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SYSTEM DYNAMICS AND SIMULATION OF LSS (Figure 1)

Large Space Structures have many unique problems arising from mission objectives and the
resulting configuration. Inherent in these configurations is a strong coupling among
several of the designing disciplines. In particular, the coupling between structural
dynamics and control is a key design consideration. The solution to these interactive
problems requires efficient and accurate analysis, simulation and test techniques, and
properly planned and conducted design trade studies. This paper deals with these sub-
jects and concludes with a brief look at some NASA capabilities which can support these
technology studies.
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SYSTEM DYNAMICS AND SIMULATION OF LSS
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STATE-OF-THE-ART LIMITATIONS
TECHNOLOGY REQUIREMENTS/PLANS

NASA FACILITIES TO COMPLEMENT PLANS

Figure 1
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SYSTEM DYNAMICS (Figure 2)

Experience during Skylab and now with Space Shuttle has taught the necessity of assuming

a system focus during concept and design. In these two programs, there occurred a strong
bonding among dynamics, control, aerodynamics, trajectories, and environment. In addition,
large sensitivities in response occurred for small changes in system parameters. These are
aggravated by the multibody configurations and nonlinearities arising from many joints.

The same generic problems of multibody, multijointed, constraining control requirements

and unique environments recur for LSS and demand the same system focus. This chart depicts
the disciplines envisioned as being important in an interactive mode for LSS. Starting with
the mission definition objectives, one can define configuration options and sequence of
events, then proceed to conduct trade studies in order to understand the system and arrive
at the optimum configuration and design. More than one configuration is required to achieve
an optimized design since critical use must be made of configuration options, control system
capabilities, materials, and manufacturing and assembly approaches. All arrows go in both
directions depicting trade studies and feedbacks which are among two or more disciplines

and within the total system to insure success. In summary, system analysis is a necessary
focus for the technology phase to insure a successful program.
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THE ROLE OF SIMULATORS (Figure 3)

The previous chart addressed the need for detailed systems analysis. This chart addresses

the roles of simulation, analysis, and test. Simulation of the system, as discussed previously,
is cne key to proper design. It is the tool that can efficiently accomplish the inter-discipline
trades required. Analysis supports the simulation by providing input check cases for the simu-
lation and trends. Experiences on Skylab and Shuttle have demonstrated the merit of using very
simplified analysis to bracket parameters and show trends, using the complex simulations for
detail trades and design. The incorporation of springs and dampers between the support efforts
and simulation was deliberate to demonstrate that this support must be a dynamic interaction
with damped characteristics. This implies information feed forward and back. Environment was
separated from test and analysis for emphasis, even though it splits between the two. The
accurate prediction of critical environments is mandatory for unconservative design. Test

is very important in terms of input data and verification. Although no interaction is shown
between analysis and test, obviously there is one. With Large Space Structures, there exists

a complex trade required among control system complexity, accuracy of structural characteriza-
tion, analysis, and test requirements.

A brief look has been taken at the role of the different aspects of system dynamics in develop-
ment of the LSS program. The next two charts address state-of-the-art limitations and LSS
technology needs in these areas.
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THE ROLE OF SIMULATORS
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STATE-OF -THE-ART LIMITATIONS (Figure 4)

Limitations in the state-of-the-art technology in the areas of analysis, test, and
simulations are well known. A partial summary of these limitations is shown on this
chart. Basically, analysis is limited to linear approaches or very simplified nonlinear
ones. Test is basically high g with size limitations and inefficient data acquisition
and evaluation approaches. Simulations have been very useful but are limited in the
degrees of freedom that can be simulated. Facilities cost can be excessive unless all
the stops are pulled in terms of ingenuity and skills. Large space structure technology
requirements follow.
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LSST REQUIREMENTS (Figure 5)

Large Space Structures, or more precisely the different programs or uses of large space structures
in space, levy a unique set of requirements on design and, therefore, on technology. Not only
must some configurations have specific orientations in space; but, in addition, their shape must
be controlled. 'The structure must be assembled or manufactured in space or both. This leads to
growth accommodation requirements, joints, and various roles of man manipulator interactions.

Size limits ground testing as do design requirements that are stiffness-driven instead of
strength-driven. Digital control systems need the fullest exploitation to lessen the structural
design impacts and reduce the need for development of specific materials.

Large Space Structures technology must develop simulations that are large-scale, nonlinear, time-
scaled with growth potential. This is not only important for design, but also for realtime support
during buildup and operations. Skylab demonstrated this through the use of a time-scaled Skylab
orbit simulation that included dynamics and control to plan practically daily the most optimum
maneuvers for experiments in terms of fuel usage (RCS propellant). In addition, simulations are
needed for optimal design approaches, man loop interaction with system and closed loop control,

and special trade studies. In addition to the items discussed, the development of good simula-
tions requires the development of vehicle performance criteria. The developments must continue
toward simplifying the simulations without losing any essential characteristics.

In the area of analysis, techniques for analysis using all the uniqueness of digital control
systems are needed (e.g., multi-sample rate, variable skip, and nonlinear filtering). The old
problem of state estimation is with us and has even more importance in Large Space Structures
without detailed all-up dynamic test verification. Testing is a real problem. The low g
environment coupled with the structure size basically eliminate ground testing. Some means
must be devised to couple limited ground testing (component and scaled) with on orbit testing
and analysis in an optimum way as a verification tool.

