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FINAL i PORT

A STUDY OF MULTIPLE-SHAKLR MODAL SURVEY TESTING*

i Summary

This research has been concerned with methods of structural dynamic
testing. The principal objective has been to examine and to assess the
practical value of a method of multiple-shaker sinusoidal modal vibration
testing known as Asher's method. Numerical studies which simulate the
application of Asher's method and a unique experimental implementation of
the method have been completed. Another objective of the research has
been to develop and to demonstrate with numerical simulation a quantita-
tive method for determining from transfer function data the number of dom-
inant modes of vibration in sinusoidal structural response.
11. Studies of Asher's Method

The first report on numerical simulation of Asher's method was the
Master's thesis by Stafford [1]. Simulated modal testing on a relatively
simple mathematical structural model was examined in considerable detail.
Stafford's model is a cantilevered plane grid structure having five degrees
of freedom, a pair of closely spaced modes, and hysteretic damping which
does not couple the undamped normal modes. The next report on numerical
simulation was the Master's thecis by Shostak [2]. Shostak's mathematical

models are similar to Stafford's but have viscous damping which does couple

o —

the undamped normal modes. The final and asost significant report on numeri

cal simulation was the paper by Hallauer and Stafford, which was presented

*The NASA Technical Officer for this grant is Mr. Robert Miserentino,
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at a technical conference [3], and published in a journal [4]. The ab-
stract for this paper follows.

The method proposed by Asher for structural dynamic modal test-
ing by multiple-shaker sinusoidal excitation is reviewed, and
its theory and application are discussed in detail. Numerical
results from simulated modal testing on mathematical structural
models are presented to 1llustrate the strengths and weaknesses
of the method. The characteristics of these models include
damping which couples the normal modes and closely spaced modes.
Numerical techniques required for implementation of the method
are described. A procedure is suggested for replacing actual
mechanical tuning with calculations employing transfer function
data.

The experimental study of Asher's method was condusted in the Struc-
tural Dynamics Research Laboratory cf NASA Langley Research Center. The
objective was to develop and test the software and procedures for appli-
cation of the method with the use of the SDRL's programmable Hewlett-
Packard 54518 Fourier Analyzer System with Modal Analysis Option. The most
detailed report on this experimental study is the Master's thesis being
prepared by R. R. Gold, which will be submitted to VPI & SU in late 1978
or early 1979. Also, a technical paper by R. R. Gold and W. L. Hallauer,
Jr. is being submitted for presentation at the 25th International Instru-
mentation Symposium (May 7 - 10, 1979 in Anaheim, California) and publica-
tion in the symposium proceedings. This paper is entitled "‘mplementation
of Asher's Method of Modal Testing on a Fourier-Analysis/Modal-Test System",
and its abstract follows.

A software package for application of Asher's method has

been implemented on a modern Fourier analyzer system. This com-

bination is unusual since the original form of Asher's method

involves multiple-shaker, sinusoidal-dwell mechanical tuning,

whereas the more recent method of analysis-based modal testing

employs single-point transient or random excitation, with modal

separation attempted by curve fitting of FFT-calculated transfer

functions. The technique described uses FFT and curve-fitting
capabilities to produce an analytical form of multiple-shaker




tuning, For evaluation of this< technique, a model having two

modes with almest identical natural frequencies was designed

mathematically and fabricated. CLvaluation with numerically

simulated data for this model demonstrated that the technique

works extremely well in principle. However, actual testing !
of the model produced such poor transfer function data that

practical evaluation was not possible,

The principal application of multiple-shaker modal testing is in
the difficult task of separating and correctly characterizing closely
spaced modes of vibration. In order to assess the practical value of
Asher's method, it has therefore been necessary to have available relatively
simple structural models with closely spaced modes. It is very difficult
to create such models by intuition or trial and error, so a quantitative
design method has been developed and is described in detail in the paper
by Hallauer et al [5]. The abstract for this paper follows.

Vehicle structures often have closely spaced moies of vibration

within the frequency spectrum of applied loads. Such modes are

important since they tend to be the source of vibration problems.

In order to study the erfects that closely spaced modes have on

structural response in such situations as modal testing and self-

excited vibrations, it is useful to be able to design a mathematical

structural model having closely spaced modes. In this paper, a

method for designing such a model is presented and illustrated

with examples. Given a reference model with specified geometry

and degrees of freedom, the lumped inertias and stiffnesses of

the model are perturbed in such a manner as to force together two

of its natural frequencies. With a slight alteration, the method

is also applicable to the inverse problemof separating undesirable

closely spaced modes which appear in a structural design.

An interim report of this research (Semi-Annual Progress Report, May-
November 1977, Research Grant NSG 1276) stated that a NASA Contractor
Report would be published with the title "A Method for Modal Tuning by

Multiple-Shaker Sinusoidal Excitation: Theory and Numerical Simulation".

The CR has not been and wili not be published. A1l the material that was

to have been included in the CR is available in references [4] and [5].




