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FINAL W PORT

A STUDY OF MULTI PLE-SNAKIR MODAL SURVEY TESTING*

I.	 Sunonary

this research ha-, 1 ►een concerned with methods of structural dynamic

testing. T14e principal objective has been to examine and to assess the

practical value of a method of multiple-shaker sinusoidal modal vibration

testing known as Asher's method. Numerical studies which simulate the

app] rcation of Asher's method and a uniklue experim0nt,ll implementation of

the niethod have been completed. Another objective of the research has

been to develop and to danwnst I'd te with numerical simulation a quantita-

tive method for determining from transfer function data the number of dom-

inant modes of vibration in sinusoidal structural response.

I1.	 Studies of Asher's Method

The first report on numerical simulation of Asher's method was the

Master's thesis by Stafford [l]. Simulated modal testing on a relatively

simple mat hew,atical structural model was examined in considerable detail.

Stafford's model is a cantilevered plane grid structure having five degrees

of freedom, a pair of closely spaced modus, and hysteretic dampin,; which

does not couple the undamped normal modes. The next report on numerical

s i mulation was the Master's the-, is by Shostak L2]. Shostak's mathematical

1110de1s are similar• 1.:, Stafford's but have viscous damping which does couple

the undamped normsI modes. The fin.0 and iost significant report on nunreri

C,11 simulation w,rs the p,rper by 11,111,111(4 :,nd Stafford, which was presented

*the NASA Technical Officer for this grant is Mr. Rouert Miserentino,

NASA Lan(Iley research Center.



of a technical conference [3], and , p ublished in a journal [4]. The ab-

stract for this paper follows.

The method proposed by Asher for structural dynamic modal W t-
ing by multiple-shaker sinusoidal excitation is reviewed, and
its theory and application are discussed in detail. Numerical
results from simulated modal testing on mathematical structural
models are presented to illustrate the strengths and weaknesses
of the mot.hod. The characteristics of these models include
damping which couples the normal modes and closely spaced modes.
Numerical techniques required for implementation of the method
are described. A procedure is suggested for replacing actual
umchar► ical tuning with calculations employing transfer function
data.

The experimental study of Usher's methud was condantt:d in the Struc-

tural Dynamics Research Laboratory of NASA Langley Research Center. The

objective was to develop and test the software and procedures for appli-

cation of the method with the use of the SDRL's programmable Hewlett-

Packard 5451U Fourier Analyzer System with Modal Analysis Option. The most

detailed report on this experimental study is the Plaster's thesis being

prepared by R. R. Gold, which ►rill be submitted to VPI k SU in late 1978

or early 1970. Also, a technical paper by R. R. Gold and W. L. Hallauer,

Jr. is being submitted for presentation at the 25th International Instru-

mentation Symposium (May 7 - 10, 1979 in Anaheim, California) and publica-

tion in the symposium proceedings. This paper is entitled "`mplementatioll

of Asher's Method of Modal Testing on a Fourier-Analysis/Modal-Test System",

and its abstract., follows.

A software package for application of Asher's method has
been implemented on a modern Fourier analyzer system. This com-
bination is unusual since the original form of Asher's method
involves multiple-shaker, sinusoidal-dwell mechanical tuning,
whereas the more recent method of analysis-based modal testing
employs single-point transient or random excitation, with modal
separation attempted by curve fitting of FFT-calculated transfer
functions. The technique described uses FFT and curve-fitting
capabilities to produce an analytical form of multiple-shaker•
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tuning. For evaluation of thi ,. technique. a model having two
modes with almost identical n.+t.ural frequencies was designed
mathematically and fabricated. Cvaluation with numerically
simulated data for this model demonstrated that the technique
works extremely well in principle. However, actual testing
of the model produced such poor transfer function data that
practical evaluation was not possible.

The principal application of multiple-shaker modal testing is in

the difficult task of separating and correctly characterizing closely

spaced modes of vibration. In order to assess the practical value of

Asher's method, it has therefore been necessary to have available ► elatrvely

simple structural models with closely spaced modes. 	 It is very difficult

to create such models by intuition or trial and error, so a duantitative

design method has been developed and is described in detail in the paper

by 11a11aue4 • et al [5].	 The abstract for this palter follows.

Vehicle structures often have closely spaced moles of vibration

within the frequency spectrum of applied loads. Such modes are
important since they tend to be the source of vibration problems.
In order to study the effects that closely spaced modes have on
structural response in such situations as modal testing and self-
excited vibrations, it is useful to be able to design a mathematical
structural model having closely spaced modes.	 In this paper, a
method for designing such a model is presented and illustrated
with examples. Given a reference model with specified geometry
and degrees of freedom, the lumped inertias and ^tiffnesses of
the model are perturbed in such a manner as to force together two
of its natural frequencies. With a slight alteration, the method
is also applicable to the inverse problem of separating undesirable
closely spaced modes which appear in a st ► •uctur •al design.

An interii;r report of this research (Semi-Annual Progress Re port, May-

November 1077, Research Gr • ,mt NSG 1276) stated that a NASA Contractor

Report would be published with the title "A Method for Modal Tuning by

Multiple-Shafer Sinusoidal Exe:itlLi011:	 Thoory and Numerical Sirrurlation".

Hie CR has not been and will not be published. All the material that was

to have been included in the CR is available in references [4] and [b].

'..
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III.	 Doterminirig	 the dumber of Dom ant. Vibration Modes

Very significant progress has been made in the development and demon-

,,tration of a quantitative method for determining from transfer function

'	 data the number of dominant modes. The first report on this subject

was the Master's thesis by Franck ii,]. The research was also presented

at a technical conference in a paper by Hallauer and Franck [7]. Finally.

a detailed ,rnd comprehensives paper by W. L. HalLauer, Jr. and A. Franck

has been submitted for publication in late 1979 in the 48th Shock and

Vibration Bulletin.	 In order to make this paper available prior to its

publication, it has been included as the Appendix to this report.

