B-52B-008 CARRIER AIRCRAFT FOR	
FINNED CONFIGURATION 1 SPACE SHUTTLE SOLID	
ROCKET BOOSTER DECELERATOR SUBSYSTEM DROP	Unclas
TEST VEHICLE. VOLUME 1: (Boeing Co., G3/05	5 33921

、

THIS DOCUMENT IS:

CONTROLLED BY	7583 - Structural ALL REVISIONS TO THIS BY THE ABOVE ORGAN	Dynamics Document shall be a IZATION PRIOR TO RELEA	PPROVED SE.
PREPARED UNDER	I CONTRACT NO. I IR&D I OTHER	. NAS8-31805	
DOCUMENT NO.	D3-11220-2	MODEL	B-52B-008
TITLE LOAD AND	DYNAMIC ASSESSMENT C)F B-52B-008 CAI	RRIER AIRCRAFT
FOR FINN	ED CONFIGURATION 1 SF	PACE SHUTTLE SOL	ID ROCKET BOOSTER
DECELERA	FOR SUBSYSTEM DROP TE	EST VEHICLE - VO	DLUME I, SUMMARY

ORIGINAL RELEASE DATE

ISSUE NO.

,

TO

ADDITIONAL LIMITATIONS IMPOSED ON THIS DOCUMENT WILL BE FOUND ON A SEPARATE LIMITATIONS PAGE

PREPARED BY SUPERVISED BY APPROVED³ BY

7583 Roder 7580 John E. Wherry

6/1/78 6/1/78 6/9/78

ABSTRACT

The George C. Marshall Space Flight Center (MSFC), National Aeronautics and Space Administraction (NASA), has identified B-52B Airplane (Serial No. 008) for use in solid rocket booster (SRB) parachute drop flight testing. This testing will verify the structural integrity of the SRB parachutes and the deployment concept for the drogue parachute. The drop test vehicle (DTV) used to accomplish this testing was designed and fabricated for MSFC by Martin Marietta-Denver. Testing on the program will be accomplished out of the NASA Edwards Hugh Dryden Flight Research Center (DFRC). The parachute drop testing will be done at the National Parachute Test Range (NPTR).

The purpose of this study was to determine by theoretical analysis methods the compatibility and structural capability of B-52B-008/DTV Configuration 1 (with fins) to accomplish the drop test mission. This document, consisting of four volumes, presents the analysis results on the subject program. In addition, airspeed, load factor and airplane gross weight restrictions are defined. Each volume of this report contains the following information:

- Volume I Summary of airplane flutter and loadstrength evaluation analysis results and a comparative study of the pylon loading resulting from DTV inertia and aerodynamic considerations. The pylon loads were developed based on X-15A-2 inertia load factor criteria and DTV aerodynamics per Marshall Space Flight Center (MSFC).
- Volume II Detailed B-52B-008/DTV Configuration 1 (with fins) flutter and load analysis results.
- Volume III Pylon loading at the DTV and wing interface attach points using stiffness Method 1.
- Volume IV Pylon loading at the DTV and wing interface attach points using stiffness Method 2.

The study was conducted for George C. Marshall Space Flight Center (MSFC) under Contract NAS8-31805 Modification Number 3. Technical contacts at MSFC on this program₁ were Mr. R. Mitchell and Mr. D. Kross.

.

TABLE OF CONTENTS

TABLE OF CONTENTS				
TABLE C	F CONTENTS	4		
LIST OF	FIGURES	5		
LIST OF	TABLES	7		
1.0	INTRODUCTION	9		
2.0	SUMMARY	13		
2.1	Conclusions and Recommendations	14		
3.0	FUEL SEQUENCE	17		
4.0	FLUTTER	20		
4.1 4.2	Method of Analysis Analysis Results	20 20		
5.0	AIRPLANE LOAD AND STRENGTH EVALUATION	28		
5.1 5.2 5.2. 5.2. 5.2.	Method of Analysis. Analysis Results. Wing Evaluation. Wing Center Section Evaluation. Landing Gear Evaluation.	28 29 29 30 30		
6.0	PYLON LOADING	38		
6.1 6.2	Analysis Method Description Loads Evaluation	38 38		
7.0	GROUND CLEARANCE	66		
8.0	REFERENCES	67		

LIST OF FIGURES

Figure		Page
1	B-52B-008/DTV Configuration 1 (With Fins) Description	. 11
2	DTV Configuration 1 (With Fins) Definition.	. 12
3	B-52B/DTV Configuration 1 (With Fins) Design Airspeed Envelope	. 15
4	V-n Diagram	. 16
5	Fuel Sequence Grid (Longitudinal CG)	. 18
6	Fuel Sequence Grid (Lateral CG)	. 19
7	Elastic Axis Representation, B-52B/DTV Configuration 1 (With Fins)	. 22
8	Aerodynamic Patch Paneling, B-52B/DTV	. 24
9	B-52B Drop Test Vehicle Flutter Analysis Damping Trends for Selected Airplane/DTV Modes, Configuration 1 (With Fins), Gross Weight = 315,435 Lbs., Altitude = 27,450 Feet	. 25
10	B-52B Drop Test Vehicle Flutter Analysis, Effect of DTV Pitch Frequency (F_3) on 2.40 Hz. Airplane Mode, Configuration 1 (With Fins), Gross Weight = 315,435 Pounds, Altitude = 27,450 Feet	. 26
11	B-52B Drop Test Vehicle Flutter Analysis, Effect of DTV Pitch Frequency (F_3) on 2.85 to 3.00 Hz. Airplane Mode, Configuration 1 (With Fins), Gross Weight = 315,435 Pounds, Altitude = 27,450 Feet	. 27
12	Wing Ultimate Positive Vertical Bending Moment - Left Hand Wing, B-52B/DTV Con- figuration 1 (With Fins)	. 31.
13	Wing Ultimate Negative Vertical Bending Moment - Left Hand Wing, B-52B/DTV Con- figuration 1 (With Fins)	. 32

LIST OF FIGURES (Continued)

.

Figure	•	Page
14	Wing Ultimate Positive Vertical Bending Moment - Right Hand Wing, B-52B/DTV Configuration 1 (With Fins)	. 33
15	Wing Ultimate Negative Vertical Bending Moment - Right Hand Wing, B-52B/DTV Configuration 1 (With Fins)	. 34
16	Pylon Geometry	. 40
17	Condition Number Definition	. 42

-

LIST OF TABLES

.

Table	Page
I	DTV - Pylon Cantilever Frequencies 23
II	Ultimate Wing Center Section Loads, (Wing Buttock Line 55 - Side of Body)
III	Ultimate Gear Loads (3.0g Taxi-Takeoff) 36
IV	Ultimate Gear Loads (Ground Turn, n _z = 1.0g (Limit), n _y = .27g (Limit)) 37
۷	Design Conditions - Pylon Loads
VI	Pylon Loads Summary (Ultimate), Method 1, Configuration 1 (With Fins)
VII	Pylon Loads Summary (Ultimate), Method 2, Configuration 1 (With Fins)
VIII	Configuration 1 - Hook Load Evaluation, V _A
IX	Configuration 1 - Hook Load Evaluation, S _A
Х	Configuration 1 - Hook Load Evaluation, ^V BL
XI	Configuration 1 - Hook Load Evaluation, ^V BR [.]
XII	Configuration 1 - Hook Load Evaluation, ^V CL
XIII	Configuration 1 - Hook Load Evaluation, V _{CR}
XIV	Configuration 1 - Hook Load Evaluation, ^D CL
XV	Configuration 1 - Hook Load Evaluation, D _{CR}

LIST OF TABLES (Continued)

Table		Page
XVI	Configuration 1 - Hook Load Evaluation, S _{CL}	. 63
XVII	B-52B/DTV Configuration 1 (With Fins) Load Criticality Summary	. 64
XVIII	B-52B/DTV Configuration 1 (With Fins) Pylon to Wing Load Criticality Summary	. 65

-

.

1.0 INTRODUCTION

The B-52B airplane (Serial No. 008) identified by the NASA for use in solid rocket booster (SRB) parachute drop testing is a jet propelled swept-back shoulder-wing monoplane with conventionally located swept-back tail surfaces. It is powered by eight Pratt and Whitney J57-P-19/P-29 turbojet engines mounted in pairs under the wing in four forwardslung pods. Engine water injection provisions are provided for increased takeoff power. The main landing gear consists of four twin wheel units in quadricycle arrangement which retract into the fuselage. In addition, a single wheel tip protection gear is located at approximately 80 percent of wing semispan and retracts into the wing aft of the rear spar.

Pitch control is provided by a full span elevator hinged at the 90 percent stabilizer chord. Longitudinal trim is accomplished by rotation of the entire horizontal stabilizer. Lateral control and trim are achieved by use of a rudder, independent extension of seven plate-type spoilers on each wing and ailerons. Corresponding spoilers on each wing are simultaneously extended as airbrakes for landing approach and rapid descent.