111. Determining the Humber of Dominant Vibration Modes

Very significant progress has been made in the development and demon
stration of a quantitative method for determining from transfer function
data the number of deminant modes. The first report on this subject
was the Master's thesis by Franck [6]. The research was also presented
at a technical conference in a paper by Hallauer and Franck [7]. Finally,
a detailed and comprehensive paper by W. L. Hallauer, Jr. and A. Franck
has been submitted for publication in late 1979 in the 48th Shock and
Vibration Bulletin. In order to make this paper available prior to its

publication, it has been included as the Appendix to this report.
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APPEILIX

ON DETERMINING THE NUMBER OF DOMINANT MODES

IN SINUSOIDAL STRUCTURAL RESPONSE
W. L. Hallauer, Jr. and A. Franck

ABSTRACT
This paper addresses the problem of using structural dynamic transfer

function data to determine the number of vibration modes dominant in re-
sponse at a given frequency. If two or more modes are closely spaced or

if response is influenced strongly by distant modes, then the number of
dominant modes may not be evident from examination of transfer function
plots, and quantitative methods may be required. Two relatively simple
methods which have been used previously are reviewed, and a more effective
new method, called the vector-fit method, is described in detail. Appiica-
tions of these methods are cgiven with the use of numerically simulated

transfer functions data.
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I, INTRODUCT ION

At any particular frequency of excitation, the steady-state sinusoidal
response of a structure is dominated by only a few of its indefinitely large ¢
number of vibration modes. The objective of modal testing is to measure
specific parameters of the dominant modes such as natural frequencies, damj
ing values, and mode shapes. When applicable, the best method for determin-
ing the number of dominant modes in a frequency band is simply to count
resonance peaks on transfer function plots. In such a situation, modal param-
eters can then be calculated rather easily by modern curve-fitting algo-
rithms, most of which require the number of dominant modes as an input value,
However, if two or more modes are closely spaced, or if response is influenc
strongly by modes whose resonances are outside the freauency band of interest,
then peak counting may not reveal the true number of dominant modes, and
subsequent curve fitting of transfer function data may produce incorrect
modal parameters and/or miss modes entirely. But a quantitative method foi
determining the number of dominant modes may succeed where peak counting
fails. If such a method should reveal the presence of previously undetected
modes, then careful curve fitting or some other modal testing technique,
such as multiple-shaker tuning, might successfully separate the modes.

The problem of determining the number of dominant modes was discussed
extensively some years ago in connection with the number of shakers re-
quired to separate modes in multiple-shaker modal testing. Traill-Nash [1]
introduced the "effective number of degrees of freedom" at a given frequency,
which he defined as being the number of motion coordinates required to repre-

sent with accuracy structura! response at that frequency. He concluded that

the number of shakers must equai or exceed the effective number of degrees




of freedom, Bishop and Gladwell [2] suggested a relationship between Traill
Nash's ective number of degrees of freedom and the number of dominant
modes; subsequentiy, Asher [3] implicitly equated these two numbers. He
then stated, in effect, that the number of shakers required equals the
number of dominant modes. This contention is not generally true; the number
of distinct generalized fr-ce distributions must equal the number of dom-
inant modes, but there is no necessary relationship between the number of
generalized force distributions and the number of discrete forces. Nonethe-
less, Asher made a significant contribution by proposing probably the first
quantitative methods to determine the number of dominant modes by analysis of
transfer function data.

This paper describes the theoretical basis for such a quantitative
method, reviews the methods discussed by Asher, proposes a new and
more effective method, and illustrates these methods with the use of numer-
ically simulated transfer function data.

[I. THEORETICAL BACKGROUND

Consider a linear structure discretized to n degrees of freedom, the
time-dependent responses of which are elements of the n x 1 column matrix .
(Notation is listed at the end of the paper.) The governing matrix equation
of motion is

(] x +[clx+[kKlx=f (1)
where [m], [c], and [k] are the n x n inertia, damping, and stiffness matrices,
respectively, and f is the column matrix of time-dependent forcing. We
specify that all forces vary sinusoidally at the same frequency, w, and that

all have 0° or 180° phase,

| iwtl
(

f=Fcos wt =Re Fe (2a)
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After starting transients have decayrd away, response 15 steady-state sinu
soidal,

x = Re| ¢ et (2b)
where the elements of-amplitude vector x are generally complex, reflecting
phase differences between excitation and response. The linear, frequency-
dependent relationship between excitation amp’ 1tude and complex response
amplitude is defined by the n x n transfer function matrix [H(w)],

X = [H(.)] F (3)
The standard real modal analysi: solution of equation (1) for [H(w)]
begins with calculation of the real undamped natural frequencies WL
2, +++, n, and the associated real mode shape vectors Vs which are the
columns of modal matrix [¢] (Meirovitch [4]). Subsequently, response co-
ordinates xi are transformed into normal coordinates which diagonalize the
ass and stiffness matrices of equation (1); then the normal coordinates
are calculated by matrix inversion, and X is calculated from the normal co-
ordinate solution in the form
X = [¢] [S(w)] F
where [S(w)] is an n x n complex matrix. Hence, the transfer function matri»
is
[H(w)] = [¢] [S(w;]

and any column, say the jth, of [H(w)] can be written as

n

H‘i('-') " Z: er() ;r,t = 1,2,¢+4,n ("1)

r=1]
lhus, each column of the transfer function matrix can be expressed as a sum-

mation of the n linearly independent mode shape vectors. If we consider some

subset p <n of degrees of freedom and define the corresponding p x 1 incomplete
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ith transfer function column as Hj s), then equation (4) gives

H;(.) = :E::Shii(') MHE 3% Y00 s B (5)
where the degrees of freedom includes in each p x 1 incomplete mode shape vect
:; are the same as those included in HE . Although the summation in equati
(5) extends over all modes, only p of the n :; vectors are independent