&	
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APPL ,_)Ix

ON DETERMINING THE NUvWER OF DOMINANT MODES

IN :.INUSOIDAL STRUCTURAL RESPONSE	 I

W. L. lidlIaUer, Jr. and A. Franck

ABST1j1CT

This paper addresses the problem of using structural dynamic transfer

function data to determine the number of vibration modes dominant in re-

sponse at a given frequency. If two or wort modes are closely spaced or

if response is influenced strongly by distant modes, then the number of

dominant modes may not be evident from examination of transfer function

plots, and quantitative methods may be required. Two relatively simple

methods which have been used previously are reviewed, and a more effective

new method, called the vector-fit method, is described in detail. Appiica-

tions of these methods are g iven with the use of numerically simulated

transfer functions data.
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1.	 INTRODUCTION

At any particular frequency of k:xcitation, the steady-state sinusoidal

response of a structure is do+ninated by only a few of its indefinitely lar(le

number of vibration modes. The objective of modal testing is to measure

specific parameters of the dominant modes such as natural frequencies, damp-

ing values, and mode shapes. When applicable, the best method for determin-

ing the number of dominant modes in a frequency band is simply to count

resonance peaks on transfer function plots. In such a situation, modal param-

eters can then be calculated rather easily by modern curve-fitting algo-

rithms, most of which require the number of dominant modes as an input vallie.

However, if two or more modes are closely spaced, or if response is influenced

strongly by modes whose resonances are outside the frenuency band of interest,.

then peak counting may not reveal the trLle number of dominant modes, and

subsequent curve fitting of transfer function data may produce incorrect

modal parameters and/or miss modes entirely. But a quantitative method for,

determining the number of dominant modes may succeed where peak counting

fails. If such a method should reveal the presence of previously undetected

modes, then careful curve fitting or some other modal testing technique,

such as multiple-shaker tuning, might successfully separate the modes.

fhe problem of deterinining the number of dominant modes was discussed

extensively some years ago in connection with the number of shakers re-

quired to separate modes in nnrltiple-shaker modal testing. Traill-Nash [II

introduced the "effective number of degrees of freedom" at a given frequency,

which he defined as being the number of motion coordinates required to repre-

sent with accuracy structural response at that frequency. He concluded that

the number of shakers must equal or exceed the effective number of degrees



of freedun. Bishop and Gladwell [21 suggested a relationship between Trail)

Nash'. l:ective number- of degrees of" freedom and the number of dominant

W	 modes; subsequenriy, Asher (3) implicitly equated these two numbers. He

then stated, in effect, that the number of shakers required equals the

number of dominant modes. This contention is not generally true; the nunlbol,

of distinct generalized ft-ce distributions must equal the number of dom-

inant modes, but there is no necessary relationship between the number of

generalized force distributions and the number of discrete forces. Nonethe-

less, Asher mode a significant contribution by proposing probably the first.

quantitative methods to determine the number of dominant modes by analysis of

transfer function data.

This paper describes the theoretical basis for such a quantitative

method, reviews the meLhoas discussed by Asher, proposes a new and

more effective method, and illustrates these methods with the use of numer-

ically simulated transfer function data.

II. THEORETICAL BACKGROUND

Consider a linear , structure discretized to n degrees of freedom, the

time-dependent responses of which are elements of the n x 1 column matrix x.

(Notation is listed at the end of the paper.) The governing matrix equation

of motion is

r. + [ c ] x + [ k ] x = f

where Lml, Lcl, and [k] are the n x n inertia, damping, and stiffness matrices,

respectively, and f is the column matrix of time-dependent forcing. We

specify that all forces vary sinusoidally at the same frequency, w, and that

all have 0° or 180' phase,

f= F cos ,,,± = Re I F 
eiwt I
	 (2a )_	 _	 I-	 {
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After starting transients have deca -d away, response is steady-state sinu

soida1.

x	 ite	 ( ei(I)tl	 (2b)

where the elements of-amplitude vector x are generally complex, reflecting

phase differences between excitation and response. The linear, frequency-

dependent relationship between excitation amp l itude and complex response

amplitude is defined by the n x n transfer function matrix [H(o)],

X - [H(W)J F	 (3)

the standard real modal analysis, solution of equation (1) for [H((.))]

begins with calculation of the real undamped natural frequencies w r , r = i.

2,	 n, and the associated real mode shape vectors ; r,. which are the

columns of modal matrix [4] (Meirovitch [4]). Subsequently, response co-

ordinates X i are transformed into normal coordinates which diagonalize the

mass and stiffness matrices of equation (1); then the normal coordinates

are calculated by matrix inversion, and X is calculated from the normal co-

ordinate solution in the form

X- = 1 01 [5(,,)] F

where [S(,, ) )] is an n x n complex matrix. Hence, the transfer function matrix

is

and any column, say the jth, of [H(,,))] can be written as

n

f1 (w) =	 Sr j ( ^) s r , j = 1 ,2, ... ,n
	

(4)

r = 1

Thus, each column of the transfer function matrix can be expressed as a sum-

oration of the n linearly independent mode shape vectors. If we consider some

subset p <n of degrees of freedom and define the corresponding p x 1 incomplete

3



jth transfer function column as H, t ,,), then equation (4) gives

H*(,)	 ^SrjG)) mr	 .) • 1, 2, ..., n	 (5)

where the degrees of freedom include , in each p x 1 incomplete mode shape vector

ti	
are the same as those included in H*

(5) extends over all modes, only p of th

If damping matrix [c] were to couple

[,a] t [c] [r] were not dia(lonal), then the

Although the sunrnation in equation

e n;r	 vectors are independent.

the undamped normal modes (i.e., ii'

use of undamped normal modes as out-

lined above would be computationally inefficient, and qe would probably solve

for the transfer function matrix with an appropriate complex modal analysis

employinq complex eigenvalues and mode shape vectors. Nevertheless, the so-

lution for each column of the transfer function matrix could still be expressed

; n the forms of equations (4) and (5), that is. as linear summations of n ind e

shape vectors, where in this case the Dr would be complex vectors. The im-

portant fact, expressed in the language of matrix theory, is that each transfer

function column Hi is an element in the n-dimensional vector space spanne-1

by the n mode shape vectors, whether they be real or complex; similarly, each

incomplete column H^	 is an element in the p-dimensional vector space spanned

by any p linearly independent incomplete mode shape vectors.

