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ABSTRACT 

A computer technique is proposed for a simple practical method of auto- 
matically designing tower structures. Dynamic programming is used to find 
the optimum geometric configuration of the structural members, while the 
member sizes are proportioned by direct iteration. 

Tower structures are particularly suited to this method of automatic 
design since the rapidity of the analysis and design depends primarily upon 
substructuring. Substructuring of towers is comparatively simple because 
interaction between adjacent substructures can be simulated with reasonable 
accuracy. Typical examples are presented to illustrate the method. 

INTRODUCTION 

Dynamic programming has long been recognised as an extremely powerful 
optimization technique, particularly for problems of a discontinuous nature. 
High-dimensional problems, however, result in a large amount of computation, 
but this can be reduced by a successive approximation method. 

A 3-dimensional Dynamic Programming Successive Approximation technique 
is used here to obtain an optimum (least weight) geometrical configuration 
for the design of tower structures. Concurrently, a simple direct itera- 
tion procedure is used to select the optimum member sizes from any list of 
section properties provided. 

If the structure were to be designed as a whole, a change of geometric 
configuration would need a re-analysis. This means that a large amount 
of computation would be required. 

Substructuring has been introduced to reduce the overall problem into 
smaller stages so that the analysis can be performed more rapidly. 

If any sections recommended by the computer are not desirable for 
practical reasons the re-input of a complete new set of data is unnecessary. 
Only the list(s) of sections and the data relating to section types need 
be changed. 
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Three examples of tower structures are given in this paper: 

1. A sample plane-truss tower 
2. A comparison of the optimum weight of a triangular tower referred to by 

Kuzmanovic, Willems and Thomas (ref. 1) 
3. A typical transmission tower used in South Africa 

DYNAMIC PROGRAMMNG - BASIC CONCEPTS 

The computational effort required to find all the possible solutions for 
large problems can become unmanageable without the use of Dynamic Programming. 
This technique bypasses this problem by considering the possible decisions 
to be made at each stage of the solution. 

Dynamic Programming can be described as a technique for methodically 
selecting an optimum solution of a multi-stage decision problem. This 
mathematical technique can be used for problems where a sequence of decisions 
are dependent upon one another and each decision influences the system's 
response to future decisions. A set of solutions can be categorized so that 
one may be judged to be better than another in some pre-defined manner. 

In a sequence of decisions, the current state of the sequence is assessed 
as f(x(k-1)) and the succeeding one as f(x(k)). Without considering the 
whole chain of past and future decisions, except that they contribute to 
f(x(k-l)), the best decision can be found from: 

f(x(k)) = min[t(x(k); x(k-1)) + f(x(k-l))] 

where t is the assessment between stages k-l and k and 
x is a state variable 

Dynamic Programming is based on a repeated use of this idea. 

A simple network problem posed by Bellman and Dreyfus (refs. 2 & 3) and 
discussed by Palmer (ref. 9) demonstrates the process excellently. In the 
course of the solution of this problem, two central ideas are used. The 
first is the idea of imbedding; this means that the overall optimization 
problem consists of a number of smaller problems imbedded within the whole, 
which can be solved independently. In the second idea, an optimum solution 
can be found from a sequence of decisions by imagining that the final solution 
is broken up into a series of simpler decisions. 

Problems of this type become very tedious when the order of the state 
variables (x(k)) becomes large. For example, various state variable vectors 
(denoted x (k)) may be present at any particular stage k of the calculation, 
which camp f- lcates the matter. For this reason, the dimension (n) of the 
problem is decreased to a single variable vector by the use of the Dynamic 
Programming Successive Approximation (DPSA) technique. 
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The geometric design of a tower structure can be degenerated into a 
series of simple decision processes as prescribed by the DPSA technique by 
using substructuring. 

SURSTRUCTURING 

The benefit of substructuring in the design of towers is that the optimum 
section sizes can be determined rapidly within each substructure. The inter- 
action between adjacent substructures is comparatively simple and can be 
simulated with reasonable ease which makes this technique particularly 
attractive. 

The geometry at the interface of each substructure is uniquely defined 
by the coordinates of the member ends which are 'cut' at the interfaces. 
Hence, in Figure 1, the coordinates at the right hand side of substructure 1 
are defined by x , y ; x1, yl and for substructure 2 by x1, yl; x2, y2 
and so on for thg other substructures. 