In addition to the general description given in previous paragraphs, B-52B-008 has been modified for X-15 and X-24 Programs as follows:

- Main wing fuel cell number 3 removed.
- Major rework to the right hand wing inspar box inboard of WBL 208. This rework includes the addition of an auxiliary front spar to take the additional shear loading induced by the research vehicles.
- Inboard flaps are permanently fixed in the retracted position. It should be noted that the outboard flaps are not fixed in the retracted position; however, they are never extended during flight, takeoff, landing or taxi operation.
- External wing fuel tanks removed.

- Pylon mounted on the right hand wing at WBL 208.
- Extensive rework to the right hand wing trailing edge structure (including cutout) at WBL 208.

Other structural, pneumatic and electrical changes have been made but are not pertinent to this discussion.

A sketch of B-52B-008 with DTV Configuration 1 (with fins) mounted under the right hand wing is shown in Figure 1. A sketch of DTV Configuration 1 (with fins) is shown in Figure 2.

B-52B-008/DTV CONFIGURATION 1 (WITH FINS) DESCRIPTION

FIGURE 1

•

03-11220-2 11

> ORIGINAL PAGE IS OF POOR QUALITY

03-11220-2 12

DTV CONFIGURATION 1 (WITH FINS) DEFINITION FIGURE 2 BALEINC

2.0 SUMMARY

This document presents the theoretical B-52B-008/Drop Test Vehicle (DTV) flutter and airplane-pylon load-strength evaluation analysis obtained by the Boeing Wichita Company for the George C. Marshall Space Flight Center (MSFC) under Contract No. NAS8-31805 Modification No. 3. The purpose of the study was to verify B-52B-008/DTV compatibility and B-52B-008/pylon structural capability to accomplish the drop test mission required by the NASA for structural integrity testing of the solid rocket booster (SRB) parachutes and for drogue parachute deployment concept evaluation. See Figure 1 for a sketch of the B-52B/DTV configuration evaluated.

The maximum operational gross weight of the B-52B/DTV was established as 336,344 pounds. This weight allows for a maximum DTV weight of 52,000 pounds and a fuel loading of 100,000 pounds. The fuel sequence as given in Section 3.0 of this volume was developed to minimize airplane lateral unbalance during taxi-takeoff and landing operations while yet allowing an early drop if emergency conditions develop. Normal DTV drop is accomplished with sufficient lateral unbalance at the time of drop to minimize airplane rolling moment excitation, thereby reducing the need for an abrupt aileron-spoiler input to stabilize the airplane. Adjustments to the initial fuel loading and subsequent fuel sequence will be required depending on the actual DTV weight.

The airspeed restriction on the B-52B/DTV Configuration 1 (with fins) is given in Figure 3. This 260 Knot calibrated airspeed or Mach .75 restriction, whichever is less, along with the altitude restriction of 35,000 feet was developed based on coordination with personnel of NASA Edwards Hugh Dryden Flight Research Center (DFRC), MSFC, Martin Marietta-Denver and Boeing.

Flutter analyses of B-52B-008 with DTV Configuration 1 (with fins) were accomplished to determine flutter speeds for two selected gross weight conditions considered to be the most critical based on previous flutter test and analysis experience. Variations in DTV-pylon frequencies were evaluated to account for possible errors in estimation of pylon stiffness. Results of these analyses indicate that the B-52B-008/DTV Configuration 1 (with fins) is flutter free within the flight design envelope of Figure 3, including a 15 percent margin of safety in equivalent airspeed. See Section 4.0 of

this volume for a more detailed discussion of flutter analysis results.

Gust and maneuver flight load analyses for the B-52B-008/DTV Configuration 1 (with fins) were accomplished based on the maneuver load factor criteria defined in Figure 4 and the gust load factor criteria of Reference 1, Page 7, (complete gust criteria is given in Section 4.1, Volume II of this document). Taxi-takeoff (3.0g ultimate load factor criteria) and ground turn (1.0g vertical and .27g side limit load factor criteria) analysis results for B-52-008/DTV Configuration 1 (with fins) are unchanged from those documented in Reference 2. Results of these analyses show the airplane structure to have adequate strength to fly the drop test mission. The 1.8g limit maneuver load factor restriction for gross weights above 306,000 pounds was imposed because of right hand wing overload in the area between the pylon and inboard nacelle at a 2.0g limit load factor. The factor of safety applied to all airplane limit load factor analysis results was 1.5. See Section 5.0 of this volume for a more detailed evaluation of load analysis results.

Pylon structural evaluation was accomplished using X-15A-2 load factor criteria along with finned DTV Configuration 1 aerodynamics per MSFC. The results of these analyses show the pylon to be acceptable for carriage of DTV Configuration 1 (with fins). See Section 6.0 of this volume for a complete evaluation of the pylon loads analysis.

Ground clearance analysis results remain unchanged from those documented in Section 7.0, Volume I of Reference 2 for DTV Configuration 1. Section 7.0 of this volume reiterates the ground clearance capability.

2.1 Conclusions and Recommendations

Based on the results of the flutter and load-strength evaluation analyses, it is concluded that B-52B-008/DTV Configuration 1 (with fins) is safe for flight. However, it is recommended by Boeing that the following flight test procedures be followed to minimize dynamic excitation of the DTV:

- Fly only when the forecast of turbulence level in the test area is calm or light.
- Avoid abrupt elevator, aileron and rudder inputs.
- Minimize landing impact speed (sink rate) when landing with the DTV still attached to the pylon.

D3-11220-2 15

ORIGINAL PAGE ISS

3.0 FUEL SEQUENCE

Based on the NASA mission requirement that the B-52B have a maximum fuel capability of 100,000 pounds, a fuel sequence was developed which minimized aircraft structural loading and flutter degradation. The fuel sequence was developed using the following criteria:

- Airplane rolling moment balanced by left hand wing fuel for takeoff.
- Gradual airplane rolling moment unbalance obtained by fuel burn and transfer from the left hand wing. At the time of DTV drop, the airplane will be approximately one-half of the unbalance caused by the DTV.
- After DTV drop, the airplane will be approximately rebalanced by fuel burn and fuel transfer for landing.

Based on these criteria and the NASA requirement, the maximum B-52B/DTV weight was established as 336,344 pounds. The weight was allocated as follows:

	B-52B-008 (including LOX Tank) + Pylon +	Crew =	181,344	pounds
•	Maximum DTV weight	=	52,000	pounds
8	Water Injection - H ₂ O	=	3,000	pounds
	Maximum Fuel Weight	=	100,000	pounds
0	LOX	=	0	pounds

Early DTV drop (emergency drop), normal DTV drop and mission abort fuel sequencing procedures are defined in Figures 5 and 6. The fuel sequence as developed maintains good longitudinal and lateral CG control during all phases of operation. The fuel sequence as presented is based on 6.4 pound per gallon density fuel.

. FIGURE 5

BOEING WICHTA COMPANY

.

D3-:11220-1 19

,

THE BOEING COMPANY

4.0 FLUTTER

Flutter analyses were accomplished to verify that B-52B-008 is flutter free (including a 15 percent margin of safety in equivalent airspeed) when carrying DTV Configuration 1 (with fins) at airspeeds within the design envelope defined in Figure 3.

4.1 Method of Analysis

Unsymmetric flutter analyses were conducted to allow for different left and right hand wing fuel loadings and for carriage of the DTV at the right hand pylon location. Coupled airplane vibration analyses were based on an elastic axis lumped parameter representation of the airplane as shown in Figure 7. Vibration modes for the DTV/pylon configuration were determined based on X-15 ground vibration test results. Cantilever vibration frequencies, along with variations thereof, which were analyzed to evaluate the sensitivity of flutter speeds to possible errors in the estimation of the nominal DTV/pylon frequencies are shown in Table I.

Unsteady aerodynamic forces for the airplane were generated based on lifting surface theory which used the patch paneling as shown in Figure 8. Quasi-steady aerodynamic loading was included for the DTV based on data provided by Marshall Space Flight Center.

Flutter analyses were accomplished at an altitude of 27,450 feet to be consistent with analysis results documented in the Reference 2 evaluation of the original DTV Configuration 1 and 2 designs. Two gross weight conditions (315,435 pounds and 272,441 pounds) on the fuel sequence defined in Figures 5 and 6 were selected based on flutter criticality as experienced during past flutter analysis and testing on other B-52 programs. The 315,435 pound condition (mains 1 and 4 at 92 percent, main 2 at 59 percent and left outboard at 50 percent) is on the normal launch sequence whereas the 272,441 pound condition (mains 1, 2 and 4 at 33 percent and left outboard full) is for an aborted mission. Flutter analyses of the two selected fuel loadings with only the pylon installed are documented in Reference 2.

4.2 Analysis Results

Summary results are presented in this section for the 315,435 pound gross weight condition only since the 272,441 pound airplane is less flutter sensitive for the range of DTV frequencies evaluated. Detailed analysis results for all conditions analyzed are included in Section 3.0 of Volume II.