A useful general characteristic of structural dynamic behavior is that

very few of a structure's many vibration modes are sensitive to excitation at

any given frequency. These few modes then dominate the response at that frequrnCv.

if there are q such dominant modes at frequency w, then the mati ►ematical state-

ments of their dominance, from equations (4) and (5), are
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Ha (W) - E Srj (W) fir . ,^	 1. 2 9 ....n	 (E)

q

ii^ ( }	 Srj(W)	 @^	 j	 1 , 2,....n	 (7)

q

whe re	 denotes summation over only the d dominant nodes. In equation (6).

q
the q n x 1 node shape vectors associated with the ..jminant modes generate a

q-dimensional subspace of the original n-dimensional vector space. The ap

proximate equality in equation (6) means that each	 H j (W) :.olumn can, with

small	 error, be considered an element of the subspace.	 In equation	 (7),	 the

p x 1 incomplete mode shape vectors associated with the dominant modes generate

a q•dimensional subspace of the original p-dimensional vector space, provided

that p >_q. Again, the apprr^itnate equality means that each H^ (w) column is

approximately an element of the subspace.

Most current methods of modal testing are capable of measuring incomplete

transfer functio; ► column vectors over a frequency hand of interest. The jth

column H* represents physically the complex response amplitude of motion;A ►lsors

at p stations on the test structure due to sinusoidal forcing excitation of

unit amplitude at the jth station, which does not necessarily coincide with

any of the notion sensor stations.	 If excitation is applied successively

to k different stations, then vectors H* , j = 1, 2, ...k, can be measured.

They are the columns of the p x k incomplete transfer function matrix [H ].

(it is generally impossible to measure the complete matrix [11], since a colr-

tinuous structure has an indefinitely large number of degrees of freedom.)

If the structure being tested responds linearly. then each H^ column

is represented mathematically by equation (7), which, therefore, is the basis

of the methods discussed in Section III holow for determining the number of

5



dominant modes from experimental tr sfer function data. Each method esti

grates the number q of dominant vectors ♦M in equation (7), gi in k ex

perimental p x 1 vec..ors H; .

nne practical requirement for the correct use of equation (7) in the

present cuntext is immediately evident: since p must exceed q, as discus.,

above, the test engineer must guess an upper bound 
gmax 

for the number of

dominan^. modes likely to be encountered, and then he must install more than

g 
Ilia x distinct motion sensors. This requirement does nut present a signific•aort

practical obstacle, since q 
11y,
	 most structures should be on the order of

ten or less. It is assumed in the remainder of the paper that the number of

motici-, sensor measurements available for analysis is always greater than the

number of dominant modes.

In vehicle modal testing, it is usually feasible to install a substanti,il

frumber of motion sensors, but the number of exciters or excitation stations is

often much s!naller due to practical limitations. Hence, we assume that k 	 {

in most of what follows.

III. QUANTITATIVE METHODS FOR DETERMINING THE NUMBER OF DOMINANT MODES

III.1 TRANSFER FUNCTION DETERMINANT METHOD

This method involves analysis of square transfer function matrices. which

are formed by the use of only k of the p available motion sensor measurements.

Thus, [1I*] is a k x k matrix.	 If, in the first case. the number of exciters

is less than or equal to the number of dominant modes, k < q, then according

to equation (7), the k columns of [H*] generally will be linearly independent.

hence [H*] will be non-sinqular and its determinant will be non-zero.

6
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det [H*] ^ 0 for k S q. But i tht number of exciters is increased until it

Just exceeds the number of dominant modes, k n q + 1, then the k columns

will be approximately dependent, so that [H*] will be nearly singular and

its determinant will be close to zero. det [H*] i 0 for k . q. The strate(ly
Iii

for application of this method, therefore, is to add rows and columns of s; ,a

to the transfer function matrix in unit steps until the value of k is found

for which det [H*] z,0; then the conclusion is that q - k - 1.

This is a very simple method to apply, but it has some deficiencies.

First, transfer function determinants are complex, so one must assess the

possibly non-monoton'.c progression toward zero of a sequence of complex numbers.-

Second, the restriction to square transfer function matrice ,, is undesirablF-

because it prevents the use of all available motion sensor data. Both of

these deficiencies aro eliminated with little additional effort by the use

Iof the	 . determinant method described below, so there appears to be no

reason to develop further or test the transfer function determinant method.

We note that Ibrahim and Mikulcik [5] employed a similar method, but with

filtered transient response data, and found it quite satisfactorS.

Ill. 2 GRAM DETERMINANI (GRAMIAN) METHOD

This method involves analysis of a rectangular p x k transfer function

matrix, [H*]. The Gram matrix of [H*] is defined to be a matrix product,

[G k ] = [ti*] t [H*]

where the overbar indicates complex conjugacy. By this definition, the Gram

matrix is a k x k Hermitian matrix. The Gram determinant, or Gramian, is

7



defined to be

G(k) _ (let [C k
]

It can be pre yed that the Gramian is real and non-negative.

The Gramian of a transfer function matrix is a quantitative measure of

the degree of linear dependence of the column vectors, Ht, j = 1, 2, ...,k.

Specifically, the set of vectors is linearly dependent if and only if the,

Gramian is zero (Hildebrand [6]). Moreover, it is reasonable to expect

that if the set of vectors is almost but not precisely linearly dependent,

then the Gramian should o! nearly zero. As is discussed in Section III.1,

any q or fewer columns of [H*] generally are linearly independent and, hen(-P.

have non ,-zero Gro mians, G (k) > 0 for k = 1, 2, ...,q. But any set of more

than ; columns will be approximately dependent and have very small or zero

Gramiar.s, G (k) z 0 for k > q + 1. Therefore, the basic strategy for appli-

cation of this method is to add columns of data to the transfer function

matrix in unit steps until the value of k is found for which G (k) -- 0; them,

the conclusion is that q = k - 1.

It is necessary in applying this method to separate the change in Gram

determinant value due to change in degree of linear dependence from that due

simply to change in determinant size. If, for example, all Gram matrix elements

are numerically o f order 10 -2 , then, without change in degree of linear de-

pendence, G (1) will be of order 1C -2 , G (2) of order 10 -4 , G (3) of order 10 6.

and so forth. This characteristic of determinants will obviously mask the

Gramian test for linear dependence unless Gram matrix elements are of order 1.

