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SUMMARY 

A new trigonometric approach to the finite difference calculus was applied 
to the problem of beam buckling as represented by virtual work and equilibrium 
equations. The trigonometric functions were varied by adjusting a wavelength 
parameter in the approximating Fourier series. Values of the critical force 
obtained from the modified approach for beams with a variety of boundary condi- 
tions were compared to results using the conventional finite difference method. 
The trigonometric approach produced significantly more accurate approximations 
for the critical force than the conventional approach for a relatively wide 
range in values of the wavelength parameter; and the optimizing value of the 
wavelength parameter corresponded to the half-wavelength of the buckled mode 
shape. Thus, selection of the wavelength parameter is a simple process if the 
half-wavelength is known. Methods for selecting this parameter in the more 
general case are also presented. It was found from a modal analysis that the 
most accurate solutions are obtained when the approximating function closely 
represents the actual displacement function and matches the actual boundary 
conditions. It is more difficult to select a satisfactory value of the wave- 
length parameter for the equilibrium equation which makes the virtual work 
equation more attractive for practical applications. A comparison of the vir- 
tual work and the Galerkin approaches identified marked similarities between 
the two methods. 

INTRODUCTION 

Numerical analysis has played an important part in furthering the under- 
standing of structures over the past decades. Finite element and difference 
are just two techniques which may be considered part of the overall numerical 
approach. The similarities between the two have come to light recently as 
they are applied to energy equations, and therefore further research into 
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finite difference methods, with respect to structures, has been pursued. Stein 
and Housner (ref. 1) initiated work into a trigonometric approach to finite 
difference as applied to plate instability which appeared very appealing be- 
cause of its convergence characteristics (ref. 2). Thus, the authors investi- 
gated this relatively new trigonometric approach and applied it to problems of 
beam buckling, incorporating both the virtual work and equilibrium equations by 
extending the method's fundamental mathematical concepts. In order to accom- 
plish this, a trigonometric function was varied by adjusting a waveleng.th par- 
ameter in an approximating Fourier series. Values of the critical force ob- 
tained from the modified approach for beams with a variety of boundary condi- 
tions were, for the first time, at least to the authors' knowledge, compared to 
results using the conventional finite difference method. The trigonometric 
approach produced significantly more accurate approximations for the critical 
force than the conventional approach for a relatively wide range in values of 
the wavelength parameter; and the optimizing value of the wavelength parameter 
corresponded to the half-wavelength of the buckled mode shape. It was found 
from a modal analysis that the most accurate solutions are obtained when the 
approximating function closely represents the actual displacement function. It 
is more difficult to select a satisfactory value of the wavelength parameter 
for the equilibrium equations which makes the virtual work equation more 
attractive for practical applications. The buckled mode shape (or eigenfunc- 
tion) is predicted with high accuracy regardless of the value of the wavelength 
parameter. A comparison of the virtual work and the Galerkin approaches iden- 
tified marked similarities between the two methods. 

MATHEMATICAL EQUATIONS AND NUMERICAL APPROXIMATIONS 

Virtual Work Equation. The virtual work principle can be stated mathe- 
matically as 

&We = 6U (1) 

(We = external work; U = strain energy) 

For a one-dimensional beam with an axial force P, this relationship reduces to 
the following equation (ref. 3): 

L L 

EI 
I 

d2v d2& --dx=P dv d6v 

dx2 dx2 
-d--Fdx=O (2) 

where v represents the vertical displacements during buckling. The derivatives 
in equation (2) can be replaced by trigonometric finite difference approxima- 
tions: 

I Tr 
vi+L = rh 2X sin(x) 

(--Vi + vi+$ 
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II 3 
vi = (v. 

4X2sin2(*) i-l 
- 2vi + vi++ 

2x 

where h = mesh spacing and X = buckle wavelength parameter. (Refer to'the 
Appendix for complete derivation of equations (3) and (4)). Note that the vir- 
tual work equation has been evaluated using half-station approximations for the 
first derivative and full-station approximations for the second derivative. 
The trigonometric finite difference expressions represented by equations (3) 
and (4) reduce to the conventional polynomial expressions as X approaches in- 
finity since 

lim T 1 (5) 
A-- =- 

2Asin(.GJ h 

Integration in equation (2) is performed using the trapezoid rule. The virtual 
displacements in the resulting equation can be ordered to produce 

N 
1 fi(V,P)6V = 0 

i=l i (6) 

For this equality to hold, the coefficients of the individual 6vi must be equal 
to zero which leads to an eigenvalue problem of the form 

i = O j 
= 1,2;..N (7) 

from which the critical force can be calculated. 