If damping matrix [c] were to couple the undamped normal modes (i.e., if
l;]t [c] [¢] were not diagonal), then the use of undamped normal modes as out-
lined above would be computationally inefficient, and ~we would probably solve
for the transfer function matrix with an appropriate complex modal analysis
employing complex eigenvalues and mode shape vectors. Nevertheless, the so-
lution for each column of the transfer function matrix could still be expressed
‘n the forms of equations (4) and (5), that is. as linear summations of n mode
shape vectors, where in this case the ¢  would be complex vectors. The im-
portant fact, expressed in the language of matrix theory, is that each transfe:
function column Hj is an element in the n-dimersional vector space spanned
by the n mode shape vectors, whethier they be real or complex; similarly, each
incomplete column UE is an element in the p-dimensional vector space spanned
by any p Jlinearly independent incomplete mode shape vectors.

A useful general characteristic of structural dynamic behavior is that
very few of a structure's many vibration modes are sensitive to excitation at
any given frequency. These few modes then dominate the response at that frequency.
If there are q such dominant modes at frequency w, then the mathematical state-

ments of their dominance, from equations (4) and (5), are




Hj(.) :E:: srj(m) s J =1, 8 seseP (€)
0106) 29 Spyle) o0 3% 0 2eeen (7)

q
where 2: denotes summation over only the q dominant modes. In equation (6),
the q nqx 1 mode shape vectors associated with the _luminant modes generate a
q-dimensional subspace of the original n-dimensional vector space. The ap
proximate equality in equation (6) means that each Hj(m) column can, with
small error, be considered an element of the subspace. In equation (7), the
p x 1 incomplete mode shape vectors associated with the dominant modes generate
a q-dimensional subspace of the original p-dimensional vector space, provided
that p>q. Again, the appre- mate equality means that each U3 (w) column is

approximately an element of the subspace.

Most current methods of modal testing are capable of measuring incomplete

transfer function column vectors over a frequency band of interest. The jth
column H; represents physically the complex response amplitude of motion sensors
at p stations on the test structure due to sinusoidal forcing excitation of

unit amplitude at the jth station, which does not necessarily coincide with

any of the motion sensor stations. I[f excitation is applied successively

to k different stations, then vectors H} yJ =1, 2, ...k, can be measured.
They are the columns of the p x k incomplete transfer function matrix [H*].

(It is generally impossible to measure the complete matrix [H], since a con
tinuous structure has an indefinitely large number of degrees of freedom.)

If the structure being tested responds linearly, then each ﬁ; column

is represented mathematically by equation (7), which, therefore, is the basis

of the methods discussed in Section III helow for determining the number of

5




dominant modes from experimental tronsfer function data. Each method esti
mates the number q of dominant vectors ¢* 1in equation (7), gf »n k ex
perimental p x 1 vec.ors HY

Ine practica)l requirement for the correct use of equation (7) in the
present cuntext is fmnmediately evident: since p must exceed q, as discussed
above, the test engineer must guess an upper bcund Qux for the number of
dominani modes likely to be ercountered, and then he must install more than
. distinct motion sensors. This requirement does nut present a significant
practical cbstacle, since L for most structures should be on the order of
ten or less. It 1s assumed in the remainder of the paper that the number of
moticin sensor measurements available for analysis is always greater than the
number of dominant modes.

In vehicle modal testing, it is usualily feasible to install a substantial
number of motion sensors, but the number of exciters or excitation stations is

often much smaller due to practical limitations. Hence, we assume that k p

in maost of what follows.

[IT. QUANTITATIVE METHONDS FOR DETERMINING THE NUMBER OF DOMINANT MODES
IT1.17 TRANSFER FUNCTION DETERMINANT METHOD

This method involves analysis of square transfer function matrices, which
are formed by the use of only k of the p available motion sensor measurements
Thus, [H*] is a k x k matrix. If, in the first case, the number of excite
is less than or equal to the number of aominant modes, k < q, then according

to equation (7), the k columns of [H*] generally will be linearly independent:

hence [H*] will be non-singular and its determinant will be non-zero,




det [H*] # 0 for k < q. But 17 the number of exciters 1s increased until
just exceeds the number of dominant modes, k = q + 1, then the k columns
will be approximately dependent, so that [H*] will be nearly singular and

its determinant will be close to zero, det [H*] = 0 for k > q. The strategy
for application of this method, therefore, is to add rows and columns of - 2
to the transfer function matrix in unit steps until the value of k is found
for which det [H*] = 0; then the conclusion is that q = k - 1,

This is a very simple method to apply, but it has some deficiencies.
First, transfer function determinants are complex, so one must assess the
possibly non-monotonic progression toward zero of a sequence of complex nunbers
Second, the restriction to square transfer function matrices is undesirable
because it prevents the use of all available motion sensor data. Both of
these deficiencies are eliminated with 1ittle additional effort by the use
of the ... determinant method described below, so there appears to be no
reason to develop further or test the transfer function determinant method.
We note that Ibrahim and Mikulcik [5] employed a similar method, but with

filtered transient response data, and found it quite satisfactory.

ITI. 2 GRAM DETERMINANT (GRAMIAN) METHOD
This method involves analysis of a rectangular p x k transfer function

matrix, [H*]. The Gram matrix of [H*] is defined to be a matrix product,

(6,1 = [A*]® [u*]

where the overbar indicates complex conjugacy. By this definition, the Gram

matrix is a k x k Hermitian matrix. The Gram determinant, or Gramian, is




defined to be

6K) = get (6,

It can be preved that the Gramian is real and non-negative.