THE BOEING COMPANY

Damping trends for finned DTV Configuration 1 are shown in Figure 9. Only the two sensitive airplane modes (2.40 Hertz and 2.85 to 3.00 Hertz) and three modes which consist primarily of DTV motion are shown. The 1.75 Hertz mode is primarily DTV pitch while the 1.85 and 2.70 Hertz modes are primarily DTV torsion and side bending. In addition, the effect of DTV pitch frequency variations on the 2.40 Hertz and the 2.85 to 3.00 Hertz airplane modes is shown in Figures 10 and 11. The damping characteristics for finned DTV Configuration 1 are very similar to those noted in Reference 2 for DTV Configuration 1. In all cases, a flutter velocity above 1.15 V_D (based on the 300 KCAS airspeed limitation of Reference 2) is shown.

ELASTIC AXIS REPRESENTATION B-52B/DTV CONFIGURATION 1 (WITH FINS)

FIGURE 7

B-52B DROP TEST VEHICLE FLUTTER ANALYSIS DAMPING TRENDS FOR SELECTED AIRPLANE/DTV MODES CONFIGURATION 1 (WITH FINS)

GROSS WEIGHT = 315,435 LBS.

ALTITUDE = 27,450 FEET

D3-11220-2 25 POEING WICHTA COMPANY

BOEING WICHTA COMPANY

D3-11220-2 26

FIGURE 10

D3-11220-2 27 **BOEING** WICHTA COMPANY

5.0 AIRPLANE LOAD AND STRENGTH EVALUATION

Load and strength evaluation analyses of B-52B-008 with and without DTV Configuration 1 (with fins) suspended from the right hand wing pylon were accomplished to validate the structural capability and structural integrity of the airframe. The analyses were conducted using the fuel sequence as defined in Section 3.0 of this volume and the following design criteria:

- Maximum B-52B/DTV gross weight of 336,344 pounds.
- Airspeed limitation of 260 KCAS or Mach .75, whichever is less.
- Maximum flight altitude of 35000 feet.
- Maneuver flight load factor restrictions.
 - Positive limit load factor of 1.8 g's for weights in excess of 306,000 pounds and 2.0 g's for weights at or below 306,000 pounds.
 - Negative limit load factor of -.67 g's for all gross weight configurations.
- Ground handling load factor restrictions.
 - Positive ultimate load factor of 3.0 g's for taxi-takeoff conditions.
 - Positive vertical limit load factor of 1.0 g and side limit load factor of .27 g's for the ground turn conditions.
- Gust load factors per Reference 1, page 7. See Volume II, Paragraph 2.2 of this document for detail gust load factor mathematic description.
- Ultimate loads are 1.5 times limit loads.
- 5.1 Method of Analysis

Maneuver and gust flight load analyses were conducted using aeroelastic analysis techniques similar to those defined in Reference 3. This method incorporates airframe flexibility, distributed mass and modified lifting line quasi-static aerodynamics. Modifications were made to allow for the inclusion of DTV Configuration 1 (with fins) aerodynamics provided by MSFC.

> ORIGINAL PAGE IS OF POOR QUALITY

Analyses were accomplished at the four corners of the airspeedload factor (V-n) diagram shown in Figure 4. (See Paragraph 4.1, Volume II of this document for detailed V-n diagrams). Fifteen airplane gross weight configurations were evaluated. The four corners of the V-n diagram are defined as follows:

- Upper left hand corner positive high angle of attack (+ HAA).
- Upper right hand corner positive low angle of attack (+ LAA).
- Lower left hand corner negative high angle of attack (- HAA).
- Lower right hand corner negative low angle of attack (- LAA).

Ground load taxi-takeoff and ground turn analyses used staticelastic analysis techniques which included the nonlinear characteristics of the gear oleo. See Paragraph 2.4, Volume II of Reference 2 for a complete mathematical description of the analysis method. All ground load analysis results were made for the 336,344 pound gross weight configuration.

5.2 Analysis Results

Results of the load and strength evaluation substantiate the B-52B-008 structure for operation with finned DTV Configuration 1. The following subparagraphs show the structural substantiation for the wing, wing center section and landing gear. The loading on the empennage is well below the existing design allowable. In addition, little empennage buffet due to the DTV wake is anticipated. Therefore, the empennage loading in conjunction with the light fuselage loading result in no fuselage or empennage structural problems.

5.2.1 Wing Evaluation

Comparisons of left and right hand wing ultimate positive and negative vertical bending moments to the wing bending allowables defined in Reference 4 are shown in Figures 12 through 15. These data show that both wings have sufficient bending strength to withstand the loading imposed during the DTV Configuration 1 (with fins) drop test mission. The ultimate shear flows (front and rear spar) for the DTV Configuration 1 (with fins) are no greater than the shear flows documented in Reference 2. Based on this structural evaluation, the wing structure has adequate strength. For detail shear, moment and torsion design load envelopes, see Paragraph 4.2, Volume II of this document.

5.2.2 Wing Center Section Evaluation

A comparison of critical wing center section loads to the critical X-15A-2 loads given in Reference 5 is shown in Table II. The taxi-takeoff loading for the B-52B/DTV Configuration 1 (with fins) is less than the loading shown for the X-15A-2 taxi condition given in Reference 5. The maximum delta shear experienced by the center wing structure is 109,466 pounds for the B-52B/DTV Configuraton 1 (with fins) as compared to 123,428 pounds for the X-15A-2. The bending and torsional moments at the side of body are not critical. Therefore, the center wing structure has sufficient structural capability.

5.2.3 Landing Gear Evaluation

Comparisons of B-52B/DTV Configuration 1 (with fins) gear loads to the design allowable loading are shown in Tables III and IV. The front main truck, rear main truck and tip protection gear loading for B-52B/DTV Configuration 1 (with fins) are less than the design allowables given in Reference 6. Therefore, no gear difficulties other than normal routine maintenance are anticipated.

TABLE II ULTIMATE WING CENTER SECTION LOADS (WING BUTTOCK LINE 55 - SIDE OF BODY)

.

CONDITION	VZL * 10-3	M _{XL} * 10-6	T _L * 10 ⁻⁶	V _{ZR} * 10 ⁻³ (POLINDS)	M _{XR} * 10 ⁻⁶	T _R * 10-6 (INCH-LBS_)			
	B-52B/X-1	5A-2 (REFERE	VCE TFD 66-5	13 PAGE 3-7-2	2)	(1101 1201)			
TAXI-TAKEOFF	-235.776	-100.794	48.534	-359.214	-100.518	51.243			
	B-52B/DTV CONFIGURATION 1 (WITH FINS)								
TAXI-TAKEOFF (2) +HAA (3) GUST (4)	-262.712 193.016 187.589	-93.557 95.471 69.450	48.452 -55.434 -45.364	-335.835 118.229 78.123	-91.206 1 <u>00</u> .065 70.555	45.077 -66.282 -50.226			

- G.W. = 336,000 POUNDS, C.G. = 24.8% MAC, $V_e = 0$ KNOTS, ALT. = SEA LEVEL, POWER OFF, n = 3.0 g's (ULTIMATE)
- G.W. = 336,344 POUNDS, C.G. = 20.1% MAC, $V_e = 0$ KNOTS, ALT. = SEA LEVEL, POWER OFF, n = 3.0 g's (ULTIMATE)
- G.W. = 305,532 POUNDS, C.G. = 15.75% MAC, V_e = 194 KNOTS, ALT. = SEA LEVEL, POWER OFF, n = 2.0 g's (LIMIT)
- G.W. = 260,094 POUNDS, C.G. = 14% MAC, V_e = 247 KNOTS, ALT. = 33,900 FEET, POWER OFF, n = 2.03 g's (LIMIT)

		B-4 (REF. D	52B -10754)	54) B-52B/DTV CONFIGURATION 1		1 1(WITH FINS	
		POUNDS	POUNDS	POUNDS	POUNDS	POU NDS	
AIRPLANE GROSS WEIGHT		405,000	405,000	336,344	336,344	336,344	
CG IN PERCENT MAC		22	32	20.1	23	35	
FRONT GEAR LOADS	FL FR DL DR SL SR	299,600 299,600 0 0 0 0	271,700 271,700 0 0 0	232,818 272,179 0 0 0 0	226,597 264,910 0 0 0 0	201,738 233,956 0 0 0 0	
. REAR GEAR LOADS	FL FR DL DR SL SR	283,900 283,900 0 0 0 0	311,800 311,800 0 0 0 0	219,226 256,289 0 0 0 0	225,398 263,507 0 0 0 0	251,997 292,241 0 0 0 0	
TIP PROTECTION GEAR LOADS	FL FR DL DR SL SR	39,800 39,800 0 0 0 0	40,400 40,400 0 0 0 0	16,100 12,420 0 0 0 0	16,150 12,470 0 0 0 0	16,280 12,820 0 0 0 0	

TABLE III ULTIMATE GEAR LOADS (3.0g TAXI-TAKEOFF)

.

F - Vertical force
D - Drag Force
S - Side Force

Sub L - Left Sub R - Right

D3-11220-2 36

.

THE BUEING COMPANY

•

			TA	BLE IV			
			ULTIMA	TE GEAR LO	OADS		
(GROUND	TURN,	n	= 1.0g	(LIMIT),	n _v =	.27g	(LIMIT))
		<u> </u>			3		

.