In applicati ,ins of the Gramian method, the authors have attempted to minimize

the masking by normalizing each column of [H*] so that the corresponding diagonal

8



oIeiveni of the Gram matrix is I. i.e., (il;, H*) - 1. J = 1,2,...,k, whorh

H here denotes the normalized columrn rather than the original column in

physical units. The numerical results of Section IVA suggest. that this

ad hoc measure is effective in filterinq out Gramian variation with Gram

matrix size.

Asher [3] described and discussed hoth the transfer function determinmit

and the Gram determinant methods. He recognized that in applying either mot.hod,

one might find it. difficult to decide how small a generally non-zero dotormiumit.

value must be 
ill
	 to indicate linear dependence correctly. The nruneri(al

results of Section IVA confirm that the absence of a definite smallness

criterion is indeed a weakness of the Granrian method. Even thoig h all Graviton

values art , referenced to (, (I) = 1 by virtue of the normalization procedure do-

scribed above, examples for different situations show Gramian values G
(q+I) 

ci

orders 10
-1

, 10 -2 , and even 10-3.

Another- deficiency of the Gramian method is that it L:an correctly indicate

linear dependence. Vet underestimate the number of dominant modes. To urnder

stand how this can happen, consider a simple example in which there are two

donrin.rnt modes.	 lho ,rn,rlysis of three (liven, distinct. transfer function vec--

tors, denoted v i , v l , an] v 3 , then should .ndicate two modes. 'The set of

three vectors is linearly dependent, but .uppose also that v  .rrrd v  are

independent and v l ,rnd v 3 are dependent.	 If the transfer function mratrix is

defined as [II *J = [ v l , v 2 , v
3 
J, then G (i ^ = 1. G (Z) > 0, and G(34 0, leading

to the correct conclusion that q - 2. If, on the other hand, we define [H*]

[v i , v 3* v 2 j. then ^3(1 	 1 and G (2) = G (3) = 0, leading to the incorrect con-

clusion that q = 1. An instance of this particular case occurring in ,r

realistic situation is presented in Section IV.3. 	 It is clear that the

F
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order ing of vectors in the p x k tr.r ► sfer function matrix affects al l Gran -. ►►►

vaiues except G (l)	 1 and G (k) , wh -h is invariant with column and row or s ring

Thc^ Gramia^^ method then hos sou ►e serious weaknesses. Perhaps for this

reason, it apl ►arently has riot been employed widely. The authors have lo-

cated only one published application, that by Klosterman [7]. The vector-

fit method to be discussed next is, to a considerable extent, free of tale

weaknesses of the Gramian method.

1 1 1 .3	 VECTOR-FIT mi. ril0U

A concept analogous to the number of dominant modes of a vibratin(It struc-

turd is that of a "best approximating subspace". Cliff LS] discussed this

concept in the context of control theory. Given a set of k p-dimension,11

vectors, one can calculate the particular m-dimensional basis (m < k) which,

among all possible rrr-dimensional bases, does the best job of ,rpproximately

spanning the set of k vectors. with error minimized in the least-squares ser—

In other words, the k vectors are "fit" to the best approximating ill-dimensional

subspace. The method developed here to solve for the number of dominant nodes

follows Cliff's general approach; hence, it is referred to as the vector-fit

method.

Given the p x k transfer fUnCtiOn matrix [H*] for frequency U ► , the general

stepwise procedure for application of the vector-fit method is as follows:

I.	 A p, ► r • ticulur p-dimensional complex unit vector u l is calculated from

BFI*]. Among all possible unit vectors, u  alone has the pi^c perty of

lWL'ducing the best, in a sense to be defined, set of one -terr y approxi-

mations to the transfer function columns. This set of approOmations

tikes the form

li
Cjl u

l , j = i,2,..., k

10



to

where the Cji gener,, i I y sire coi , J ex constants.	 Next, the real sca l .i r

error L M associated with thi!. set of approximations is calculated.

2. A second unit vector u7 is calculated. 	It is orthogonal to u l . Among

all possible unit vectors orthogonal to u l , u2 alone has the property

of producing, in conjunction with u i , the best set of two-term approxi-

mations to the transfer function cilumns. This set takes the form

	

III	 Cji u i ► j a 1.2,..., k

i

Next, error L (` ^ associated with this set of approximations is calculated.

•
•

3. 1 he 111th unit vec tor t trr is ca 1 col ated.	 It is orthOk' 1011,11 to 111 other 'Hi.

i = 1.2,-••. m-1. Vector u has the property of producing, in conjunc-

Lion with t ► l, u 2 .•••, u iii-1 , the hest set of m-term approximations to the

transfer function colurrrns. This set takes the form

n

	

lid	
C.l i ui, j = 1,Z,..

i=1

Next error 
E(rn) 

associated with this set of approximations is calculated.

•

0

•

Each step introduces a refinement of the approximation, so the error dimini,hes

in each step. E(m)	
C 	 if. after m > 1 steps of this procedu ► -e, we find

that L (m) ::, U relative to L(1), then we may reasunahly conclude that the set

of transfer function vectors is spanned approximately. with very sma l l error,

by an m-dinlensional basis. According to equation (7), then, there are m



imont modes at Mquoncy w, i.e.. q e m.	 It is quite unlikely that the voutnr 4 u

will be identical to the nude shape vectors it of equation (1), since the

u i are urthoyonal by definition while the `^ need not and generally will

not be orthogonal. Nunetheless, it is certain that both sets u i and fi span

the same y- dimensional vector space.

If p < k and the procedure is carried through p steps, then L(I')	 0

since thu p independent u i exactly span p-dimensional space.	 If, on the olhe-.-

nand, k	 p and the procedure is carried through k steps, then EM 	 0

since the k independent `, exactly span the subspace defined by the k trans-

Or function column vectors. (This case is simply orthogonalization of a

vector set, similar Lo the Dram-Schmidt procedure.) Honce, in order for Lbe

vector-fit method to produce a correct evaluation of the number of dominant

modes, it is necessary that p and k each must exceed q. That is, th e Lest

engineer must provide both more motion sensors and more excitation stations

thin the maximum number of dominant modes likely to be encountered. In appli

cation, the method itself indicates if too few motion sensors or excitation

stations have been used, and this is illustrated in Section IV.3.