The Gramian of a transfer function matrix is a quantitative measure of
the degree of linear dependence of the column vectors, Hj. N® Y B shdaks
Specifically, the set of vectors is linearly Jdependent if and only if the
Gramian is zero (Hildebrand [6]). Moreover, it is reasonable to expect
that if the set of vectors is almost but not precisely linearly dependent,
then the Gramian should oe nearly zero. As is discussed in Section III.1,
any q or fewer columns of [H*] generally are linearly independent and, hence,
have non-zero Gromians, G(k) >0 fork=1, 2, ...,q. But any set of more
than 5 columns will be approximately dependent and have very small or zero
Gramians, G(k) =0 for k > q + 1., Therefore, the basic strategy for appli-
cation of this method is to add columns of data to the transfer function
matrix in unit steps until the value of k is found for which G(k) = 05 then,
the conclusion is that q = k - 1.

It is necessary in applying this method to separate the change in Gram
determinant value due to change in degree of linear dependence from that due
simply to change in determinant size. If, for example, all Gram matrix elements

2

are numerically of order 10°“, then, without change in degree of linear de-

4. 6(3) of order 10'“.

pendence, G(]) will be of order 10'2. G(Z) of order 10°
and so forth. This characteristic of determinants will obviously mask the

Gramian test for linear dependence unless Gram matrix elements are of order |

In applications of the Gramian method, the authors have attempted to minimize

the masking by normalizing each column of [H*] so that the corresponding diaconal




elerent of the Gram matrix is 1, 1.0., (ﬂ}. U}) =1,3=1,2,...,k, where
Hj here denotes the normalized colwmn rather than the original column in
physical units. The numerical results of Section IV.3 suggest that this
ad hoc measure is effective in filtering out Gramian variation with Gram .
matrix size.

Asher [3] described and discussed both the transfer function determinant
imd the Gram determinant methods. He recognized that in applying either method,
one might find it difficult to decide how small a generally non-zero determinant
value must be in order to indicate linear dependence correctly. The numerical
results of Section IV.3 confirm that the absence of a definite smallness
criterion is indeed a weakness of the Gramian method. Even though all Gramian
values are referenced to G(]) = 1 by virtue of the normalization procedure de

: : q+1) -
scribed above, examples for different situations show Gramian values h(” 1) e i

-2. and even 10°°.

orders 107", 10
Another deficiency of the Gramian method is that it can correctly indicate
linear dependence, yet underestimate the number of dominant modes. To under
stand how this can happen, consider a simple example in which there are two
dominant modes. The analysis of three given, distinct transfer function vec-

tors, denoted Vis Yoo and v then should indicate two modes. The set of

J‘
three vectors is linearly dependent, but suppose also that I and v, are '
independent and i and vy are dependent. If the transfer function matrix is

: : [H*] = : (1) (2) {3). =
defined as [H*] = [v]. Vo yjj. then G =1, G > 0, and G "= 0, leading
to the correct conclusion that q = 2. If, on the other hand, we define [H*]

Lvl. Vi yql. then G(I) = 1 and G(z) = 0(3)= 0, leading to the incorrect con-

clusion that q = 1. An instance of this particular case occurring in a

realistic situation is presented in Section IV.3. It is clear that the




orderving of vectors in the p x k transfer function matrix affects all Gra

(1) k)

values except G 1 and u" ., wh ch is invariant with column and row or
The Gramian method then has some serious veaknesses. Perhaps for this
reason, it apparently has not been employed widely. The authors have lo-
cated only one published application, that by Klosterman [7]. The vector-
fit method to be discussed next is, to a considerable extent, free of the
weaknesses of the Gramian method.
I11.3 VECTOR-FIT METHOD
A concept analogous to the number of dominant modes of a vibrating struc
ture is that of a "best approximating subspace". Cliff [8] discussed this
concept in the context of control theory. Given a set of k p-dimensional
vectors, one can calculate the particular m-dimensional basis (m < k) which,
amona all possible m-dimensional bases, does the best job of approximately
spanning the set of k vectors, with error minimized in the least-squares serse
In other words, the k vectors are "fit" to the best approximating m-dimensicnal
subspace. The method developed here to solve for the number of dominant mode
follows Cliff's general approach; hence, it is referred to as the vector-fit
method.
Given the p x k transfer function matrix [(H*] for frequency w, the general
stepwise procedure for application of the vector-fit method is as follows:
1. A particular p-dimensional complex unit vector Uy is calculated from
[H*]. Among all possible unit vectors, Uy alone has the proeperty of
pioducing the best, in a sense to be defined, set of one-tern approxi-

mations to the transfer function columns. This set of appro<imations

takes the form




where the Cji generally are complex constants, Next, the real scalar

error L(]) associated with this set of approximations 1s calculated.

2 A second unit vector u, i1s calculated. It is orthogonal to uy - Among
all possible unit vectors orthogonal to Uys Uy alone has the property

of producing, in conjunction with u]. the best set of two-term approxi

mations to the transfer function c¢olumns. This set takes the form

2
“'i > Z le ::'iv;izlyzv"'ok
i=1

Next, error L(“) associated with this set of approximations is calculated

&

Js The mth unit vector u is calculated. It is orthogonal to all other Ugs
i=1,2,++, m=1. Vector U has the property of producing, in conjunc-
tion with ps Upytsey U s the best set of m-term approximations to the
transfer function columns. This set takes the form

® A E . " = 9. ssa ‘
Hj \, LJ] l-li‘ J ]‘(_). » k

i=1]
Next errur L(m) associated with this set of approximations is calculated.