		B- (REF.	52B D-10754)	B-52B/DTV CONFIGURATION] (WITH FINS)						
		(n _V = .40)	$(n_V = .40)$ $(n_V = .40)$		D TURN TO	RIGHT	GROUND TURN TO LEFT			
		POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	
AIRPLANE GROSS WEIGHT		405,000	405,000	336,344	336,344	336,344	336,344	336,344	336,344	
C.G. IN PERCENT MAC		22	32	20.1	23	35	20.1	23	35	
FRONT GEAR LOADS	FL FR DL DR SL SR	204,000 97,100 0 80,400 38,200	183,300 89,700 0 72,000 35,300	173,250 79,593 0 46,361 21,298	168,000 78,092 0 44,945 20,892	146,250 85,656 0 39,077 19,216	74,037 178,800 0 -19,812 -47,847	72,089 174,000 0 -19,285 -46,551	66,658 151,500 0 -17,811 -40,482	
REAR GEAR LOADS	FL FR DL DR SL SR	179,200 92,300 0 82,100 42,300	200,200 99,300 0 90,700 45,000	158,250 76,589 0 46,200 22,361	162,750 78,840 0 47,415 22,968	183,750 71,918 0 53,150 24,777	71,090 163,800 0 -20,750 -47,811	73,165 168,450 0 -21,314 -49,070	78,980 190,500 0 .0 -22,839 -55,088	
TJP PROTECTION GEAR LOADS	FL FR DL DR SL SR	35,000 0 0 7,000* 0	35,000 0 0 0 7,000* 0	16,834 0 0 3,367*	16,834 0 0 0 3,367* 0	16,942 0 0 3,388* 0	0 16,789 0 0 -3,358*	0 16,812 0 0 -3,362*	0 16,878 0 0 -3,376*	

 $*S_{TPG} = .2 F_{TPG}$ (REF. D-10754)

F - Vertical Force D - Drag Force S - Side Force

Sub L - Left Sub R - Right

BOESNE COMPANY

H

D3-11220-2 37

6.0 PYLON LOADING

The ultimate pylon loading at the drop test vehicle (DTV)pylon and pylon-wing interface attach points as obtained using Stiffness Methods 1 and 2 is given for DTV Configuration 1 (with fins). Pylon geometry used in these analyses is defined in Figure 16. The analysis design conditions defined in Table V were developed using the inertia load factor criteria defined in Reference 7, B-52B angle of attack data per Reference 8, B-52B lateral gust criteria (55 foot per second limit gust velocity) and DTV aerodynamics per George C. Marshall Space Flight Center (MSFC). These DTV aerodynamics were determined by MSFC after extensive evaluation of wind tunnel test results. An explanation of the condition numbering system is given in Figure 17.

6.1 Analysis Method Description

Mathematical equations for defining DTV-pylon and pylon-wing interface attachment loading are given in Section 2.0, Volumes III and IV of Reference 2. Aerodynamic loading equations for DTV Configuration 1 (with fins) are shown in Section 2, Volumes III and IV of this document. The analysis procedure closely parallels the method defined in Reference 9 except that relative stiffness of the drag pins and forward hook guide was assumed. In Stiffness Method 1, the side stiffness of the forward hook guide was assumed to be one-fourth the fore and aft stiffness of each drag pin. Therefore, the resultant stiffness of the drag pins is 8 times greater than the side stiffness of the front hook guide. The net effect of this assumption is that the drag pins react approximately 15 percent of the DTV yawing moment as a drag couple while the forward hook guide reacts the remaining 85 percent of the DTV yawing moment as a side force. In Stiffness Method 2, the side stiffness of the forward hook guide was assumed equal to the fore and aft stiffness of each drag pin. Therefore, the resultant stiffness of the drag pins is twice the side stiffness of the front hook guide. The net effect of this assumption is that the drag pins react approximately 4 percent of the DTV yawing moment as a drag couple while the forward hook guide reacts the remaining 96 percent of the DTV yawing moment as a side force.

6.2 Loads Evaluation

Critical pylon loadings for DTV Configuration 1 (with fins) obtained using Stiffness Methods 1 and 2 are given in Tables

VI and VII. Comparisons of DTV Configuration 1 (with fins) hook-pin loadings to those documented in References 7 and 9 for the X-15A-2 are given in Tables VIII through XVI. DTVpylon and pylon-wing DTV Configuration 1 (with fins) ultimate loadings along with X-15A-2 ultimate loadings are given in Tables XVII and XVIII. For design condition loadings not presented in this section, see Volumes III and IV of this document.

The loading imposed by finned DTV Configuration 1 on the pylon is very similar to that given in References 7 and 9 for the X-15A-2. In most cases, the loadings are less than present evaluation allows; however, increases were noted in forward hook vertical load (V_A) , aft pin vertical load (V_{CR}) , aft pin drag load (D_{CR}) and vertical load at the B-52B front spar attachment (V_2). The small increase in vertical load at V_A results in a reduction of the hook margin of safety from +.01 to +.00. (See pages 2-1-1 and 2-1-2 of Reference 7 for the strength evaluation method). The increase in aft pin vertical load (V_{CR}) along with the corresponding drag force (D_{CP}) results in a shear margin of safety for the NAS 627 bolt (Reference Drawing 2581-630710, Pylon R.H. Drag Shaft Support) of +.033. Likewise, the increased aft pin drag load (D_{CD}) along with the corresponding vertical force (V_{CD}) results in a shear margin of safety for the NAS 627 bolt of +.027. The NAS 627 bolt is defined as bolt 1 in the sketch given on page 3-4-18 of Reference 7. The margin of safety of the critical bolt in the right hand forward pylon-wing attachment, due to the increased vertical loading at V_2 , is reduced from +.09 to +.05. (See pages 5-10-11 and 5-10-12 of Reference 10 for the strength evaluation.)

Therefore, based on these load comparison and minimal strength evaluation analyses, it is concluded that the pylon strength is sufficient to withstand finned DTV Configuration 1 loading when operated within the speed and load factor constraints noted previously in this document.

PYLON LOCATION	PYLON STATION	PYLON BUTTOCK LINE	PYLON WATER LINE
A	20.000	0.000	-1.1875
BL	231.000	-26.437	-15.1870
B _R	231.000	26.437	-15.1870
Հլ	231.000	-31.312	-17.5000
C _R	231.000	31.312	-17.5000
1	98.500	-13.500	28.7930
2	115.625	13.500	29.5210
3	236.342	-13.093	18.9440
4	251.813	11.750	19.2910

PYLON GEOMETRY FIGURE 16

ſ	CONDITION	DITION n _x ny		nz	VELOCITY	ALTITUDE	FUS.		BETA 🝺	
	NUMBER	+FORWARD	+LĔFT	+DOWN	(KEAS)	(FEET)	(DEGREES)	(DEGREES)	(DEGREES)	(DEGREES)
	1 OR 101 2 OR 102 3 OR 103 4 OR 104 5 OR 105 6 OR 106	1.50 1.50 -1.50 -1.50 -1.50 -1.50	0 0 0 0 0 0	3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32	203,328 260,000 247,260 203,328 260,000 247,260	0 0 33900. 0 33900,	14.0 4.6 4.7 14.0 4.6 4.7	-9.18 -7.18 -7.55 -9.18 -7.18 -7.55	0 0 0 0 0	9.18 7.18 7.55 9.18 7.18 7.55
	7 OR 107 8 OR 108 9 OR 109 10 OR 110 11 OR 111 12 OR 112	0 0 0 0 0	.56 .56 .56 56 56 56	1.50 1.50 1.50 1.50 1.50 1.50	143.775 260.000 247.260 143.775 260.000 247.260	0 33900. 0 33900.	14.0 5 9 14.0 5 9	-12.98 -7.18 -7.55 -12.98 -7.18 -7.55	0 0 0 0 0	12.98 7.18 7.55 12.98 7.18 7.55
	13 OR 113 14 OR 114 15 OR 115 16 OR 116 17 OR 117 18 OR 118	1.50 1.50 1.50 -1.50 -1.50 -1.50	0 0 0 0 0	-1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	154.085 260.000 247.260 154.085 260.000 247.260	0 0 33900. 0 33900.	-15.1 -8.7 -10.4 -15.1 -8.7 -10.4	-12.11 -7.18 -7.55 -12.11 -7.18 -7.55	0 0 0 0 0	12.11 7.18 7.55 12.11 7.18 7.55
	19 OR 119 20 OR 120 21 OR 121 22 OR 122	.75 75 0 0	0 0 .42 42	3.32 3.32 3.32 3.32 3.32						

TABLE V DESIGN CONDITIONS - PYLON LOADS

DETA = (55/(6080.20/3600))(57.3)/V_{KEAS} = (32.565/V_{KEAS}) * 57.3

D3-11220-2 41

ORIGINAL PAGE IS OF POOR QUALITY

٠

BOEING WICHTA COMPANY

THE BOEING COMPANY

PLAN VIEW

CONDITION NO.	PYLON STATION	PYLON B.L.	PYLON W.L.
Z.1X	167.56	-0.65	-27.35
Z.2X	167.56	0.00	-27.35
Z.3X	1 67.5 6	0.65	-27.35
Z.4X	170.21	-0.65	-27.35
Z.5X	170.21	0.00	-27.35
Z.6X	170.21	0.65	-27.35
Z.7X	172.86	-0.65	-27.35
Z.8X	172.86	0.00	-27.35
Z.9X	172.86	0.65	-27.35

If Z = 1 thru 22, Approximately 85% of Yawing Moment taken by S_A and 15% taken by D_{CL} and D_{CR} as drag couple - Method 1

If Z = 101 thru 122, Approximately 96% of Yawing Moment taken by S_A and 4% taken by D_{CL} and D_{CR} as drag couple - Method 2

- If X = 0, Beta = 0 Degrees Taxi Condition
- If X = 1, Beta angle is negative
- If X = 2, Beta = 0 Degrees
- If X = 3, Beta angle is positive

TABLE VI

PYLON LOADS SUMMARY (ULTIMATE) METHOD 1 CONFIGURATION 1 (WITH FINS)

PYLON HOOK LOADS - ULTIMATE

.