It is worthy of note that each of the three methods described for identi-

Iication of the presence of y dominant nodes requires a minimum of q + 1 motion

sensors and q * 1 excitation stations.

We theory associated with the calculations discussed above is developed

next. Let a basis for p-dimensional space of complex vectors consist of p

ort"ggunal unit vectors 0 1 , u 2 9	 up, which are unknown at this point. Any

transfer function column vector can be expressed as the summation

in	 p
Hj -	 +	 ui. Ili) u i , i	 1,2,..., k

m+ 1

12



the basis vectors are orthogonal in Oe Hermitian sense, so

(Ili, H j )	 r +

`	 i	 l	 i = ni + 1

Hence, we may define as follows the squared scalar error associated with

approximation of Ht as a series sum in only the first m basis vectors,

P

i=m1

i=1

she appropriate total or global error, defined in the least-squares sense

over all H1. is

1
I (m}	 e(m) 2 2

j
.i	 =	 1

k	

ll
	 F,	 n i	

(	

1

j = 1	 j = 1	 i = 1

for yivun m. we wish to deter ke the basis vectors u i so as to minimize E^^"^

by maximizing the double-sunnnation term. With a few steps of matrix algebra,

that term is cast into the more useful form

k	 ni	 m

	

( u i • H^^^ 1-1j • ui^

	
u^ [A] ui

i	 ^	 1

13



where [A]	 t is a p x p Hi.!mitian matrix with p real non-negative

oigenvalues A >a > ... > a > 0 .1nd p corresponding complex, mutually
1 — 2—	 — p—

orthoqonal unit eigenvectors 'y l , ^2,gy p . Thus, for given ITT, we wish to

minimize	
112

k	 m
E(III)	

L.^ 
(Nj, Ht) _	

ui [A] uiLj .=.11	 i =1

Consider first III = 1. The maximum value assumed by the Hermitian quadratic

form ui[A] u l is equal to the largest eigenvalue a 1 , and this maximum results

if u  = I (Franklin [9]). Hence, the minimum associated error is

i n	

k	 1/2

I

E (1)	 2:(ilk , H^) - al
ll 

j=1

Next, fnr III = 2 we wish to minimize

k	 1/2

E(2)	 E (q j' 	 - ^l - u2[A] 112

j=1

For all possible u2 orthogonal to u  = -'P l , the maximum value assumed by quad

ratic form 62[A] u 2 is equal to the second eigenvalue a 2 , and this maximum

results if u 2 = ^2 (Franklin [91).	 Thus,

k	 2	
1/2_

E (2) = E (A* , H^)
III i Il

,j=1	 i=1

this reasoning can be extended easily to show that the minimum error for arbitr,+ry

rn (1 < m < p) i s

14
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ill	 1 /
E(ni)	

(tl^	 lid)
I j=1	 i=1

where u i 	10i. To simplify notation, it is understood in equation (8) and in

Ithe discussion and numerical examples to follow that E (in) denotes the minimum

error, even though subscript min is deleted.

We can now reiterate and sunnnarize the vector-fit method for determin ing

f ire number q of dominant modes at a given frequency. From the p x k transfor

'unction matrix [H*], the p x p Hermitian matrix [A] = [H*][A*] t is formed. It

is necessary that p > q + 1 and k > q + 1. Next, the real eigenvalues of

J_A],^ 1 > A 2 > ... > 
A  

> 0, are calculated. 	 Next, form = 1, 2, ..., p, the

minimum error values are calculated from equation (8). The smallest integer

nr for which E (II1) : 0 relative to E (1 ) then is equal to the number (1 of dominant

modes. Note that the eigenvectors of [A], y l , i) 2 ,	 qlp, need not be calculated.

It can be proved easily that th- error values E (1n) are entirely independent

of the numbering or ordering schemes used to identify motion sensors and exciters

or to arramie elements in the transfer fUnction matrix. In other words, any or

► 11 of the rows of [H*] can be interchanged and/or any or all of the columns can

he interchanged without charging the values of E (111) . Hence, the vector - fit method

has no weakness comparable to the dependence on vector ordering of %he Gramian

method.

iV. NUMERICAL SIMULATION STUDY

Two mathematical models have been used for numerical simulation of experi-

ental application of the vector-fit and Gramian methods. The models were designed

+o have frequency bands of high modal density with prescribed numbers of dominant

15



modes.	 The basic objective of the nui , w rical study then was to determine if	 the

vector-fit and Gramian methods are cap,ible of correctly determining the number

of dominant modes. Other objectives were to compare the two methods and to

develop guidelines for applying the methods and interpreting the results.

To simplify calculations, it was specified that each model have hysteletir

damping which does not couple the undamped normal erodes. Hence, transfer functinn

matrix elements were calculated exactly from the equation

n	
mar 'Jr

M -^— -	 w2-----

wr

,,-rhere S ir is the ith element of the complete mode shape vector sti r , M r = ^r[n^] .rr

is the generalized mass of the rth normal mode, and 
w  

and 
9  

are, respectively.

the natural frequency and hysteretic damping of the rth mode.

I,'.1 TEN-MODE MODEL

The anode shapes of this model are those of the first ten out-of-plane

vibration modes of the uniform stretched membrane shown on Figure 1,

n ry 1
i r = A sin	 sinr	

(-1'3^	 j.Oi 1

where integers m  and n  are the numbers of half-wavelengths for the rth mode

listed io Table 1, x i and y  are coordinates of the motion sensor/exciter

stations sho^qn on Figure 1, and constant A 	 for the rth mode is chosen so

that the numerically largest mode shape element equals one. Other modal

parameters, as listed in Table 1, are not those of the uniform membrane, but

rather were selected to produce a mathematical model with four very closely

16



%paced erodes in the vicinity of 100 oii the frequency scale and six more mode'

Outside the region of high modal density. Thus, q = 4 in a frequency band of

roughly three units centered at 100, so the methods under study, if successful.

c,hould indicate accordingly. Since this model has limited physical significanrf.,.

ill quantities are considered to be dimensionless.