Equilibrium Differential Equation. The elastic form of the differential 
equation describing the slightly bent equilibrium configuration of an initially 
flat beam can be stated as (see ref. 4) 

d4v 
dx4 

+ p d2v 
EIdx2=' (8) 

The trigonometric finite difference approximation for the fourth derivative was 
derived incorporating a five term Fourier series with the following result: 

where 

4 
iv 

V. = - 1 '~) [~ (vi-2 4vi _ 1 + 6v. - 1 4vi+l 

1 

+ v~+~) + 16T5(l 

A1Vi+2 + A2vi+l + A3Vi + A~vI-1 + AlVi-2 
T 5= 

A4 

(9) 

(10) 
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0=? (11) 

A1 = -2 cos 8 + 2 (12) 

A2 = 2 cos(20) - 2 (13) 

A3 = -4 cos(28) + 4 cos 8 (14) 

A4 = 16 sin20 - 48 cos2e + 32 cos3e + 48 cos4e - 32 cos'(C3) (15) 

Equation (8) can b.e evaluated at each of the N grid 
length of the beam, resulting in a set of equations 

+v. h2 l-2 - 4vi-l + 6vi - 4vi+l + vi+2 > 

(16) 
+ & (Vi-1 - 2Vi + Vi+l) = 0 ; i = 1,2,"N 

points placed along the 
with the following form: 

where A represents the combined coefficient resulting from the evaluation of 
equation (9). The displacements in this set of equations can be ordered to 
produce an eigenvalue problem in the form of equation (7). 

Virtual Work and Galerkin Approaches, To complete the discussion of fi- 
nite differences, it is instructive to compare the virtual work approach, as 
applied in this paper, to the Galerkin approach. Both methods are based on the 
principle of minimum potential energy. The Galerkin approach approximates the 
displacement function by the following series expansion: 

M 
V(X) = C ai$i(x) 

i=l 
(17) 

where ai are undetermined coefficients and 4. represent continuous functions. 
By substituting this approximating function $n the potential energy expression 
and performing a sequence of variational operations, the following system of 
equations is obtained: 

,i, f, (PIa = 0 
j 

i = 1,2”“M (18) 

where fij denotes a functional relationship in terms of the external force. 
The concept underlying the Galerkin approach is based on the fact that the 
error in the approximation of equation (17) is minimized for any value of M if 
the ai are chosen such that equations (18) are simultaneously satisfied (ref. 
5) * The virtual work approach incorporating finite difference approximations 
can be described in a similar manner, The Fourier coefficients, Ti, are im- 
plicitly selected (through the computational properties of the virtual work 
algorithm) such that the error due to the approximation of v(x) is minimized. 
This hypothesis was substantiated numerically by an analysis of the Fourier 
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series approximating function. 

CONCLUSIONS AND RESULTS 

This paper compares the results of using the trigonometric and convention- 
al approaches to the finite difference calculus in order to solve the equili- 
brium and virtual work equations. A wide range of boundary conditions were 
investigated. Various values of A were used in the trigonometric approach to 
determine the optimum value as well as to determine the range over which the 
trigonometric approach gives more accurate approximations than the conventional 
approach. In addition, an in-depth search,was conducted to provide plausible 
explanations for the superiority of one method over the other and one value of 
X over other values. Finally, the effect of decreasing the number of grid 
points and the use of full-station approximations in the virtual work equation 
were investigated. 

The virtual work method was found to be an efficient and simple approach 
and provided excellent results for both the trigonometric and conventional 
techniques with as few as five grid points. As predicted from theory, compu- 
tational data revealed that the magnitude of error in computing PC, varies 
directly with the square of the grid size. The variable input parameter, X, 
has the effect of adjusting the wavelength of the Fourier series approximating 
function, and the optimum value of A corresponds to the half-wavelength of the 
buckled mode shape for each boundary condition. There is a range in the val- 
ues of X for which the trigonometric approach is superior. This range extends 
from approximately 25% below the optimum value to infinity. Thus, a large 
value of X is guaranteed to provide more accurate results than the conventional 
approach. Of course, if X is chosen to be too large, the error from the con- 
ventional and trigonometric techniques approaches the same value; and the benefit 
of using the trigonometric technique is lost. It can be shown that X=1.5L 
produces satisfactory results for all boundary conditions. An illustration of 
this can be observed in figures 1 and 2 which depict the error in the calcu- 
lation of PC, for pinned-pinned and free-guided beams. A potential explanation 
for the superiority of one method over the other was found from an investiga- 
tion of the Fourier and Taylor series approximating functions. The X value 
which yields the closest series approximation to the theoretical displacement 
function corresponds to the optimum value of X. That is, the key to calculat- 
ing an accurate estimate of the critical force is to supply an approximating 
function which very closely reproduces the buckled mode shape as well as to 
satisfy the geometric and force boundary condition. 

The similarities between the virtual work technique as employed in this 
paper and the Galerkin approach have been explored. In both cases, equilibrium 
expressions are used to derive potential energy relationships; and the dis- 
placement functions are approximated by series expansions. In addition, there 
isa strong relationship between the resulting sets of equations developed by 
the two methods. Both methods attempt to minimize the error in approximating 
the displacement function. When the approximating function is altered such 
that this minimized error is larger, the error in the computed critical force 
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will increase proportionally. This concept was demonstrated by the use of the 
full-station finite difference approximation for the first derivative. The 
decreased accuracy in the approximation of v(x) caused a significant increase 
in the error of the calculated value of the critical force. 