3

°

@
Each step introduces a refinement of the approximation, so the error diminishes
. I (m) (m=1) . ; b -
in each step, E < E . If, after m > 1 steps of this procedure, we find

m ; |

that t( ): 0 relative to L( ). then we may reasonably conclude that the set
of transfer function vectors is spanned approximately, with very small error,

by an m-dimensional basis. According to equation (7), then, there are m

11




fominant modes at frequency w, 1.e.. q = m It is quite unlikely that the °
will be identical to the mode shape vectors 4? of equation (7), since the
ug are orthogonal by definition while the ;? need not and generally will
not be orthogonal. Nanetheless, it is certain that both sets Uy and :? span
the same g-dimensional vector space.
_ . . s (p)
If p <k and the procedure is carried through p steps, then E 0
since the p independent U exactly span p-dimensional space. If, on the othe
. ; P (k)
hand, k < p and the procedure is carried through k steps, then | 0
since the k independent us exactly span the subspace defined by the k trans-
fer function column vectors. (This case is simply orthogonalization of a
vector set, similar to the Gram-Schmidt procedure.) Hence, in order for th i
vector-fit method to produce a correct evaluation of the number of dominant
modes, it is necessary that p and k each must exceed q. That is, the test
engineer must provide both more motion sensors and more excitation stations

than the maximum number of dominant modes likely to be encountered. In appli

L —

cation, the method itself indicates if too few motion sensors or excitation
stations have been used, and this is illustrated in Section 1V.3.

It is worthy of note that each of the three methods described for identi g
fication of the presence of q dominant modes requires a minimum of q + 1 motion
sensors and q + 1 excitation stations.

The theory associated with the calculations discussed above is developed !
next. Let a basis for p-dimensional space of complex vectors consist of p

ort"agonal unit vectors Ups Ugs "oy “p‘ which are unknown at this point. Any

transfer function column vector can be expressed as the summation

m p
* = + : w e R 2,0
I{l E 2 uss UJ) Uy, d 1ils R
i=1 i=m+1]
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The basis vectors are orthogonal in the Hermitian sense, so }
mn
* . *
(H _. E ! (l-‘i' )\IJ-)(HJ., ui) r
i=m+] f

Hence, we may define as follows the squared scalar error associated with

approximation of Hj as a series sum in only the first m basis vectors,

P
e(“‘l) g Z (u].. I\Ij)(?_!}. a_li)
f=m+]
1l
« (Hy, 1) - Z (uys te) (13, is)

i=1
The appropriate total or global error, defined in the least-squares sense

over all H%, is
" °J

f- -8 1
i_(m) £ E : e(“.'))‘? )
J
R B
[ k m |
= E n*. H* E E “ : n* H3. ul) 2
[ 3 l

(m)

For given m, we wish 10 determine the basis vectors u, so as to minimize E
by maximizing the double-summation term. With a few steps of matrix algebra,

that term is cast into the more useful form

k m
Z 2 (“i' U})(Uj. L;i) - Z K‘IE [A] Uy
3% ] J=] i
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where [A] = [H*] Lﬂ*]t is a p x p Hermitian matrix with p real non-negative
eigenvalues hy 2 \2 > 400 ? '” » 0 and p corresponding complex, mutually
orthogonal unit eigenvectors Y1s Yor e Tp' Thus, for given m, we wish to

minimize 1/2

i &

m

k
(m) _ Ba  ue -t
@B X wwy
‘JS

i=1

Consider first m = 1, The maximum value assumed by the Hermitian quadratic
form Gf[A] Uy is equal to the largest eigenvalue Mo and this maximum results

if u =y (Franklin [9]). Hence, the minimum associated error is

'
g(h) = Z (A%, HY) - %
min J J
J=1

Next, for m = 2 we wish to minimize

1/2

- K 172
(2) - ) . — -t
E Z (33. Hj) A = U[AT U,
3=
For all possible Uy orthogonal to Uy = o the maximum value assumed by quad

ratic form Q;[A] u, is equal to the second eigenvalue Ao and this maximum

results if U, = (Franklin [9]). Thus,

It}2

(2) k 2
2 4 i i Z
E = Al P ks
> (A5, H)) ;
j=1

min .
i=1]

[his reasoning can be extended easily to show that the minimum error for arbitrary

m (1 <m<p) is
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where ug = To simplify notation, it is understood in equation (8) and in

(m)

Vi
the discussion and numerical examples to follow that E denotes the minimun
error, even though subscript min is deleted.

We can now reiterate and summarize the vector-fit method for determining
the number q of dominant modes at a given frequency. From the p x k transfer
function matrix [H*], the p x p Hermitian matrix [A] = [H*][ﬂ"‘]t is formed. It
Is necessary that p > g+ 1 and k > q + 1. Next, the real eigenvalues of
g2k BAD 0, are calculated. Next, form=1, 2, ..., p, the
minimum error values are calculated from equation (8). The smallest integer

(m) (1)

[A],A

m for which E 0 relative to E then is equal to the number q of dominant

modes. Note that the eigenvectors of [A], ys Yor wees ;p' need not be calculated.