PLUS LOADS - UP, AFT, LEFT (REVERSE SIGN FOR LOADS ON DTV)

CONFIGURATION 1.0 WITH FINS

C01	D.	VA	VBL	VBR	VCL	VCR		DCR	SA	SCL
ыс		LOOND2	ruunna	Fununa	LUNUD	LOOUD2	POUNDS	Loouna	rounna	FUUNDS
	•						٠			
4	33	~57122.6	-47556.0	-52180.0	0.0	0.0	39190.0	41703.4	-2117.1	8121.4
5.	ĩĩ	-55345.6	-54210.4	-49271.6	Ő,Ő	0.0	44192.5	41396.6	2355.1	-9795.4
5	33	~55345.6	-49332.0	-54150.0	Ő, Ő	0.0	41197.6	44391.5	-2690.4	10398.4
5	93	-51259.4	-51375.1	-56193.2	ō,õ	0.0	41197.6	44391.5	-2698.4	10398.4
	93	-20644.0	-17571.7	-34506.2	ŏ.ŏ	0 .0	8377.7	3711.4	3930.6	31217.5
11	13	-22490.3	-32826.8	-17404.9	ů, ů	õ.õ	398.2	11691.0	-9512.3	-10219.7
16.	7 3	19714.2	0.0	0.0	27287.7	25150.3	38132.9	39613.0	-1246.7	5780.5
16.	9ī	19714.2	Ű.Ű	ō. ō	25132.3	27305.7	39543.1	38202.8	1129.0	-5568.7
17.	źī	21033.1	0.0	0.0	25267.6	24504.2	44192.5	41396.6	2355.1	-9795.4
17.	93	21033.1	0.0	ŌĹŌ	24453.2	25318.7	41197.6	44391.5	-2690.4	10398.4
- 2i.	90	~44825.6	-51605.9	-66248.4	0.0	0.0	2861.9	-2861.9	4821.3	15758.7
22.	70	-44825.6	-66248.3	-51605.9	0.0	0.0	-2861.9	2861,9	-4821.3	-15758.7
	-		ويعون بوين المروية بجرب بالأستار بالأشا							

.

.

.

PYLON LOADS SUMMARY (ULTIMATE) METHOD 1 CONFIGURATION 1 (WITH FINS)

PYLON LOADS - ULTIMATE

PLUS LOADS - UP, AFT, LEFT (REVERSE SIGN FOR LOADS ON B-52B)

.

.

COND.		CAS	E 1			CAS	E 2	
NO.	V1 Pounds	V2 Pounds	V3 Pounds	V4 Pounds	V1 Ponds	V2 Pounds	V3 Pounds	V4 Pounds
4.33	60099.7	68780.3	6108.3	25754.6	61353.8	67523.4	4745.1	27120.6
5.11	67417.7	56758.9	28938.9	9596.5	65941.6	58238.3	30543.3	7988.7
5.33	58725.1	69180.6	5733.9	29072.3	60242.5	67659.8	4084.5	30725.2
5.93	55588.3	66043.9	8701.1	32378.7	57105.7	64523.0	7051.7	34031.6
8.93	791.5	50582.2	-33758.6	56861.9	6504.3	44856.5	-39968.3	63084.5
11.13	37338.5	3376.1	44797.3	-11034.8	34008.6	6713.5	48416.9	-14661.9
16 73	-11365.9	-5373.8	-33099.0	-24103.7	-10514.9	-6226,7	-34024.1	-23176.7
16.91	-6315.7	-12557.2	-19911.0	-35158.5	-7152.1	-11718.8	-19001.8	-36069.6
17 71	-5958.6	-12803.3	-18893.9	-34939.2	-6958.5	-11801.3	-17807.1	-36028.3
17 93	-11541 4	-4900.0	-33142.1	-23011.7	-10500.2	-5943.6	-34273.9	-21877.6
21 90	29896 0	62881.6	5535.4	68251.4	33502.5	59266.9	1615.1	72179.8
22.70	57520.9	24535.4	69333.3	15174.7	53914.4	28150.1	73253.5	11246.3

PYLON LOADS SUMMARY (ULTIMATE) METHOD 1 CONFIGURATION 1 (WITH FINS)

.

PYLON LOADS - ULTIMATE

PLUS LOADS - UP, AFT, LEFT (REVERSE SIGN FOR LOADS ON B-52B) CONFIGURATION 1.0 WITH FINS

.

COND			CASE 1	AND 2		
NO.	S1 POUNDS	S2 POUNDS	S3 POUNDS	54 Poųnds	D3 Pounds	D4 Pounds
4.33 5.11 5.33 5.93 8.93 11.13 16.91 17.71 17.93 21.90	1833.3 -1563.8 2282.7 2282.7 -5428.2 9806.8 117.5 -615.8 -1563.8 2282.7 -5514.1	1833.3 -1563.8 2282.7 2282.7 -5428.2 9806.8 1107.5 -615.8 -1563.8 2282.7 -5514.1	$\begin{array}{r} -4835.5\\ 5283.9\\ -6136.7\\ -12473.4\\ 386.8\\ -3374.4\\ 2835.6\\ 5283.9\\ -6136.7\\ -5021.6\end{array}$	-4835.5 5283.9 -6136.7 -12473.4 386.8 -3374.4 2835.6 5283.9 -6136.7 -5021.6	$\begin{array}{r} -41324.2 \\ -43672.1 \\ -43672.1 \\ -43672.1 \\ -6044.6 \\ -59750.4 \\ -39750.4 \\ -39750.4 \\ -43672.1 \\ -43672.1 \\ 0.0 \\ 0.0 \end{array}$	$\begin{array}{r} -41324.2 \\ -43672.1 \\ -43672.1 \\ -43672.1 \\ -6044.6 \\ -50750.4 \\ -39750.4 \\ -39750.4 \\ -43672.1 \\ -43672.1 \\ -43672.0 \\ 0.0 \\ 0.0 \end{array}$
<u>666779</u>						

D3-11220-2 45

PYLON LOADS SUMMARY (ULTIMATE) METHOD 1 CONFIGURATION 1 (WITH FINS)

.

INERTIA AND AIRLOADS - ULTIMATE

INERTIA LOADS - PLUS FWD, LEFT AND DOWN Airload Forces - Plus Aft, right and up Airload moments - Plus Nose up and Nose right

,

CONFIGURATION 1.0 WITH FINS

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7393.4 12089.2 12089.2 12089.2 12089.2 12089.2 4245.9 4245.9 12089.2 12089.2 12089.2 0.0	-6004.3 7440.3 ~7708.0 ~7708.0 ~7708.0 ~7708.0 ~4533.7 4439.7 7440.3 ~7708.0 0.0	5821.3 3852.2 3852.2 3852.2 778.0 778.0 -2817.7 -4164.9 4164.9 0.0 0.0	-1.299506E 06 -7.649614E 05 -7.649614E 05 -7.649614E 05 -2.714220E 04 -2.714220E 04 7.323012E 05 7.323012E 05 1.159155E 06 1.159155E 06 0.000000E-01 0.000000E-01	8.426320E 05 -9.889950E 05 1.088472E 06 1.088472E 06 1.088472E 06 1.088472E 06 6.327848E 05 -5.97846E 05 -9.889950E 05 1.088472E 06 0.000000E-01 0.000000E-01

.

.

.

.

PYLON LOADS SUMMARY (ULTIMATE) METHOD 1 CONFIGURATION 1 (WITH FINS)

PYLON HOOK LOADS - 'AERODYNAMIC CONSIDERATIONS

1

CONFIGURATION 1.0 WITH FINS

COND.	RHO	VELOCITY	XCP	YCP	ZCP	ALPHA	BETA
NO.	SŁUGS/FT**3	Keas	Inches	Inches	Inches	Degrees	Degrees
4.33 5.11 5.33 5.93 8.93 11.13 16.73 16.73 16.71	$\begin{array}{c} 0.023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\\ 0.0023769\end{array}$	203.328 260.000 260.000 260.000 260.000 260.000 154.085 154.085 260.000	170.210 170.210 170.210 170.210 170.210 170.210 170.210 170.210 170.210	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{r} -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \\ -26.000 \end{array}$	14.0004.6004.600-0.500-0.500-15.100-15.100-8.700	9.180 -7.180 7.180 7.180 7.180 7.180 7.180 12.110 -12.110 -7.180
17.93	0.0023769	260.000	170.210	0.000	-26.000	~8.700	$7.180 \\ 0.000 \\ 0.000$
21.90	0.0023769	0.000	170.210	0.000	-26.000	0.000	
22.70	0.0023769	0.000	170.210	0.000	-26.000	0.000	

03-11220-2 47 •

PYLON LOADS SUMMARY (ULTIMATE) METHOD 1 CONFIGURATION 1 (WITH FINS)

.