The assumption is made that the forces transferred from one substructure 
to the next can be calculated from statics. For example, the interaction 
forces at the interface between substructures 1 and 2 are found by applying 
equivalent loads and moments at the central point A; i.e., the vertical 
force P is resolved into a load P 
force PC 

and a moment P x h, while the horizontal 
is resolved into a load Pl and a moment P ; x (Y4 - Y,). 

Each pin-jointed substructure is analysed by the displacement method, 
which requires the equivalent loads and moments at A to be applied as point 
loads at the interface nodes (xl, y,) and (-x , y 
now analysed and designed independently assuming t 

). The substructures are 
hat the lower interface 

nodes are constrained. The member sizes are selected by a simple direct 
iteration procedure. 

DIRECT ITERATION 

A list of sections is provided so that the actual member sizes required 
in each substructure can be selected automatically by the direct iteration 
procedure. The calculated stresses are compared with permissible stresses 
so that the ratio between them is a minimum. The substructure is reanalysed 
each time the member sizes are revised until the results from successive 
iterations are identical. 

THE DYNAMIC PROGRAMMING SUCCESSIVE APPROXIMATION (DPSA) TECHNIQUE 

The coordinates of the interface nodes in Figure 1 can be changed at any 
stage and the members designed accordingly by the direct iteration method. 
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Consequently, the weight of each configuration of members in all substructures 
can be calculated. The optimum solution is then the combination of possible 
configurations which results in the least weight of the total structure. The 
dynamic programming technique sets about this calculation in an organized 
methodical way. 

Let us consider a tower similar to that in Figure 1. The interface 
nodes, which define the configuration of the tower, can be positioned 'in space 
by a set of three-dimensional coordinate values. Let the structure be 
symmetrical about the XZ and YZ planes; therefore a node placed in the first 
o&ant wiil define the shape of the tower at that level. Let the coordinates 
of the interface node be (x 
x, y and z coordinates of t iJi 

(k), x2(k), x3(k)). This corresponds to the 
e primary node of substructure 1, where k also 

denotes the upper interface level of that substructure and k = 0 represents 
the ground level. The n-dimensional DPSA method is therefore well suited 
to structures of this type, where n = 3. For example, at level k = 2 some 
possible values of the state variables are shown in Table 1. The control 
variables un(k) shown correspond to the identification number in each set. 

The values of u(k) (i.e. u 
x (k), x (Id, x3(k) at each leve 1 z 

(k), u (k), u3(k)) and hence the values of 

o+ fi 
k mus be found so that the overall weight 

the s ructure is a minimum. 

The DPSA method requires an initial solution to the problem. The average 
value of the state variables at each interface is a suitable initial solution. 
To proceed, only one state variable is altered, while the remainder stay at 
their initial values. In this way a single-dimensional dynamic programming 
procedure with respect to this variable is carried out. The process is then 
continued, the new value of the first variable is retained and one of the other 
state variables is altered. All the variables are processed in this way; 
the first cycle is complete when all the state variables have been altered. 
Subsequent cycles follow the same procedure as above. The DPSA method has 
converged to its optimum solution when no weight difference is recorded 
between successive cycles. This method is found to converge rapidly to an 
optimum weight solution. The structure comprises a number of substructures. 
The geometric configuration between interfaces is regarded as a substructure. 

The direct iteration method is used to find the most satisfactory 
structural design and hence the weight for every geometric configuration of 
each substructure. A least weight path is followed through all the sub- 
structures to determine the optimum configuration of the total structure. The 
explanation of the DPSA method can be simplified by the following elementary 
example. 

Example: Consider a simple 2-dimensional tower which consists of 2 
substructures - Figure 2. 

Let the state variables x(l) and x(2) vary in three steps on each side 
of the vertical axis of symmetry and the other state variables i.e. y(k) be 
kept constant. In addition, let the state variable x(k) at k = 0 be 
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constrained to a single value. The accumulated cost (or weight) of the sub- 
structures up to level k for each position of x can be denoted by: 

Ci(k) 
where i denotes the position of x(k) on interface k. 
Let the cost of a single substructure,k be denoted by: 

tij (k) 
where i and j denote the positions of the state variables x(k) for sub- 
structure k at the upper and lower interfaces respectively. 

Figure 3 shows all the possible geometrical configurations within the 
constraints given. 

The costs of each of the 3 configurations in the first substructure, due 
to the varying values of x(l), are calculated by: 

Cl(l) = tll(l) 
C*(l) = t*1(1) 
c3(1) = t31(1) 

and are shown in Figure 4. 