)

It can be proved easily that th2 error values [(m are entirely independent
'f the numbering or ordering schemes used to identify motion sensors and exciters
or to arrange elements in the transfer function matrix. In other words, any or
111 of the rows of [H*] can be interchanged and/or any or all of the columns can

(m)

be interchanged without changing the values of E Hence, the vector-fit method
has no weakness comparable to the dependence on vector ordering of the Gramian

method.

[V. NUMERICAL SIMULATION STUDY
Two mathematical models have been used for numerical simulation of experi-
mental application of the vector-fit and Gramian methods. The models were designed

to have frequency bands of high modal density with prescribed numbers of dominant

15




modes. The basic objective of the nwwrical study then was to determine if the
vector-fit and Gramian methods are capable of correctly determining the number
of dominant modes. Other objectives were to compare the two methods and to
develop guidelines for applying the methods and interpreting the results.

To simplify calculations, it was specified that each model have hystereti

damping which does not couple the undamped normal modes. Hence, transfer function

matrix elements were calculated exactly from the equation

n

;1r ¢jr
N W
(1 - ;g—) + 19r

r=] r

where ¢, . is the ith element of the complete mode shape vector bps Mr - @:[n] »
is the generalized mass of the rth normal mode, and Wy and 9 are, respectivelv,

the natural frequency and hysteretic damping of the rth mode.

IV.1 TEN-MODE MODEL

The mode shapes of this model are those of the first ten out-of-plane

vibration modes of the uniform stretched membrane shown on Figure 1,

m nX, n.ny
dip = % ) Rt winch ]
ir = AL sin ( T3 ) sin ( 10
where integers m. and n. are the numbers of half-wavelengths for the rth mode
listed in Table 1, X5 and y; are coordinates of the motion sensor/exciter
stations shown on Figure 1, and constant Ar for the rth mode is chosen so
that the numerically largest mode shape element equals one. Other modal

parameters, as listed in Table 1, are not those of the uniform membrane, but

rather were selected to produce a mathematical model with four very closely
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spaced modes in the vicinity of 100 on the frequency scale and six more modes
outside the region of high modal density. Thus, q = 4 in a frequency band o!
roughly three units centered at 100, so the methods under study, if successful,
should indicate accordingly. Since this model has limited physical significance,

111 quantities are considered to be dimensionless.

1V.2 FIFTEEN-DEGRZ.E-OF-FREEDOM MODEL

This model, un ike the ten-mode model, is based entirely on a physical
structure, the cantilevered, rectangular plane grid shown on Figures 2a and b.
Ihe model was designed to have two modes with nearly identical natural frequencies,
as shown in Table 2. To achieve such close modes, an optimization technique
similar to that of Hallauer et al [10] was used.

Each elastic member of the model is a steel bar having Young's modulus
£ = 200 GPa (29 x 106 psi), shear modulus G = 82.7 GPa (12 x 106 psi‘, and di-
ameter of 6.35 mm (0.25 inch). (The fundamental units of pounds, inches, and
seconds were used in all calculations.) Each bar may twist about its axis and
bend out of the grid plane, and each is clamped at both ends by either the rigid
support wall or a rigid cylindrical joint member of 0.051-m (2-inch) diameter.
Ihe five node points of the model are the intersections of the bar centerlines
in the grid plane. The fifteen degrees of freedom then consist of one out-of-
nlane translation and two out-of-plane rotations of each node point. The trans-
lations are identified in Figure 2a, and the rotations of node 1, for example,
ire identified in Figure 2b. The nodal lumped mass and moment of inertia (for
hoth rotational dof) associated with each rigid joint are listed in Table 2. To
account approximately for distributed inertia of the bars, finite element con-

sistent mass matrices were used, with bar density taken to be 7859 kg/m3
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m —

(7.3536 x 1074

Ib-seczfinq). Modal nysteretic damping constants 9, were
specified to be 0.015 for modes 1 and 2, 0.018, 0.022, and 0.026 rec ctively
for modes 3, 4, and 5, 0.03 for modes 6-10, and 0.035 for modes 10-iv.

IV.3 RESULTS AND DISCUSSION

Consider first the ten-mode model. Typical transfer functions are
shown on Figures 3a and b, with the coincident (co) or rcal paris and the
quadrature (quad) or-imaginary parts plotted separately. Qualitative in-
spection of these and other transfer functions seems to indicate the presence
of only two dominant modes in the vicinity of frequency 100. But there are
actually four dominant modes in that region, as listed in Table 1.

To begin numerical application of the vector-fit method, we examine
first errors calculated from the complete 10 x 10 transfer function matrix.
Such a large matrix will not generally be required, but examining this case
first establishes a reference and provides guidelines for interpreting the
error values and, more generally, for applying the method. Since transfer
functions are usualiy plotted versus excitation frequency, it seems natura)
and, in fact, proves advantageous also to calculate and plot error values
versus excitation frequency. Errors E(m). m=1,2,-+-,10, for the complete
transfer function matrix were calculated from equation (8) and are plotted
on Figure 4. Note the relatively large variations with frequency and the
peaking of E(]). E(z). and 8(3). Note also that E(4) is on the order of 10
of the maximum value of E(]). and that E(q) varies only slightly with fre-
quency. As stated in Section II1.3, the result that E(q) << E(]) indicates
that there are four dominant modes. But it is also important that E(d) £ 0
and that E(4). E(S). etc. vary slowly with frequency in comparison with E(])'
£(2) £(3)