Backup charts are provided which delineate the state-of-the-art limitations and LSST require-
ments as they relate to various future programs. The first backup chart is flight regimes versus
disciplines and covers all aspects from ground up and back. A generic notation is used to show
gaps. The second chart shows the breakdown in much greater detail in terms of discipline or
discipline subsets versus various concepts of Large Space Structures. The last chart provides
the same generic information for control technology.
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SIMULATION:
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Figure 5
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KEY ISSUES (Figure 6)

This chart lists some of the key issues in various disciplines important to system dynamics
and the associated trade studies. The listing is not intended to be all inclusive and is
biased by the author's experience. Major issues occur in each discipline area as well as
among the disciplines (e.g., in the integrated dynamics area, key issues involving test and
analysis roles and the resulting technologies as discussed previously). How to model and
simulate nonlinearities is a key area, as well as whether to design for stiffness require-
ments structurally or depend on control systems to provide the equivalent stiffness. The
source for control authority is very important as is the sensor choice, location, and

control logic. In the area of design criteria, the choice of unconservative approaches

for parameter variations and methods of combining these in design studies is necessary if

low cost/high reliability are to be achieved. Other key issues deal with choice of materials,
role of man-in-the-loop, verification approaches for models, and the role of on-orbit test,
control system update, etc., versus all-encompassing ground test and development. The approach
of desensitizing the system to variations of system parameters versus brute force design
approaches could lead to efficiency and cost savings. Based on these issues and the LSS
technology requirements discussed previously, a plan of attack is now developed.
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TECHNOLOGY PLANS (Figure 7)

This chart breaks out the six major tasks required to develop appropriate technology for LSS.
Emphasis is placed in the dynamic and control areas where NASA has unique facilities and
experience. Tasks that arise in other areas were not addressed due to the author's limited
time and may be just as important. Neither do these omissions signify that NASA does not have
other unique skill areas important to LSS. This program as outlined would provide the tech-
nology for ferreting out the basic characteristics, in a dynamic and control sense, of LSS

and for optimal design and verification. A look is taken next at some of the NASA facilities
readily adaptable to support this technology plan.
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TECHNOLOGY PLANS

DETERMINE THE LIMITATIONS OF CURRENT STATE-OF-THE-ART DYNAMIC ANALYSIS
APPROACHES FOR CURRENT LSST CONFIGURATIONS THROUGH DESIGNING, ANALYZING,
AND TESTING (SCALE MODEL) ONE SYNTHESIZED CONFIGURATION (INCLUDING FLIGHT
EXPERIMENTS).

DEVELOP AN OPTIMIZED TEST/ANALYSIS APPROACH MAKING MAXIMUM USE OF NASA
UNIQUE FACILITIES.

DEVELOP A MULTI-DISCIPLINED OPTIMIZED DESIGN APPROACH WHICH PROPERLY WEIGHS
OR TRADES THE VARIOUS ASPECTS REQUIRED FOR LOW COST, HIGH PERFORMANCE
SPACE STRUCTURES.

DEVELOP DETAILED SYSTEM SIMULATIONS USING NONLINEAR AND LINEAR ELEMENTS
COUPLED TOGETHER AND EXISTING NASA CAPABILITIES IN ORDER TO EFFICIENTLY
CONDUCT KEY TRADE STUDIES AND EVALUATE MAN-IN-THE-LOOP ROLES.

DEVELOP AND VALIDATE EFFICIENT AND ACCURATE ANALYSIS TECHNIQUES FOR
DYNAMIC MODELS, DIGITAL CONTROL SYSTEMS, DISTRIBUTIVE CONTROL SYSTEMS,
SPIN STABILIZATION, SYSTEM MODELS, AND INCORPORATION OF SYSTEM PARAMETER
VARIATIONS.

DEVELOP CONTROL TECHNOLOGY IN TERMS OF EFFECTOR CHOICE, SENSOR CHOICE,
CONTROL LOGIC, DIGITAL CONTROLLERS, SOFTWARE, AND STATE ESTIMATION.,

Figure 7
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SIMULATION (Figure 8)

This chart is a layout of one of NASA's simulation setups to support docking type dynamic
analysis. The point with this chart is to show the components and their flexibility and

not the particular application. Key elements are the hybrid computer which simulates all
dynamics and control not simulated with hardware and acquires and reduces all data as well
as the six degrees of freedom motion base which can carry the docking mechanism for contact
dynamics or simulate a moving vehicle. Visual displays are shown with control system sensor
interfaces, etc. Finally, the man-in-the-loop control panels, etc., are illustrated. 1In
addition, there is available a T-27 (cockpit) with visual displays, flat air bearing table,
buoyancy simulator, etc.
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TESTING (Figure 9 — Figure 13)

All aerospace programs to date have used full scale dynamic tests to verify dynamic
models used in design and verification. This chart shows the Saturn dynamic test stand
modified to handle the full scale dynamic test of Space Shuttle in its two configurations.
This test is to be conducted this year. The facility,with its support equipment, can be
modified for many LSS tests. There exist small dynamic test facilities, such as the one
presently being used for Shuttle lox tank modal survey test, and structural test facili-
ties, currently in use to verify the Shuttle External Tank design.
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FUTURE TECHNOLOGY AND
DISCIPLINE REQUIREMENTS
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COMMENTS OF GENERAL INTEREST FROM QUESTIONS AND ANSWERS

System Dynamics and Simulation of LSS

Simulations in Support of LSS

At this point in time simulations of LSS systems should begin with simplified simulation
models. The models should grow in concert with the developments of LSS configurations using
results from simulations and experience with equipment as complements. The past experiences
with a rather complete simulation for the Sky Lab - gyros, environment;, etc. allowed real
time predictions in support of Flight events. The ability to keep an accurate budget of the
propellant, to modify a maneuver as a result of a misdock, all contributed to the achieve-
ment of the long term mission. A similar goal seems appropriate for a LSS system with the
effort beginning as relatively simple simulations to aid toward defining the most appropriate

control concepts for Large Space Systems.