1U.2 FIFTEEN-UEGR_E-OF-FREEDOM MODLL

This model, un ike the ten-mode model, is based entirely on a physical

Structure, the cantilevered, rectangular plane grid shown on Figures 2a and b.

the model was designed to have two modes with nearly identical natural frequoncics.,

as shown in Table 2. To achieve such close modes, an optimization technique

similar to that of Hallauer et al [10] was used.

Each elastic member of the model is a steel bar having Young's modulus

F = 200 GPa (29 x 10 6 psi), shear modulus G = 82.7 GPa (12 x 10 6 psi`, and di-

ameter of 6.35 mm (0.25 inch).	 (The fundamental units of pounds, inches, and

seconds were used in all calculations.) Each bar may twist about its axis and

bend out of the grid plane, and each is clamped at both ends by either the rigid

support wall or a rigid cylindrical joint member of 0.051-m (2-inch) diametev.

the five node points of the model are the intersections of the bar centerlines

in the ririd plane. The fifteen degrees of freedom then consist of one out-of-

nlane translation and two out-of-plane rotations of each node point. The trans -

lations are identified in Iigure 2a, and the rotations of node 1, for example,

are identified in FiIJure 2b. The nodal lumped mass and moment of inertia (for

hoth rotational dof) associated with each rigid joint are listed in Table 2. To

account approximately for distributed inertia of the bars, finite element con-

sistent mass matrices were used, with bar density taken to be 7859 kg/rr3

17



(7.3536 x 10 -4 lb-sec t /in 4 ). Modal hysteretic damping constants 
9  

were

specified to be 0.015 for modes 1 amJ 2. 0.018, 0.022, and 0.026 re ,- ctiv.•ly

for modes 3, 4, and 5, 0.03 for modes 6-10, and 0.035 for modes 10-r^).

IV. .3 RLSULTS AND DISCUSSION

Consider first the ten-mode model. Typical transfer functions are

shown on Figures 3a and b, with the coincident (co) or raal parts and the

quadrature (quad) or-imaginary parts plotted separately. Qualitative in-

spection of these and other transfer functions seems to indicate the presence

of only two domin,mt modes in the vicinity of frequency 100. But there aro

actually four dominant modes in that region, as listed in Table 1.

To begin numerical application of the vector-fit method, we examine

first errors calculated from the complete 10 x 10 transfer function matrix.

Such a large matrix will riot generally be required, but examining this case

first establishes a reference and provides guidelines for interpreting the

error values and, more generally, for- applying the method. Since transfer

functions are usually plotted versus excitation frequency, it seems natural

and, in fact, proves advantageous also to calculate and plot error values

versus excitation frequency. Errors E (m) , m = 1,2,•-•,10, for the complete

transfer function matrix were calculated from equation (8) and are plotted

on figure 4. Note the relatively large variations with frequency and the

peaking of E (1) , E (2) , and E (3) . Note also that E (4) is on the order of 10

of the maximum value of E (i) , and that E (4) varies only slightly with fre-

quency. As stated in Section I11.3, the result that E (4) << E (1) indicates

that there are four dominant modes. But it is also important that E (4) t 0

and that E (4) , E (5) , etc. vary slowly with frequency in comparison with E(1)'

E (2) , and E (3) . From these observations, we conclude that four modes dominate

r
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but do not completely describe the otsponse in this n,,rrow frequency band,

and that the contributions of distant nodes remain relatively constant in

this band. (loth conclusions are quite reasonable in view of the nature of

the ten-node model	 Thus, this reference case suggests that i. examining

graphs of error -	 .,is frequency, we should use not only the basic criteriurt

E (q) << E (1) , bu o. also the additional criteria that E (q) t 0, that E(q),

E (q	 1) , etc. should vary slowly with frequency in comparison with E
M 

9

E (2) , ••• . E (q	 1) , and that plots versus frequency of E (1) , E (2) ,•••, E (q	 1)

should exhibit peals. An exceptional case for which these criteria might

riot apply is that of a distant mode contributing significantly to response

In this case, we might expect to find a relatively large, slowly varying,

and nun-peaking E (111) for in < q.

Figures 5 a-d are plots of errors calcui., • ed frorrr responses at seven

motion sensor locations due successively to excitation at three, four, five

and six locations. This simulates a r..aiistic testing approach in which

very few exciters are applied initially, and additional exciters are applied

as required. In Figure 5a for three exciters, E (2) is not much smaller than

E (1) , and E (3) = 0, as required by the theory of Section 1II.3. 	 (The very

small non-ze r^ values on this :nd other computer-generated plots are due to

round-off errors.) Clearly, more exciters are required to indicate correctly

the number of dominant modes. The addition of a fourth exciter (i.e., another

column in [II*1) leads to Figure 5b, which also indicates the need for at

least one more exciter. With five exciters, however, Figure 5c shows that

E ( ^1) varies slowly with frequency and is non-zero yet much smaller than E(i).

We conclude, therefore, that q = 4. Figure 5d for six exc i ters substantiates

the conclusion.

Unfortunately, interpretation of the error plots is not always as

19



unaviOklukusis it appear,, to be with Figures 4 and 5. There is a definite

dependence on the motion sensor and exciter locations represented in the

transfer function matrix. These points are illustrated on the error plots

of Figures 6 a,b, and c, which were calculated for different sets of n►otio ►►

t	 sensor/exciter locations than those of Figures 4 and 5. Figure 6a for five

motion sensors and five exciters can be interpreted as indicating four

dominant modes; but this interpretation is substantially weaker here than

for Figures 4 and 5c.d since E (3) on Figure 6a is only slightly peaked and

is very small relative to E M .  Figure 6b for six motion sensors and six

exciters is ambiguous;one might infer that it indicates throe, four, or

five dominant modes, with three being perhaps the most likely interpreta-

tion. Figure 6c, also with six motion sensor/exciter locations but one dif-

ferent location than Figure 6b, permits a somowhat nior-e certain interpreta-

tion of four dominant modes.

One can observe from the vertical axis scales on Figures 4 - 6 that

all non-zero error values tend to increase as columns are added to the

transfer function r7atrix. This tendency appears riot to ha y s, any useful

significance.