, and From these observations, we conclude that four modes dominate

18




but do not completely describe the response in this narrow frequency band,
and that the contributions of distant modes remain relatively constant in
this band. Both conclusions are quite reasonable in view of the nature of
the ten-mode model fhus. this reference case suggests that i~ examining
graphs of error Jds frequency, we should use not only the basic criterion
L(Q) <o E(‘). bL. also the additional criteria that E(Q) # 0, that E(Q).
[(q . 1). etc., should vary slowly with frequency in comparison with L(l).
£(2). veey E(q s 1). and that plots versus frequency of E(l). E(Z).---. L(” gL
should exhibit peaks. An exceptional case for which these criteria might
not apply i1s that of a distant mode contributing siynificantly to response
In this case, we might expect to find a relatively large, slowly varying,
and non-peaking E{m) for m < q.

Figures 5 a-d are plots of errors calcu.a'ed from responses at seven
motion sensor locations due successively to excitation at three, four, five
and six locations. This simulates a realistic testing approach in which
very few exciters are applied initially, and additional exciters are applicd
as required. In Figure 5a for three excitecrs, E(z) is not much smaller than
E(l). and E(3) = 0, as required by the theory of Section III.3. (The very
small non-zern values on this :nd other computer-generated plots are due to
round-off errors.) Clearly, more exciters are required to indicate correctly
the number of dominant modes. The addition of a fourth exciter (i.e., another
column in [H*]) leads to Figure 5b, which also indicates the need for at
least one more exciter. With five exciters, however, Figure 5c shows that
E(d) varies slowly with frequency and is non-zero yet much smaller than E(]).
We conclude, therefore, that q = 4. Figure 5d for six exc ters substantiates

the conclusion.

Unfortunately, interpretation of the error plots is not always as
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unambiguous as it appears to be with Figures 4 and 5. There is a definite
dependence on the motion sensor and exciter locations represented in the
transfer function matrix. These points are illustrated on the error plots
of Figures 6 a,b, and.r. which were calculated for different sets of motion
sensor/exciter locations than those of Figures 4 and 5. Figure 6a for five
motion sensors and five exciters can be interpreted as indicating four
dominant modes; but this interpretation is substantially weaker here than
for Figures 4 and 5c,d since E(j) on Figure 6a is only slightly peaked and
is very small relative to E(l). Figure 6b for six motion sensors and cix
exciters is ambiguous; one might infer that it indicates three, four, or
five dominant modes, with three being perhaps the most likely interpreta-
tion. Figure 6¢c, also with six motion sensor/exciter locations but one dif-
ferent location than Figure 6b, permits a somewhat more certain interpreta- {
tion of four dominant modes.

One can observe from the vertical axis scales on Figures 4 - 6 that
all non-zero error values tend to increase as columns are added to the
transfer function matrix. This tendency appears not to have any useful
significance.

Next, we examine the Gramian method as applied to the ten-mode model.
Figure 7a is a graph of Gramians plotted versus ‘requency in the region of
high modal density. Gramians 6(1) - G(]O) were calculated from complete 10 x 1
transfer function vectors, with the vectors applied in the order of the station
numbering shown on Figure 1, i.e., 1, 2, ..., 10. Recall that the identifi-
cation criterion for this method is G(q+]) : 0, where G(]) = 1 by virtue of

transfer function vector normalization. So G(s) should be nearly zero in this
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case, A tabulation of 0(5) for Figure 7a (not included) shows values in
the ranges 10'3 and 10'4. Figure 7b is a graph of Gramians G(]) - G(]O)
also calculated from 10 x 1 transfer function vectors, but with the vectors
applied in inverse order of the station numbering, i.e., .0, 9,...,1. Value:
of G(s) for Figure 7b are in the ranges 10°! and 102, The vast differences
between the curves on Figure 7a and those on Figure 7b i1llustrate the vecto:
ordering dependence of the Gramian method, and the different magnitudes of
G(S) on the two graphs illustrate the indefiniteness of the smallness criterion,
alatl) . o

Finally for the ten-mode model, Figures 8a and b demonstrate the signif
cance on typical transfer function plots of the dominance of four modes. Thes
graphs show exact coincident and quadrature values of H3'3(u) and H7.7(m). anproxi
mate values calculated from only the four dominant modes, and approximate values
calculated from only modes four and six, two of the dominant modes. Whereas rodes
four and six alone dominate H., ., all four of the close modes make comparahl

33
contributions to H

Y

Consider next the fifteen-dof model, which has the pair of close modes
listed in Table 2. In testing of this model, it would be natural to instrument
and to provide forcing excitation at the five translation degrees of freedom
shown on Figure 2a, so we will ana yze the 5 x 5 incomplete transfer function
matrix associated with those degrees of freedom.

Figures 9a,b, and ¢ are selected transfer functions in a narrow band abou!
the close natural frequencies. Figure 9a for H1'](m) has the character of most
transfer function elements in this frequency band, namely, it seems to in-

dicate only a single, isolated mode. Figure 9b for Hy ]O(m) suggests the

presence of more than one mode, but the asymmetry of the coincident response
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curve would probably be attributed to a distant mude rather than to close modes,
0f all the elements of the 5 x 5§ [H*], only H]'13(u) shown on Figure 9¢ pro-
vides definite evidence of the presence of two close modes. But both H4"q
and ”1.13 have such small magnitudes relative to H].I that, in actuai testing,
they would probably be lost in noise or ignored. So it is fair to say that
qualitative examination of the transfer functions indicates the presence of
oniy a single mode at 149.2 rad/sec.