Similarly the values of t..(2) can be obtained for the second sub- 
structure. The least accumul&$ed weight at point i on interface k can be 
found from: 

Ci(2) = min[tij(2) + Cj(l)] for j = 1 to 3 

The optimum configuration of the structure at level 2 is determined by choos- 
ing the least value of C.(2). The optimum path can then be traced back 
through the calculations'to find the optimum configuration of the entire 
structure. 

A computer program, which uses the ideas discussed above, has been written 
to design general tower structures. Three examples included are: 
a. A simple 3-cell plane-truss tower. b. A 3-legged transmission tower. 
C. A practical, rectangular plan transmission tower. 

Example 1. 3-substructure plane-truss tower 
The tower shown in Figure 5 supports two loads at the upper level of 

-15 kN in the y-direction and -10 kN in the x-direction at nodes 7 and 8 
respectively. The possible dimensions at the 4 levels are, in x-direction: 

1 2 3 4 5 
Base 136 138 230 232 2,4 
Level 1 131 193 195 197 139 
Level 2 038 039 1,o 131 132 
Level 3 095 
and in z-direction: 
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1 3 4 5 

Base 030 

Level 1 138 199 Level 2 39 
1 

?i 2,1 41 2-z 
Level 3 : : 1 

Each substructure is to be designed using the following sections: 
1. Upright member - channel sections. 2. Diagonal member - pipe sections 
3. Horizontal member - angle sections. 

Results: The final shape is shown in Figure 6. 

Structural Design: 
Substructure Members Size - mm 

1 a,d loo x 50 x 6 Channel 
b,c 38,~ x 2 Pipe 
e 40 x 40 x 3 Angle 

2 f,i loo x 50 x 6 Channel 
g,h 38,~ x 2 Pipe 
j 25 x 25 x 3 Angle 

3 k,n 76 x 38 x 5,1 Channel 
R,m 48,5$ x 2 Pipe 
0 25 x 25 x 3 Angle 

Total weight of structure, 1,461 kN; total computer time, 28,X9 set UNIVAC 1106. 

Example 2. A three-legged transmission tower shown in Figure 7 is 
considered. It contains 56 nodes and 175 members. The loads used correspond 
to those used by Kuzmanovic et al. (ref. 1). 

Load case 1: Basic wind free in transverse direction 
Position Load kN Direction 

A,B 26,7 - z 
8,9 -x 

C 80,o - z 
31,o -x 

D,E 15,6 -x 
40,o - z 

Load case 2: 0,707 Basic wind in the transverse direction 
0,707 Basic wind in the longitudinal direction 

Position 

A,B 

C 

D,E 

Load kN Direction 
16,o - z 

594 -x 
48,0 - z 
18,7 -x 

994 -x 
11,6 +Y 
24,o - z 
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Load case 3: No wind 
Position Load kN 

A,B 32,0 
c 160,o 
D,ti - 80,o 

Direction 
-z 
- z 
- z 

Member Groups: Table 2 shows the member groups used in each substructure. 

Angle sizes: Table 3 shows the list of angles which were used to 
produce a structural design. 

Results: The structural design for each load case is shown in Figure 8. 
The horizontal axis represents, in ascending order, *the sizes of angle avail- 
able for the design. The vertical scale represents the member groups within 
each substructure. Computer times and structure weights are: 

Load case 

1 
2 
3 

No.of state variable 
positions at each level 
Horizontal Vertical 

(radial) (elevation) 
5 1 
5 1 
5 1 

Weight kN Computer 
time 

UNIVAC 1106 

23,256 6 min 27 set 
16,786 4 min 12,17 set 
17,428 3 min x6,89 set 

The optimum weight found by Kuzmanovic et al. (ref. 1) was 23,51 kN. The 
weights above compare favourably with this value. 

Example 3. A practical transmission tower similar to those currently 
in use in South Africa is considered. It contains 115 nodes and 336 members. 
The shape of tower is shown in Figure 9. An equivalent set of loads have 
been calculated from those used in Example 2. Angle sizes used in the design 
are shown in Table 3. 

Member Groups: Table 4 shows the member groups used in each substructure. 