Next, we examine the Gramian method as applied to the ten-mode model.

Figure 1a is a graph of Gramians plotted versus 7requency in the region of

high modal density. Gramians G (1  - t,(10) were calculated from complete 10 x 1

transfer function vectors, with the vectors applied in the order of the st,itirn

numbering shown on Figure 1, i.e., 1, 2. 	 10. Recall that the identifi-

cation criterion for this method is G
(q+l) 

= 0. where G
M = 1 by virtue of

transfer function vector normalization. So G (5) should be nearly zero in this

20



case. A tabulation of G (5) for Figure 7d (riot included) shows values in

the ► an,les 10 -3 and 10 -a .	 Fi(lure 7b is a graph of Grarnians G(1) - G(10)

also calculated from 10 x 1 transfer function vectors, but with the vectors

applied in inverse order of the station numbering, i.e., .0, 9, ...,1.	 Values

of ('1 (5) for Fiqure 7b are in the ranges 10 -1 and 10 -2 . The vast differences

between the curves on Figure 7a and those on Figure 7b illustrate the vector-

oedering dependence of the Gramian method, and the different magnitudes of

G (5) on the two graphs illustrate the indefiniteness of the smallness criterirnr,

G
(q+l) 

= 0.

Finally for the Len-mode model, Figures 8a and b demonstrate the signif;

cance on typical transfer function plots of the dominance of four modes. lhesc'

graphs show exact coincident and quadrature values of 
H3.3(w) 

and 117,7(,.,), a pproxi-

mate values calculated from only the four , dominant modes, and approximate vall ► es

calculated from onl y modes four and six, two of the dominant modus. A Areas i.rodes

four and six alone dominate H 3,3 , all four of the close modes make comparahlo

contributions to H7,7.

Consider next the fifteen-dof model, which has the pair of close modes

listed in Table 2.	 In testing of this model, it would be natural to instruc ­ ut

and to provide forcing excitation at the five translation degrees of freedom,

shown on Figure 2a, so we will any yze the 5 x 5 incomplete transfer function

matrix associated with those degrees of freedom.

Figures 9a,b, and c are selected transfer functions in a narrow band ahout

the close natural frequencies. Figure 9a for II
1'1

(,) has the character of nK)^t

transfer function elements in this frequency hand, namely, it seems to in-

dicate only a single, isolated mode. Figure 9b for 11 10 (x.,) suggests the

presence of more than one mode, but the asymmetry of the coincident response
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curve would probably be attributed to a distant crude

Of all the elements of the 5 x 5 [11 1 ], only 111 ,13M

vides definite evidence of the presence of two close

and 
111,13 

have such small magnitudes relative to H1,

they would probably be lost in noise or ignored. So

ro ther than to close erodes.

shown on Figure 9c pro-

modes. But both H4,10

that, in actual testing,

it is fair to say that

qualitative examinat;on of the transfer functions indicates the presence of

only a single rrrode at 149.2 rad/sec.

Before examining error plots in the region of the two close modes, it is

useful to have as a reference an example of error plots at and near a single

isolated mode. The second mode of this model, with a natural frequency of

67.5 rad/sec. is quite distant from all other modes. Figure IN is the graph

of error values around this mode for the 5 x 5 [H*]. For comparison, Figure

10b is the graph of error values in a region of almust no modal activity be-

tween the second and third modes. The error scales of both Figures l0a aria h

are quite small (relative to that of Figure lla discussed below). and neither

figure has any error peaks. The only significant difference in character hF-

tween the two figures is the numerical noise at and near the natural frequency

in Figure 10a, due to accumulated round-off error in eigenvalue calcUlations.

Figures lla and b are graphs of error values in a band around the pair of

close modes, the former for excitation at all five translation degrees of free-

dom, and the latter for excitation at only three. On the basis of all criteria

developed previously and in comparison with Figure 10a, these graphs indica to

clearly and indisputably the presence of two dominant modes.

Figures 12 a, b, and c are graphs of Gramians in the region of clos^ modes.

Figure 12a for five exciters applied in the order 1. 4. 7, 10. 13 seems to
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indicate clearly that q - 2. So al ► does f iqure 12b for three exciters av-

pl ied in the order 13, 1 , 10. 	 Ilowc er. f itlurc 12c: for the same three excitors

applied in the order 1. 10. I.i seems to indicate just as clearly, though in-

orrectly, that q - 1.

in summary of the discussion of theory and the numerical simulation stud%.

the vector-fit method in distinctly superior to the Gramian Whod for the I ► ur-

pc► se of delernliniraq the number of dominant. nudes. The only advantage of the

Gramian method is that it requires substantially less computation time. Ac'

has been demonstrated, the vector-fit method can produce error {dots which , ► r

difficult to interpret correct Iv. 	 But results of the simulation study sugovst

that the use of .a large number of emotion sensors in calculation of the error

values will reduce the 1 ikVI ihood of mistaken i"WrprvLations. 	 Iheoreticat l y .

a minimale! ra',!r!rhor of (l e i motion sensors are required; however; it would seem

prudent and usu,a I I y prac t it a 1 to estimate q and than to use several times the t

number of motion sensors in va l cul a t i nq error values.

We note that the vector-fit method is valid regardless of the type of motion

.onsor employed in testing. since the form of equal ion (7) remains the sawn for

displaceinont. Moc ity. or acceleration transfer functions.