Before examining error plots in the region of the two close modes, it is
useful to have as a reference an example of error plots at and near a single
isolated mode. The second mode of this model, with a natural frequency of
67.5 rad/sec, is quite distant from all other modes. Figure 10a is the graph
of error values around this mode for the 5 x 5 [H*]. For comparison, Figure
10b is the graph of error values in a region of almost no modal activity be-
tween the second and third modes. The error scales of both Figures 10a and b
are quite small (relative to that of Figure 11a discussed below). and neither
figure has any error peaks. The only significant difference in character he-
tween the two figures is the numerical noise at and near the natural frequency
in Figure 10a, due to accumulated round-off error in eigenvalue calculations.

Figures 11a and b are graphs of error values in a band around the pair of
close modes, the former for excitation at all five translation degrees of free-
dom, and the latter for excitation at only three. On the basis of all criteria
developed previously and in comparison with Figure 10a, these graphs indicate
clearly and indisputably the presence of two dominant modes.

Figures 12 a, b, and ¢ are graphs of Gramians in the region of closa modes.

Figure 12a for five exciters applied in the order 1, 4, 7, 10. 13 seems to
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indicate clearly that q 2. So also does Figure 12b for three exciters ap
plied in the order 13, 1, 10. However, Figure 12¢ for the same three exciters
applied in the order 1, 10, 13 seems to indicate just as clearly, though in-
correctly, that q i

In summary of the discussion of theory and the numerical simulation study,
the vector-fit method is distinctly superior to the Gramian method for the pu
pose of determining the number of dominant modes. The only advantage of the
Gramian method is that it requires substantially less computation time. As
has been demonstrated, the vector-fit method can produce error plots which are
difficult to interpret correctly. But results of the simulation study sugoest
that the use of a large number of motion sensors in calculation of the error
values will reduce the likelihood of mistaken interpretations. Theoretically,
a minimum number of g+l motion sensors are required; however, it would seem
prudent and usually practical to estimate q and then to use several times that
number of motion sensors in calculating error values.

We note that the vector-fit method is valid regardless of the type of motion
sensor employed in testing, since the form of equation (7) remains the same fov

displacement, velocity, or acceleration transfer functions.

V. CONCLUDING REMARKS

The vector-fit method for determining the number of dominant vibration modes
from structural transfer functions has been derived theoretically, illustrated
with a numerical simulation study, and compared with other methods. The method
works well with exact, noiseless, simulated data. However, its practical ap

plicability has not been evaluated. The logical next step is to test the method




with real data. If it should prove applicable, it would be a useful analysis
tool for modal .esting. Regardless of the type of testing euployed, the vector-

fit method could provide an independent check on whether or not all significant

modes had been detected.
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BASIC NOTATION

column matrix, vector

real part of ( )

transpose of | 1, ()

complex conjugate of ( )

determinant of [ ]

Hermitian scalar product

P

n

X p Hermitian matrix

X

X

n

3

n

damping matrix

Gram matrix

transfer function matrix

incomplete transfer function matrix
stiffness matrix

inertia matrix

modal matrix

an unspecified n x n complex matrix

force-amplitude vector

jth column of [H]

Jth column of [H*]

rth column of [¢]

p x 1 sub-vector of M

ith complex unit eigenvector of [A]

p x 1 complex unit basis vector

n x 1 time-dependent »esponse vector

n x 1 complex response-amplitude vector

unspecified complex constant



mth real erior value
Gram determinant, Gramian

hysteretic damping constant of rth mode

number cf dof subjected to forcing excitation

ith eigenvalue of [A]

generalized mass of rth normal mode

numbers of half-wavelengths for the ten-mode model
total number of dof

frequency of excitation

natural frequency of rth normal mode

number of dof instrumented with motion sensors
number of dominant modes

element of [S]
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TABLE 1

Parameters of ten-mode model

| 1 2 3 4 5 6 7 8 9 10

67.6 82.0 91.2 98.9 99.4 100.1 01.4 110.7 W17.6 132.3

o 0.015 0.017 0.017 0.021 0.019 0.023 0.024 0.026 0.027 0.03
M. 0.02 0.009 0.01 0.012 0.011 0.01 0.009 0.017 0.013 0.009
men. 1,1 2,1 1,2 3, 2,2 I 13 &I LS 4.1

TABLE 2

Inertia parameters and close modes of fifteen-dof model

Inertia parameters Close modes

Mass Moment of inertia r 3 g 4
Noije kg 1073 kg-m2 mr(r/s) 149.18*-.- 14;.??
¥ 0.5114 0.5570 LI 1.000 1.000
2 1.4994 1.7199 bg,p 0.031 -0.274
3 2.0390 4.1627 b7.r 0.446 -0.444
A 0.4756 0.1154 "10,r -0.421 -0.236

5 2.0424 4.1833 t3,r -0.151 0.216
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Figs. 12

Gramian graphs for the fifteen-dof
model with motion sensors 1, 4, 7,
10, 13: (a) five exciters applied
in the order 1, 4, 7, 10, 13; (b)
three exciters applied in the order

13, 1, 10; (c) three exciters applic
in the order 1, 10, 13
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