PYLON HOOK LOADS - INERTIA CONSIDERATIONS

COND. NO.	DTV WT. Pounds	ULTIMA NX	TE LOAD Ny	FACTOR NZ	XCG INCHES	YCG Inches	ZCG Inches
4.33	49000.0	-1.50	0,00	3.32	167.560	0.650	-27.350
5.11	49000.0	-1.50	0.00	3.32	167.560	-0.650	-27.350
5.33	49000.0	-1.50	0.00	3.32	167.560	0.650	-27.350
5.93	49000.0	-1.50	0.00	3.32	172.860	0.650	-27.350
8.93	49000.0	0.00	0.56	1.50	172.860	0.650	-27.350
11.13	49000.0	0.00	-0.56	1.50	167.560	-0.650	-27.350
16.73	49000.0	-1.50	0.00	-1.53	172.860	-0.650	-27.350
16.91	49000.0	-1.50	0.00	-1.53	172.860	0.650	-27.350
17.71	49000.0	-1.50	0.00	-1.53	172 860	-0.650	-27.350
17.93	49000.0	-1.50	0.00	-1.53	172.860	0.650	-27.350
21.90	49000.0	0.00	0.42	3 32	172 860	0 650	-27 350
22.70	49000.0	ŏ.ŏŏ	-0.42	3.32	172.860	-0.650	-27.350

TABLE VII

PYLON LOADS SUMMARY (ULTIMATE) METHOD 2. CONFIGURATION 1 (WITH FINS)

PYLON HOOK LOADS - ULTIMATE

•

PLUS LOADS - UP, AFT, LEFT (REVERSE SIGN FOR LOADS ON DTV)

COND. NO.	VA POUNDS	VBL Pounds	VBR Pounds	VCL Pounds	VCR POUNDS	DCL Pounds	DCR POUNDS	SA Pounds	SCL POUNDS
104.33	-57122.6	-47638.7	-52097.3	0.0	0.0	40092.8	40800.6	-2385.0	8389.3
105.11	-55345.6	-54118.4	-49363.6	0.0	0.0	43188.3	42400.8	2653.2	-10093.5
105.33	-55345.6	-49437.0	-54045.0	0.0	0.0	42344.8	43244.3	-3030.8	10738.9
105.93	-51259.4	~51480.1	~56088.2	Ö.Ö	Ő.Ő	42344.8	43244.3	-3030.8	10738.9
108.93	-20644.0	-17418.3	-34659.7	Ö.Ö	Õ.Õ	6701.7	5387.5	4428.0	30720.0
111.13	-22490.3	-33198.2	~17033.5	0.0	Ū.Ū	4454.3	7634.8	-10716.1	-9015.8
116.73	19714.2	0.0	0.0	27246.6	25191.4	38664.5	39081.4	-1404.5	5938.2
116.91	19714.2	0.0	0.0	25169.5	27268.5	39061.7	38684.2	1271.9	-5711.6
117.71	21033.1	0.0	0.0	25345.3	24426.6	43188.3	42400.8	2653.2	-10093.5
117.93	21033.1	0.0	0.0	24364.5	25407.4	42344.8	43244.3	-3030.8	10738.9
121.90	-44825.6	-51417.6	-66436.6	0.0	0.0	806.0	-806.0	5431.5	15148.5
122.70	-44825.6	-66436.6	-51417.7	0.0	0.0	-806.0	806.0	-5431.5	-15148.5

TABLE VII (CONTINUED) PYLON LOADS SUMMARY (ULTIMATE)

.

PYLON LOADS SUMMARY (ULTIMATE) METHOD 2 CONFIGURATION 1 (WITH FINS)

PYLON LOADS - ULTIMATE

PLUS LOADS - UP, AFT, LEFT (REVERSE SIGN FOR LOADS ON B-52B)

.

COND.		CAS	E 1		CASE 2					
NO.	V1	V2	V 3	V4	٧1	V2	٧3	V4		
	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS		
104.33	60099.7	68/80.5	6108.3	25754.7	61353.8	67523.3	4745.1	27120.7		
105.11	67417.7	56758.9	28938.9	9596.5	65941.7	58238.3	30543.3	7988.7		
105.33	58725.1	<u>69180.6</u>	5733.9	29072.3	60242.5	67659.8	4084.5	30725.2		
105.93	55588.3	66043.9	8701.1	32378.7	57105.7	64523.0	7051.7	34031.6		
108.93	791.5	50582.2	-33758.6	56861.9	6504.3	44856.5	-39968.3	63084.5		
111.13	37338.5	3376.1	44797.3	-11034.8	34008.6	6713.5	48416.9	-14661.9		
116.73	-11365.9	-5373.8	-33099.1	-24103.6	-10514.9	-6226.7	-34024 1	-23176.7		
116,91	-6315.7	-12557.2	-19911.0	-35158.4	-7152.1	-11718.8	-19001.8	-36069.6		
117.71	-5958.6	-12803.3	-18893.9	-34939.2	-6958.5	-11801.3	-17807.1	-36028.3		
117.93	-11541.4	-4900.0	-33142.1	-23011.7	-10500.2	-5943.6	-34273.9	-21877.6		
121.90	29896.0	62881.6	5535.4	68251.4	33502.5	59266.9	1615.1	72179.8		
122.70	57520.9	24535.4	69333.3	15174.7	53914.4	28150.1	73253.5	11246.3		

PYLON LOADS SUMMARY (ULTIMATE) METHOD 2 CONFIGURATION 1 (WITH FINS)

PYLON LOADS - ULTIMATE

PLUS LOADS - UP, AFT, LEFT (REVERSE SIGN FOR LOADS ON B-52B)

COND.			CASE 1	AND 2		
NO.	S1 (ʻ 52	53	54	D3	D4
	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
104.33	1833.3	1833.3	-4835.5	-4835.5	-41324.2	-41324.2
105.11	-1563.8	~1563.8	5283.9	5283.9	-43672.1	-43672.3
105.33	2282.7	2282.7	-6136.7	-6136.7	-43672.1	-43672.]
105.93	2282.7	2282.7	-6136.7	-6136.7	-43672.1	-43672.]
108.93	~5428.2	-5428.2	-12473.4	-12473.4	-6044.6	-6044.6
111.13	9806.8	9806.8	386.8	386.8	-6044.6	-6044.6
116.73	1107.5	1107.5	~3374.4	-3374.4	-39750.4	-39750.4
116.91	-615.8	-615.8	2835.6	2835.6	-39750.4	-39750.4
117.71	-1563.8	-1563.8	5283.9	5283.9	-43672.1	-43672.1
117.93	2282.7	2282.7	-6136.7	-6136.7	-43672.1	-43672.1
121.90	-5514.1	~5514.1	-5021.6	-5021.6	0.0	0.0
122.70	5514.1	5514.1	5021.6	5021.6	0.0	0.0

PYLON LOADS SUMMARY (ULTIMATE) HOD 2 CONFIGURATION 1 (WITH FINS) METHOD 2

INERTIA AND AIRLOADS - ULTIMATE

INERTIA LOADS - PLUS FWD, LEFT AND DOWN AIRLOAD FORCES - PLUS AFT, RIGHT AND UP AIRLOAD MOMENTS - PLUS NOSE UP AND NOSE RIGHT

CONFIGURATION 1.0 WITH FINS

MZ NOSE RIGHT COND. PNX PNY PX MY Nose up PNZ PY PZ NO. FWD. LEFT DOMN AFT RIGHT UP POUNDS POUNDS POUNDS POUNDS POUNDS POUNDS INCH-LBS. INCH-LBS. 5821.3 -1.299506E 06 3852.2 -7.649614E 05 3852.2 -7.649614E 05 3852.2 -7.649614E 05 3852.2 -7.649614E 05 778.0 -2.714220E 04 778.0 -2.714220E 04 -2817.7 7.323012E 05 -2817.7 7.323012E 05 162679.9 162679.9 162679.9 162679.9 104.33105.11105.33105.93108.937393.4 12089.2 12089.2 -73500.0 0.0 -6004.3 8.426320E 05 Ö. 0 7440.3 -73500.0 -9.889950E 05 -73500.0 0.0 1.088472E 06 -7708.0 -7708.0 -7708.0 -4533.7 0.0 12089.2 1.088472E 06 0.0 73500.0 27440.0 12089.2 1.088472E 06 111.13 0.0 -27440.0 73500.0 12089.2 1.088472E 06 6.327848E 05 116.73 116.91 117.71 117.93 -73500.0 -74969.9 0.0 4245.9 -2817.7 -73500.0 7.323012E 05 1.159155E 06 1.159155E 06 0.000000E-01 -2817.7 -4164.9 -4164.9 0.0 4245.9 4439.7 -5.978466E 05 -74969.9 -74969.9 162679.9 7440.3 12089.2 -9.889950E 05 0.0 -73500.0 0.0 12089.2 1.088472E 06 121.90 122.70 20580.0 0.0 0.0 0.0 0.0 0.000000E-01 0.0 162679.9 0.0 0.0 0.00D000E-01 0.0 0.000000E-01

D3-11220-2 52

TABLE VII (CONTINUED) PYLON LOADS SUMMARY (ULTIMATE) METHOD 2 CONFIGURATION 1 (WITH FINS)

PYLON HOOK LOADS - AERODYNAMIC CONSIDERATIONS

.