The equilibrium approach was also found to be efficient, and excellent re- 
sults were obtained using the trigonometric technique. Figures 3 and 4 depict 
the results of calculating the critical force for pinned-pinned and free- 
guided beams. However, it is more difficult to select an effective value of A 
using this approach than was found to be true for the virtual work approach. 
There are two optimum values of A due to the fact that five terms were used in 
the Fourier series for the derivation of the fourth derivative. The first 
value corresponds to the half-wavelength of the buckled mode shape. A precise 
estimate of the buckled wavelength is required in this case, however, since 
there is little margin for error. The range around this optimum value for 
which the trigonometric approach is superior to the conventional approach is 
very small, and the error builds rapidly as estimates of the optimum value 
worsen. There is a large range around the second optimum value for which the 
trigonometric approach is superior. This range extends from approximately 27% 
below the optimum value to infinity. This provides a comfortable margin of 
error for selecting X. The problem is that there is no known physical parame- 
ter from which this second optimal value can be estimated other than the rea- 
lization that each term of the series is superimposed upon each other, yielding 

a wavelength equal to the theoretical value at this particular X. It appears 
from the available data that a value which is 2.75 times the half-wavelength 
provides a reasonably close estimate in most cases, but specific boundary con- 
ditions vary considerably from this figure. Despite the uncertainty, it is 
much safer to attempt an estimate of the second -optimal value of h due to the 
larger error margin. An attempt to use the first optimal value is probably 
unwise unless the buckled mode shape is known a priori with reasonable accuracy. 
It can be shown that X=3.75L provides more accurate results than the conven- 
tional approach for all boundary conditions. 

In comparing the results of the virtual work and equilibrium approaches, 
many similarities were noticed despite the major conceptual differences in the 
derivation of these methods. The interpretation of the wavelength parameter, 
A, is the same in both cases as already discussed. In addition, the virtual 
work and equilibrium methods give the same value for PC, when conventional 
finite difference expressions are used. The two methods do not give the same 
result when trigonometric expressions are used due to the presence of the two 
additional Fourier series terms in the equilibrium equation. Several major 
differences were also noted in the two methods. For example, it is more diffi- 
cult to predict the optimum value of X for the equilibrium approach. Addition- 
ally, it was found that an error in the estimate of X produces a larger error 
in the computed value of PC, for the equilibrium method than for the virtual 
work method. For these reasons, the virtual work method is recommended for 
general use over the equilibrium method. The trigonometric approach to the 
finite difference calculus is recommended over the conventional approach, par- 
ticularly in those cases when the shape of the displacement function is known 
within rather broad tolerances. 
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APPENDIX 

Trigonometric finite difference approximations are derived in a manner 
similar to the conventional expressions with the exception that the following 
form of the Fourier series is used rather than the Taylor series: 

v(x) = T1 + T2sin lTT(x - x0> + T3cos lTTT(x - x0> 
x x (19) 

The derivative of equation (19) evaluated at the reference point, x0, is given 
by 

/(x0) = T2 f (20) 

T2 = /(x0> 3 

Evaluation of equation (19) at x0 + h/2 and x0 - h/2 results in 

. mh xh 
%J'/2 = Tl + T2S=n 2x + T3CoS 2x 

. vB1, = T1 - T2sm 
2 

* + T3cos * 
2x 2x 

Subtract equation (23) from equation (22) to obtain 

(21) 

(22) 

(23) 

= 2T 
2 

sin ?? 
2A (24) 
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If equation (21) is substituted in equation (24) and the terms rearranged, the 
following expression is obtained 

where 

v’cxo> = 1. ‘v+& - V-b> 
ii 2 2 

i;= ahsin 

-lr 

(25) 

(26) 

The trigonometric finite difference approximation for the second deriva- 
tive can be obtained in a similar manner. Equation (19) can be evaluated at 
x = x0 + h and x = x0 - h to provide 

rh rh 
v+l = T1 + T2sin 7 + T3cos 7 

T v-l= 1 - T2sin q+ T3cos % 

By adding equations (27) and (28) and subtracting two times equation (19) 
evaluated at x = x o, the following expression is obtained: 

rh 
v+l - 2vo + vBl = 2T3(cos - - 1) 

x 

(27) 

(28) 

(29) 

The second derivative of equation (19) with respect to x evaluated at x = x0 i 
is 

Solving for T3 yields 

If equation (3 
solved for vz, 

.ting expression '1) is substituted in equation (29) and the resul 
the following expression is obtained: 

11 
v =-T z cos TCXo - X0) 

0 
3 x2 x 

T3 = - ($ v; 

(30) 

(31) 

I, 7? 
v = (v 

0 4X2sin2(*) +' 
- ho + v-1) 

2x 

(32) 

11 

V =- 

0 l (v+1 
ii2 

- 2vo + v-1) 

or 
(33) 

Note that the trigonometric and conventional finite difference expressions 
are similar with the mesh spacing, h, simply replaced by 6. 
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