V. CONCLUDING Ill PARKS

1 he vector-fit. nw t hod for determi n i nit the number of dominant vibration ordos

from structural transfer fu"ction% his been dvri yvd theoreticall y , illustrItH

with a numerical simulation study, and compared with other methods. the method

works well with exact, noiseless. simulated data. However. its practical ap

plicahility has not been evaluated, The logical next step is to test the method
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with real data.	 If it should prove applicable, it would be a useful analysis

tool for modal resting. Regardless of the type of test'n(.l e,.3ployed, the vecter-

fit method could provide an independent check o.r whether or riot ail si(Inificarrt
r

modes had been detected.
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BASIC NO VAT 1ON

e

0

(	 ) column matrix,	 vector

RPI	 ) real	 part of	 (	 )

J t .	 (, )^ transpose of [ b	 Q)

(	 ) complex conjugate of (	 )

Ot.	 [	 J determinant of [	 ]

(u.v) = A Hermitian scalar product

[A	 t p x p Hermitian matrix

[c J n x n damping matrix

IG0 _	 [H*J t	[H*] k x k Gram matrix

1111 n x n transfer function matrix

[ H "J p x k incomplete	 transfer function matrix

[kJ n x n stiffness matrix

(^^r) n x "	 inertia matrix

L^l n x n modal matrix

[S] an unspecified n x n compiex matrix

F force-anWlit.ude vector

II I jth column of [H]

1I^ , i th	 column	 of	 [II*]

S r, rth column of [Q]

^^*, p x 1	 sub-vectorof tr

wi Rh complex unit eig p rrvector of [A]

u i p x	 1	 complex unit basis	 vector

x(t) n x 1	 time-dependent ► nsponse vector

X n x	 I	 complex response-amplitude vector

C complex constant
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t (111)	 mth real error value

G (k) = det[G k ]	 Gram determinant, Gramian

g r	hysteretic damping constant of rth mode

i =^/-1

k	 number of dof subjected to forcing excitation

X 
	 ith eigenvalue of [A]

Mr	generalized mass of rth normal mode

III r, ,n r	 numbers of half-wavelengths for the ten-mode model

I)	 total number of dof

W	 frequency of excitation

cur 	 natural frequency of rth normal mode

p	 number of dof instrumented with motion sensors

q	 number of dominant modes

S ij	 element of [S'J
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TAQI l: 1

Parameters of ten-mode model

r 1	 2 3 4 5 6 7 8 9 10

91.2 98.9 99.4 100.1 101.4 110.7 117.6 132.367.6	 82.0^ r

gr 0.015	 0.017 0.017 0.021 0.019 0.023 0.024 0.026 0.027 " 0.03

Mr 0.02	 0.009 0.01 0.012 0.011 0.01 0.009 0.011 0.013 0.009

in	 ,n l , l	 ^2,1 1,2 3,1 2,2 3,2 1,3 4,1 2,3 -	 4,'^
r•	 r ,

TABLE 2

Inertia parameters and close modes of fifteen-dof model

Inertia parameters Close modes

Mass Moment of inertia r 3 4

Node kg 10-3 kg-m2 ^•^r(r/s) - — 149.18 149.22

0.5570	 — dl ,^, -- 000 1 .000

2 1.4994 1.71')9 '4,r 0.031 -0.214

1 2.0390 4.1627 0.446 -0.4411

I

^7,r

4 0.4756 0.1154 ^10,r -0.421 -0.236

5 2.0424 4.1833 .'13,r -0.151 0.2.16
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Fig. 1 Stretched membrane for mode shapes of ten-mode model
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Figs.	 2	 Fifteen-degree -of-freedom model:	 (a)	 pictorial	 view with
translation dof;	 (h) plan view



0

y
0

rtir+

oc

(y 8

A i

a

o:
W

K
M
N

-0.

Figs. 3 Typicdl transfer functions for the ten-mode(a) H 3,3 (,,,); (b) H7.7(W)	
model

4



99	
FREQUENCY	

IN	 103

7 150

a 1. j15

0

01

,1^IC1NgL. !

"r Pool? ^?UgLt7Y

Fig. 4 Re ference error graph for the ten-mode model with all
motion sensors and all extit,,rs



O
N

boaa3

f

^	 w
y	 N

r- ^ CO
O	 r—W	 •

v
V` Q) ^
G N

31 V

a

4J
•r

•• u
t p► X
N 47
.r ^

b

auaa3

O1tIG1NAL
OF' POUR 

QUAL.I Cy

O
N

A

Q!	 w
cP .^j mv •r

U	 -
Xw

a-^	 f0	 w

i--
9 41	 N

(3 s-

o 	 +J
4-	 -•r

cr u
N	 X
t	 ^ aJ
Cl. 00
b ^
L	 - U
^W
L	 w .-Q

t	 ^
uiNIOC

cY,)
Z U*)
W

O ^,

a ^'
LL.

o vO
M0881WA 83



1. 2s

_ Eill
	

Iii

k
a
W

EIS

0

r.

W

0

0

18

EI11	 Icl

Figs 6
Error graphs for the tt-n -Imrle 1nodel
(a) nx)tion sensors exciters 2, 3, 4
7, V; ( b) motion sensors /oXci t!wy 2
3. 4, 1, S, 10; (c) motion sensors/
exci tors 2, 3, 4, 6, R I 

20clIv12 ► 	 C
	
J14 .

R 91,E ^1

E131	 EIM

97	 09	
FREOUENCY	

101	 03



GI11	 1, ►

6121

GIB ►

G 14	 GIS1 61101

-0

I

au
l'

t

_ G 

G151

^— 6161

97
	

Vv	
FREOUINCV	

101
	

103

Figs. 7 Gramian graphs for the ten-mode model with ;ill ten motion

sensors: (a) 11 ten exciters applied in forward order,

1, 2. . . . , 10; (b) all ten exciters a, , pl ied in reverse
order. 10, 9, . . . . 1



Is)

U6

	

^%	

CO

0

r QUAD

-0.6 I— 1	 '	 L_	 1	 J

Ito

z	 ^- CO

r	 ^^

- -- -

d

\	 \
QUAD

-0,25 	 __
9I	 99	

tRfQU1NCV	 101	
1

.64V
0 C

no^'q^,
ole A

Figs. 8 Cemparisons of exact arid approximate transfer functions
for the ten-mode model, with solid lines for exact values,
long dashes fnr modes 4. b, 6, and 1, and short dashes for
modr, 4 and 6:	 (a) H 3,3 (w); (b) N1.1(w)



3.57
10. h?5 ►

r ^
E c

O
r=

oc 0WW
14
a

3.57

0.143

► 0.075

0t^
E_
t
O

M

`z'

Or 	 1^

P"

0,143

0.05'

► 0.0

Z _o

E c
E
z

v
z

a 0

rL^t
oc

0.057
14

7
FREQUENCY rdd,se[

I

i,

op
n^o 
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