CONFIGURATION 1.0 WITH FINS

COND. No.	RHO SLUGS/FT**3	VÉLOCITY Keas	XCP Inches	YCP INCHES	ZCP Inches	ALPHA DEGREES	BETA DEGREES
104.33	0.0023769	203.328	170.210	0.000	-26.000	14.000	9.180
105.11	0.0023769	260.000	170.210	0.000	-26.000	4.600	-7.180
105.33	0.0023769	260.000	170.210	0.000	-26.000	4.600	7.189
105.93	0.0023769	260.000	170.210	0.000	-26.000	4.600	7.180
108.93	0.0023769	260.000	170.210	0.000	-26.000	-0.500	7.180
111.13	0.0023769	260.000	170.210	0.000	-26.000	-0.500	7.180
116.73	0.0023769	154.085	170.210	0.000	-26.000	-15.100	12.110
116.91	0.0023769	154.085	170.210	0.000	-26.000	-15.100	-12.110
117.71	0.0023769	260.000	170.210	0.000	-26.000	-8.700	-7.180
117 93	0.0023769	260.000	170.210	0.000	-26.000	-8.700	7.180
121 90	0.0023769	0.000	170.210	0.000	-26.000	0.000	0.000
122.70	0.0023769	0.000	170.210	0.000	-26.000	0.000	0.000

ORIGINALI PAGE IS OF POOR QUALITY .

PYLON LOADS SUMMARY (ULTIMATE) METHOD 2 CONFIGURATION 1 (WITH FINS)

PYLON HOOK LOADS - INERTIA CONSIDERATIONS

COND.	DTV WT.	ULTIMA	TE LOAD	FACTOR	XCG	YCG	ZCG
NO.	POUNDS	ΝХ	NY	NZ	INCHES	INCHES	INCHES
104.33	49000.0	-1.50	0.00	3.32	167.560	0.650	~27.350
105.11	49000.0	-1.50	0.00	3.32	167.560	-0.650	-27.350
105.33	49000.0	-1.50	0.00	3.32	167.560	0.650	-27.350
105.93	49000.0	-1.50	0.00	3.32	172.860	0.650	-27.350
108.93	49000.0	0.00	0.56	1.50	172.860	0.650	-27.350
111.13	49000.0	0.00	-0.56	1.50	167.560	-0.650	-27.350
116.73	49000.0	-1.50	0.00	~1.53	172.860	~0.650	-27.350
116.91	49000.0	-1.50	0.00	-1.53	172.860	0.650	-27.350
117.71	49000.0	-1.50	0.00	-1.53	172.860	-0.650	-27.350
117.93	49000.0	-1.50	0.00	-1.53	172.860	0.650	-27.350
121.90	49000.0	0.00	0.42	3.32	172.860	0.650	~27.350
122.70	49000.0	0.00	-0.42	3.32	172.860	-0.650	-27.350

	\triangleright	v _A	SA	V _{BL}	V _{ER}	V _{CL}	۷ _{CR}	D _{CL}	D _{CR}	s _{cl}
	CONDITION	PÓUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
	66A-2	-56624	-878	-64815	-56929			46702	43705	-11811
	66B-2	-38621	688	-27626	-31384			28531	28531	-6506
	63 -2	-53540	-766	-46179	⁻ -56067			41982	38225	-11924
D3-1	METHOD 1	-57123	-2117	-47556	-52180			39190	41703	8121
1220-2 55	METHOD 2	. <u>-57123</u>	-2385	-47639	⊷52097			40093	40801.	8389

TABLE VIII CONFIGURATION 1 - HOOK LOAD EVALUATION, $\rm V_A$ -

66A DENOTES DATA FROM TFD 66-431, PAGE 1-2-1, X-15 WT. = 57250 POUNDS

66B DENOTES DATA FROM TFD 66-431, PAGE 4-1-3, X-15 WT. = 36445 POUNDS

63 DENOTES DATA FROM TFD 63-876, PAGES 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS

METHODS 1 AND 2, DTV CONFIGURATION 1 WT. = 49000 POUNDS

	, ^V A	s _A	٧ _{BL}	۷ _{BR}	۷ _{CL}	۷ _{CR}	D _{CL}	D _{CR}	^S cl
CONDITION	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
66A-4	-30415	-8458	-38513	-11795			4145	4145	-32754
66B-4	-35952	13002	-17746	-43934			1196	1196	19447
63 -3	-29409	-10743	-33105	-8005			4145	4145	-36751
METHOD 1	-22490	-9512	-32827	-17405	- -		⁻ 398	11691	-10220
METHOD 2	-22409	<u>-10716</u>	-33198	-17034			4454	7635	-9016

TABLE IX CONFIGURATION 1 - HOOK LOAD EVALUATION, S_A

 \triangleright 66A DENOTES DATA FROM TFD 66-431, PAGE 1-2-1, X-15 WT. = 57250 POUNDS

METHODS 1 AND 2, DTV CONFIGURATION 1 WT. = 49000 POUNDS

66B DENOTES DATA FROM TFD 66-431, PAGE 4-3-1, X-15 WT. = 36445 POUNDS

63 DENOTES DATA FROM TFD 63-876, PAGE 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS

D3-11220-2 56

ORIGINALI PAGE IS OF POOR QUALITY

	٧ _A	SA	V _{BL}	V _{BR}	۷ _{CL}	V _{CR}	D _{CL}	D _{CR}	^S cl
	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
66A-18	-46374	-5866	<u>-86456</u>	-57240		- -			-18178
66B-9	5088	1137	-41696	-45962	~		2250	2250	-6687
63 -17	-44151	-5585	-66379	-56961					-15603
METHOD 1	-44826	-4821	-66248	-51606、			-2862	2862	-15759
METHOD 2	-44826	-5432	<u>-66437</u>	-51418	Nem 1440		-806	806	-15149

TABLE X CONFIGURATION 1 - HOOK LOAD EVALUATION, $V_{\rm BL}$

➢ 66A DENOTES DATA FROM TFD 66-431, PAGE 1-2-1, X-15 WT. = 57250 POUNDS

66B DENOTES DATA FROM TFD 66-431, PAGE 4-3-1, X-15 WT. = 36445 POUNDS

63 DENOTES DATA FROM TFD 63-876, PAGE 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS

METHODS 1 AND 2, DTV CONFIGURATION 2 WT = 49000 POUNDS

D3-11220-2 57

> ORIGINAL PACE IS OF POOR QUALITY

SOEING COMPANY

		٧ _A	s _A	V _{BL}	V _{BR}	V _{CL}	V _{CR}	D _{CL}	D _{CR}	SCL
		POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
	66A-17	-46374	5866	-65097	-78599	1				18178
	66B-9	5088	1137	-41696	-45962			2250	2250	-6687
	63-18	-44151	5585	-47114	-76226					15603
	METHOD 1	-44826	4821	-51606	-66248			2862	-2862	15759
D3-11: 5	METHOD 2	-44826	5432	-51418	-66437			806	-806	15149
220 2 8	66A DE	NOTES DATA	FROM TFD	56-431, P/	AGE 1-2-1	X-15 WT	. = 5725	O POUNDS		
	66B DE	NOTES DATA	FROM TFD	66-631, A	PAGE 4-3-1	I, X~15 W1	r. = 3644	5 POUNDS		
	63 DE	NOTES DATA	FROM TFD	63-876, T	PAGE 1-3-1	AND 1-3-	-2, X-15 W	T. = 504	49 POUNDS	

TABLE XI CONFIGURATION $1 - HOOK LOAD EVALUATION, V_{BR}$

.