Results: The structural design for each load case is shown in Figure 10. 
Computer times and structural weights are: 
Load case No-of state variable 

positions at each level Weight kN Computer 
time 

1 
2 

x-dir. y-dir. z-dir. UNIVAC 1106 
3 3 1 57,877 46 min 04,252 set 
3 3 1 48,544 31 min 15,069 set 

CONCLUSION 

This method of automatically determining the optimum geometric configura- 
tion and member sizes substantially reduces the effort involved in the design 

107 



of tower structures. The dynamic programming successive approximations 
technique is effective for structures of this type, where substructuring pro- 
vides the necessary static variables. The displacement method is admirably 
suited to the analysis of these structures. Direct iteration is the simplest 
method of selecting the optimum member sizes from any given list of section 
properties. Three examples have been discussed. In the 15 member plane- 
truss example considered as 3 substructures, the computational time taken on 
a UNIVAC 1106 is 28,39 seconds. A waisted tower shape of structure is the 
optimum geometric solution. Example 2 is a three-legged tower with 175 
members and 56 nodes. The computational time with two state variable6 is 
6 minutes 27 seconds. The weight compares favourably with that given in 
reference.11 by Kuzmanovic et al. Example 3 is a practical transmission tower 
similar to those currently used in South Africa. This structure consists 
of 336 members and 115 nodes and the computational time required for an 
optimum feasible solution is 46 minutes per load case. 
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TABLE 1 - A POSSIBLE SET OF STATE AND CONTROL VARIABLE VECTORS 

STATE VARIABLES x,(k) IDENTIFICATION 
n=lto 

x1(2) x2(2) x3(2) u(2) 

038 097 099 1 
0,9 0,75 0,95 2 
130 0;8 130 
191 0,85 I,05 4’ 
132 039 191 5 

NO u,(k) 
3 

Wee 1 2 3 4 5 

TABLE 2 - MEMBER GROUPS 

Substructures 

Main leg members, a 
Horizontal leg members, b 

Diagonal leg members, c 
Main leg members, d,g,j,m,p 
Horizontal members, e,h,k,n,q 
Diagonal members, f,i,ll,o,r 

1 
2 

3 

1 1 1 1 
2 2 2 2 

3 3 3 3 
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Number 

1 25 x 25 x 3 
2 30 x 30 x 3 
3 40-x 40 x 3 
4 45 x 45 x 3 
5 45 x 45 x 5 
6 50 x 50 x 5 
7 60 x 60 x 5 
8 60 x 60 x 6 

9 70 x 70 x 6 
10 80 x 80 x 6 

TABLE 3 - AVAILABLE ANGLE SIZES 

Size - mm Number 

11 80 x 80x 8 
12 90 x 90x 8 
13 100 x loo x 8 
14 100 x 100 x 10 

15 120 x 120 x 10 
16 120 x 120 x 12 

17 150 x 150 x 12 
18 150 x 150 x 18 

19 200 x 200 x 16 

20 200 x 200 x 24 

Size - mm 

TABLE 4 - MEMBER GROUPS 

Type 1 
Main leg members, a,f,j 1 
Secondary leg members, b,g,k 2 

Leg horizontal members, c 3 
Diagonal members, d 4 
Interface members, e,i,m 5 
Leg bracing members, h,R 
Main arm members, n 
Secondary arm members, o 
Bracing, P,q,r,s,t,u 
Boom members, v,w 

Substructures 
2 3 4 

1 1 
2 2 

4 

3 
1 
I 

2 

3,4,5,6,7,8 
9,lO 
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b&-Y,) 

SUBSTRUC TURE 

Figure l.- Tower structure with substructures. 

CONSTANT 

Figure 2.- Tower structure (example). 
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POSITION 

k=2 .- - -- --_--_ 
I 

k=O 

I 
1 k=l ----------- 

SYMMETRIC 

k=O --_---- 

Figure 3.- Possible configurations. 

POSITtON 

1 2 3 

Figure 4.- Three cost values. 
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I 15 kN 

Figure 5.- Original tower shape. 

I 15 kN 

LEVi’L 3 

LEVEL 2 

LEVEL 1 

BASE 

I- 2400 

Figure 6.- Optimum tower shape. 
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C D,E 

E 
C 
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+Y 

SECTION X - k 

Figure 7.- Three-legged tower. 
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‘; 

2 

1 

3 

2 

1 

3 

2 

1 

3 

2 

1 

INCREASING ANGLE SIZE 

LOAD 
CASE 

1 

de--- 2 

------_ 3 

Figure 8.- Example 2: Structural design. 
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t . 9300 I 

Figure 9.- Typical tower. 
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MEMBER 
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NUMBER 

10 

9 
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5 

4 

3 

2 

1 

4 

3 

2 

1 

4 

3 

2 

1 

5 

4 

3 

2 

1 

LOAD 
CASE 

1 

5 10 15 20 

INCREASING ANGLE SIZE 

Figure lo.- Example 3: Structural design. 
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