METHODS 1 AND 2, DTV CONFIGURATION 2 WT. = 49000 POUNDS

		٧ _A	_S _A	۷ _{BL}	V _{BR}	V _{CL}	V _{CR}	D _{CL}	D _{CR}	s _{cl}
	CONDITION	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
	66Å-6	8896	465			45701	25823	46327	43330	2793
	66B-6	5165	1451			20561	3547	19020	19020	463
	63 -6	8732	578			38369	22915	41606	37849	2680
	METHOD 1	19714	-1247			27288	25150	38133	39613	5781
13-11; 5	METHOD 2	19714	-1405		- -	27247	25191	38665	39081	5938
220-2 ;9	→ 66A DE	NOTES DAT/	\∙FROM TFD	66-431, 8	Page 1-2-1	, X-15 WT.	= 57250	POUNDS		

TABLE XII CONFIGURATION 1 - HOOK LOAD EVALUATION, V_{CL}

66A DENOTES DATA FROM TFD 66-431, Page 1-2-1, X-15 WT. = 57250 POUNDS

66B DENOTES DATA FROM TFD 66-431, PAGE 4-3-1, X-15 WT. = 36445 POUNDS

63 DENOTES DATA FROM TFD 63-876, PAGE 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS

METHODS 1 AND 2, DTV CONFIGURATION 2 WT. = 49000 POUNDS

		۷ _A	s _A	V _{BL}	V _{BR}	V _{CL}	V _{CR}	DCL	D _{CR}	^S cl
	CONDITION	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
	66A~6	8896	465			45701	25823	46327	43330	2793
	66B~6	5165	1451	~ -	~ -	20561	3547	19020	19020	463
	63 ~6	8732	578			38369	22915	41606	37849	2680
	METHOD 1	19714	1129			25132	<u>27306</u>	39543	38203	-5569
D3-1	METHOD 2	19714	1272	~		25170	27269	39062	38684	-5712
1220-:	6	5A DENOTES	DATA FROM	TFD 66-43	1, PAGE 1.	-2-1, X-1!	5 WT. = 5	7250 POUN)S	
N	6	5B DENOTES	DATA FROM	TFD 66-43	1, PAGE 4-	-3-1, X-18	5 WT. = 3	6445 POUNE	S	
	6	B DENOTES	DATA FROM	TFD 63-87	6, PAGE 1-	-3-1 AND 1	I-3-2, X-15	WT. = 8	50449 POUN	DS
	M	ETHODS 1 AN	D 2, DTV (CONFIGURAT	ION 1 WT.	= 49000) POUNDS			

60

•

TABLE XIII CONFIGURATION 1 - HOOK LOAD EVALUATION, V_{CR}

		VA	SA	V _{BL}	V _{BR}	ү _{СL}	V _{CR}	D _{CL}	D _{CR}	S _{CL}
	CONDITION	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
	66A-2	-56624	-878	-64815	-56929		1 1	. 46702	43705	-11811
	66B-2	-38621	688	-27626	-31384			28531	28531	-6506
	63 -2	-53540	. <mark>-766</mark>	-46179	-56067			41982	38225	-11924
-	METHOD 1	21033	2355			25268	24504	<u>44193</u>	41397	-9795
)3-11	METHOD 2	21033	2653			25345	24427	43188	42401	-10094
220-2 j	664	DENOTES	DATA FROM	1 TFD 66-4	31, PAGE 1	-2-1, X-1	5 WT. =	57250 POUN	DS	

TABLE XIV CONFIGURATION 1 - HOOK LOAD EVALUATION, D_{CL}

66A DENOTES DATA FROM TED 66-431, PAGE 1-2-1, X-15 WT. = 57250 POUNDS
66B DENOTES DATA FROM TED 66-431, PAGE 4-3-1, X-15 WT. = 36445 POUNDS
63 DENOTES DATA FROM TED 63-876, PAGE 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS
METHODS 1 AND 2, DTV CONFIGURATION 1 WT. = 49000 POUNDS

	٧ _A	SA	۷ _{BL}	V _{BŖ}	γ _{CL}	۷ _{CR}	D _{CL}	D _{CR}	S _{CL}
	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
66A-2	-56624	-878	-64815	-56929			[.] 46702	43705	-11811
66B-2	-38621	688	-27626	-31384			28531	28531	~6506
63 -2	-53540	- 766	-46179	-56067			41982	38225	-11924
METHOD 1	21033	-2690			24453	25319	41198	<u>44392</u>	10398
METHOD 2	21033	-3031			24365	25407	42345	43244	10739
<u> </u>	<u></u>		, <u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	•				

TABLE XV CONFIGURATION 1 - HOOK LOAD EVALUATION, D_{CR}

D3-11220-2 62

66A DENOTES DATA FROM TFD 66-431, PAGE 1-2-1, X-15 WT. = 57250 POUNDS 66B DENOTES DATA FROM TFD 66-431, PAGE 4-3-1, X-15 WT. = 36445 POUNDS 63 DENOTES DATA FROM TFD 63-876, PAGE 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS

METHODS 1 AND 2, DTV CONFIGURATION 1 WT. = 49000 POUNDS

	\triangleright	VA	SA	V _{BL}	V _{BR}	V _{CL}	V _{CR}	D _{CL}	D _{CR}	S _{CL}
	CONDITION	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS	POUNDS
	66A-4	-30415	-8458	-38513	-11795			4145	4145	-32754
	66B-3	-35752	-11626	-40175	-21505	e t u .		1196	1196	-32459
:	63 -3	-29409	-10743	-33105	-8005			4145	4145	<u>-36751</u>
D	METHOD 1	-20644	3931	-17572	-34506			8378,	3711 _.	<u>31218</u>
3-112	METHOD 2	-20644	4428	-17418	-34659			6702	5388	30720
'20-2	6	6A DENOTES I	DATA FROM	TFD 66-43	, PAGE 1	-2-1, X-15	WT. = 5	7250 POUND	S	
	6	6B DENOTES	DATA FROM '	TFD 66-431	I, PAGE 4-	-3-1, X-15	WT. = 3	6445 POUND	S	

TABLE XVI CONFIGURATION 1 - HOOK LOAD EVALUATION, S_{CL}

63 DENOTES DATA FROM TFD 63-876, PAGE 1-3-1 AND 1-3-2, X-15 WT. = 50449 POUNDS METHODS 1 AND 2, DTV CONFIGURATION 1 WT. = 49000 POUNDS

წვ

	TABLE XVII							
B-52B/DTV	CONFIGURATION	1	(WITH	FINS)	LOAD	CRITICALITY	SUMMARY	

LOAD	X-15 A	DTV CONF. 1	
COMPONENT	MAX. LOAD (LBS.)	MARGIN	MAX. LOAD (LBS.)
v _A	-56624	.01*	-57123
SA	1 3002	.27**	-10716
V _{BL}	-86456	.06*	-66437
V _{BR}	-78599	.17*	-66437
· V _{CL}	45701		27288
V _{CR}	25823		27306
D _{CL}	46702	.12*	44193
D _{CR}	43705	.29*	44392
S _{CL}	-36751	.51**	31218

.

*REFERENCE TFD 66-431 **REFERENCE TFD 63-876

D3-11220-2 64 BOEING WICHTA COMPANY

TABLE XVIII

B-52B/DTV CONFIGURATION 1 (WITH FINS) PYLON TO WING LOAD CRITICALITY SUMMARY

	X-15 ANALYSIS	DTV CONFIGURATION 1	
	MAXIMUM LOAD (LBS.)	MAXIMUM LOAD (LBS.)	
۲V	• 72361*	67418	
V2	66367**	69181	
V ₃	· 98512*	73253	
V ₄	85967*	72180	
S ₁	10557**	9807	
S ₂	10557**	9807	
S ₃	13191**	-12473	
SĄ	13191**	-12473	
D ₃	45204*	-43672	
D4	45204*	-43672	
	1		

* REFERENCE TFD 66-431

** REFERENCE TFD 63-876

D3-11220-2 65

-

.

7.0 GROUND CLEARANCE

.

The ground clearance defined in Reference 2 for DTV Configuration 1 is applicable to DTV Configuration 1 (with fins). The minimum ground clearance for DTV Configuration 1 (with fins) is 7.90 inches.

8.0 REFERENCES

- 1. No. R-1803-2B, "Basic Flight Criteria", Amendment No. 2, dated 17 June 1949.
- Boeing Document D3-11220-1, "Load and Dynamic Assessment of B-52B-008 Carrier Aircraft for Configuration 1 and 2 Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test Vehicles", dated 24 October 1977.
- 3. NACA TN 3030, "A Method of Calculating the Subsonic Steady-State Load on an Airplane with a Wing of Arbitrary Plan Form and Stiffness", W.L. Gray and K.M. Schenk, dated December 1953.
- Boeing Document D-11374, "Wing Stress Analysis-Volume I", Model B-52, dated 5 April 1957.
- 5. Rockwell International Document TFD 66-513, "Wing Analysis of the B-52A-003 and B-52B-008 Carrier Aircrafts for the Increased Gross Weight X-15A-2", dated 1 July 1966.
- 6. Boeing Document D-10754, "External Loads Criteria, Volume III", Model B-52, dated 14 February 1951.
- 7. Rockwell International Document TFD 66-431, "Structural Analysis for the B-52 Pylon as Modified for the Increased Gross Weight X-15A-2 Airplane", dated 31 August 1966.
- Boeing Document D-13084, "Technical Data for RB-52B Flight Simulator", dated 1 October 1952.
- Rockwell International Document TFD 63-876, "Structural Analysis for the Modified B-52A Pylon for Advanced X-15A-2 Airplane Suspension", dated 15 November 1965.
- 10. Rockwell International Document TFD 63-901, "Modification Analysis for B-52 Wing for X-15A-2", dated 2 December 1963.